WorldWideScience

Sample records for thrust bearings

  1. Thrust bearing

    Science.gov (United States)

    Anderson, W. J. (inventor)

    1976-01-01

    A gas lubricated thrust bearing is described which employs relatively rigid inwardly cantilevered spokes carrying a relatively resilient annular member or annulus. This annulus acts as a beam on which are mounted bearing pads. The resilience of the beam mount causes the pads to accept the load and, with proper design, responds to a rotating thrust-transmitting collar by creating a gas film between the pads and the thrust collar. The bearing may be arranged for load equalization thereby avoiding the necessity of gimbal mounts or the like for the bearing. It may also be arranged to respond to rotation in one or both directions.

  2. Improved gas thrust bearings

    Science.gov (United States)

    Anderson, W. J.; Etsion, I.

    1979-01-01

    Two variations of gas-lubricated thrust bearings extend substantially load-carrying range over existing gas bearings. Dual-Action Gas Thrust Bearing's load-carrying capacity is more than ninety percent greater than that of single-action bearing over range of compressibility numbers. Advantages of Cantilever-mounted Thrust Bearing are greater tolerance to dirt ingestion, good initial lift-off characteristics, and operational capability over wide temperature range.

  3. Lateral dampers for thrust bearings

    Science.gov (United States)

    Hibner, D. H.; Szafir, D. R.

    1985-01-01

    The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face.

  4. Thermal effects in an accelerating thrust bearing

    Science.gov (United States)

    Doo, R.; Rodkiewicz, C. M.; Gupta, R. N.

    1985-01-01

    This study is mainly concerned with the development of transient temperatures in a thrust bearing. The effect of Prandtl number on temperatures was also investigated. All lubricant properties were assumed to be constant. It was found that the location of highest temperatures depended on the bearing ratio. The effect of Prandtl number on temperatures was small. However, its effect on the heat transfer at the surfaces was significant.

  5. Dual-action gas thrust bearing for improving load capacity

    Science.gov (United States)

    Etsion, I.

    1976-01-01

    The principle of utilizing hydrodynamic effects in diverging films to improve the load carrying capacity in gas thrust bearings is discussed. A new concept of a dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and can improve their efficiency.

  6. Thrust Bearing with Rough Surfaces Lubricated by an Ellis Fluid

    Science.gov (United States)

    Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.

    2014-11-01

    In the paper the influence of bearing surfaces roughness on the pressure distribution and load-carrying capacity of a thrust bearing is discussed. The equations of motion of an Ellis pseudo-plastic fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and using the Christensen theory of hydrodynamic rough lubrication the modified Reynolds equation is obtained. The analytical solutions of this equation for the cases of a squeeze film bearing and an externally pressurized bearing are presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. A thrust radial bearing is considered as a numerical example.

  7. The dual action gas thrust bearing - A new high load bearing concept

    Science.gov (United States)

    Etsion, I.

    1976-01-01

    The principle of utilizing hydrodynamic effects in diverging films for improving load capacity in gas thrust bearings is discussed. A new concept of dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and improve their efficiency.

  8. Design and analysis of thrust active magnetic bearing

    Science.gov (United States)

    Jang, Seok-Myeong; Lee, Un-Ho; Choi, Jang-Young; Hong, Jung-Pyo

    2008-04-01

    This paper deals with the design and analysis of thrust active magnetic bearing (AMB). Using the analytical solutions for thrust, resistance, and inductance obtained from equivalent magnetic circuits method, we determine initial design parameters such as the size of magnetic circuit, coil diameter, and the number of turns by investigating the variation of thrust according to design parameters. Then, using nonlinear finite element analysis, a detailed design considering saturation is performed in order to meet required thrust under restricted conditions. Finally, by confirming that the design result is shown in good agreement with experimental results, the validity of design procedures for thrust AMB used in this paper is proved. In particular, the dynamic test results of the thrust AMB are also given to confirm the validity of the design.

  9. An aerostatic thrust bearing with a stiffness of ?

    Science.gov (United States)

    Yoshimoto, S.

    1996-03-01

    This paper proposes a new type of aerostatic thrust bearing in order to achieve 10 times larger bearing stiffness compared with that of conventional aerostatic bearings. In this bearing, a porous restrictor with 1 - 3 mm diameter is employed instead of a conventional feed-hole restrictor to restrain gas flow entering the bearing clearance to a very small amount and the proposed bearing can operate in a bearing clearance of less than 0957-4484/7/1/008/img2. The static characteristics of the proposed bearing are investigated theoretically and experimentally. It is consequently found that the proposed bearing can achieve a very high bearing stiffness of 0957-4484/7/1/008/img3.

  10. Passive magnetic bearings and thrusts; Paliers et butees magnetiques passifs

    Energy Technology Data Exchange (ETDEWEB)

    Yonnet, J.P. [Centre National de la Recherche Scientifique (CNRS), Lab. d' Electrotechnique de Grenoble, 38 - Grenoble (France)

    2002-05-01

    A passive magnetic bearing uses only the permanent interaction forces between the fixed and the rotating parts. These forces are created even by the attraction between facing magnetized soft iron parts or by the direct attraction or repulsion of permanent magnets. The aim of passive bearings is to center an axle (magnetic centering) or to control the translation along this axle (magnetic thrust). This article presents successively: 1 - the different types of magnetic bearings (variable reluctance bearings, permanent magnet bearings); 2 - operation (forces and tensenesses, fundamental theorem on stability, angular stability, oscillations damping); 3 - calculation (passive magnetic bearing with permanent magnets, variable reluctance passive magnetic bearings); 4 - magnetic suspensions designed with passive magnetic bearings (rotor suspension, partial magnetic suspensions, totally magnetic suspensions stabilized with active magnetic bearing); 5 - uses. (J.S.)

  11. Performance of Simple Gas Foil Thrust Bearings in Air

    Science.gov (United States)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In this case, the load capacity is constant and in fact often decreases with speed if other factors such as thermal conditions and runner distortions are permitted to dominate the bearing performance.

  12. Pneumatic hammer in aerostatic thrust bearings with single orifice compensation

    Science.gov (United States)

    Kong, Zhongke; Tao, Jizhong

    2013-01-01

    In dealing with the phenomenon of the pneumatic hammer in aerostatic thrust bearings, the vibrant model of the one-single freedom system has been established to study the pneumatic hammer from the point of sympathetic vibration. It is found that the bearings show a tendency to result in the pneumatic hammer with the increase of air supply pressure, and the occurrence probability of the pneumatic hammer will be reduced when the gas film thickness is maintained within a certain range. Meanwhile, the existence of the pneumatic hammer, which is caused by sympathetic vibration, is experimentally verified, and it is found that gas bearings undergo certain disturbance, which causes the system to produce micro breadth vibration. Accordingly, the micro breadth vibration causes the gas film and thrust face to form flow/structure coupled to excite the pneumatic hammer. Therefore, it provides another path to study the pneumatic hammer and is of academic value.

  13. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    Science.gov (United States)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active-magnetic-bearing force-measurement systems is to calculate levitation forces on the basis of simple proportionalities between changes in those forces and changes in feedback-controlled currents applied to levitating electromagnetic coils. In the prior systems, the effects of gap lengths on fringing magnetic fields and the concomitant effects on magnetic forces were neglected. In the present system, the control subsystems of the active magnetic bearings are coupled with a computer-based automatic calibration system running special-purpose software wherein gap-length-dependent fringing factors are applied to current and magnetic-flux-based force equations and combined with a multipoint calibration method to obtain greater accuracy.

  14. Experimental evaluation of foil-supported resilient-pad gas-lubricated thrust bearing

    Science.gov (United States)

    Nemeth, Z. N.

    1977-01-01

    A new type of resilient-pad gas thrust bearing was tested to determine the feasibility of the design. The bearing consists of carbon graphite pads mounted asymmetrically on foil beams. Two bearing configurations were tested at thrust loads from 27 to 80 newtons at speeds to 9000 rpm. The outside diameter of the bearing was 8.9 centimeters.

  15. Analysis of an all-metallic resilient pad gas-lubricated thrust bearing

    Science.gov (United States)

    Anderson, W. J.

    1974-01-01

    A new type of resilient pad gas thrust bearing that does not contain any elastomers in the bearing assembly is described and analyzed. The bearing consists of sector-shaped pads mounted asymmetrically on resilient foil beams. The effects of bearing design parameters on performance are shown. Performance of a resilient pad bearing is compared with that of a pivoted pad bearing.

  16. Analysis of an all-metallic resilient-pad gas-lubricated thrust bearing

    Science.gov (United States)

    Anderson, W. J.

    1974-01-01

    A resilient-pad gas thrust bearing that does not contain any elastomers in the bearing assembly is described and analyzed. The bearing consists of sector-shaped pads mounted asymmetrically on resilient foil beams. The effects of bearing design parameters on performance are shown. Performance of a resilient-pad bearing is compared with that of a pivoted-pad bearing.

  17. Numerical analysis on nanoparticles-laden gas film thrust bearing

    Science.gov (United States)

    Yang, Zhiru; Diao, Dongfeng; Yang, Lei

    2013-07-01

    Nanoparticles can be taken as additives and added into various fluids to improve their lubricating performances. At present, researches in this area are mainly concentrated on the improvement effects of nanoparticles on the lubricating performances of liquid such as oil and water. Nanoparticles will also affect gas lubrication, but few related studies have been reported. Nanoparticles-laden gas film (NLGF) is formed when adding nanoparticles into gas bearing. Then, the lubricating performances of gas bearing including pressure distribution and load-carrying capacity will change. The variations of pressure distribution and load-carrying capacity in nanoparticles-laden gas film thrust bearing are investigated by numerical method. Taking account of the compressibility of gas and the interactions between gas and nanoparticles, a computational fluid dynamics model based on Navier-Stokes equations is applied to simulate the NLGF flow. The effects of inlet nanoparticles volume fraction and orifice radius on film pressure distribution and load-carrying capacity of the NLGF are calculated. The numerical calculation results show that both of the film land pressure and the maximum film pressure both increase when the nanoparticles are added into gas bearing, and the film pressures increase with the rising of the inlet nanoparticles volume fraction. The nanoparticles have an enhancement effect on load-carrying capacity of the studied bearing, and the enhancement effect becomes greater as the film thickness decrease. Therefore, nanoparticles can effectively improve the lubricating performance of gas bearing. The proposed research provides a theoretical basis for the design of new-type nanoparticles-laden gas film bearings.

  18. Foil Gas Thrust Bearings for High-Speed Turbomachinery

    Science.gov (United States)

    Edmonds, Brian; DellaCorte, Christopher; Dykas, Brian

    2010-01-01

    A methodology has been developed for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs, supporting continued development of oil-free turbomachinery. A bearing backing plate is first machined and surface-ground to produce flat and parallel faces. Partial-arc slots needed to retain the foil components are then machined into the plate by wire electrical discharge machining. Slot thicknesses achievable by a single wire pass are appropriate to accommodate the practical range of foil thicknesses, leaving a small clearance in this hinged joint to permit limited motion. The backing plate is constructed from a nickel-based superalloy (Inconel 718) to allow heat treatment of the entire assembled bearing, as well as to permit hightemperature operation. However, other dimensionally stable materials, such as precipitation-hardened stainless steel, can also be used for this component depending on application. The top and bump foil blanks are cut from stacks of annealed Inconel X-750 foil by the same EDM process. The bump foil has several azimuthal slits separating it into five individual bump strips. This configuration allows for variable bump spacing, which helps to accommodate the effects of the varying surface velocity, thermal crowning, centrifugal dishing, and misalignment. Rectangular tabs on the foil blanks fit into the backing plate slots. For this application, a rather traditional set of conventionally machined dies is selected, and bump foil blanks are pressed into the dies for forming. This arrangement produces a set of bump foil dies for foil thrust bearings that provide for relatively inexpensive fabrication of various bump configurations, and employing methods and features from the public domain.

  19. Operating characteristics of a cantilever-mounted resilient-pad gas-lubricated thrust bearing

    Science.gov (United States)

    Nemeth, Z. N.

    1979-01-01

    A resilient-pad gas thrust bearing consisting of pads mounted on cantilever beams was tested to determine its operating characteristic. The bearing was run at a thrust load of 74 newtons to a speed of 17000 rpm. The pad film thickness and bearing friction torque were measured and compared with theory. The measured film thickness was less than that predicted by theory. The bearing friction torque was greater than that predicted by theory.

  20. Thrust Bearing Governed Clinker Extraction System in Producer Gas Plant

    Directory of Open Access Journals (Sweden)

    Ram Prasad Verma

    2013-11-01

    Full Text Available In the process of Producer Gas Production; clinker/ash is formed as a waste material. This clinker is removed by equipment named as Ash Bowl which rotates on the “Guide Roller” by the application of hydraulic pressure. This process having many problems like formation of large size clinker which require excess hydraulic pressure, guide roller is unable to scatter the hydraulic pressure equally in all the direction on the ash bowl to crush the clinker, more hydraulic pressure is required for the movement of the ash bowl, more time is required to replace the guide roller for its maintenance. In order to eliminate above mention problems, guide roller has been replaced by the thrust bearing which improves productivity by reducing break down time, reducing total man power required & reducing maintenance cost.

  1. An Experimental Study on Lubrication Mechanism at Thrust Slide-Bearing of Scroll Compressors

    Science.gov (United States)

    Oku, Tatsuya; Anami, Keiko; Ishii, Noriaki; Sawai, Kiyoshi; Morimoto, Takashi; Hiwata, Akira

    This study focuses on the significant effect that a pressure difference across the orbiting thrust plate of a thrust-slide bearing has on the improved lubrication of the bearing in scroll compressor applications. A thrust slide-bearing model submerged in a refrigerant oil VG-56 was operated under pressurized conditions using R-22 as the pressurizing gas, where the pressure difference across the friction surface of the thrust bearing was adjusted from 0 to 1.0 MPa and the friction force and friction coefficient at the thrust slide-bearing were measured over a range of orbiting speeds. As a result, a significant improvement in lubrication at the thrust slide-bearing due to the pressure difference was addressed. Furthermore, a careful observation of wear state at the thrust slide-bearing addressed a significant formation of fluid wedge between the sliding surfaces due to axial loadings, which will definitely induce the addressed significant improvement in lubrication. In addition, the wedge formation was quantitatively addressed with FEM analysis of elastic deformation of the thrust plate, which was verified for its validity with measured strains on the thrust plate.

  2. An Experimental Study of Lubrication at Thrust Slide-Bearing of Scroll Compressors

    Science.gov (United States)

    Ishii, Noriaki; Oku, Tatsuya; Anami, Keiko; Tsuji, Takuma; Ozasa, Toshihiro; Sawai, Kiyoshi; Morimoto, Takashi; Iida, Noboru

    The previous studies have revealed that the wedge formation at the periphery of the thrust plate, caused by the elastic deformation due to pressure difference across the orbiting thrust plate, is a significant key factor to keep and improve the high performance in lubrication of the thrust-slide bearing. The present study focuses on the effect of the thickness and inner form of the thrust plate upon the lubrication features. A simplified model of cylindrical thrust slide-bearing with thinner thrust plate submerged in a refrigerant oil VG-56 was operated under pressurized conditions using R-22 as the pressurizing gas, where the pressure difference was adjusted from 0 to 1.0 MPa and the friction force and coefficient of friction were measured over a wide range of orbiting speeds, first. The wedge angle by elastic deformation is naturally increased with decreasing the thrust plate thickness, thus resulting in a clear improvement in lubrication at the thrust slide-bearing. On the contrast, secondly, the similar lubrication tests were conducted for the thrust plate with a real inner form, as complicated as in the real scroll compressors, where the thickness of the thrust plate was kept as in the original tests. As a result, no significant change in lubrication features, from those for the simplified cylindrical model, was not addressed, thus confirming that the test results addressed from the simplified cylindrical model tests can be effectively used to examine the basic characteristics in lubrication of thrust slide bearing of scroll compressors.

  3. Analysis and design of a cantilever-mounted resilient-pad gas-lubricated thrust bearing

    Science.gov (United States)

    Etsion, I.

    1976-01-01

    A thrust bearing consisting of pads mounted on resilient, metallic, cantilever beams is described and analyzed. Compliance and stiffness of the bearing assembly are discussed, and the effects of bearing design parameters on performance are shown. After the general analysis, a design example is presented for a flat sector-shaped gas bearing. A special case where zero axial movement of the runner can be obtained is pointed out.

  4. Note: Radial-thrust combo metal mesh foil bearing for microturbomachinery

    Science.gov (United States)

    Park, Cheol Hoon; Choi, Sang Kyu; Hong, Doo Euy; Yoon, Tae Gwang; Lee, Sung Hwi

    2013-10-01

    This Note proposes a novel radial-thrust combo metal mesh foil bearing (MMFB). Although MMFBs have advantages such as higher stiffness and damping over conventional air foil bearings, studies related to MMFBs have been limited to radial MMFBs. The novel combo MMFB is composed of a radial top foil, thrust top foils, and a ring-shaped metal mesh damper—fabricated by compressing a copper wire mesh—with metal mesh thrust pads for the thrust bearing at both side faces. In this study, the combo MMFB was fabricated in half-split type to support the rotor for a micro gas turbine generator. The manufacture and assembly process for the half-split-type combo MMFB is presented. In addition, to verify the proposed combo MMFB, motoring test results up to 250 000 rpm and axial displacements as a function of rotational speed are presented.

  5. Theoretical Analysis and Optimum Design of High Speed Air Film Thrust Bearings

    Science.gov (United States)

    Hashimoto, Hiromu; Ochiai, Masayuki; Nanba, Tadashi

    Hydrodynamic air film thrust bearings are widely used for very high speed, lightly loaded rotating machinery such as gas expander, compressor, gyroscope and business machines, etc. In the design of hydrodynamic air film thrust bearings, it is of cardinal importance to enhance the friction and stability capacities of air films for keeping the minimum friction loss within a particular level and for minimizing the vibration due to external excitations. Among various types of hydrodynamic air film thrust bearings, spiral and herring bone types of grooved bearings have an advantage of high stability and load carrying capacity, but the characteristics of the bearings depend on many design parameters. Therefore, when these parameters are designed suitably, it is expected to improve considerably the friction and stability characteristics of the bearings. In this paper, the optimum design methodology is presented to minimize the friction torque and also to maximize the stiffness of air film for spiral and herring bone types of grooved air film thrust bearings, and the applicability of the methodology is verified experimentally.

  6. Analysis of a Thrust Bearing with Flexible Pads and Flexible Supports

    DEFF Research Database (Denmark)

    Klit, Peder; Thomsen, Kim

    2007-01-01

    A theoretical analysis of a hydrodynamic thrust bearing is presented. The bearing investigated is used in an ndustrial product. The lubricant is water, but the results are valid also for other lubricants.At first the results from a 1-dimensional model for the fluid film forces and the associated deformation of the bearing geometry is presented. This model enlightens the influence of pad flexibility and support location and flexibility. Subsequently results from a 2-dimensional model of the bearing is presented. The model is used to carry out an optimization of the bearing design, and the obtained improvements in load carrying capacity is presented.

  7. Optimization of self-acting step thrust bearings for load capacity and stiffness.

    Science.gov (United States)

    Hamrock, B. J.

    1972-01-01

    Linearized analysis of a finite-width rectangular step thrust bearing. Dimensionless load capacity and stiffness are expressed in terms of a Fourier cosine series. The dimensionless load capacity and stiffness were found to be a function of the dimensionless bearing number, the pad length-to-width ratio, the film thickness ratio, the step location parameter, and the feed groove parameter. The equations obtained in the analysis were verified. The assumptions imposed were substantiated by comparing the results with an existing exact solution for the infinite width bearing. A digital computer program was developed which determines optimal bearing configuration for maximum load capacity or stiffness. Simple design curves are presented. Results are shown for both compressible and incompressible lubrication. Through a parameter transformation the results are directly usable in designing optimal step sector thrust bearings.

  8. An accurate solution of the gas lubricated, flat sector thrust bearing

    Science.gov (United States)

    Etsion, I.; Fleming, D. P.

    1976-01-01

    A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.

  9. Analysis of the gas-lubricated flat-sector-pad thrust bearing

    Science.gov (United States)

    Etsion, I.

    1976-01-01

    A flat sector-shaped pad geometry for a gas-lubricated thrust bearing is analyzed considering both the pitch and roll of the pad. It is shown that maximum load capacity is achieved when the pad is tilted so as to create uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves, and a comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.

  10. The Chevron Foil Thrust Bearing: Improved Performance Through Passive Thermal Management and Effective Lubricant Mixing

    Science.gov (United States)

    Bruckner, Robert

    2013-01-01

    An improved foil thrust bearing is described that eliminates or reduces the need for forced cooling of the bearing foils while at the same time improves the load capacity of the bearing, enhances damping, provides overload tolerance, and eliminates the high speed load capacity drop-off that plagues the current state of the art. The performance improvement demonstrated by the chevron foil thrust bearing stems from a novel trailing edge shape that splays the hot lubricant in the thin film radially, thus preventing hot lubricant carry-over into the ensuing bearing sector. Additionally, the chevron shaped trailing edge induces vortical mixing of the hot lubricant with the gas that is naturally resident within the inter-pad region of a foil thrust bearing. The elimination of hot gas carry-over in combination with the enhanced mixing has enabled a completely passive thermally managed foil bearing design. Laboratory testing at NASA has confirmed the original analysis and reduced this concept to practice.

  11. Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps

    Science.gov (United States)

    SanAndres, Luis

    1998-01-01

    A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs on a Windows 95/NT personal computer. The program, help files and examples are licensed by Texas A&M University Technology License Office. The study of the static and dynamic performance of two hydrostatic/hydrodynamic bearings demonstrates the importance of centrifugal and advection fluid inertia effects for operation at high rotational speeds. The first example considers a conceptual hydrostatic thrust bearing for an advanced liquid hydrogen turbopump operating at 170,000 rpm. The large axial stiffness and damping coefficients of the bearing should provide accurate control and axial positioning of the turbopump and also allow for unshrouded impellers, therefore increasing the overall pump efficiency. The second bearing uses a refrigerant R134a, and its application in oil-free air conditioning compressors is of great technological importance and commercial value. The computed predictions reveal that the LH2 bearing load capacity and flow rate increase with the recess pressure (i.e. increasing orifice diameters). The bearing axial stiffness has a maximum for a recess pressure rati of approx. 0.55. while the axial damping coefficient decreases as the recess pressure ratio increases. The computer results from three flow models are compared. These models are a) inertialess, b) fluid inertia at recess edges only, and c) full fluid inertia at both recess edges and film lands. The full inertia model shows the lowest flow rates, axial load capacity and stiffness coefficient but on the other hand renders the largest damping coefficients and inertia coefficients. The most important findings are related to the reduction of the outflow through the inner radius and the appearance of subambient pressures. The performance of the refrigerant hybrid thrust bearing is evaluated at two operating speeds and pressure drops. The computed results are presented in dimensionless form to evidence consistent trends in the bearing performance characteristics. As the applied axial load increases, the bearing film thickness and flow rate decrease while the recess pressure increases. The a

  12. Development of the water-lubricated thrust bearing of the hydraulic turbine generator

    International Nuclear Information System (INIS)

    In hydropower plant, a large quantities of turbine oil is used as machine control pressure oil and lubricating oil. If the oil leak out from hydropower plant, it flows into a river. And such oil spill has an adverse effect on natural environment because the oil does not degrade easily. Therefore the KANSAI and Hitachi Mitsubishi Hydro developed the water-lubricated thrust bearing for vertical type hydraulic turbine generator. The water-lubricated bearing has advantages in risk avoidance of river pollution because it does not need oil. For proceeding the development of the water-lubricated thrust bearing, we studied following items. The first is the examination of the trial products of water lubricating liquid. The second is the study of bearing structure which can satisfy bearing performance such as temperature characteristic and so on. The third is the mock-up testing for actual application in the future. As a result, it was found that the water-lubricated thrust bearing was technically applicable to actual equipments.

  13. The static characteristics of externally pressurized gas thrust bearings with an electrically controlled restrictor

    Science.gov (United States)

    Hango, Takeshi; Harada, Masami; Miyaji, Ryutaro

    An externally pressurized gas thrust bearing with electrically controlled restrictor was proposed for the purpose of providing high-stiffness and high-precision bearings. A circular restricting spacing was controlled with a piezoelectric actuator. The displacement of the film thickness of the bearing was detected and converted into electric signals, which were passed through an RC circuit or a personal computer, and the processed signals controlled the piezoelectric restrictor. The load-carrying capacity of the bearing was measured, and it was found that, when the RC circuit was operated, static stiffness of the bearing increased remarkably in a certain range of fluctuating load. When a constant-film thickness was controlled by means of the personal computer, the film thickness of the bearing could be kept unchanged within a displacement of submicron order.

  14. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  15. Optimization of residual heat removal pump axial thrust and axial bearing

    International Nuclear Information System (INIS)

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies

  16. Detecting thrust bearing failure within a screw compressor

    International Nuclear Information System (INIS)

    A 3 1/2 mile ring of over 1000 superconducting magnets are needed to focus and drive the world's highest energy particle smasher. 24 Refrigerators supply liquid helium to the magnets; 34 high pressure oil flooded screw compressors supply 285 psig helium gas to the refrigerators. The 400 h.p. screws are reliable machines that use 45 gallons of oil per minute to seal and lubricate the rotors, lubricate the bearings, and remove the heat of compression. These machines are spaced out in seven buildings over four miles. A minimum of 28 machines must be operating at all times. A contingent of operators start, stop, and monitor any machine from a distant control room. The 34 compressors have an average of 32,000 hours; 9 machines have over 40,000 hours; the highest is 55,000 hours

  17. Investigation of the performance of high-speed thrust hydrostatic bearings with a jet compensation

    International Nuclear Information System (INIS)

    The characteristics of hydrostatic thrust bearings (HB) for footstep bearings with circular centre chambers of various width, various dam lengths and gaps have been investigated. During the experiments, average pressures have been measured in the chamber and on the footstep dams which enable the effect of centrifugal forces on the bearing load carrying capacity to be estimated according to pressure fields. Evaluated are an effect of the chamber width and, cosequently, that of the dam width at the same total bearing width (b=26 mm) on the bearing load carrying capacity, and the working liquid flow rate as well as an effect of the rotation rate on the above-mentioned characteristics. Water with low viscosity has been used as a working fluid

  18. Defect diagnosis and root cause analysis for thrust roller bearing of centrifugal charging pump

    International Nuclear Information System (INIS)

    The centrifugal charging pump is one of the most important equipment for Nuclear power plant which requires very high reliability, during C9 fuel-cycle, the continuous high level vibration alarm happened on the centrifugal charging pump B, we diagnosed its faults correctly and selected the right operation mode and right time to dismantle it which ensure the safety and economic benefits of Nuclear power plant, and through deeply analysis the root causes of thrust bearing defaults, we can learn much from it especially for the diagnosis and analysis to the bearing faults which is common for rotating equipment. (author)

  19. Theoretical Analysis and Optimum Design of High Speed Gas Film Thrust Bearings

    Science.gov (United States)

    Hashimoto, Hiromu; Ochiai, Masayuki

    This paper describes the theoretical and experimental investigations of static and dynamic characteristics of four types of high-speed gas film thrust bearings, such as stepped, pocketed, spiral and herring bone grooved bearings. The specially designed test rig is used to measure the air film thickness, friction torque, spring and damping coefficients of air film under the high speed operation conditions from 20000 rpm to 40000 rpm. It is verified that the maximum error in the measurements by the present test rig is less than 7 percent. On the other hand, the measured results are compared with the theoretical results for checking the applicability of numerical analysis method to bearing design. Good agreements are seen between the measured results and theoretical predictions, and applicability of theoretical prediction method is confirmed with experimental verifications.

  20. Thrust rollers

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2007-01-01

    A thrust roller bearing system comprising an inner rotating member, an outer rotating member and multiple rollers coupling the inner rotating member with outer rotating member. The inner and outer rotating members include thrust lips to enable the rollers to act as thrust rollers. The rollers contact inner and outer rotating members at bearing contact points along a contact line. Consequently, the radial/tilt and thrust forces move synchronously and simultaneously to create a bearing action with no slipping.

  1. Exhumed analogues of seismically active carbonate-bearing thrusts: fault architecture and deformation mechanisms

    Science.gov (United States)

    Tesei, T.; Collettini, C.; Viti, C.; Barchi, M. R.

    2012-12-01

    In May 2012 a M = 5.9 earthquake followed by a long aftershock sequence struck the Northern Italy. The sequence occurred at 4-10 km depth within the active front of Northern Apennines Prism and the major events nucleate within, or propagate through, a thick sequence of carbonates. In an inner sector of the Northern Apennines, ancient carbonate-bearing thrusts exposed at the surface, represent exhumed analogues of structures generating seismicity in the active front. Here we document fault architecture and deformation mechanisms of three regional carbonate bearing thrusts with displacement of several kilometers and exhumation in the range of 1-4 km. Fault zone structure and deformation mechanisms are controlled by the lithology of the faulted rocks. In layered limestones and marly-limestones the fault zone is up to 200 m thick and is characterized by intense pressure solution. In massive limestones the deformation generally occurs along thin and sharp slip planes that are in contact with fault portions affected by either cataclasis or pressure solution. SEM and TEM observations show that pressure solution surfaces, made of smectite lamellae, with time tend to form an interconnected network affected by frictional sliding. Sharp slipping planes along massive limestones show localization along Y shear planes that separate an extremely comminuted cataclasites from an almost undeformed protolith. The comparison of the three shear zones depicts a fault zone structure extremely heterogeneous as the result of protolith lithology, geometrical complexities and the presence of inherited structures. We observe the competition between brittle (cataclasis, distributed frictional sliding along phyllosilicates and extremely localized slip within carbonates) and pressure solution processes, that suggest a multi-mode of slip behaviour. Extreme localization along carbonate-bearing Y shear planes is our favorite fault zone feature representing past seismic ruptures along the studied thrust faults.

  2. Effects of Gas Rarefaction on Dynamic Characteristics of Micro Spiral-Grooved Thrust Bearing.

    Science.gov (United States)

    Liu, Ren; Wang, Xiao-Li; Zhang, Xiao-Qing

    2012-04-01

    The effects of gas-rarefaction on dynamic characteristics of micro spiral-grooved-thrust-bearing are studied. The Reynolds equation is modified by the first order slip model, and the corresponding perturbation equations are then obtained on the basis of the linear small perturbation method. In the converted spiral-curve-coordinates system, the finite-volume-method (FVM) is employed to discrete the surface domain of micro bearing. The results show, compared with the continuum-flow model, that under the slip-flow regime, the decrease in the pressure and stiffness become obvious with the increasing of the compressibility number. Moreover, with the decrease of the relative gas-film-thickness, the deviations of dynamic coefficients between slip-flow-model and continuum-flow-model are increasing. PMID:23904692

  3. Active control of surge in centrifugal compressors using magnetic thrust bearing actuation

    Science.gov (United States)

    Sanadgol, Dorsa

    This research presents a new method for active surge control in centrifugal compressors with unshrouded impellers using a magnetic thrust bearing to modulate the impeller tip clearance. Magnetic bearings offer the potential for active control of flow instabilities. This capability is highly dependent on the sensitivity of the compressor characteristics to blade tip clearance. If the position of the shaft can be actuated with sufficient authority and speed, the induced pressure modulation makes control of surge promising. The active nature of the magnetic bearing system makes the real-time static and dynamic positioning of the rotor and therefore modulation of the impeller tip clearance possible. A theoretical model is first established that describes the sensitivity of the centrifugal compressor characteristic curve to tip clearance variations induced by axial motion of the rotor. Results from simulation of the nonlinear model for a single stage high-speed centrifugal compressor show that using the proposed control method, mass flow and pressure oscillations associated with compressor surge are quickly suppressed with acceptable tip clearance excursions, typically less than 20% of the available clearance. It is shown that it is possible to produce adequate axial excursions in the clearance between the impeller blades and the adjacent stationary shroud using a magnetic thrust bearing with practical levels of drive voltage. This surge control method would allow centrifugal compressors to reliably and safely operate with a wider range than is currently done in the field. The principal advantage of the proposed approach over conventional surge control methods lies in that, in machines already equipped with magnetic bearing, the method can potentially be implemented by simply modifying controller software. This dispenses with the need to introduce additional hardware, permitting adaptation of existing machinery at virtually no cost. In addition, since the controller is designed with the objective of keeping the trajectories on the compressor characteristic curve, the compressor performance and efficiency are no longer sacrificed by excessive recycling to achieve stability. In order to explore these conjectures experimentally, a high speed centrifugal compressor test facility with active magnetic bearings is developed. The test facility can be used for implementing the proposed surge control method and also for assessing the impeller and bearing loads at off-design conditions. This data can then be used to verify and refine analytical models used in compressor design. (Abstract shortened by UMI.)

  4. Experimental Investigation of Friction Effect on Liner Model Rolling Bearings for Large Diameter Thrust Bearing Design

    Directory of Open Access Journals (Sweden)

    S. Babu

    2012-12-01

    Full Text Available Studying friction coefficient has significant importance, especially when dealing with high load and temperature applications that have frequent starting and stopping points. Towards that, two sets of angular contact Linear Model Mockup Bearings (LMMB were designed and fabricated. This linear model assembly was made up of high precision, grounded raceways (AISI 4140 and commercially purchased balls (AISI 52100. The experimental studies were carried out by placing different number of balls between the raceways under different loads at dry lubricating condition. The static friction coefficients were measured using two different experiments: viz gravitation-based experiment and direct linear force measurement experiment. And Digital Image Correlation (DIC technique was used to find the stiffness of LMMB set.

  5. Numerical modelling of the flow in the annular multi-recess hydrostatic thrust bearing using CFD methods

    Directory of Open Access Journals (Sweden)

    Drbáková S.

    2013-04-01

    Full Text Available The current research of hydrostatic bearings and hydrostatic slide-ways is far from being over. The topic is constantly evolving, creating new geometries of the sliding bearings, developing new types of friction materials and lubricants. The control elements of hydraulic mechanisms that serve to regulation of the hydrostatic bearings tipping are still in progress. Almost every application has different requirements for the bearings, whether in terms of loading capacity, speed rotation, and also the price. All these aspects should be included in the design of hydrostatic thrust bearings. Thanks to great advances in the development of computer technology and software for numerical modelling, we can simulate real movement of viscous fluids. To create a numerical model of hydrostatic thrust bearing, Ansys Fluent 14.0 software package has been applied. The article describes the basic methods of numerical modelling of the given problem and evaluates the pressure field and the loading capacity of annular multi-recess hydrostatic thrust bearing and its dependence on the change in static pressure.

  6. Numerical modelling of the flow in the annular multi-recess hydrostatic thrust bearing using CFD methods

    Science.gov (United States)

    Kozdera, M.; Drbáková, S.

    2013-04-01

    The current research of hydrostatic bearings and hydrostatic slide-ways is far from being over. The topic is constantly evolving, creating new geometries of the sliding bearings, developing new types of friction materials and lubricants. The control elements of hydraulic mechanisms that serve to regulation of the hydrostatic bearings tipping are still in progress. Almost every application has different requirements for the bearings, whether in terms of loading capacity, speed rotation, and also the price. All these aspects should be included in the design of hydrostatic thrust bearings. Thanks to great advances in the development of computer technology and software for numerical modelling, we can simulate real movement of viscous fluids. To create a numerical model of hydrostatic thrust bearing, Ansys Fluent 14.0 software package has been applied. The article describes the basic methods of numerical modelling of the given problem and evaluates the pressure field and the loading capacity of annular multi-recess hydrostatic thrust bearing and its dependence on the change in static pressure.

  7. Finite element analysis of grooved gas thrust bearings and grooved gas face seals

    Science.gov (United States)

    Bonneau, D.; Huitric, J.; Tournerie, B.

    1993-07-01

    A finite element method enabling the Reynolds equation solution for any face geometry of gas thrust bearing or of gas seal is presented. Difficulties due to thickness discontinuities are reduced by integration by parts of the terms involving derivatives. The weak form of the finite element Reynolds equation is then solved and the nonlinearity of the equation leads to the use of Newton-Raphson procedure. The process is fast convergent. The problem of oscillating solution is solved by the use of an upwind procedure. Some numerical examples show the accuracy and efficiency of the procedures. It is shown that the developed finite element program provides a numerical tool, more efficient than the method used until now, for the grooved gas seals design.

  8. The evaluation of the micro-tracks and micro-dimples on the tribological characteristics of thrust ball bearings.

    Science.gov (United States)

    Amanov, Auezhan; Pyoun, Young-Shik; Cho, In-Shik; Lee, Chang-Soon; Park, In-Gyu

    2011-01-01

    One of the primary remedies for tribological problems is surface modification. The reduction of the friction between the ball and the raceway of bearings is a very important goal of the development of bearing technology. A low friction has a positive effect in terms of the extension of the fatigue life, avoidance of a temperature rise, and prevention of premature failure of bearings. Therefore, this research sought to investigate the effects of micro-tracks and micro-dimples on the tribological characteristics at the contact point between the ball and the raceway of thrust ball bearings (TBBs). The ultrasonic nanocrystal surface modification (UNSM) technology was applied using different intervals (feed rates) to the TBB raceway surface to create micro-tracks and micro-dimples. The friction coefficient after UNSM at 50 microm intervals showed marked sensitivity and a significant reduction of 30%. In this study, the results showed that more micro-dimples yield a lower friction coefficient. PMID:21446527

  9. A Computer Based Approach for the Design of the Orifice-Compensated with Feeding Pocket Annular Hydrostatic Thrust Bearings

    Directory of Open Access Journals (Sweden)

    M. Al-Ajlouni

    2007-12-01

    Full Text Available The orifice-compensated with feeding pocket annular hydrostatic (OCFPAH thrust bearing is a unique type of gas bearingwith many distinguishing characteristics. It is finding many applications in ultra high-speed rotors. A computer code waswritten to overcome the difficulties involved in the design of such a bearing. Initially, the design charts were converted intothe alternative equations using a curve-fitting technique. The program, which is based on these equations, was designed sothat mechanical and physical properties of the lubricant and the main dimensions of the bearing can be entered in a userfriendlymanner. Many runs of the code have been carried out successfully. The code has proven to be fast, compatible with CAD and CAD/CAM packages as well as the ability of linking it with data banks and the Internet.

  10. Performance of integrated retainer rings in silicon micro-turbines with thrust style micro-ball bearings

    Science.gov (United States)

    Hergert, Robert J.; Hanrahan, Brendan; Ghodssi, Reza; Holmes, Andrew S.

    2013-06-01

    This work explores the performance of different silicon retainer ring designs when integrated into silicon micro-turbines (SMTs) incorporating thrust style bearings supported on 500 µm diameter steel balls. Experimental performance curves are presented for SMTs with rotor diameters of 5 mm and 10 mm, each with five different retainer designs varying in mechanical rigidity, ball pocket shape and ball complement. It was found that the different retainer designs yielded different performance curves, with the closed pocket designs consistently requiring lower input power for a given rotation speed, and the most rigid retainers giving the best performance overall. Both 5 mm and 10 mm diameter devices have shown repeatable performance at rotation speeds up to and exceeding 20?000 RPM with input power levels below 2 W, and devices were tested for over 2.5 million revolutions without failure. Retainer rings are commonly used in macro-scale bearings to ensure uniform spacing between the rolling elements. The integration of retainers into micro-bearings could lower costs by reducing the number of balls required for stable operation, and also open up the possibility of ‘smart’ bearings with integrated sensors to monitor the bearing status.

  11. A less expensive solution for thrust-bearing failures at the Sao Simao hydroelectric power plant - Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Licinio Cesar [Sinergia Engenheiros Consultores Ltda., Belo Horizonte, MG (Brazil)]. E-mail: licinio@sinergia.eng.br; Machado, Luiz; Koury, Ricardo Nicolau Nassar; Porto, Matheus Pereira; Coelho, Fernanda Gomes [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica]. E-mails: luizm@demec.ufmg.br; koury@ufmg.br; matheusporto@oi.com.br; fernanda@sinergia.eng.br

    2008-07-01

    After twenty years without any apparent problems on their combined guides and thrust bearings operations, the six 280 MW hydrogenerators of the Sao Simao Hydroelectric Power Plant of Brazil were failing. Sao Simao is the largest Power Plant of Companhia Energetica de Minas Gerais (CEMIG), one of the major Brazilian electric utility company, with a total installed potential higher than 5,400 MW. The source of the failure was the melting of the thrust pad Babbit lining. The machines began showing performance failures, leading to a sudden interruption in their operations. This caused considerable losses with high direct and indirect costs. The solution proposed by the bearing manufacturer was an improvement to the bearing design and the installation of new water-oil heat exchangers. The direct cost of their solution was estimated at US$ 2,000,000.00 (two million dollars). In a search for a less expensive alternative, CEMIG commenced a parallel study that was to focus on the heat exchangers. A calculation model was used to consider not only the thermal features of the oil circulation system but also the suitability of its pumps and piping system. This model predicted that an increase in the surface of the heat exchange area could solve the problem. A spare heat exchanger was then installed in one machine already possessing two heat exchangers. The rated output test results fulfilled preliminary predictions, eliminating the risk of additional Babbit lining failures. As a consequence of CEMIG's successful modeling test implementation, heat exchangers were added to the remaining machines. This alternative solution had a total direct cost of US$ 600,000.00 (six hundred thousand dollars) with an indirect cost much less than the alternative presented by the manufacturer for its short cessation period. This paper discusses in detail all this study stages. (author)

  12. A superconducting thrust-bearing system for an energy storage flywheel

    International Nuclear Information System (INIS)

    We have constructed a bearing system for an energy storage flywheel. This bearing system uses a combination of permanent magnets and superconductors in an arrangement commonly termed as an Evershed bearing. In an Evershed system there are in fact two bearings which act in concert. In our system we have one bearing constructed entirely out of permanent magnets acting in attraction. This system bears the weight of the flywheel (43.6 kg) but would not, on its own, be stable. Stability is provided by a superconducting bearing which is formed by the interaction between the magnetic field of a permanent magnet sited on the rotor and superconductors on the stator. This overall arrangement is stable over a range of levitation heights and has been tested at rotation speeds of up to around 12 Hz (the maximum speed is dictated by the drive system not the bearing system). There is a sharp resonance peaking at between 2 and 3 Hz and spin down tests indicate that the equivalent coefficient of friction is of the order of 10-5. The rate of change of velocity is, however, not constant so the drag is clearly not solely frictional. The position of the resonance is dictated by the stiffness of the bearing relative to the mass of the flywheel but the amplitude of the resonance is dictated by the variation in magnitude of the magnetic field of the permanent magnets. Large magnets are (at present) fabricated in sections and this leads to a highly inhomogeneous field. The field haa highly inhomogeneous field. The field has been smoothed by using a combination of iron which acts passively and copper which provides magnetic shielding due to the generation of eddy currents and therefore acts as an 'active' component. Calculations based on the spin down tests indicate that the resultant variation in field is of the order of 3% and measurements are being carried out to confirm this. (author)

  13. Comparison of Models for the Steady-State Analysis of Tilting-Pad Thrust Bearings

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar

    2005-01-01

    Prediction of the minimum oil film thickness and the maximum temperature on the surface of the bearing pad is crucial in the design and dimensioning of bearings. Friction loss, oil bath temperature and pad deflection are other parameters of interest. Depending on the desired information a numerical model requires different levels of detail. The two dimensional Reynolds equation for pressure in the oil film can be solved isothermally or considering viscosity variations in two or three dimensions, requiring solution of the equations for thermal equilibrium in oil and pad. Knowing the temperature distribution the deflection of the pad due to pressure and thermal bending can be calculated using a flat plate approximation. At the five free sides of the pad heat transfer can be modelled. The temperature distribution at the inlet to the pad can be calculated through equilibrium of thermal energy for the groove between pads and the oil bath temperature from energy equilibrium for the entire bearing. The main theoretical contribution of this paper is the elaboration and comparison of 7 different mathematical models of increasing complexity. The results are compared to experimental data for steady-state operation of a 228 mm outer diameter bearing. It is found that for the given bearing a two dimensional model is sufficient to estimate the minimum oil film thickness and the maximum temperature on the pad surface. Three dimensional modelling does not improve the quality of the results.

  14. Investigation of a saddle node bifurcation due to loss of contact in preloaded spherical roller thrust bearings

    International Nuclear Information System (INIS)

    Spherical roller thrust bearings are used as supports in many rotating machineries. By applying an axial preload, clearance between the raceways and the rollers can be avoided. In order to increase the endurance, the preload shall be kept as low as possible. However, a bearing with low preload is sensitive of loosing full contact leading to nonlinear stiffness characteristics. The objective of this paper is to suggest a tool, which can be used to determine suitable preload and to show that a saddle node bifurcation can occur if the preload is too small. Studying the model in a rotating frame leads to an autonomous equation of motion from which stationary points and their stability can be analysed. Some set of parameters give a nonhyperbolic eigenvalue, and by investigating the corresponding central manifold it is found that a saddle node bifurcation occurs. Since explicit equations for the stationary points are derived, they can be used to choose a preload high enough to make sure that full contact always is a possible solution. It is however shown that if the preload becomes too small, the system enters an area of multiple solutions and a saddle node bifurcation can occur.

  15. Rheodynamic Lubrication of an Externally Pressured Thrust Bearing Using Herschel-Bulkley Fluid with Sinusoidal Injection

    OpenAIRE

    Amalraj, I. J.; Narasimman, S.; Kandasamy, A.

    2012-01-01

    Lubricants with variable viscosity are assuming greater importance for its application in polymer industry, thermal reactors and in biomechanics. With the bearing operations in machines being subject to high speeds, loads, increasing mechanical shearing forces and continually increasing pressure, there has been an increasing interest to use non-Newtonian fluids characterized by a yield value. Some of them, which fit into this class, are Bingham, Casson and Herchel-Bulkley models. In the prese...

  16. Heterogeneous strength and fault zone complexity of carbonate-bearing thrusts with possible implications for seismicity

    Science.gov (United States)

    Tesei, Telemaco; Collettini, Cristiano; Barchi, Massimiliano R.; Carpenter, Brett M.; Di Stefano, Giuseppe

    2014-12-01

    The understanding of fault-slip behaviour in carbonates has an important societal impact due to the widespread occurrence and propagation of earthquakes in these rocks. Fault rock variations in carbonates are systematically controlled by the lithology of the faulted protolith: cataclasis and hydraulic fracturing with evidence of past seismic slip commonly affect fault rocks in competent limestone formations whereas widespread pressure-solution and sliding along clay foliation are observed in marly rocks. We performed a series of friction experiments on carbonatic fault rocks sampled from mature thrusts (>2 km displacement) in the Apennines of Italy. We sheared both intact wafers and powdered fault materials at low (10 MPa) and in situ (53 MPa) normal stress under room-humidity and water-saturated conditions. We used velocity steps (1 to 300 ?m/s) and slide-hold-slide (3-1000 s holds) to assess the frictional stability and healing behaviour of these rocks. We observe that cataclastic fault rocks derived from competent limestones are characterized by high friction coefficients coupled with significant post-slip restrengthening and velocity-weakening behaviour. Conversely, intact foliated marly tectonites, sheared under the same conditions, show low friction, null post-slip healing and stable velocity-strengthening behaviour suggesting that these rocks deform aseismically. To extrapolate these opposite mechanical behaviours to the entire fault surface we developed a fault model integrating our mechanical data, field observations and balanced geological cross-sections. The mechanical heterogeneities highlighted in the model provide constraints for the distribution of fault patches with higher seismogenic potential.

  17. Measuring axial pump thrust

    Science.gov (United States)

    Suchoza, Bernard P. (McMurray, PA); Becse, Imre (Washington, PA)

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  18. Numerical modelling of the flow in the annular multi-recess hydrostatic thrust bearing using CFD methods

    OpenAIRE

    Drbáková S.; Kozdera M.

    2013-01-01

    The current research of hydrostatic bearings and hydrostatic slide-ways is far from being over. The topic is constantly evolving, creating new geometries of the sliding bearings, developing new types of friction materials and lubricants. The control elements of hydraulic mechanisms that serve to regulation of the hydrostatic bearings tipping are still in progress. Almost every application has different requirements for the bearings, whether in terms of loading capacity, speed rotation, and al...

  19. Structure and kinematics of a bent fold-and-thrust belt: The oil-bearing outer Eastern Carpathians (Romania)

    Energy Technology Data Exchange (ETDEWEB)

    Wagner-Zweigel, P. [Universitaet Tuebingen (Germany)

    1995-08-01

    The east-vergent fold-and-thrust belt of the Eastern Carpathians changes strike by 70{degrees} in the south. It formed from early Cretaceous to Recent times and contains the oil-productive province of Ploiesti. To understand orocline formation, a detailed kinematic analysis of folding-thrusting by means of mesoscale fault-slip analysis was carried out. Most stations revealed mainly subhorizontal contraction axes which fan around the bending zone from 110{degrees} in the N to 160{degrees} at the southwestern end of the Eastern Carpathians. Since this fanning pattern is consistent for rocks ranging from Lower Cretaceous to at least Miocene, its formation is interpreted as syn- or post-Miocene in age. The strain pattern probably resulted from the following processes: (a) Cretaceous to Oligocene thrusting and folding. Contractional axes representing this process trend normal to fold axes and were calculated from the oldest fault sets in outcrops exhibiting polyphase brittle deformation. (b) Miocene to Recent eastward thrusting and folding coeval with dextral wrenching in the southern part of the N-S-trending fold-and-thrust belt. The second process is characterized by curved strain trajectories and caused rotation of older structures. As Miocene and post-Miocene structures are strongly influenced by wrench tectonics new tectonic models are needed to guide exploration in the oil province of Ploiesti.

  20. Influence of hydrostatic pump operation period on performance of a thrust bearing of a 125 MW pump-turbine; Influence de la duree de fonctionnement de la pompe hydrostatique sur les performances d'une butee d'une turbopompe de 125 MW

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, L.; Wasilczuk, M. [Technical University of Gdansk, Faculty of Mechanical Engineering, Gdansk (Poland)

    2004-02-01

    A special instrumented pad was installed at hydrodynamic thrust bearing of 125 MW pump turbine in one of Polish power plants. 'Spring mattress' type thrust bearings of these machines are quite heavily loaded and have caused many problems so far. It was intended to assess bearing present state more thoroughly than with the use of standard monitoring system and to assist in bearing research and development attempts. Instrumentation of the pad comprises 16 thermocouples for measurements of temperature distribution in the pad and 3 proximity probes to evaluate the pad position and film thickness. The pump-turbine with an instrumented bearing was tested at various operating conditions including steady state and transient conditions. One of the examples of the research carried out with the use of the described instrumentation was the research into the influence of hydrostatic jacking pump operation period on bearing performance in transient states which is presented in the paper. The results showed that current practice of pump operation is far from optimum, and that bearing reliability could be improved by changing the current start-up and coasting procedures. The results also showed that pad position during operation is not satisfactory and also some improvement could probably be achieved by rearranging the support of the bearing pad. (authors)

  1. Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Anbuselvan. T

    2013-06-01

    Full Text Available The use of bearings is essential to all types of machines, especially in marine aspects they provide the function of supporting heavier component in a desired position. These bearings have contact with the rotating part and causes surface wear which can be controlled by lubrication. Researches have raised the standards of performance for rotating equipment by providing robust, cost effective, easy to implement magnetic bearing solutions. Use of magnetic bearings in ships can be more advantageous because it is contact –free resulting in no surface wear and hence no need for lubricant, no servicing and can work in clean environment. It has several other benefits like high reliability, clean environments, high speed applications, position and vibration control and can withstand in extreme conditions. Magnetic bearing will also restrict the translational sliding, which is merely a linear case of supporting a rotating object thus use of thrust block also eliminated. Magnetic bearing technology has become viable because of advances in micro-processing controllers that allows for confident and robust active control. This paper discusses more about the construction, principle and working of magnetic bearing in detail.

  2. Radial thrust in screw centrifugal pump

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kazuhiro; Taguchi, Takashi; Ikeo, Shigeru

    1988-08-25

    By measuring radial thrust of screw type centrifugal pump, the effect of three-dimensional configuration of pump was investigated, and a study was conducted on the method for the estimation of the thrust working on the impeller by measuring the pressure on the surface of casing. The thrust was measured as the bending stress acting on the bearing housing by applying 8 strain guages. The result was given as the correlating graphs between rotating angle of impeller and thrust. As the conclusion, those were obtained that the radial thrust could be regarded as two dimensional centrifugal pump because it was seriously affected by the casing and also three dimensional effect of configuration was not appreciable, and that variable component of radial thrust was dominated by the ill-balanced area of impeller. By using the time average of Lissajous figures obtained from the experimental result, estimation of the thrust was conducted and good consistency was obtained with the experimental result. (12 figs, 12 refs)

  3. Thrust stand for low-thrust liquid pulsed rocket engines

    Science.gov (United States)

    Xing, Qin; Zhang, Jun; Qian, Min; Jia, Zhen-yuan; Sun, Bao-yuan

    2010-09-01

    A thrust stand is developed for measuring the pulsed thrust generated by low-thrust liquid pulsed rocket engines. It mainly consists of a thrust dynamometer, a base frame, a connecting frame, and a data acquisition and processing system. The thrust dynamometer assembled with shear mode piezoelectric quartz sensors is developed as the core component of the thrust stand. It adopts integral shell structure. The sensors are inserted into unique double-elastic-half-ring grooves with an interference fit. The thrust is transferred to the sensors by means of static friction forces of fitting surfaces. The sensors could produce an amount of charges which are proportional to the thrust to be measured. The thrust stand is calibrated both statically and dynamically. The in situ static calibration is performed using a standard force sensor. The dynamic calibration is carried out using pendulum-typed steel ball impact technique. Typical thrust pulse is simulated by a trapezoidal impulse force. The results show that the thrust stand has a sensitivity of 25.832 mV/N, a linearity error of 0.24% FSO, and a repeatability error of 0.23% FSO. The first natural frequency of the thrust stand is 1245 Hz. The thrust stand can accurately measure thrust waveform of each firing, which is used for fine control of on-orbit vehicles in the thrust range of 5-20 N with pulse frequency of 50 Hz.

  4. Hydrostatic and hybrid bearing design

    CERN Document Server

    Rowe, W B

    1983-01-01

    Hydrostatic and Hybrid Bearing Design is a 15-chapter book that focuses on the bearing design and testing. This book first describes the application of hydrostatic bearings, as well as the device pressure, flow, force, power, and temperature. Subsequent chapters discuss the load and flow rate of thrust pads; circuit design, flow control, load, and stiffness; and the basis of the design procedures and selection of tolerances. The specific types of bearings, their design, dynamics, and experimental methods and testing are also shown. This book will be very valuable to students of engineering des

  5. A MICRO TURBINE DEVICE WITH ENHANCED MICRO AIR-BEARINGS

    OpenAIRE

    Shan, X. -c; Zhang, Qide; Sun, Y. F.; Maeda, R.

    2006-01-01

    As part of progress in developing a micro gas turbine engine, this paper presents the design, fabrication and testing of a silicon-based micro turbine device, which is driven by compressed air. To improve its rotational speed and stability, the turbine device has enhanced journal air bearing and thrust air bearings. The thrust air bearings are utilized for supporting the rotor from both its top- and bottom- sides. The top thrust air bearing employs pump-in type spiral grooves, and the bottom ...

  6. Numerical and experimental investigations of micro air bearings for micro systems

    International Nuclear Information System (INIS)

    The paper investigated performance of air bearing system in a micro device. A parametric study is carried out. The dynamic performance of a very short journal bearing (L/D < 0.1) and thrust bearing is studied. The parameters that affect the performance of the air bearing are discussed. The optimum values of the important parameters are explored, and the stability of the thrust bearing is discussed. The prototype and test result are presented

  7. 14 CFR 33.97 - Thrust reversers.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 false Thrust reversers. 33.97 Section 33...Aircraft Engines § 33.97 Thrust reversers. (a) If the engine...thrust to maximum reverse thrust. After each reversal the reverser must be operated at...

  8. Active magnetic bearings give systems a lift

    Science.gov (United States)

    O'Connor, Leo

    1992-07-01

    While the active magnetic bearings currently being used in such specialized applications as centrifugal compressors for natural gas pumps are more expensive than conventional bearings, they furnish improved machine service life, controlled damping of high-speed rotors to eliminate critical-speed vibrations, and the obviation of lubrication systems. Attention is presently given to magnetic bearings used by the electric power industry, homopolar magnetic radial and thrust bearings, weapon-system and gas turbine engine applications of magnetic bearings, and the benefits of magnetic bearings for energy-storage flywheels.

  9. Load responsive hydrodynamic bearing

    Science.gov (United States)

    Kalsi, Manmohan S. (Houston, TX); Somogyi, Dezso (Sugar Land, TX); Dietle, Lannie L. (Stafford, TX)

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  10. Automated Assistance for Designing Active Magnetic Bearings

    Science.gov (United States)

    Imlach, Joseph

    2008-01-01

    MagBear12 is a computer code that assists in the design of radial, heteropolar active magnetic bearings (AMBs). MagBear12 was developed to help in designing the system described in "Advanced Active-Magnetic-Bearing Thrust-Measurement System". Beyond this initial application, MagBear12 is expected to be useful for designing AMBs for a variety of rotating machinery. This program incorporates design rules and governing equations that are also implemented in other, proprietary design software used by AMB manufacturers. In addition, this program incorporates an advanced unpublished fringing-magnetic-field model that increases accuracy beyond that offered by the other AMB-design software.

  11. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  12. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  13. Polar Bear Polar Bear

    Science.gov (United States)

    Kelly Burgess

    2012-09-11

    In this lesson, students will listen for key details in a nonfiction text about polar bears. They will work at completing a graphic organizer with the teacher to help organize their thinking and understanding of key details about a text. They will also complete an independent assignment where they will draw or write two things that they learned about the topic.

  14. Thrust Force Analysis of Tripod Constant Velocity Joint Using Multibody Model

    Science.gov (United States)

    Sugiura, Hideki; Matsunaga, Tsugiharu; Mizutani, Yoshiteru; Ando, Yosei; Kashiwagi, Isashi

    A tripod constant velocity joint is used in the driveshaft of front wheel drive vehicles. Thrust force generated by this joint causes lateral vibration in these vehicles. To analyze the thrust force, a detailed model is constructed based on a multibody dynamics approach. This model includes all principal parts of the joint defined as rigid bodies and all force elements of contact and friction acting among these parts. This model utilizes a new contact modeling method of needle roller bearings for more precise and faster computation. By comparing computational and experimental results, the appropriateness of this model is verified and the principal factors inducing the second and third rotating order components of the thrust force are clarified. This paper also describes the influence of skewed needle rollers on the thrust force and evaluates the contribution of friction forces at each contact region to the thrust force.

  15. Army (MANTECH) Thrust Area Concept: Optics Thrust Area

    Science.gov (United States)

    Kopacz, Stanley P.

    1992-01-01

    With the shrinking of the U.S. Army's material needs and the compression of defense requirements, the Army Manufacturing Technology (MANTECH) Program has the opportunity to advance the manufacturing state-of-the-art and solve near term production problems of the U.S. industrial base. To exploit this opportunity, the Army restructured its MANTECH efforts in FY 90 based on a thrust area concept. Each of the ten current thrusts, directed by a thrust area manager, has a broad technical objective selected to improve specific manufacturing processes. The manager is charged with setting objectives, selecting tasks, monitoring execution, leveraging external resources, and establishing microfactories to promote technology transfer. The Optics Manufacturing Thrust is an example of the concept. It is currently directed at revitalizing the domestic precision optics manufacturing base, now characterized by high labor costs and 1940's technology, through introduction of revolutionary machines, new processes, and Computer Integrated Manufacturing (CIM) principles. Leveraging of MANTECH dollars with those of industry, academia, and state governments led to the establishment of the center for Optics Manufacturing and plans for regional centers. Recognition of the U.S. as a world leader in precision optics manufacturing and a dramatic reduction of both manufacturing time and cost should accrue from thrust area efforts.

  16. Thrust Bearing Governed Clinker Extraction System in Producer Gas Plant

    OpenAIRE

    Ram Prasad Verma; Prof. Manish Verma; Dr. Arvind Dewangan

    2013-01-01

    In the process of Producer Gas Production; clinker/ash is formed as a waste material. This clinker is removed by equipment named as Ash Bowl which rotates on the “Guide Roller” by the application of hydraulic pressure. This process having many problems like formation of large size clinker which require excess hydraulic pressure, guide roller is unable to scatter the hydraulic pressure equally in all the direction on the ash bowl to crush the clinker, more hydraulic pressure is required fo...

  17. Magnetic Bearing

    OpenAIRE

    Anbuselvan. T; Vinothkumar.K; Sai Vikash. M

    2013-01-01

    The use of bearings is essential to all types of machines, especially in marine aspects they provide the function of supporting heavier component in a desired position. These bearings have contact with the rotating part and causes surface wear which can be controlled by lubrication. Researches have raised the standards of performance for rotating equipment by providing robust, cost effective, easy to implement magnetic bearing solutions. Use of magnetic bearings in ships can be more advantag...

  18. Magnetic bearings

    International Nuclear Information System (INIS)

    Active magnetic bearings have been selected for the main and shutdown circulators of the Modular High Temperature Gas-Cooled Reactor (MHTGR). This paper describes the active magnetic bearing system, its development status and its advantages and disadvantages. The reasons for selecting active magnetic bearings for the MHTGR are discussed together with the development status. Finally, the generic applicability of magnetic bearings to the power industry is reviewed

  19. Structural development and petroleum potential of the Dagestan foreland thrust belt, Terek-Caspian Basin, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sobornov, K. (All-Russian Research Geological Oil Institute, Moscow (Russian Federation))

    1994-07-01

    The Dagestan foreland thrust belt represents a transition zone between the Terek-Caspian basin and Caucasus. Boreholes and seismic data obtained during the last decade in the course of petroleum exploration reveal considerable differences between the surface and subsurface structures of the area. The new data suggest that the allochthonous assemblage of the belt is formed mainly by stacked north-verging thrust sheets made up mostly of Mesozoic carbonates and sandstones bounded at the top and bottom by conjugate detachment surfaces. The thrust sheets are interpreted to be inserted into the clastic section of the Terek-Caspian foredeep along the base of Oligocene-early Miocene mudstones. The interpreted geometry of the thrust-belt front implies a shortening of about 20-50 km. The blind subsurface thrusts have been active since late Miocene and Holocene. The interpreted structural relationships between Mesozoic-Cenozoic stratigraphic units imply that principal thrusts were formed due to reactivation and inversion of low-angle normal faults, which were active in the Jurassic - early Miocene. Mechanical weakness and low density of the overpressured Oligocene - lower Miocene Maykop Formation aided subsurface thrusting. The new interpretation of the regional structure offers a petroleum exploration play consisting of structural traps within the buried antiformal stacks. Oil- and gas-bearing Upper Cretaceous and Upper Jurassic carbonate rocks involved in thrust sheets are considered primary prospecting targets.

  20. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  1. Thrust reverser with variable nozzle

    Science.gov (United States)

    Butler, Lawrence (Inventor)

    1997-01-01

    A thrust reverser is provided for both modulating and reversing bypass flow discharged from a fan through a bypass duct of a turbofan gas turbine engine. The reverser includes an aft cowl joined to a forward cowl and having an aft end surrounding a core engine to define a discharge fan nozzle of minimum flow throat area. The aft cowl is axially translatable relative to the forward cowl from a first position fully retracted against the forward cowl, to a second position partially extended from the forward cowl, and to a third position fully extended from the forward cowl. A plurality of cascade turning vanes are disposed between the forward and aft cowls, and a plurality of thrust reversing deflector doors are pivotally mounted to the aft cowl and bound the bypass duct. The deflector doors are selectively deployed from a stowed position corresponding with the first and second positions of the aft cowl for allowing unrestricted flow of the bypass flow through the fan nozzle. The doors also have a deployed position corresponding with the third position of the aft cowl for substantially deflecting the bypass flow from discharging through the fan nozzle to discharging through the cascade vanes for effecting thrust reverse. Axial translation of the aft cowl between the first and second positions varies flow area of the fan nozzle to vary thrust effected by the discharged bypass flow.

  2. The polar bear phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Maw, P.K. (United Kingdom Ingersoll-Rand Sales Company, Ltd., Horwich, Bolton Lancashire, BL6 6JN (GB)); Lane, M.T.

    1990-02-01

    Results from measuring the thermal profile of polar bear pelts, reflectiveness of the pelts, and total thermal conversion data lead to the conclusion that the pelts from an ultra-efficient thermal diode for solar-thermal conversion. The transfer of the thermal energy from the surface of the fur to the skin where it is absorbed cannot be thermal, and therefore must be radiative. This process must have an efficiency of better than 90:0090 percent to account for measured values. The radiative transfer process is not known at present. To understand it, a detailed knowledge of the microscopic parameters of the pelts must be obtained. This is the current thrust of the polar solar research. If the process can be understood and synthesized,it will provide a major breakthrough in the area of solar-thermal energy conversion.

  3. Studies on Thrust Characteristic of High-Thrust Spiral Motor

    Science.gov (United States)

    Kominami, Tsutomu; Fujimoto, Yasutaka

    Linear actuators are used in various industrial applications. Connentional linear actuators are a combination of a rotational motor and a ball screw, a hydraulic actuator, or a linear motor. However, these actuators have some demerits. This paper proposes a spiral motor (SPRM) that comprises a spiral stator and a spiral mover. Owing to its spiral structure, the SPRM can be expected to show better performance as compared to the conventional linear actuator. However, it is not easy to manufacture spiral stators and spiral movers. In this paper, thrust and torque equations derived from a magnetic circuit are introduced. A prototype is developed and its specifications are provided. Sixty fan-shaped stator blocks are mounted on the frame and forty-eight fan-shaped mover blocks with flat surfaces are mounted on the axis. These blocks form an approximately spiral structure. The blocks are not difficult to manufacture. The feasibility of the developed SPRM is confirmed by performing basic experiments. First, the SPRM is driven by using synchronous control. Subsequently, the thrust is measured by a load cell and the thrust constant is determined.

  4. Space Shuttle booster thrust imbalance analysis

    Science.gov (United States)

    Bailey, W. R.; Blackwell, D. L.

    1985-01-01

    An analysis of the Shuttle SRM thrust imbalance during the steady-state and tailoff portions of the boost phase of flight are presented. Results from flights STS-1 through STS-13 are included. A statistical analysis of the observed thrust imbalance data is presented. A 3 sigma thrust imbalance history versus time was generated from the observed data and is compared to the vehicle design requirements. The effect on Shuttle thrust imbalance from the use of replacement SRM segments is predicted. Comparisons of observed thrust imbalances with respect to predicted imbalances are presented for the two space shuttle flights which used replacement aft segments (STS-9 and STS-13).

  5. Studies of externally pressurized porous gas bearings

    Science.gov (United States)

    Okano, Makoto

    1993-04-01

    The application of gas bearings using porous materials, which are noted for their large load capacity and stiffness, is limited by difficulties associated with both manufacturing techniques and calculation methods. Here, these problems are examined, and externally pressurized porous gas bearings offering high performance for various machines and tools are described. In particular, attention is given to the performance of a disc-type thrust bearing, and the effect of machining on performance is examined. A rotor supported by radial porous gas bearings, which are appropriately adjusted for the permeability of the porous materials, is operated stably at up to 200,000 rpm. Low-temperature rotating machines for a helium refrigerator and precision measuring instruments with externally pressurized porous gas bearings are also described.

  6. Failure of GIMBAL bearing in directional GYRO

    International Nuclear Information System (INIS)

    This paper relates to the directional gyro of a sensing device used in indigenously developed surface-to-surface missile. The assembling of more than one thousand components in the form of several sub assemblies including hundreds of silver solders of this device was done in the hundred-thousands-class clean room according to assembly procedure. Whereas more than twenty bearings including gimbals bearings were assembled in the ten-thousands-class clean room after inspection/ testing them on beating testing system as per routine. The device was entered in testing and adjustment phase after successful completion of assembly work. The directional gyro qualified all the tests except the most critical one, the drift-rate. The drift-rate of outer gimbal was 60% more than permissible limit whereas drift-rate of inner gimbal was found O.K. It was diagnosed that at least one inner gimbal bearing out of two had some problem. The results were same after rebalancing of gimbals three times. The directional gyro was disassembled in clean room and the radial-thrust-bearing was recovered and flange bearing which are inner gimbal bearings. They were checked on bearing testing system and it was found that flange-bearing had more friction than permissible limit and hence rejected but radial thrust bearing were declared O.K. The gyro was reassembled with new O.K. flange bearing and the assembly work was completed in all respects. The sensing device qualified all the tests including the dce qualified all the tests including the drift-rate. This case study is being presented to emphasize the importance of careful assembly of gyro in clean environment. (author)

  7. Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Mehmed, Oral; Johnson, Dexter; Montague, Gerald; Duffy, Kirsten; Jansen, Ralph

    2005-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft. This rig is a more capable successor to a prior apparatus, denoted the Dynamic Spin Rig (DSR), that included a vertically oriented shaft with a mechanical thrust bearing at the upper end and a single actively controlled heteropolar radial magnetic bearing at the lower end.

  8. Polar Bear

    Science.gov (United States)

    2009-01-01

    In this episode of the Podcast of Life, host Ari Daniel Shapiro relates two close calls with polar bears. Listen as Heather Cray recalls how, dumped by a storm on a small Arctic island without a shotgun, she got an unexpected wake-up call. And when researcher Steve Amstrup accidentally crashed through the roof of a polar bear’s den, no one could predict what happened next. Also included is a Learn More section that provides background information on the scientists recorded in the podcast, lessons, images, and cool facts.

  9. Foil bearings

    Science.gov (United States)

    Elrod, David A.

    1993-11-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  10. Troubleshooting bearing problems during the uprating of an existing steam turbine installation

    Energy Technology Data Exchange (ETDEWEB)

    Maw, S. [Neale Consulting Engineers Ltd., Farnham (United Kingdom); Abbott-Garder, J. [St Regis Paper Co. Ltd., Somerset (United Kingdom); Kendrick, S. [Sulzer Roteq Services, Leeds (United Kingdom)

    2000-07-01

    Paper manufacturing relies heavily on large quantities of steam and electrical power. Paper plants historically generate steam for the papermaking process and generate electricity via a steam turbine and alternator. This paper details the economic re-rating of a thrust bearing following repeated failures of an existing steam turbine installation at a UK paper mill. This involved the inspection of failed components, fundamental analysis of the turbine operating conditions and ultimately a re-design of the thrust bearing assembly. (author)

  11. A Design Procedure To Tune The Dynamic Stiffness Of An Externally Pressurized Gas Bearing

    Science.gov (United States)

    Roblee, J. W.

    1987-01-01

    A design procedure for flat, circular thrust bearings is presented here. The procedure is based upon a new dynamic model of the bearing and the principle of tuning the bearing's dynamic stiffness to optimize the dynamic performance of the overall, machine-bearing system. The design procedure is iterative so as to satisfy a number of different design constraints and is illustrated in an example problem.

  12. Conical Magnetic Bearing Development and Magnetic Bearing Testing for Extreme Temperature Environments

    Science.gov (United States)

    Keith, Theo G., Jr.; Jansen, Mark

    2004-01-01

    The main proposed research of this grant were: to design a high-temperature, conical magnetic bearing facility, to test the high-temperature, radial magnetic bearing facility to higher speeds, to investigate different backup bearing designs and materials, to retrofit the high-temperature test facility with a magnetic thrust bearing, to evaluate test bearings at various conditions, and test several lubricants using a spiral orbit tribometer. A high-temperature, conical magnetic bearing facility has been fully developed using Solidworks. The facility can reuse many of the parts of the current high-temperature, radial magnetic bearing, helping to reduce overall build costs. The facility has the ability to measure bearing force capacity in the X, Y, and Z directions through a novel bearing mounting design. The high temperature coils and laminations, a main component of the facility, are based upon the current radial design and can be fabricated at Texas A&M University. The coil design was highly successful in the radial magnetic bearing. Vendors were contacted about fabrication of the high temperature lamination stack. Stress analysis was done on the laminations. Some of the components were procured, but due to budget cuts, the facility build up was stopped.

  13. Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump.

    Science.gov (United States)

    Ren, Zhaohui; Jahanmir, Said; Heshmat, Hooshang; Hunsberger, Andrew Z; Walton, James F

    2009-01-01

    A hybrid magnetic bearing system was designed for a rotary centrifugal blood pump being developed to provide long-term circulatory support for heart failure patients. This design consists of two compact bearings to suspend the rotor in five degrees-of-freedom with single axis active control. Permanent magnets are used to provide passive radial support and electromagnets to maintain axial stability of the rotor. Characteristics of the passive radial and active thrust magnetic bearing system were evaluated by the electromagnetic finite element analysis. A proportional-integral-derivative controller with force balance algorithm was implemented for closed loop control of the magnetic thrust bearing. The control position is continuously adjusted based on the electrical energy in the bearing coils, and thus passive magnetic forces carry static thrust loads to minimize the bearing current. Performance of the magnetic bearing system with associated control algorithm was evaluated at different operating conditions. The bearing current was significantly reduced with the force balance control method and the power consumption was below 0.5 W under various thrust loads. The bearing parameters predicted by the analysis were validated by the experimental data. PMID:19381082

  14. Wingtip Vortex-Augmented Turbopusher Propeller Thrust

    Science.gov (United States)

    Patterson, J. C., Jr.

    1985-01-01

    Thrust of propeller enhanced by tip vortex. Wingtip-Mounted Nacelle provides turboprop vortex velocity recovery. Thrust of turbopusher propeller increased by flow of lift-induced vortex. As result of weaker vortex, reduction in induced drag of wing afforded by propeller-wake mass injection into core of vortex, causing it to break down.

  15. Porous Squeeze Film Bearing with Rough Surfaces Lubricated by a Bingham Fluid

    Science.gov (United States)

    Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.

    2014-11-01

    In the paper the effect of both bearing surfaces and the porosity of one bearing surface on the pressure distribution and load-carrying capacity of a squeeze film bearing is discussed. The equations of motion of a Bingham fluid in a bearing clearance and in a porous layer are presented. Using the Morgan-Cameron approximation and Christensen theory of rough lubrication the modified Reynolds equation is obtained. The analytical solutions of this equation for a squeeze film bearing are presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. A thrust radial bearing is considered as a numerical example.

  16. An air bearing system for small high speed gas turbines

    Science.gov (United States)

    Turner, A. B.; Davies, S. J.; Nimir, Y. L.

    1994-03-01

    This paper describes the second phase of an experimental program concerning the application of air bearings to small turbomachinery test rigs and small gas turbines. The first phase examined externally pressurized (EP) journal bearings, with a novel EP thrust bearing, for application to 'warm air' test rigs, and was entirely successful at rotational speeds in excess of 100,000 rpm. This second phase examined several designs of tilting pad-spiring journal bearings, one with a novel form of externally pressurized pad, but all using the original EP thrust bearing. The designs tested are described, including some oscillogram traces, for tests up to a maximum of 70,000 rpm; the most successful using a carbon pad-titanium beam spring arrangement. The thrust bearing which gave trouble-free operation throughout, is also described. The results of an original experiment to measure the 'runway speed' of a radial inflow turbine are also presented, which show that overspeeds of 58 percent above the design speed can result from free-power turbine coupling failure.

  17. Low thrust chemical rocket technology

    Science.gov (United States)

    Schneider, Steven J.

    1992-01-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher performance propellants were evaluated: Space storable propellants, including liquid oxygen (LOX) as the oxidizer with nitrogen hydrides or hydrocarbon as fuels. Specifically, a LOX/hydrazine engine was designed, fabricated, and shown to have a 95 pct theoretical c-star which translates into a projected vacuum specific impulse of 345 seconds at an area ratio of 204:1. Further performance improvment can be obtained by the use of LOX/hydrogen propellants, especially for manned spacecraft applications, and specific designs must be developed and advanced through flight qualification.

  18. Pulsed Ejector Thrust Amplification Tested and Modeled

    Science.gov (United States)

    Wilson, Jack

    2004-01-01

    There is currently much interest in pulsed detonation engines for aeronautical propulsion. This, in turn, has sparked renewed interest in pulsed ejectors to increase the thrust of such engines, since previous, though limited, research had indicated that pulsed ejectors could double the thrust in a short device. An experiment has been run at the NASA Glenn Research Center, using a shrouded Hartmann-Sprenger tube as a source of pulsed flow, to measure the thrust augmentation of a statistically designed set of ejectors. A Hartmann- Sprenger tube directs the flow from a supersonic nozzle (Mach 2 in the present experiment) into a closed tube. Under appropriate conditions, an oscillation is set up in which the jet flow alternately fills the tube and then spills around flow emerging from the tube. The tube length determines the frequency of oscillation. By shrouding the tube, the flow was directed out of the shroud as an axial stream. The set of ejectors comprised three different ejector lengths, three ejector diameters, and three nose radii. The thrust of the jet alone, and then of the jet plus ejector, was measured using a thrust plate. The arrangement is shown in this photograph. Thrust augmentation is defined as the thrust of the jet with an ejector divided by the thrust of the jet alone. The experiments exhibited an optimum ejector diameter and length for maximizing the thrust augmentation, but little dependence on nose radius. Different frequencies were produced by changing the length of the Hartmann-Sprenger tube, and the experiment was run at a total of four frequencies. Additional measurements showed that the major feature of the pulsed jet was a starting vortex ring. The size of the vortex ring depended on the frequency, as did the optimum ejector diameter.

  19. Alternative model of thrust-fault propagation

    Science.gov (United States)

    Eisenstadt, Gloria; de Paor, Declan G.

    1987-07-01

    A widely accepted explanation for the geometry of thrust faults is that initial failures occur on deeply buried planes of weak rock and that thrust faults propagate toward the surface along a staircase trajectory. We propose an alternative model that applies Gretener's beam-failure mechanism to a multilayered sequence. Invoking compatibility conditions, which demand that a thrust propagate both upsection and downsection, we suggest that ramps form first, at shallow levels, and are subsequently connected by flat faults. This hypothesis also explains the formation of many minor structures associated with thrusts, such as backthrusts, wedge structures, pop-ups, and duplexes, and provides a unified conceptual framework in which to evaluate field observations.

  20. Dynamic Imbalance Would Counter Offcenter Thrust

    Science.gov (United States)

    Mccanna, Jason

    1994-01-01

    Dynamic imbalance generated by offcenter thrust on rotating body eliminated by shifting some of mass of body to generate opposing dynamic imbalance. Technique proposed originally for spacecraft including massive crew module connected via long, lightweight intermediate structure to massive engine module, such that artificial gravitation in crew module generated by rotating spacecraft around axis parallel to thrust generated by engine. Also applicable to dynamic balancing of rotating terrestrial equipment to which offcenter forces applied.

  1. Fuel Optimal Thrust Allocation In Dynamic Positioning

    OpenAIRE

    Rindarøy, Martin

    2013-01-01

    This thesis gives a short introduction to the Dynamic Positioning(DP) domain and focuses on developing a fuel optimal thrust allocation algorithm for marine DP vessels with a diesel electric power plant. Obtained data is used to develop a static model for the fuel consumption of a diesel generator, as a function of its produced power. This model is used to formulate a convex Quadratic Programming(QP)-problem that finds fuel optimal solutions to the thrust allocation problem. This is possible ...

  2. FROM STUDIES ON THE THRUST IN SWIMMING

    Directory of Open Access Journals (Sweden)

    Strzelczyk, R.

    2008-07-01

    Full Text Available Swimming speed is determined by many factors, including weight preparation of the swimmer which is one of the most important ones. This power is directly related to the speed a swimmer can reach in water, that is the value of thrust. The aim of the study was to establish the level of thrust and swimming speed of the 2nd year students (n=20 of the University School of Physical Education (USPE in Pozna? and to compare them with the results of study from 1983 in which the 4th year students (n=20 of the USPE in Pozna? were studied. The current study was carried out in the context of the long-term changes in swimming technique. Research methods: measurement of thrust in real conditions was performed using a prototype device for the measurement of thrust of a swimmer which makes it possible to register the force in the water environment; swimming speed was established on the basis of the time needed to cover the distance of 25 metres, according to the regulations of the Polish Swimming Association. Conclusions: the students taking part in the 1983 study had higher values of thrust, but a lower speed than the students taking part in the 2006 study, which suggests that apart from the thrust the technique of swimming has a important influence of the swimming speed.

  3. A thrust balance for low power hollow cathode thrusters

    Science.gov (United States)

    Frollani, D.; Coletti, M.; Gabriel, S. B.

    2014-06-01

    A hanging thrust balance has been designed, manufactured and tested at the University of Southampton. The current design allows for direct steady thrust measurements ranging from 0.1 to 3 mN but this can be easily extended to measure thrust in a different range. Moreover the chosen balance design and the thrust measurement procedure allow for the cancellation of thermal drifts. The thrust balance was tested with a T6 hollow cathode thruster providing measurements with an uncertainty of about 9.7%. The thrust data were compared to those obtained with another direct thrust balance and they are in quantitative agreement—the maximum difference being only 6%.

  4. Effect of blade outlet angle on radial thrust of single-blade centrifugal pump

    Science.gov (United States)

    Nishi, Y.; Fukutomi, J.; Fujiwara, R.

    2012-11-01

    Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate. In addition to the increase of the fluctuation component of this pressure component, because the fluctuation component of the inertia and momentum components becomes large (as mentioned above), the radial thrust increases at a large flow rate, as is the case for the impeller with a large blade outlet angle.

  5. Effect of blade outlet angle on radial thrust of single-blade centrifugal pump

    International Nuclear Information System (INIS)

    Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet anglef the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate. In addition to the increase of the fluctuation component of this pressure component, because the fluctuation component of the inertia and momentum components becomes large (as mentioned above), the radial thrust increases at a large flow rate, as is the case for the impeller with a large blade outlet angle.

  6. Static performance of a cruciform nozzle with multiaxis thrust-vectoring and reverse-thrust capabilities

    Science.gov (United States)

    Wing, David J.; Asbury, Scott C.

    1992-01-01

    A multiaxis thrust vectoring nozzle designed to have equal flow turning capability in pitch and yaw was conceived and experimentally tested for internal, static performance. The cruciform-shaped convergent-divergent nozzle turned the flow for thrust vectoring by deflecting the divergent surfaces of the nozzle, called flaps. Methods for eliminating physical interference between pitch and yaw flaps at the larger multiaxis deflection angles was studied. These methods included restricting the pitch flaps from the path of the yaw flaps and shifting the flow path at the throat off the nozzle centerline to permit larger pitch-flap deflections without interfering with the operation of the yaw flaps. Two flap widths were tested at both dry and afterburning settings. Vertical and reverse thrust configurations at dry power were also tested. Comparison with two dimensional convergent-divergent nozzles showed lower but still competitive thrust performance and thrust vectoring capability.

  7. Thrust Augmentation with Mixer/Ejector Systems

    Science.gov (United States)

    Presz, Walter M., Jr.; Reynolds, Gary; Hunter, Craig

    2002-01-01

    Older commercial aircraft often exceed FAA (Federal Aviation Administration) sideline noise regulations. The major problem is the jet noise associated with the high exhaust velocities of the low bypass ratio engines on such aircraft. Mixer/ejector exhaust systems can provide a simple means of reducing the jet noise on these aircraft by mixing cool ambient air with the high velocity engine gases before they are exhausted to ambient. This paper presents new information on thrust performance predictions, and thrust augmentation capabilities of mixer/ejectors. Results are presented from the recent development program of the patented Alternating Lobe Mixer Ejector Concept (ALMEC) suppressor system for the Gulfstream GII, GIIB and GIII aircraft. Mixer/ejector performance procedures are presented which include classical control volume analyses, compound compressible flow theory, lobed nozzle loss correlations and state of the art computational fluid dynamic predictions. The mixer/ejector thrust predictions are compared to subscale wind tunnel test model data and actual aircraft flight test measurements. The results demonstrate that a properly designed mixer/ejector noise suppressor can increase effective engine bypass ratio and generate large thrust gains at takeoff conditions with little or no thrust loss at cruise conditions. The cruise performance obtained for such noise suppressor systems is shown to be a strong function of installation effects on the aircraft.

  8. Magnetic bearings promise reduced operation and maintenance costs

    International Nuclear Information System (INIS)

    Magnetic bearings are being incorporated into the design of the US DoE modular high temperature gas cooled reactor. The virtually maintenance-free bearing technology may have potential in other nuclear applications. In an active magnetic bearing, a stationary electromagnet (stator) and a rotating ferrous material (rotor) are used to allow a shaft to be suspended in a magnetic field. The position of the shaft is maintained dynamically using position sensors to provide a continuous feedback through a control and amplifier system to the electromagnetic poles which are used to suspend the shaft. Two separate systems are required: an axial positioning system, or thrust bearing, and a pair of radial positioning systems, or journal bearings. (author)

  9. Pulsed thrust measurements using electromagnetic calibration techniques.

    Science.gov (United States)

    Tang, Haibin; Shi, Chenbo; Zhang, Xin'ai; Zhang, Zun; Cheng, Jiao

    2011-03-01

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 ?N?s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measured to give a 310 ?N?s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 ?N?s with 95% credibility. PMID:21456799

  10. Axisymmetric thrust-vectoring nozzle performance prediction

    International Nuclear Information System (INIS)

    Throat-hinged geometrically variable converging-diverging thrust-vectoring nozzles directly affect the jet flow geometry and rotation angle at the nozzle exit as a function of the nozzle geometry, the nozzle pressure ratio and flight velocity. The consideration of nozzle divergence in the effective-geometric nozzle relation is theoretically considered here for the first time. In this study, an explicit calculation procedure is presented as a function of nozzle geometry at constant nozzle pressure ratio, zero velocity and altitude, and compared with experimental results in a civil thrust-vectoring scenario. This procedure may be used in dynamic thrust-vectoring nozzle design performance predictions or analysis for civil and military nozzles as well as in the definition of initial jet flow conditions in future numerical VSTOL/TV jet performance studies

  11. Maintenance Free Bearings

    Directory of Open Access Journals (Sweden)

    S. M. Muzakkir & Harish Hirani

    2015-03-01

    Full Text Available In the present research work the need of a Maintenance Free Bearings (MFB is established. The paper presents preliminary friction calculations to highlight the ways to achieve maintenance free bearings. The existing technologies of well established maintenance free bearings are described. The hybridization of bearing technologies to achieve low cost maintenance free bearings has been exemplified. Finally a combination of passive magnetic repulsion and hydrodynamics has been proposed and recommended as source terms to develop maintenance free bearings.

  12. Scale independence of d??collement thrusting

    Science.gov (United States)

    McBride, J.H.; Pugin, A.J.M.; Hatcher, R.D., Jr.

    2007-01-01

    Orogen-scale d??collements (detachment surfaces) are an enduring subject of investigation by geoscientists. Uncertainties remain as to how crustal convergence processes maintain the stresses necessary for development of low-angle fault surfaces above which huge slabs of rock are transported horizontally for tens to hundreds of kilometers. Seismic reflection profiles from the southern Appalachian crystalline core and several foreland fold-and-thrust belts provide useful comparisons with highresolution shallow-penetration seismic reflection profiles acquired over the frontal zone of the Michigan lobe of the Wisconsinan ice sheet northwest of Chicago, Illinois. These profiles provide images of subhorizontal and overlapping dipping reflections that reveal a ramp-and-flat thrust system developed in poorly consolidated glacial till. The system is rooted in a master d??collement at the top of bedrock. These 2-3 km long images contain analogs of images observed in seismic reflection profiles from orogenic belts, except that the scale of observation in the profiles in glacial materials is two orders of magnitude less. Whereas the d??collement beneath the ice lobe thrust belt lies ???70 m below thrusted anticlines having wavelengths of tens of meters driven by an advancing ice sheet, seismic images from overthrust terranes are related to lithospheric convergence that produces d??collements traceable for thousands of kilometers at depths ranging from a few to over 10 km. Dual vergence or reversals in vergence (retrocharriage) that developed over abrupt changes in depth to the d??collement can be observed at all scales. The strikingly similar images, despite the contrast in scale and driving mechanism, suggest a scale- and driving mechanism-independent behavior for d??collement thrust systems. All these systems initially had the mechanical properties needed to produce very similar geometries with a congressional driving mechanism directed subparallel to Earth's surface. Subduction-related accretionary complexes also produce thrust systems with similar geometries in semito unconsolidated materials.?? 2007 The Geological Society of America. All rights reserved.

  13. FROM STUDIES ON THE THRUST IN SWIMMING

    OpenAIRE

    Strzelczyk, R.; Ciereszko, A.; Pietrusik, K.; Konarski, J.; Stankowski, T.; Lutomski, P.

    2008-01-01

    Swimming speed is determined by many factors, including weight preparation of the swimmer which is one of the most important ones. This power is directly related to the speed a swimmer can reach in water, that is the value of thrust. The aim of the study was to establish the level of thrust and swimming speed of the 2nd year students (n=20) of the University School of Physical Education (USPE) in Pozna? and to compare them with the results of study from 1983 in which the 4th year students (n...

  14. Thrust allocation for DP in ice

    OpenAIRE

    Wold, Henrik Emil

    2013-01-01

    The commercial industry has initiated work on how to make it feasible to enter the Arctic seas. Ice loads affects most aspects of the Arctic operation, and the marine crafts must be able to handle them all. The DP control system, and thus the thrust allocation, is not designed to handle ice loads and will not work properly \\cite{Moran}. The main purpose of this master thesis is to enhance the thrust allocation for handling ice loads. This is done by including thruster dynamics and adding thru...

  15. A ?Newton thrust-stand for LISA

    Science.gov (United States)

    Merkowitz, S. M.; Maghami, P. G.; Sharma, A.; Willis, W. D.; Zakrzwski, C. M.

    2002-04-01

    The success of the LISA project depends on the ability of the disturbance reduction system to shield the proof masses from all external forces and to maintain tight pointing requirements relative to the other two spacecrafts. ?N-thrusters are required to compensate for the solar radiation pressure acting on the spacecraft. The force noise from these thrusters must be low enough not to disturb the freely floating proof masses. To date, these noise requirements have not been demonstrated, mostly because no thrust-stand exists with sufficient sensitivity. We present the status of our ?Newton thrust-stand that will verify that the thrusters proposed for LISA will meet the noise requirements.

  16. A ?Newton thrust-stand for LISA

    International Nuclear Information System (INIS)

    The success of the LISA project depends on the ability of the disturbance reduction system to shield the proof masses from all external forces and to maintain tight pointing requirements relative to the other two spacecrafts. ?N-thrusters are required to compensate for the solar radiation pressure acting on the spacecraft. The force noise from these thrusters must be low enough not to disturb the freely floating proof masses. To date, these noise requirements have not been demonstrated, mostly because no thrust-stand exists with sufficient sensitivity. We present the status of our ?Newton thrust-stand that will verify that the thrusters proposed for LISA will meet the noise requirements

  17. Evaluation of subcooled water thrust forces

    International Nuclear Information System (INIS)

    Subcooled water thrust forces for use in pipe rupture analyses have been normalized with respect to an enthalpy normalization factor. This normalization is based on comparisons with thrust forces calculated using the Henry-Fauske model, and the answers are within +-3 percent in the range 300 to 2400 psia (21.1 to 168.7 kg/cm2). The numerical evaluation makes it unnecessary for the user to rely on figures for the particular conditions desired or to program the Henry-Fauske method

  18. Reverse thrust performance of the QCSEE variable pitch turbofan engine

    Science.gov (United States)

    Samanich, N. E.; Reemsnyder, D. C.; Blodmer, H. E.

    1980-01-01

    Results of steady state reverse and forward to reverse thrust transient performance tests are presented. The original quiet, clean, short haul, experimental engine four segment variable fan nozzle was retested in reverse and compared with a continuous, 30 deg half angle conical exlet. Data indicated that the significantly more stable, higher pressure recovery flow with the fixed 30 deg exlet resulted in lower engine vibrations, lower fan blade stress, and approximately a 20 percent improvement in reverse thrust. Objective reverse thrust of 35 percent of takeoff thrust was reached. Thrust response of less than 1.5 sec was achieved for the approach and the takeoff to reverse thrust transients.

  19. Rocketdyne LOX bearing tester program

    Science.gov (United States)

    Keba, J. E.; Beatty, R. F.

    1988-01-01

    The cause, or causes, for the Space Shuttle Main Engine ball wear were unknown, however, several mechanisms were suspected. Two testers were designed and built for operation in liquid oxygen to empirically gain insight into the problems and iterate solutions in a timely and cost efficient manner independent of engine testing. Schedules and test plans were developed that defined a test matrix consisting of parametric variations of loading, cooling or vapor margin, cage lubrication, material, and geometry studies. Initial test results indicated that the low pressure pump thrust bearing surface distress is a function of high axial load. Initial high pressure turbopump bearing tests produced the wear phenomenon observed in the turbopump and identified an inadequate vapor margin problem and a coolant flowrate sensitivity issue. These tests provided calibration data of analytical model predictions to give high confidence in the positive impact of future turbopump design modification for flight. Various modifications will be evaluated in these testers, since similar turbopump conditions can be produced and the benefit of the modification will be quantified in measured wear life comparisons.

  20. Development of an indirect counterbalanced pendulum optical-lever thrust balance for micro- to millinewton thrust measurement

    International Nuclear Information System (INIS)

    This paper describes the design and testing of an indirect hanging pendulum thrust balance using a laser-optical-lever principle to provide micro- to millinewton thrust measurement for the development of electric propulsion systems. The design philosophy allows the selection of the total thrust range in order to maximize resolution through a counterbalanced pendulum principle, as well as passive magnetic damping in order to allow relatively rapid transient thrust measurement. The balance was designed for the purpose of hollow cathode microthruster characterization, but could be applied to other electric propulsion devices in the thrust range of micro- to millinewtons. An initial thrust characterization of the T5 hollow cathode is presented

  1. Recent research and development of bearings for helium circulator

    International Nuclear Information System (INIS)

    This paper mainly describes recent studies and successful applications of water lubricated bearing and gas lubricated bearing. Both types of bearing seem to be suitable for a turbo machine installed in an atomic energy plant - such as the helium circulator of a HTGR - not to be affected by radioactivity, so we have been attracted by them for about 10 years. The former was investigated theoretically taking account of turbulent flow due to the low viscosity of water, and compared with the experimental data. Good agreement was obtained, and a successful example applied to a small-sized high speed air compressor is shown. The latter was investigated using a large-sized bearing test rig simulated to an actual machine. The tilting pad journal bearing and the tilting pad thrust bearing were taken and improved for some aspects. These bearings have been taken into service on an actual circulator and are now operating successfully. Currently, a magnetic bearing is being studied to pay special attention to endurance for an earthquake and catcher bearing system. We would like to have an opportunity to present these results in the near future. (author). 5 refs, 15 figs, 2 tabs

  2. Lubrication of Space Shuttle Main Engine Turbopump Bearings

    Science.gov (United States)

    Gibson, Howard; Munafo, Paul (Technical Monitor)

    2001-01-01

    The Space Shuttle has three main engines that are used for propulsion into orbit. These engines are fed propellants by four turbopumps on each engine. A main element in the turbopump is the bearings supporting the rotor that spins the turbine blades and the pump impeller. These bearings are required to spin at very high speeds, support radial and thrust loads, and have high wear resistance without the benefit of lubrication. The liquid hydrogen and oxygen propellants flow through the bearings to cool the surfaces. The volatile nature of the propellants excludes any conventional means of lubrication. Lubrication for these bearings is provided by the ball separator inside the bearing. The separator is a composite material that supplies a transfer film of lubrication to the rings and balls. New separator materials and lubrication schemes have been investigated at Marshall Space Flight Center in a bearing test rig with promising results. Hybrid bearings with silicon nitride balls have also been evaluated. The use of hybrid, silicon nitride ball bearings in conjunction -with better separator materials has shown excellent results. The work that Marshall has done is being utilized in turbopumps flying on the space shuttle fleet and will be utilized in future space travel. This result of this work is valuable for all aerospace and commercial applications where high-speed bearings are used.

  3. Passive magnetic bearing configurations

    Science.gov (United States)

    Post, Richard F. (Walnut Creek, CA)

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  4. Defining the Himalayan Main Central Thrust in Nepal

    OpenAIRE

    Searle, Mp; Law, Rd; Godin, L.; Larson, Kp; Streule, Mj; Cottle, Jm; Jessup, Mj

    2008-01-01

    An inverted metamorphic field gradient associated with a crustal-scale south-vergent thrust fault, the Main Central Thrust, has been recognized along die Himalaya for over 100 years. A major problem in Himalayan structural geology is that recent workers have mapped the Main Central Thrust within the Greater Himalayan Sequence high-grade metamorphic sequence along several different structural levels. Some workers map the Main Central Thrust as coinciding with a lithological contact, others as ...

  5. Passive magnetic bearing

    International Nuclear Information System (INIS)

    The paper presents a special design of a passive magnetic bearing with permanent magnets on the fixed and the rotating part of the bearing. Peculiarity of the presented passive magnetic bearing is its ability to take radial and axial loads in both directions by using axially magnetized permanent magnets. A 3D finite element method (3D FEM) is used for analysis of magnetic conditions in the bearing. The performance of the presented magnetic bearing was determined by the Maxwell Stress Method

  6. Space Shuttle Main Engine Turbopump Bearing Testing at Marshall Space Flight Center

    Science.gov (United States)

    Gibson, Howard; Thom, Robert; Moore, Chip

    2010-01-01

    The Space Shuttle has three main engines that are used for lift off into orbit. These engines are fed propellants by low and high pressure turbopumps on each engine. A main element of the pumps are the bearings supporting the main shaft that spins the turbine and pumps. These bearings must spin at high speeds, support the radial and axial thrust loads, and have high wear resistance without the benefit of lubrication. This paper describes the bearing testing that was done at the Marshall Space Flight Center and the results that were obtained to provide the best bearing design possible for safe and reliable engine performance.

  7. Feasibility of magnetic bearings for advanced gas turbine engines

    Science.gov (United States)

    Hibner, David; Rosado, Lewis

    1992-05-01

    The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.

  8. Calculating Track Thrust with Track Functions

    CERN Document Server

    Chang, Hsi-Ming; Thaler, Jesse; Waalewijn, Wouter J

    2013-01-01

    In e+e- event shapes studies at LEP, two different measurements were sometimes performed: a "calorimetric" measurement using both charged and neutral particles, and a "track-based" measurement using just charged particles. Whereas calorimetric measurements are infrared and collinear safe and therefore calculable in perturbative QCD, track-based measurements necessarily depend on non-perturbative hadronization effects. On the other hand, track-based measurements typically have smaller experimental uncertainties. In this paper, we present the first calculation of the event shape track thrust and compare to measurements performed at ALEPH and DELPHI. This calculation is made possible through the recently developed formalism of track functions, which are non-perturbative objects describing how energetic partons fragment into charged hadrons. By incorporating track functions into soft-collinear effective theory, we calculate the distribution for track thrust with next-to-leading logarithmic resummation. Due to a p...

  9. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-07-27

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OST&I) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OST&I's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program.

  10. Low-thrust mission risk analysis.

    Science.gov (United States)

    Yen, C. L.; Smith, D. B.

    1973-01-01

    A computerized multi-stage failure process simulation procedure is used to evaluate the risk in a solar electric space mission. The procedure uses currently available thrust-subsystem reliability data and performs approximate simulations of the thrust subsystem burn operation, the system failure processes, and the retargetting operations. The application of the method is used to assess the risks in carrying out a 1980 rendezvous mission to Comet Encke. Analysis of the results and evaluation of the effects of various risk factors on the mission show that system component failure rates is the limiting factor in attaining a high mission reliability. But it is also shown that a well-designed trajectory and system operation mode can be used effectively to partially compensate for unreliable thruster performance.

  11. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2005-09-13

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability.

  12. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    International Nuclear Information System (INIS)

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OSTandI) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OSTandI's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program

  13. High temperature thrust chamber for spacecraft

    Science.gov (United States)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  14. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    International Nuclear Information System (INIS)

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability

  15. Analysis of thrust/torque signature of MOV

    International Nuclear Information System (INIS)

    For the evaluation of operability of MOV(Motor Operated Valve), the precision prediction of thrust/torque acting on the valve is important. In this paper, the analytical prediction method of thrust/torque was proposed. The design basis stem thrust calculation typically considers the followings: packing thrust, stem rejection load, design basis differential pressure load. In general, test results show that temperature, pressure, fluid type, and differential pressure, independently and combination, all have an effect on the friction factor. The prediction results of thrust/torque are well agreement with dynamic test results

  16. Statistical error model for a solar electric propulsion thrust subsystem

    Science.gov (United States)

    Bantell, M. H.

    1973-01-01

    The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.

  17. Performance Characteristics of Cylindrical Target-type Thrust Reversers

    Science.gov (United States)

    Steffen, Fred W; Mcardle, Jack G

    1956-01-01

    From tests on cylindrical target-type thrust reversers, it was found that the reverser frontal area, lip angle, end-plate angle, and end-plate depth had important effects on reverse-thrust performance. Frontal area, reverser depth, lip angle, and end-plate angele had important effects on the spacing required for unrestricted nozzle flow. For reverse-thrust ratios greater than 64 percent, the reversed flow attached to the 7 degree cowl in quiescent air. Swept-type cylindrical reversers were generally unstable. The thrust-modulation characteristics of a cylindrical target-type thrust reverser were found to be satisfactory.

  18. Secondary Production of Massive Quarks in Thrust

    OpenAIRE

    Hoang, Andre H.; Mateu, Vicent; Pietrulewicz, Piotr

    2014-01-01

    We present a factorization framework that takes into account the production of heavy quarks through gluon splitting in the thrust distribution for e+ e- --> hadrons. The explicit factorization theorems and some numerical results are displayed in the dijet region where the kinematic scales are widely separated, which can be extended systematically to the whole spectrum. We account for the necessary two-loop matrix elements, threshold corrections, and include resummation up to...

  19. Development and Testing of an Axial Halbach Magnetic Bearing

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  20. The thrust belts of Western North America

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, F.C.

    1993-08-01

    Most of the Basin and Range physiographic province of western North America is now believed to be part of the overthrust. The more obvious overthrust belt along the eastern edge of the Basin and Range Province is named the Sevier orogenic belt, where older rocks are observed thrust onto younger rocks. More detailed surface geological mapping, plus deep multiple-fold geophysical work and many oil and gas wildcat wells, have confirmed an east-vergent shortened and stacked sequence is present in many places in the Basin and Range. This western compressive deformed area in east central Nevada is now named the Elko orogenic belt by the U.S. Geological Survey. This older compressed Elko orogenic belt started forming approximately 250 m.y. ago when the North American plate started to move west as the Pangaea supercontinent started to fragment. The North American plate moved west under the sediments of the Miogeocline that were also moving west. Surface-formed highlands and oceanic island arcs on the west edge of the North American plate restricted the westward movement of the sediments in the Miogeocline, causing east-vergent ramp thrusts to form above the westward-moving North American plate. The flat, eastward-up-cutting thrust assemblages moved on the detachment surfaces.

  1. Paleostress analysis of the Osning Thrust, Germany

    Science.gov (United States)

    Saintot, Aline; Kozakovski, Anna; Pascal, Christophe

    2013-04-01

    The Osning Thrust is a 100 km-scale NW-SE fault separating the Lower Saxony Basin to the NE from the Münsterland Basin to the SE. The fault has accommodated a polyphase deformation that started at least when it acted as one of the normal border faults of the Jurassic Lower Saxony Basin. Tectonic inversion of the basin in Late Cretaceous-Early Paleocene times led to the development of the SE-vergent Osning Thrust and to folding of rocks. A paleostress analysis was carried out in order to decipher the polyphase kinematics of the Osning Thrust. The fault slip data were collected in the folded Albian to Turonian stratigraphic units of the Münsterland basin, in the SE vicinity of a 20 km-long steep segment of the Osning Thrust. Fault slip data in sufficient amount to perform paleostress inversion were collected in 10 sites among 23 visited outcrops. Abundant minor faults trend sub-parallel to the NW-SE steep segment of the Osning Thrust but, surprisingly, they are dextral (and not reverse) in type. Another major set of E-W striking minor faults is remarkable. It corresponds to conjugate systems of either reverse or normal faults and to oblique- to strike-slip faults in a less extent. The paleostress tensors reveal a ca. N-S compression recorded in 5 locations under which the NW-SE steep faults were dextral and the E-W striking S- and N- dipping faults were reverse. Six stress tensors fit with a ca. N-S extension. They are calculated from E-W striking S- and N- dipping normal to oblique normal faults. The same N-S trend of minimum stress axis is also recorded with NNE-SSW dextral and E-W sinistral faults. We propose that along the studied segment of the Osning Thrust a N-S compressional stress field led to the inversion of the Lower Saxony Basin and that slip along the Osning Thrust was oblique reverse. At two locations, the N-S compressive stress states affected the rock prior to tilting of the beds (herein, due to folding) and at one site, the normal faults of the N-S extension clearly cut across reverse faults of the N-S compression. These two observations allow to propose a chronology between the reconstructed stress fields. While the N-S compression is presumably linked to the Late Cretaceous-Early Palaeocene inversion of the Lower Saxony Basin, the successive E-W extension is not constrained in age. However, it is known that tensional stresses have largely affected the west European platform in Oligocene times and this N-S extension revealed by the present study might be related to this tectonic event.

  2. Axial thrust reducing arrangement for gas compressor having an overhung impeller shaft

    Energy Technology Data Exchange (ETDEWEB)

    Kulle, V.; Peterson, R.A.

    1992-11-10

    An improvement is disclosed for the type of compressor commonly used for boosting pressure in gas transmission lines and petrochemical processes, in which one or more centrifugal or axial flow impellers are mounted on a shaft and constitute a rotor which rotates within a gas space in the compressor housing to move gas from a suction inlet to a discharge outlet of the space. In such a compressor, the shaft is of the overhung type in which the impeller or impellers are in front of the bearings. According to the invention, the improvement comprises annular sealing means at the front end of and coaxial with the shaft, and which separate an inner gas space communicating with the shaft front end from a suction end of the gas space which lies outside the sealing means. These sealing means include an outer annular seal, an inner dry gas seal, and means for supplying pressurized process gas between these seals at a pressure higher than the suction end gas pressure, while the inner gas space is vented to a pressure below that pressure. Accordingly, only a part of the front end of the shaft is subjected to high pressure. The pressure of gas in the inner gas space may be regulated to achieve the desired balancing. The invention relieves a front end force on the shaft and provides a means for regulating thrust on the shaft which obviates the need for a balance piston as found in conventional compressors. The invention also allows smaller thrust bearings to be used in place of the large bearings typically used, and is particularly valuable if it is desired to use all magnetic bearings for the shaft. 2 figs.

  3. Bearing Failure Detector

    Science.gov (United States)

    2004-01-01

    Technology derived by NASA for monitoring control gyros in the Skylab program is directly applicable to the problems of fault detection of railroad wheel bearings. Marhsall Space Flight Center's scientists have developed a detection concept based on the fact that bearing defects excite resonant frequency of rolling elements of the bearing as they impact the defect. By detecting resonant frequency and subsequently analyzing the character of this signal, bearing defects may be detected and identified as to source.

  4. Axial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  5. Polar Bears Change Diet

    Science.gov (United States)

    Doug Schneider

    2007-12-12

    This radio broadcast from 2001 explains how polar bears have adjusted their diet due to the climate warming around Hudson Bay, Canada. The ringed seals that polar bears normally eat have been harder for polar bears to get to, due to disappearing ice. This has forced polar bears to begin eating harbor seals and bearded seals. The clip is 4 minutes and 15 seconds in length.

  6. The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft

    Science.gov (United States)

    1983-01-01

    A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.

  7. Thrust evaluation of magneto plasma sail that obtains an electromagnetic thrust from the solar wind

    International Nuclear Information System (INIS)

    Magneto Plasma Sail (MPS) is a propulsion system used in space, which generates its force by the interaction between the solar wind and an inflated magnetic field via a plasma injection. The quantitative evaluation of the thrust increment generated by injecting a plasma jet with a ?in less than unity was conducted by three-dimensional hybrid particle-in-cell (PIC) simulations in an ion inertia scale. The injected plasma ?in is 0.02 and the ratio of Larmor radius of injected ion to the representative length of the magnetic field is 0.5 at the injection point. In this situation, the obtained thrust of the MPS is 1.6 mN compared with the 0.2 mN of the thrust obtained by the pure magnetic sail since the induced current region on magnetosphere expanded by the magnetic inflation. (author)

  8. Bearing puller facilitates removal and replacement of bearing assemblies

    Science.gov (United States)

    Schaus, R. B.

    1966-01-01

    Bearing puller removes ball bearing assemblies, which carry the rotor, from turbine type flowmeters. It matches the bearing configuration to facilitate removal of the bearing assemblies from the support members.

  9. High-power, null-type, inverted pendulum thrust stand.

    Science.gov (United States)

    Xu, Kunning G; Walker, Mitchell L R

    2009-05-01

    This article presents the theory and operation of a null-type, inverted pendulum thrust stand. The thrust stand design supports thrusters having a total mass up to 250 kg and measures thrust over a range of 1 mN to 5 N. The design uses a conventional inverted pendulum to increase sensitivity, coupled with a null-type feature to eliminate thrust alignment error due to deflection of thrust. The thrust stand position serves as the input to the null-circuit feedback control system and the output is the current to an electromagnetic actuator. Mechanical oscillations are actively damped with an electromagnetic damper. A closed-loop inclination system levels the stand while an active cooling system minimizes thermal effects. The thrust stand incorporates an in situ calibration rig. The thrust of a 3.4 kW Hall thruster is measured for thrust levels up to 230 mN. The uncertainty of the thrust measurements in this experiment is +/-0.6%, determined by examination of the hysteresis, drift of the zero offset and calibration slope variation. PMID:19485530

  10. Cryogenic Hybrid Magnetic Bearing

    Science.gov (United States)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  11. STOL landing thrust: Reverser jet flowfields

    Science.gov (United States)

    Kotansky, D. R.; Glaze, L. W.

    1987-01-01

    Analysis tools and modeling concepts for jet flow fields encountered upon use of thrust reversers for high performance military aircraft are described. A semi-empirical model of the reverser ground wall jet interaction with the uniform cross flow due to aircraft forward velocity is described. This ground interaction model is used to demonstrate exhaust gas ingestion conditions. The effects of control of exhaust jet vector angle, lateral splay, and moving versus fixed ground simulation are discussed. The Adler/Baron jet-in-cross flow model is used in conjunction with three dimensional panel methods to investigate the upper surface jet induced flow field.

  12. Optimum Staging with Varying Thrust Attitude Angle

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    2014-05-01

    Full Text Available Optimum staging programme for step rockets of arbitrary number of stages having different specific impulses and mass fractions with stages is derived, the optimization criterion being minimum take-off weight for a desired burntout velocity at an assigned altitude. Variation of thrust attitude angle from stage to stage and effects of gravity factor are taken into account. Analysis is performed for a degenerate problem obtained by relaxing the altitude constraint and it has been shown that problems of Weisbord, Subotowicz, Hall & Zambelli and Malina & Summerfield are the particular cases of the degenerate problem.

  13. Low Power Magnetic Bearing Design for High Speed Rotating Machinery

    Science.gov (United States)

    Allaire, P. E.; Maslen, E. H.; Humphris, R. R.; Sortore, C. K.; Studer, P. A.

    1992-01-01

    Magnetic suspension technology has advanced to the point of being able to offer a number of advantages to a variety of applications in the rotating machinery and aerospace fields. One strong advantage is the decrease in power consumption. The design and construction of a set of permanent magnet biased, actively controlled magnetic bearing for a flexible rotor are presented. Both permanent magnets and electromagnets are used in a configuration which effectively provides the necessary fluxes in the appropriate air gaps, while simultaneously keeping the undesirable destabilizing forces to a minimum. The design includes two radial bearings and a thrust bearing. The theoretical development behind the design is briefly discussed. Experimental performance results for a set of operating prototype bearings is presented. The results include measurements of load capacity, bearing stiffness and damping, and the dynamic response of the rotor. With few exceptions, the experimental results matched very well with the predicted performance. The power consumption of these bearings was found to be significantly reduced from that for a comparable set of all electromagnetic bearings.

  14. Teddy Bear Stories

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Caldas-Coulthardt, Carmen

    2014-01-01

    This paper presents a semiotic analysis of a key cultural artefact, the teddy bear. After introducing the iconography of the teddy bear, it analyses different kinds of stories to show how teddy bears are endowed with meaning in everyday life: stories from children's books, reminiscenses by adults about their childhood teddy bears, and children's accounts of what they do with teddy bears, both written for school and told 'out of school', The chapter sees teddy bears as artefacts that provide a cultural channeling for the child's need of a transitional object and argues that the meanings of teddy bears have traditionally centred on interpersonal relations within the nuclear family, but have recently been institutionalized and commercialized.

  15. The experimental study on efficiency improvement of turbo machinery supported with magnetic bearings

    International Nuclear Information System (INIS)

    To implement a conventional electromagnetic bearing in small turbo machinery, it has problems such as load capacity and size. Therefore, in this paper, these problems are resolved by using a permanent magnet biased electromagnetic bearing as a thrust bearing of small turbo machinery. Because the flux path of the bearing is designed by reluctance path modulation using an electromagnet and a permanent magnet, the bearing improves upon non-linearity, power consumption, size and load capacity of a conventional electromagnetic bearing. Test rotating the shaft over 500,000DN were carried out to verify the performance of the proposed small turbo machinery. In addition, the relationships between mass flow rate and pressure rise were measured as changing the tip clearance to verify the feasibility of efficiency improvement and active surge control and these results were compared with theoretical results

  16. Effects of thrust reversing in ground proximity

    Science.gov (United States)

    Joshi, P. B.; Hughes, R. V.

    1987-01-01

    The changes in stability and control characteristics encountered by a thrust reversing aircraft during its final approach, landing, and ground roll are described. These changes include a strong pitch-up accompanied by the loss of horizontal tail and aileron control effectiveness. The magnitude of reverser induced changes in ground effect are much larger than corresponding changes in free air. Some unexpected unsteady motions exhibited in wind tunnel by an aircraft model with reversers operating in ground proximity are also described. The cause of this oscillatory behavior was determined to be an unsteady interaction between the wall jets formed by impingement of reverser jets on the ground and the on-coming free stream. Time histories of rolling moments measured by the wind tunnel balance or support system were removed and frequencies were scaled by Strouhal number to full scale. Corrected time series were used to simulate the motion of a fighter aircraft with thrust reversers in ground effect. The simulation predicted large roll angles and nose down attitude at touchdown. Some phenomena of jet attachment to solid surfaces are discussed and areas for future research are recommended.

  17. Control of a varying thrust spacecraft for autonomous space rendezvous

    Science.gov (United States)

    Dawson, Travis E., Jr.

    1991-01-01

    Before the use of autonomous rendezvous will be allowed as a substitute for man-in-the-loop control, adequate safety and mission performance will have to be guaranteed. Most autopilots for autonomous rendezvous of spacecraft assume constant thrust reaction control system (RCS) thrusters. This assumption implies either true constant thrust RCS thrusters or thrusters whose thrust levels vary very slowly. The ongoing work described in this presentation examines the autonomous rendezvous problem when varying thrust RCS thrusters are inherent in the system equations of motion.

  18. Acoustics and aerodynamics of over-the-wing thrust reversers

    Science.gov (United States)

    Stimpert, D. L.; Ammer, R. C.

    1976-01-01

    As part of the Quiet Clean Short-Haul Experimental Engine Program, model tests were conducted to determine the effects of thrust reverser geometric parameters on noise and reverse thrust. The acoustic tests used a 1/6 scale model thrust reverser while the aerodynamic performance tests used a 1/12 scale model reverser. Parameters which were varied in both tests include blocker spacing, blocker height, lip angle, and lip length. The impact of these parameters on peak sideline noise and reverse thrust performance is discussed.

  19. Some effects of cyclic induced deformation in rocket thrust chambers

    Science.gov (United States)

    Hannum, N. P.; Quentmeyer, R. J.; Kasper, H. J.

    1979-01-01

    A test program to investigate the deformation process observed in the hot gas wall of rocket thrust chambers was conducted using three different liner materials. Five thrust chambers were cycled to failure using hydrogen and oxygen as propellants at a chamber pressure of 4.14 MN/sq m. The deformation was observed nondestructively at midlife points and destructively after failure occurred. The cyclic life results are presented with an accompanying discussion about the types of failure encountered. Data indicating the deformation of the thrust chamber liner as cycles are accumulated are presented for each of the test thrust chambers.

  20. Quantification of mass transfers and mineralogical transformations in a thrust fault (Monte Perdido thrust unit, southern Pyrenees, Spain)

    OpenAIRE

    Trincal, Vincent; Charpentier, Delphine; Buatier, Martine D.; Grobety, Bernard; Lacroix, Brice; Labaume, Pierre; Sizun, Jean-pierre

    2014-01-01

    In fold-and-thrust belts, shortening is mainly accommodated by thrust faults which are preferential zones for recrystallisation and mass transfer. This study focuses on a detachment fault related to the emplacement of the Monte Perdido thrust unit in the southern Pyrenees. The studied fault zone consists of a 10 m thick intensively foliated phyllonite developed within the Millaris marls, of Eocene age. The lithological homogeneity of the hanging wall and footwall allows us to compare the Mill...

  1. Fault interaction along the Central Andean thrust front: The Las Peñas thrust, Cerro Salinas thrust and the Montecito Anticline

    Science.gov (United States)

    Schoenbohm, L. M.; Costa, C. H.; Brooks, B. A.; Bohon, W.; Gardini, C.; Cisneros, H.

    2013-12-01

    The region in west-central Argentina between the thin-skinned Precordillera and the thick-skinned Sierras Pampeanas structural domain is among the most active zones of thrust tectonics in the world. We quantify the rates of deformation on the east-vergent Las Peñas thrust (LPT), and the west-vergent Cerro Salinas thrust (CST). The Montecito anticline (MA) is located at their intersection. We mapped three key locations, collected stratigraphic logs from the MA, dated three ashes using U-Pb in zircon and dated 10 terraces using cosmogenic Be-10 depth profiles. Five terrace levels are present where the Rio Las Peñas crosses the LPT, up to 45 m above the modern river. Cosmogenic dating of the uppermost terrace (T1) yields and age of 123.8 +26.5/-12.3 ka. A reconstruction of this surface using a blind thrust rupture scenario indicates 73 +/- 7 m horizontal shortening and 34 +/- 3 m vertical displacement. Shortening across the structure is therefore 0.59 +0.10/-0.13 mm/yr with a vertical uplift rate of 0.27 +0.05/-0.06 mm/a. Previous work indicates higher rates to the south on the order of 2 mm/yr (Schmidt et al., 2011). Lower terraces give ages of 38.0 +11/-6.2 ka (T2) and 1.5 +5.0/-0.6 ka (T4). Three terrace levels are preserved near the center of the CST. The middle surface (T2) is folded across the axis of the structure and yields an age of 112.5 +33/-14.4 ka. Given 22.9 m surface uplift, this indicates a vertical uplift rate of 0.20 +0.05/-0.06 mm/yr, similar to the rate on the LPT. The upper terrace (T1) yields a younger age (97.1 +29.8/-12.4 ka); the T1 and T2 ages overlap within uncertainty, indicating rapid river incision at the time of their formation. An intercalated ash within the Neogene strata gives an age of 16.2 +/- 0.2. Previous work indicates long-term shortening rates of 0.8 mm/yr (Verges et al., 2007) and that the CST initiated after 8.5 Ma. The lowermost unit exposed in the MA is the Los Pozos Fm., with no indication of syn-depositional deformation. An intercalated ash from the top of this formation yields an age of 5.76 +/- 0.09 Ma. Internal unconformities are present within the overlying transitional unit and the Mogotes Fm., indicating deformation post-dates 5.8 Ma in the MA. An ash within the Mogotes Fm. is 1.52 +/- 0.06 Ma. Slip is modeled as 3.5 km reverse slip across an east-dipping dislocation with a 45 degree dip. This suggests horizontal shortening and vertical uplift of 0.42 mm/yr since the onset of deformation. Uplifted terraces near the center of the MA are 4.7 +0.8/-0.3 ka (T2) and 1.9 +3.4/-1.9 ka (T3), 6 and 4.6 m above the modern river, respectively. This suggests recent vertical uplift or incision rates of 1.3-2.4 mm/yr. These data suggest that deformation in the MA is comparable to that at the LPT and CST. Deformation in the MA could be accelerating, but alternatively, river incision could be accelerating due to climate change.

  2. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such rains also destroy the denning habitat of ringed seals, the polar bears' primary prey. Declines in the ringed seal population would mean a loss of food for polar bears. A trend toward stronger winds and increasing ice drift observed in some parts of the Arctic over the last five decades will likely increase energy expenditures and stress levels in polar bears that spend most of their lives on drifting sea ice. Polar bears face other limiting factors as well. Historically, the main threat to polar bears has been hunting. Satisfactory monitoring information has been obtained for most polar bear populations in recent years, however there is concern about hunting in areas without formal quota systems, such as Greenland. A range of toxic pollutants, including heavy metals, radioactivity, and persistent organic pollutants (POPs) are found throughout the Arctic. Of greatest concern are the effects of POPs on polar bears, which include a general weakening of the immune system, reduced reproductive success and physical deformities. The expansion of oil development in the Arctic poses additional threats; for example, disturbances to denning females in the Arctic National Wildlife Refuge in Alaska could undermine recruitment of the Beaufort Sea polar bear population. These threats, along with other effects of human activity in the Arctic, combine to pressure polar bears and their habitat. Large carnivores are sensitive indicators of ecosystem health and can be used to define the minimum area necessary to preserve intact ecosystems. WWF has identified the polar bear as a unique symbol of the complexities and interdependencies of the arctic marine ecosystem as it works toward its goal of preserving biodiversity for future generations.

  3. Secondary production of massive quarks in thrust

    International Nuclear Information System (INIS)

    We present a factorization framework that takes into account the production of heavy quarks through gluon splitting in the thrust distribution for e+e-?hadrons. The explicit factorization theorems and some numerical results are displayed in the dijet region where the kinematic scales are widely separated, which can be extended systematically to the whole spectrum. We account for the necessary two-loop matrix elements, threshold corrections, and include resummation up to N3LL order. We include nonperturbative power corrections through a field theoretical shape function, and remove the O(?QCD) renormalon in the partonic soft function by appropriate mass-dependent subtractions. Our results hold for any value of the quark mass, from an infinitesimally small (merging to the known massless result) to an infinitely large one (achieving the decoupling limit). This is the first example of an application of a variable flavor number scheme to final state jets.

  4. Basement involved thrusts from Northwestern Maracaibo Basin

    Energy Technology Data Exchange (ETDEWEB)

    Audemard, F. (Intevep, S.A., Caracas (Venezuela))

    1993-02-01

    The interpretation of seismic reflection profiles from northwestern Maracaibo Basin, north of the Palmar River, suggests a late Neogene age for all the structures located within the north-northeast trends of anticlinal belts. These folded structures appear to be ramp anticlines generated from basement involved thrusts. Such detachments are intercepted by conjugate systems of low-angle decollements decoupled from the thick shaly intervals of Cretaceous and Eocene age. The resulting configuration of these fault systems are related to a mechanic of deformation referred as [open quotes]fish tail[close quotes]. This structural style favors the superposition of structural traps at different levels. The superposed reservoirs from La Paz, Mara, Sibucara, Mara Oeste, and Ensenada among others constitute superb examples of this style of deformation. Similar anticlinal structures are also observed to the southeast of the Basin in the Ceuta-Tomoporo area.

  5. Secondary production of massive quarks in thrust

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Andre H. [Wien Univ. (Austria). Fakultaet fuer Physik; Vienna Univ. (Austria). Erwin Schroedinger International Institute for Mathematical Physics; Mateu, Vicent [Wien Univ. (Austria). Fakultaet fuer Physik; Pietrulewicz, Piotr [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2014-12-15

    We present a factorization framework that takes into account the production of heavy quarks through gluon splitting in the thrust distribution for e{sup +}e{sup -}?hadrons. The explicit factorization theorems and some numerical results are displayed in the dijet region where the kinematic scales are widely separated, which can be extended systematically to the whole spectrum. We account for the necessary two-loop matrix elements, threshold corrections, and include resummation up to N{sup 3}LL order. We include nonperturbative power corrections through a field theoretical shape function, and remove the O(?{sub QCD}) renormalon in the partonic soft function by appropriate mass-dependent subtractions. Our results hold for any value of the quark mass, from an infinitesimally small (merging to the known massless result) to an infinitely large one (achieving the decoupling limit). This is the first example of an application of a variable flavor number scheme to final state jets.

  6. Electronics Engineering Department Thrust Area report FY'84

    International Nuclear Information System (INIS)

    This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided

  7. How the Thrust of Shawyer's Thruster can be Strongly Increased

    OpenAIRE

    Aquino, Fran

    2014-01-01

    Here, we review the derivation of the equation of thrust of Shawyer's thruster, by obtaining a new expression, which includes the indexes of refraction of the two parallel plates in the tapered waveguide. This new expression shows that, by strongly increasing the index of refraction of the plate with the largest area, the value of the thrust can be strongly increased.

  8. Impact of plasma noise on a direct thrust measurement system.

    Science.gov (United States)

    Pottinger, S J; Lamprou, D; Knoll, A K; Lappas, V J

    2012-03-01

    In order to evaluate the accuracy and sensitivity of a pendulum-type thrust measurement system, a linear variable differential transformer (LVDT) and a laser optical displacement sensor have been used simultaneously to determine the displacement resulting from an applied thrust. The LVDT sensor uses an analog interface, whereas the laser sensor uses a digital interface to communicate the displacement readings to the data acquisition equipment. The data collected by both sensors show good agreement for static mass calibrations and validation with a cold gas thruster. However, the data obtained using the LVDT deviate significantly from that of the laser sensor when operating two varieties of plasma thrusters: a radio frequency (RF) driven plasma thruster, and a DC powered plasma thruster. Results establish that even with appropriate shielding and signal filtering the LVDT sensor is subject to plasma noise and radio frequency interactions which result in anomalous thrust readings. Experimental data show that the thrust determined using the LVDT system in a direct current plasma environment and a RF discharge is approximately a factor of three higher than the thrust values obtained using a laser sensor system for the operating conditions investigated. These findings are of significance to the electric propulsion community as LVDT sensors are often utilized in thrust measurement systems and accurate thrust measurement and the reproducibility of thrust data is key to analyzing thruster performance. Methods are proposed to evaluate system susceptibility to plasma noise and an effective filtering scheme presented for DC discharges. PMID:22462919

  9. Impact of plasma noise on a direct thrust measurement system

    Science.gov (United States)

    Pottinger, S. J.; Lamprou, D.; Knoll, A. K.; Lappas, V. J.

    2012-03-01

    In order to evaluate the accuracy and sensitivity of a pendulum-type thrust measurement system, a linear variable differential transformer (LVDT) and a laser optical displacement sensor have been used simultaneously to determine the displacement resulting from an applied thrust. The LVDT sensor uses an analog interface, whereas the laser sensor uses a digital interface to communicate the displacement readings to the data acquisition equipment. The data collected by both sensors show good agreement for static mass calibrations and validation with a cold gas thruster. However, the data obtained using the LVDT deviate significantly from that of the laser sensor when operating two varieties of plasma thrusters: a radio frequency (RF) driven plasma thruster, and a DC powered plasma thruster. Results establish that even with appropriate shielding and signal filtering the LVDT sensor is subject to plasma noise and radio frequency interactions which result in anomalous thrust readings. Experimental data show that the thrust determined using the LVDT system in a direct current plasma environment and a RF discharge is approximately a factor of three higher than the thrust values obtained using a laser sensor system for the operating conditions investigated. These findings are of significance to the electric propulsion community as LVDT sensors are often utilized in thrust measurement systems and accurate thrust measurement and the reproducibility of thrust data is key to analyzing thruster performance. Methods are proposed to evaluate system susceptibility to plasma noise and an effective filtering scheme presented for DC discharges.

  10. Electronics Engineering Department Thrust Area report FY'84

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C.; Phelps, P.L. (eds.)

    1984-01-01

    This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided.

  11. Transient analysis of blowdown thrust force under PWR LOCA

    International Nuclear Information System (INIS)

    The analytical results of blowdown characteristics and thrust forces were compared with the experiments, which were performed as pipe whip and jet discharge tests under the PWR LOCA conditions. The blowdown thrust forces obtained by Navier-Stokes momentum equation about a single-phase, homogeneous and separated two-phase flow, assuming critical pressure at the exit if a critical flow condition was satisfied. The following results are obtained. (1) The node-junction method is useful for both the analyses of the blowdown thrust force and of the water hammer phenomena. (2) The Henry-Fauske model for subcooled critical flow is effective for the analysis of the maximum thrust force under the PWR LOCA conditions. The jet thrust parameter of the analysis and experiment is equal to 1.08. (3) The thrust parameter of saturated blowdown has the same one with the value under pressurized condition when the stagnant pressure is chosen as the saturated one. (4) The dominant terms of the blowdown thrust force in the momentum equation are the pressure and momentum terms except that the acceleration term has large contribution only just after the break. (5) The blowdown thrust force in the analysis greatly depends on the selection of the exit pressure. (author)

  12. Thrust Measurements for a Pulse Detonation Engine Driven Ejector

    Science.gov (United States)

    Santoro, Robert J.; Pak, Sibtosh; Shehadeh, R.; Saretto, S. R.; Lee, S.-Y.

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors aimed at probing different aspects of PDE ejector processes, are presented and discussed. The PDE was operated using ethylene as the fuel and an equimolar oxygen/nitrogen mixture as the oxidizer at an equivalence ratio of one. The thrust measurements for the PDE alone are in excellent agreement with experimental and modeling results reported in the literature and serve as a Baseline for the ejector studies. These thrust measurements were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups using constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  13. Redefining Medlicott-Wadia's main boundary fault from Jhelum to Yamuna: An active fault strand of the main boundary thrust in northwest Himalaya

    Science.gov (United States)

    Thakur, V. C.; Jayangondaperumal, R.; Malik, M. A.

    2010-06-01

    The MBT demarcates a tectonic boundary between the Tertiary Sub Himalaya and the pre-Tertiary Lesser Himalaya. South of the MBT, another tectonically important fault extends from Muzaffarabad and Riasi in Jammu-Kashmir to Bilaspur and Nahan in Himachal. Medlicott and Wadia had designated this fault the Main Boundary Fault (MBF) in Simla Hills and Jammu region respectively. In between these two areas, later workers gave local-area names to the MBF as the Riasi Thrust in Jammu, Palampur Thrust in Kangra, Bilaspur Thrust in Simla Hills and Nahan Thrust in Sirmur. We have reviewed and established the tectonostratigraphic framework and physical continuity of the lower Tertiary belt and the MBF. The lower Tertiary belt, lying south of the MBT, has characteristic tectonostratigraphic setting with discontinuous bodies of stromatolite-bearing Proterozoic limestone overlain with depositional contact by the Paleocene-lower part Middle Eocene marine Subathu/Patala formation which in turn overlain by the Upper Oligocene-Lower Miocene non-marine Dharamsala/Murree Formation. To avoid confusion with the MBT, we designate collectively the MBF and related faults as the Medlicott-Wadia Thrust (MWT). The MWT extends east of Hazara-Kashmir syntaxis to river Yamuna, covering a distance of ˜ 700 km. Further east of Yamuna, the lower Tertiary belt pinches out and the MWT merges with the sensuo-stricto MBT. The Proterozoic limestone represents the basement over which the lower Tertiary sediments were deposited. The limestone basement with its cover was detached by the MWT, exhuming to the surface and thrusting over largely the Siwalik group. The reactivated Balakot-Bagh Fault, causative fault for the 2005 Kashmir earthquake, extends southeast with right-step to the Riasi Thrust. The Riasi Thrust shows evidence of reactivation and active tectonic activity in Jammu region. It extends further east to the Palampur Thrust in Kangra reentrant, which lies within the 1905 Kangra earthquake rupture zone. The Bilaspur Thrust, continuation of the Palampur Thrust, shows active faulting south of Simla hills between Sataun and Yamuna River. These observations indicate that the MWT represents a southern strand of the sensuo-stricto MBT and shows active faulting in some segments.

  14. Bearing fatigue investigation 3

    Science.gov (United States)

    Nahm, A. H.; Bamberger, E. N.; Signer, H. R.

    1982-01-01

    The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.

  15. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 false Turbojet and turbofan engine thrust reverser systems tests. 23.934 Section 23...23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan...

  16. 14 CFR 25.934 - Turbojet engine thrust reverser system tests.

    Science.gov (United States)

    2010-01-01

    ... 2010-01-01 false Turbojet engine thrust reverser system tests. 25.934 Section 25... General § 25.934 Turbojet engine thrust reverser system tests. Thrust reversers installed on turbojet engines must meet...

  17. Ball and Roller Bearings. A Teaching Reference.

    Science.gov (United States)

    American Association for Vocational Instructional Materials, Athens, GA.

    The manual provides a subject reference for ball and roller bearings. The following topics are included: (1) bearing nomenclature, (2) bearing uses, (3) bearing capacities, (4) shop area working conditions, (5) bearing removal, (6) bearing cleaning and inspection, (7) bearing replacement, (8) bearing lubrication, (9) bearing installation, (10)…

  18. Static Performance of a Wing-Mounted Thrust Reverser Concept

    Science.gov (United States)

    Asbury, Scott C.; Yetter, Jeffrey A.

    1998-01-01

    An experimental investigation was conducted in the Jet-Exit Test Facility at NASA Langley Research Center to study the static aerodynamic performance of a wing-mounted thrust reverser concept applicable to subsonic transport aircraft. This innovative engine powered thrust reverser system is designed to utilize wing-mounted flow deflectors to produce aircraft deceleration forces. Testing was conducted using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0, a supercritical left-hand wing section attached via a pylon, and wing-mounted flow deflectors attached to the wing section. Geometric variations of key design parameters investigated for the wing-mounted thrust reverser concept included flow deflector angle and chord length, deflector edge fences, and the yaw mount angle of the deflector system (normal to the engine centerline or parallel to the wing trailing edge). All tests were conducted with no external flow and high pressure air was used to simulate core and fan engine exhaust flows. Test results indicate that the wing-mounted thrust reverser concept can achieve overall thrust reverser effectiveness levels competitive with (parallel mount), or better than (normal mount) a conventional cascade thrust reverser system. By removing the thrust reverser system from the nacelle, the wing-mounted concept offers the nacelle designer more options for improving nacelle aero dynamics and propulsion-airframe integration, simplifying nacelle structural designs, reducing nacelle weight, and improving engine maintenance access.

  19. Early history and reactivation of the rand thrust, southern California

    Science.gov (United States)

    Postlethwaite, Clay E.; Jacobson, Carl E.

    The Rand thrust of the Rand Mountains in the northwestern Mojave Desert separates an upper plate of quartz monzonite and quartzofeldspathic to amphibolitic gneiss from a lower plate of metagraywacke and mafic schist (Rand Schist). The Rand thrust is considered part of the regionally extensive Vincent/Chocolate Mountain thrust system, which is commonly believed to represent a Late Cretaceous subduction zone. The initial direction of dip and sense of movement along the Vincent/Chocolate Mountain thrust are controversial. Microfabrics of mylonites and quartzites from the Rand Mountains were analyzed in an attempt to determine transport direction for this region, but the results are ambiguous. In addition, the southwestern portion of the Rand thrust was found to have been reactivated as a low-angle normal fault after subduction. Reactivation might have occurred shortly after subduction, in which case it could account for the preservation of high-pressure mineral assemblages in the Rand Schist, or it could be related to mid-Tertiary extension in the western United States. In either event, the reactivation might be responsible for the complicated nature of the microfabrics. The Rand Schist exhibits an inverted metamorphic zonation. Isograds in the schist are not significantly truncated by the reactivated segment of the Rand thrust. This indicates that other segments of the Vincent/Chocolate Mountain thrust should be re-evaluated for the possibility of late movement, even if they show an apparently undisturbed inverted metamorphic zonation.

  20. Thrust kinematics in the Kohat Plateau, Trans Indus Range, Pakistan

    Science.gov (United States)

    Abbasi, Iftikhar Ahmed; McElroy, Ronan

    The Kohat Plateau consists of a heavily deformed and structurally elevated thrust sheet. Pop-ups, broad synclines and narrow fault- and evaporite-cored anticlines record high-level translation of a large thrust mass along Eocene evaporites. A lower detachment level is also inferred, located at the base of the Mesozoic-Palaeozoic section. This lower detachment is common to both the Kohat and the adjacent Potwar Plateaux whereas the upper level is restricted to the Kohat. Beneath the Kohat, a blind imbricate stack of pre-Tertiary rocks is developed. Above their roof thrust, the foreland basin-fill of Kohat records greater internal deformation compared to that of the adjacent Potwar Plateau. In contrast, the Potwar thrust belt displays a greater amount of overthrusting on its basal surface, this displacement emerging in the Salt Range. Total shortening across the two plateaux is comparable, but is accommodated in an areally smaller thrust belt with a higher structural relief in the Kohat as compared to the Potwar structural province. The resultant geographical offset of the thrust front is denoted by the Hukni-Kalabagh lateral ramp. The differences in the thrust kinematics are tentatively suggested to be caused by the mechanical response of the orogenic wedge to different imposed geometries of the wedge laterally within the basin. The Kohat Plateau appears to have a lower basal dip than does the western Potwar, and thus shows greater internal deformation.

  1. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation.

    Science.gov (United States)

    Kosaka, Ryo; Maruyama, Osamu; Nishida, Masahiro; Yada, Toru; Saito, Sakae; Hirai, Shusaku; Yamane, Takashi

    2009-10-01

    We have developed a noncontact-type centrifugal blood pump with hydrodynamic bearings and a semi-open impeller for mechanical circulatory assist. The impeller is levitated by an original spiral-groove thrust bearing and a herringbone-groove journal bearing, without any additional displacement-sensing module or additional complex control circuits. The pump was improved by optimizing the groove direction of the spiral-groove thrust bearing and the pull-up magnetic force between the rotor magnet and the stator coil against the impeller. To evaluate hemocompatibility, we conducted a levitation performance test and in vitro hemocompatibility tests by means of a mock-up circulation loop. In the hemolysis test, the normalized index of hemolysis was reduced from 0.721 to 0.0335 g/100 L corresponding to an expansion of the bearing gap from 1.1 to 56.1 microm. In the in vitro antithrombogenic test, blood pumps with a wide thrust bearing gap were effective in preventing thrombus formation. Through in vitro evaluation tests, we confirmed that hemocompatibility was improved by balancing the hydrodynamic fluid dynamics and magnetic forces. PMID:19681836

  2. Propeller thrust analysis using Prandtl's lifting line theory, a comparison between the experimental thrust and the thrust predicted by Prandtl's lifting line theory

    Science.gov (United States)

    Kesler, Steven R.

    The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.

  3. Electric sail control mode for amplified transverse thrust

    Science.gov (United States)

    Toivanen, P.; Janhunen, P.; Envall, J.

    2015-01-01

    The electric solar wind sail produces thrust by centrifugally spanned high voltage tethers interacting with the solar wind protons. The sail attitude can be controlled and attitude maneuvers are possible by tether voltage modulation synchronous with the sail rotation. Especially, the sail can be inclined with respect to the solar wind direction to obtain transverse thrust to change the osculating orbit angular momentum. Such an inclination has to be maintained by a continual control voltage modulation. Consequently, the tether voltage available for the thrust is less than the maximum voltage provided by the power system. Using a spherical pendulum as a model for a single rotating tether, we derive analytical estimations for the control efficiency for two separate sail control modes. One is a continuous control modulation that corresponds to strictly planar tether tip motion. The other is an on-off modulation with the tether tip moving along a closed loop on a saddle surface. The novel on-off mode is introduced here to both amplify the transverse thrust and reduce the power consumption. During the rotation cycle, the maximum voltage is applied to the tether only over two thrusting arcs when most of the transverse thrust is produced. In addition to the transverse thrust, we obtain the thrusting angle and electric power consumption for the two control modes. It is concluded that while the thrusting angle is about half of the sail inclination for the continuous modulation it approximately equals to the inclination angle for the on-off modulation. The efficiency of the on-off mode is emphasized when power consumption is considered, and the on-off mode can be used to improve the propulsive acceleration through the reduced power system mass.

  4. Powered Descent Guidance with General Thrust-Pointing Constraints

    Science.gov (United States)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  5. Interrelations of mud volcanism, fluid venting, and thrust-anticline folding: Examples from the external northern Apennines (Emilia-Romagna, Italy)

    Science.gov (United States)

    Bonini, Marco

    2007-08-01

    The present work aims to provide an example of connection between fluid seepage and fault/fracture zones associated with compressional thrust folds. Surface fluid seepage along the Pede-Apennine margin consists of mud volcanism and methane-rich emissions showing an intimate link with thrust-related folds. Dominant gaseous or CH4-bearing fluid emissions characterize thrust fold settings in which fluid escape from the main reservoir and source rock (i.e., the Marnoso Arenacea flysch) is not impeded by a seal layer. Conversely, remarkable mud volcanism is closely linked to the presence of the impermeable Ligurian units sealing the Marnoso Arenacea reservoir. Structural analyses focused on selected thrust folds exhibiting clear relations between surface seepage and brittle elements associated with the fold. Various scenarios potentially explaining mud volcanism and venting over the crestal region of the thrust-related folds are discussed with respect to fluid pressure state and the development of second-order fault and fracture sets that are observed to control surface fluid expulsion. It is proposed that mud volcanism can be potentially triggered by first-order fault failure cycles during which the overpressured fluid is released during faulting events. Past anomalous eruptions associated with strong earthquakes seem to support this hypothesis. The relatively quiescent but continuous activity of the current Pede-Apennine mud volcanoes could instead reflect a short-lived leakage of overpressured fluids along permeable fractures/faults. Expansion of methane contained in the rising mud may assist this process fundamentally.

  6. The Polar Bear Tracker

    Science.gov (United States)

    This new Web site from the World Wildlife Fund (WWF) International explores how polar bears are affected by global warming. Data on the movements of two radio-collared bears can be viewed, along with the ice status, through a series of online maps. This is an interesting site with valuable information and a nice balance of maps, photos, and text. The animation of the polar bear tracking data is a really neat feature, but is best viewed by advancing through the stages manually because the rapid speed of the film makes it difficult to comprehend.

  7. Field and Experimental investigation of the Frictional Behaviour of mechanically heterogeneous thrusts

    Science.gov (United States)

    Tesei, T.; Collettini, C.; Di Stefano, G.

    2013-12-01

    Recent high-resolution geodetic and seismological data reveal that tectonic faults exhibit complex, multi-mode slip behavior including earthquakes, creep events, slow and silent earthquakes, low-frequency events and earthquake afterslip. Here we have studied three large-displacement (5-10 km) thrust faults from the Northern Apennines (Central Italy), in the field and in the lab to address the influence of different lithologies (carbonates and marls) on fault zone structure and mechanics. We observe a full spectrum of fault architectures ranging from localized brittle faulting in massive limestones to wide (up to 200 m) ductile shear zones in marly limestones and marls. Brittle shear zones present abundant cataclasites, ultractaclasites, fault mirrors and structures diagnostic of seismically induced dehydration and decarbonation. On the other hand, ductile shear zones present S-CC' tectonites formed by pressure solution and frictional sliding. This evidence suggests strong differences in strength and slip behaviour (seismic vs non-seismic) of the different fault zones. To quantitatively test this hypothesis we carried out experiments on these natural fault rocks. We sheared both intact wafers and powdered fault materials applying low (10 MPa) and in-situ (53 MPa) normal stress under water-saturated conditions. We used velocity steps (1 to 300 ?m/s) and slide-hold-slide (3-1000 s holds) to assess the frictional stability and healing behaviour of our rocks. Mechanical results quantitatively support the idea of heterogeneous thrust faults where strong and seismogenic fault portions coexist with weak fault patches that are prone to slow sliding. The characterization of the interaction between heterogeneous fault patches in both time and space is vital for assessing the seismogenic potential of places like Northern Italy where carbonate-bearing thrusts are present at seismogenic depth.

  8. Electronegative Gas Thruster - Direct Thrust Measurement Project

    Science.gov (United States)

    Dankanich, John (Principal Investigator); Aanesland, Ane; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct thrust measurement. The initial target application is for Small Satellites, but can be extended to higher power. The Plasma propulsion with Electronegative GASES (PEGASES) concept simplifies ion thruster operation, eliminates a neutralizer requirement and should yield longer life capabilities and lower cost implementation over conventional gridded ion engines. The basic proof-of concept has been demonstrated and matured to TRL 2 over the past several years by researchers at the Laboratoire de Physique des Plasma in France. Due to the low maturity of the innovation, there are currently no domestic investments in electronegative gas thrusters anywhere within NASA, industry or academia. The end product of this Center Innovation Fund (CIF) project will be a validation of the proof-of-concept, maturation to TRL 3 and technology assessment report to summarize the potential for the PEGASES concept to supplant the incumbent technology. Information exchange with the foreign national will be one-way with the exception of the test results. Those test results will first go through a standard public release ITAR/export control review, and the results will be presented in a public technical forum, and the results will be presented in a public technical forum.

  9. High Speed Operation and Testing of a Fault Tolerant Magnetic Bearing

    Science.gov (United States)

    DeWitt, Kenneth; Clark, Daniel

    2004-01-01

    Research activities undertaken to upgrade the fault-tolerant facility, continue testing high-speed fault-tolerant operation, and assist in the commission of the high temperature (1000 degrees F) thrust magnetic bearing as described. The fault-tolerant magnetic bearing test facility was upgraded to operate to 40,000 RPM. The necessary upgrades included new state-of-the art position sensors with high frequency modulation and new power edge filtering of amplifier outputs. A comparison study of the new sensors and the previous system was done as well as a noise assessment of the sensor-to-controller signals. Also a comparison study of power edge filtering for amplifier-to-actuator signals was done; this information is valuable for all position sensing and motor actuation applications. After these facility upgrades were completed, the rig is believed to have capabilities for 40,000 RPM operation, though this has yet to be demonstrated. Other upgrades included verification and upgrading of safety shielding, and upgrading control algorithms. The rig will now also be used to demonstrate motoring capabilities and control algorithms are in the process of being created. Recently an extreme temperature thrust magnetic bearing was designed from the ground up. The thrust bearing was designed to fit within the existing high temperature facility. The retrofit began near the end of the summer, 04, and continues currently. Contract staff authored a NASA-TM entitled "An Overview of Magnetic Bearing Technology for Gas Turbine Engines", containing a compilation of bearing data as it pertains to operation in the regime of the gas turbine engine and a presentation of how magnetic bearings can become a viable candidate for use in future engine technology.

  10. Correlate Life Predictions and Condition Indicators in Helicopter Tail Gearbox Bearings

    Science.gov (United States)

    Dempsey, Paula J.; Bolander, Nathan; Haynes, Chris; Branning, Jeremy; Wade, Daniel R.

    2010-01-01

    Research to correlate bearing remaining useful life (RUL) predictions with Helicopter Health Usage Monitoring Systems (HUMS) condition indicators (CI) to indicate the damage state of a transmission component has been developed. Condition indicators were monitored and recorded on UH-60M (Black Hawk) tail gearbox output shaft thrust bearings, which had been removed from helicopters and installed in a bearing spall propagation test rig. Condition indicators monitoring the tail gearbox output shaft thrust bearings in UH-60M helicopters were also recorded from an on-board HUMS. The spal-lpropagation data collected in the test rig was used to generate condition indicators for bearing fault detection. A damage progression model was also developed from this data. Determining the RUL of this component in a helicopter requires the CI response to be mapped to the damage state. The data from helicopters and a test rig were analyzed to determine if bearing remaining useful life predictions could be correlated with HUMS condition indicators (CI). Results indicate data fusion analysis techniques can be used to map the CI response to the damage levels.

  11. Magnetically levitated superconducting bearing

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, B.R.; Lynds, L. Jr.

    1993-10-26

    A magnetically levitated superconducting bearing includes a magnet mounted on a shaft that is rotatable around an axis of rotation and a Type II superconductor supported on a stator in proximity to the magnet. The superconductor is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet to produce an attractive force that levitates the magnet and supports a load on the shaft. The interaction between the superconductor and magnet also produces surface screening currents that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature. The bearing could also be constructed so the magnet is supported on the stator and the superconductor is mounted on the shaft. The bearing can be operated by cooling the superconductor to its superconducting state in the presence of a magnetic field. 6 figures.

  12. Roller bearing geometry design

    Science.gov (United States)

    Savage, M.; Pinkston, B. H. W.

    1976-01-01

    A theory of kinematic stabilization of rolling cylinders is extended and applied to the design of cylindrical roller bearings. The kinematic stabilization mechanism puts a reverse skew into the rolling elements by changing the roller taper. Twelve basic bearing modification designs are identified amd modeled. Four have single transverse convex curvature in their rollers while eight have rollers which have compound transverse curvature made up of a central cylindrical band surrounded by symmetric bands with slope and transverse curvature. The bearing designs are modeled for restoring torque per unit axial displacement, contact stress capacity, and contact area including dynamic loading, misalignment sensitivity and roller proportion. Design programs are available which size the single transverse curvature roller designs for a series of roller slopes and load separations and which design the compound roller bearings for a series of slopes and transverse radii of curvature. The compound rollers are proportioned to have equal contact stresses and minimum size. Design examples are also given.

  13. Thrust Balance Characterization of a 200W Quad Confinement Thruster for High Thrust Regimes

    OpenAIRE

    Knoll, Ak; Lamprou, D.; Lappas, V.; Pollard, M.; Bianco, P.

    2013-01-01

    A thrust balance characterization of a low powered Quad Confinement Thruster is presented for high levels of propellant flow. The nominal flow rate for this device is between 1sccm and 2sccm of Xenon propellant. This study extends the operating range, and investigates the performance at two high flow conditions of 10sccm and 20sccm. Power is varied incrementally between 20W and 200W in order to characterize the performance versus power trends of the device. It was found that for these high fl...

  14. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    Science.gov (United States)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems. All data gathered in this investigation are contained in the CD-ROM.

  15. Gear bearing drive

    Science.gov (United States)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  16. Six degree-of-freedom thrust sensor for hybrid rocket

    Science.gov (United States)

    Strickland, Ryan

    2009-05-01

    Thrust is the reactive force experienced by a rocket due to the ejection of high velocity matter. A new six degree of freedom thrust sensor has been built for the UALR Hybrid Rocket Facility. The six degrees of freedom are the thrust force components in the three spacial directions (Fx, Fy, Fz) plus the three moments (roll, pitch, yaw). Even though the majority of the rocket's thrust is in the axial direction, the components in the other directions are non-zero, and must be measured to account for the total work done by the rocket motor. The load cells on each of the six uni-axial legs of the sensor were calibrated, and preliminary firing data was collected during the summer of 2008. This research project has been funded by a NASA EPSCoR grant, and a Hendrix Odyssey project award.

  17. Rapid prototype fabrication processes for high-performance thrust cells

    Science.gov (United States)

    Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.

    1994-01-01

    The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.

  18. Quadratic Programming Thrust Allocation and Management for Dynamic Positioning Ships

    Directory of Open Access Journals (Sweden)

    Yushi Wei

    2013-01-01

    Full Text Available To solve the complex thrust allocation problems of dynamic positioning ship with azimuth thrusters, the quadratic programming thrust allocation and management system was built. The power optimal thrust allocation was formulated as a quadratic programming problem by the linear treatments of inequality constraints and the optimal solution could be found in a finite amount of time. And some influence factors of thruster allocation were separated from algorithms and treated as a superstratum management module. In this system, online adjustment of input constraints and singularity avoidance could be realized, and the reliability and adaptability of thrust allocation were improved consequently. Finally, the validity and excellent performance of this method was proved by the simulation.

  19. Thrust Characteristics of Water/Liquid Nitrogen Rocket Engine

    Science.gov (United States)

    Watanabe, Rikio; Hayashi, Kohei; Iwao, Masaki; Ikawa, Keita; Tomita, Nobuyuki

    When liquid nitrogen and heated water are mixed in a chamber, pressure increase due to evaporation expansion inside the chamber becomes high enough to generate thrust force for rocket propulsion. This thrust system is safer and environment-friendly compared to conventional rocket engines utilizing combustion process. This new type of rocket engine system is called "Water-Liquid Nitrogen rocket engine system" and it can be used for small payload mission with expected altitude of several kilometers. In this paper, experimentally obtained thrust characteristics are shown and analyzed. As a result, relations between the thrust force and the mixing chamber pressure are clarified. Also, it is found that the present injector can attain only half of the theoretically expected specific impulse due to insufficient mixing efficiency.

  20. The Prevalence of Tongue Thrusting in Patients with Periodontal Disease

    OpenAIRE

    Miremadi, S. A.; Khoshkhounejad, A. A.; Mahdavi, E.

    2005-01-01

    Statement of Problem: Tongue thrust and/or its consequent swallowing pattern are amongst the parafunctional habits that have always been considered as etiological factors for dental disorders by different investigators.Purpose: The aim of this study was to investigate the prevalence of tongue thrusting and the incidence of periodontal disorders associated with this habit among patients referred to the Department of Periodontology, School of Dentistry, Tehran University of Medical Sciences.Mat...

  1. Thrust distributions and decays of the UPSILON bound states

    International Nuclear Information System (INIS)

    We have studied the topologies of hadronic events in e+e- annihilation data taken in the region of the upsilon resonances with the non-magnetic CUSB detector at CESR. Using thrust-like variable we compare the decays of tau, tau' and tau'', and find for tau'' a significant excess of high thrust events, which we interpret as evidence for electric dipole transitions. (orig.)

  2. Correlating the Ultrasonic Thrust Force with Acoustic Streaming Velocity

    OpenAIRE

    Tan, Alfred C. H.; Hover, Franz S.

    2009-01-01

    The UltraSonic Thruster (UST) is an actuator which employs a piezoelectric transducer to generate a highly directive ultrasonic wave so as to produce bulk fluid movement. This streaming phenomenon can be utilized underwater for thrusting or maneuvering purposes in marine applications, and particularly at very small scale. We make a new connection between fluid flow and forces, establishing a specific formula for estimating overall thrust from the velocity field. Using Par...

  3. Exploring fold and thrust belts in Google Earth

    Science.gov (United States)

    Jack Loveless

    Google Earth enhances traditional geologic maps by allowing the viewer to explore three-dimensional map patterns and the interaction between structure and topography in dictating those map patterns. This activity overlays 4, 7.5' USGS quadrangles on Google Earth terrain and imagery data and encourages students to investigate common features of fold-and-thrust belts. Keywords: Google Earth, fold-and-thrust belt, visualization

  4. Impact of plasma noise on a direct thrust measurement system.

    OpenAIRE

    Pottinger, S. J.; Lamprou, D.; Knoll, A. K.; Lappas, V. J.

    2012-01-01

    In order to evaluate the accuracy and sensitivity of a pendulum-type thrust measurement system, a linear variable differential transformer (LVDT) and a laser optical displacement sensor have been used simultaneously to determine the displacement resulting from an applied thrust. The LVDT sensor uses an analog interface, whereas the laser sensor uses a digital interface to communicate the displacement readings to the data acquisition equipment. The data collected by both sensors show good agre...

  5. Recent advances in low-thrust propulsion technology

    Science.gov (United States)

    Stone, James R.

    1988-01-01

    The NASA low-thrust propulsion technology program is aimed at providing high performance options to a broad class of near-term and future missions. Major emphases of the program are on storable and hydrogen/oxygen low-thrust chemical, low-power (auxiliary) electrothermal, and high-power electric propulsion. This paper represents the major accomplishments of the program and discusses their impact.

  6. Electric sail control mode for amplified transverse thrust

    OpenAIRE

    Toivanen, Petri; Janhunen, Pekka; Envall, Jouni

    2014-01-01

    The electric solar wind sail produces thrust by centrifugally spanned high voltage tethers interacting with the solar wind protons. The sail attitude can be controlled and attitude maneuvers are possible by tether voltage modulation synchronous with the sail rotation. Especially, the sail can be inclined with respect to the solar wind direction to obtain transverse thrust to change the osculating orbit angular momentum. Such an inclination has to be maintained by a continual...

  7. Caledonian shortening by combined folding and thrusting in the immediate footwall of the Caledonian sole thrust: The example of the Repparfjord Tectonic Window, northern Norway.

    Science.gov (United States)

    Jørgen Kjøll, Hans; Torgersen, Espen; Viola, Giulio

    2014-05-01

    The Repparfjord Tectonic Window (RTW) is a window through the Caledonian nappes in northern Norway that exposes a package of greenschist facies metasedimentary and metavolcanic rocks of Paleoproterozoic age. These were deformed and metamorphosed during the Svecofennian orogeny producing km-wavelength upright NE-SW folds. Pervasive effects of a later Caledonian overprint, caused by the emplacement of the Kalak Nappe Complex during the Silurian, are limited and confined to the northwestern edge of the window, where NW-SE-shortening caused the development of a compressional imbricate stack. Individual imbricates exploit preexisting, progressively tightening upright to overturned folds and are bound by generally very steep to sub-vertical discrete faults. One of these structures, the Skinnfjellet Fault Zone (SFZ), truncates the large doloarenite-hosted Nussir Cu deposit and has a present-day orientation that makes reverse displacement mechanically difficult. This study aims at a better understanding of the mechanical and temporal evolution of these steep thrusts. The SFZ strikes roughly NS, is sub-vertical and bears dip-slip lineations. It separates greenstones in the west from arcosic sandstones, conglomerates and the Nussir Cu deposit in the east. Kinematic indicators give east block up. Faulting occurred mostly under brittle conditions producing an approximately eight meter thick damage zone and a 40 cm thick fault gouge core. A second prominent fault is the Nussirjavrri Fault Zone (NFZ). The main fault plane dips moderately toward the NNE, bears a NW plunging lineation and a number of kinematic indicators indicate top-to-the-SSE thrusting. The fault trace is mappable for c. one km, but high-resolution geophysics indicates an ENE-WSW continuation. Mapping shows that the fault zone is folded openly with a fold axis trending NNE/SSW, consistent with the geometry of a subregional folding phase of inferred Caledonian age. The fault affects greenstones, graphitic slates and dolomites. The mylonitic thrust core thickness varies from 10 to 40 cm and is composed by alternating dark and light bands of chlorite, muscovite and graphite, together with quartz and carbonates. Interspersed within the foliation are interstitial euhedral pyrite and cm to dm scale dolomite clasts. Dolomite decarbonation is locally observed. Synkinematic quartz veins occur subparallel to the tectonic foliation. Quartz is dynamically recrystallized by SGRR and has an average grain size of c. 35µm. Thin sections show two distinct and strong LPO's. One is preserved within the core grains whereas the other is found within arrays of the recrystallized subgrains, whose distribution appears to be controlled by healed brittle fractures. Mapping indicates that the NFZ is cut by the SFZ and its overall transport direction to the SSE, in addition to its structural location at the front of the imbricate, strengthen its interpretation as a Caledonian structure (also consistent with dated and similarly oriented faults from the RTW). We suggest that the SFZ formed as an antithetic back thrust within the Caledonian imbricate stack, possibly exploiting the limbs of a preexisting large-scale antiform. During Caledonian shortening this Paleoproterozoic megafold was tightened, leading to a progressive steepening of the fold limbs and of the SFZ, while NFZ was progressively folded around the fold hinge.

  8. An Assessment of Gas Foil Bearing Scalability and the Potential Benefits to Civilian Turbofan Engines

    Science.gov (United States)

    Bruckner, Robert J.

    2010-01-01

    Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.

  9. Thrust stand for vertically oriented electric propulsion performance evaluation.

    Science.gov (United States)

    Moeller, Trevor; Polzin, Kurt A

    2010-11-01

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater. PMID:21133502

  10. Simple modeling of hydrostatic bearings

    Science.gov (United States)

    Hull, Charlie

    2014-07-01

    Hydrostatic bearings are a key component for many large telescopes due to their high load bearing capacity, stiffness and low friction. A simple technique is presented to model these bearings to understand the effects of geometry, oil viscosity, flow control, temperature, etc. on the bearings behavior.

  11. Hybrid Superconducting Magnetic Bearing (HSMB) for high-load devices

    International Nuclear Information System (INIS)

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  12. Hybrid Superconducting Magnetic Bearing (HSMB) for high load devices

    Science.gov (United States)

    Mcmichael, C. K.; Ma, K. B.; Lamb, M. A.; Lin, M. W.; Chow, L.; Meng, R. L.; Hor, P. H.; Chu, W. K.

    1992-01-01

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  13. Gas Foil Bearing Misalignment and Unbalance Effects

    Science.gov (United States)

    Howard, Samuel A.

    2008-01-01

    The effects of misalignment and unbalance on gas foil bearings are presented. The future of U.S. space exploration includes plans to conduct science missions aboard space vehicles, return humans to the Moon, and place humans on Mars. All of these endeavors are of long duration, and require high amounts of electrical power for propulsion, life support, mission operations, etc. One potential source of electrical power of sufficient magnitude and duration is a nuclear-fission-based system. The system architecture would consist of a nuclear reactor heat source with the resulting thermal energy converted to electrical energy through a dynamic power conversion and heat rejection system. Various types of power conversion systems can be utilized, but the Closed Brayton Cycle (CBC) turboalternator is one of the leading candidates. In the CBC, an inert gas heated by the reactor drives a turboalternator, rejects excess heat to space through a heat exchanger, and returns to the reactor in a closed loop configuration. The use of the CBC for space power and propulsion is described in more detail in the literature (Mason, 2003). In the CBC system just described, the process fluid is a high pressure inert gas such as argon, krypton, or a helium-xenon mixture. Due to the closed loop nature of the system and the associated potential for damage to components in the system, contamination of the working fluid is intolerable. Since a potential source of contamination is the lubricant used in conventional turbomachinery bearings, Gas Foil Bearings (GFB) have high potential for the rotor support system. GFBs are compliant, hydrodynamic journal and thrust bearings that use a gas, such as the CBC working fluid, as their lubricant. Thus, GFBs eliminate the possibility of contamination due to lubricant leaks into the closed loop system. Gas foil bearings are currently used in many commercial applications, both terrestrial and aerospace. Aircraft Air Cycle Machines (ACMs) and ground-based microturbines have demonstrated histories of successful long-term operation using GFBs (Heshmat et al., 2000). Small aircraft propulsion engines, helicopter gas turbines, and high-speed electric motors are potential future applications.

  14. Miocene West Directed Back Thrusting in the Southeast Pamir, China

    Science.gov (United States)

    Robinson, A. C.; Imrecke, D. B.; Heizler, M. T.; Chen, J.; Wenqiao, L.; Yang, X.; Yuan, Z.

    2010-12-01

    A critical component of understanding the evolution of orogenic belts is the spatial and temporal distribution of deformation. In the Pamir at the western end of the Indo-Asian collision zone, Cenozoic deformation has been dominated by Oligocene to Recent shortening and strike-slip deformation along the margins of the Pamir salient, with the interior of the Pamir dominated by Miocene to Recent gneiss dome formation and east-west extension. While Cenozoic internal shortening has been inferred within the Central and Southern Pamir terranes, it remains unclear how much of that deformation may be older (i.e. Cretaceous) in age. The lack of significant documented Cenozoic internal shortening within the Pamir presents a problem in understanding the evolution of Oligocene to Late Miocene internal crustal thickening documented in the northeast Pamir in the footwall of the Kongur Shan extensional system. Along the Tashkorgan Valley in the Southeastern Pamir, upper greenschist to amphibolite facies schists overly lower greenschist facies marbles and shales along a northeast dipping thrust fault. Kinematic indicators including stretching lineations, rotated porphyroblasts, and S-C fabrics show consistent top-to-the W to NW sense of shear. This thrust fault was previously interpreted to be Cretaceous in age based on correlation with the west-directed Torbashi thrust exposed to the north, which juxtaposes upper amphibolite facies schists with Cretaceous mica cooling ages over lower greenschist facies metavolcanics and schists. Two pieces of evidence suggest either Middle-Miocene reactivation along the southern trace of the fault, or formation of a new structure: 1) A biotite 40Ar/39Ar analysis from the hanging wall of the thrust yields an age of 14.87±0.04 Ma, and 2) In-situ Th-Pb matrix monazite ages from a biotite-garnet schist with syn-tectonic garnets in the immediate hanging wall of the thrust yield an age of 14.6±0.9 Ma interpreted to date peak metamorphic conditions in the schist. These results suggest the development of a regional, west-directed back-thrust along the southeast margin of the Pamir in the Middle Miocene which we call the Dabudaer thrust. This thrust may have developed in part due to transpressive deformation along the eastern margin of the Pamir. Additionally, the documentation of significant Miocene shortening and thrust exhumation in the southeast Pamir provides a possible mechanism to help drive Late Cenozoic internal thickening in the Central and Northern Pamir. We suggest the thrust may be kinematically linked with the inferred Eastern Pamir Shear zone of Robinson et al. (2004).

  15. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    International Nuclear Information System (INIS)

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  16. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    Energy Technology Data Exchange (ETDEWEB)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko, E-mail: seino@rtri.or.j [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)

    2010-06-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  17. Losses in magnetic bearings

    International Nuclear Information System (INIS)

    The application of HTSC bulk materials in magnetic bearings requires an understanding and minimization of the friction in such systems. Since the rotors in these bearings are not completely axially symmetric, their rotation generates an AC magnetic field acting on the superconductors and the metallic components of the arrangement. This results in hysteresis and eddy current losses. In this paper we present systematic experimental investigations of these loss mechanisms obtained from various arrangements with well defined deviations from the axial symmetry of the rotor. Theoretical models of the loss contributions have been developed and compared with the experimental results. The basis of these models is to describe deviations from the axial symmetry of the rotor as a distribution of magnetic dipoles and to calculate the force on such dipoles caused by hysteresis or eddy currents. These models allow the estimation of the losses of a given arrangement and can be used for the design of superconducting magnetic bearings. (orig.)

  18. Bearing tester fit analysis

    Science.gov (United States)

    1984-01-01

    A NASTRAN model of the Bearing Tester was developed to determine the fit of its components while in use. The model was executed for three loading conditions involving appropriate thermal and pressure loading throughout: rotation (30,000 rpm), rotation with 5000 lb axial shaft loading, and rotation with 2000 lb lateral shaft loading. A 30 deg slice of the Bearing Tester was modeled with solid isoparametric elements (CIHEX). Five more slices were generated to form a 180 deg symmetrical half. Each component was modeled separately for two reasons: (1) in the heat transfer version each component required covering with appropriate heat transfer coefficient elements, and (2) for the displacement version each component required independent radial expansion with respect to adjacent components. The components are connected at fastener and bearing locations axially and/or tangentially. Differences in radial displacements of adjacent cylindrical surfaces were calculated and added to those differences calculated for 180 deg opposite locations to determine the diametric change.

  19. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  20. Radial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while minimizing it on the opposite side. The advantage of this configuration is that it makes it possible to approach the theoretical maximum force per unit area that could be exerted by a given amount of permanent-magnet material. The configuration is named after physicist Klaus Halbach, who conceived it for use in particle accelerators. Halbach arrays have also been studied for use in magnetic-levitation ("maglev") railroad trains. In a radial Halbach magnetic bearing, the basic Halbach arrangement is modified into a symmetrical arrangement of sector-shaped permanent magnets mounted on the outer cylindrical surface of a drum rotor (see Figure 2). The magnets are oriented to concentrate the magnetic field on their radially outermost surface. The stator coils are mounted in a stator shell surrounding the rotor.

  1. Bilateral and multiple cavitation sounds during upper cervical thrust manipulation

    Directory of Open Access Journals (Sweden)

    Dunning James

    2013-01-01

    Full Text Available Abstract Background The popping produced during high-velocity, low-amplitude (HVLA thrust manipulation is a common sound; however to our knowledge, no study has previously investigated the location of cavitation sounds during manipulation of the upper cervical spine. The primary purpose was to determine which side of the spine cavitates during C1-2 rotatory HVLA thrust manipulation. Secondary aims were to calculate the average number of pops, the duration of upper cervical thrust manipulation, and the duration of a single cavitation. Methods Nineteen asymptomatic participants received two upper cervical thrust manipulations targeting the right and left C1-2 articulation, respectively. Skin mounted microphones were secured bilaterally over the transverse process of C1, and sound wave signals were recorded. Identification of the side, duration, and number of popping sounds were determined by simultaneous analysis of spectrograms with audio feedback using custom software developed in Matlab. Results Bilateral popping sounds were detected in 34 (91.9% of 37 manipulations while unilateral popping sounds were detected in just 3 (8.1% manipulations; that is, cavitation was significantly (P Conclusions Cavitation was significantly more likely to occur bilaterally than unilaterally during upper cervical HVLA thrust manipulation. Most subjects produced 3–4 pops during a single rotatory HVLA thrust manipulation targeting the right or left C1-2 articulation; therefore, practitioners of spinal manipulative therapy should expect multiple popping sounds when performing upper cervical thrust manipulation to the atlanto-axial joint. Furthermore, the traditional manual therapy approach of targeting a single ipsilateral or contralateral facet joint in the upper cervical spine may not be realistic.

  2. From thrusting to transpressional tectonics in the Aghdarband Basin (NE Iran): evidence for Cimmerian oblique convergence

    Science.gov (United States)

    Zanchi, Andrea; Balini, Marco; Ghassemi, Mohammad Reza; Zanchetta, Stefano

    2010-05-01

    The Aghdarband Basin, consisting of a strongly deformed arc-related Triassic marine succession, is a key-area for the study of the Cimmerian events, as it is unconformably covered by mid-Jurassic gently folded sediments entirely sealing the Cimmerian compressive structures. The basin developed during part of the Triassic in a highly mobile tectonic context suggested by abrupt facies variations and local unconformities. In addition, syn-sedimentary tectonic activity is testified by the occurrence of carbonate olistholiths in the deepest parts of the basin. The marine succession, spanning from Olenekian to lowermost Carnian, shows at the base continental conglomerates andsandstones, as well as basaltic lava flows, possibly of Early Triassic age. They are followed by the shallow water Sefid Kuh Limestone, in which an intraformational unconformity has been now identified. This unit is locally covered by deep-water limestones of the Nazarkardeh Fm. which interfinger with slope facies of the Sefid Kuh Limestone. The volcaniclastic sandstone layers of the Sina Fm follow up-section with a deep unconformity, marked in several places by deep erosion and tilting of the underlying units. The Sina Fm. is in turn unconformably covered by the coal bearing shales of the Miankhui Fm., with a Norian-Rhaetian age testified by plant megafossils, marking the end of marine sedimentation and of volcanic-arc activity. The Triassic units are overthrusted to the south by Upper Palaeozoic siliciclastic successions showing in some cases a LG metamorphic imprint. They largely include the Qara Geithan Fm. consisting of granitic rocks, acidic to basic volcanics, and locally also large blocks of Permian bioclastic limestones derived from the erosion of the Palaeotethys accretionary wedge, exposed south of Aghdarband. The whole succession of the Aghdarband Basin, including the unconformable Miankhui Fm., is deeply involved in a north-verging thrust stack which interacts in the northern part of the area with an important strike-slip shear zone. Several tectonic units have been recognized within the Triassic succession, causing repetitions of the whole stratigraphic succession. Two main thrust sheets are exposed in the southern part of the basin under the Upper Palaeozoic thrust stack. Thrust faults and folds consistently show a N-directed tectonic transport, suggested by dip-slip motion along S-dipping reverse faults and axial plane geometry. Deformation occurred at shallow levels taking to the formation of cataclastic shear zones and to disjunctive and pencil cleavage in the shale layers of the succession. The thrust sheets comprise the Miankhui Fm. which shows a thick basal coal layer (up to 10 m) deeply excavated at the Aghdarband Mine. Nice examples of coal-related tectonics are exposed in open pits and tunnels of the mine. Intensive deformation of the coal, forming complex shear zones with s-c bands, causes the décollement of the Miankhui beds which show intensive tectonic thickening and repetitions mainly caused by polyphase thrust imbrications and disharmonic folding. The northernmost part of the Triassic basin shows a very complex setting, with traspressional structures given by vertical strike-slip faults and closed to tight folds with steeply plunging axes. According to our new data, up to four tectonic slices can be distinguished in this complex area. This structural zone is directly bounded to the north by severely deformed LG metamorphic rocks resulting from a volcaniclastic succession with Devonian and Carboniferous marble layers. Systematic asymmetry of major and parasitic folds, as well as rotation and torsion of axial surfaces indicate a general left-lateral transpressional regime, whereas kinematic indicators along the main fault planes show both left- and right-lateral motions. According to our relative chronology, dextral movements follow in time the sinistral ones reactivating previous Cimmerian structures and displacing also the surrounding Jurassic to Neogene succession of Kopeh Dagh in relatively recent times. Fold analyses along

  3. BEARS conference UC Berkeley

    Science.gov (United States)

    The Berkeley EECS Annual Research Symposium (BEARS) is a conference hosted by UC Berkeley's Electrical Engineering and Computer Sciences department in the College of Engineering. This website provides the agenda for the 2005 BEARS (held on February 10 and 11) along with information on the presenters and abstracts and video footage of their presentations. The conference highlights work from EECS scientists on "advances enabling computing and communications to connect diverse aspects of our world." Topics include: wireless networks, optical communication, the future of the internet, embedded software, machine learning, security, and trust.

  4. Modular gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  5. Rotordynamics of Automotive Turbochargers Linear and Nonlinear Rotordynamics – Bearing Design – Rotor Balancing

    CERN Document Server

    Nguyen-Schäfer, Hung

    2012-01-01

    This book deals with rotordynamics of automotive turbochargers while encompassing the analysis of the dynamics of rotating machines at very high rotor speeds of 300,000 rpm and above. This interdisciplinary field involves 1. thermodynamics and turbo-matching knowledge to compute working conditions of turbochargers, 2. fluid and bearing dynamics to calculate various operating thrust loads and to design the rotating floating ring bearings (two-oil-film bearings), and 3. tribology to improve the rotor stability and to reduce the bearing friction. Mathematical background in modeling and simulation methods is necessary; however, the prerequisites have been kept to a minimum. The book addresses both practitioners working in the field of rotordynamics of automotive turbochargers and graduate students in mechanical engineering.

  6. Self-lubricating plasma-sprayed composites for sliding contact bearings to 900 C

    Science.gov (United States)

    Sliney, H. E.

    1974-01-01

    Plasma-sprayed composites which have good oxidation-resistance and self-lubricating characteristics to 900 C were developed. The composites are a Nichrome matrix containing dispersed glass for oxidation protection and calcium fluoride for lubrication. They are applied to bearing surfaces in layers about 0.050 cm thick by plasma-spraying; the layers are then machined to a thickness of 0.025 cm. Oscillating bearing tests were performed in air to 900 C at unit radial loads up to 3.5 times 10 to the 7th power Newtons per square meter (5000 psi) and a thrust load of 1960 Newtons (440 lb). Bearings with a composite liner in the bore were in good condition after over 50,000 oscillating cycles accumulated during repeated bearing temperature cycles between 25 and 900 C.

  7. Thrust belt development in the central Apennines (Italy): Northward polarity of thrusting and out-of-sequence deformations in the Gran Sasso Chain

    Science.gov (United States)

    Ghisetti, Francesca; Vezzani, Livio

    1991-10-01

    The Lazio-Abruzzi carbonate platform overrides the outermost sectors of the foreland fold and thrust belt of the central Apennines of Italy along an arcuate thrust front, which swings from E-W to NNW-SSE orientation. The E-W striking, north verging thrust faults of the Gran Sasso cut in their footwall the N-S oriented, east verging imbricates of the Marche thrust belt and the adjacent Adriatic foredeep. Our field mapping of the Gran Sasso imbricate system shows an array of six major thrust faults crosscutting each other in such a way that oblique propagation of higher thrust faults across the preexisting thrust sheets causes rethrusting of earlier imbricated units, decapitation of previous folds, and superposition of younger on older beds. Deformation in the Gran Sasso thrust belt mainly occurred between Messinian and middle Pliocene times and is partly synchronous with the development of the Marche thrust belt, thus implying that shortening resulted from a complex combination of northward and eastward propagating thrust systems. Increasing west to east shortening along the Gran Sasso thrust front indicates large, differential anticlockwise rotation by decoupling along a N-S transpressive right-lateral shear zone. This mechanism could have been induced by the Maiella foreland uplift, acting as a buttress against which the Lazio-Abruzzi carbonate platform was stacked and forced to rotate anticlockwise, with consequent shortening by out-of-sequence thrust propagation.

  8. Demand thrust pumped propulsion with automatic warm gas valving

    Science.gov (United States)

    Whitehead, J. C.

    1992-06-01

    Operation of a thrust-on-demand, monopropellant rocket propulsion system which uses lightweight low-pressure tankage, free-piston pumps, and a small high-pressure thrust chamber, is explained. The pump intake-exhaust valves use warm gas pneumatic signals to ensure that two reciprocating pumps are alternately pressurized, with overlap during switchover to permit uninterrupted propellant flow. Experiments demonstrate that the miniature pumps operate at any speed depending on downstream demand, and can deliver nearly their own mass in hydrazine per second, at 7 MPa (1000 psi). The valves, which use the alternating layers of metal and graphite to mitigate the effects of differential thermal expansion, have been warm-gas tested for thousands of cycles. For biopropellant operation, a pair of reciprocating oxidizer pumps would be slaved to the fuel pumps' pneumatic oscillator, to provide for pulsed or continuous demand-driven flow of both liquids. Mass ratios and thrust-to-weight ratios of demand-thrust pumped propulsion systems compare quite favorably to those of pressure-fed and turbo-pumped systems. Due to the relatively high densities of storable propellants, liquid mass fractions greater than 0.95 are attainable with these novel pumps, with thrust/weight ratios above 10. The high performance potential of small propulsion systems which use reciprocating pumps suggests that this technology can significantly increase the capability of many types of small spacecraft.

  9. Space shuttle orbit maneuvering engine reusable thrust chamber program

    Science.gov (United States)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  10. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  11. Thrust Augmentation Measurements for a Pulse Detonation Engine Driven Ejector

    Science.gov (United States)

    Pal, S.; Santoro, Robert J.; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Thrust augmentation results of an ongoing study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) setup with various ejector configurations. The PDE used in these experiments utilizes ethylene (C2H4) as the fuel, and an equi-molar mixture of oxygen and nitrogen as the oxidizer at an equivalence ratio of one. High fidelity thrust measurements were made using an integrated spring damper system. The baseline thrust of the PDE engine was first measured and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The parameter space for the study included ejector length, PDE tube exit to ejector tube inlet overlap distance, and straight versus rounded ejector inlets. The relationship between the thrust augmentation results and various physical phenomena is described. To further understand the flow dynamics, shadow graph images of the exiting shock wave front from the PDE were also made. For the studied parameter space, the results showed a maximum augmentation of 40%. Further increase in augmentation is possible if the geometry of the ejector is tailored, a topic currently studied by numerous groups in the field.

  12. Engineering research, development and technology: Thrust area report FY 91

    International Nuclear Information System (INIS)

    The mission of the Engineering Research, Development, and Technology Program at Lawrence, Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) conduct high quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. The thrust area leader is also responsible for carrying out the work that follows from the Engineering Research, Development, and Technology Program so that the results can be applied as early as possible to the needs of LLNL programs. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year, 1991. Its intent is to provide timely summaries of objectives, theories, methods, and results

  13. Magnetic bearings for cryogenic turbomachines

    Science.gov (United States)

    Iannello, Victor; Sixsmith, Herbert

    1991-01-01

    Magnetic bearings offer a number of advantages over gas bearings for the support of rotors in cryogenic turboexpanders and compressors. Their performance is relatively independent of the temperature or pressure of the process gas for a large range of conditions. Active magnetic bearing systems that use capacitive sensors have been developed for high speed compressors for use in cryogenic refrigerators. Here, the development of a magnetic bearing system for a miniature ultra high speed compressor is discussed. The magnetic bearing has demonstrated stability at rotational speeds exceeding 250,000 rpm. This paper describes the important features of the magnetic bearing and presents test results demonstrating its performance characteristics.

  14. Magnetically leviated superconducting bearing

    Science.gov (United States)

    Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT)

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  15. Development of Flexible Bearing

    Directory of Open Access Journals (Sweden)

    K.S.Mohanraj

    2014-06-01

    Full Text Available Elastomeric base isolation systems are proven to be effective in reducing seismic forces transmitted to buildings. However, due to their cost, the use of these devices is currently limited to large and expensive buildings. A fiber reinforced elastomeric isolator utilizes fiber fabric, such as carbon fiber, glass fibre, and etc. as the reinforcement material instead of solid steel plates. The fibre fabric reinforcement is extensible in tension and has no flexural rigidity. Elastomers normally used in the isolator are natural rubber; neoprene, butyl rubber and nit rile rubber etc. These devices were fabricated by binding alternating layers of rubber and fibre mesh. The fibre mesh is used to increase the vertical stiffness of the bearings while maintaining low lateral stiffness. Characterizing the behaviour of a fibre reinforced bearing “shape factor” of the bearing, Poisson’s ratio of the elastomeric material and flexibility of the reinforcing sheets and investigate the effect of reinforcement flexibility on compressive behaviour of elastomeric bearings with different geometrical and material properties. Bonding with fibre reinforcements can increase the stiffness of elastic layers only when the elastic layer is compressed.

  16. Tardigrada (Water Bears)

    Science.gov (United States)

    Micrographia

    This reference page offers a brief description of Tardigrades, also known as water bears. It includes information about their physical appearance, an explanation of their name, likely habitats, internal organs and other distinguishing features, and a few images. A diagram of a common tardigrade, Macrobiotus macronyx, is also provided via an internal link.

  17. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yambe, Tomoyuki; Imachi, Kou; Yamane, Takashi

    2013-01-01

    We have developed a hydrodynamically levitated centrifugal blood pump with a semi-open impeller for long-term circulatory assist. The pump uses hydrodynamic bearings to enhance durability and reliability without additional displacement-sensors or control circuits. However, a narrow bearing gap of the pump has a potential for hemolysis. The purpose of this study is to develop the hydrodynamically levitated centrifugal blood pump with a semi-open impeller, and to evaluate the effect of a bearing gap on hemolytic property. The impeller levitates using a spiral-groove type thrust bearing, and a herringbone-groove type radial bearing. The pump design was improved by adopting a step type thrust bearing and optimizing the pull-up magnetic force. The pump performance was evaluated by a levitation performance test, a hemolysis test and an animal experiment. In these tests, the bearing gap increased from 1 to 63 ?m. In addition, the normalized index of hemolysis (NIH) improved from 0.415 to 0.005 g/100 l, corresponding to the expansion of the bearing gap. In the animal experiment for 24 h, the plasma-free hemoglobin remained within normal ranges (<4.0 mg/dl). We confirmed that the hemolytic property of the pump was improved to the acceptable level by expanding the bearing gap greater than 60 ?m. PMID:23442235

  18. Dynamic Model for Thrust Generation of Marine Propellers

    DEFF Research Database (Denmark)

    Blanke, Mogens; Lindegaard, Karl-Petter

    2000-01-01

    Mathematical models of propeller thrust and torque are traditionally based on steady state thrust and torque characteristics obtained in model basin or cavitation tunnel tests. Experimental results showed that these quasi steady state models do not accurately describe the transient phenomena in a thruster. A recently published dynamic model was based on the experimental observations. Describing zero advance speed conditions accurately, this model, however, does not work for a vessel at non- zero relative water speed. This paper derives a large signal dynamic model of propeller that includes the eects of transients in the ow over a wide range of operation. The results are essential for accurate thrust control in dynamic positioning and in underwater robotics.

  19. Parametric study of thermal behavior of thrust chamber cooling channels

    Directory of Open Access Journals (Sweden)

    Karima E. Amori

    2007-01-01

    Full Text Available A numerical investigation is adopted for two dimensional thermal analysis of rocket thrust chamber wall (RL10, employing finite difference model with iterative scheme (implemented under relaxation factor of 0.9 for convergence to compute temperature distribution within thrust chamber wall (which is composed of Nickel and Copper layers. The analysis is conducted for different boundary conditions: only convection boundary conditions then combined radiation, convection boundary conditions also for different aspect ratio (AR of cooling channel. The results show that Utilizing cooling channels of high aspect ratio leads to decrease in temperature variation across thrust chamber wall, while no effects on heat transferred to the coolant is indicated. The radiation has a considerable effect on the computed wall temperature values.

  20. Over-the-wing model thrust reverser noise tests

    Science.gov (United States)

    Goodykoontz, J.; Gutierrez, O.

    1977-01-01

    Static acoustic tests were conducted on a 1/12 scale model over-the-wing target type thrust reverser. The model configuration simulates a design that is applicable to the over-the-wing short-haul advanced technology engine. Aerodynamic screening tests of a variety of reverser designs identified configurations that satisfied a reverse thrust requirement of 35 percent of forward thrust at a nozzle pressure ratio of 1.29. The variations in the reverser configuration included, blocker door angle, blocker door lip angle and shape, and side skirt shape. Acoustic data are presented and compared for the various configurations. The model data scaled to a single full size engine show that peak free field perceived noise (PN) levels at a 152.4 meter sideline distance range from 98 to 104 PNdb.

  1. Separability of drag and thrust in undulatory animals and machines

    CERN Document Server

    Bale, Rahul; Neveln, Izaak D; Bhalla, Amneet Pal Singh; MacIver, Malcolm A; Patankar, Neelesh A

    2014-01-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal- istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation fram...

  2. Medium-frequency impulsive-thrust-activated liquid hydrogen reorientation with Geyser

    Science.gov (United States)

    Hung, R. J.; Shyu, K. L.

    1992-01-01

    Efficient technique are studied for accomplishing propellant resettling through the minimization of propellant usage through impulsive thrust. A comparison between the use of constant-thrust and impulsive-thrust accelerations for the activation of propellant resettlement shows that impulsive thrust is superior to constant thrust for liquid reorientation in a reduced-gravity environment. This study shows that when impulsive thrust with 0.1-1.0-, and 10-Hz frequencies for liquid-fill levels in the range between 30-80 percent is considered, the selection of 1.0-Hz-frequency impulsive thrust over the other frequency ranges of impulsive thrust is the optimum. Characteristics of the slosh waves excited during the course of 1.0-Hz-frequency impulsive-thrust liquid reorientation were also analyzed.

  3. Low thrust minimum-fuel orbital transfer: a homotopic approach

    OpenAIRE

    Haberkorn, Thomas; Martinon, Pierre; Gergaud, Joseph

    2004-01-01

    We describe in this paper the study of an earth orbital transfer with a low thrust (typically electro-ionic) propulsion system. The objective is the maximization of the final mass, which leads to a discontinuous control with a huge number of thrust arcs. The resolution method is based on single shooting, combined to a homotopic approach in order to cope with the problem of the initial guess, which is actually critical for non-trivial problems. An important aspect of this choice is that we mak...

  4. Problems of millipound thrust measurement. The "Hansen Suspension"

    Energy Technology Data Exchange (ETDEWEB)

    Carta, David G.

    2014-03-31

    Considered in detail are problems which led to the need and use of the 'Hansen Suspension'. Also discussed are problems which are likely to be encountered in any low level thrust measuring system. The methods of calibration and the accuracies involved are given careful attention. With all parameters optimized and calibration techniques perfected, the system was found capable of a resolution of 10 {mu} lbs. A comparison of thrust measurements made by the 'Hansen Suspension' with measurements of a less sophisticated device leads to some surprising results.

  5. Low thrust power-limited transfer for a pole squatter

    Science.gov (United States)

    Breakwell, J. V.; Golan, O. M.

    The problem of minimum fuel transfer in a central gravity field for power-limited low thrust propulsion has been studied by several investigators. Orbital averaging was used by Edelbaum in the co-axial and co-planar cases, and by Marec and Vinh for the general transfer between elliptical orbits. The co-latus rectum transfer, which has a complete analytical solution, can be applied to the Pole Squatter. Typical results for the evolution of the orbit parameters and the variation of the thrust acceleration along the orbit are shown.

  6. Radial loads and axial thrusts on centrifugal pumps

    International Nuclear Information System (INIS)

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump

  7. Improvement of Rocket Performance by Increasing the Thrust

    International Nuclear Information System (INIS)

    This paper describes one of the methods to increase the performance of the rocket. Based of the result of the static test, the measure of the combustion chamber pressure and the thrust of the rocket will increase, if the throat diameter was decreased. The result of the static test showed that the throat diameter of the nozzle was smaller, where as the combustion chamber pressure, the thrust and the specific Impulse were higher. Its mean that the performance of the rocket was increased. (author)

  8. Component test results from the bearing life improvement program for the Space Shuttle Main Engine oxidizer turbopumps

    Science.gov (United States)

    Keba, John E.

    Interim results from a component test program to improve ball bearing life in the Space Shuttle Main Engine oxygen turbopumps are presented. Two specific bearing applications, using liquid oxygen as the bearing coolant, are addressed. The first, the thrust bearing of the low pressure pump, operates at relatively slow speed with predominantly axial load and little temperature rise in the bulk coolant. Testing has demonstrated a very significant reduction in bearing wear by increasing the bearing internal clearance. Heat generation data was obtained that indicates heavy, intermittent cage-to-ball contact occurs, providing a possible explanation for the observed wear. The second application is the turbine end bearings of the high pressure pump. These bearings operate at high speed and load with the possibility of significant coolant vaporization. Tests on production bearings and bearings having modified internal clearance and curvature yielded scattered but generally poor lives. A dramatic improvement was achieved by coating the standard cage with a thin film of fluorinated ethylene propylene and 15 percent molybdenum disulfide. Very promising results have also been obtained by replacing the standard balls with ones made of silicon nitride, especially in combination with the coated cage.

  9. Aircraft ground test and subscale model results of axial thrust loss caused by thrust vectoring using turning vanes

    Science.gov (United States)

    Johnson, Steven A.

    1992-01-01

    The NASA-Dryden F/A-18 high alpha research vehicle was modified to incorporate three independently controlled turning vanes located aft of the primary nozzle of each engine to vector thrust for pitch and yaw control. Ground measured axial thrust losses were compared with the results from a 14.25 pct. cold jet model for single and dual vanes inserted up to 25 degs into the engine exhaust. Data are presented for nozzle pressure ratios of 2.0 and 3.0 and nozzle exit areas of 253 and 348 sq in. The results indicate that subscale nozzle test results properly predict trends but underpredict the full scale results by approx. 1 to 4.5 pct. in thrust loss.

  10. Implicit time-marching solution of the Navier-Stokes equations for thrust reversing and thrust vectoring nozzle flows

    Science.gov (United States)

    Imlay, S. T.

    1986-01-01

    An implicit finite volume method is investigated for the solution of the compressible Navier-Stokes equations for flows within thrust reversing and thrust vectoring nozzles. Thrust reversing nozzles typically have sharp corners, and the rapid expansion and large turning angles near these corners are shown to cause unacceptable time step restrictions when conventional approximate factorization methods are used. In this investigation these limitations are overcome by using second-order upwind differencing and line Gauss-Siedel relaxation. This method is implemented with a zonal mesh so that flows through complex nozzle geometries may be efficiently calculated. Results are presented for five nozzle configurations including two with time varying geometries. Three cases are compared with available experimental data and the results are generally acceptable.

  11. Government Risk-Bearing

    CERN Document Server

    1993-01-01

    The u.s. government bulks large in the nation's financial markets. The huge volume of government-issued and -sponsored debt affects the pricing and volume ofprivate debt and, consequently, resource allocation between competing alternatives. What is often not fully appreciated is the substantial influence the federal government wields overresource allocation through its provisionofcreditandrisk-bearing services to the private economy. Because peopleand firms generally seekto avoid risk, atsomeprice they are willing to pay another party to assume the risk they would otherwise face. Insurance companies are a class of private-sector firms one commonly thinks of as providing these services. As the federal government has expanded its presence in the U.S. economy during this century, it has increasingly developed programs aimed at bearing risks that the private sector either would not take on at any price, or would take on but atapricethoughtto besogreatthatmostpotentialbeneficiarieswouldnotpurchase the coverage. To...

  12. Centrifugally decoupling touchdown bearings

    Science.gov (United States)

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  13. Active magnetic bearings

    OpenAIRE

    Khalizeva, A. G.

    2013-01-01

    Magnetism is a class of physical phenomena that includes forces exerted by magnets on other magnets. It has its origin in electric currents and the fundamental magnetic moments of elementary particles. A bearing is a machine element that constrains relative motion between moving parts to only the desired motion. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/33682

  14. Radium bearing waste disposal

    International Nuclear Information System (INIS)

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach

  15. The Polar Bear Game

    Science.gov (United States)

    2010-10-24

    In this game, which is similar to Petals Around the Rose (cataloged separately), a player rolls 5 dice and asks the participants, “How many polar bears are around the ice holes?” The participants try to figure out the riddle (rules of the game) by studying the dice arrangements and the answers that correspond. This webpage extends the game to have players also determine the number of fish and plankton.

  16. Dicey Polar Bears

    Science.gov (United States)

    Meehank

    2011-07-03

    In this Sketchpad activity, which opens on Geometer's Sketchpad and on iOS with Sketchbook Explorer (cataloged separately), 5 dice are shown and the player must determine how many polar bears are around the ice holes. The participant tries to figure out the riddle (rules of the game) by studying the dice arrangements and the answers that correspond. In this game, players also determine the number of fish and plankton.

  17. Anti-backlash gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2009-01-01

    A gear bearing having a first gear and a second gear, each having a plurality of teeth. Each gear operates on two non-parallel surfaces of the opposing gear teeth to perform both gear and bearing functions simultaneously. The gears are moving at substantially the same speed at their contact points. The gears may be roller gear bearings or phase-shifted gear bearings, and may be arranged in a planet/sun system or used as a transmission. One preferred embodiment discloses and describes an anti-backlash feature to counter ''dead zones'' in the gear bearing movement.

  18. Precision thrust cumulant moments at N3LL

    Science.gov (United States)

    Abbate, Riccardo; Fickinger, Michael; Hoang, André H.; Mateu, Vicent; Stewart, Iain W.

    2012-11-01

    We consider cumulant moments (cumulants) of the thrust distribution using predictions of the full spectrum for thrust including O(?s3) fixed order results, resummation of singular N3LL logarithmic contributions, and a class of leading power corrections in a renormalon-free scheme. From a global fit to the first thrust moment we extract the strong coupling and the leading power correction matrix element ?1. We obtain ?s(mZ)=0.1140±(0.0004)exp?±(0.0013)hadr±(0.0007)pert, where the 1-? uncertainties are experimental, from hadronization (related to ?1) and perturbative, respectively, and ?1=0.377±(0.044)exp?±(0.039)pertGeV. The nth thrust cumulants for n?2 are completely insensitive to ?1, and therefore a good instrument for extracting information on higher order power corrections, ?n'/Qn, from moment data. We find (?˜2')1/2=0.74±(0.11)exp?±(0.09)pertGeV.

  19. Separability of drag and thrust in undulatory animals and machines

    Science.gov (United States)

    Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; Maciver, Malcolm A.; Patankar, Neelesh A.

    2014-12-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle.

  20. Effect of Operating Frequency on PDE Driven Ejector Thrust Performance

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh; Landry, K.; Shehadeh, R.; Bouvet, N.; Lee, S.-Y.

    2005-01-01

    Results of an on-going study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) designed to operate at frequencies up to 50 Hz. The PDE used in these experiments utilizes an equi-molar mixture of oxygen and nitrogen as the oxidizer, and ethylene (C2H4) as the fuel, with the propellant mixture having an equivalence ratio of one. A line of sight laser absorption technique was used to determine the time needed for proper filling of the tube. Thrust measurements were made using an integrated spring damper system coupled with a linear variable displacement transducer. The baseline thrust of the PDE was first measured at each desired frequency and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The ejectors had varying lengths, and two different inlet geometries were tested for each ejector configuration. The parameter space for the study included PDE operation frequency, ejector length, overlap distance and the radius of curvature for the ejector inlets. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz.

  1. Efficient Optimization of Low-Thrust Spacecraft Trajectories

    Science.gov (United States)

    Lee, Seungwon; Fink, Wolfgang; Russell, Ryan; Terrile, Richard; Petropoulos, Anastassios; vonAllmen, Paul

    2007-01-01

    A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called "direct" and "indirect." In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primer-vector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-the-art trajectory-optimization methods while requiring much less computation time.

  2. Spherocity and thrust distributions in high energy neutrino interactions

    International Nuclear Information System (INIS)

    A study of the hadronic system of charged current neutrino interactions in terms of the variables spherocity (S) and thrust (T) is presented. It is found that and for fixed hadronic energy are similar for neutrino interactions, e+e- annihilations and ?-Ne interactions. (Auth.)

  3. Integration of magnetic bearings in the design of advanced gas turbine engines

    Science.gov (United States)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  4. Integration of magnetic bearings in the design of advanced gas turbine engines

    Science.gov (United States)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-05-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  5. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  6. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    Science.gov (United States)

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. PMID:25775930

  7. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seino, H; Nagashima, K; Arai, Y [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)], E-mail: seino@rtri.or.jp

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  8. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    International Nuclear Information System (INIS)

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated

  9. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Science.gov (United States)

    2010-01-01

    ...of an Automatic Takeoff Thrust Control System (ATTCS) I Appendix I to...of an Automatic Takeoff Thrust Control System (ATTCS) I25.1General...installation of an engine power control system that automatically resets...

  10. 14 CFR 23.1155 - Turbine engine reverse thrust and propeller pitch settings below the flight regime.

    Science.gov (United States)

    2010-01-01

    ...false Turbine engine reverse thrust and propeller pitch settings below the flight regime...1155 Turbine engine reverse thrust and propeller pitch settings below the flight regime...each control for reverse thrust and for propeller pitch settings below the...

  11. Performance of 75-millimeter-bore bearings using electron-beam-welded hollow balls with a diameter ratio of 1.26

    Science.gov (United States)

    Coe, H. H.; Parker, R. J.; Scibbe, H. W.

    1975-01-01

    An experimental investigation was performed to determine the rolling element fatigue life of electron beam-welded hollow balls with a diameter ratio (o.d./i.d.) of 1.26 and to determine the operating characteristics of bearings using these hollow balls. Similar bearings with solid balls were also tested and the data compared. The bearings were operated at shaft speeds up to 28,000 rpm with a thrust load of 2200 N (500 lb). Ball failures during the bearing tests were due to flexure fatigue. The solid and hollow ball bearings tested showed little difference in outer race temperatures and indicated the same bearing torque. The 17.5-mm (0.6875-in.) diameter balls were also tested in the five-ball fatigue tester and showed no significant difference in life when compared with the life of a solid ball.

  12. Testing of Bearing Materials for Large Two-stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Klit, Peder; Persson, Sebastian

    2013-01-01

    In large two-stroke marine diesel engines bearings are designed with the intention that these need not be replaced during the life of the engine. The design has shown very good service experiences. The design parameters of the main bearings are, among others, based on the average maximum specific load which the bearing should operate under. In general, the frictional loss is less than 1% of the nominal power of the engine but is still a target for optimization. Fatigue mechanisms of bearing lining material are not fully understood and the design limits with regards to minimum oil film thickness, max oil film pressure and oil film pressure gradient is not established. Large two-stroke journal bearings are not suitable for fatigue test due to the size, the low rotational speed and the complexity of such test-rig. The Disc Fatigue Test Rig (DFTR) was designed with the purpose to test white metal coatings under realistic bearing conditions, in a confined time-frame. The test-rig simulates a scale model of a thrust bearing, in contrary to standard design the bearing lining material is applied to the rotating collar. On each side of the disc three stationary tilting-pads applies a load to the test disc, with a rotational speed of 2000 rpm. Parameters, such as bearing load, rotational speed, oil temperature, oil contamination is controlled/monitored in order to achieve repeatability and a systematic approach to the experiments. Test performed on the test-rig shows good correlation on the fatigue cracks with those experienced on large two-stroke journal bearings.

  13. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators: New Anti-Thrust Hypothesis, Frequency Sweeps Methodology, Humidity and Enclosure Effects

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust, or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a grounded large-diameter metal sleeve. Strong dependence on humidity is also shown; the thrust significantly increased with decreasing humidity, e.g., 44 percent increase as relative humidity changed from 18 percent and dew point 33 degF to 50 percent and dew point of 57 degF.

  14. Actively controlled superconducting bearings

    Science.gov (United States)

    Eyssa, Yehia M.; Huang, X.

    Actively controlled conventional radial beating using copper winding and soft magnetic material can provide only up to 200 N/sq cm of pressure. Large cryogenic pumps for space applications operating at 30,000 rpm and high rpm machines may require larger magnetic pressure. We show that using superconducting winding in the rotor and the stator of a magnetic bearing system increases the pressure by an order of magnitude. The paper addresses winding configuration, stability, ac losses, and power requirement for the superconducting winding.

  15. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 false Reverse thrust and propeller pitch settings below the flight regime...Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the...

  16. The Butte Valley and Layton Well Thrusts of eastern California: Distribution and regional significance

    Science.gov (United States)

    Wrucke, Chester T.; Stevens, Calvin H.; Wooden, Joseph L.

    1995-10-01

    The Butte Valley and Layton Well Thrusts are major structural features in two adjacent mountain ranges west of southern Death Valley. The Butte Valley Thrust in the southern Panamint Range underlies most of the range and emplaces Proterozoic rocks over strata as young as Jurassic(?) in age. The Layton Well Thrust to the southwest in the Slate Range has been interpreted to have Proterozoic rocks juxtaposed on rocks as young as Jurassic, suggesting that the Butte Valley Thrust and the Layton Well Thrust might be correlative. New information indicates that the allochthonous rocks of the Layton Well Thrust are Mesozoic in age and are not likely part of the same allochthon as that above the Butte Valley Thrust. In addition, the Butte Valley Thrust cuts sharply downward to the north and west across lower plate Paleozoic strata, suggesting that the fault roots beneath the Layton Well Thrust. The Layton Well Thrust probably belongs to the East Sierran thrust system and thus would be in the upper plate of the Butte Valley Thrust.

  17. YBCO texturation and applications of superconducting magnetic bearings in flywheels for energy storage

    International Nuclear Information System (INIS)

    A thrust bearing has been built consisting of 6 melt-textured YBCO pellets (diameter 30 x 18 mm) and a Nd-Fe-B ring magnet. The maximum levitation force of the bearing was 65 N at zero gap. Vertical stiffness at 1 mm gap was 440 N/cm, lateral stiffness was 130 N/cm. The bearing has been integrated into a flywheel system rotating a 2.8 kg disk at speeds up to 15 000 rpm. The maximum energy capacity was 4.8 Wh. It can be expected that further refinement of this technology should allow the operation of superconducting flywheels in the kWh range. (orig.)

  18. Some limitations in applying classical EHD film thickness formulas to a high-speed bearing

    Science.gov (United States)

    Coy, J. J.; Zaretsky, E. V.

    1980-08-01

    Elastohydrodynamic film thickness was measured for a 20-mm ball bearing using the capacitance technique. The bearing was thrust loaded to 90, 448, and 778 N. The corresponding maximum stresses on the inner race were 1.28, 2.09, and 2.45 GPa. Test speeds ranged from 400 to 14,000 rpm. Film thickness measurements were taken with four different lubricants: (a) synthetic paraffinic, (b) synthetic paraffinic with additives, (c) neopentylpolyol (tetra) ester meeting MIL-L-23699A specifications, and (d) synthetic cycloaliphatic hydrocarbon traction fluid. The test bearing was mist lubricated. Test temperatures were 300, 338, and 393 K. The measured results were compared to theoretical predictions using the formulas of Grubin, Archard and Cowking, Dowson and Higginson, and Hamrock and Dowson. There was good agreement with theory at low dimensionless speed, but the film was much smaller than theory predicts at higher speeds. This was due to kinematic starvation and inlet shear heating effects.

  19. Segmented Hybrid Gasostatic Bearing Optimization

    Directory of Open Access Journals (Sweden)

    Prodan Nikolay Vasilevich

    2014-07-01

    Full Text Available The purpose of research-development of methods of numerical optimization rotatable support pads gasostatic hybrid bearing. In the world‘s aerospace engineering the gas-dynamic bearings are currently most common. They are characterized by the supporting layer of different designs, which ensures the workability of the rotors during starts and stops. The main problem of this bearing type, apart from the construction complexity is the wear of this supporting layer. Gas-static bearing has no such defect, since there is no physical contact between solid surfaces. This study presents the results of the hybrid bearing’s calculation, combining both technologies. The slotted nozzle of non-conventional shape that mirrors the solution of Reynolds equation’s isoline is studied. The dependences of the main parameters on the speed of the shaft’s rotation are discussed. The aerodynamic resistance of pads for different regimes of operation is investigated.

  20. Grease lubrication in rolling bearings

    CERN Document Server

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  1. Robust and intelligent bearing estimation

    Science.gov (United States)

    Claassen, John P. (Albuquerque, NM)

    2000-01-01

    A method of bearing estimation comprising quadrature digital filtering of event observations, constructing a plurality of observation matrices each centered on a time-frequency interval, determining for each observation matrix a parameter such as degree of polarization, linearity of particle motion, degree of dyadicy, or signal-to-noise ratio, choosing observation matrices most likely to produce a set of best available bearing estimates, and estimating a bearing for each observation matrix of the chosen set.

  2. Entrainment and thrust augmentation in pulsatile ejector flows

    Science.gov (United States)

    Sarohia, V.; Bernal, L.; Bui, T.

    1981-01-01

    This study comprised direct thrust measurements, flow visualization by use of a spark shadowgraph technique, and mean and fluctuating velocity measurements with a pitot tube and linearized constant temperature hot-wire anemometry respectively. A gain in thrust of as much as 10 to 15% was observed for the pulsatile ejector flow as compared to the steady flow configuration. From the velocity profile measurements, it is concluded that this enhanced augmentation for pulsatile flow as compared to a nonpulsatile one was accomplished by a corresponding increased entrainment by the primary jet flow. It is also concluded that the augmentation and total entrainment by a constant area ejector critically depends upon the inlet geometry of the ejector. Experiments were performed to evaluate the influence of primary jet to ejector area ratio, ejector length, and presence of a diffuser on pulsatile ejector performance.

  3. Noise generated by STOL core-jet thrust reversers.

    Science.gov (United States)

    Stone, J. R.; Gutierrez, O. A.

    1972-01-01

    This paper summarizes the results of an experimental investigation on the noise generated by target-type thrust reversers. The experimental data are normalized and scaled up to sizes suitable for reversing the core jets of a 45,400-kg augmentor-wing-type STOL airplane. The scaling calculatings yield perceived noise levels well above the 95-PNdB design goal for both sideline and flyover at 152.5 m. V-gutter and semicylindrical reversers were tested with a 5.24-cm-diameter circular nozzle, and a semicylindrical reverser was also tested with a 7.78-cm-diameter circular nozzle. Other test variables were the spacing between nozzle and reverser, reverser orientation, and nozzle pressure ratio. The thrust reversers, in addition to being noisier than the nozzle alone, also had a more uniform directivity.

  4. Dating of movements along thrusts and faults in the Himalaya

    International Nuclear Information System (INIS)

    Radiometric dating of movements along the MCT (Vaikrita Thrust), two local but deep seated thrust and the Sumdoh Fault Zone bordering the Kinnar Kailas Granite in the Baspa and Satluj valleys, NE Himachal Himalaya, has been attempted for the first time by fission track method. Garnet and apatite fission track ages suggest the age of the latest phase of movements around 14 and 7 m.y. respectively along the MCT and Sumdoh Fault. The vertical uplift rates along them were 1.1mm/year from 14 to 7 m.y. and 0.6 mm/year from 7 m.y. to recent geologic past respectively, as against the value 0.036 mm/year during the period from 210 to 17 m.y. in the undisturbed area. (author)

  5. Electro-Hydrodynamic (EHD) Thrust Analysis in Wire-Cylinder Electrode Arrangement

    Science.gov (United States)

    Konstantinos, N. Kiousis; Antonios, X. Moronis; Wolf, G. Fruh

    2014-04-01

    The thrust generation by electro-hydrodynamic (EHD) effect has been studied for a wire-cylinder arrangement under high DC voltage. Series of measurements have been conducted in order to determine the relationship between generated thrust and corona discharge current, as well as its dependence on geometrical characteristics of the electrodes, e.g. electrode gap, wire and cylinder radii. The experimental investigation has shown a linear relationship between the generated thrust and the discharge current, while parametric analysis showed that increased electrode gap and emitter radius reduces the thrust. On the other hand, large gaps favor the thrust per unit power ratio.

  6. Secondary injection fluidic thrust vectoring of an axisymmetric supersonic nozzle

    OpenAIRE

    Zmijanovic, Vladeta

    2013-01-01

    Secondary injection into the divergent section of a supersonic rocket nozzle is investigated for the fluidic thrust vectoring effects. The study was conducted in the framework of CNES PERSEUS program and was motivated by the need for an alternative vectoring solution aimed for a small space launcher. The thesis work, based on the combined experimental and numerical approaches, essentially comprises of a wide parametric study mainly concerning the position of the injection, the shape of the pr...

  7. A method for increasing thrust reverser utilization on STOL aircraft.

    Science.gov (United States)

    Tatom, J. W.; Dunlap, J. H.; Ledwith, W. A.

    1972-01-01

    A technique for increasing the utilization of thrust reversers on STOL aircraft is described. The technique involves asymmetric orientation of the reversed exhaust in such a manner as to avoid the problems of self-ingestion, even in the presence of a cross wind, and cross ingestion between adjacent engines. Experimental results of ingestion in a single nacelle inlet are discussed and flow visualization pictures are presented. An analytical model of ingestion is described and sample results are shown.

  8. Energy from sea wave thrust and flow of water

    International Nuclear Information System (INIS)

    The area adjacent to the tidal rivers, irrigational canal, drain and also the seashore may be energized harnessing the energy from the flow/wave thrust by simply converting it into unidirectional rotating force to drive the generator for power generation. The existing plants are big in size and also fixed in place. A plant which will be a small/portable type is described. 7 refs., figs

  9. Space transportation booster engine thrust chamber technology, large scale injector

    Science.gov (United States)

    Schneider, J. A.

    1993-02-01

    The objective of the Large Scale Injector (LSI) program was to deliver a 21 inch diameter, 600,000 lbf thrust class injector to NASA/MSFC for hot fire testing. The hot fire test program would demonstrate the feasibility and integrity of the full scale injector, including combustion stability, chamber wall compatibility (thermal management), and injector performance. The 21 inch diameter injector was delivered in September of 1991.

  10. Detachment folding, fold amplification, and diapirism in thrust wedge experiments

    Science.gov (United States)

    Bonini, Marco

    2003-12-01

    The relations between detachment folding, fold amplification, and salt diapirism in contractional settings have been investigated by means of scaled analogue models. The viscosity of the silicone layer simulating salt in nature and the shortening rates were combined in order to reproduce weak (type 1 models) and strong (type 2 models) décollements. Deformation patterns in the roof sequence exhibited two contrasting styles, (1) outward propagation of detachment folding along the décollement (OFP mode) and (2) passive roof duplex (PRD mode). In type 2 models, detachment folding propagated away from the most external thrust in the floor sequence, while in type 1 models, long-lived detachment folds almost invariably localized amplified above a floor thrust tip as a result of strain localization. A silicone wall intruded occasionally into the crestal graben of detachment folds in type 1 and OFP models. Best fitting of transition models data points indicates nonlinear relations with regression curves close to the equilateral hyperbola equation for both OFP-PRD and amplified detachment folds-box folds transitions. A quantitative comparison of model results with nature has been attempted by plotting salt-based fold-and-thrust belts data points on the scaled transition curves obtained from the modeling. Such a comparison relates shear stress products and ratios to the conditions favoring the amplification of detachment folds and the potential emplacement of ductile diapirs in their core. By reducing the roof sequence strength, pore fluid pressure ?b is inferred to shift the equilibrium of fold-and-thrust belts toward the field of OFP and diapirism.

  11. A Simple Model of Pulsed Ejector Thrust Augmentation

    Science.gov (United States)

    Wilson, Jack; Deloof, Richard L. (Technical Monitor)

    2003-01-01

    A simple model of thrust augmentation from a pulsed source is described. In the model it is assumed that the flow into the ejector is quasi-steady, and can be calculated using potential flow techniques. The velocity of the flow is related to the speed of the starting vortex ring formed by the jet. The vortex ring properties are obtained from the slug model, knowing the jet diameter, speed and slug length. The model, when combined with experimental results, predicts an optimum ejector radius for thrust augmentation. Data on pulsed ejector performance for comparison with the model was obtained using a shrouded Hartmann-Sprenger tube as the pulsed jet source. A statistical experiment, in which ejector length, diameter, and nose radius were independent parameters, was performed at four different frequencies. These frequencies corresponded to four different slug length to diameter ratios, two below cut-off, and two above. Comparison of the model with the experimental data showed reasonable agreement. Maximum pulsed thrust augmentation is shown to occur for a pulsed source with slug length to diameter ratio equal to the cut-off value.

  12. Thrust Optimization in Pulsatile Vortex Generators in Liquid Medium

    Science.gov (United States)

    Krieg, Mike; Clark, Torin; Mohseni, Kamran

    2006-11-01

    Vortex rings are coherent structures effective at transporting momentum, circulation and energy across long distances through a fluid medium. An array of periodic vortex rings can be created by a series of pulsatile jets. Similar jet propulsion is the primary method of movement for Cephalopod such as squid. Inspired by the propulsion of squid and jellyfish we have designed and built vortex generators for propulsion and low speed maneuvering of small underwater vehicles. The vortex generator consists of a cavity with a moving diaphragm on one side and an exit orifice on the other side. The diaphragm or a plunger is activated by an electric motor. As a result, the amplitude, frequency, and profile of the actuated diaphragm are easily controlled. This investigation is focused on identifying the parameters that control the thrust generation in this mechanism and its optimization. A sensitive load cell is employed to directly measure thrust generation while these parameters are varied. It is found that the formation number, actuation frequency, and plunger profile are among the most relevant parameters that control thrust generation.

  13. Electric sail control mode for amplified transverse thrust

    CERN Document Server

    Toivanen, Petri; Envall, Jouni

    2014-01-01

    The electric solar wind sail produces thrust by centrifugally spanned high voltage tethers interacting with the solar wind protons. The sail attitude can be controlled and attitude maneuvers are possible by tether voltage modulation synchronous with the sail rotation. Especially, the sail can be inclined with respect to the solar wind direction to obtain transverse thrust to change the osculating orbit angular momentum. Such an inclination has to be maintained by a continual control voltage modulation. Consequently, the tether voltage available for the thrust is less than the maximum voltage provided by the power system. Using a spherical pendulum as a model for a single rotating tether, we derive analytical estimations for the control efficiency for two separate sail control modes. One is a continuous control modulation that corresponds to strictly planar tether tip motion. The other is an on-off modulation with the tether tip moving along a closed loop on a saddle surface. The novel on-off mode is introduce...

  14. Paleogene thrust tectonics in northwestern Venezuela: Petroleum system implications

    Energy Technology Data Exchange (ETDEWEB)

    Quijada, E.; Oropeza, S. [Maraven, S.A., Caracas (Venezuela)

    1996-08-01

    Oil exploration in northeastern Perija Mountains, northwestern Maracaibo basin, has been difficult, mainly due to the various tectonic events that have strongly deformed this area. This study is an attempt at better understanding the effect of a Paleogene thrusting event on the petroleum system development in the area. Subsidence analysis interpretation at both sides of the NNE directed Tigre fault (which separates the northern Perija Mountains from the rest of the Maracaibo basin) suggests the onset of a foreland basin during, at least, Paleocene-Early Eocene time. Continuous sedimentation occurred from Late Cretaceous to Early Eocene, as long as it kept pace with subsidence, in the west block of the fault, while the east block acted as an obstacle against the thrust-sheet movement, delaying its subsidence. Sedimentation for this time is associated with a thick unit of mainly paralic sediments west of that fault and thinner continental (fluvial) to shallow marine sediments, with an intra-Paleocene/Early Eocene unconformity, east of it. So, this tectonic event, associated with convergence from the north, caused a south-verging thrust sheet giving rise to differences in the evolution of the petroleum system on both sides of the Tigre fault, mainly regarding the existence of source rocks and their generation/migration of hydrocarbons, preservation time and critical moment. Finally, in order to evaluate the oil exploration opportunities in northeastern Perija mountains, it is advisable that any integrated interpretation of the petroleum system processes (generation-migration-accumulation) take into account this tectonic event.

  15. Thrust reversing effects on twin-engine aircraft having nonaxisymmetric nozzles

    Science.gov (United States)

    Capone, F. J.; Re, R. J.; Bare, E. A.

    1981-01-01

    The effects of thrust reversing on stability, control and vertical tail loads of advanced fighter aircraft are reviewed. Several static test stand and wind tunnel investigations of nonaxisymmetric nozzles with integral thrust reversers are presented, and it is found that base drag on the aft face of reverser panels of blockers provides a significant contribution to in-flight thrust reverser performance. The location of tail surfaces relative to the thrust reverser has significant impact on control surface effectiveness, and depending on thrust reverser location, large vertical tail side force can result from the use of in-flight thrust reversers. It is concluded that highly effective nonaxisymmetric nozzle reversers can be designed to achieve a 50% static reverse thrust.

  16. Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control

    Science.gov (United States)

    Litt, Jonathan S.; Sowers, T. Shane

    2006-01-01

    The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.

  17. Tectonic Features of Gas Hydrate-Bearing Sediments off Southwest Taiwan

    Science.gov (United States)

    Lin, A. T.; Lin, C.; Chen, G.; Liu, C.

    2006-12-01

    Off southwest Taiwan, a westerly encroaching accretionary wedge has obliquely impinged on the northern continental slope of the South China Sea (SCS) margin. Bottom simulating reflectors (BSRs) are present in both tectonic settings of the accretionary wedge and SCS continental slope, indicating that gas hydrates exist beneath the seafloor where bathymetry is greater than around 400 m. We studied a dense grid of multichannel seismic profiles to reveal the tectonic features of the gas hydrate- bearing sediments off southwest Taiwan. Seismic data show that in the SCS continental margin it develops a major, oceanward-dipping, listric normal fault, which is still active in the present-day as evidenced by seafloor- fault scarps on the shelf adjacent to the shelf edge. The faulting has tilted the hangingwall strata to the northwest (landward) direction. The hangingwall rotated beds are truncated beneath the slope, exposing the equivalent mud-dominated Pliocene-Pleistocene strata that are deeply buried (a few kilometers) beneath the adjacent shelf. In response to the erosion a dendritic network of submarine channels and gullies has developed on the continental slope. In the accretionary prism, a series of westerly approaching and NS-striking fold-and-thrust belts characterizes the frontal accretionary wedge. The seafloor relief reflects the underlying active structures with asymmetric ridges indicating uplifting thrusts and subdued relief indicating thrust-top or slope basins. The frontal deformation zone is characterized by three blind thrusts with gently folded and more or less symmetrical beds. Whereas in the arcward direction the rest of thrusts are all emergent ones with tilted beds truncated at the hangingwalls. Strata within slope basins are tilted arcward, with dips that increase with depth, indicating continued relative uplift along thrust planes during sedimentation. Pulsed thrust activity is further evidenced by arcward-dipping unconformable surfaces with westward onlapping strata in the basins. Our results suggest that the frontal Taiwan submarine accretionary prism is characterized by discrete folds and thrusts with intervening slope basins, a feature probably related to thick and incoming pre-orogenic sediments. In addition, the gravity-driven tectonics in the SCS slope may be resulted from the impingement and loading of the westerly encroaching accretionary wedge.

  18. Evaluation of thrusting and folding of the Deadman Creek Thrust Fault, Sangre de Cristo range, Saguache County, Colorado

    Science.gov (United States)

    Weigel, Jacob F., II

    The Deadman Creek Thrust Fault was mapped in a structural window on the west side of the Sangre de Cristo Range. The study area, located in southern Colorado, is a two square mile area halfway between the town of Crestone and the Great Sand Dunes National Park. The Deadman Creek Thrust Fault is the center of this study because it delineates the fold structure in the structural window. The fault is a northeast-directed low-angle thrust folded by subsequent additional compression. This study was directed at understanding the motion of the Deadman Creek Thrust Fault as affected by subsequent folding, and the driving mechanism behind the folding of the Pole Creek Anticline as part of a broader study of Laramide thrust faulting in the range. This study aids in the interpretation of the geologic structure of the San Luis Valley, which is being studied by staff of the United States Geological Survey (USGS), to understand Rio Grande Rift basin evolution by focusing on rift and pre-rift tectonic activity. It also provides a geologic interpretation for the Saguache County Forest Service, Great Sand Dunes National Park, and its visitors. The Sangre de Cristo Mountain Range has undergone tectonic events in the Proterozoic, Pennsylvanian (Ancestral Rocky Mountains), Cretaceous-Tertiary (Laramide Orogeny) and mid-Tertiary (Rio Grande Rift). During the Laramide Orogeny the Deadman Creek Thrust Fault emplaced Proterozoic gneiss over Paleozoic sedimentary rocks and Proterozoic granodiorite in the area. Continued deformation resulted in folding of the fault to form the Pole Creek Anticline. The direction of motion of both the fault and fold is northeastward. A self-consistent net of cross-sections and stereonet plots generated from existing and new field data show that the anticline is an overturned isoclinal fold in Pole Creek Canyon, which shows an increasing inter-limb angle and a more vertical axial surface northwestward toward Deadman Creek Canyon. Southwest-directed apparent normal fault motion reflects out-of-syncline thrust faulting primarily on the forelimb of the anticline, which has subsequently been overturned by further tightening of the anticline. The driving force of the anticline is inferred to be a propagating reverse fault breaking toward the surface and causing the Deadman Creek Thrust Fault to fold, forming the Pole Creek Anticline. This fault appears to have a complex geometry that causes the fold axis to change orientation in two locations within the study area. Furthermore, diverse fault motions indicated in stereonet plots suggest a complex deformation system in these massive rock units. A syncline (Alpine Gulch Syncline) to the southwest of the Pole Creek Anticline becomes more open to the southeast. The driving force for the Alpine Gulch Syncline is not understood, but may also have affected the Pole Creek Anticline. Additional complexities include two minor faults north of the Pole Creek Canyon mouth, an inferred fault in Pole Creek Canyon, and a second inferred fault in Deadman Creek Canyon. These complexities make structural interpretation challenging.

  19. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings in flywheels.

  20. High-Performance Ball Bearing

    Science.gov (United States)

    Bursey, Roger W., Jr.; Haluck, David A.; Olinger, John B.; Owen, Samuel S.; Poole, William E.

    1995-01-01

    High-performance bearing features strong, lightweight, self-lubricating cage with self-lubricating liners in ball apertures. Designed to operate at high speed (tens of thousands of revolutions per minute) in cryogenic environment like liquid-oxygen or liquid-hydrogen turbopump. Includes inner race, outer race, and cage keeping bearing balls equally spaced.

  1. Magnetic Bearing With Active Control

    Science.gov (United States)

    Goldowsky, M.

    1982-01-01

    Magnetic shaft bearing employs electromagnets energized by signals related to shaft position and velocity. Electromagnets are arranged in orthogonal pairs. Axial and rotational shaft motions are accomodated, and lateral motions are restrained. Axial motion can also be restrained. Self-regulating bearing includes velocity and position control.

  2. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    Science.gov (United States)

    Bradley, Christopher M.

    The last 30 years materials engineers have been under continual pressure to develop materials with a greater temperature potential or to produce configurations that can be effectively cooled or otherwise protected at elevated temperature conditions. Turbines and thrust chambers produce some of the harshest service conditions for materials which lead to the challenges engineers face in order to increase the efficiencies of current technologies due to the energy crisis that the world is facing. The key tasks for the future of gas turbines are to increase overall efficiencies to meet energy demands of a growing world population and reduce the harmful emissions to protect the environment. Airfoils or blades tend to be the limiting factor when it comes to the performance of the turbine because of their complex design making them difficult to cool as well as limitations of their thermal properties. Key tasks for space transportation it to lower costs while increasing operational efficiency and reliability of our space launchers. The important factor to take into consideration is the rocket nozzle design. The design of the rocket nozzle or thrust chamber has to take into account many constraints including external loads, heat transfer, transients, and the fluid dynamics of expanded hot gases. Turbine engines can have increased efficiencies if the inlet temperature for combustion is higher, increased compressor capacity and lighter weight materials. In order to push for higher temperatures, engineers need to come up with a way to compensate for increased temperatures because material systems that are being used are either at or near their useful properties limit. Before thermal barrier coatings were applied to hot-section components, material alloy systems were able to withstand the service conditions necessary. But, with the increased demand for performance, higher temperatures and pressures have become too much for those alloy systems. Controlled chemistry of hot-section components has become critical, but at the same time the service conditions have put our best alloy systems to their limits. As a result, implementation of cooling holes and thermal barrier coatings are new advances in hot-section technologies now looked at for modifications to reach higher temperature applications. Current thermal barrier coatings used in today's turbine applications is known as 8%yttria-stabilized zirconia (YSZ) and there are no coatings for current thrust chambers. Current research is looking at the applicability of 8%yttria-stabilized hafnia (YSH) for turbine applications and the implementation of 8%YSZ onto thrust chambers. This study intends to determine if the use of thermal barrier coatings are applicable for high heat flux thrust chambers using industrial YSZ will be advantageous for improvements in efficiency, thrust and longer service life by allowing the thrust chambers to be used more than once.

  3. Cataclasites along the Saltville thrust, U.S.A. and their implications for thrust-sheet emplacement

    Science.gov (United States)

    House, William M.; Gray, David R.

    Cataclasis and frictional wear are the primary bulk deformation mechanisms along steeply dipping portions of the Saltville thrust in the southern Appalachian foreland zone, U.S.A. Fault character ranges from a single discrete sliding surface with negligible gouge, to a zone of several discrete sliding surfaces or a zone (up to 0.3 m thick) of pervasive cataclasite. Marked fracturing occurs up to 20 m above the fault, whereas minimal deformation is found in the footwall rocks. Hanging wall dolomites range from crush breccias (less than 5% matrix) to ultracataclasites (with 90% matrix), although cataclasites (50-70% matrix) are predominant. Foliated cataclasites occur where dolomite is thrust over shale. Progressive development of cataclastic fabrics is due to comminution by fracturing and grinding along intersecting fractures. Continued frictional grinding results in complete disruption of the original fabric to produce cataclasite and minor ultracataclasite. Grain alignment occurs by rigid body rotation with subsequent local enhancement by pressure-solution. Microstructural relations of the fault gouge suggest periodic fluctuations in fluid pressure, where ?v (ratio of fluid to overburden pressure) probably ranged between 0.45 and 1. The Saltville thrust-sheet emplacement must have occurred in a caterpillar-like fashion involving aseismic and seismic shear. Shear stresses accompanying fault motion as determined from dolomite twin lamellae are in the order of 65 mPa.

  4. Flywheel Challenge: HTS Magnetic Bearing

    International Nuclear Information System (INIS)

    A 200 mm cylindrical engineering prototype high temperature superconducting (HTS) was designed and fabricated. Measurements show that the 17 kg PM rotor can suspend safely 1000 kg in axial direction and 470 kg radially. The rationale for the bearing performance is to stabilize a 400 kg rotor of a new compact 5 kWh/280 kW flywheel energy storage system (COM - FESS). Measurements of the magnetic bearing force, stiffness and drag-torque are presented indicated the successful targeting a milestone in the HTS bearing technology. The influence of the PM configuration and the YBCO temperature on the bearing performance was experimentally studied, providing high-force or high-stiffness behaviour. The axial stiffness 5 kN/mm at 0.5 mm displacement is the highest value of a HTS bearing we know

  5. Nonlinear control of magnetic bearings

    Science.gov (United States)

    Pradeep, A. K.; Gurumoorthy, R.

    1994-01-01

    In this paper we present a variety of nonlinear controllers for the magnetic bearing that ensure both stability and robustness. We utilize techniques of discontinuous control to design novel control laws for the magnetic bearing. We present in particular sliding mode controllers, time optimal controllers, winding algorithm based controllers, nested switching controllers, fractional controllers, and synchronous switching controllers for the magnetic bearing. We show existence of solutions to systems governed by discontinuous control laws, and prove stability and robustness of the chosen control laws in a rigorous setting. We design sliding mode observers for the magnetic bearing and prove the convergence of the state estimates to their true values. We present simulation results of the performance of the magnetic bearing subject to the aforementioned control laws, and conclude with comments on design.

  6. Kinematic history of the ongoing growth of Himalayan fold-thrust belt

    Science.gov (United States)

    Yu, H.; Webb, A. G.

    2012-12-01

    Ongoing growth of the Himalayan fold-thrust belt since the Middle Miocene is mostly accomplished by the deformation of the Lesser Himalayan Sequence (a deformed package of rocks which dominates the southern half of the Himalaya). However, the first-order kinematic evolution of this process remains unclear. Four end-member models are proposed: frontal accretion through forward-propagation of a basal thrust; discrete underplating of thrust horses from the downgoing plate to the fold-thrust belt; expansion of the orogen via incremental accretion along the basal shear zone; and out-of-sequence faulting. Both the underplating and out-of-sequence models can explain the rapid uplift and exhumation observed along the central belt of the Himalaya. We test these models by determining the relationship between major thrust faults within the Lesser Himalayan sequence: the Berinag thrust and Tons thrust. Map geometries require >40 km and >80 km displacements along the Berinag and Tons thrusts, respectively. Field mapping along the Tons Valley and the lower Pabbar valley across the Lesser Himalayan Sequence reveals a new first-order thrust fault, which we term the Pabbar thrust. The Pabbar thrust is a ~300 m thick ductile shear zone separating the hanging wall of the Tons thrust (the Outer Lesser Himalayan Sequence) above from the hanging wall of the Berinag thrust (the Berinag Group) below, marked by S-C fabrics, mylonitic fabrics, and sheath folds, demonstrating top-to-the-southwest thrusting. Sheath folds, with hinges parallel to the stretching lineations defined by strongly elongated quartz grains in NE-SW direction, developed at cm to m scale of wavelength and amplitude within the shear zone. The Berinag and Tons thrust zones display both brittle features and ductile shear fabrics including southwest-directed brittle faults, southwest verging tight to open folds, and week southwest-trending stretching lineations. The ductile nature of the Pabbar thrust and the brittle-ductile nature of both the Berinag thrust and Tons thrust suggest that the Pabbar thrust developed first, followed by underplating of the Berinag sheet to the Pabbar thrust. Continued motion along the new sole thrust toward the foreland becomes the brittle-ductile Tons and Berinag thrusts, operating as a single structure. The kinematic history of the Pabbar thrust and the Berinag-Tons thrust suggests that the ongoing growth of the Himalayan fold-thrust belt since the Middle Miocene most likely occurred through the discrete underplating of thrust horses from the downgoing plate, not by out-of-sequence faulting. Expansion of the orogen by incremental accretion model is also invalid here since the expected pervasive shear features through the LHS are not observed in the field. Instead, shear is only concentrated in discrete fault zones.

  7. Why do airlines want and use thrust reversers? A compilation of airline industry responses to a survey regarding the use of thrust reversers on commercial transport airplanes

    Science.gov (United States)

    Yetter, Jeffrey A.

    1995-01-01

    Although thrust reversers are used for only a fraction of the airplane operating time, their impact on nacelle design, weight, airplane cruise performance, and overall airplane operating and maintenance expenses is significant. Why then do the airlines want and use thrust reversers? In an effort to understand the airlines need for thrust reversers, a survey of the airline industry was made to determine why and under what situations thrust reversers are currently used or thought to be needed. The survey was intended to help establish the cost/benefits trades for the use of thrust reversers and airline opinion regarding alternative deceleration devices. A compilation and summary of the responses given to the survey questionnaire is presented.

  8. Effects of bearing cleaning and lube environment on bearing performance

    Science.gov (United States)

    Ward, Peter C.

    1995-01-01

    Running torque data of SR6 ball bearings are presented for different temperatures and speeds. The data are discussed in contrast to generally used torque prediction models and point out the need to obtain empirical data in critical applications. Also, the effects of changing bearing washing techniques from old, universally used CFC-based systems to CFC-free aqueous/alkaline solutions are discussed. Data on wettability, torque and lubricant life using SR3 ball bearings are presented. In general, performance is improved using the new aqueous washing techniques.

  9. Investigation of the Longitudinal Characteristics of a Large-Scale Jet Transport Model Equipped with Controllable Thrust Reversers

    Science.gov (United States)

    Hickey, David H.; Tolhurst, William H., Jr.; Aoyagi, Kiyoshi

    1961-01-01

    An investigation was conducted to determine the effect of thrust control by means of controllable thrust reversers on the longitudinal characteristics of a large-scale airplane model with a 35' sweptback wing of aspect ratio of 7 and four pylon-mounted jet engines equipped with target-type thrust reversers designed to provide thrust control ranging from full forward thrust to full reverse thrust. The thrust control in landing-approach configurations formed the major portion of the study. Results were obtained with both leading- and trailing-edge high-lift devices.

  10. Fault-related fluid flow, Beech Mountain thrust sheet, Blue Ridge Province, Tennessee-North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Waggoner, W.K.; Mora, C.I. (Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences)

    1992-01-01

    The latest proterozoic Beech Granite is contained within the Beech Mountain thrust sheet (BMTS), part of a middle-late Paleozoic thrust complex located between Mountain City and Grandfather Mountain windows in the western Blue Ridge of TN-NC. At the base of the BMTS, Beech Granite is juxtaposed against lower Paleozoic carbonate and elastics of the Rome Fm. along the Stone Mountain thrust on the southeaster margin of the Mountain City window. At the top of the BMTS, Beech Granite occurs adjacent to Precambrian mafic rocks of the Pumpkin Patch thrust sheet (PPTS). The Beech Granite is foliated throughout the BMTS with mylonitization and localized cataclasis occurring within thrust zones along the upper and lower margins of the BMTS. Although the degree of mylonitization and cataclasis increases towards the thrusts, blocks of relatively undeformed granite also occur within these fault zones. Mylonites and thrusts are recognized as conduits for fluid movement, but the origin of the fluids and magnitude and effects of fluid migration are not well constrained. This study was undertaken to characterize fluid-rock interaction within the Beech Granite and BMTS. Extensive mobility of some elements/compounds within the thrust zones, and the isotopic and mineralogical differences between the thrust zones and interior of the BMTS indicate that fluid flow was focused within the thrust zones. The wide range of elevated temperatures (400--710 C) indicated by qz-fsp fractionations suggest isotopic disequilibrium. Using a more likely temperature range of 300--400 C for Alleghanian deformation, calculated fluid compositions indicate interactions with a mixture of meteoric-hydrothermal and metamorphic water with delta O-18 = 2.6--7.5[per thousand] for the upper thrust zone and 1.3 to 6.2[per thousand] for the lower thrust zone. These ranges are similar to isotopic data reported for other Blue Ridge thrusts and may represent later periods of meteoric water influx.

  11. Alex the Bear Goes to Child Care

    Medline Plus

    Full Text Available ... Bear Meet Alex the Bear, a new friend of Child Care Aware® Going to child care for ... and parents. Alex the Bear, the newest friend of Child Care Aware®, seeks to make the transition ...

  12. Light gluino effects in thrust at NNLL order

    International Nuclear Information System (INIS)

    Recent progress in computations of event shape distributions have reduced uncertainties in the strong coupling from fits to available experimental data to the percent level. It is therefore reasonable to ask for possible effects of new physics. We consider the effects of light gluinos in the thrust distribution at the NNLL order level in the framework of Soft-Collinear-Effective-Theory (SCET). This involves modifications of the standard QCD renormalization group evolution and the computation of additional corrections to the hard, jet and soft functions that appear in the SCET factorization theorem.

  13. Light gluino effects in thrust at NNLL order

    Energy Technology Data Exchange (ETDEWEB)

    Gritschacher, Simon; Hoang, Andre; Mateu, Vicent [MPI for Physics, Munich (Germany)

    2011-07-01

    Recent progress in computations of event shape distributions have reduced uncertainties in the strong coupling from fits to available experimental data to the percent level. It is therefore reasonable to ask for possible effects of new physics. We consider the effects of light gluinos in the thrust distribution at the NNLL order level in the framework of Soft-Collinear-Effective-Theory (SCET). This involves modifications of the standard QCD renormalization group evolution and the computation of additional corrections to the hard, jet and soft functions that appear in the SCET factorization theorem.

  14. Light gluino effects in thrust at NNLL order

    International Nuclear Information System (INIS)

    Full text: Recent progress in computations of event shape distributions have reduced uncertainties in the strong coupling from fits to available experimental data to the percent level. It is therefore reasonable to ask for possible effects of new physics. We consider the effects of light gluinos in the thrust distribution at the NNLL order level in the framework of Soft-Collinear-Effective-Theory (SCET). This involves modifications of the standard QCD renormalization group evolution and the computation of additional corrections to the hard, jet and soft functions that appear in the SCET factorization theorem. (author)

  15. Precision determination of ?S(mZ) from thrust data

    Science.gov (United States)

    Abbate, Riccardo; Fickinger, Michael; Hoang, André; Mateu, Vicent; Stewart, Iain

    2011-10-01

    I will present an extraction of the strong coupling constant, ?S(mZ), from thrust data using Effective Field Theory techniques. Our calculation yields one of the most precise measurements of ?S(mZ) to date. We perform a simultaneous two parameter fit to all available data at energies Q=35 GeV to 207 GeV. We find ?s(mZ)=0.1135 ±(0.0002)expt±(0.0005)hadr±(0.0009)pert, with 2?/dof=0.91, where the displayed 1-sigma errors are the total experimental uncertainty, the hadronization uncertainty, and the perturbative theory uncertainty, respectively.

  16. Computer Tomography Analysis of Fastrac Composite Thrust Chamber Assemblies

    Science.gov (United States)

    Beshears, Ronald D.

    2000-01-01

    Computed tomography (CT) inspection has been integrated into the production process for NASA's Fastrac composite thrust chamber assemblies (TCAs). CT has been proven to be uniquely qualified to detect the known critical flaw for these nozzles, liner cracks that are adjacent to debonds between the liner and overwrap. CT is also being used as a process monitoring tool through analysis of low density indications in the nozzle overwraps. 3d reconstruction of CT images to produce models of flawed areas is being used to give program engineers better insight into the location and nature of nozzle flaws.

  17. Design of high power electromechanical actuator for thrust vector control

    Science.gov (United States)

    Cowan, J. R.; Myers, W. N.

    1991-01-01

    NASA-Marshall has undertaken the development of electromechanical actuators (EMAs) for thrust vector control (TVC) augmentation system implementation. The TVC EMA presented has as its major components two three-phase brushless dc motors, a two-pass gear-reduction system, and a roller screw for rotary-to-linear motion conversion. System control is furnished by a solid-state electronic controller and power supply; a pair of resolvers deliver position feedback to the controller, such that precise positioning is achieved. Peformance comparisons have been conducted between the EMA and comparable-performance hydraulic systems applicable to TVCs.

  18. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    International Nuclear Information System (INIS)

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control of the thrust even under the low-intensity level.

  19. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    International Nuclear Information System (INIS)

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s-1, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s-1. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  20. Effect of Fuel Properties on the Specific Thrust of a Ramjet Engine

    Directory of Open Access Journals (Sweden)

    Alon Gany

    2006-07-01

    Full Text Available Various aspects of specific thrust in ramjet propulsion have been considered. It is shownthat while the peak specific impulse of ideal ramjet is theoretically obtained for fuel/air ratiof 0, the specific thrust which determines the thrust level of a given engine at certain operatingconditions, increases with increasing fuel/air ratio up to (approximately the stoichiometric ratio.Furthermore, in general, the specific thrust is related to the heat release per unit mass of airfqR, where the theoretical maximum is approximately proportional to its square root in stoichiometricconditions, fstqR. This can be the basis for selecting an appropriate fuel according to its potentialspecific thrust. It should be noted that certain metals such as magnesium, aluminum, and zirconiumcan provide about three-times higher specific heat release than hydrocarbons or hydrogen.Thus, these may be the better candidates for missions requiring high specific thrusts.

  1. Mixed-mu superconducting bearings

    International Nuclear Information System (INIS)

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs

  2. Sputter etching of hemispherical bearings

    Science.gov (United States)

    Schiesser, R. J.

    1972-01-01

    Technique was developed for fabricating three dimensional pumping grooves on gas bearings by sputter etching. Method eliminates problems such as groove nonuniformity, profile, and finish, which are associated with normal grooving methods.

  3. A Passive Magnetic Bearing Flywheel

    Science.gov (United States)

    Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew

    2002-01-01

    A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  4. Understanding Spacecraft Agility for Orbit Transfers on the Dawn Low-thrust Mission

    Science.gov (United States)

    Smith, Brett A.; Vanelli, C. Anthony; Lee, Allan Y.

    2012-01-01

    Conventional maneuver design processes were inadequate. Long thrusting durations with the small force of SEP. Increased coupling between ACS and NAV teams. Definition of quantifiable constraints proved impractical. Specifically for the Dawn mission, because of the attitude steering algorithm. A time-efficient simulation tool, qSTAT, was developed and allowed fast verification of candidate thrust profile designs. This approach allowed Dawn to overcome the complications of low-thrust orbit transfers.

  5. Experimental progress towards the MicroThrust MEMS electrospray electric propulsion system

    OpenAIRE

    Ryan, Charles; Daykin-iliopoulos, A.; Stark, John; Salaverri, Anna; Vargas, Ernesto; Rangsten, Pelle; Dandavino, Simon; Ataman, Caglar; Chakraborty, Subha; Courtney, Daniel; Shea, Herbert

    2013-01-01

    This paper describes the experimental progress towards an operational microfabricated electrospray thruster, as part of the EU FP7 “MicroThrust” Project. Microfabrication of an electrospray multiplexed thruster allows the seamless manufacturing of arrays of emitters, combining high specific impulse with sizeable thrust. The resulting thruster can thus be extremely efficient with a thrust approaching ?100µN, depending on array size. We are working within the European FP7 project MicroTh...

  6. Optimization of Low-Thrust Earth-Moon Transfers Using Evolutionary Neurocontrol:

    OpenAIRE

    Ohndorf, A.; Dachwald, B.; Gill, E. K. A.

    2009-01-01

    Although low-thrust propulsion is an interesting option for scientific and reconnaissance missions to targets in planetary space, like the Moon, associated transfer strategies pose challenging requirements in terms of optimal control. The method of Evolutionary Neurocontrol (ENC), which has been applied very successfully to interplanetary low-thrust transfer problems, is now used for solving this type of steering problem. For exemplary validation, two low-thrust transfers from an Earth-bound ...

  7. Thrust Ripples Reduction for a Vector Controlled Permanent Magnet Linear Synchronous Motor with IMC Controller

    OpenAIRE

    RAMESH BABU.DEVA; Arundhati, B.; Alice Mary, K.

    2013-01-01

    The significant drawback of PMLSM is thrust ripples, which is mainly generated by the detent force caused by the interaction of the permanent magnet and iron core without input current in armature winding. It is the function of mover position relative to the stator. This will deteriorate the performance of the drive system in high precision applications. This paper focus on the thrust ripples reduction. To minimize the thrust ripples and realize the high-precision control, the components of t...

  8. Improved Superconducting Magnetic Rotary Bearings

    Science.gov (United States)

    Flom, Yury; Royston, James

    1992-01-01

    Improved magnetic rotary bearings designed by exploiting properties of type-II superconducting materials. Depending on design and application, bearing provides fixed or adjustable compensation for lateral vector component of weight or other lateral load on rotor. Allows applied magnetic field to penetrate partially in clusters of field lines, with concomitant establishment of undamped circulating electrical currents within material. Type-II superconductors have critical magnetic fields and critical temperatures greater than type-I superconductors.

  9. Testing and Lubrication for Single Race Bearings

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, R.G.

    1998-03-04

    Three ES and H-compatible lubricants (Environment, Safety and Health) for single race bearing applications and one hybrid-material single race bearings were evaluated and compared against single race bearings with trichlorotrifluoroethane (Freon) deposition of low molecular weight polytetrafluoroethylene (PTFE) bearing lubricant extracted from Vydax{trademark}. Vydax is a product manufactured by DuPont consisting of various molecular weights of PTFE suspended in trichlorotrifluoroethane (Freon), which is an ozone-depleting solvent. Vydax has been used as a bearing lubricant in stronglink mechanisms since 1974. Hybrid bearings with silicon nitride balls and molded glass-nylon-Teflon retainers, bearings lubricated with titanium carbide (TiC) on the balls, bearings lubricated with sputtered MoS{sub 2} on races and retainers, and bearings lubricated with electrophoretically deposited MoS{sub 2} were evaluated. The bearings were maintained in a preloaded state in bearing cartridges during cycling and vibration tests. Bearings with electrophoretically deposited MoS{sub 2} performed as well as bearings lubricated with Vydax and were the best performing candidate. All candidates were suitable for low preload applications. Bearings with TiC coated balls and bearings lubricated with sputtered MoS{sub 2} on the races and retainers performed well at high preloads, though not as well as bearings lubricated with electrophoretic deposition of MoS{sub 2}. Bearings with silicon nitride balls were not suitable for high preload applications.

  10. Experimental performance of cascade thrust reversers at forward velocity

    Science.gov (United States)

    Dietrich, D. A.; Luidens, R. W.

    1973-01-01

    A series of static and wind tunnel tests were performed on four cowl cascade thrust reverser configurations which had various reversed jet emission patterns applicable to an externally blown flap STOL aircraft. The work was performed using a model fan which was 14.0 cm in diameter and passed a fan mass flow of 2.49 kg/sec at an approximate fan pressure ratio of 1.22 and fan corrected rotational speed of 35,800 rpm. The tests demonstrated that the reingestion of fan flow significantly reduced the reverser efficiency and that the thrust reverser efficiency was improved by reducing the reversed jet azimuthal emmission angle. The reverser efficiency at STOL landing speeds was as high as 0.95; however, configurations with lateral emission were adversely affected by yawing the nacelle at forward velocity. Measurements of the internal static pressure at the stator exit showed significant increases in the local static pressure for configurations with reduced jet emission angles.

  11. Influence of anelastic surface layers on postseismic thrust fault deformation

    Science.gov (United States)

    Lyzenga, Gregory A.; Panero, Wendy R.; Donnellan, Andrea

    2000-02-01

    We present the results of a systematic modeling study of postseismic deformation following blind thrust earthquakes. The results include qualitative and quantitative predictions of the surface movement caused by relaxation in viscoelastic near-surface layers. Finite element forward models are used in conjunction with elastic dislocation inversions to characterize the post-seismic deformation. A viscoelastic surface layer overlying a blind thrust fault in an elastic basement shows characteristic signatures of postseismic surface movement. Simple equivalent elastic dislocations located in the hanging wall wedge are found to provide an effective proxy for near-surface postseismic relaxation in two-dimensional numerical simulations. A model survey of a range of fault dip angles and layer geometries shows the time evolution and geometry of the proxy fault to be simply related to fault dip and sediment thickness. The results are of significance in the interpretation of postseismic Global Positioning System (GPS) strain data from the 1994 Northridge, California, earthquake and other similar events in regions characterized by poorly consolidated or otherwise anelastic layers overlying the brittle seismogenic zone.

  12. Design of Force Sensor Leg for a Rocket Thrust Detector

    Science.gov (United States)

    Woten, Douglas; McGehee, Tripp; Wright, Anne

    2005-03-01

    A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spacial dimensions. The detector design uses six force sensor legs. Each leg utilizes strain gauges and a Wheatstone bridge to produce a voltage propotional to the force on the leg. The leg was designed using the CAD software ProEngineer and ProMechanica. Computer models of the strains on the single leg will be presented. A prototype leg was built and was tested in an INSTRON and results will be presented.

  13. Research on axial thrust of the waterjet pump based on CFD under cavitation conditions

    Science.gov (United States)

    Shen, Z. H.; Pan, Z. Y.

    2015-01-01

    Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%.

  14. Measured pressure distributions inside nonaxisymmetric nozzles with partially deployed thrust reversers

    Science.gov (United States)

    Green, Robert S.; Carson, George T., Jr.

    1987-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel at static conditions to measure the pressure distributions inside a nonaxisymmetric nozzle with simultaneous partial thrust reversing (50-percent deployment) and thrust vectoring of the primary (forward-thrust) nozzle flow. Geometric forward-thrust-vector angles of 0 and 15 deg. were tested. Test data were obtained at static conditions while nozzle pressure ratio was varied from 2.0 to 4.0. Results indicate that, unlike the 0 deg. vector angle nozzle, a complicated, asymmetric exhaust flow pattern exists in the primary-flow exhaust duct of the 15 deg. vectored nozzle.

  15. Investigation of a Full-scale, Cascade-type Thrust Reverser

    Science.gov (United States)

    Kohl, Robert C; Algranti, Joseph S

    1957-01-01

    A double set of turning vanes was carried inside the jet tailpipe. To produce reverse thrust, the tailpipe opens into two side sections and the turning vanes move outward to form a V-shaped cascade, which deflects the exhaust-gas flow. Forward and reverse net thrust were measured over a range of engine speeds with the airplane stationary. Taxi tests were made to determine the comparative stopping distances using wheel braking and reverse thrust separately, and a combination of both. The effect of turning-vane spacing on thrust-reverser performance was determined by scale-model tests using unheated air.

  16. Static internal performance characteristics of two thrust reverser concepts for axisymmetric nozzles

    Science.gov (United States)

    Leavitt, L. D.; Re, R. J.

    1982-01-01

    The statis performance of two axisymmetric nozzle thrust reverser concepts was investigated. A rotating vane thrust reverser represented a concept in which reversing is accomplished upstream of the nozzle throat, and a three door reverser concept provided reversing downstream of the nozzle throat. Nozzle pressure ratio was varied from 2.0 to approximately 6.0. The results of this investigation indicate that both the rotating vane and three door reverser concepts were effective static thrust spoilers with the landing approach nozzle geometry and were capable of providing at least a 50 percent reversal of static thrust when fully deployed with the ground roll nozzle geometry.

  17. An experimental study of blowdown thrust and jet forces by 6-inch pipe under BWR LOCA

    International Nuclear Information System (INIS)

    The blowdown thrust and jet impingement forces are examined simultaneously in the jet discharge tests relating to the instantaneous pipe rupture accident. The tests were performed with a 6-inch pipe under the BWR LOCA conditions. The initial pressure of the hot saturated water was 6.86 MPa. The following items are made clear; 1) the time history of the blowdown thrust force just after the break, 2) the jet thrust parameter of the pipe, 3) the jet impingement force, 4) the pressure and temperature distributions of the impinging jet and 5) the relationship between the thermalhydraulic quantities and the thrust forces

  18. Experimental study of a low-thrust measurement system for thruster ground tests.

    Science.gov (United States)

    Gong, Jingsong; Hou, Lingyun; Zhao, Wenhua

    2014-03-01

    The development of thrusters used for the control of position and orbit of micro-satellites requires thrust stands that can measure low thrust. A new method to measure low thrust is presented, and the measuring device is described. The test results show that the thrust range is up to 1000 mN, the measurement error of the device is lower than ±1% of full scale, and the drift of the zero offset is less than ±1% of full scale. Its response rise time is less than 15 ms. It is employed to measure the working process of a model chemical thruster with repeatability. PMID:24689615

  19. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters.

    Science.gov (United States)

    Nagao, N; Yokota, S; Komurasaki, K; Arakawa, Y

    2007-11-01

    A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors [axial and horizontal (transverse) direction thrusts] of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%) in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of +/-2.3 degrees was measured with the error of +/-0.2 degrees under the typical operating conditions for the thruster. PMID:18052505

  20. Seafloor expression and shallow structure of a fold-and-thrust system, Isfjorden, west Spitsbergen

    Directory of Open Access Journals (Sweden)

    Maria Blinova

    2012-09-01

    Full Text Available A detailed map of the structure of the west Spitsbergen fold-and-thrust belt in the Isfjorden area, Spitsbergen, is presented. The map was constructed from a dense grid of two-dimensional multichannel reflection seismic and bathymetric data. Joint interpretation of two data sets allowed a comparison of tectonic structures detected along the uppermost parts of the seismic sections and those reflected in the morphology of the seafloor. Three major, predominantly north-west–south-east striking faults were identified. The westernmost fault (T1 is a hinterland-directed (most likely out of sequence thrust, while the central and easternmost faults (T2 and T3 are foreland-directed (in-sequence thrusts. The thrusts divide Isfjorden into three subareas. Subarea 1 is bounded by thrust faults T1 and T2 and comprises Tertiary rocks surrounded by Jurassic–Cretaceous strata. The structural signature of Subarea 1 is that of a system of hinterland- and foreland-directed thrust faults, resulting in a seafloor relief characterized by parallel ridges and troughs. Subarea 2 is limited by thrust faults T2 and T3 and shows Jurassic–Cretaceous outcrops on the seafloor. Subarea 3 is situated east of the main thrust fault T3 and mainly involves outcrops of Triassic–Jurassic rocks. Together, Subareas 2 and 3 are dominated by foreland-directed, north-west–south-east and NNW–SSE-striking thrusts that are hardly detectable in bathymetric data.

  1. Thrust initiation and its control on tectonic wedge geometry: An insight from physical and numerical models

    Science.gov (United States)

    Bose, Santanu; Mandal, Nibir; Saha, Puspendu; Sarkar, Shamik; Lithgow-Bertelloni, Carolina

    2014-10-01

    We performed a series of sandbox experiments to investigate the initiation of thrust ramping in tectonic wedges on a mechanically continuous basal decollement. The experiments show that the decollement slope (?) is the key factor in controlling the location of thrust initiation with respect to the backstop (i.e. tectonic suture line). For ? = 0, the ramping begins right at the backstop, followed by sequential thrusting in the frontal direction, leading to a typical mono-vergent wedge. In contrast, the ramp initiates away from the backstop as ? > 0. Under this boundary condition an event of sequential back thrusting takes place prior to the onset of frontal thrust progression. These two-coupled processes eventually give rise to a bi-vergent geometry of the thrust wedge. Using the Drucker-Prager failure criterion in finite element (FE) models, we show the location of stress intensification to render a mechanical basis for the thrust initiation away from the backstop if ? > 0. Our physical and FE model results explain why the Main Central Thrust (MCT) is located far away from the Indo-Tibetan plate contact (ITSZ) in the Himalayan fold-and-thrust belts.

  2. "Null-E" magnetic bearings

    Science.gov (United States)

    Filatov, Alexei Vladimirovich

    2002-09-01

    Using electromagnetic forces to suspend rotating objects (rotors) without mechanical contact is often an appealing technical solution. Magnetic suspensions are typically required to have adequate load capacity and stiffness, and low rotational loss. Other desired features include low price, high reliability and manufacturability. With recent advances in permanent-magnet materials, the required forces can often be obtained by simply using the interaction between permanent magnets. While a magnetic bearing based entirely on permanent magnets could be expected to be inexpensive, reliable and easy to manufacture, a fundamental physical principle known as Earnshaw's theorem maintains that this type of suspension cannot be statically stable. Therefore, some other physical mechanisms must be included. One such mechanism employs the interaction between a conductor and a nonuniform magnetic field in relative motion. Its advantages include simplicity, reliability, wide range of operating temperature and system autonomy (no external wiring and power supplies are required). The disadvantages of the earlier embodiments were high rotational loss, low stiffness and load capacity. This dissertation proposes a novel type of magnetic bearing stabilized by the field-conductor interaction. One of the advantages of this bearing is that no electric field, E, develops in the conductor during the rotor rotation when the system is in no-load equilibrium. Because of this we refer to it as the Null-E Bearing. Null-E Bearings have potential for lower rotational loss and higher load capacity and stiffness than other bearings utilizing the field-conductor interaction. Their performance is highly insensitive to manufacturing inaccuracies. The Null-E Bearing in its basic form can be augmented with supplementary electronics to improve its performance. Depending on the degree of the electronics involvement, a variety of magnetic bearings can be developed ranging from a completely passive to an active magnetic bearing of a novel type. This dissertation contains theoretical analysis of the Null-E Bearing operation, including derivation of the stability conditions and estimation of some of the rotational losses. The validity of the theoretical conclusions has been demonstrated by building and testing a prototype in which non-contact suspension of a 3.2-kg rotor is achieved at spin speeds above 18 Hz.

  3. Ball-and-Socket-Bearing Wear Test

    Science.gov (United States)

    Graham, W. G.

    1984-01-01

    Series of experiments to measure wear life of spherical bearing summarized. Report designed to establish clearance, contour, finish, and lubricant parameters for highly-loaded, compact plain spherical bearing. Information useful in design of bearings for helicopter control linkages, business machines, nuclear reactor, and rotor bearings.

  4. Static internal performance of a single-engine onaxisymmetric-nozzle vaned-thrust-reverser design with thrust modulation capabilities

    Science.gov (United States)

    Leavitt, L. D.; Burley, J. R., II

    1985-01-01

    An investigation has been conducted at wind-off conditions in the stati-test facility of the Langley 16-Foot Transonic Tunnel. The tests were conducted on a single-engine reverser configuration with partial and full reverse-thrust modulation capabilities. The reverser design had four ports with equal areas. These ports were angled outboard 30 deg from the vertical impart of a splay angle to the reverse exhaust flow. This splaying of reverser flow was intended to prevent impingement of exhaust flow on empennage surfaces and to help avoid inlet reingestion of exhaust gas when the reverser is integrated into an actual airplane configuration. External vane boxes were located directly over each of the four ports to provide variation of reverser efflux angle from 140 deg to 26 deg (measured forward from the horizontal reference axis). The reverser model was tested with both a butterfly-type inner door and an internal slider door to provide area control for each individual port. In addition, main nozzle throat area and vector angle were varied to examine various methods of modulating thrust levels. Other model variables included vane box configuration (four or six vanes per box), orientation of external vane boxes with respect to internal port walls (splay angle shims), and vane box sideplates. Nozzle pressure ratio was varied from 2.0 approximately 7.0.

  5. Ultrasonic measurement of lubricant film thickness in sliding bearings with thin liners

    Science.gov (United States)

    Geng, Tao; Meng, Qingfeng; Zhang, Kai; Yuan, Xiaoyang; Jia, Qian

    2015-02-01

    When conducting ultrasonic measurements of the lubricant film thickness in sliding bearings with thin liners, the ultrasonic pulse reflected from the bearing liner–lubricant film interface will superimpose on the pulse reflected from the bearing substrate–liner interface. The thickness information of the lubricant film is contained in the reflected pulse from the liner–lubricant film interface. In this case, the film thickness could not be obtained directly from the superimposed reflected signals. The thin liner indicates that the thickness of the bearing liner is less than half the ultrasonic pulse width. Based on the spectrum analysis method of superimposed signals, a new method is proposed to measure the lubricant film thickness in sliding bearings with thin liners. The frequency-domain amplitude ratio between the echo component containing thickness information and the steady echo component from the bearing substrate–liner interface is extracted from the superimposed signal. The reflection coefficient of the liner–lubricant film interface is obtained by this amplitude ratio to determine the film thickness. The lubricant films of different thicknesses in a thin-liner thrust pad were measured in a high-precision experimental apparatus. The measurement results were compared with the known film thickness set by the experimental apparatus. In the thinner film region, the measurement results agreed well with the set film thickness. In the thicker film region, the mean values of the multiple measurement results represented the film thickness. The experimental results show that the method can be used to measure the lubricant film thickness in sliding bearings with thin liners.

  6. Development of porous-ceramic hydrostatic bearings

    OpenAIRE

    Durazo-cardenas, Isidro Sergio

    2003-01-01

    Porous-ceramic hydrostatic bearings have been recently developed. These bearings have demonstrated an exceptional overall performance when compared with conventional technology bearings. However, despite all the benefits, porous-ceramic hydrostatic bearings have yet to find widespread acceptance due to the problems found in tailoring the bearings geometry and size to suit precision engineering applications, while producing porous-structures with consistent and reproducible p...

  7. Future Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Chang, Jun-dong

    2014-01-01

    One of the most important issues in the modern total hip arthroplasty (THA) is the bearing surface. Extensive research on bearing surfaces is being conducted to seek an ideal bearing surface for THA. The ideal bearing surface for THA should have superior wear characteristics and should be durable, bio-inert, cost-effective, and easy to implant. However, bearing surfaces that are currently being implemented do not completely fulfill these requirements, especially for young individuals for whom...

  8. Active Magnetic Bearings – Magnetic Forces

    DEFF Research Database (Denmark)

    KjØlhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model validation and leads to novel approaches in identifying crucial rotor parameters. This is the main focus of this paper, where an intelligent AMB is being developed with the aim of aiding the accurate identification of damping and stiffness coefficients of journal bearings and seals. The main contribution of the work is the characterization of magnetic forces by using two experimental different experimental approaches. Such approaches are investigated and described in details. A special test rig is designed where the 4 poles - AMB is able to generate forces up to 1900 N. The high precision characterization of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input current and bearing gap variations, monitoring the bearing input signals. Advantages and drawbacks of the different methodologies are critically discussed. The experimental determination of linearity ranges is found and the characterization of magnetic forces with a high accuracy of less than 1% is achieved.

  9. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  10. Superconductor bearings, flywheels and transportation

    Science.gov (United States)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  11. Tectonometamorphic evolution of the gneissic Kidal assemblage related to the Pan-African thrust tectonics (Adrar des Iforas, Mali)

    Science.gov (United States)

    Champenois, M.; Boullier, A. M.; Sautter, V.; Wright, L. I.; Barbey, P.

    In the central part of the Adrar des Iforas (Mali), the 2 Ba Eburnean granulatic unit has been thrust above a high-grade gneissic unit, the so-called 'Kidal assemblage', during an early event of the Pan-African orogeny. The Kidal assemblage can be defined as a tectonic mixing of an Eburnean granulitic basement, its sedimentary cover of Middle to Upper Proterozoic age (quartzites, marbles, basalts and metavolcanics) and various pretectonic rocks: ultrabasic to basic rocks, diorites, tonalites. All these rocks have been deformed during at least four main events and metamorphosed together. Thrusting of the Iforas Granulitic Unit above the Kidal assemblage happened during the first event D1. The movement direction was roughly N-S, as shown by the stretching lineation. Some field criteria indicate a sense of displacement towards the north. The lattice preferred orientation of quartz c- and axes indicate that the slip was dominantly on prismatic and probably pyramidal planes along an direction; consequently D1 deformation was achieved at high temperature or low-strain rate. The quartz c- and axes do not show any constant asymmetry, so they do not indicate a sense of shear. Two metamorphic stages have been found in the Kidal assemblage: the first one is characterized by kyanite in aluminous metasediments and by the occurrence of garnet-clinopyroxene-bearing boundis of basic rocks. The P-T range of this event is located at 700 ± 50°C and around 10 Kb. The second event is a syntectonic high temperature (600-650°C) low pressure (3.5 Kb) stage accompanied by migmatization. Such a tangential deformation in barrowian-type metamorphic conditions and with N-S transport direction is known along the entire Trans-Saharan belt and cannot be related in a simple way to the collision between West African Craton and the mobile belt.

  12. Procedure for utilizing the lift and thrust forces of ornithopters

    Science.gov (United States)

    Bezard, C.

    1985-01-01

    This procedure is distinguished by two beating wings which together describe, in space, a succession of interlaced triangles. On these wings, whose incidence varies automatically, identical forces are exerted: simultaneous lift and thrust when they make their descent, which is inclined toward the front of the craft, and lift alone when they make their ascent, which is inclined toward the rear of the craft and follows a slide horizontal movement. A mechanical device makes these movements possible. It includes: two wings with hollow profiles, connected by a framework located above a rigid frame and attached to it by bars with joints. These bars are moved with control rods which gear down the drive force. A mechanism with elastic bands or springs automatically varies the incidence of the wings.

  13. Minimum Thrust Load Control for Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, SØren; Bak, Thomas

    2012-01-01

    — Offshore wind energy capitalizes on the higher and less turbulent wind at sea. Shallow water sites are pro?table for deployment of monopile wind turbines at water depths of up to 30 meters. Beyond 30 meters, the wind is even stronger and less turbulent. At these depths, ?oating wind turbines become pro?table, capable of accessing unexploited wind resources while reaching regions of new consumers. However, ?oating wind turbines are subject to reduced structural stiffness which results in instabilities when standard wind turbine control systems are applied. Based on optimal control, this paper presents a new minimum thrust control strategy capable of stabilizing a ?oating wind turbine. The new control strategy explores the freedom of variable generator speed above rated wind speed. A comparison to the traditional constant speed strategy, shows improvements in structural fore-aft oscillations and power stability when using the new control strategy.

  14. Microstructures and rheology of a calcite-shale thrust fault

    Science.gov (United States)

    Wells, Rachel K.; Newman, Julie; Wojtal, Steven

    2014-08-01

    A thin (˜2 cm) layer of extensively sheared fault rock decorates the ˜15 km displacement Copper Creek thrust at an exposure near Knoxville, TN (USA). In these ultrafine-grained (5 ?m) that exhibit a lattice preferred orientation (LPO) with pores at twin-twin and twin-grain boundary intersections, and (2) ultrafine-grained (0.3 ?m) calcite that exhibits interpenetrating grain boundaries, four-grain junctions and lacks a LPO. Coarse calcite layers crosscut ultrafine-grained layers indicating intermittent vein formation during shearing. Calcite in the fault rock layer is derived from vein calcite and grain-size reduction of calcite took place by plasticity-induced fracture. The ultrafine-grained calcite deformed primarily by diffusion-accommodated grain boundary sliding and formed an interconnected network around shale clasts within the shear zone. The interconnected network of ultrafine-grained calcite indicates that calcite, not shale, was the weak phase in this fault zone.

  15. Data Archive and Portal Thrust Area Strategy Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Chitra; Stephan, Eric G.; Macduff, Matt C.; Hagler, Clay D.

    2014-09-30

    This report describes the Data Archive and Portal (DAP), a key capability of the U.S. Department of Energy's Atmosphere to Electron (A2e) initiative. The DAP Thrust Area Planning Group was organized to develop a plan for deploying this capability. Primarily, the report focuses on a distributed system--a DOE Wind Cloud--that functions as a repository for all A2e data. The Wind Cloud will be accessible via an open, easy-to-navigate user interface that facilitates community data access, interaction, and collaboration. DAP management will work with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud.

  16. Input shaped large thrust maneuver with a tethered debris object

    Science.gov (United States)

    Jasper, Lee; Schaub, Hanspeter

    2014-03-01

    In order to reduce the debris population in LEO, remediation is necessary. An active debris removal method is explored that utilizes fuel reserves on a recently launched upper stage to rendezvous with, and tether to, debris. The system's tethered dynamics are explored using a discretized tether model attached to six degree of freedom end bodies. The thrust output is shaped to remove the spectral energy at the natural frequencies of the tether, significantly reducing the post-burn relative motion between the vehicles. The sensitivity of the input shaping performance due to imperfect knowledge of the debris mass demonstrates that a double notch spanning multiple frequencies around the first mode is necessary to be robust to unknown debris mass. On-orbit simulations show that input shaping helps the tethered system achieve smooth oscillations about a gravity gradient alignment, reducing collision likelihood.

  17. Momentum Management Tool for Low-Thrust Missions

    Science.gov (United States)

    Swenka, Edward R.; Smith, Brett A.; Vanelli, Charles A.

    2010-01-01

    A momentum management tool was designed for the Dawn low-thrust interplanetary spacecraft en route to the asteroids Vesta and Ceres, in an effort to better understand the early creation of the solar system. Momentum must be managed to ensure the spacecraft has enough control authority to perform necessary turns and hold a fixed inertial attitude against external torques. Along with torques from solar pressure and gravity-gradients, ion-propulsion engines produce a torque about the thrust axis that must be countered by the four reaction wheel assemblies (RWA). MomProf is a ground operations tool built to address these concerns. The momentum management tool was developed during initial checkout and early cruise, and has been refined to accommodate a wide range of momentum-management issues. With every activity or sequence, wheel speeds and momentum state must be checked to avoid undesirable conditions and use of consumables. MomProf was developed to operate in the MATLAB environment. All data are loaded into MATLAB as a structure to provide consistent access to all inputs by individual functions within the tool. Used in its most basic application, the Dawn momentum tool uses the basic principle of angular momentum conservation, computing momentum in the body frame, and RWA wheel speeds, for all given orientations in the input file. MomProf was designed specifically to be able to handle the changing external torques and frequent de - saturations. Incorporating significant external torques adds complexity since there are various external torques that act under different operational modes.

  18. Thermal ground water flow systems in the thrust zone in southeastern Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, D.R.

    1983-05-01

    The results of a regional study of thermal and non-thermal ground water flow systems in the thrust zone of southern Idaho and western Wyoming are presented. The study involved hydrogeologic and hydrochemical data collection and interpretation. Particular emphasis was placed on analyzing the role that thrust zones play in controlling the movement of thermal and non-thermal fluids.

  19. Spectroscopy-based thrust sensor for high-speed gaseous flows

    Science.gov (United States)

    Hanson, Ronald K. (Inventor)

    1993-01-01

    A system and method for non-intrusively obtaining the thrust value of combustion by-products of a jet engine is disclosed herein. The system includes laser elements for inducing absorption for use in determining the axial velocity and density of the jet flow stream and elements for calculating the thrust value therefrom.

  20. Theoretical analysis of effects of boundary layer bleed on scramjet thrust

    Science.gov (United States)

    Yue, LianJie; Xu, XianKun; Chang, XinYu

    2013-10-01

    The effects of boundary layer bleed on the scramjet thrust are studied in the present paper. A theoretical model is developed to evaluate the thrust increment and influencing factors. The thrust increment resulting from the bleed is dominated by the rise in total pressure recovery and bleed mass flow rate. The bleed mass flow rate exerts stronger impact on the engine thrust than the total pressure. According to current bleed design, it is a severe challenge for the engine to enhance its total pressure to maintain the original thrust when there is no bleeding. Furthermore, the initial total pressure recovery, fuel mass addition, combustion efficiency and area ratio of engine exit to entrance can affect the contributions of the bleeding to the thrust increment. The scramjet needs a higher rise in total pressure recovery to counteract the negative effect of bleed mass loss at higher initial total pressure recovery or larger area ratio of engine exit/entrance. More heat release results in a little lower demand on the rise in total pressure recovery for maintaining the scramjet thrust. These results will aid in understanding the fundamental mechanism of bleeding on engine thrust.

  1. The paradox of vertical ?2 in foreland fold and thrust belts

    Science.gov (United States)

    Tavani, Stefano

    2014-05-01

    Occurrence of aesthetically appealing thrust systems and associated large scale anticlines, in both active and fossil foreland fold and thrust belts, is commonly interpreted as an evidence for Andersonian compressional framework. Indeed, these structures would testify for a roughly vertical ?3. Such a correlation between thrusts occurrence and stress field orientation, however, frequently fails to explain denser observations at a smaller scale. The syn-orogenic deformation meso-structures hosted in exposed km-scale thrust-related folds, in fact, frequently and paradoxically witness for a syn-thrusting strike-slip stress configuration, with a near-vertical ?2 and a sub-horizontal ?3. This apparent widespread inconsistency between syn-orogenic meso-structures and stress field orientation is here named "the ?2 paradox". A possible explanation for such a paradox is provided by inherited extensional deformation structures commonly developed prior to thrusting, in the flexural foreland basins located ahead of fold and thrust belts. Thrust nucleation and propagation is facilitated and driven by the positive inversion of the extensional inheritances, and their subsequent linkage. This process eventually leads to the development of large reverse fault zones and can occur both in compressive and strike-slip stress configurations.

  2. Dynamics of high-bypass-engine thrust reversal using a variable-pitch fan

    Science.gov (United States)

    Schaefer, J. W.; Sagerser, D. R.; Stakolich, E. G.

    1977-01-01

    The test program demonstrated that successful and rapid forward-to reverse-thrust transients can be performed without any significant engine operational limitations for fan blade pitch changes through either feather pitch or flat pitch. For through-feather-pitch operation with a flight inlet, fan stall problems were encountered, and a fan blade overshoot technique was used to establish reverse thrust.

  3. Experimental Investigation of Unsteady Thrust Augmentation Using a Speaker-Driven Jet

    Science.gov (United States)

    Paxson, Daniel E.; Wernet, Mark P.; John, Wentworth T.

    2007-01-01

    An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold. The first was to expand the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. The second objective was to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and for predicting the thrust augmentation levels that may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (i.e., it has no mean velocity component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the two main measurements techniques employed. These are thrust and digital particle imaging velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called formation time serves as a useful dimensionless parameter by which to characterize the jet and predict performance.

  4. Formation of the Maturín Foreland Basin, eastern Venezuela: Thrust sheet loading or subduction dynamic topography

    Science.gov (United States)

    JáCome, Maria I.; Kusznir, Nick; Audemard, Felipe; Flint, Steve

    2003-10-01

    The Maturín Basin in eastern Venezuela is considered a good example of a peripheral foreland basin. Earthquake and tomographic data indicate that eastern Venezuela is affected by the oblique subduction of the South American Plate underneath the Caribbean Plate. New forward flexural isostatic modeling of eastern Venezuela has been carried out in order to determine whether the Maturín Basin was generated purely by thrust sheet loading from the Serranía and Monagas Foreland Thrust Belts. A sequence of forward models from middle Miocene to Present was generated for 3 profiles across the Serranía del Interior Thrust Belt, the Monagas Foreland Thrust Belt, and the Maturín Foreland Basin. The predictions of these models are constrained using seismic reflection and well data. The flexural isostatic modeling shows that thrust sheet loading associated with the Serranía del Interior and Monagas Foreland thrust belts is insufficient to generate the observed subsidence within the Maturín Basin. Dynamic fluid flow modeling of subduction related dynamic topography of eastern Venezuela has been used to investigate the influence of South American Plate subduction on the generation of the accommodation space observed in the Maturín Basin. Fluid flow modeling of subduction related dynamic topography suggests that the subduction of the South American lithospheric mantle caused downward deflection of the South American crust affecting the Maturín Basin and the Serranía Thrust Belt. This modeling suggests that the Maturín Basin subsidence has two components: 55% related to thrust sheet loading and 45% driven by continental subduction.

  5. The contribution of 3D restoration for the reconstruction of pre-thrusting basin geometries in fold-and-thrust belts

    Science.gov (United States)

    Aquè, R.; Tavarnelli, E.

    2012-04-01

    The three-dimensional (3D) reconstruction of complex geological settings and of original, pre-thrusting basin geometry is one of the challenges for modern structural geology. It has indeed a critical role in many industrial applications, such as in the hydrocarbon exploration. By using commercial specific softwares to produce balanced cross-sections and inferred 3D reconstructions (2DMove™, Gocad™), we modelled a portion of the Umbria-Marche fold-and-thrust belt, in the outer zones of the Northern Apennines of Italy, in order to infer the pre-thrusting geometry of the Mesozoic-Cenozoic extensional basins and to test the applicability of existing computer tools in areas that have experienced the effects of positive tectonic inversion. In the study area, the accurate reconstruction of the structural setting, cross-cut relationships and timing of the deformation, was inferred by using field data, map analysis and cross-section balancing techniques. The structural overprinting relationships among the investigated thrusts made it possible to infer a general piggy-back thrusting sequence, with new thrust faults to the East, developed in the footwall of formerly emplaced thrust sheets, in the West. This allowed to sequentially remove the effects of the deformation for progressively older structures, and to back-strip the thrust sheets in sequential evolutionary steps, in order to reconstruct a viable pre-thrusting template. Four balanced cross-sections have been drawn, providing the initial skeleton for 3D modelling, together with the map trace of the major tectonic features. The cross-sections and the geological map have been digitized and geo-referred in 2D-Move™. Starting from the inferred geometries, a coherent 3D model was built in Gocad™. The surfaces represent post-thrust normal faults, thrust planes, and pre-thrust normal faults, and five key stratigraphic surfaces, from bottom; the base and top of the Calcare Massiccio fm. (Lower Liassic), the base of the Maiolica fm. (Titonian), the base and the top of the Marne a Fucoidi fm. (Upper Albian-Lower Cenomanian). The main pre-thrusting normal faults have been projected using their map and cross-section traces, keeping into account the thickness variation of the selected stratigraphic reference; the complete detail of the condensed and complete stratigraphic sequence was considered in cross-section only. The combination of balanced cross-sections, 3D modelling and restoration techniques, sequentially applied to fold-and-thrust belts, provides effective tools to unravel the geometry of the pre-thrusting geometries and depict the architecture of the sedimentary basins. Even if the surface restoration techniques are strongly dependant on the reconstructed surface geometry (i.e. the mesh of the surface and the obtained cutoffs along a fault surface), the results are comparable to the calculations obtained from classical 2D balancing techniques. The results of this work seem to encourage for further applicability of similar methods to other areas of the Northern Apennines, and to geologically complex areas in general.

  6. Technologies for Thrust Chambers of Future Launch Vehicle Liquid Rocket Engines

    Science.gov (United States)

    Immich, Hans; Alting, Jan; Kretschmer, Joachim; Preclik, Dieter

    2002-01-01

    At Astrium (former DaimlerChrysler Aerospace Dasa) technology developments for thrust chambers of future launch vehicle rocket engines are presently being performed within the frame of German national technology programs sponsored by the German Aerospace Center. The main focus of these technology developments is on thrust chamber technologies for future, reusable or semi-reusable high performance launch vehicle liquid rocket engines. This paper shows the present status and the results of the following thrust chamber technologies investigated experimentally on subscale chamber level: - Development of technologies for increased heat transfer to the thrust chamber wall for - Developments of thermal barrier coatings for the thrust chamber hot gas wall for - For future staged combustion cycle engines a subscale chamber program with a new

  7. Selected Performance Measurements of the F-15 ACTIVE Axisymmetric Thrust-Vectoring Nozzle

    Science.gov (United States)

    Orme, John S.; Sims, Robert L.

    1999-01-01

    Flight tests recently completed at the NASA Dryden Flight Research Center evaluated performance of a hydromechanically vectored axisymmetric nozzle onboard the F-15 ACTIVE. A flight-test technique whereby strain gages installed onto engine mounts provided for the direct measurement of thrust and vector forces has proven to be extremely valuable. Flow turning and thrust efficiency, as well as nozzle static pressure distributions were measured and analyzed. This report presents results from testing at an altitude of 30,000 ft and a speed of Mach 0.9. Flow turning and thrust efficiency were found to be significantly different than predicted, and moreover, varied substantially with power setting and pitch vector angle. Results of an in-flight comparison of the direct thrust measurement technique and an engine simulation fell within the expected uncertainty bands. Overall nozzle performance at this flight condition demonstrated the F100-PW-229 thrust-vectoring nozzles to be highly capable and efficient.

  8. Effects of vibration and shock on the performance of gas-bearing space-power Brayton cycle turbomachinery. 2: Sinusoidal and random vibration

    Science.gov (United States)

    Tessarzik, J. M.; Chiang, T.; Badgley, R. H.

    1973-01-01

    The vibration response of a gas-bearing rotor-support system was analyzed experimentally documented for sinusoidal and random vibration environments. The NASA Brayton Rotating Unit (BRU), 36,000 rpm; 10 KWe turbogenerator; was subjected in the laboratory to sinusoidal and random vibrations to evaluate the capability of the BRU to (1) survive the vibration levels expected to be encountered during periods of nonoperation and (2) operate satisfactorily (that is, without detrimental bearing surface contacts) at the vibration levels expected during normal BRU operation. Response power spectral density was calculated for specified input random excitation, with particular emphasis upon the dynamic motions of the thrust bearing runner and stator. A three-mass model with nonlinear representation of the engine isolator mounts was used to calculate axial rotor-bearing shock response.

  9. Thrust zone architecture and evolution in deep water sediments revealed by seismic reflection data

    Science.gov (United States)

    Butler, R.; Paton, D.; Mortimer, E.

    2007-12-01

    Commercial seismic reflection data from offshore west and SW Africa provide high resolution imagery of thrust zones. These structures have formed at the compressional toe-of-slope parts of 100s km -scale gravitational deformation systems. Two systems are contrasted; the Cretaceous gravity slide system of the Orange basin slope, and part of the active deep water thrust belt of the Niger delta (courtesy of data provided by CGG Veritas). The Orange examples involve c. 500ms TWT (c. 1 km) of sediment while the Niger examples involve about 2 km of pre-tectonic and a further 2 km of syntectonic sediment. In both examples seismic data reveal thrust ramp geometries (in 3D in the Niger case study). In the Orange examples thrust zones are narrow, with stratal reflectors retaining their amplitude up to their terminations. This indicates little heterogeneous distributed strain and the adjacent folding simply relates to fault geometry. In contrast, the Niger examples show trishear fault geometries with significant amplitude degradation into the thrusts. The thrust zones show soft relays along strike with polarity reversals. Although both case studies are formed in multilayer turbitide sand and mud systems, they differ in the extent of syn-deformation deposition. The Orange system was (locally) sediment starved so thrusts emerged onto the palaeo-seabed. The Niger system was continuously swamped by sedimentation. In these situations the thrust zones steepen upwards and do not activate upper thrust flats. Deposition exerted a profound control on fault and fold evolution, controlling thrust localization behavior in these sedimentary multilayers.

  10. Dynamic Spin Rig Upgraded With a Five- Axis-Controlled Three-Magnetic-Bearing Support System With Forward Excitation

    Science.gov (United States)

    Morrison, Carlos R.; Mehmed, Oral

    2003-01-01

    The NASA Glenn Research Center Dynamic Spin Rig is used for experimental evaluation of vibration analysis methods and dynamic characteristics for rotating systems. Measurements are made while rotors are spun and vibrated in a vacuum chamber. The rig has been upgraded with a new active magnetic bearing rotor support and excitation system. This design is expected to provide operational improvements over the existing rig. The rig will be able to be operated in either the old or new configuration. In the old configuration, two ball bearings support the vertical shaft of the rig, with the test article located between the bearings. Because the bearings operate in a vacuum, lubrication is limited to grease. This limits bearing life and speed. In addition, the old configuration employs two voice-coil electromagnetic shakers to apply oscillatory axial forces or transverse moments to the rotor shaft through a thrust bearing. The excitation amplitudes that can be imparted to the test article with this system are not adequate for components that are highly damped. It is expected that the new design will overcome these limitations.

  11. Molecular gas dynamics applied to low-thrust propulsion

    Science.gov (United States)

    Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.

    1993-11-01

    The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.

  12. Large-scale thrusting along the northern margin of the Tibetan Plateau and the southwest Tarim basin: 230 km long active Hotian thrust sheet

    Science.gov (United States)

    Wang, Xin; Suppe, John; Liang, Hang; He, Dengfa

    2014-05-01

    We present the geometry, kinematics and mechanics of large-scale thrusting in the West Kunlun Shan and the southwest Tarim Basin, which is associated with the northward motion of Tibet. The great frontal structure is the ~230km long intact bedding parallel Hotian thrust sheet composed of strata of the Tarim Basin lying above a regional gypsum horizon at the base of the Cenozoic sequence. The toe of the Hotian thrust sheet steps steeply to the surface two thirds of the way across the basin forming the Selibuya-Mazartag hills in the sand desert. The Hotan thrust constitutes one of the longest active intact thrust sheets in the world, showing little internal deformation, however at its back it steps down to a Cambrian detachment at the base of the Paleozoic below a belt of complex high-amplitude anticlines near the front of the West Kunlun Shan, which display break-forward imbricate and wedge structure. More interior, steep reverse faults such as the Tieklik thrust bring older strata to the surface, including Paleozoic basement. The Cambrian detachment also extends northward under the Tarim basin with minor hanging-wall deformation that warps the Hotian Thrust sheet locally, causing the development of growth strata in the Hotian thrust sheet that providesa quantitative record of its motion over these warps. Seismic profiles in the southwest Tarim basin reveal widespread growth strata that record much of the structural history beginning in the early Pliocene Atushi Formation. Ages of seismic reflectors are calibrated to a surface magnetostratigraphic sequence(from Zheng et al., 2000)and traced throughout the seismic grid. The bottom of the growth strata is dated at 3.6 Ma indicating a Pliocene and younger age of thrusting and folding in the southwest Tarim Basin. Structural restoration suggests minimum shortening greater than 35km. The Tieklik thrust consumed at least 10 km in early Pliocene. The fold-and-thrust belts of the southwest Tarim basin shortened >25km in late Pliocene and Pleistocene. Some slip propagated northward into the inland of Tarim basin and developed the thrust surface rupture zone at Selibuya-Mazartag. The overall shortening rate is ~10 mm/yr in the fold-and-thrust belt of the southwest Tarim basin since Pliocene. The strength of the gypsum detachment of the 240 km long Hotian thrust sheet can be estimated from the tapered geometry. Using wedge theory (Suppe 2007) we find that the ratio of critical wedge strength W to detachment strength F is equal to the detachment dip in radians for a wedge of zero surface slope. The current dip of the Hotian detachment is 0.08° or 0.014. Typical wedge strengths are in the range 0.5-1, therefore based on the lack of internal deformation we estimate an upper bound on the strength of the gypsum detachment, expressed as an exceedingly weak effective friction coefficient of less than ~0.0005-0.0015.

  13. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 2: High pressure oxidizer turbo-pump turbine end bearing analysis

    Science.gov (United States)

    Sisk, Gregory A.

    1989-01-01

    The high-pressure oxidizer turbopump (HPOTP) consists of two centrifugal pumps, on a common shaft, that are directly driven by a hot-gas turbine. Pump shaft axial thrust is balanced in that the double-entry main inducer/impeller is inherently balanced and the thrusts of the preburner pump and turbine are nearly equal but opposite. Residual shaft thrust is controlled by a self-compensating, non-rubbing, balance piston. Shaft hang-up must be avoided if the balance piston is to perform properly. One potential cause of shaft hang-up is contact between the Phase 2 bearing support and axial spring cartridge of the HPOTP main pump housing. The status of the bearing support/axial spring cartridge interface is investigated under current loading conditions. An ANSYS version 4.3, three-dimensional, finite element model was generated on Lockheed's VAX 11/785 computer. A nonlinear thermal analysis was then executed on the Marshall Space Flight Center Engineering Analysis Data System (EADS). These thermal results were then applied along with the interference fit and bolt preloads to the model as load conditions for a static analysis to determine the gap status of the bearing support/axial spring cartridge interface. For possible further analysis of the local regions of HPOTP main pump housing assembly, detailed ANSYS submodels were generated using I-DEAS Geomod and Supertab (Appendix A).

  14. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    Science.gov (United States)

    Tang, Jiqiang; Sun, Jinji; Fang, Jiancheng; Shuzhi Sam, Ge

    2013-03-01

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the “O” shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability.

  15. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    International Nuclear Information System (INIS)

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the “O” shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddyich proved that this AHMB has low eddy loss for the gimballing control ability. - Highlights: ? Control methods of rotor driven by AHMBs and their characteristics are researched. ? Optimized stator and rotor of AHMB reduce its eddy losses greatly. ? Presented the factors affecting the eddy losses of AHMBs. ? The good performances of AHMB with low eddy loss are proved by experiments.

  16. A Spaceflight Magnetic Bearing Equipped Optical Chopper with Six-Axis Active Control

    Science.gov (United States)

    Blumenstock, Kenneth A.; Lee, Kenneth Y.; Schepis, Joseph P.

    1998-01-01

    This paper describes the development of an ETU (Engineering Test Unit) rotary optical chopper with magnetic bearings. An ETU is required to be both flight-like, nearly identical to a flight unit without the need for material certifications, and demonstrate structural and performance integrity. A prototype breadboard design previously demonstrated the feasibility of meeting flight performance requirements using magnetic bearings. The chopper mechanism is a critical component of the High Resolution Dynamics Limb Sounder (HIRDLS) which will be flown on EOS-CHEM (Earth Observing System-Chemistry). Particularly noteworthy are the science requirements which demand high precision positioning and minimal power consumption along with full redundancy of coils and sensors in a miniature, lightweight package. The magnetic bearings are unique in their pole design to minimize parasitic losses and utilize collocated optical sensing. The motor is of an unusual disk-type ironless stator design. The ETU design has evolved from the breadboard design. A number of improvements have been incorporated into the ETU design. Active thrust control has been added along with changes to improve sensor stability, motor efficiency, and touchdown and launch survivability. It was necessary to do all this while simultaneously reducing the mechanism volume. Flight-like electronics utilize a DSP (Digital Signal Processor) and contain all sensor electronics and drivers on a single five inch by nine inch circuit board. Performance test results are reported including magnetic bearing and motor rotational losses.

  17. Climate Change, Polar Bears and their management

    OpenAIRE

    Derenchenko, Liza

    2010-01-01

    This is a literature study of polar bears in the context of climate change: what kind of creatures are polar bears, what are the main interpretations of current climate change, how might the polar bear adapt to these changes (feeding strategies) and how are the bears being managed (hunting)? These are relevant questions , since climate change is on the agenda, and polar bears being the apex predators of the Arctic are a key representation of the wildlife there. The third element of polar bear...

  18. Fuzzy control of magnetic bearings

    Science.gov (United States)

    Feeley, J. J.; Niederauer, G. M.; Ahlstrom, D. J.

    1991-01-01

    The use of an adaptive fuzzy control algorithm implemented on a VLSI chip for the control of a magnetic bearing was considered. The architecture of the adaptive fuzzy controller is similar to that of a neural network. The performance of the fuzzy controller is compared to that of a conventional controller by computer simulation.

  19. Lithological and structural investigations of the Finero back thrust

    Science.gov (United States)

    Palzer, M.; Österle, J.; Klötzli, U.

    2012-04-01

    The Ivrea-Verbano-Zone (IVZ, Southern Alps, NW Italy) constitutes a renowned cross-section through the continental crust. It is one of the few places in the world where a complete crustal transect from the palaeo-surface to granulite facies lower crustal conditions and accompanying mantle melt intrusions can be studied directly. It has thus gained an enormous amount of interest and generated a wealth of literature. But the litho-tectonic evolution of the IVZ is still only partly understood and numerous problems remain unsolved. The IVZ is tectonically confined by the Insubric Line to the north and west and by the Cossato-Mergozzo-Brissago Line (CMB) as well as by the Pogallo Line to the east. The outcropping rocks are interpreted as a part of the Adriatic continental crust emplaced during the Alpine orogeny. Lithologies comprise a stratigraphically upper amphibolite facies "kinzigite series" and a lower granulite facies "stronalite series" (both with metapelites, basites, calcsilicate rocks), numerous ultrabasic mantle tectonites and a widespread suite of Permian mantle melt intrusions, the so-called "mafic complex". The largest mantle tectonite of the IVZ is the peridotite body of Finero. This comprises three main lithologies: phlogopite peridotite, "internal gabbro", hornblende peridotite (and minor amounts of pyroxenites, gabbroic dikes, ect.). In spite of many studies, the answers to numerous questions concerning the structure and history of the ultrabasic and basic rocks are still unsatisfying and need to be questioned. Peridotites, gabbros, stronalites and kinzigites can be found from north to south, interpreted as an extensionally thinned intersection through the lower crust. Problems arise from the difficult distinction between the "internal gabbro" within the peridotite body and the "external gabbro", as part of the "mafic complex", the unsatisfying structural interpretations concerning the peridotite body and the relationship between peridotite and "mafic complex". New lithological and structural investigations show, that the former assumption of an Alpine back thrust south of the peridotite body of Finero has to be questioned. Field work and petrography was focused on lithological boundaries, high-T shear zones and the distinction of "internal gabbro" and "external gabbro". Our findings reveal distinct discrepancies to older mapping and interpretations. It can be shown, that the contacts between "external gabbro" and hornblende peridotite are high-temperature features and structurally far more complicate than previously supposed which makes greenschist facies Alpine back thrusting most unlikely. The contacts almost certainly are magmatic or at least formed at mantle temperatures. They are thus pre-Alpine in age. Alternatively to the back thrust model, we present a model of a folded multi-layered peridotite body which seems to be inter fingered with the "external gabbro". Our findings definitely corroborate the possibility that the "internal gabbro", the hornblende peridotite and the "external gabbro" form a single magmatic series.

  20. Journal and Wave Bearing Impedance Calculation Software

    Science.gov (United States)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  1. Tectonic evolution of the frontal Longmen San thrust belt

    Science.gov (United States)

    Chang, C.-P.; Xu, X.-W.; Yuan, R.-M.; Li, K.; Sun, X.-Z.; Chen, W.-S.

    2012-04-01

    The Longmen Shan thrust belt in the eastern margin of the Tibetan Plateau underwent deformation associated with the eastward growth of the Tibetan Plateau. Many geological features indicate that this range is not a typical active convergent mountain belt. Some of the features that indicated that this range is atypical are the fact that it is a young, high mountain, has a thickened crust with a very low GPS shortening rate, and has no corresponding foreland subsidence. Many geologists believe that the crustal thickening that occurred in this area is caused by ductile deformation rather than by thrust faulting or crustal shortening. This hypothesis successfully explains why the upper crust is largely uplifted although the horizontal shortening at the surface is still very small. However, some recent studies based on quantitative structural analysis and a balanced cross-section indicates that a large increase in shortening occurs near the range front, and the structural relief produced by folds and faults is also closely related to the topography of this front. These imply that upper-crustal deformation is the primary mechanism for generating uplift and topography in the foothills of Longmen Shan Range. This idea obviates the need for lower-crustal flow and inflation to produce and maintain the Longmen Shan Range. Scientists have created many different conceptions for the mode of tectonic deformation across the eastern margin of the Tibetan Plateau. However, almost all scientists agree that the eastern Tibetan Plateau has an exceptionally low mechanical strength, inherited from Mesozoic tectonics of the region. On the 12th of May 2008, Mw 7.9 Wenchuan earthquake occurred in this area provides a direct manifestation of the active crustal shortening and documents the importance of active crustal shortening in developing and supporting the Longmen Shan Range. The co-seismic surface rupture pattern of Wenchuan earthquake, involving multiple structures, is one of the most complicated patterns of recent great earthquakes. Our detail field investigations reveal that the surface rupture of the Wenchuan earthquake cascaded through several pre-existing fault segments. The displacement amount, the rupture pattern and the stress orientation calculated from the fault slickenside striations between the different segments are all different. Some secondary faults can also be observed between the segments. These faults are partially active and control the development of river terraces and the shape of streams. We suggest that the multi-segment rupturing model is a better approximation than a single-segment model for estimating the maximum magnitude of the Longmen Shan fault zone.

  2. Analytical guidance for spacecraft relative motion under constant thrust using relative orbit elements

    Science.gov (United States)

    Bevilacqua, Riccardo; Lovell, Thomas Alan

    2014-09-01

    Proximity control of modern nano-spacecraft often relies on low and discrete thrust engines that are characterized by low consumption, and generate on-off force profiles. New guidance solutions must take into account the nature of this type of orbital engines. This paper introduces novel analytical guidance solutions for spacecraft relative motion considering continuous, on-off thrust, and using relative orbit elements as a geometrical representation of the dynamics. The solutions provide the relative state vector at any given time, accommodating any thrust magnitude along the three directions of the relative frame, as well as generic activation times and durations. Relative orbit elements geometrically interpret key aspects of the relative motion, including for example, the relative ellipse size, and the evolution of its center in time. The new solutions provide the guidance designer with a direct visualization of the thrust effects on the relative motion geometry, offering new possibilities for analytical guidance in the presence of continuous thrust engines, such as low thrust engines on nano-spacecraft. The paper presents the analytical solutions, and tests their effectiveness using a sample thrust profile based on input-shaping, previously developed by one of the authors using classical Cartesian coordinates. The use of relative orbit elements shows substantial benefits and added simplicity with respect to Cartesian-based approaches, holding the promise for straightforward onboard spacecraft implementation. The software developed for this research will be available open source1

  3. A Preliminary Foil Gas Bearing Performance Map

    Science.gov (United States)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2006-01-01

    Recent breakthrough improvements in foil gas bearing load capacity, high temperature tribological coatings and computer based modeling have enabled the development of increasingly larger and more advanced Oil-Free Turbomachinery systems. Successful integration of foil gas bearings into turbomachinery requires a step wise approach that includes conceptual design and feasibility studies, bearing testing, and rotor testing prior to full scale system level demonstrations. Unfortunately, the current level of understanding of foil gas bearings and especially their tribological behavior is often insufficient to avoid developmental problems thereby hampering commercialization of new applications. In this paper, a new approach loosely based upon accepted hydrodynamic theory, is developed which results in a "Foil Gas Bearing Performance Map" to guide the integration process. This performance map, which resembles a Stribeck curve for bearing friction, is useful in describing bearing operating regimes, performance safety margins, the effects of load on performance and limiting factors for foil gas bearings.

  4. Trends in Controllable Oil Film Bearings

    DEFF Research Database (Denmark)

    Santos, Ilmar Technical University of Denmark,

    2011-01-01

    This work gives an overview about the theoretical and experimental achievements of mechatronics applied to oil film bearings, with the aim of: controlling the lateral vibration of flexible rotating shafts; modifying bearing dynamic characteristics, as stiffness and damping properties; increasing the rotational speed ranges by improving damping and eliminating instability problems, for example, by compensating cross-coupling destabilizing effects; reducing startup torque and energy dissipation in bearings; compensating thermal effects. It is shown that such controllable bearings can act as "smart" components and be applied to rotating machines with the goal of avoiding unexpected stops of plants, performing rotordynamic tests and identifying model parameters "on site". Emphasis is given to the controllable lubrication (active lubrication) applied to different types of oil film bearings, i.e., as tilting-pad bearings, multirecess journal bearings and plain bearings.

  5. Alex the Bear Goes to Child Care

    Medline Plus

    Full Text Available ... Quality Child Care Videos Child Care Aware Public Service Announcements Meet Alex the Bear Resources Resources for ... Quality Child Care Videos Child Care Aware Public Service Announcements Meet Alex the Bear Child Care Aware ...

  6. Alex the Bear Goes to Child Care

    Medline Plus

    Full Text Available ... Watch Quality Child Care Videos Child Care Aware Public Service Announcements Meet Alex the Bear Resources Resources ... Watch Quality Child Care Videos Child Care Aware Public Service Announcements Meet Alex the Bear Child Care ...

  7. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management

    Science.gov (United States)

    Hopkins, John B., III; Koch, Paul L.; Schwartz, Charles C.; Ferguson, Jake M.; Greenleaf, Schuyler S.; Kalinowski, Steven T.

    2012-01-01

    We used genetic and stable isotope analysis of hair from free-ranging black bears (Ursus americanus) in Yosemite National Park, California, USA to: 1) identify bears that consume human food, 2) estimate the diets of these bears, and 3) evaluate the Yosemite human–bear management program. Specifically, we analyzed the isotopic composition of hair from bears known a priori to be food-conditioned or non-food-conditioned and used these data to predict whether bears with an unknown management status were food-conditioned (FC) or non-food-conditioned (NFC). We used a stable isotope mixing model to estimate the proportional contribution of natural foods (plants and animals) versus human food in the diets of FC bears. We then used results from both analyses to evaluate proactive (population-level) and reactive (individual-level) human–bear management, and discussed new metrics to evaluate the overall human–bear management program in Yosemite. Our results indicated that 19 out of 145 (13%) unknown bears sampled from 2005 to 2007 were food-conditioned. The proportion of human food in the diets of known FC bears likely declined from 2001–2003 to 2005–2007, suggesting proactive management was successful in reducing the amount of human food available to bears. In contrast, reactive management was not successful in changing the management status of known FC bears to NFC bears, or in reducing the contribution of human food to the diets of FC bears. Nine known FC bears were recaptured on 14 occasions from 2001 to 2007; all bears were classified as FC during subsequent recaptures, and human–bear management did not reduce the amount of human food in the diets of FC bears. Based on our results, we suggest Yosemite continue implementing proactive human–bear management, reevaluate reactive management, and consider removing problem bears (those involved in repeated bear incidents) from the population.

  8. Effects of bearing deadbands on bearing loads and rotor stability

    Science.gov (United States)

    1984-01-01

    A generic model of a turbopump, simplified to bring out these effects is examined. This model demonstrates that bearing deadbands which are of the same order of magnitude or larger than the center-of-mass offset of a rotor due to mass imbalances cause significantly different dynamic behavior than would be expected of a linear, dynamical system. This fundamentally nonlinear behavior yields altered stability characteristics and altered bearing loading tendencies. It is shown that side forces can enhance system stability in the small, i.e., as long as the mass imbalance does not exceed some thresholds value or as long as no large, impulsive disturbances cause the motion to depart significantly from the region of stability. Limit cycles are investigated in this report and techniques for determining these limit cycles are developed. These limit cycles are the major source of bearing loading and appear in both synchronous and nonsynchronous forms. The synchronous limit cycles are driven by rotor imbalances. The nonsynchronous limit cycles (also called subsynchronous whirls) are self-excited and are the sources of instability.

  9. Space Shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank

    Science.gov (United States)

    Vonpragenau, G. L. (inventor)

    1984-01-01

    The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.

  10. Is tongue thrust that develops during orthodontic treatment an unrecognized potential road block?

    Directory of Open Access Journals (Sweden)

    Chawla H

    2006-06-01

    Full Text Available The role of tongue thrust has often been suspected, long debated and largely dispelled as a primary etiological factor of malocclusion. However, tongue thrust may contribute to poor occlusal intercuspation both during and after treatment. A tongue thrust may also develop during orthodontic mechanotherapy as a result of the transient creation of intra and interarch spaces and this little recognized phenomenon was found to occur in many randomly followed cases. In many instances, this seemingly adaptive and secondary response of the tongue posture and function may persist and thereafter impede the resolution of intra and interarch problems.

  11. Numerical modeling of fold-and-thrust belts: Applications to Kuqa foreland fold belt, China

    Science.gov (United States)

    Yin, H.; Morgan, J. K.; Zhang, J.; Wang, Z.

    2009-12-01

    We constructed discrete element models to simulate the evolution of fold-and-thrust belts. The impact of rock competence and decollement strength on the geometric pattern and deformation mechanics of fold-and-thrust belts has been investigated. The models reproduced some characteristic features of fold-and-thrust belts, such as faulted detachment folds, pop-ups, far-traveled thrust sheets, passive-roof duplexes, and back thrusts. In general, deformation propagates farther above a weak decollement than above a strong decollement. Our model results confirm that fold-and-thrust belts with strong frictional decollements develop relatively steep and narrow wedges formed by closely spaced imbricate thrust slices, whereas fold belts with weak decollements form wide low-taper wedges composed of faulted detachment folds, pop-ups, and back thrusts. Far-traveled thrust sheets and passive-roof duplexes are observed in the model with a strong lower decollement and a weak upper detachment. Model results also indicate that the thickness of the weak layer is critical. If it is thick enough, it acts as a ductile layer that is able to flow under differential stress, which helps to partition deformation above and below it. The discrete element modeling results were used to interpret the evolution of Kuqa Cenozoic fold-and-thrust belt along northern Tarim basin, China. Seismic and well data show that the widely distributed Paleogene rock salt has a significant impact on the deformation in this area. Structures beneath salt are closely spaced imbricate thrust and passive-roof duplex systems. Deformation above salt propagates much farther than below the salt. Faults above salt are relatively wide spaced. A huge controversy over the Kuqa fold-and-thrust belt is whether it is thin-skinned or thick-skinned. With the insights from DEM results, we suggest that Kuqa structures are mostly thin-skinned with Paleogene salt as decollement, except for the rear part near the backstop, where the faults below the salt are thick-skinned and involve the Paleozoic basement. We think that most basement-involved sub-salt faults, if not all, formed later than the above salt-detached thin-skinned structures.

  12. Thrust allocation in semi-submersible rig using model predictive control

    OpenAIRE

    Johannessen, Irene

    2007-01-01

    A thrust allocation system is used to determine how the desired forces, computed by a high level control sytem, can be distributed among the thrusters. The main goal of the thrust allocation is to obtain the desired force, but other objectives can also be included. Such secondary goals can be to minimize fuel consumption, keep wear and tear of the thruster to a minimum and avoid overloading the power systems. The thrust allocation should also take forbidden sectors and actuator rate con...

  13. Tethered towing using open-loop input-shaping and discrete thrust levels

    Science.gov (United States)

    Jasper, Lee; Schaub, Hanspeter

    2014-12-01

    Asteroid retrieval, satellite servicing, and debris removal concepts often rely on a thrusting vehicle to redirect and steer a passive object. One effective way to tow the object is through a tether. This study employs a discretized tether model attached to six degree-of-freedom end bodies. To reduce the risk of a post-burn collision between the end bodies, discrete thrust input shaping profiles are considered including a Posicast input and a bang-off-bang thrust profile. These input shaping techniques attain desirable collision avoidance performance by inducing a tumbling or gravity gradient motion of the tethered formation. Their performance is compared to an earlier frequency notched thruster profile.

  14. Performance characterization of a helicon double layer thruster using direct thrust measurements

    OpenAIRE

    Pottinger, Sabrina; Lappas, Vaios; Charles, Christine; Boswell, Rod

    2011-01-01

    Abstract The performance of a Helicon Double Layer Thruster (HDLT) has been characterised using a pendulum type thrust stand and retarding field energy analyser. Data recorded for a fixed propellant flow rate of 16 sccm of krypton and fixed magnetic field topology show that the thrust generated increases linearly with increasing radio frequency input power over a range of 250 W to 650 W. Over the power range investigated thrust levels of approximately 1 to 2.8 mN were achieved. A maximum e...

  15. A METHOD OF COMPUTER CALCULATION OF AXIAL THRUST AND INTERNAL LEAKAGE IN CENTRIFUGAL PUMPS

    Directory of Open Access Journals (Sweden)

    Waldemar J?dral

    1991-01-01

    Full Text Available A simple method of calculation of radial pressure distribution on a disc rotating in a casing and then the axial thrust in centrifugal pumps is presented. The method is based on integral relations and allows to estimate rapidly the axial thrust value with accuracy sufficient for technical applications (the error less than 15%. The method allows to compute simultaneously Internal leakage losses in centrifugal pumps. The presented method may also be useful for the calculation of the pressure distribution and the axial thrust in other rotating machines, such as compressors, gas turbines, water turbines, hydraulic torque convertors and paper-pulp mills.

  16. SOURCE TERM TARGETED THRUST FY 2005 NEW START PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-10-05

    While a significant amount of work has been devoted to developing thermodynamic data. describing the sorption of radionuclides to iron oxides and other geomedia, little data exist to describe the interaction of key radionuclides found in high-level radioactive waste with the uranium surfaces expected in corroded spent nuclear fuel (SNF) waste packages. Recent work indicates that actinide adsorption to the U(VI) solids expected in the engineered barrier system may play a key role in the reduction of dissolved concentrations of radionuclides such as Np(V). However, little is known about the mechanism(s) of adsorption, nor are the thermodynamic data available to represent the phenomenon in predictive modeling codes. Unfortunately, this situation makes it difficult to consider actinide adsorption to the U(VI) silicates in either geochemical or performance assessment (PA) predictions. The primary goal in the Source Term Targeted Thrust area is to ''study processes that control radionuclide release from the waste form''. Knowledge of adsorption of actinides to U(VI) silicate solids its and parameterization in geochemical models will be an important step towards this goal.

  17. Variable Flavor Number Scheme for Final State Jets in Thrust

    CERN Document Server

    Pietrulewicz, Piotr; Hoang, Andre H; Jemos, Ilaria; Mateu, Vicent

    2014-01-01

    We present results for mass effects coming from secondary radiation of heavy quark pairs related to gluon splitting in the thrust distribution for e+e- collisions. The results are given in the dijet limit where the hard interaction scale and the scales related to collinear and soft radiation are widely separated. We account for the corresponding fixed-order corrections at O(alpha_s^2) and the summation of all logarithmic terms related to the hard, collinear and soft scales as well as the quark mass at N3LL order. We also remove the O(Lambda_QCD) renormalon in the partonic soft function leading to an infrared evolution equation with a matching condition related to the massive quark threshold. The quark mass can be arbitrary, ranging from the infinitely heavy case, where decoupling takes place, down to the massless limit where the results smoothly merge into the well known predictions for massless quarks. Our results are formulated in the framework of factorization theorems for e+e- dijet production and provide...

  18. Centaur engine gimbal friction characteristics under simulated thrust load

    Science.gov (United States)

    Askew, J. W.

    1986-01-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  19. Pressure thrust and pressure shock arrestor (mixer-diffusor device)

    International Nuclear Information System (INIS)

    A mixer-diffusor device for use in nuclear reactors to control the heat and pressure energy resulting from an accident is attached to the end of a hollow conduit from which a gaseous medium such as steam is to be expelled under pressure. The end of the hollow conduit is submerged under the surface of a body of liquid such as water. The mixer-diffusor comprises a conical baffle having an apex extending into the open end of the conduit. A skirt member is positioned around the end of the conduit so than an annular opening is formed between the wall of the conduit and one edge of the skirt member. The skirt member is tapered outwardly at essentially the same angle as the taper of the conical baffle. When the gaseous medium is expelled from the end of the conduit, the gaseous medium flows against and over the conical baffle thereby reducing the thrust forces of the conduit. As the gaseous medium passes the edge of the end of the conduit, the gaseous medium tends to suck the liquid through the annular opening. The liquid is then mixed with the gaseous medium causing the gaseous medium to form a plurality of small bubbles which are expelled from the opening between the skirt and the conical member. In this manner, the gaseous medium is substantially mixed and diffused with the liquid. (auth)

  20. The vented pressure fed gas journal bearing

    International Nuclear Information System (INIS)

    Hydrodynamic-type gas journal bearings with stabilising venting slots are often operated hydrostatically during starting-up as a means of 'jacking'. A simplified mathematical treatment of the circumferential gas flows in a vented, pressure-fed journal bearing is used to predict the relationship between load capacity, bearing geometry and gas properties. (author)

  1. The relationship analysis of thrust structure and sandstone type uranium deposits at northern margin of qaidam basin

    International Nuclear Information System (INIS)

    The thrust belt at northern margin of the Qaidam basin is prospective area for finding sandstone-type uranium deposits. The structure is complicated, post-reformation is strong and thrust structure develops in this area. Single thrust structure, opposite thrust structure, recoil structure and slope zone are the most common structural patterns. The different of tectonic style causes differences in occurrence and thickness of sedimentary strata and effects the metallogenic environment of sandstone-type uranium deposits. By analyzing the different between the tectonic style and uranium mineralization, it shows that uranium prospecting works deployment vary with the different of thrust tectonic styles. (authors)

  2. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  3. Load-bearing glass structures

    OpenAIRE

    Leskina, Yana

    2010-01-01

    The purpose of this thesis was prove the possibility of using glass in buildings as a load-bearing element. For centuries, its use is limited to functions such as window glazing. In recent decades, the improvement of science and industry has allowed the use glass as a structural element. However, the design of such structures is still problematic. The study was conducted at the architectural workshop "Studio 44" as an example of glass covering of courtyards in the reconstruction of the Ge...

  4. Skeletal manifestations of bear scavenging.

    Science.gov (United States)

    Carson, E A; Stefan, V H; Powell, J F

    2000-05-01

    In many partially or fully skeletonized forensic cases, postmortem animal damage is simply attributed to rodents or carnivores; little effort is made to determine the general size or assign a genus to the scavenger. As one of the largest wild carnivores to inhabit mountainous and forested areas throughout the continental United States, Alaska, and Canada, black bears (Ursus americanus) must be considered possible suspects when skeletonized remains are located showing marks of carnivore damage. Since 1995, three cases of known bear scavenging have been referred to the Maxwell Museum's Laboratory of Human Osteology by the New Mexico Office of the Medical Investigator for skeletal analysis. These cases comprise a total of seven individuals, and all of the remains were deposited in high altitude forests of New Mexico along the western border with Arizona with a minimum of 4 months exposure before recovery. When analyzed, all cases shared a similar pattern of element survivorship and damage. We suggest that bears can be distinguished from members of the canid family, the other common scavenger of human remains, based on the representation of skeletal elements at the scene. Rates and patterns of damage are not as accurate as element recovery in the discrimination of scavenger genus. Use of this information should allow forensic anthropologists to better understand the postmortem taphonomic processes that shaped the skeletal remains, and hopefully prevent misdiagnoses of perimortem trauma on elements not typically scavenged by canids. PMID:10855954

  5. Fault Tolerant Homopolar Magnetic Bearings

    Science.gov (United States)

    Li, Ming-Hsiu; Palazzolo, Alan; Kenny, Andrew; Provenza, Andrew; Beach, Raymond; Kascak, Albert

    2003-01-01

    Magnetic suspensions (MS) satisfy the long life and low loss conditions demanded by satellite and ISS based flywheels used for Energy Storage and Attitude Control (ACESE) service. This paper summarizes the development of a novel MS that improves reliability via fault tolerant operation. Specifically, flux coupling between poles of a homopolar magnetic bearing is shown to deliver desired forces even after termination of coil currents to a subset of failed poles . Linear, coordinate decoupled force-voltage relations are also maintained before and after failure by bias linearization. Current distribution matrices (CDM) which adjust the currents and fluxes following a pole set failure are determined for many faulted pole combinations. The CDM s and the system responses are obtained utilizing 1D magnetic circuit models with fringe and leakage factors derived from detailed, 3D, finite element field models. Reliability results are presented vs. detection/correction delay time and individual power amplifier reliability for 4, 6, and 7 pole configurations. Reliability is shown for two success criteria, i.e. (a) no catcher bearing contact following pole failures and (b) re-levitation off of the catcher bearings following pole failures. An advantage of the method presented over other redundant operation approaches is a significantly reduced requirement for backup hardware such as additional actuators or power amplifiers.

  6. Development of sputtered techniques for thrust chambers, task 1. [evaluation of filler materials for regeneratively cooled thrust chambers

    Science.gov (United States)

    Mullaly, J. R.; Schmid, T. E.; Hecht, R. J.

    1974-01-01

    Filler materials proposed for use in the sputter fabrication regeneratively cooled thrust chambers were evaluated. Low melting castable alloys, CERROBEND. CERROCAST, and CERROTRU, slurry applied SERMETEL 481 and flame-sprayed aluminum were investigated as filler materials. Sputter deposition from a cylindrical cathode inverted magnestron was used to apply an OFHC copper closeout layer to filled OFHC copper ribbed-wall cylindrical substrates. The sputtered closeout layer structure was evaluated with respect to filler material contamination, predeposition machining and finishing operations, and deposition parameters. The application of aluminum by flame-spraying resulted in excessiver filler porosity. Though the outgassing from this porosity was found to be detrimental to the closeout layer structure, bond strengths in excess of 10,500 psi were achieved. Removal of the aluminum from the grooves was readily accomplished by leaching in a 7.0 molar solution of sodium hydroxide at 353 K. Of the other filler materials evaluated, CERROTRU was found to be the most suitable material with respect to completely filling the ribbed-wall cylinders and vacuum system compatibility. However, bond contamination resulted in low closeout layer bond strength with the CERROTRU filler. CERROBEND, CERROCAST, and SERMETEL 481 were found to be unacceptable as filler materials.

  7. Tailoff thrust and impulse imbalance between pairs of Space Shuttle solid rocket motors

    Science.gov (United States)

    Jacobs, E. P.; Yeager, J. M.

    1975-01-01

    The tailoff thrust and impulse imbalance between pairs of solid rocket motors is of particular interest for the Space Shuttle Vehicle because of the potential control problems that exist with this asymmetric configuration. Although a similar arrangement of solid rocket motors was utilized for the Titan Program, they produced less than one-half the thrust level of the Space Shuttle at web action time, and the overall vehicle was symmetric. Since the Titan Program does provide the most applicable actual test data, 23 flight pairs were analyzed to determine the actual tailoff thrust and impulse imbalance experienced. The results were scaled up using the predicted web action time thrust and tailoff time to arrive at values for the Space Shuttle. These values were then statistically treated to obtain a prediction of the maximum imbalance one could expect to experience during the Shuttle Program.

  8. Deepwater fold and thrust belt SE Nansha Trough, the South China Sea

    Science.gov (United States)

    Bing, Han; Benduo, Zhu; Ling, Wan

    2014-05-01

    The deepwater fold and thrust belt SE Nansha Trough, the South China Sea, hosting a significant number of proven hydrocarbon accumulations, is one of the most important areas of deepwater development and production. In the past two decades, there has been long-standing academic interest in the controlling mechanism of deepwater folding-and-thrusting. Two mechanisms have been discussed as primary controlling factors: 1) basement-driven crustal shortening and 2) gravity-related delta tectonics. In this study, based on reprocessed and post-stack depth-migrated regional 2D seismic profiles across the deepwater fold and thrust belt and previous research achievements, their geological structural interpretation reveal the features of compressional, syn-depositional deformation. Consequently, the dynamic mechanism and its evolution models for the deepwater fold and thrust tectonics are established.

  9. Efficient invariant-manifold, low-thrust planar trajectories to the Moon

    Science.gov (United States)

    Mingotti, G.; Topputo, F.; Bernelli-Zazzera, F.

    2012-02-01

    Ballistic two-impulse trajectories to the Moon. Invariant-manifold and low-thrust trajectories to the Moon. Ballistic capture defined through attainable sets. Moon-perturbed Sun-Earth restricted three body problem statement.

  10. Hydraulic axial thrust of Kaplan turbines; Spinta assiale in transitorio per una turbina Kaplan

    Energy Technology Data Exchange (ETDEWEB)

    Monari, Luca; Rossi, Giovanni; Dacco`, Gianni [Voith Riva Hydro Spa, Milan (Italy)

    1997-05-01

    The transient calculation capabilities are more and more developed and allow to predict the trend of all main quantities than define the operation of hydraulic machines, including the hydraulic axial thrust of Kaplan turbines.

  11. A torsion balance for impulse and thrust measurements of micro-Newton thrusters.

    Science.gov (United States)

    Yang, Yuan-Xia; Tu, Liang-Cheng; Yang, Shan-Qing; Luo, Jun

    2012-01-01

    This paper reports the performance of a torsion-type thrust stand suitable for studies of micro-Newton thrusters, which is developed for ground testing the micro-Newton thruster in Chinese Test of the Equivalence Principle with Optical readout space mission. By virtue of specially suspending design and precise assembly of torsion balance configuration, the thrust stand with load capacity up to several kilograms is able to measure the impulse bit up to 1350 ?Ns with a resolution of 0.47 ?Ns, and the average thrust up to 264 ?N with a resolution of 0.09 ?N in both open and close loop operation. A pulsed plasma thruster, the preliminary prototype developed for Chinese TEPO space mission, is tested by the thrust stand, and the results reveal that the average impulse bit per pulse is measured to be 58.4 ?Ns with a repeatability of about 5%. PMID:22299984

  12. rf power system for thrust measurements of a helicon plasma source.

    Science.gov (United States)

    Kieckhafer, Alexander W; Walker, Mitchell L R

    2010-07-01

    A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows good transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement. PMID:20687758

  13. Static performance and noise tests on a thrust reverser for an augmentor wing aircraft

    Science.gov (United States)

    Harkonen, D. L.; Marrs, C. C.; Okeefe, J. V.

    1974-01-01

    A 1/3 scale model static test program was conducted to measure the noise levels and reverse thrust performance characteristics of wing-mounted thrust reverser that could be used on an advanced augmentor wing airplane. The configuration tested represents only the most fundamental designs where installation and packaging restraints are not considered. The thrust reverser performance is presented in terms of horizontal, vertical, and resultant effectiveness ratios and the reverser noise is compared on the basis of peak perceived noise level (PNL) and one-third octave band data (OASPL). From an analysis of the model force and acoustic data, an assessment is made on the stopping distance versus noise for a 90,900 kg (200,000 lb) airplane using this type of thrust reverser.

  14. Earthquake focal mechanism and oceanic thrust in Easter Microplate Analogy with Oman ophiolite

    Science.gov (United States)

    Delouis, B.; Nicolas, A.; Ildefonse, B.; Philip, H.

    Previous work has suggested compression and thrust faulting along the northern boundary of the Easter microplate due to its motion relative to the Nazca plate. Inversion of the P and SH seismic waves related to a recent Ms=7.1 earthquake located along the northern boundary of the Easter microplate indicates a thin sliver of crust thrusting at a shallow angle towards the South, giving support to this interpretation. The Oman ophiolite where similar thrusts have been mapped has been recently interpreted as being derived from similar microplate environment [Boudier et al., 1997]. This interpretation 1) provides possible tests to document the existence of oceanic thrusts near microplates, and 2) suggests a new solution to the problem of how many ophiolites could have obtained oceanic detachment faults which will favour obduction.

  15. Polar Bears International: Wrangel Island, Russia

    Science.gov (United States)

    This site describes the ongoing research of the polar bears in the Russian High Arctic. Wrangel Island with neighboring small island, Herald Island, are the key reproductive areas for the Chukchi-Alaskan polar bear population. Marine areas and Wrangel and Herald islands provide optimum foraging habitats for polar bears, and polar bear densities in these marine habitats are high all year round. Approximately 350-500 pregnant female polar bears construct their maternity dens on Wrangel and Herald islands every fall, emerging with their cubs in spring. The research is described in terms of goals and objectives, structure, methods, equipment, staff, and implementations.

  16. A motor with superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Superconducting bearings may be one of the most promising near term applications of HTSC. For use at liquid nitrogen temperature and below, they offer the advantage of lower energy consumption and higher reliability. Different bearing configurations have been proposed. But in order to substitute for conventional bearings a further increase in the critical current density of the superconductor and improved bearing concepts are necessary. For this it is necessary to take into account the peculiarities of the interaction between permanent magnets and bulk superconductors. As a contribution to this programme we present the model of a motor with superconducting magnetic bearings. (orig.)

  17. Polar Bears International : Wrangel Island, Russia

    Science.gov (United States)

    2007-12-12

    This site describes the ongoing research of the polar bears in the Russian High Arctic. Wrangel Island with neighboring small island, Herald Island, are the key reproductive areas for the Chukchi-Alaskan polar bear population. Marine areas and Wrangel and Herald islands provide optimum foraging habitats for polar bears, and polar bear densities in these marine habitats are high all year round. Approximately 350-500 pregnant female polar bears construct their maternity dens on Wrangel and Herald islands every fall, emerging with their cubs in spring. The research is described in terms of goals and objectives, structure, methods, equipment, staff, and implementations.

  18. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage

    OpenAIRE

    Hailer, F.; Kutschera, V. E.; Hallstro?m, B. M.; Klassert, D.; Fain, S. R.; Leonard, Jennifer A.; Arnason, U.; Janke, A.

    2012-01-01

    Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pl...

  19. Reflection seismic interpretation of deepwater fold-thrust structures, Niger Delta

    Science.gov (United States)

    Akingbade, Atinuke Olubunmi

    Structural and stratigraphic interpretation of 2D and 3D seismic data sets across the zone of compression referred to as the eastern fold-thrust belt (EFTB) suggests that the EFTB is characterized by a regional imbricate fan-thrust system and fault propagated folds. The imbricate fan-thrust system is subdivided into three distinct imbricate fan-thrust subsystems. The EFTB is interpreted to be the compressional downdip part of an active deformation cell. This deformation cell is characterized by an up-dip area of extensional deformation, a translational middle area, and a down-dip area of compressional deformation (FTBs). An estimated 26% shortening is accommodated by these thrust and fold structures. It is anticipated that the amount of extension updip, which is the focus of future studies, will approximately equal to the estimated amount of compression within the EFTB. Seismic facies analysis of one of the thrust blocks within the EFTB reveals the existence of alternating depth intervals of high and low amplitude seismic event packages. These are interpreted as channel-levee systems alternating with thin shale drapes (beds). They represent confined gravity flow subsystems within basin floor fan complex. The seismic facies at deeper stratigraphic levels are interpreted as unconfined gravity flows also part of the basin floor fan complex. In terms of prospective hydrocarbon traps, both structural and stratigraphic traps could exist. The structural traps will probably include simple four-way dip closures (anticlinal folds) or thrust fault-assisted closures. Estimated shale gouge ratio (SGR) across the thrust plane ranges between 10% and 50%. Areas of 20% SGR and above have a high probability of sealing and trapping hydrocarbon. The existence of a deformed thrust plane zone however introduces a risk factor to these prospective thrust assisted closures. Channel-levee systems of deepwater environments proximal to the EFTB, or other basins analogous to the Niger Delta, are associated with prolific hydrocarbon fields. It is therefore probable that the interplay of sand and shale bodies within the interpreted multi-story channel-levee system will enhance chances that stratigraphic traps could significantly contribute to the hydrocarbon prospectivity in this fold-thrust belt.

  20. A Control Approach for Thrust-Propelled Underactuated Vehicles and its Application to VTOL Drones

    OpenAIRE

    Hua, Minh-duc; Hamel, Tarek; Morin, Pascal; Samson, Claude

    2009-01-01

    A control approach is proposed for a class of underactuated vehicles in order to stabilize reference trajectories either in thrust direction, velocity, or position. The basic modeling assumption is that the vehicle is propulsed via a thrust force along a single body-fixed direction and that it has full torque actuation for attitude control (i.e., a typical actuation structure for aircrafts, Vertical Take-Off and Landing (VTOL) vehicles, submarines, etc.). Additional assumptions on the externa...

  1. A METHOD OF COMPUTER CALCULATION OF AXIAL THRUST AND INTERNAL LEAKAGE IN CENTRIFUGAL PUMPS

    OpenAIRE

    Waldemar J?dral

    1991-01-01

    A simple method of calculation of radial pressure distribution on a disc rotating in a casing and then the axial thrust in centrifugal pumps is presented. The method is based on integral relations and allows to estimate rapidly the axial thrust value with accuracy sufficient for technical applications (the error less than 15%). The method allows to compute simultaneously Internal leakage losses in centrifugal pumps. The presented method may also be useful for the calculation of the pressure d...

  2. Design, fabrication and thrust measurement of a micro liquid monopropellant thruster

    Science.gov (United States)

    Huh, Jeongmoo; Kwon, Sejin

    2014-10-01

    A liquid monopropellant MEMS thruster was designed, fabricated and tested. For application on a nanosatellite for orbit control, a liquid propellant MEMS thruster delivers better performance than a solid thruster. Two issues must be addressed for a liquid monopropellant MEMS thruster: high energy content of the monopropellant to overcome the excessive heat loss associated with the small scale of the thruster, and repeatability of generated thrust force. The present study proposed blending 90?wt% hydrogen peroxide with ethanol at an oxidizer to fuel ratio of 30 to enhance the energy content of the propellant. The thruster structure was constructed using glass layers that were individually patterned by wet etching. The decomposition catalyst was separately prepared by wet impregnation of the active material, Pt, on the gamma alumina pellets and inserted into the thrust chamber before the UV bonding process of the glass layers. The firing test of the assembled MEMS thruster was conducted and thrust was measured both with ethanol blended hydrogen peroxide and pure hydrogen peroxide as a reference monopropellant. The measured thrusts were approximately 30?mN for both 1.7?ml?min?1 flow rate of blended hydrogen peroxide and 2.0?ml?min?1 flow rate of pure hydrogen peroxide. The measured thrust for 1.7?ml?min?1 pure hydrogen peroxide was approximately 24?mN. The measured thrust was 40% less than the design thrust for both monopropellants. The uncertainty of the thrust was less with blended monopropellant than with pure hydrogen peroxide.

  3. Spillage Drag Estimation and Drag-Thrust Accounting for a Missile with Air Breathing Propulsion

    OpenAIRE

    Olsen, Jon

    2012-01-01

    Air intake related aerodynamic aspects of an air breathing cruise missile are analyzed. A method for thrust and drag accounting is established, and, based on that, a partial simulation model for the thrust and intake spillage drag force of the missile is developed. The model combines wind tunnel data with analytical data. The intake spillage force has two components, pre entry force and cowl force. The pre entry force can be computed relatively easily, while the cowl force depends strongly up...

  4. Lubrication for high load duplex bearings

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, R.G.

    1997-08-01

    Three ES and H-compatible lubricants (Environment, Safety and Health) for high load duplex bearing applications were evaluated and compared against trichlorotrifluoroethane (Freon) deposition of low molecular weight polytetrafluoroethylene (PTFE) bearing lubricant extracted from Vydax{trademark}. Vydax is a product manufactured by DuPont consisting of various molecular weights of PTFE suspended in trichlorotrifluoroethane (Freon) which is an ozone-depleting solvent. Bearings with Supercritical CO{sub 2} deposition of PTFE extracted from Vydax AR/IPA, bearings with titanium carbide coated balls, and bearings with diamond-like carbon races and retainers were evaluated. Bearings with Supercritical CO{sub 2} deposition of PTFE from Vydax AR/IPA performed as well as bearings with Freon deposition of PTFE from Freon-based Vydax.

  5. The Relationship Between Thrust Faults and Structural Fractures in the Tarim Basin, China

    Directory of Open Access Journals (Sweden)

    Jianfa Han

    2011-12-01

    Full Text Available It is a problem that how thrust faults control the distribution of structural fractures in the exploration and development of fracture oil-reservoirs. One section of fracture outcrops in Ordovician carbonites is measured in the north margin of Tarim Basin, and two sections cross the Fault I in the central Tarim Basin are measured and processed in the paper. The development rule of structural fractures can be depicted by the fracture density, and the fractures near fault can be divided into two regions: the fracture zone controlled by fault and the fracture zone controlled by regional stress field. The ratio of fault-controlled fracture zone width to the throw of thrust fault is a very important parameter to depict the development of fractures influenced by thrust fault. The ratio is related to the mechanism, scale and throw of the thrust fault. The width of fault-controlled fracture zone can be predicted based on the mechanism and throw of the thrust fault. It is very helpful to the exploration and development of fault-controlled fracture reservoirs.
    Key words: Structural fractures; Fault-controlled fracture zone; Thrust fault; Fracture density

  6. a Revision to the Tectonics of the Flores Back-Arc Thrust Zone, Indonesia?

    Science.gov (United States)

    Tikku, A. A.

    2011-12-01

    The Flores and Bali Basins are continental basins in the Flores back-arc thrust zone associated with Eocene subduction of the Indo-Australian plate beneath the Sunda plate followed by Miocene to present-day inversion/thrusting. The basins are east of Java and north of the islands of Bali, Lombok, Sumbawa and Flores in the East Java Sea area of Indonesia. The tectonic interpretation of these basins is based on seismic, bathymetry and gravity data and is also supported by present-day GPS measurements that demonstrate subduction is no longer active across the Flores thrust zone. Current thinking about the area is that the Flores Basin (on the east end of the thrust zone) had the most extension in the back-arc thrust and may be a proto-oceanic basin, though the option of a purely continental extensional basin can not be ruled out. The Bali Basin (on the west end of the thrust zone) is thought to be shallower and have experienced less continental thinning and extension than the Flores Basin. Depth to basement estimates from recently collected marine magnetic data indicate the depth of the Bali Basin may be comparable to the depth of the Flores Basin. Analysis of the marine magnetic data and potential implications of relative plate motions will be presented.

  7. Static internal performance evaluation of several thrust reversing concepts for 2D-CD nozzles

    Science.gov (United States)

    Rowe, R. K.; Duss, D. J.; Leavitt, L. D.

    1984-01-01

    Recent performance testing of the two-dimensional convergent-divergent (2D-CD) nozzle has established the concept as a viable alternative to the axisymmetric nozzle for advanced technology aircraft. This type of exhaust system also offers potential integration and performance advantages in the areas of thrust reversing and vectoring over axi-symmetric nozzles. These advantages include the practical integration of thrust reversers which operate not only to reduce landing roll but also operate in-flight for enhanced maneuvering and thrust spoiling. To date there is a very limited data base available from which criteria can be developed for the design and evaluation of this type of thrust reverser system. For this reason, a static scale model test was conducted in which five different thrust reverser designs were evaluated. Each of the five models had varying performance/integration requirements which dictated the five different designs. Some of the parameters investigated in this test included; variable angle external cascade vanes, fixed angle internal cascade vanes, variable position inner doors, external slider doors and internal slider valves. In addition, normal force and yawing moment generation was investigated using the thrust reverser system. Selected results from this test will be presented and discussed in this paper.

  8. Fully Suspended, Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig With Forced Excitation

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Montague, Gerald; Duffy, Kirsten; Mehmed, Oral; Johnson, Dexter; Jansen, Ralph

    2004-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig, a significant advancement in the Dynamic Spin Rig (DSR), is used to perform vibration tests of turbomachinery blades and components under rotating and nonrotating conditions in a vacuum. The rig has as its critical components three magnetic bearings: two heteropolar radial active magnetic bearings and a magnetic thrust bearing. The bearing configuration allows full vertical rotor magnetic suspension along with a feed-forward control feature, which will enable the excitation of various natural blade modes in bladed disk test articles. The theoretical, mechanical, electrical, and electronic aspects of the rig are discussed. Also presented are the forced-excitation results of a fully levitated, rotating and nonrotating, unbladed rotor and a fully levitated, rotating and nonrotating, bladed rotor in which a pair of blades was arranged 180 degrees apart from each other. These tests include the bounce mode excitation of the rotor in which the rotor was excited at the blade natural frequency of 144 Hz. The rotor natural mode frequency of 355 Hz was discerned from the plot of acceleration versus frequency. For nonrotating blades, a blade-tip excitation amplitude of approximately 100 g/A was achieved at the first-bending critical (approximately 144 Hz) and at the first-torsional and second-bending blade modes. A blade-tip displacement of 70 mils was achieved at the first-bending critical by exciting the blades at a forced-excitation phase angle of 908 relative to the vertical plane containing the blades while simultaneously rotating the shaft at 3000 rpm.

  9. ??????–????????????????—????????? Evolution and Later Reformation of Early-Middle Jurassic Coal-Bearing Basins in Western Mongolia—A Case Study from the Shinejinst Basin

    Directory of Open Access Journals (Sweden)

    ???

    2013-08-01

    Full Text Available ?????????????????????????????–??????????????????????????????????????????????????????–?????????????????????????–???????????????–??????????????????????????????????(??????????????????????????????????????????????????????????????????????–???????????????????????????????????????????????–?????????????????????????????????????????????????????????????Owing to variation of the basement structures, syn-orogenic stress fields and regional tectonic evolution, the Early-Middle Jurassic coal-bearing basins in western Mongoliashow different geometric and kinematic features from the simultaneous molasse basins in easternMongolia. The west segment of the Mongolia-Okhotsk suture is a NW- striking transfer zone, which constraints two transpressional fracture belts developing in western Mongolia. The tran- spressional fracture consists of the oblique thrust with NWW- to nearly E-W-striking, and the NW-orientated oblique thrust-strike slipping fault. The front fault of the oblique thrust controls a coal-forming basin in its lower plate. The ba- sin-controlling fault thrusts north(eastwards, with the basin dynamics resulting from a northward push-compression caused by closure of Tethyan ocean in the end of Early Jurassic in western China and followed continent-continent col- lision. The evolution of the Shinejinst Basin can be divided into three stages, which experiences four episodes of refor- mation after its reversion. The coal-search direction for the Lower-Middle Jurassic large coal fields in western Mongo- lia should be a kind of the South Sub-Basin of Shinejinst Basin, which could be indicated by three characters: 1 the basin-controlling faults being NWW- to nearly E-W-striking oblique thrust as well as NE-striking sinistral shearing fault, 2 to be situated at upper side of normal fault in Early Cretaceous extension, and 3 to be located along the piedmont belt of thrust or foothill of range in the Cenozoic uplifting.

  10. Calf stretching in non-weight bearing versus weight bearing.

    Science.gov (United States)

    Dinh, N V; Freeman, H; Granger, J; Wong, S; Johanson, M

    2011-03-01

    Limited ankle dorsiflexion passive range of motion (DF PROM) has been associated with lower extremity overuse injuries. Therefore, clinicians often prescribe stretching exercises to increase ankle DF PROM. However, there is limited evidence to indicate if any particular gastrocnemius stretching exercise results in greater improvement in DF PROM. The aim of this study was to determine if gastrocnemius stretching in non-weight bearing (NWB) or weight bearing (WB) results in a greater increase of ankle DF PROM. 28 healthy volunteers, aged 18-55 years, who exhibited less than 10 degrees of ankle DF PROM completed the study. Participants were randomized into 2 stretching groups: NWB and WB. Both groups completed a 3-week home gastrocnemius stretching program, consisting of 5 repetitions held for 30 s each, 2 times daily. Participants' ankle DF PROM was measured with a blinded standard goniometer in NWB and WB positions before and after participation in a 3-week home gastrocnemius stretching program. Two 3-way mixed model ANOVAs demonstrated no significant difference in ankle DF PROM between the NWB and WB groups for either the NWB measurement condition (p=0.49) or WB measurement condition (p=0.86). Gastrocnemius stretching exercises performed in NWB or WB were equally effective in increasing ankle DF PROM. PMID:21181639

  11. Hunting Bears with a Microscope

    Science.gov (United States)

    Steve Case

    In this online activity, students use lichens and tardigrades (water bears) to investigate their use as bioindicators of key air pollutants. When lichens are exposed to some kinds of air pollutants, especially to sulfur dioxide, the lichens are injured and die. The lichen coverage in a specified area should be a good indicator of the level of air quality. The diversity of the tardigrade species on the lichens will be used to develop another level for bioindication of air quality. Sections of this activity include: introduction, sulfur dioxide and lichens, sampling procedure for lichen coverage, tardigrade sampling, sampling procedure for tardigrades, calculating diversity using the Simpson Diversity Index, interpretation of results, and references.

  12. Current leads and magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J.R.

    1993-12-31

    Since the discovery of high-temperature superconductors (HTSs), Argonne National Laboratory (ANL) has been active in a broad spectrum of activities in developing these materials for applications. Work at every stage of development has involved industrial collaboration in order to accelerate commercialization. While most of the development work has been devoted to improving the properties of current-carrying wires, some effort has been devoted to applications that can utilize HTSs with properties available now or in the near future. In this paper, I discuss advances made at my laboratory in the area of current leads and magnetic bearings.

  13. Interference Fit Life Factors for Roller Bearings

    Science.gov (United States)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2008-01-01

    The effect of hoop stresses in reducing cylindrical roller bearing fatigue life was determined for various classes of inner ring interference fit. Calculations were performed for up to seven interference fit classes for each of ten bearing sizes. Each fit was taken at tightest, average and loosest values within the fit class for RBEC-5 tolerance, thus requiring 486 separate analyses. The hoop stresses were superimposed on the Hertzian principal stresses created by the applied radial load to calculate roller bearing fatigue life. The method was developed through a series of equations to calculate the life reduction for cylindrical roller bearings based on interference fit. All calculated lives are for zero initial bearing internal clearance. Any reduction in bearing clearance due to interference fit was compensated by increasing the initial (unmounted) clearance. Results are presented as tables and charts of life factors for bearings with light, moderate and heavy loads and interference fits ranging from extremely light to extremely heavy and for bearing accuracy class RBEC 5 (ISO class 5). Interference fits on the inner bearing ring of a cylindrical roller bearing can significantly reduce bearing fatigue life. In general, life factors are smaller (lower life) for bearings running under light load where the unfactored life is highest. The various bearing series within a particular bore size had almost identical interference fit life factors for a particular fit. The tightest fit at the high end of the RBEC-5 tolerance band defined in ANSI/ABMA shaft fit tables produces a life factor of approximately 0.40 for an inner-race maximum Hertz stress of 1200 MPa (175 ksi) and a life factor of 0.60 for an inner-race maximum Hertz stress of 2200 MPa (320 ksi). Interference fits also impact the maximum Hertz stress-life relation.

  14. Low-friction coatings for air bearings in fuel cell air compressors

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O. O.; Fenske, G. R.; Erdemir, A.; Woodford, J.; Sitts, J.; Elshot, K.; Griffey, K.

    2000-01-06

    In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the US Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. The authors present here an evaluation of the Argonne coating for air compressor thrust bearings. With two parallel 440C stainless steel discs in unidirectional sliding contact, the NFC reduced the frictional force four times and the wear rate by more than two orders of magnitude. Wear mechanism on the uncoated surface involved oxidation and production of iron oxide debris. Wear occurred on the coated surfaces primarily by a polishing mechanism.

  15. Control Study for Five-axis Dynamic Spin Rig Using Magnetic Bearings

    Science.gov (United States)

    Choi, Benjamin; Johnson, Dexter; Provenza, Andrew; Morrison, Carlos; Montague, Gerald

    2003-01-01

    The NASA Glenn Research Center (GRC) has developed a magnetic bearing system for the Dynamic Spin Rig (DSR) with a fully suspended shaft that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust magnetic bearing and the associated control system were integrated into the DSR to provide magnetic excitation as well as non-contact mag- netic suspension of a 15.88 kg (35 lb) vertical rotor with blades to induce turbomachinery blade vibration. For rotor levitation, a proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, more blade vibration amplitude, and energy savings for the system. The test results of a variety of controllers that were demonstrated up to 10.000 rpm are shown. Furthermore, rotor excitation operation and conceptual study of active blade vibration control are addressed.

  16. P- T conditions of the cratonic rocks and Eastern Ghats granulites along the Eastern Ghats Frontal Thrust, Jeypore (Orissa), India

    Science.gov (United States)

    Mahato, Sadhana; Bhattacharya, Abhijit

    2010-11-01

    The Eastern Ghats Frontal Thrust (EGFT) demarcates the boundary between the Archaean/Paleoproterozoic cratonic rocks to the west, and the Meso/Neoproterozoic granulites of the Eastern Ghats Mobile Belt (EGMB) to the east. At Jeypore (Orissa, India), mafic schists and granites of the cratonic domain document a spatial increase in the metamorphic grade from greenschist facies (garnet, clinozoisite - absent varieties) in the foreland to amphibolite facies (clinozoisite- and garnet-bearing variants) progressively closer to the EGFT. Across the EGFT, the enderbite-charnockite gneisses and mafic granulites of EGMB preserves a high-grade granulite facies history; amphibolite facies overprinting in the enderbite-charnockite gneisses at the cratonic fringe is restricted to multi-layered growth of progressively Al, Ti - poor hornblende at the expense of pyroxene and plagioclase. In associated mafic granulites, the granulite facies gneissic layering is truncated by sub-centimeter wide shear bands defined by synkinematic hornblende + quartz intergrowth, with post-kinematic garnet stabilized at the expense of hornblende and plagioclase. Proximal to the contact, these granulites of the Eastern Ghats rocks are intruded by dolerite dykes. In the metadolerites, the igneous assemblage of pyroxene-plagioclase is replaced by intergrown hornblende + quartz ± calcite that define the thrust-related fabric and are in turn mantled by coronal garnet overgrowth, while scapolite is stabilized at the expense of recrystallized plagioclase and calcite. Petrogenetic grid considerations and thermobarometry of the metamorphic assemblages in metadolerites intrusive into granulites and mafic schists within the craton confirm that the rocks across the EGFT experienced prograde heating ( Tmax value ˜650-700 °C at P ˜ 6-8 kbar) along the prograde arm of a seemingly clockwise P- T path. Since the dolerites were emplaced post-dating the granulite facies metamorphism, the prograde heating is correlated with renewed metamorphism of the granulites proximal to the EGFT. A review of available age data from rocks neighboring the EGFT suggests that the prograde heating of the cratonic granites and the re-heating of the Eastern Ghats granulites are Pan - African in age. The re-heating may relate to an Early Paleozoic Pan-Gondwanic crustal amalgamation of older terrains or reactivation along an old suture.

  17. Active thrusting within the Himalayan orogenic wedge in the Kashmir Himalayas

    Science.gov (United States)

    Gavillot, Y.

    2011-12-01

    Numerous lines of evidence indicate that significant distributed deformation occurs within the Himalayan fold-thrust belt. Active thrust faults lie as much as 100 km north of the active thrust front. Whereas geochemical and topographical data provide circumstantial evidence for internal deformation in Nepal, new mapping demonstrates that an active emergent thrust fault system extends stepwise from the Balakot-Bagh fault (source of the Mw 7.6 2005 Kashmir earthquake in Pakistan) more than 200 km to the southeast on the Riasi fault (RT). The RT with a fault length of ~70 km, is a ~50° northeast-dipping reverse fault system, which sits ~40 km north of the deformation front in the Kashmiri Himalaya of northwest India. Our mapping demonstrates that the Riasi thrust consists of two strands. The northern strand, Main Riasi thrust (MRT) strand, places Precambrian Sirban Limestone on folded unconsolidated (Pleistocene?) conglomerates. Undeformed younger alluvial deposits (Holocene?) overlyie the MRT, which implies no Holocene (?) surface rupture on this strand. To the south, the surface expression of the Riasi frontal thrust (RFT) includes a fault scarp and offset ~10 ka terrace deposits dated with 36CL depth profiles. OSL and 10Be depth profile dating indicate an age range between ~80 ka to ~30 ka for the Bidda terrace in the upper plate of the MRT, yielding estimates of long-term uplift rate of 5.0 ± 2.2 mm/yr, slip rate of 6.4 ± 2.9 mm/yr, and shortening rate of 4.1 ± 1.9mm/yr. Given a ~34 mm/yr India-Asia convergence rate in the NW Himalaya, our results indicate that internal deformation within the orogenic belt accounts for at least ~10% of the total India-Eurasia plate convergence, with remaining shortening absorbed mainly at the deformation front.

  18. Magnetic bearings-state of the art

    Science.gov (United States)

    Fleming, David P.

    1991-01-01

    Magnetic bearings have existed for many years, at least in theory. Earnshaw's theorem, formulated in 1842, concerns stability of magnetic suspensions, and states that not all axes of a bearing can be stable without some means of active control. In Beam's widely referenced experiments, a tiny (1/64 in diameter) rotor was rotated to the astonishing speed of 800,000 rps while it was suspended in a magnetic field. Despite a long history, magnetic bearings have only begun to see practical application since about 1980. The development that finally made magnetic bearings practical was solid state electronics, enabling power supplies and controls to be reduced in size to where they are now comparable in volume to the bearings themselves. An attempt is made to document the current (1991) state of the art of magnetic bearings. The referenced papers are large drawn from two conferences publications published in 1988 and 1990 respectively.

  19. Effect of Rolling Bearing Refurbishment and Restoration on Bearing Life and Reliability

    Science.gov (United States)

    Zaretsky, Erwin V.; Branzai, Emanuel V.

    2005-01-01

    For nearly four decades it has been a practice in commercial and military aircraft application that rolling-element bearings removed at maintenance or overhaul be reworked and returned to service. The work presented extends previously reported bearing life analysis to consider the depth (Z(45)) to maximum shear stress (45) on stressed volume removal and the effect of replacing the rolling elements with a new set. A simple algebraic relationship was established to determine the L(10) life of bearing races subject to bearing rework. Depending on the extent of rework and based upon theoretical analysis, representative life factors (LF) for bearings subject to rework ranged from 0.87 to 0.99 the lives of new bearings. Based on bearing endurance data, 92 percent of the bearing sets that would be subject to rework would result in L(10) lives equaling and/or exceeding that predicted for new bearings with the remaining 8 percent having the potential to achieve the analytically predicted life of new bearings when one of the rings is replaced at rework.. The potential savings from bearing rework varies from 53 to 82 percent that of new bearings depending on the cost, size and complexity of the bearing.

  20. Electromechanical properties of radial active magnetic bearings

    OpenAIRE

    Antila, Matti

    1998-01-01

    Nonideal properties of the electromagnetic actuators in radial active magnetic bearings are studied. The two dimensional nonlinear stationary finite element method is used to determine the linearised parameters of a radial active magnetic bearing. The method is verified on two test machines. The accuracy is 10-15 % in the magnetic saturation region. The effect of magnetic saturation on the bearing dynamics is studied based on the root locus diagrams of the closed loop system. These diagrams s...

  1. Single axis controlled attraction type magnetic bearing

    OpenAIRE

    Horikawa, O.; Da Silva, I.

    2002-01-01

    This paper presents a new type of magnetic bearing with active control only in axial direction. The bearing uses two pairs of permanent magnets working in attraction mode to restrict the radial motion and a control system composed of two electromagnets, a gap sensor and a controller to keep the axis in a fixed axial position. The principle, the dynamic model for axial motion and the control system for this bearing are presented. Finally, by experiments conducted in a prototype, the effectiven...

  2. Static forces in a superconducting magnet bearing

    Energy Technology Data Exchange (ETDEWEB)

    Stoye, P.; Fuchs, G. [Institut fuer Festkoerper- und Werkstofforschung, Dresden (Germany); Gawalek, W.; Goernert, P. [Institut fuer Physikalische Hochtechnologie, Jena (Germany); Gladun, A. [Technische Univ., Dresden (Germany)

    1995-11-01

    Static levitation forces and stiffnesses in a superconducting bearing consisting of concentric ring magnets and a superconducting YBaCuO ring are investigated. In the field-cooled mode a levitation force of 20 N has been achieved. The axial and radial stiffnesses have values of 15 N/mm and 10 N/mm, respectively. An arrangement with two bearings supporting a high speed shaft is now under development. A possible application of superconducting magnetic bearings is flywheels for energy storage.

  3. A miniature tilting pad gas lubricated bearing

    Science.gov (United States)

    Sixsmith, H.; Swift, W. L.

    1983-12-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  4. Cantilever mounted resilient pad gas bearing

    Science.gov (United States)

    Etsion, I. (inventor)

    1978-01-01

    A gas-lubricated bearing is described, employing at least one pad mounted on a rectangular cantilever beam to produce a lubricating wedge between the face of the pad and a moving surface. The load-carrying and stiffness characteristics of the pad are related to the dimensions and modulus of elasticity of the beam. The bearing is applicable to a wide variety of types of hydrodynamic bearings.

  5. Nonlinear Dynamic Response of Compliant Journal Bearings

    OpenAIRE

    Glavatskih S.; Cha M.

    2012-01-01

    This paper investigates the dynamic response of the compliant tilting pad journal bearings subjected to synchronous excitation. Bearing compliance is affected by the properties of pad liner and pad support geometry. Different unbalance eccentricities are considered. It is shown that bearing dynamic response is non-linear. Journal orbit complexity increases with pad compliance though the orbit amplitudes are marginally affected at low loads. At high loads, the journal is forced to operate outs...

  6. Permanent Magnetic Bearing for Spacecraft Applications

    Science.gov (United States)

    Morales, Winfredo; Fusaro, Robert; Kascak, Albert

    2008-01-01

    A permanent, totally passive magnetic bearing rig was designed, constructed, and tested. The suspension of the rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm using an air impeller. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  7. Technical Development Path for Foil Gas Bearings

    Science.gov (United States)

    DellaCorte, Christopher

    2008-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  8. Studies of Operating Frequency Effects On Ejector-based Thrust Augmentation in a Pulse Detonation Engine

    Science.gov (United States)

    Landry, K.

    2005-01-01

    Studies were performed in order to characterize the thrust augmentation potential of an ejector in a Pulse Detonation Engine application. A 49-mm diameter tube of 0.914-m length was constructed with one open end and one closed end. Ethylene, oxygen, and nitrogen were introduced into the tube at the closed end through the implementation of a fast mixing injector. The tube was completely filled with a stoichiometric mixture containing a one to one molar ratio of nitrogen to oxygen. Ethylene was selected as the fuel due to its detonation sensitivity and the molar ratio of the oxidizer was chosen for heat transfer purposes. Detonations were initiated in the tube through the use of a spark ignition system. The PDE was operated in a multi-cycle mode at frequencies ranging from 20-Hz to 50-Hz. Baseline thrust measurements with no ejector present were performed while operating the engine at various frequencies and compared to theoretical estimates. The baseline values were observed to agree with the theoretical model at low operating frequencies and proved to be increasingly lower than the predicted values as the operating frequency was increased. The baseline thrust measurements were observed to agree within 15 percent of the model for all operating frequencies. A straight 152-mm diameter ejector was installed and thrust augmentation percentages were measured. The length of the ejector was varied while the overlap percentage (percent of the ejector length which overlapped the tube) was maintained at 25 percent for all tests. In addition, the effect of ejector inlet geometry was investigated by comparing results with a straight inlet to those of a 38-mm inlet diameter. The thrust augmentation of the straight inlet ejector proved to be independent of engine operating frequency, augmenting thrust by 40 percent for the 0.914-m length ejector. In contrast, the rounded lip ejector of the same length seemed to be highly dependent on the engine operating frequency. An optimum operating frequency observed with the rounded inlet occurred at an operating frequency of 30-Hz, resulting in thrust augmentation percentages greater than 100 percent. The effect that the engine operating frequency had on thrust augmentation levels attained with an ejector was characterized and optimum performance parameters were established. Insight into the frequency dependent nature of the ejector performance was pursued. Suggestions for future experiments which are needed to fully understand the means in which thrust augmentation is achieved in a PDE-ejector configuration were noted.

  9. Dynamic modelling and response characteristics of a magnetic bearing rotor system with auxiliary bearings

    Science.gov (United States)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1995-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied.

  10. Design of optimal earth pole-sitter transfers using low-thrust propulsion

    Science.gov (United States)

    Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R.; Biggs, James D.

    2012-10-01

    Recent studies have shown the feasibility of an Earth pole-sitter mission using low-thrust propulsion. This mission concept involves a spacecraft following the Earth's polar axis to have a continuous, hemispherical view of one of the Earth's poles. Such a view will enhance future Earth observation and telecommunications for high latitude and polar regions. To assess the accessibility of the pole-sitter orbit, this paper investigates optimum Earth pole-sitter transfers employing low-thrust propulsion. A launch from low Earth orbit (LEO) by a Soyuz Fregat upper stage is assumed after which solar electric propulsion is used to transfer the spacecraft to the pole-sitter orbit. The objective is to minimize the mass in LEO for a given spacecraft mass to be inserted into the pole-sitter orbit. The results are compared with a ballistic transfer that exploits manifold-like trajectories that wind onto the pole-sitter orbit. It is shown that, with respect to the ballistic case, low-thrust propulsion can achieve significant mass savings in excess of 200 kg for a pole-sitter spacecraft of 1000 kg upon insertion. To finally obtain a full low-thrust transfer from LEO up to the pole-sitter orbit, the Fregat launch is replaced by a low-thrust, minimum time spiral, which provides further mass savings, but at the cost of an increased time of flight.

  11. Exhumation of Greater Himalayan rock along the main central thrust in Nepal: Implications for channel flow

    Science.gov (United States)

    Robinson, D.M.; Pearson, O.N.

    2006-01-01

    South-vergent channel flow from beneath the Tibetan Plateau may have played an important role in forming the Himalaya. The possibility that Greater Himalayan rocks currently exposed in the Himalayan Fold-Thrust Belt flowed at mid-crustal depths before being exhumed is intriguing, and may suggest a natural link between orogenic processes operating under the Tibetan Plateau and in the fold-thrust belt. Conceptual and numeric models for the Himalayan-Tibetan Orogen currently reported in the literature do an admirable job of replicating many of the observable primary geological features and relationships. However, detailed observations from Greater Himalayan rocks exposed in the fold-thrust belt's external klippen, and from Lesser Himalayan rocks in the proximal footwall of the Main Central Thrust, suggest that since Early Miocene time, it may be more appropriate to model the evolution of the fold-thrust belt using the critical taper paradigm. This does not exclude the possibility that channel flow and linked extrusion of Greater Himalayan rocks may have occurred, but it places important boundaries on a permissible time frame during which these processes may have operated. ?? The Geological Society of London 2006.

  12. Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube

    Science.gov (United States)

    Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.

    2006-01-01

    A parametric investigation has been made of thrust augmentation of a 1 in. diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentation ratios for each ejector were fitted using a polynomial response surface, from which the optimum ratios of ejector diameter to detonation tube diameter, and ejector length and nose radius to ejector diameter, were found. Thrust augmentation ratios above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.

  13. Development of a Lightweight Thrust Chamber Assembly Utilizing In-Situ Reinforced Silicon Nitride

    Science.gov (United States)

    Elvander, J.; Wherley, B.; Claflin, S.

    1999-06-01

    The paper describes the status of the Light Weight Thrust Chamber Assembly (LWTCA) program currently underway at Boeing Rocketdyne Propulsion and Power, under contract with the US Air Force Research Laboratory. The goal of the program is to demonstrate technology which will lead to a 40% reduction in weight (including the nozzle), a 50% reduction in cost, a 75% reduction in part count and a 3% increase in specific impulse on a full scale, 400 klbf thrust LOX/hydrogen booster engine. The demonstration will be performed through the use of manufacturing technology demonstrator hardware and 60 klbf thrust hot-fire tests. The primary means to achieving these goals is by using in-situ reinforced silicon nitride for structural components. Silicon nitride is an advanced ceramic material that has high specific strength and fracture toughness, and can be cast to near- net part shape. Tests to validate the material properties of in-situ reinforced silicon nitride are discussed, along with the resulting changes to traditional thrust chamber design as a result of the improved properties. The progress towards manufacturing and hot-fire testing a thrust chamber assembly from the material is also described.

  14. Hollow Cathode and Low-Thrust Extraction Grid Analysis for a Miniature Ion Thruster

    International Nuclear Information System (INIS)

    Miniature ion thrusters are well suited for future space missions that require high efficiency, precision thrust, and low contamination in the mN to sub-mN range. JPL's miniature xenon Ion (MiXI) thruster has demonstrated an efficient discharge and ion extraction grid assembly using filament cathodes and the internal conduction (IC) cathode. JPL is currently preparing to incorporate a miniature hollow cathode for the MiXI discharge. Computational analyses anticipate that an axially upstream hollow cathode location provides the most favorable performance and beam profile; however, the hot surfaces of the hollow cathode must be sufficiently downstream to avoid demagnetization of the cathode magnet at the back of the chamber, which can significantly reduce discharge performance. MiXI's ion extraction grids are designed to provide >3 mN of thrust; however, previous to this effort, the low-thrust characteristics had not been investigated. Experimental results obtained with the MiXI-II thruster (a near replica or the original MiXI thruster) show that sparse average discharge plasma densities of 5 x 1015 5x1016 m-3 allow the use of very low beamlet focusing extraction voltages of only 250 500 V, thus providing thrust levels as low as 0.03 mN for focused beamlet conditions. Consequently, the thrust range thus far demonstrated by MiXI in this and other tests is 0.03 1.54 mN.

  15. Strain gradients in zones of ductile thrusting: Insights from the External Hellenides

    Science.gov (United States)

    Xypolias, P.; Chatzaras, V.; Koukouvelas, I. K.

    2007-09-01

    New finite strain data from a thrust-sense shear zone, which extends for 600 km along-strike in the high-pressure belt of the External Hellenides (Greece), were used to describe the variation of ductile strain with structural distance ( D) from the basal thrust. Sampling was carried out along four traverses across the central and southeastern parts of the zone. The strain ratio in XZ sections ( R XZ) of 120 samples was obtained using the theta-curve, the mean object ellipse and the mean radial length methods. All methods give very consistent results. Based on these results, four strain profiles were constructed depicting a non-linear increase of R XZ values with proximity to the basal thrust. These profiles in combination with published strain data from the northwestern parts of the zone enabled us to obtain an empirical logarithmic function describing the relationship between R XZ and D. This function includes only one varying parameter, which represents the strain gradient in linear R XZ - ln D space. The value of strain gradient is directly correlated with the strain level in the thrust zone and provides information for strain localization at its base. The proposed function may also be used for quantifying the strain profiles of ductile to semi-ductile thrust zones in other orogenic belts such as the Alps, the Appalachians and Himalaya.

  16. Analytical studies of blowdown thrust force and dynamic response of pipe at pipe rupture accident

    International Nuclear Information System (INIS)

    The motion of a pipe due to blowdown thrust when the pipe broke is called pipe whip. In LWR power plants, by installing restraints, the motion of a pipe when it broke is suppressed, so that the damage does not spread to neighboring equipment by pipe whip. When the pipe whip of a piping system in a LWR power plant is analyzed, blowdown thrust and the dynamic response of a pipe-restraint system are calculated with a computer. The blowdown thrust can be calculated by using such physical quantities as the pressure, flow velocity, density and so on in the system at the time of blowdown, obtained by the thermal-fluid analysis code at LOCA. The dynamic response of a piping-restraint system can be determined by the stress analysis code using finite element method taking the blowdown thrust as an external force acting on the piping. In this study, the validity of the analysis techniques was verified by comparing with the experimental results of the measurement of blowdown thrust and the pipe whip of a piping-restraint system, carried out in the Japan Atomic Energy Research Institute. Also the simplified analysis method to give the maximum strain on a pipe surface is presented. (Kako, I.)

  17. Short-lived tectonic switch mechanism for long-term pulses of volcanic activity after mega-thrust earthquakes

    OpenAIRE

    Lupi, M.; Miller, S. A.

    2013-01-01

    Eruptive rates in volcanic arcs increase significantly after mega-thrust earthquakes in subduction zones. Over short to intermediate time periods the link between mega-thrust earthquakes and arc response can be attributed to dynamic triggering processes or static stress changes, but a fundamental mechanism that controls long-term pulses of volcanic activity after mega-thrust earthquakes has not been proposed yet. Using geomechanical, geological, and geophysical arguments, we propose tha...

  18. Bifurcation Onset Delay in Magnetic Bearing Systems with Auxiliary Bearing and Time Varying Stiffness

    OpenAIRE

    Ghazavi, M. R.; Sun, Q.

    2012-01-01

    Auxiliary bearings are used in magnetic bearing systemsto protect bearings from damage. These bearings are in contact with rotor temporarily. This contact associated with intermittent contact forces which change the system dynamic behavior. These include vibration instability and thermal stresses. The system is simulated to clarify the role of two different control methods in synchronous and asynchronous responses.This is carried out using linear PD controller and time varying stiffness. Roto...

  19. Evaluation of bearing configurations using the single bearing tester in liquid nitrogen

    Science.gov (United States)

    Jett, T.; Hall, P.; Thom, R.

    1991-01-01

    Various bearing configurations were tested using the Marshall Space Flight Center single bearing tester with LN2 as the cryogenic coolant. The baseline was one Rocketdyne phase one high pressure oxidizer turbopump (HPOTP) pump end 45-mm bore bearing. The bearing configurations that were tested included a Salox/M cage configuration, a silicon nitride ball configuration, an elongated cage configuration, and a Bray 601 grease configuration.

  20. Gearbox Reliability Collaborative Bearing Calibration

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.

    2011-10-01

    NREL has initiated the Gearbox Reliability Collaborative (GRC) to investigate the root cause of the low wind turbine gearbox reliability. The GRC follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. At the core of the project are two 750kW gearboxes that have been redesigned and rebuilt so that they are representative of the multi-megawatt gearbox topology currently used in the industry. These gearboxes are heavily instrumented and are tested in the field and on the dynamometer. This report discusses the bearing calibrations of the gearboxes.

  1. Journal bearing performance and metrology issues

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2009-01-01

    Full Text Available Purpose: In this paper, a radial clearance of a journal bearings and the metrology of the radial clearance measurement is described.Design/methodology/approach: In this experimental study out-of-roundness and radial clearance of journal bearings were measured with high precision and the impact of their metrology was examined on the specific oil film thickness of the bearing. Some metrological issues were emerged and these should be taken into account when bearings are designed.Findings: An investigation showed that the radial clearance measurements can vary from one measuring device to another and the specified clearance may not necessarily meet the design criteria of specific oil film thickness. The study indicates that the radial clearance measurement can differ from one measuring device to another depending upon the precision that can be achieved by the device. The radius of the bearing or the shaft also varies along the circumference, mainly due to out-of-roundness. The out-of-roundness contributes to the error in radial clearance measurement and hence similar to the cut off length specified with the surface roughness, the out-of-roundness needs to be specified with the radial clearance.Practical implications: The radial clearance of a journal bearing is a key design parameter and bearing performance mainly depends upon this parameter. In this paper was showed that the metrology of the radial clearance measurement plays a significant role and not only that the bearing manufacturer or the user of the bearing is aware of this fact but the bearing designer must also take this fact into account while designing bearingsOriginality/value: This paper showed that The radial clearance is a sensitive micro-geometry parameter and hence metrology plays a vital role in making decisions

  2. Active magnetic bearing-supported rotor with misaligned cageless backup bearings: A dropdown event simulation model

    Science.gov (United States)

    Halminen, Oskari; Kärkkäinen, Antti; Sopanen, Jussi; Mikkola, Aki

    2015-01-01

    Active magnetic bearings (AMB) offer considerable benefits compared to regular mechanical bearings. On the other hand, they require backup bearings to avoid damage resulting from a failure in the component itself, or in the power or control system. During a rotor-bearing contact event - when the magnetic field has disappeared and the rotor drops on the backup bearings - the structure of the backup bearings has an impact on the dynamic actions of the rotor. In this paper, the dynamics of an active magnetic bearing-supported rotor during contact with backup bearings is studied with a simulation model. Modeling of the backup bearings is done using a comprehensive cageless ball bearing model. The elasticity of the rotor is described using the finite element method (FEM) and the degrees of freedom (DOF) of the system are reduced using component mode synthesis. Verification of the misaligned cageless backup bearings model is done by comparing the simulation results against the measurement results. The verified model with misaligned cageless backup bearings is found to correspond to the features of a real system.

  3. Relationships between basin architecture, basin closure, and occurrence of sulphide-bearing schists: an example from Tampere Schist Belt, Finland

    DEFF Research Database (Denmark)

    Kalliomäki, Henrik; Torvela, Taija

    The Tampere Schist Belt (TSB) in southern Finland is a c. 1.92-1.88 Ga volcano-sedimentary basin that underwent inversion and closure between c. 1.89-1.88 Ga. We present field observations from the Tampere palaeobasin, where the primary structures have been exceptionally well preserved. The TSB, therefore, offers an excellent opportunity to examine the volcano-sedimentary evolution of an ancient marginal basin, and the mechanics of and strain distribution during its subsequent closure. The aim of this study is to investigate the structural development and the architecture of a part of the TSB in more detail, including the relationships between the volcano-sedimentary sequences, the tectonic structures, and the sulphide-bearing schist horizons. Important insights are gained into understanding the mechanisms of the basin closure and the localisation of the sulphide mineralisation within the basin. We use the observations to construct a new conceptual tectonic model for the closure of the southeastern margin of the Tampere basin. The observed volcano-sedimentary and structural features suggest a change in the local structural style from thick-skinned inversion to thin-skinned thrusting, in order to accommodate the crustal shortening during basin closure. Furthermore, it is suggested that there is a genetic relationship between the interpreted palaeothrusts and the sulphide-bearing schist horizons in the study area: early, gently dipping thrusts acted as both channels and traps for the mineralising fluids that possibly sourced either locally or from relatively shallow depths from the base of the basin infill. The continued compression caused a subsequent rotation of the thrusts into their present subvertical position.

  4. Effect of Operating Frequency and Fill Time on PDE-Ejector Thrust Performance

    Science.gov (United States)

    Landry, K.; Santoro, Robert J.; Pal, Sibtosh; Shehadeh, R.; Bouvet, N.; Lee, S.-Y.

    2005-01-01

    Thrust measurements for a pulse detonation engine (PDE)-ejector system were determined for a range of operating frequencies. Various length tubular ejectors were utilized. The results were compared to the measurements of the thrust output of the PDE alone to determine the enhancement provided by each ejector configuration at the specified frequencies. Ethylene was chosen as the fuel, with an equi-molar mixture of nitrogen and oxygen acting as the oxidizer. The propellant was kept at an equivalence ratio of one during all the experiments. The system was operated for frequencies between 20 and 50 Hz. The parameter space of the study included PDE operation frequency, ejector length, overlap percentage, the radius of curvature for the ejector inlets, and duration of the time allowed between cycles. The results of the experiments showed a maximum thrust augmentation of 120% for a PDE-ejector configuration at a frequency of 40Hz with a fill time of 10 ms.

  5. Internal performance of two nozzles utilizing gimbal concepts for thrust vectoring

    Science.gov (United States)

    Berrier, Bobby L.; Taylor, John G.

    1990-01-01

    The internal performance of an axisymmetric convergent-divergent nozzle and a nonaxisymmetric convergent-divergent nozzle, both of which utilized a gimbal type mechanism for thrust vectoring was evaluated in the Static Test Facility of the Langley 16-Foot Transonic Tunnel. The nonaxisymmetric nozzle used the gimbal concept for yaw thrust vectoring only; pitch thrust vectoring was accomplished by simultaneous deflection of the upper and lower divergent flaps. The model geometric parameters investigated were pitch vector angle for the axisymmetric nozzle and pitch vector angle, yaw vector angle, nozzle throat aspect ratio, and nozzle expansion ratio for the nonaxisymmetric nozzle. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 12.0.

  6. Effect of varying internal geometry on the static performance of rectangular thrust-reverser ports

    Science.gov (United States)

    Re, Richard J.; Mason, Mary L.

    1987-01-01

    An investigation has been conducted to evaluate the effects of several geometric parameters on the internal performance of rectangular thrust-reverser ports for nonaxisymmetric nozzles. Internal geometry was varied with a test apparatus which simulated a forward-flight nozzle with a single, fully deployed reverser port. The test apparatus was designed to simulate thrust reversal (conceptually) either in the convergent section of the nozzle or in the constant-area duct just upstream of the nozzle. The main geometric parameters investigated were port angle, port corner radius, port location, and internal flow blocker angle. For all reverser port geometries, the port opening had an aspect ratio (throat width to throat height) of 6.1 and had a constant passage area from the geometric port throat to the exit. Reverser-port internal performance and thrust-vector angles computed from force-balance measurements are presented.

  7. The 727 airplane target thrust reverser static performance model test for refanned JT8D engines

    Science.gov (United States)

    Chow, C. T. P.; Atkey, E. N.

    1974-01-01

    The results of a scale model static performance test of target thrust reverser configurations for the Pratt and Whitney Aircraft JT8D-100 series engine are presented. The objective of the test was to select a series of suitable candidate reverser configurations for the subsequent airplane model wind tunnel ingestion and flight controls tests. Test results indicate that adequate reverse thrust performance with compatible engine airflow match is achievable for the selected configurations. Tapering of the lips results in loss of performance and only minimal flow directivity. Door pressure surveys were conducted on a selected number of lip and fence configurations to obtain data to support the design of the thrust reverser system.

  8. Performance of a model cascade thrust reverser for short-haul applications

    Science.gov (United States)

    Dietrich, D. A.; Gutierrez, O. A.

    1974-01-01

    Aerodynamic and acoustic characteristics are presented for a cowlmounted, model cascade thrust reverser suitable for short-haul aircraft. Thrust reverser efficiency and the influence on fan performance were determined from isolated fan-driven models under static and forward velocity conditions. Cascade reverser noise characteristics were determined statically in an isolated pipe-flow test, while aerodynamic installation effects were determined with a wind-tunnel, fan-powered airplane model. Application of test results to short-haul aircraft calculations demonstrated that such a cascade thrust reverser may be able to meet both the performance and noise requirements for short-haul aircraft operation. However, aircraft installation effects can be quite significant.

  9. Optimal trajectories for spacecraft with low electric-jet thrust in mission to asteroid Apophis

    Science.gov (United States)

    Ivashkin, V. V.; Krylov, I. V.

    2012-07-01

    There is considered the problem of space flights to the asteroid Apophis. We analyze the flight scheme, which includes the geocentric stage, when a spacecraft with a high-thrust engine is accelerated; the heliocentric stage, in which the spacecraft moves using a low-thrust engine; and, finally, the deceleration stage, when the spacecraft becomes an artificial satellite orbiting the asteroid. We solve the problem of optimal control for the ideal and piecewise-constant low thrust, as well as determine the optimal value and direction of the hyperbolic velocity at "infinity" achieved by the spacecraft when it leaves the Earth sphere of influence. There is defined the set of space trajectories for a wide range of start dates and various flight durations using a complex method of optimization. We estimate the final mass of the spacecraft and the mass of the payload that can be delivered to the asteroid using the Soyuz-Fregat launcher.

  10. OFFICE OF SCIENCE AND TECHNOLOGY AND INTERNATIONAL, NATURAL BARRIERS THRUST OVERVIEW

    International Nuclear Information System (INIS)

    The Natural Barriers Thrust supports scientific studies of the natural system at the proposed repository site of Yucca Mountain. It stresses the realistic representation of the natural system with respect to processes and parameters, by means of laboratory, field, and modeling studies. It has the objectives to demonstrate that the natural barriers can make large contributions to repository performance, supporting the multiple-barrier concept for geological disposal of high-level radioactive waste; and to reduce the overall cost of repository development by elimination of unnecessary engineered components, given the demonstrated natural barriers performance. In this overview we enumerate the research projects within the Natural Barriers Thrust grouped under five elements: (1) Drift Seepage, (2) In-drift Environment, (3) Drift Shadow, (4) Unsaturated Zone Flow and Transport, and (5) Saturated Zone Flow and Transport. The long-term strategic plan of the Natural Barriers Thrust and some key results are also briefly described

  11. Development and qualification of a STAR 48 rocket motor with thrust vector control

    Science.gov (United States)

    Hamke, R.; Rade, J.; Weldin, R.

    1992-07-01

    A thrust vector control (TVC) nozzle for use on the STAR 48 rocket motor (STAR 48V) has been developed for use on the COMET program aboard the Conestoga launch vehicle. The first stages of qualification testing have been completed. The first STAR 48V has been successfully static-tested. The flexseal TVC nozzle design is based upon the qualified and flight-proven fixed nozzle design used on spin-stabilized spacecraft. The flexseal design and fabrication approach benefit from flight-proven and man-rated Thiokol Corporation flexseal designs. The thrust vector control system provides vectoring capability to 4 deg for use on nonspinning spacecraft. Electromechanical actuators coupled with a closed-loop controller provide thrust vector positioning and spacecraft attitude control.

  12. Stabilizing gas bearing in free piston machines

    Science.gov (United States)

    Dhar, Manmohan (Inventor)

    1992-01-01

    In a free piston engine, to reduce dynamic loads on the reciprocating elements caused by a time varying pressure gradient across the gas bearing and close clearance seals provided therein, drain galleries are incorporated at the ends of the gas bearings to isolate the same, and circumferentially spaced grooves are incorporated in the close clearance seal region.

  13. Self-adjusting magnetic bearing systems

    Science.gov (United States)

    Post, Richard F. (Walnut Creek, CA)

    1998-01-01

    A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described.

  14. Methods and systems for micro bearings

    Science.gov (United States)

    Stalford, Harold L.

    2012-10-09

    A micro drive assembly may comprise a substrate, a micro shall oriented in-plane with the substrate and at least one micro bearing to support rotation of the micro shaft. The micro shaft and micro bearing may be in or less than the micrometer domain.

  15. Resilient bearing supports are gas controlled

    Science.gov (United States)

    Six, L. D.

    1967-01-01

    Self-acting, partial-arc, pivoted-pad bearings in which the bearing-to-journal applied load is pneumatically controlled are used in the operation of a radial flow gas generator where shaft speeds are on the order of 38,500 rpm.

  16. A flexible cruciform journal bearing mount

    Science.gov (United States)

    Frost, A. E.; Geiger, W. A.

    1973-01-01

    Flexible mount achieves low roll, pitch and yaw stiffnesses while maintaining high radial stiffness by holding bearing pad in fixed relationship to deep web cruciform member and holding this member in fixed relationship to bearing support. This mount has particular application in small, high performance gas turbines.

  17. Precision instrumentation for rolling element bearing characterization

    Science.gov (United States)

    Marsh, Eric R.; Vigliano, Vincent C.; Weiss, Jeffrey R.; Moerlein, Alex W.; Vallance, R. Ryan

    2007-03-01

    This article describes an instrument to measure the error motion of rolling element bearings. This challenge is met by simultaneously satisfying four requirements. First, an axial preload must be applied to seat the rolling elements in the bearing races. Second, one of the races must spin under the influence of an applied torque. Third, rotation of the remaining race must be prevented in a way that leaves the radial, axial/face, and tilt displacements free to move. Finally, the bearing must be fixtured and measured without introducing off-axis loading or other distorting influences. In the design presented here, an air bearing reference spindle with error motion of less than 10 nm rotates the inner race of the bearing under test. Noninfluencing couplings are used to prevent rotation of the bearing outer race and apply an axial preload without distorting the bearing or influencing the measurement. Capacitive displacement sensors with 2 nm resolution target the nonrotating outer race. The error motion measurement repeatability is shown to be less than 25 nm. The article closes with a discussion of how the instrument may be used to gather data with sufficient resolution to accurately estimate the contact angle of deep groove ball bearings.

  18. Precision instrumentation for rolling element bearing characterization

    International Nuclear Information System (INIS)

    This article describes an instrument to measure the error motion of rolling element bearings. This challenge is met by simultaneously satisfying four requirements. First, an axial preload must be applied to seat the rolling elements in the bearing races. Second, one of the races must spin under the influence of an applied torque. Third, rotation of the remaining race must be prevented in a way that leaves the radial, axial/face, and tilt displacements free to move. Finally, the bearing must be fixtured and measured without introducing off-axis loading or other distorting influences. In the design presented here, an air bearing reference spindle with error motion of less than 10 nm rotates the inner race of the bearing under test. Noninfluencing couplings are used to prevent rotation of the bearing outer race and apply an axial preload without distorting the bearing or influencing the measurement. Capacitive displacement sensors with 2 nm resolution target the nonrotating outer race. The error motion measurement repeatability is shown to be less than 25 nm. The article closes with a discussion of how the instrument may be used to gather data with sufficient resolution to accurately estimate the contact angle of deep groove ball bearings

  19. Methods and systems for micro bearings

    Energy Technology Data Exchange (ETDEWEB)

    Stalford, Harold L

    2015-01-27

    A micro drive assembly may comprise a substrate, a micro shaft oriented in-plane with the substrate and at least one micro bearing to support rotation of the micro shaft. The micro shaft and micro bearing may be in or less than the micrometer domain.

  20. Can polar bear hairs absorb environmental energy?

    OpenAIRE

    He Ji-Huan; Wang Qing-Li; Sun Jie

    2011-01-01

    A polar bear (Ursus maritimus) has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  1. Can polar bear hairs absorb environmental energy?

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2011-01-01

    Full Text Available A polar bear (Ursus maritimus has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  2. First-order analysis of deformation of a thrust sheet moving over a ramp

    Science.gov (United States)

    Berger, P.; Johnson, A.M.

    1980-01-01

    John L. Rich introduced the revolutionary concept that many folds in the Appalachian Mountains can be explained as superficial structures formed by passive translation of thrust blocks over ramps in detachment surfaces. The amount of layer-parallel shortening can be negligible in the formation of these folds. Rich primarily was concerned with an explanation for the Powell Valley anticline, in the southern Appalachians, but the essential kinematic features of his model of folding have been verified in other folds in the Appalachians, in the Canadian Rockies, in the Idaho-Wyoming thrust belt, and in the Pyrenees. In this paper we solve the boundary-value problem for an idealized thrust block moving over a detachment surface and ramp with zero drag, and produce theoretical fold forms in the thrust block that closely resemble those in Rich's idealized model. The anticline is narrow and rounded if the translation is small, and broad and flat-topped if the translation is large. The limbs of the anticline are symmetric. We also incorporate drag along the ramp part of the detachment surface in order to derive a possible explanation for the asymmetry of dips of the two limbs of the Powell Valley anticline. We show that drag can explain the asymmetry, particularly if drag between relatively competent rocks in opposition at the ramp caused an initial anticline to form as the thrust block began to move, and then drag reduced markedly as relatively soft shales at the base of the block were thrust over competent rocks in the ramp. The existence of the initial anticline should be reflected in asymmetry of the two limbs and in a bulge at the distal edge of the broad anticline. ?? 1980.

  3. Constant-thrust glideslope guidance algorithm for time-fixed rendezvous in real halo orbit

    Science.gov (United States)

    Lian, Yijun; Meng, Yunhe; Tang, Guojian; Liu, Luhua

    2012-10-01

    This paper presents a fixed-time glideslope guidance algorithm that is capable of guiding the spacecraft approaching a target vehicle on a quasi-periodic halo orbit in real Earth-Moon system. To guarantee the flight time is fixed, a novel strategy for designing the parameters of the algorithm is given. Based on the numerical solution of the linearized relative dynamics of the Restricted Three-Body Problem (expressed in inertial coordinates with a time-variant nature), the proposed algorithm breaks down the whole rendezvous trajectory into several arcs. For each arc, a two-impulse transfer is employed to obtain the velocity increment (delta-v) at the joint between arcs. Here we respect the fact that instantaneous delta-v cannot be implemented by any real engine, since the thrust magnitude is always finite. To diminish its effect on the control, a thrust duration as well as a thrust direction are translated from the delta-v in the context of a constant thrust engine (the most robust type in real applications). Furthermore, the ignition and cutoff delays of the thruster are considered as well. With this high-fidelity thrust model, the relative state is then propagated to the next arc by numerical integration using a complete Solar System model. In the end, final corrective control is applied to insure the rendezvous velocity accuracy. To fully validate the proposed guidance algorithm, Monte Carlo simulation is done by incorporating the navigational error and the thrust direction error. Results show that our algorithm can effectively maintain control over the time-fixed rendezvous transfer, with satisfactory final position and velocity accuracies for the near-range guided phase.

  4. The morphology of thrust faulting in the 21 September 1999, Chichi, Taiwan earthquake

    Science.gov (United States)

    Bilham, Roger; Yu, Ting-To

    2000-06-01

    The 80-km-long surface rupture of the Chelungpu fault in the 21 September 1999, Chichi, Taiwan Mw=7.6 earthquake resulted in a surface scarp with vertical throws of 2-9 m, and horizontal heaves of 4-8 m. Few major thrust faults have broken the surface in the past century, and the Chelungpu surface rupture is of interest in that it provides a morphological template for the identification of paleo-surface thrusts in similar neotectonic environments such as the Himalaya. The toe of the thrust is found emplaced gently over underlying hanging-wall materials, partly by prograde hanging-wall rotation and partly by simple shear, leaving few overt clues as to the total amount or sense of slip. Despite the large surface slip near the toe of the Chelungpu thrust its emplacement appears to have been relatively slow. MSK (the Medvedev-Sponheuer-Karnik 1981 revision of the Seismic Intensity Scale MSK81 supersedes the Mercalli Intensity scale for the description of acceleration-induced damage to modern buildings) Intensity VIII accelerations were imposed on buildings on the hanging-wall, and Intensity VII on the footwall, decaying in both directions by perhaps one intensity unit a few hundred meters from the rupture. The somewhat moderate amplitude of these accelerations, for a rupture with several meters of slip, is attributed to non-linear dissipative deformation near the toe of the rupture. The partitioning of thrusting into basal slip and hillside steepening in some locations on the Chelungpu fault suggests that the estimation of paleoseismic slip from the offset of piercing points crossing historic thrust faults elsewhere may result in underestimates of fault slip.

  5. Exhumation of the southern Pyrenean fold-thrust belt (Spain) from orogenic growth to decay

    Science.gov (United States)

    Rushlow, Caitlin R.; Barnes, Jason B.; Ehlers, Todd A.; Vergés, Jaume

    2013-07-01

    The deformation and exhumation history of an orogen reflects the interactions between tectonic and surface processes. We investigate orogenic wedge deformation, erosion, and sedimentation in the Pyrenees by (a) quantifying the spatiotemporal patterns of exhumation across the southern fold-thrust belt (FTB) with bedrock apatite fission track (AFT) thermochronology and (b) comparing the results with existing deformation, exhumation, and sedimentation chronologies. Eighteen new samples record exhumation during and after orogenesis between 90 and 10 Ma. Rocks from the range core (Axial Zone) record rapid exhumation that progresses east to west and north to south, consistent with patterns of tectonically driven uplift. Synorogenic sediments shed into piggyback basins on the southern fold-thrust belt during mountain building retain a detrital exhumation signal from the Axial Zone. In contrast, samples from other structural positions record exhumation of the thin-skinned Pyrenean thrust sheets, suggesting sediment burial and heating of sufficient magnitudes to reset the AFT system (>~3 km). In some locations, exhumation of these fold-thrust structures is likely an erosional response to thrust-driven rock uplift. We identify an exhumation phase ~25-20 Ma that occurs along the central and eastern Spanish Pyrenees at the boundary between thick- and thin-skinned portions of the wedge. We suggest that this distributed exhumation event records (a) a taper response in the southern orogenic wedge to sediment loading and/or (b) a shift to wetter, stormier climate conditions following convergence-driven uplift and full topographic development. A final exhumation phase between ~20 and 10 Ma may record the excavation of the southern fold-thrust system following base level lowering in the Ebro Basin.

  6. Fold-nappes and polyphase thrusting in north-central Brooks Range, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, J.S.; Brosge, W.P.; Reynolds, M.W.

    1985-04-01

    Ongoing study involving inch-to-the-mile mapping of a geologic transect along the Itkillik-Koyukuk Rivers is providing new information on the structural style and kinematic development of the Central Brooks Range. The principal structures controlling north-directed structural telescoping are three detachments. These detachments are stratigraphically controlled and occur in: (1) Devonian Hung Fork Shale, (2) Mississippian Kayak Shale, and (3) Permian and Triassic shale. The detachments and the subsidiary thrusts that branch from them form a thrust complex that developed in two stages. During the First stage, duplexes consisting of horses of Mississippian Lisburne Group platform carbonates formed where the Kayak Shale detachment ramped up to Permian and Triassic beds, imbricating the intervening Lisburne Group. In the second stage, alpine-style fold nappes involving Devonian Kanayut Conglomerate and elements of the underlying Hunt Fork Shale were emplaced sequentially from south to north on thrust faults solely in the Hunt Fork Shale. Thrust faults that emplace the fold nappes merge with the previously formed detachment in the Kayak Shale. Complex deformation associated with both stages include: (1) ramping of duplexes in Lisburne Group rocks over previously imbricated Lisburne Group rocks; (2) regional folding of imbricated Lisburne Group rocks; (3) folded individual subsidiary faults within the duplexes of Lisburne Group rocks; (4) warping, folding, and thrusting of the Kayak Shale detachment associated with generation and emplacement of the underlying fold nappes; and (5) faults that cut through the hinge area of fold nappes and thrust the trailing limbs of the fold nappes over the overturned leading limbs of the fold nappes.

  7. Spherical collectors versus bare tethers for drag, thrust, and power generation

    OpenAIRE

    Sanmarti?n Losada, Juan Ramo?n; Charro, Mario; Lorenzini, Enrico C.

    2005-01-01

    Deorbit, power generation, and thrusting performances of a bare thin-tape tether and an insulated tether with a spherical electron collector are compared for typical conditions in low-Earth orbit and common values of length L = 4?20 km and cross-sectional area of the tether A = 1?5 mm2. The relative performance of moderately large spheres, as compared with bare tapes, improves but still lags as one moves from deorbiting to power generation and to thrusting: Maximum drag in deorbitin...

  8. Comparison of Performance Predictions for New Low-Thrust Trajectory Tools

    Science.gov (United States)

    Polsgrove, Tara; Kos, Larry; Hopkins, Randall; Crane, Tracie

    2006-01-01

    Several low thrust trajectory optimization tools have been developed over the last 3% years by the Low Thrust Trajectory Tools development team. This toolset includes both low-medium fidelity and high fidelity tools which allow the analyst to quickly research a wide mission trade space and perform advanced mission design. These tools were tested using a set of reference trajectories that exercised each tool s unique capabilities. This paper compares the performance predictions of the various tools against several of the reference trajectories. The intent is to verify agreement between the high fidelity tools and to quantify the performance prediction differences between tools of different fidelity levels.

  9. Space debris selection and optimal guidance for removal in the SSO with low-thrust propulsion

    Science.gov (United States)

    Olympio, J. T.; Frouvelle, N.

    2014-06-01

    The current paper deals with the mission design of a generic active space debris removal spacecraft. Considered space debris are all on sun-synchronous orbits. A perturbed Lambert's problem, modelling the transfer between two space debris is devised to take into account J2 perturbation, and to quickly evaluate mission scenarios. A robust approach, using techniques of global optimisation, is followed to find the optimal space debris sequence and mission strategy. Low-thrust optimisation is then performed to turn bi-impulse transfers into optimal low-thrust transfers, and refine the selected scenarios.

  10. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    Science.gov (United States)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  11. Effect of low-stiffness closeout overwrap on rocket thrust-chamber life

    Science.gov (United States)

    Kasper, H. J.; Nota-Donato, J. J.

    1979-01-01

    Three rocket thrust chambers with copper liners and a thrust level of 20.9 kN were cyclically test fired to failure. Two of the liners were made from oxygen free, high conductivity (OFHC) copper and from annealed Amzirc. The milled coolant channels were closed out with a thin copper closeout over which a fiberglass composite was wrapped to provide hoop strength only. Experimental data are presented, along with the results of a preliminary analysis that was performed before fabrication to evaluate the life extending potential of a thin copper closeout with a fiberglass overwrap.

  12. Ball bearing versus magnetic bearing reaction and momentum wheels as momentum actuators

    Science.gov (United States)

    Auer, W.

    1980-01-01

    Different bearing technologies of momentum actuators for the attitude control of satellites are compared and a guideline for the selection of the suitable momentum actuators or momentum actuator configurations to meet given mission goals with high reliability and low cost is developed. The comparison between ball bearing and magnetic bearing momentum actuators shows that given mission requirements can be economically met by employing the ball bearing technology without decreasing reliability and lifetime. However, for some special mission requirements, such as 'zero friction at zero speed,' fine pointing (met by vernier gimballing), and/or active damping, magnetic bearings may be advantageous. This makes it evident that magnetic bearing technology will not replace ball bearing technology for momentum actuators, but will supplement it for some special mission requirements.

  13. Detachments in Shale: Controlling Characteristics on Fold-Thrust Belt Style

    Science.gov (United States)

    Hansberry, Rowan; King, Ros; Collins, Alan; Morley, Chris

    2013-04-01

    Fold-thrust belts occur across multiple tectonic settings where thin-skinned deformation is accommodated by one or more detachment zones, both basal and within the fold-thrust belt. These fold-thrust belts exhibit considerable variation in structural style and vergence depending on the characteristics (e.g. strength, thickness, and lithology) and number of detachment zones. Shale as a detachment lithology is intrinsically weaker than more competent silts and sands; however, it can be further weakened by high pore pressures, reducing resistance to sliding and; high temperatures, altering the rheology of the detachment. Despite the implications for petroleum exploration and natural hazard assessment the precise nature by which detachments in shale control and are involved in deformation in fold-thrust belts is poorly understood. Present-day active basal detachment zones are usually located in inaccessible submarine regions. Therefore, this project employs field observations and sample analysis of ancient, exhumed analogues to document the nature of shale detachments (e.g. thickness, lithology, dip and dip direction, deformational temperature and thrust propagation rates) at field sites in Thailand, Norway and New Zealand. X-ray diffraction analysis of illite crystallinity and oxygen stable isotopes analysis are used as a proxy for deformational temperature whilst electron-backscatter diffraction analysis is used to constrain microstructural deformational patterns. K-Ar dating of synkinematic clay fault gouges is being applied to date the final stages of activity on individual faults with a view to constraining thrust activation sequences. It is not possible to directly measure palaeo-data for some key detachment parameters, such as pore pressure and coefficients of friction. However, the use of critical taper wedge theory has been used to successfully infer internal and basal coefficients of friction and depth-normalized pore pressure within a wedge and at its base (e.g. Platt, 1986; Bilotti and Shaw, 2005; Morley, 2007). Therefore, through a mixture of field observations, sample analysis and theoretical analysis it will be possible to determine a full range of shale detachment parameters and their impact on the structural style of fold-thrust belts across a variety of settings. Recent work in Muak Lek, central Thailand has focused on a structural investigation of fold-thrust belt deformation of a passive margin sequence as a result of continent-continent collision during the Triassic Indosinian Orogeny. Exceptional outcropping of the detachment lithology is accessible in the Siam City Cement quarry allowing construction of sections detailing the deformational style across the detachment itself. The detachment forms complex, 3-dimensional duplex-like structures creating egg-carton geometries enveloping foliation surfaces in the zones of most intense strain. Up section strain decreases to discrete thrust imbricates of decametre scale. Samples of limestone and secondary calcite were collected through the sections for oxygen stable isotopes analysis which show a distinct pattern of isotopic fractionation across the main thrust and into the detachment. Results from this study give insights into the nature of shale detachments and the control on fold-thrust belt development.

  14. The Nucleation and Propagation of Thrust Ramps: Insights from Quantitative Analysis of Frictional Analog (Sandbox) Models

    Science.gov (United States)

    Sen, P.; Haq, S. S.; Marshak, S.

    2012-12-01

    Particle Imaging Velocimetry (PIV) provides a unique opportunity to analyze deformation in sandbox analog models at a scale that allows documentation of movement within and around individual shear structures. We employed PIV analysis to quantify deformation in sandbox experiments designed to simulate the initiation of thrust ramps developed during crustal shortening (i.e., contractional deformation). Our intent was to answer a long-standing question: Do ramps initiate at the tip of a detachment, or do they initiate in the interior of a deforming layer and propagate up-dip and down-dip until they link to the detachment at a location to the hinterland of the detachment's tip line? Most geometric studies of ramp-flat geometries in fold-thrust belts assume that ramps propagate up-dip from the tip of the detachment, and grow only in one direction. Field studies, in contrast, reveal that layer-parallel shortening structures develop to the foreland of the last ramp to form, suggesting that ramps initiate in a thrust sheet that has already undergone displacement above a detachment. Published sandbox models, using color-sand marker layers, support this idea. To test this idea further, we set up a model using a 3 m-long by 0.31-m wide glass-walled sandbox with a rigid backstop. The sand layer was sifted onto a sheet of mylar that could be pulled beneath the rigid backstop. Sand used in our experiments consisted of <250 ?m-diameter grains. We carried out multiple runs using 4 cm, 5 cm and 6 cm-thick layers. Images were acquired over 1 mm displacement intervals using an 18 mega-pixel camera. By moving the camera at specific steps during the experiment, we sampled the development of several thrust ramps. The images taken during experimental runs were analyzed with a MATLAB-based program called 'PIV LAB' that utilizes an image cross-correlation subroutine to determine displacement fields of the sand particles. Our results demonstrate that: (1) thrust ramps initiate within the deforming stratigraphic layer, not at the detachment tip; (2) the height of the thrust-ramp nucleation point is variable; (3) thrust ramps nucleate to the hinterland of the tip line of the detachment faults; (4) once nucleated, the thrust ramp rapidly propagates up- and down-dip; (5) the linear strain parallel to the ramp decreases exponentially to the ramp tip; (6) once the ramp intersects the detachment, displacement on the detachment to the foreland of the thrust ramp slows as the displacement gets partitioned between the ramp and the detachment; and (7) during progressive deformation, there is cyclic reactivation of out-of-the sequence back-thrusts and fore-thrusts. We conclude that the process of ramp initiation within a layer is similar to the formation of shear fractures by linking of Griffith cracks.

  15. The Dauki Thrust Fault and the Shillong Anticline: An incipient plate boundary in NE India?

    Science.gov (United States)

    Ferguson, E. K.; Seeber, L.; Steckler, M. S.; Akhter, S. H.; Mondal, D.; Lenhart, A.

    2012-12-01

    The Shillong Massif is a regional contractional structure developing across the Assam sliver of the Indian plate near the Eastern Syntaxis between the Himalaya and Burma arcs. Faulting associated with the Shillong Massif is a major source of earthquake hazard. The massif is a composite basement-cored asymmetric anticline and is 100km wide, >350km long and 1.8km high. The high relief southern limb preserves a Cretaceous-Paleocene passive margin sequence despite extreme rainfall while the gentler northern limb is devoid of sedimentary cover. This asymmetry suggests southward growth of the structure. The Dauki fault along the south limb builds this relief. From the south-verging structure, we infer a regional deeply-rooted north-dipping blind thrust fault. It strikes E-W and obliquely intersects the NE-SW margin of India, thus displaying three segments: Western, within continental India; Central, along the former passive margin; and Eastern, overridden by the west-verging Burma accretion system. We present findings from recent geologic fieldwork on the western and central segments. The broadly warped erosional surface of the massif defines a single anticline in the central segment, east of the intersection with the hinge zone of the continental margin buried by the Ganges-Brahmaputra Delta. The south limb of the anticline forms a steep topographic front, but is even steeper structurally as defined by the Cretaceous-Eocene cover. Below it, Sylhet Trap Basalts intrude and cover Precambrian basement. Dikes, presumably parallel to the rifted margin, are also parallel to the front, suggesting thrust reactivation of rift-related faults. Less competent Neogene clastics are preserved only near the base of the mountain front. Drag folds in these rocks suggest north-vergence and a roof thrust above a blind thrust wedge floored by the Dauki thrust fault. West of the hinge zone, the contractional structure penetrates the Indian continent and bifurcates. After branching into the Dapsi Fault, the Dauki Fault continues westward as the erosion-deposition boundary combined with a belt of N-S shortening. The Dapsi thrust fault strikes WNW across the Shillong massif and dips NNE. It is mostly blind below a topographically expressed fold involving basement and passive-margin cover. Recent fieldwork has shown that the fault is better exposed in the west, where eventually Archean basement juxtaposes folded and steeply dipping fluvial sediment. Both Dauki and Dapsi faults probably continue beyond the Brahmaputra River, where extreme fluvial processes mask them. The area between the two faults is a gentle southward monocline with little or no shortening. Thus uplift of this area stems from slip on the Dauki thrust fault, not from pervasive shortening. The Burma foldbelt overrides the Shillong Plateau and is warped but continuous across the eastern segment of the Dauki fault. The Haflong-Naga thrust front north of the Dauki merges with the fold-thrust belt in the Sylhet basin to the south, despite >150km of differential advance due to much greater advance of the accretionary prism in the basin. Where the Dauki and Haflong-Naga thrusts cross, the thrust fronts are nearly parallel and opposite vergence. We trace a Dauki-related topographic front eastward across the Burma Range. This and other evidence suggest that the Dauki Fault continues below the foldbelt.

  16. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael

    2013-04-01

    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  17. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jiqiang, E-mail: tjq_72@163.com [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Sun, Jinji; Fang, Jiancheng [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Shuzhi Sam, Ge [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2013-03-15

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the 'O' shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability. - Highlights: Black-Right-Pointing-Pointer Control methods of rotor driven by AHMBs and their characteristics are researched. Black-Right-Pointing-Pointer Optimized stator and rotor of AHMB reduce its eddy losses greatly. Black-Right-Pointing-Pointer Presented the factors affecting the eddy losses of AHMBs. Black-Right-Pointing-Pointer The good performances of AHMB with low eddy loss are proved by experiments.

  18. Radiometric Dating of Folds: A new approach to determine the timing of deformation at shallow-crustal conditions, with examples from the Mexican Fold-Thrust Belt

    Science.gov (United States)

    Fitz Diaz, E.; van der Pluijm, B. A.

    2012-12-01

    We are developing a robust method to obtain absolute ages of folds that were formed at shallow crustal conditions. The method takes advantage of illite neocrystallization in folded, clay-bearing layers and the ability to obtain accurate retention and total gas ages from small size fractions using encapsulated Ar analysis, analogous to prior work on fault gouge dating. We illustrate our approach in folded Cretaceous shale-bentonitic layers that are interbedded with carbonates of the Zimapán and the Tampico-Misantla cretaceous basins in central-eastern Mexico. Basinal carbonates were buried by syntectonic turbidites and inverted during the formation of the Mexican Fold-Thrust in the Late Cretaceous. Results were obtained from four chevron folds that are representative of different stages of deformation, burial/temperature conditions and location within this thin-skinned orogenic wedge: two from the Zimapán Basin (Folds 1 and 2) in the west and two from the Tampico-Misantla Basin (Folds 3 and 4) in the east. Mineralogic compositions and variations in illite-polytypes, crystallite-size (CS) and Ar/Ar ages were obtained from size fractions in limbs and hinges of folded layers. Ar retention ages produce a folding age of ~81 Ma for Fold 1 and ~69 Ma for Fold 2, which are fully consistent with stratigraphic limits from syn-orogenic turbidities and observed overprinting events in the Mexican Fold-Thrust Belt. The total gas age of Fold 3, on the easternmost margin of the Tampico-Misantla Basin is similar to that of Fold 2, indicating that the second event is regional in scale. In addition to presenting a new, reliable method to constrain the timing of local deformation, we interpret folding and associated clay neo-mineralization in terms of the regional burial history, and localization and propagation of deformation within a heterogeneous orogenic wedge involving progressive deformation of two basins separated by a platform block.

  19. Design of gas bearing systems for precision applications

    Science.gov (United States)

    Wang, Junming

    Research to provide the up to date knowledge and efficient tools to design better Externally Pressurized Gas (EPG) bearing systems, including the design of individual bearings, and to arrange all the bearings used in an optimal way is reported. Both circular and rectangular EPG pads with rigid bearing surfaces and rigid inlet restrictors were used. The following topics closely related to the applications in precision engineering are discussed: influences of gap shape on the bearing performance; effects of bearing body tilt on the bearing performance; influences of bearing surface imperfections on bearing performance; temperature drops in EPG bearings in quasistationary conditions; the optimal use of multiple bearings in a mechanical system; the use of EPG bearing damping characteristics in the design; and the effects of motion velocity.

  20. 77 FR 50716 - Tapered Roller Bearings From China

    Science.gov (United States)

    2012-08-22

    ...731-TA-344 (Third Review)] Tapered Roller Bearings From China Determination On the...the antidumping duty order on tapered roller bearings from China would be likely to...4343 (August 2012), entitled Tapered Roller Bearings from China: Investigation...