WorldWideScience

Sample records for thrust bearings

  1. Analysis of properties of thrust bearing in ship propulsion system

    Science.gov (United States)

    Wu, Zhu-Xin; Liu, Zheng-Lin

    2010-06-01

    Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship’s hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load bearing capability.

  2. Computer program for flat sector thrust bearing performance

    Science.gov (United States)

    Presler, A. F.; Etsion, I.

    1977-01-01

    A versatile computer program is presented which achieves a rapid, numerical solution of the Reynolds equation for a flat sector thrust pad bearing with either compressible or liquid lubricants. Program input includes a range in values of the geometric and operating parameters of the sector bearing. Performance characteristics are obtained from the calculated bearing pressure distribution. These are the load capacity, center of pressure coordinates, frictional energy dissipation, and flow rates of liquid lubricant across the bearing edges. Two sample problems are described.

  3. Performance of Simple Gas Foil Thrust Bearings in Air

    Science.gov (United States)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In this case, the load capacity is constant and in fact often decreases with speed if other factors such as thermal conditions and runner distortions are permitted to dominate the bearing performance.

  4. Research on Service Life Prediction Model of Thrust Needle Bearing

    Directory of Open Access Journals (Sweden)

    Li Wei

    2012-11-01

    Full Text Available Needle roller thrust bear is small in size and of high ability in load bearing, therefore it is widely used in fields of aviation and automobile etc.  But the relation between their service life and pre-tightening torque is not very clear, so the using design of the bear depends mainly on experience of engineer, because of lack of references. In the paper, the theoretical analysis on relation between torque and load is done, special wearing test instrument is developed and wearing test of thrust needle bear is conducted. Based on the results of the test, mathematical model of relation between the losing amount of pre-tightening torque and the pre-tightening torque is built, based on which use of the bear in engineering will be more reasonable, and their pre-tightening torque will be given more accurately.

  5. Research on Service Life Prediction Model of Thrust Needle Bearing

    OpenAIRE

    Li Wei; Fan Bingli; Hu Zhanqi; Qi Xiaowen

    2012-01-01

    Needle roller thrust bear is small in size and of high ability in load bearing, therefore it is widely used in fields of aviation and automobile etc.  But the relation between their service life and pre-tightening torque is not very clear, so the using design of the bear depends mainly on experience of engineer, because of lack of references. In the paper, the theoretical analysis on relation between torque and load is done, special wearing test instrument is developed and wearing test of thr...

  6. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    Science.gov (United States)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active-magnetic-bearing force-measurement systems is to calculate levitation forces on the basis of simple proportionalities between changes in those forces and changes in feedback-controlled currents applied to levitating electromagnetic coils. In the prior systems, the effects of gap lengths on fringing magnetic fields and the concomitant effects on magnetic forces were neglected. In the present system, the control subsystems of the active magnetic bearings are coupled with a computer-based automatic calibration system running special-purpose software wherein gap-length-dependent fringing factors are applied to current and magnetic-flux-based force equations and combined with a multipoint calibration method to obtain greater accuracy.

  7. On the Design of Tilting-Pad Thrust Bearings

    DEFF Research Database (Denmark)

    Heinrichson, Niels

    2007-01-01

    Pockets are often machined in the surfaces of tilting-pad thrust bearings to allow for hydrostatic jacking in the start-up phase. Pockets and other recesses in the surfaces of bearing pads influence the pressure distribution and thereby the position of the pivot resulting in the most advantageous...... friction and a small pressure build-up. As in parallel-step bearings the recesses may also have a depth of the same order of magnitude as the oil film thickness. Such recesses are characterized by a strong pressure build-up caused by the reduction of the flow area at the end of the recess. Numerical models...... based on the Reynolds equation are used. They include the effects of variations of viscosity with temperature and the deformation of the bearing pads due to pressure and thermal gradients. The models are validated using measurements. Tilting-pad bearings of standard design are studied and the influences...

  8. An externally pressurized air bearing system, journals and thrust, for application to small turbomachinery

    Science.gov (United States)

    Turner, A. B.; Davies, S. J.; Nimir, Y. L.; Richardson, J. D.

    1992-06-01

    Experiments have been conducted to examine the feasibility of externally pressurized air bearings for possible utilization in small high-speed turbomachinery such as compressor and turbine test rigs. The bearing was designed employing a simplified theory that proved to be adequate, with the problem of thermal expansion solved using brass bearings sleeved with graphited bronze, up to a shaft/bearing temperature of 180 C. A new thrust bearing was demonstrated with a potential capacity greatly in excess of the conventional aerostatic, close contact, parallel disk type of thrust bearing.

  9. Experimental Performance Study of a High Speed Oil Lubricated Polymer Thrust Bearing

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    2015-01-01

    Full Text Available With the demand for turbomachinery to operate at higher speeds, loads, and power, fluid film bearings that support turbomachinery must be capable of operating in these more demanding applications. Thrust bearings operating at high speeds and loads can experience high surface temperatures and thin fluid film thickness. Typically, babbitt (white metal is the bearing lining material for most turbomachinery bearings but is limited in operating temperature and allowable film thickness. Polymer based materials are alternative materials that can operate at high temperatures and with thin films and have been in use for many decades in high load applications, such as electric submersible pumps (ESP. Test results of polymer lined thrust bearings subjected to modern turbomachinery speeds and loads are presented and compared to babbitt lined bearings of the same design and under similar conditions. The test results show polymer lined thrust bearings can operate at higher bearing unit loads than babbitt.

  10. Development of a highly efficient hard disk drive spindle motor with a passive magnetic thrust bearing and a hydrodynamic journal bearing

    Science.gov (United States)

    Jang, G. H.; Park, J. S.

    2005-05-01

    This article presents a highly efficient hard disk drive (HDD) spindle motor with a passive magnetic thrust bearing and a hydrodynamic journal bearing. It eliminates the mechanical friction loss of a thrust bearing which is around 14% of total power consumption of a 3.5 in. HDD spindle motor, by replacing a conventional hydrodynamic thrust bearing with a passive magnetic thrust bearing. The passive magnetic thrust bearing using permanent magnets is inherently unstable in radial direction. However, the radial hydrodynamic force of the hydrodynamic journal bearing counterbalances the radial magnetic force of magnetic thrust bearing to achieve the stability as the motor spins up. Numerical analysis is performed to verify feasibility of the proposed system.

  11. Performance of gas-lubricated nonconforming pivoted-pad journal bearings and a flexibly mounted spiral-groove thrust bearing

    Science.gov (United States)

    Ream, L. W.

    1973-01-01

    A test program was conducted to determine the performance characteristics of gas-lubricated nonconforming pivoted-pad journal bearings and a spiral-groove thrust bearing designed for the Brayton cycle rotating unit (BRU). Hydrostatic, hybrid (simultaneously hydrostatic and hydrodynamic), and hydrodynamic tests were conducted in argon gas at ambient pressure and temperature ranges representative of hydrostatic operation up to the 10.5-kWe BRU power-generating level. Performance of the gas lubricated bearings is presented, including hydrostatic gas flow rates, bearing clearances, bearing temperatures, and transient performance.

  12. Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications

    Science.gov (United States)

    Dykas, Brian; Bruckner, Robert; DellaCorte, Christopher; Edmonds, Brian; Prahl, Joseph

    2008-01-01

    A methodology for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs is presented. Features drawn from a review of the open literature are discussed as they relate to bearing performance. The design of fixtures and tooling required to fabricate foil thrust bearings is presented, using conventional machining processes where possible. A prototype bearing with dimensions drawn from the literature is constructed, with all fabrication steps described. A load-deflection curve for the bearing is presented to illustrate structural stiffness characteristics. Start-top cycles are performed on the bearing at a temperature of 425 C to demonstrate early-life wear patterns. A test of bearing load capacity demonstrates useful performance when compared with data obtained from the open literature.

  13. Note: Radial-thrust combo metal mesh foil bearing for microturbomachinery

    Science.gov (United States)

    Park, Cheol Hoon; Choi, Sang Kyu; Hong, Doo Euy; Yoon, Tae Gwang; Lee, Sung Hwi

    2013-10-01

    This Note proposes a novel radial-thrust combo metal mesh foil bearing (MMFB). Although MMFBs have advantages such as higher stiffness and damping over conventional air foil bearings, studies related to MMFBs have been limited to radial MMFBs. The novel combo MMFB is composed of a radial top foil, thrust top foils, and a ring-shaped metal mesh damper—fabricated by compressing a copper wire mesh—with metal mesh thrust pads for the thrust bearing at both side faces. In this study, the combo MMFB was fabricated in half-split type to support the rotor for a micro gas turbine generator. The manufacture and assembly process for the half-split-type combo MMFB is presented. In addition, to verify the proposed combo MMFB, motoring test results up to 250 000 rpm and axial displacements as a function of rotational speed are presented.

  14. Analysis of a Thrust Bearing with Flexible Pads and Flexible Supports

    DEFF Research Database (Denmark)

    Klit, Peder; Thomsen, Kim

    2007-01-01

    A theoretical analysis of a hydrodynamic thrust bearing is presented. The bearing investigated is used in an ndustrial product. The lubricant is water, but the results are valid also for other lubricants.At first the results from a 1-dimensional model for the fluid film forces and the associated deformation of the bearing geometry is presented. This model enlightens the influence of pad flexibility and support location and flexibility. Subsequently results from a 2-dimensional model of the beari...

  15. Experimental equipment for measuring physical properties of the annular hydrostatic thrust bearing

    OpenAIRE

    Kozdera Michal; Drábková Sylva; Bojko Marian

    2014-01-01

    The hydraulic circuit, through which the mineral oil is brought, is an important part of hydrostatic bearings. The annular hydrostatic thrust bearing consists of two sliding plates divided by a layer of mineral oil. In the lower plate, there are oil grooves which distribute the liquid between the sliding areas. The hydraulic circuit is made of two basic parts: the energy source and the controlling part. The hydraulic pump, which brings the liquid into the sliding bearing, is the source of the...

  16. A rotary microactuator supported on encapsulated microball bearings using an electro-pneumatic thrust balance

    Science.gov (United States)

    McCarthy, Matthew; Waits, C. Mike; Beyaz, Mustafa I.; Ghodssi, Reza

    2009-09-01

    The development of a rotary microactuator supported on encapsulated microball bearings and driven by electro-pneumatic actuation is reported. The encapsulated bearing provides full support to an encased rotor, while an electro-pneumatic thrust balance is used to minimize rotor normal load. By minimizing normal load, bearing friction is reduced leading to increased speed and performance. Experimental results show that the microactuator is capable of repeatable operation and continuous 360° motion at speeds of 5-2000 rpm. This is the first demonstration of a ball bearing supported electrostatic microactuator with a fully encased rotor, capable of direct mechanical attachment or reliable interaction with external media.

  17. A rotary microactuator supported on encapsulated microball bearings using an electro-pneumatic thrust balance

    International Nuclear Information System (INIS)

    The development of a rotary microactuator supported on encapsulated microball bearings and driven by electro-pneumatic actuation is reported. The encapsulated bearing provides full support to an encased rotor, while an electro-pneumatic thrust balance is used to minimize rotor normal load. By minimizing normal load, bearing friction is reduced leading to increased speed and performance. Experimental results show that the microactuator is capable of repeatable operation and continuous 360° motion at speeds of 5–2000 rpm. This is the first demonstration of a ball bearing supported electrostatic microactuator with a fully encased rotor, capable of direct mechanical attachment or reliable interaction with external media

  18. The Chevron Foil Thrust Bearing: Improved Performance Through Passive Thermal Management and Effective Lubricant Mixing

    Science.gov (United States)

    Bruckner, Robert

    2013-01-01

    An improved foil thrust bearing is described that eliminates or reduces the need for forced cooling of the bearing foils while at the same time improves the load capacity of the bearing, enhances damping, provides overload tolerance, and eliminates the high speed load capacity drop-off that plagues the current state of the art. The performance improvement demonstrated by the chevron foil thrust bearing stems from a novel trailing edge shape that splays the hot lubricant in the thin film radially, thus preventing hot lubricant carry-over into the ensuing bearing sector. Additionally, the chevron shaped trailing edge induces vortical mixing of the hot lubricant with the gas that is naturally resident within the inter-pad region of a foil thrust bearing. The elimination of hot gas carry-over in combination with the enhanced mixing has enabled a completely passive thermally managed foil bearing design. Laboratory testing at NASA has confirmed the original analysis and reduced this concept to practice.

  19. Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps

    Science.gov (United States)

    SanAndres, Luis

    1998-01-01

    A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs on a Windows 95/NT personal computer. The program, help files and examples are licensed by Texas A&M University Technology License Office. The study of the static and dynamic performance of two hydrostatic/hydrodynamic bearings demonstrates the importance of centrifugal and advection fluid inertia effects for operation at high rotational speeds. The first example considers a conceptual hydrostatic thrust bearing for an advanced liquid hydrogen turbopump operating at 170,000 rpm. The large axial stiffness and damping coefficients of the bearing should provide accurate control and axial positioning of the turbopump and also allow for unshrouded impellers, therefore increasing the overall pump efficiency. The second bearing uses a refrigerant R134a, and its application in oil-free air conditioning compressors is of great technological importance and commercial value. The computed predictions reveal that the LH2 bearing load capacity and flow rate increase with the recess pressure (i.e. increasing orifice diameters). The bearing axial stiffness has a maximum for a recess pressure rati of approx. 0.55. while the axial damping coefficient decreases as the recess pressure ratio increases. The computer results from three flow models are compared. These models are a) inertialess, b) fluid inertia at recess edges only, and c) full fluid inertia at both recess edges and film lands. The full inertia model shows the lowest flow rates, axial load capacity and stiffness coefficient but on the other hand renders the largest damping coefficients and inertia coefficients. The most important findings are related to the reduction of the outflow through the inner radius and the appearance of subambient pressures. The performance of the refrigerant hybrid thrust bearing is evaluated at two operating speeds and pressure drops. The computed results are presented in dimensionless form to evidence consistent trends in the bearing performance characteristics. As the applied axial load increases, the bearing film thickness and flow rate decrease while the recess pressure increases. The a

  20. The Effect of Additives on The Performance of HydrostaticThrust Bearings

    OpenAIRE

    Muhammed Abdul Sattar; Albert E. Yousif

    2008-01-01

    The paper is concerned with, the behavior of the hydrostatic thrust bearings lubricated with liquid-solid lubricants using Einstein viscosity formula, and taking into account the centrifugal force resulting from high speed. Also studied is the effect of the bearing dimensions on the pressure, flow rate, load capacity, shear stress, power consumption and stiffness. The theoretical results show an increase in load capacity by (8.3%) in the presence of solid graphite particles with concentration...

  1. Experimental equipment for measuring physical properties of the annular hydrostatic thrust bearing

    Directory of Open Access Journals (Sweden)

    Kozdera Michal

    2014-03-01

    Full Text Available The hydraulic circuit, through which the mineral oil is brought, is an important part of hydrostatic bearings. The annular hydrostatic thrust bearing consists of two sliding plates divided by a layer of mineral oil. In the lower plate, there are oil grooves which distribute the liquid between the sliding areas. The hydraulic circuit is made of two basic parts: the energy source and the controlling part. The hydraulic pump, which brings the liquid into the sliding bearing, is the source of the pressure energy. The sliding bearing is weighted down by axial force, which can be changed during the process. That´s why in front of the particular oil grooves control components adjusting pressure and flow size are located. This paper deals with a project of a hydraulic circuit for regulation of fluid layer in the annular hydrostatic thrust bearing and the testing equipment for measuring its physical properties. It will include the issue of measuring loading capacity and height of the fluid layer in the annular hydrostatic thrust bearing.

  2. Experimental equipment for measuring physical properties of the annular hydrostatic thrust bearing

    Science.gov (United States)

    Kozdera, Michal; Drábková, Sylva; Bojko, Marian

    2014-03-01

    The hydraulic circuit, through which the mineral oil is brought, is an important part of hydrostatic bearings. The annular hydrostatic thrust bearing consists of two sliding plates divided by a layer of mineral oil. In the lower plate, there are oil grooves which distribute the liquid between the sliding areas. The hydraulic circuit is made of two basic parts: the energy source and the controlling part. The hydraulic pump, which brings the liquid into the sliding bearing, is the source of the pressure energy. The sliding bearing is weighted down by axial force, which can be changed during the process. That's why in front of the particular oil grooves control components adjusting pressure and flow size are located. This paper deals with a project of a hydraulic circuit for regulation of fluid layer in the annular hydrostatic thrust bearing and the testing equipment for measuring its physical properties. It will include the issue of measuring loading capacity and height of the fluid layer in the annular hydrostatic thrust bearing.

  3. Development of the water-lubricated thrust bearing of the hydraulic turbine generator

    International Nuclear Information System (INIS)

    In hydropower plant, a large quantities of turbine oil is used as machine control pressure oil and lubricating oil. If the oil leak out from hydropower plant, it flows into a river. And such oil spill has an adverse effect on natural environment because the oil does not degrade easily. Therefore the KANSAI and Hitachi Mitsubishi Hydro developed the water-lubricated thrust bearing for vertical type hydraulic turbine generator. The water-lubricated bearing has advantages in risk avoidance of river pollution because it does not need oil. For proceeding the development of the water-lubricated thrust bearing, we studied following items. The first is the examination of the trial products of water lubricating liquid. The second is the study of bearing structure which can satisfy bearing performance such as temperature characteristic and so on. The third is the mock-up testing for actual application in the future. As a result, it was found that the water-lubricated thrust bearing was technically applicable to actual equipments.

  4. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  5. Friction losses in a lubricated thrust-loaded cageless angular-contract bearing

    Science.gov (United States)

    Townsend, D. P.; Allen, C. W.; Zaretsky, E. V.

    1973-01-01

    The NASA spinning torque apparatus was modified to measure the spinning torque on a cageless ball thrust bearing. Friction torque was measured for thrust loads varying from 44.5 to 403 newtons (10 to 90 lb) at speeds of 1000, 2000, and 3000 rpm. Tests were conducted with di-2-ethylhexyl sebacate and a synthetic paraffinic oil. These tests were run with either oil jet lubrication or with a thin surface film of lubricant only. An analytical model which included rolling resistance was developed and extended from previous models for spinning torque and lubricant rheology. The model was extended by the inclusion of rolling resistance. The computed values were in fair agreement with the experimental results and confirmed previous hypotheses that a thin lubricant film gives minimum bearing torque and an oil jet flow of a viscous lubricant will result in considerable rolling torque in addition to the torque due to ball spin.

  6. Defect diagnosis and root cause analysis for thrust roller bearing of centrifugal charging pump

    International Nuclear Information System (INIS)

    The centrifugal charging pump is one of the most important equipment for Nuclear power plant which requires very high reliability, during C9 fuel-cycle, the continuous high level vibration alarm happened on the centrifugal charging pump B, we diagnosed its faults correctly and selected the right operation mode and right time to dismantle it which ensure the safety and economic benefits of Nuclear power plant, and through deeply analysis the root causes of thrust bearing defaults, we can learn much from it especially for the diagnosis and analysis to the bearing faults which is common for rotating equipment. (author)

  7. Establishing design criteria for crankshaft thrust bearings in gasoline and diesel engines by computer simulations and experiments. Crankshaft thrust bearing design - final report; Auslegungskriterien fuer Kurbelwellenaxiallager in Otto- und Dieselmotoren durch rechnergestuetzte Simulation und experimentelle Untersuchungen. Axialgleitlagerauslegung - Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hunsicker, W. [Fachhochschule Mannheim (Germany). Inst. fuer Tribologie; Backhaus, K. [Univ. GH Kassel (Germany). Inst. fuer Maschinenelemente und Konstruktionstechnik; Schubert, W. [KS Gleitlager GmbH, Papenburg (Germany)

    2004-07-01

    Aim of the research-project was it to increase the calculation safety of crank shaft thrust bearings in combustion engines. The project was divided in two parts: (1) A simulation program to analyze the load bearing capacity of axial bearings under mixed lubrication has been developed at the Institut fuer Maschinenelemente und Konstruktionstechnik, University of Kassel. This part of the research-project has been presented at the FVV Herbsttagung in 2003. (2) The test runs with original parts were carried out on a newly designed thrust bearing test rig at the Institut fuer Tribologie, University of Applied Sciences in Mannheim. The following presentation shows the results of part 2. The experimental results show the influence of rotational frequency, load, bearing material, lateral run-out of the tread of the crankshaft and groove pattern. These test runs will help to dimension thrust bearings more efficiently. (orig.)

  8. Experimental investigation of the flow in a simplified model of water lubricated axial thrust bearing

    Science.gov (United States)

    Kirschner, O.; Ruprecht, A.; Riedelbauch, S.

    2014-03-01

    In hydropower plants the axial thrust bearing takes up the hydraulic axial thrust of the runner and, in case of vertical shafts, the entire weight of all rotating masses. The use of water lubricated bearings can eliminate the oil leakage risk possibly contaminating the environment. A complex flow is generated by the smaller film thickness due to the lower viscosity of water compared with oil. Measurements on a simplified hydrostatic axial trust bearing model were accomplished for validating CFD analysis of water lubricated bearings. In this simplified model, fixed pads are implemented and the width of the gap was enlarged to create a higher resolution in space for the measurements. Most parts of the model were manufactured from acrylic glass to get optical access for measurement with PIV. The focus of these measurements is on the flow within the space between two pads. Additional to the PIV- measurement, the pressure on the wall of the rotating disk is captured by pressure transducers. The model bearing measurement results are presented for varied operating conditions.

  9. The influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings: Part I - Theory

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar; Fuerst, Axel

    This is Part I of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. A numerical model based on the Reynolds equation is developed extending the three dimensional thermo-elasto-hydrodynamic (TEHD......) analysis of tilting-pad thrust bearings to include the effects of high pressure injection and recesses in the bearing pad. The model is applied to the analysis of an existing bearing of large dimensions and the influence of the pocket is analyzed. It is shown that a shallow pocket positively influences the...

  10. Optimal design of Tilting-Pad Thrust Bearings with High Pressure Injection Pockets

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar

    A thermo-elasto-hydrodynamic(TEHD) model based on the Reynolds equation has been used to study the effect of oil injection pockets on the performance of tilting pad thrust bearings. The optimal position of the pivot both with respect to load carrying capacity and minimal power consumption is seen...... to move towards the leading edge of the pads as the pocket size is increased. A large pocket is seen to negatively influence the performance with respect to friction loss at most operating conditions while at some operating conditions it has a small positive influence. The small pocket has a slight...

  11. Performance of gas-lubricated cruciform-mounted tilting-pad journal bearings and a damped flexibly mounted spiral-groove thrust bearing

    Science.gov (United States)

    Ream, L. W.

    1974-01-01

    A test program was conducted to determine the performance characteristics of gas-lubricated cruciform-mounted tilting-pad journal bearings and a damped spiral-groove thrust bearing designed for the Brayton cycle rotating unit (BRU). Hydrostatic, hybrid (simultaneously hydrostatic and hydrodynamic), and hydrodynamic tests were conducted in argon gas at ambient pressure and temperature ranges representative of operation to the 10.5 kWe BRU power-generating level. Performance of the gas lubricated bearings is presented including hydrostatic gas flow rates, bearing clearances, bearing temperatures, and transient performance.

  12. Rheodynamic Lubrication of an Externally Pressured Thrust Bearing Using Herschel-Bulkley Fluid with Sinusoidal Injection

    Directory of Open Access Journals (Sweden)

    I.J. Amalraj

    2012-01-01

    Full Text Available Lubricants with variable viscosity are assuming greater importance for its application in polymer industry, thermal reactors and in biomechanics. With the bearing operations in machines being subject to high speeds, loads, increasing mechanical shearing forces and continually increasing pressure, there has been an increasing interest to use non-Newtonian fluids characterized by a yield value. Some of them, which fit into this class, are Bingham, Casson and Herchel-Bulkley models. In the present work, the problem of an externally pressurized thrust bearing lubricated with Herschel-Bulkley fluid under the sinusoidal flow rate has been investigated. Herschel-Bulkley fluids are characterized by a yield value, which leads to the formation of rigid core in the flow region. The shape and extent of the core has been determined numerically for various values of the Herschel-Bulkley number, power-law index, amplitude of sinusoidal fluid film and time. Numerical solutions have been obtained for the bearing performances such as pressure distribution and load capacity for different values of the Herschel-Bulkley number, power-law index, amplitude of sinusoidal fluid film and time. The effects of sinusoidal injection of the lubricant and the non-Newtonian characteristics on the bearing performances have been discussed.

  13. Experimental Investigation of Friction Effect on Liner Model Rolling Bearings for Large Diameter Thrust Bearing Design

    Directory of Open Access Journals (Sweden)

    S. Babu

    2012-12-01

    Full Text Available Studying friction coefficient has significant importance, especially when dealing with high load and temperature applications that have frequent starting and stopping points. Towards that, two sets of angular contact Linear Model Mockup Bearings (LMMB were designed and fabricated. This linear model assembly was made up of high precision, grounded raceways (AISI 4140 and commercially purchased balls (AISI 52100. The experimental studies were carried out by placing different number of balls between the raceways under different loads at dry lubricating condition. The static friction coefficients were measured using two different experiments: viz gravitation-based experiment and direct linear force measurement experiment. And Digital Image Correlation (DIC technique was used to find the stiffness of LMMB set.

  14. Anti-interference of the tribological test-bed for thrust bearings used in submersible pumps

    Science.gov (United States)

    Yu, Jianwei; You, Tao; Yu, Xiaofen; Jiao, Minghua; Xie, Ting

    2006-11-01

    This test-bed was developed to investigate the tribological behavior of the thrust bearings - the key parts of submersible pumps, in the simulating work conditions in oil well. A great deal of Electromagnetic Interferences (EMI) are unavoidable and will lead to system failure or abnormal data in condition of quite high load and speed. On the basis of analysis and investigation of interference source and mode in system, such as power interference, vector control inverter, mechanical contact, static interference and so on, propose several hardware case, such as new power EMI filter, electromagnetic shielding, RC link, impedance matching, etc., were employed, and novel digital filtering algorithm, in measurement and control system of test-bed. The results showed that the combination of the different anti-interference methods can reach optimal reliability and precision.

  15. The Influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings - Part I: Theory

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar; Fuerst, Axel

    2007-01-01

    This is Part I of a two-part series of papers describing the effects of high-pressure injection pockets on the operating conditions of tilting-pad thrust bearings. In Part I a numerical model based on the Reynolds equation is developed extending the threedimensional thermoelastohydrodynamic (TEHD......) analysis of tilting-pad thrust bearings to include the effects of high-pressure injection and recesses in the bearing pads. The model is applied to the analysis of an existing bearing of large dimensions and the influence of the pocket is analyzed. In the analysis, the high-pressure oil injection used for...... Santos, I. F., 2007, ASME J. Tribol., 129(4), pp. 904–912) measurements of pressure profiles and oil film thickness for a test-pad are compared to theoretical results. The analysis of Part II deals both with flow situations, where the high-pressure injection is turned off, as well as with situations...

  16. Inertia Effects in Rheodynamic Lubrication of an Externally Pressurized Thrust Bearing Using Bingham Lubricant with Sinusoidal Injection

    OpenAIRE

    I.J. Amalraj; S Narasimman; Kandasamy, A

    2013-01-01

    In the present theoretical investigation, the combined effects of fluid inertia forces and sinusoidal injection of the Bingham lubricant, on the performance of an externally pressurized thrust bearing with circular geometry are studied. Using the conventional two-constant Bingham model and by adopting the method of averaging inertia terms, the reduced Navier-Stokes equations are modified and numerical solutions have been obtained for the bearing performances such as the pressure distribution ...

  17. Design and optimization of an active magnetic thrust bearing for flyhweel energy storage systems

    Science.gov (United States)

    Lam, Siu Kiong

    2011-12-01

    This thesis is motivated in part by the lack of published research pertaining to active magnetic thrust bearings (AMTB), as compared to active magnetic radial bearings (AMRB). This thesis presents one method in implementing AMTBs to provide a near frictionless support to a rotor contained in a vacuum environment, mitigating the concerns of viscous drag and chemical reaction as a result of the exposure to lubricants. An analytical model was first developed to linearize the AMTB against a predefined operating point. A finite element simulation was subsequently conducted to verify the analytical model. The analytical and finite element methods both indicated that the steady state power consumption of the AMTB was approximately 12 W, and there was no occurrence of magnetic saturation within the material. The stress analysis showed that the stresses experienced by the rotor part of the AMTB as it rotated at the maximum rotation speed were well below the yield stress of the material. Lastly, a closed loop feedback network with proportional-integral-derivative (PID) controllers was designed and implemented as the control scheme for keeping the flywheel rotor at a predefined axial position, while the rotor underwent axial position variations due to the external disturbance, thermal expansion, or Poisson contraction effects. The resulting simulations showed that the PID controller was able to stabilize the flywheel rotor 0.3 s after it was disturbed by an external force equaling 10% of its weight.

  18. Evaluation of chromium oxide and molybdenum disulfide coatings in self-acting stops of an air-lubricated Rayleigh step thrust bearing

    Science.gov (United States)

    Nemeth, Z. N.

    1974-01-01

    Two coatings for a Rayleigh step thrust bearing were tested when coasting down and stopping under self-acting operation in air. The thrust bearing had an outside diameter of 8.9 cm (3.5 in.), an inside diameter of 5.4 cm (2.1 in.), and nine sectors. The load was 73 N (16.4 lbf). The load pressure was 19.1 kN/per square meter (2.77 lbf/per square inch) on the total thrust bearing area. The chromium oxide coating was good to 150 stops without bearing deterioration, and the molybdenum disulfide coating was good for only four stops before bearing deterioration. The molybdenum disulfide coated bearing failed after nine stops.

  19. Analysis of a Thrust Bearing with Flexible Pads and Flexible Supports

    DEFF Research Database (Denmark)

    Klit, Peder; Thomsen, Kim

    deformation of the bearing geometry is presented. This model enlightens the influence of pad flexibility and support location and flexibility. Subsequently results from a 2-dimensional model of the bearing is presented. The model is used to carry out an optimization of the bearing design, and the obtained...

  20. Robust Optimum Design of Thrust Hydrodynamic Bearings for Hard Disk Drives

    Directory of Open Access Journals (Sweden)

    Hiromu Hashimoto

    2012-10-01

    Full Text Available This paper describes the robust optimum design which combines the geometrical optimization method proposed by Hashimoto and statistical method. Recently, 2.5? hard disk drives (HDDs are widely used for mobile devices such as laptops, video cameras and car navigation systems. In mobile applications, high durability towards external vibrations and shocks are essentials to the bearings of HDD spindle motor. In addition, the bearing characteristics are influenced by manufacturing error because of small size of the bearings of HDD. In this paper, the geometrical optimization is carried out to maximize the bearing stiffness using sequential quadratic programming to improve vibration characteristics. Additionally, the bearing stiffness is analyzed considering dimensional tolerance of the bearing using statistical method. The dimensional tolerance is assumed to distribute according to the Gaussian distribution, and then the bearing stiffness is estimated by combining the expectation and standard deviation. As a result, in the robust optimum design, new groove geometry of bearing can be obtained in which the bearing stiffness is four times higher than the stiffness of conventional spiral groove bearing. Moreover, the bearing has lower variability compared with the result of optimum design neglecting dimensional tolerance.

  1. A superconducting thrust-bearing system for an energy storage flywheel

    International Nuclear Information System (INIS)

    We have constructed a bearing system for an energy storage flywheel. This bearing system uses a combination of permanent magnets and superconductors in an arrangement commonly termed as an Evershed bearing. In an Evershed system there are in fact two bearings which act in concert. In our system we have one bearing constructed entirely out of permanent magnets acting in attraction. This system bears the weight of the flywheel (43.6 kg) but would not, on its own, be stable. Stability is provided by a superconducting bearing which is formed by the interaction between the magnetic field of a permanent magnet sited on the rotor and superconductors on the stator. This overall arrangement is stable over a range of levitation heights and has been tested at rotation speeds of up to around 12 Hz (the maximum speed is dictated by the drive system not the bearing system). There is a sharp resonance peaking at between 2 and 3 Hz and spin down tests indicate that the equivalent coefficient of friction is of the order of 10-5. The rate of change of velocity is, however, not constant so the drag is clearly not solely frictional. The position of the resonance is dictated by the stiffness of the bearing relative to the mass of the flywheel but the amplitude of the resonance is dictated by the variation in magnitude of the magnetic field of the permanent magnets. Large magnets are (at present) fabricated in sections and this leads to a highly inhomogeneous field. The field has been smoothed by using a combination of iron which acts passively and copper which provides magnetic shielding due to the generation of eddy currents and therefore acts as an 'active' component. Calculations based on the spin down tests indicate that the resultant variation in field is of the order of 3% and measurements are being carried out to confirm this. (author)

  2. The influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings: Part II - Comparison Between Theory and Experiment

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Fuerst, Axel; Santos, Ilmar

    2006-01-01

    This is Part II of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. Measurements of the distribution of pressure and oil film thickness are presented for tilting-pad thrust bearing pads of approximately 100 cm2 surface area. Two pads are measured in a laboratory test-rig at loads of approximately 0.5, 1.5 and 4.0 MPa and velocities of up to 33 m/s. One pad has a plain surface. The other pad has a con...

  3. Comparison of Models for the Steady-State Analysis of Tilting-Pad Thrust Bearings

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar

    Prediction of the minimum oil film thickness and the maximum temperature on the surface of the bearing pad is crucial in the design and dimensioning of bearings. Friction loss, oil bath temperature and pad deflection are other parameters of interest. Depending on the desired information a numerical...... model requires different levels of detail. The two dimensional Reynolds equation for pressure in the oil film can be solved isothermally or considering viscosity variations in two or three dimensions, requiring solution of the equations for thermal equilibrium in oil and pad. Knowing the temperature...... distribution the deflection of the pad due to pressure and thermal bending can be calculated using a flat plate approximation. At the five free sides of the pad heat transfer can be modelled. The temperature distribution at the inlet to the pad can be calculated through equilibrium of thermal energy for the...

  4. Investigation of a saddle node bifurcation due to loss of contact in preloaded spherical roller thrust bearings

    International Nuclear Information System (INIS)

    Spherical roller thrust bearings are used as supports in many rotating machineries. By applying an axial preload, clearance between the raceways and the rollers can be avoided. In order to increase the endurance, the preload shall be kept as low as possible. However, a bearing with low preload is sensitive of loosing full contact leading to nonlinear stiffness characteristics. The objective of this paper is to suggest a tool, which can be used to determine suitable preload and to show that a saddle node bifurcation can occur if the preload is too small. Studying the model in a rotating frame leads to an autonomous equation of motion from which stationary points and their stability can be analysed. Some set of parameters give a nonhyperbolic eigenvalue, and by investigating the corresponding central manifold it is found that a saddle node bifurcation occurs. Since explicit equations for the stationary points are derived, they can be used to choose a preload high enough to make sure that full contact always is a possible solution. It is however shown that if the preload becomes too small, the system enters an area of multiple solutions and a saddle node bifurcation can occur.

  5. Calculation and analysis for stiffness of the thrust aerostatic bearing of ultra-precision machine tools

    Science.gov (United States)

    Lu, Lihua; Zhao, Ziqiang; Liang, Yingchun; Zhang, Longjiang

    2010-10-01

    The single point diamond turning (SPDT) lathe of vertical flying cutting milling style is one important ultra-precision machining method for Large-aperture optics. To realize ultra-precision machining with SPDT technology, the turning spindle of the machine tools should be with higher stiffness and stability. In this paper, based on finite element method (FEM), an iterative procedure is proposed and implemented to solve the fluid dynamic model and structure model for simulation the couple of air pressure and structure flexibility. Simulation results show that pressure in the air gap makes the plate deform and this deformation produced by the pressure adversely modifies the pressure distribution. Experimental results indicate that the method can predict the aerostatic spindle stiffness accurately, the prediction error is about 2.04%. These results show a relevant influence of the structural flexibility of the bearing on its static performance.

  6. 3D two-way coupled TEHD analysis on the lubricating characteristics of thrust bearings in pump-turbine units by combining CFD and FEA

    Science.gov (United States)

    Zhai, Liming; Luo, Yongyao; Wang, Zhengwei; Liu, Xin

    2015-10-01

    The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.

  7. 3D Two-way coupled TEHD analysis on the lubricating characteristics of thrust bearings in pump-turbine units by combining CFD and FEA

    Science.gov (United States)

    Zhai, Liming; Luo, Yongyao; Wang, Zhengwei; Liu, Xin

    2016-01-01

    The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.

  8. The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

    2012-11-28

    Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

  9. 2D THD and 3D TEHD analysis of large spindle supported thrust bearings with pins and double layer system used in the three gorges hydroelectric generators

    International Nuclear Information System (INIS)

    A 2D THD model and a 3DTEHD model for large spindle supported thrust bearings were set up and used to analyze the lubrication performance of the Three Gorges test thrust beating withpins and double layer system developed by Alstom Power. The finite difference method was employed to solve the THD model, and the thermal-elasticdeformations in the pad and runner were obtained by the finite element software ANSYS11.0. The data transfer between the THD model and ANSYS11.0 was carried out automatically by an interface program.A detailed comparison between the experimental results and numerical predictions by the two different modelsset up in this paper was carried out. Poor agreement has been found between the theoretical results obtained by 2D THD model and experimental data, while 3D TEHD provides fairly good agreement, confirming the importance of thermal effects and thermal-elastic deformations in both pad and runner.

  10. The Influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings - Part II: Comparison Between Theory and Experiment

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Fuerst, Axel; Santos, Ilmar

    2007-01-01

    This is Part II of a two-part series of papers describing the effects of high-pressure injection pockets on the operating conditions of tilting-pad thrust bearings. The paper has two main objectives. One is an experimental investigation of the influence of an oil injection pocket on the pressure distribution and oil film thickness. Two situations are analyzed: (i) when the high-pressure oil injection is turned off and (ii) when the highpressure injection is turned on. The other objective is to v...

  11. THE MODEL OF THE RADIAL-THRUST BALL BEARING FOR ANALYSIS OF NONLINEAR VIBRATIONS OF THE ROTOR

    Directory of Open Access Journals (Sweden)

    S. Filipkovskyi

    2015-12-01

    Full Text Available The non-linear model of resilient forces of pre-loaded ball bearing is developed. The contact forces are obtained and arranged in the Heyn’s row on the basis of Herts theory. The obtained model is used for solving the problem of non-linear dynamics of vehicles. The design samples correspond to calculations performed with the help of the traditional model.

  12. Ball's motion, sliding friction, and internal load distribution in a high-speed ball bearing subjected to a combined radial, thrust, and moment load, applied to the inner ring's center of mass: Numerical procedure

    Science.gov (United States)

    César Ricci, Mário

    2015-10-01

    In a companion paper of this was introduced a set of non-linear algebraic equations for ball's motion, sliding friction and internal loading distribution computation in a high-speed, single-row, angular-contact ball bearing, subjected to a known combined radial, thrust and moment load, which must be applied to the inner ring's center of mass. It was shown there that it is required the iterative solution of 9Z + 3 simultaneous non-linear equations - where Z is the number of balls - to yield exact solution for contact angles, ball attitude angles, rolling radii, normal contact deformations and axial, radial, and angular deflections of the inner ring with respect the outer ring. The Newton-Rhapson method is to be used to solve the problem. This paper deals with the numerical procedure description. The numerical results derived from the described procedure shall be published later.

  13. Sub-micro-Newton resolution thrust balance

    Science.gov (United States)

    Hathaway, G.

    2015-10-01

    Herein is described a sensitive vacuum balance for measuring the thrust produced by small (˜0.5 kg) thrusters typically employed in microsat station-keeping. The balance is based on a torsion design but incorporates jewel-pivot bearings instead of the more typical torsion spring bearings. Novel tilt control allows maintenance of true verticality of the bearing axis even while under vacuum. The low moment of inertia design allows it to measure small thrusts from high-voltage devices without direct wire conductor connections. Calibration by several means is described including use of a previously calibrated dielectric barrier discharge thruster.

  14. Ball's motion, sliding friction, and internal load distribution in a high-speed ball bearing subjected to a combined radial, thrust, and moment load, applied to the inner ring's center of mass: Mathematical model

    Science.gov (United States)

    César Ricci, Mário

    2015-10-01

    A set of non-linear algebraic equations, which must to be solved using a numerical procedure, for ball's motion, sliding friction and internal loading distribution computation in a high-speed, single-row, angular-contact ball bearing, subjected to a known combined radial, thrust and moment load, which must be applied to the inner ring's centre of mass, is introduced. For each step of the procedure it is required the iterative solution of 9Z + 3 simultaneous non-linear equations—where Z is the number of the balls—to yield exact solution for contact angles, ball attitude angles, rolling radii, normal contact deformations and axial, radial, and angular deflections of the inner ring with respect the outer ring. While the focus of this work is obtaining the steady state forces and moments equilibrium conditions on the balls, under the selected loading, the numerical aspects of the procedure are treated in a companion paper. The numerical results derived from the described procedure shall be published later.

  15. High speed hybrid bearing comprising a fluid bearing and a rolling bearing convected in series

    Science.gov (United States)

    Anderson, W. J. (inventor)

    1973-01-01

    A description is given of an antifriction bearing and a process by which its fatigue life may be extended. The method involves a rotating shaft supported by a fluid bearing and a rolling element bearing coupled in series. Each bearing turns at a fraction of the rotational speed of the shaft. The fluid bearing is preferably conical, thereby providing thrust and radial load support in a single bearing structure.

  16. Variable thrust cartridge

    Science.gov (United States)

    Taleyarkhan, Rusi P. (Knoxville, TN)

    2000-11-07

    The present invention is a variable thrust cartridge comprising a water-molten aluminum reaction chamber from which a slug is propelled. The cartridge comprises a firing system that initiates a controlled explosion from the reaction chamber. The explosive force provides a thrust to a slug, preferably contained within the cartridge.

  17. A simplified thermohydrodynamic model for fluid film bearings

    Science.gov (United States)

    Szeri, A. Z.

    1994-03-01

    We aim to develop a simplified yet realistic model of fluid film lubrication under thermohydrodynamic conditions, with significant thermal and elastic deformation of the bearing pads. The principal thrust is transfer of technology from the researcher to the industrial designer: the end product will include two user-friendly computer programs, one for journal bearings and the other for thrust bearings, to be used for bearing design in interactive mode on a personal computer.

  18. Hydrostatic and hybrid bearing design

    CERN Document Server

    Rowe, W B

    1983-01-01

    Hydrostatic and Hybrid Bearing Design is a 15-chapter book that focuses on the bearing design and testing. This book first describes the application of hydrostatic bearings, as well as the device pressure, flow, force, power, and temperature. Subsequent chapters discuss the load and flow rate of thrust pads; circuit design, flow control, load, and stiffness; and the basis of the design procedures and selection of tolerances. The specific types of bearings, their design, dynamics, and experimental methods and testing are also shown. This book will be very valuable to students of engineering des

  19. A MICRO TURBINE DEVICE WITH ENHANCED MICRO AIR-BEARINGS

    OpenAIRE

    Shan, X.-C.; Zhang, Qide; Sun, Y. F.; Maeda, R

    2006-01-01

    As part of progress in developing a micro gas turbine engine, this paper presents the design, fabrication and testing of a silicon-based micro turbine device, which is driven by compressed air. To improve its rotational speed and stability, the turbine device has enhanced journal air bearing and thrust air bearings. The thrust air bearings are utilized for supporting the rotor from both its top- and bottom- sides. The top thrust air bearing employs pump-in type spiral grooves, and the bottom ...

  20. Active magnetic bearings give systems a lift

    Science.gov (United States)

    O'Connor, Leo

    1992-07-01

    While the active magnetic bearings currently being used in such specialized applications as centrifugal compressors for natural gas pumps are more expensive than conventional bearings, they furnish improved machine service life, controlled damping of high-speed rotors to eliminate critical-speed vibrations, and the obviation of lubrication systems. Attention is presently given to magnetic bearings used by the electric power industry, homopolar magnetic radial and thrust bearings, weapon-system and gas turbine engine applications of magnetic bearings, and the benefits of magnetic bearings for energy-storage flywheels.

  1. Numerical and experimental investigations of micro air bearings for micro systems

    International Nuclear Information System (INIS)

    The paper investigated performance of air bearing system in a micro device. A parametric study is carried out. The dynamic performance of a very short journal bearing (L/D < 0.1) and thrust bearing is studied. The parameters that affect the performance of the air bearing are discussed. The optimum values of the important parameters are explored, and the stability of the thrust bearing is discussed. The prototype and test result are presented

  2. Recommended Practices in Thrust Measurements

    Science.gov (United States)

    Polk, James E.; Pancotti, Anthony; Haag, Thomas; King, Scott; Walker, Mitchell; Blakely, Joseph; Ziemer, John

    2013-01-01

    Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. The American Institute of Aeronautics and Astronautics has started an initiative to develop standards for many important measurement processes in electric propulsion, including thrust measurements. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micro N- to mN-level thrust and micro Ns-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with its implementation in hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.

  3. Thrust modeling for hypersonic engines

    Science.gov (United States)

    Riggins, D. W.; Mcclinton, C. R.

    1995-01-01

    Expressions for the thrust losses of a scramjet engine are developed in terms of irreversible entropy increases and the degree of incomplete combustion. A method is developed which allows the calculation of the lost vehicle thrust due to different loss mechanisms within a given flow-field. This analysis demonstrates clearly the trade-off between mixing enhancement and resultant increased flow losses in scramjet combustors. An engine effectiveness parameter is defined in terms of thrust loss. Exergy and the thrust-potential method are related and compared.

  4. Thrusting, halotectonics, and sedimentation in the Spanish Pyrenees

    Energy Technology Data Exchange (ETDEWEB)

    Anastasio, D.J.

    1988-08-01

    The Spanish Pyrenees are a linked system of regional thrust sheets and intermontane basins which formed during the Tertiary collision of the European and Iberian plates. The structural evolution of the Pyrenees was controlled by Mesozoic extensional structures and evaporite-bearing strata which served as the regional decollement and produced widespread pre- to postthrusting halotectonic folds. Palinspastic restoration of Cretaceous strata from the Pyrenean realm delineates a large normal-faulted embayment in the northern Iberian margin. Thicker sediments within the bay, coupled with the southward emplacement of the Cotiella-Montsec thrust sheet, caused underlying evaporites to flow toward the basin margins, producing folds such as the Mediano anticline.

  5. Bearing system

    Science.gov (United States)

    Kapich, Davorin D. (Carlsbad, CA)

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  6. Static thrust of airplane propellers

    Science.gov (United States)

    Diehl, Walter S

    1934-01-01

    Static thrust data from more than 100 airplane propeller tests are collected from various sources and combined in working charts, from which the static thrust coefficient may be readily determined. The available data cover practically all types of propellers and are in good agreement.

  7. Stability of Superhydrophobic Ring & Axle Liquid Bearings

    OpenAIRE

    Jenner, Elliot; D'Urso, Brian

    2015-01-01

    Friction between contacting solid surfaces is a dominant force on the micro-scale and a major consideration in the design of MEMS. Non-contact fluid bearings have been investigated as a way to mitigate this issue. Here we discuss a new design for surface tension-supported thrust bearings utilizing patterned superhydrophobic surfaces to achieve improved drag reduction. We examine sources of instability in the design, and demonstrate that it can be simply modeled and has super...

  8. Centrifuge modelling of fold—thrust structures in a tripartite stratigraphic succession

    Science.gov (United States)

    Dixon, John M.; Tirrul, Rein

    Analog models measuring 127 × 76 mm in plan were deformed at 2500-4000 g in a centrifuge. Scaled stratigraphic sequences were constructed of anisotropic multilayers with individual layers of Plasticine and silicone putty as thin as 40 ?m. The plasticine—silicone putty multilayers are analogs for interbedded competent carbonates and clastics, and incompetent pelites, given the model ratios of acceleration, 2500 g; length, 5 × 10 -6; specific gravity, 0.6; time 10 -10. Modelling of fold—thrust tectonics emphasizes the influence of stratigraphic succession on structural evolution. The models are constructed with a tripartite stratigraphic succession comprising basal and upper, well-laminated and incompetent units, and a middle, somewhat more isotropic and competent unit. The models deform by three mechanisms: layer-parallel shortening, folding and thrust faulting. They reproduce a number of fold—thrust relationships that have been observed in nature. Folds are typically periclinal, in en échelon arrays. Folds and thrusts are arcuate in plan, reflecting differential shortening. Fold attitudes grade from upright at high levels to overturned at deeper levels within a structural panel, reflecting drag against the basal décollement; fold axial surfaces and thrust faults are listric. While competent units may be offset by localized displacement on thrust faults, the discrete faults may die out both upwards and downwards into regions of ductile strain in less-competent units. Thrust faults appear to follow staircase trajectories through the strata, transecting incompetent units at shallow angles to bedding and competent units at steeper angles. However, the apparent staircase pattern results from propagation of a fault along a relatively straight trajectory through previously-folded strata. Foreland-verging thrusts are more common than back thrusts; the latter have steeper dips. The models suggest a mechanism of thrust-ramp nucleation following detachment folding: long-wavelength buckling of a competent unit can initiate localized strain (folding and layer-parallel shear) in an underlying incompetent unit, beneath the anticlines of the competent unit; thrust faults propagate up-section from these high-strain zones through the foreland-dipping limbs of buckle-folds in the competent unit. This mechanism may explain the commonly-observed spatial periodicity of thrust ramps. The model results bear similarities to natural fold—thrust belts in which the stratigraphic succession consists of three mechanical units, for example, the Asiak Foreland and Bear Creek Hills fold—thrust belts of the Slave Province, Northwest Territories, Canada.

  9. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  10. High Thrust-Density Electrostaic Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — These issues are addressable by: increasing the thrust, power, and thrust-to-power ratio capability of EP systems; reducing the non-recurring engineering systems...

  11. Nonlinear dynamics of a vectored thrust aircraft

    DEFF Research Database (Denmark)

    Sørensen, C.B; Mosekilde, Erik

    With realistic relations for the aerodynamic coefficients, numerical simulations are applied to study the longitudional dynamics of a thrust vectored aircraft. As function of the thrust magnitude and the thrust vectoring angle the equilibrium state exhibits two saddle-node bifurcations and three...

  12. The R and D D's bearing test benches

    International Nuclear Information System (INIS)

    In power generation plants, rotating machines are involved in energy transformation processes and safety systems. The bearings supporting the rotors and the thrust bearings play a crucial role in the reliability of these machines. The phenomena encountered straddle several disciplines: hydrodynamics, tribology, thermomechanics, materials and vibrations in a specific environment, namely: thin fluid film, solid mechanical components and shaft rotation. Means of analysing the behaviour of these components (bearings and thrust bearings) have been developed and implemented. These consists of the EDYOS (Etude Dynamique des Organes de Supportage) code for dynamically studying bearing devices and several related bench tests. In reality, in order to understand the complex physical phenomena encountered in these components, it is vital to carry out analyses and experimental validations. Since these investigations cannot be carried out on actual machines, test benches have been built which can subject the sample bearings to the equivalent stresses. (author)

  13. The thrust minimization problem and its applications

    Science.gov (United States)

    Ivanyukhin, A. V.; Petukhov, V. G.

    2015-07-01

    An indirect approach to the optimization of trajectories with finite thrust based on Pontryagin's maximum principle is discussed. The optimization is aimed at calculating the minimum thrust for a point-to-point flight completed within a given interval of time with a constant exhaust velocity and a constant power. This may help calculate the region of existence of the optimum trajectory with thrust switching: it is evident that the latter problem may be solved if minimum thrust is lower than or equal to the available thrust in the problem with switching. A technique for calculating the optimum trajectories with a finite thrust by solving the problem of minimization of the thrust acceleration with a subsequent numerical continuation with respect to the mass flow towards the thrust minimization problem is proposed. This technique offers an opportunity to detect degeneracies associated with the lack of thrust or specific impulse. In effect, it allows one to calculate the boundaries of the region of existence of trajectories with thrust switching and thus makes it possible to automate the process of solving the problem of optimization of trajectories with thrust switching.

  14. Magnetic Bearing

    Science.gov (United States)

    1996-01-01

    AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.

  15. Failure of GIMBAL bearing in directional GYRO

    International Nuclear Information System (INIS)

    This paper relates to the directional gyro of a sensing device used in indigenously developed surface-to-surface missile. The assembling of more than one thousand components in the form of several sub assemblies including hundreds of silver solders of this device was done in the hundred-thousands-class clean room according to assembly procedure. Whereas more than twenty bearings including gimbals bearings were assembled in the ten-thousands-class clean room after inspection/ testing them on beating testing system as per routine. The device was entered in testing and adjustment phase after successful completion of assembly work. The directional gyro qualified all the tests except the most critical one, the drift-rate. The drift-rate of outer gimbal was 60% more than permissible limit whereas drift-rate of inner gimbal was found O.K. It was diagnosed that at least one inner gimbal bearing out of two had some problem. The results were same after rebalancing of gimbals three times. The directional gyro was disassembled in clean room and the radial-thrust-bearing was recovered and flange bearing which are inner gimbal bearings. They were checked on bearing testing system and it was found that flange-bearing had more friction than permissible limit and hence rejected but radial thrust bearing were declared O.K. The gyro was reassembled with new O.K. flange bearing and the assembly work was completed in all respects. The sensing device qualified all the tests including the drift-rate. This case study is being presented to emphasize the importance of careful assembly of gyro in clean environment. (author)

  16. Design and fabrication of gas bearings for Brayton cycle rotating unit

    Science.gov (United States)

    Frost, A.; Tessarzik, J. M.; Arwas, E. B.; Waldron, W. D. (editor)

    1973-01-01

    Analysis, design, and testing of two types of pivoted pad journal bearings and a spiral-grooved thrust bearing suitable for direct installation into the NASA 2 to 15 KW Brayton Cycle Rotating Unit (BRU) have been accomplished. Both types of tilting pad bearing assemblies are of the preloaded type, consisting of three pads with one pad flexibly mounted. One type utilizes a non-conforming pivot, while the other replaces the conventional spherical pivot with a cruciform flexible member. The thrust bearing is flexure mounted to accommodate static machine mislinement. Test results indicate that both types of journal bearings should satisfy the requirements imposed by the BRU. Hydrostatic tests of the spiral-grooved thrust bearing showed it to be free of pneumatic hammer with as many as 24 orifices over the BRU pressure and load range.

  17. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  18. Low thrust rocket test facility

    Science.gov (United States)

    Arrington, Lynn A.; Schneider, Steven J.

    1990-01-01

    A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.

  19. Static Load Distribution in Ball Bearings

    Science.gov (United States)

    Ricci, Mario

    2010-01-01

    A numerical procedure for computing the internal loading distribution in statically loaded, single-row, angular-contact ball bearings when subjected to a known combined radial and thrust load is presented. The combined radial and thrust load must be applied in order to avoid tilting between inner and outer rings. The numerical procedure requires the iterative solution of Z + 2 simultaneous nonlinear equations - where Z is the number of the balls - to yield an exact solution for axial and radial deflections, and contact angles. Numerical results for a 218 angular-contact ball bearing have been compared with those from the literature and show significant differences in the magnitudes of the ball loads, contact angles, and the extent of the loading zone.

  20. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  1. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  2. Conical Magnetic Bearing Development and Magnetic Bearing Testing for Extreme Temperature Environments

    Science.gov (United States)

    Keith, Theo G., Jr.; Jansen, Mark

    2004-01-01

    The main proposed research of this grant were: to design a high-temperature, conical magnetic bearing facility, to test the high-temperature, radial magnetic bearing facility to higher speeds, to investigate different backup bearing designs and materials, to retrofit the high-temperature test facility with a magnetic thrust bearing, to evaluate test bearings at various conditions, and test several lubricants using a spiral orbit tribometer. A high-temperature, conical magnetic bearing facility has been fully developed using Solidworks. The facility can reuse many of the parts of the current high-temperature, radial magnetic bearing, helping to reduce overall build costs. The facility has the ability to measure bearing force capacity in the X, Y, and Z directions through a novel bearing mounting design. The high temperature coils and laminations, a main component of the facility, are based upon the current radial design and can be fabricated at Texas A&M University. The coil design was highly successful in the radial magnetic bearing. Vendors were contacted about fabrication of the high temperature lamination stack. Stress analysis was done on the laminations. Some of the components were procured, but due to budget cuts, the facility build up was stopped.

  3. Operation of a Microfabricated High Speed Gas Bearing

    Science.gov (United States)

    Jacobson, S. A.; Ehrich, F. F.; Fréchette, L. G.; Lin, C. C.; Breuer, K. S.

    1999-11-01

    As with large scale engines, the MIT microfabricated gas turbine engine requires high speed rotating components to achieve useful levels of power density and efficiency. The gas bearing flows in this microengine have much larger Mach and Reynolds numbers than conventional scale gas bearing flows. Due to microfabrication constraints, the aspect ratio of this bearing also differs significantly from the common design space. A microfabricated test device has been designed and fabricated to study gas lubricated bearings on the microscale. The bearing test device consists of a bonded stack of five silicon wafers. A 4 mm diameter, 450 ?m thick rotor is captured within the device. The rotor is driven by an air turbine. Hydrostatic thrust bearings support the rotor axially; a coupled hydrostatic/hydrodynamic journal bearing supports the rotor radially. A rotation rate of 500,000 rpm has been achieved in initial tests. Results from operation of this microbearing test device will be presented.

  4. Computer-aided selection of materials for cryogenic turbopump bearings

    Science.gov (United States)

    Maurer, R. E.; Pallini, R. A.

    1985-01-01

    The life requirement for the angular contact ball bearings in the Space Shuttle Main Engine (SSME) high-pressure-oxygen turbopump (HPOTP) is 7.5 hours. In actual operation, significantly shorter service life has been experienced. The objective of this current program is to identify bearing materials and/or materials processing techniques offering significant potential for extending HPOTP bearing performance life. A thermomechanical analysis of the HPOTP shaft/bearing system was performed with the SHABERTH (SHaft-BEaring-THermal) computer program. Bearing fatigue life, ball-race contact stress, heat generation rate, bulk ring temperatures, and circumferential stress in the inner rings were quantified as functions of radial load, thrust load, and ball-race contact friction. The analysis results were used to formulate criteria that are being used for the selection of special materials for future turbopump bearings.

  5. Porous Squeeze Film Bearing with Rough Surfaces Lubricated by a Bingham Fluid

    Science.gov (United States)

    Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.

    2014-11-01

    In the paper the effect of both bearing surfaces and the porosity of one bearing surface on the pressure distribution and load-carrying capacity of a squeeze film bearing is discussed. The equations of motion of a Bingham fluid in a bearing clearance and in a porous layer are presented. Using the Morgan-Cameron approximation and Christensen theory of rough lubrication the modified Reynolds equation is obtained. The analytical solutions of this equation for a squeeze film bearing are presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. A thrust radial bearing is considered as a numerical example.

  6. An air bearing system for small high speed gas turbines

    Science.gov (United States)

    Turner, A. B.; Davies, S. J.; Nimir, Y. L.

    1994-03-01

    This paper describes the second phase of an experimental program concerning the application of air bearings to small turbomachinery test rigs and small gas turbines. The first phase examined externally pressurized (EP) journal bearings, with a novel EP thrust bearing, for application to 'warm air' test rigs, and was entirely successful at rotational speeds in excess of 100,000 rpm. This second phase examined several designs of tilting pad-spiring journal bearings, one with a novel form of externally pressurized pad, but all using the original EP thrust bearing. The designs tested are described, including some oscillogram traces, for tests up to a maximum of 70,000 rpm; the most successful using a carbon pad-titanium beam spring arrangement. The thrust bearing which gave trouble-free operation throughout, is also described. The results of an original experiment to measure the 'runway speed' of a radial inflow turbine are also presented, which show that overspeeds of 58 percent above the design speed can result from free-power turbine coupling failure.

  7. High Performance Methane Thrust Chamber (HPMTC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a High-Performance Methane Thrust Chamber (HPMRE) to meet the demands of advanced chemical propulsion systems for deep-space mission...

  8. Fuel Optimal Thrust Allocation In Dynamic Positioning

    OpenAIRE

    Rindarøy, Martin

    2013-01-01

    This thesis gives a short introduction to the Dynamic Positioning(DP) domain and focuses on developing a fuel optimal thrust allocation algorithm for marine DP vessels with a diesel electric power plant. Obtained data is used to develop a static model for the fuel consumption of a diesel generator, as a function of its produced power. This model is used to formulate a convex Quadratic Programming(QP)-problem that finds fuel optimal solutions to the thrust allocation problem. This is possible ...

  9. Control of Active Axial Magnetic Bearings for Flywheel-based Energy Storage System

    OpenAIRE

    Morís Gómez, Juan

    2014-01-01

    This thesis deals with the design and implementation of the control system for a Flywheel-based Energy Storage System (FESS) with active magnetic bearings. The thesis focuses on the construction of realistic model of the system according to experimental tests. The simulation model will be used to control the thrust magnetic bearings in order to withstand the flywheel in levitation.

  10. Determination of Rolling-Element Fatigue Life From Computer Generated Bearing Tests

    Science.gov (United States)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.

    2003-01-01

    Two types of rolling-element bearings representing radial loaded and thrust loaded bearings were used for this study. Three hundred forty (340) virtual bearing sets totaling 31400 bearings were randomly assembled and tested by Monte Carlo (random) number generation. The Monte Carlo results were compared with endurance data from 51 bearing sets comprising 5321 bearings. A simple algebraic relation was established for the upper and lower L(sub 10) life limits as function of number of bearings failed for any bearing geometry. There is a fifty percent (50 percent) probability that the resultant bearing life will be less than that calculated. The maximum and minimum variation between the bearing resultant life and the calculated life correlate with the 90-percent confidence limits for a Weibull slope of 1.5. The calculated lives for bearings using a load-life exponent p of 4 for ball bearings and 5 for roller bearings correlated with the Monte Carlo generated bearing lives and the bearing data. STLE life factors for bearing steel and processing provide a reasonable accounting for differences between bearing life data and calculated life. Variations in Weibull slope from the Monte Carlo testing and bearing data correlated. There was excellent agreement between percent of individual components failed from Monte Carlo simulation and that predicted.

  11. Control of a Thrust Alignment Table for Modeling the Coning Dynamics of a Spinning Spacecraft with a Follower Force

    Science.gov (United States)

    Halsmer, Dominic; Bennett, J. Damon; DeHaven, Max; Ligard, Vidar

    1999-01-01

    This document presents a system controlling the motion of a spherical air bearing used in the modeling of spacecraft dynamics and controls in a laboratory environment. The system is part of the Spinning Rocket Simulator (SRS), used to simulate the coning of spacecraft during a thrusting stage. The reaction force at the spherical air bearing supporting the spacecraft model must coincide with the thrust axis of the model for proper simulation. Therefore, the bearing is translated in a circular path to introduce a centrifugal force. This horizontal force along with the gravitational reaction force at the bearing combines to simulate the direction of the spacecraft's thrust force. The control system receives attitude information from the spacecraft model via a laser beam embedded in the model that impinges on a photosensitive array. The non-linear system is controlled using high-speed lookup tables and digital techniques. A vector-controlled motor and a stepper motor are given the necessary signals to accurately control the turntable and platform supporting the air bearing. Preliminary performance data is presented. Mechanical elements of the table and platform are described in detail. A wireless (RF) data path for all devices on the spacecraft model to an off-table command computer is also described.

  12. A thrust balance for low power hollow cathode thrusters

    Science.gov (United States)

    Frollani, D.; Coletti, M.; Gabriel, S. B.

    2014-06-01

    A hanging thrust balance has been designed, manufactured and tested at the University of Southampton. The current design allows for direct steady thrust measurements ranging from 0.1 to 3 mN but this can be easily extended to measure thrust in a different range. Moreover the chosen balance design and the thrust measurement procedure allow for the cancellation of thermal drifts. The thrust balance was tested with a T6 hollow cathode thruster providing measurements with an uncertainty of about 9.7%. The thrust data were compared to those obtained with another direct thrust balance and they are in quantitative agreement—the maximum difference being only 6%.

  13. Misalignment in Gas Foil Journal Bearings: An Experimental Study

    Science.gov (United States)

    Howard, Samuel A.

    2008-01-01

    As gas foil journal bearings become more prevalent in production machines, such as small gas turbine propulsion systems and microturbines, system-level performance issues must be identified and quantified in order to provide for successful design practices. Several examples of system-level design parameters that are not fully understood in foil bearing systems are thermal management schemes, alignment requirements, balance requirements, thrust load balancing, and others. In order to address some of these deficiencies and begin to develop guidelines, this paper presents a preliminary experimental investigation of the misalignment tolerance of gas foil journal bearing systems. Using a notional gas foil bearing supported rotor and a laser-based shaft alignment system, increasing levels of misalignment are imparted to the bearing supports while monitoring temperature at the bearing edges. The amount of misalignment that induces bearing failure is identified and compared to other conventional bearing types such as cylindrical roller bearings and angular contact ball bearings. Additionally, the dynamic response of the rotor indicates that the gas foil bearing force coefficients may be affected by misalignment.

  14. Effect of blade outlet angle on radial thrust of single-blade centrifugal pump

    International Nuclear Information System (INIS)

    Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate. In addition to the increase of the fluctuation component of this pressure component, because the fluctuation component of the inertia and momentum components becomes large (as mentioned above), the radial thrust increases at a large flow rate, as is the case for the impeller with a large blade outlet angle.

  15. Axisymmetric thrust-vectoring nozzle performance prediction

    International Nuclear Information System (INIS)

    Throat-hinged geometrically variable converging-diverging thrust-vectoring nozzles directly affect the jet flow geometry and rotation angle at the nozzle exit as a function of the nozzle geometry, the nozzle pressure ratio and flight velocity. The consideration of nozzle divergence in the effective-geometric nozzle relation is theoretically considered here for the first time. In this study, an explicit calculation procedure is presented as a function of nozzle geometry at constant nozzle pressure ratio, zero velocity and altitude, and compared with experimental results in a civil thrust-vectoring scenario. This procedure may be used in dynamic thrust-vectoring nozzle design performance predictions or analysis for civil and military nozzles as well as in the definition of initial jet flow conditions in future numerical VSTOL/TV jet performance studies

  16. Thrust and torque characteristics based on a new cutter-head load model

    Science.gov (United States)

    Liu, Jianqin; Ren, Jiabao; Guo, Wei

    2015-07-01

    Full face rock tunnel boring machine(TBM) has been widely used in hard rock tunnels, however, there are few published theory about cutter-head design, and the design criteria of cutter-head under complex geological is not clear yet. To deal with the complex relationship among geological parameters, cutter parameters, and operating parameters during tunneling processes, a cutter-head load model is established by using CSM(Colorado school of mines) prediction model. Force distribution on cutter-head under a certain geology is calculated with the new established load model, and result shows that inner cutters bear more force than outer cutters, combining with disc cutters abrasion; a general principle of disc cutters' layout design is proposed. Within the model, the relationship among rock uniaxial compressive strength(UCS), penetration and thrust on cutter-head are analyzed, and the results shows that with increasing penetration, cutter thrust increases, but the growth rate slows and higher penetration makes lower special energy(SE). Finally, a fitting mathematical model of ZT(ratio of cutter-head torque and thrust) and penetration is established, and verified by TB880E, which can be used to direct how to set thrust and torque on cutter-head. When penetration is small, the cutter-head thrust is the main limiting factor in tunneling; when the penetration is large, cutter-head torque is the major limiting factor in tunneling. Based on the new cutter-head load model, thrust and torque characteristics of TBM further are researched and a new way for cutter-head layout design and TBM tunneling operations is proposed.

  17. The induced thrust effect - A propulsion method

    Science.gov (United States)

    Pais, Salvatore C.

    1991-09-01

    The 'induced thrust' (IT) method whose theoretical fundamentals and basic implementation are presented is applicable to both nuclear and chemical rocket-propulsion systems. IT principles are illustrated in the framework of the back-to-back 'joined ship' model, in which the combustion chamber pressure within one vehicle is caused to act as the back pressure of the other vehicle to which it is joined (and vice versa). The IT impulse generated by mutual plume impingement as the vehicles move away from each other constitutes an additional propulsive force which exceeds the individual thrust capacity of the separate powerplants. A unique mathematical algorithm is used to analyze the concept.

  18. A microNewton thrust stand for average thrust measurement of pulsed microthruster.

    Science.gov (United States)

    Zhou, Wei-Jing; Hong, Yan-Ji; Chang, Hao

    2013-12-01

    A torsional thrust stand has been developed for the study of the average thrust for microNewton pulsed thrusters. The main body of the thrust stand mainly consists of a torsional balance, a pair of flexural pivots, a capacitive displacement sensor, a calibration assembly, and an eddy current damper. The behavior of the stand was thoroughly studied. The principle of thrust measurement was analyzed. The average thrust is determined as a function of the average equilibrium angle displacement of the balance and the spring stiffness. The thrust stand has a load capacity up to 10 kg, and it can theoretically measure the force up to 609.6 ?N with a resolution of 24.4 nN. The static calibrations were performed based on the calibration assembly composed of the multiturn coil and the permanent magnet. The calibration results demonstrated good repeatability (less than 0.68% FSO) and good linearity (less than 0.88% FSO). The assembly of the multiturn coil and the permanent magnet was also used as an exciter to simulate the microthruster to further research the performance of the thrust stand. Three sets of force pulses at 17, 33.5, and 55 Hz with the same amplitude and pulse width were tested. The repeatability error at each frequency was 7.04%, 1.78%, and 5.08%, respectively. PMID:24387476

  19. Bearing endurance tests in vacuum for sputtered molybdenum disulfide films

    Science.gov (United States)

    Spalvins, T.

    1975-01-01

    Angular-contact, 440C stainless steel, ball bearings with sputtered MoS2 films 0.0000006 x 10-7m (6000 A) thick were evaluated in a vacuum bearing chamber (1750 rpm, 137.9-N- (31-lbf-) thrust load) for endurance. Two types of sputtered films were evaluated: (1) MOS2 sputtered directly onto bearing components, and (2) a thin 0.0000001 x 10-7m (1000 A) underlayer of Cr3Si2 subsequently sputtered with MoS2. Bearing test evaluations in vacuum showed that endurance lives of more than 1000 hours (105,000,000 cycles) were obtained with bearings (cage, races, and balls) directly sputtered with MoS2. The same endurance lives were also obtained when only the races and cage were sputtered with an underlayer of Cr3Si2 and subsequently with MoS2.

  20. Software Developed for Analyzing High- Speed Rolling-Element Bearings

    Science.gov (United States)

    Fleming, David P.

    2005-01-01

    COBRA-AHS (Computer Optimized Ball & Roller Bearing Analysis--Advanced High Speed, J.V. Poplawski & Associates, Bethlehem, PA) is used for the design and analysis of rolling element bearings operating at high speeds under complex mechanical and thermal loading. The code estimates bearing fatigue life by calculating three-dimensional subsurface stress fields developed within the bearing raceways. It provides a state-of-the-art interactive design environment for bearing engineers within a single easy-to-use design-analysis package. The code analyzes flexible or rigid shaft systems containing up to five bearings acted upon by radial, thrust, and moment loads in 5 degrees of freedom. Bearing types include high-speed ball, cylindrical roller, and tapered roller bearings. COBRA-AHS is the first major upgrade in 30 years of such commercially available bearing software. The upgrade was developed under a Small Business Innovation Research contract from the NASA Glenn Research Center, and incorporates the results of 30 years of NASA and industry bearing research and technology.

  1. A six degree-of-freedom thrust sensor for a labscale hybrid rocket

    International Nuclear Information System (INIS)

    A six degree-of-freedom thrust sensor was designed, constructed, calibrated, and tested using the labscale hybrid rocket at the University of Arkansas at Little Rock. The system consisted of six independent legs: one parallel to the axis of symmetry of the rocket for main thrust measurement, two vertical legs near the nozzle end of the rocket, one vertical leg near the oxygen input end of the rocket, and two separated horizontal legs near the nozzle end. Each leg was composed of a rotational bearing, a load cell, and a universal joint above and below the load cell. The leg was designed to create point contact along only one direction and minimize the non-axial forces applied to the load cell. With this system, force in each direction and moments for roll, pitch, and yaw can be measured. The system was calibrated and tested using a labscale hybrid rocket using gaseous oxygen and hydroxyl-terminated polybutadiene solid fuel. The thrust stand proved to be stable during calibration tests. Thrust force vector components and roll, pitch, and yaw moments were calculated for test firings with an oxygen mass flow rate range of 0.0174–0.0348 kg s?1. (paper)

  2. Conceptual Design and Feasibility of Foil Bearings for Rotorcraft Engines: Hot Core Bearings

    Science.gov (United States)

    Howard, Samuel A.

    2007-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include oil-free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit.. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This overview presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. In addition, system level foil bearing testing capabilities at NASA Glenn Research Center are presented along with analysis work being conducted under NRA Cooperative Agreements.

  3. Spiral Groove Aerodynamic Bearings

    Directory of Open Access Journals (Sweden)

    Jia Chen-Hui

    2013-01-01

    Full Text Available In order to research the conical spiral groove aerodynamic bearings, the bearing's lubrication analysis mathematical model is established. The Reynolds equation of the laminar flow condition is used to calculate the 3D pressure distribution by the locally finite difference method. The influence law of the gas film pressure distribution on the bearing performance is revealed by researching the nonlinear dynamic characteristic of gas film. It reveals the laws that the effect of the bearing structural parameters on the gas film pressure distribution and the bearing capacity. The results show that the spiral groove change the gas film thickness distribution and the gas film pressure distribution and achieve good bearing dynamic pressure effect, which improve the bearing performance and the bearing stability; The structure parameters affect the gas film pressure distribution and the static characteristics. Therefore, a reasonable choice of bearing structural parameters contributes to improve the bearing's static characteristics and bearing capacity.

  4. Development of an indirect counterbalanced pendulum optical-lever thrust balance for micro- to millinewton thrust measurement

    International Nuclear Information System (INIS)

    This paper describes the design and testing of an indirect hanging pendulum thrust balance using a laser-optical-lever principle to provide micro- to millinewton thrust measurement for the development of electric propulsion systems. The design philosophy allows the selection of the total thrust range in order to maximize resolution through a counterbalanced pendulum principle, as well as passive magnetic damping in order to allow relatively rapid transient thrust measurement. The balance was designed for the purpose of hollow cathode microthruster characterization, but could be applied to other electric propulsion devices in the thrust range of micro- to millinewtons. An initial thrust characterization of the T5 hollow cathode is presented

  5. Development of an indirect counterbalanced pendulum optical-lever thrust balance for micro- to millinewton thrust measurement

    Science.gov (United States)

    Grubiši?, A. N.; Gabriel, S. B.

    2010-10-01

    This paper describes the design and testing of an indirect hanging pendulum thrust balance using a laser-optical-lever principle to provide micro- to millinewton thrust measurement for the development of electric propulsion systems. The design philosophy allows the selection of the total thrust range in order to maximize resolution through a counterbalanced pendulum principle, as well as passive magnetic damping in order to allow relatively rapid transient thrust measurement. The balance was designed for the purpose of hollow cathode microthruster characterization, but could be applied to other electric propulsion devices in the thrust range of micro- to millinewtons. An initial thrust characterization of the T5 hollow cathode is presented.

  6. Passive magnetic bearing configurations

    Science.gov (United States)

    Post, Richard F. (Walnut Creek, CA)

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  7. Precise Thrust Actuation by a Micro RF Ion Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a radio-frequency discharge, gridded micro ion engine that produces 5N level of thrust precisely adjustable over a wide dynamic thrust...

  8. Rolling-Element Bearings

    Science.gov (United States)

    Hamrock, B. J.; Anderson, W. J.

    1983-01-01

    Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.

  9. Fluid-rocks interactions and micromechanical model of deformation of the Monte Perdido thrust fault (southern Pyrenees, Aragon, Spain)

    Science.gov (United States)

    Lacroix, B.; Meresse, F.; Buatier, M.; Charpentier, D.; Labaume, P.; Travé, A.; Dubois, M.

    2009-12-01

    In orogenic systems, thrust faults play a major role by stacking of different tectonic units and permit the expulsion of large amounts of fluids of different origins (basement, metamorphic, diagenetic, meteoric). The south-Pyrenean thrust-belt is a Late Cretaceous-Paleogene orogenic prism made up by south-vergent imbricated thrust units. The thrust faults are rooted in the Hercynian basement and propagated in the Tertiary and Mesozoic cover strata of the south-Pyrenean foreland basin. The present study is focused on the Monte Perdido thrust fault, a shallow thrust that affects Upper Cretaceous-Paleocene platform carbonates and lower Eocene marls and turbidites. It implied 3 km of displacement of the Monte Perdido thrust unit with respect to the underlying Gavarnie unit. Thermochronological study carried on apatite fission tracks in turbidites from the Monte Perdido thrust unit suggests a partial resetting of the fission tracks, attesting that the maximal burial temperature of the host sediments did not exceed 110°C ± 10°C. On the studied outcrop, the Monte Perdido thrust fault emplaced Paleocene carbonates and Lower Eocene marls above Lower Eocene turbidites. The core zone of the fault developed in the footwall turbidites is characterized by a meter-thick shear zone with highly deformed, foliated (scaly deformation) claystones. Foliation is underlined by preferentially oriented phyllosilicates (illite and chlorite). The presence of calcite, quartz and chlorite-bearing veins suggests fluid flow during the deformation. The present study is focused on the mechanisms of deformation at different scales (SEM and OM) at the origin of the microtectonic fabrics, and on the composition of the mineralizing fluid. According to mineralogical and geochemical investigations performed on calcite veins with microprobe and stable isotope analyses, the mineralizing fluid that circulated in the fault zone was in equilibrium with the sedimentary host rocks. Microthermometric study on fluid inclusions present in calcite and quartz veins gives homogenization temperatures of the mineralizing fluid around 180-200°C. These data were combined with thermodynamical modeling of syntectonic chlorite chemical composition. Temperatures of about 200°C were calculated for chlorite precipitation. These results suggest that the Monte Perdido thrust fault is a major structure that facilitated migration of fluids and formation of mineralized veins. These fluids were related to the dewatering produced by pression solution of sediments close to the fault. P-T conditions of mineralization of the thrust fault are estimated around 200°C and 1400 bars. Thermochronological data on apatites from host clastic sediments highlight a positive thermal anomaly in the fault zone, suggesting contribution of fluids drained from a deeper source along the fault zone.

  10. Recent research and development of bearings for helium circulator

    International Nuclear Information System (INIS)

    This paper mainly describes recent studies and successful applications of water lubricated bearing and gas lubricated bearing. Both types of bearing seem to be suitable for a turbo machine installed in an atomic energy plant - such as the helium circulator of a HTGR - not to be affected by radioactivity, so we have been attracted by them for about 10 years. The former was investigated theoretically taking account of turbulent flow due to the low viscosity of water, and compared with the experimental data. Good agreement was obtained, and a successful example applied to a small-sized high speed air compressor is shown. The latter was investigated using a large-sized bearing test rig simulated to an actual machine. The tilting pad journal bearing and the tilting pad thrust bearing were taken and improved for some aspects. These bearings have been taken into service on an actual circulator and are now operating successfully. Currently, a magnetic bearing is being studied to pay special attention to endurance for an earthquake and catcher bearing system. We would like to have an opportunity to present these results in the near future. (author). 5 refs, 15 figs, 2 tabs

  11. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    Science.gov (United States)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing replaces the ball bearing in front of the compressor, and the second replaces the roller bearing behind the burner. The rig was made operational to 10,000 rpm under Smart Efficient Components funding, and both position and current adaptive vibration control have been demonstrated. Upon program completion, recommendations will be made as to the efficacy of the conical magnetic bearing for active stall control.

  12. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-07-27

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OST&I) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OST&I's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program.

  13. Thrust production by a mechanical swimming lamprey

    Science.gov (United States)

    Leftwich, M. C.; Smits, A. J.

    2011-05-01

    To develop a comprehensive model of lamprey locomotion, we use a robotic lamprey to investigate the formation of the wake structure, the shedding vorticity from the body, and the relationship between thrust production and pressure on the surface of the robot. The robot mimics the motion of living lamprey in steady swimming by using a programmable microcomputer to actuate 13 servomotors that produce a traveling wave along the length of the lamprey body. The amplitude of the phase-averaged surface pressure distribution along the centerline of the robot increases toward the tail, which is consistent with previous momentum balance experiments. This indicates that thrust is produced mainly at the tail. The phase relationship between the pressure signal and the vortex shedding from the tail is also examined, showing a clear connection between the location of vortex structures and the fluctuations of the pressure signal.

  14. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2005-09-13

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability.

  15. Calculating Track Thrust with Track Functions

    CERN Document Server

    Chang, Hsi-Ming; Thaler, Jesse; Waalewijn, Wouter J

    2013-01-01

    In e+e- event shapes studies at LEP, two different measurements were sometimes performed: a "calorimetric" measurement using both charged and neutral particles, and a "track-based" measurement using just charged particles. Whereas calorimetric measurements are infrared and collinear safe and therefore calculable in perturbative QCD, track-based measurements necessarily depend on non-perturbative hadronization effects. On the other hand, track-based measurements typically have smaller experimental uncertainties. In this paper, we present the first calculation of the event shape track thrust and compare to measurements performed at ALEPH and DELPHI. This calculation is made possible through the recently developed formalism of track functions, which are non-perturbative objects describing how energetic partons fragment into charged hadrons. By incorporating track functions into soft-collinear effective theory, we calculate the distribution for track thrust with next-to-leading logarithmic resummation. Due to a p...

  16. Thrust vector control using electric actuation

    Science.gov (United States)

    Bechtel, Robert T.; Hall, David K.

    1995-01-01

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles.

  17. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    International Nuclear Information System (INIS)

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability

  18. THRUST PREDICTION PROGRAM FOR MARINE JET POWER

    OpenAIRE

    Bergsek, Mattias

    2011-01-01

    Marine Jet Power, MJP wishes to investigate the possibility of transforming their current Thrust Prediction Program, TPP written in C++ source code into a more up to date tool for their sales staff. The old TPP, though an accurate and precise tool, is not documented and lacks commentaries in the source code. Therefore the beginning of this master thesis was about documenting and investigates what methods were used to calculate the performance of the water jet system.The next step was splittin...

  19. Low Carbon Propulsion Strategic Thrust Overview

    Science.gov (United States)

    Dryer, Jay

    2014-01-01

    NASA is taking a leadership role with regard to developing new options for low-carbon propulsion. Work related to the characterization of alternative fuels is coordinated with our partners in government and industry, and NASA is close to concluding a TC in this area. Research on alternate propulsion concepts continues to grow and is an important aspect of the ARMD portfolio. Strong partnerships have been a key enabling factor for research on this strategic thrust.

  20. The R and D D`s bearing test benches; Les bancs d`essais de paliers de la DER

    Energy Technology Data Exchange (ETDEWEB)

    Vialettes, J.M. [Service Ensembles de Production, Departement Machines, Direction des Etudes et Recherches, Electricite de France (EDF), 92 - Clamart (France)

    1997-01-01

    In power generation plants, rotating machines are involved in energy transformation processes and safety systems. The bearings supporting the rotors and the thrust bearings play a crucial role in the reliability of these machines. The phenomena encountered straddle several disciplines: hydrodynamics, tribology, thermomechanics, materials and vibrations in a specific environment, namely: thin fluid film, solid mechanical components and shaft rotation. Means of analysing the behaviour of these components (bearings and thrust bearings) have been developed and implemented. These consists of the EDYOS (Etude Dynamique des Organes de Supportage) code for dynamically studying bearing devices and several related bench tests. In reality, in order to understand the complex physical phenomena encountered in these components, it is vital to carry out analyses and experimental validations. Since these investigations cannot be carried out on actual machines, test benches have been built which can subject the sample bearings to the equivalent stresses. (author) 14 figs.

  1. Thrust Vector Control for Nuclear Thermal Rockets

    Science.gov (United States)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  2. Analysis of thrust/torque signature of MOV

    International Nuclear Information System (INIS)

    For the evaluation of operability of MOV(Motor Operated Valve), the precision prediction of thrust/torque acting on the valve is important. In this paper, the analytical prediction method of thrust/torque was proposed. The design basis stem thrust calculation typically considers the followings: packing thrust, stem rejection load, design basis differential pressure load. In general, test results show that temperature, pressure, fluid type, and differential pressure, independently and combination, all have an effect on the friction factor. The prediction results of thrust/torque are well agreement with dynamic test results

  3. Experiments with needle bearings

    Science.gov (United States)

    Ferretti, Pericle

    1933-01-01

    Experiments and results are presented in testing needle bearings, especially in comparison with roller bearings. Reduction in coefficient of friction is discussed as well as experimental methods and recording devices.

  4. Development and Testing of an Axial Halbach Magnetic Bearing

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  5. Axial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  6. High-power, null-type, inverted pendulum thrust stand.

    Science.gov (United States)

    Xu, Kunning G; Walker, Mitchell L R

    2009-05-01

    This article presents the theory and operation of a null-type, inverted pendulum thrust stand. The thrust stand design supports thrusters having a total mass up to 250 kg and measures thrust over a range of 1 mN to 5 N. The design uses a conventional inverted pendulum to increase sensitivity, coupled with a null-type feature to eliminate thrust alignment error due to deflection of thrust. The thrust stand position serves as the input to the null-circuit feedback control system and the output is the current to an electromagnetic actuator. Mechanical oscillations are actively damped with an electromagnetic damper. A closed-loop inclination system levels the stand while an active cooling system minimizes thermal effects. The thrust stand incorporates an in situ calibration rig. The thrust of a 3.4 kW Hall thruster is measured for thrust levels up to 230 mN. The uncertainty of the thrust measurements in this experiment is +/-0.6%, determined by examination of the hysteresis, drift of the zero offset and calibration slope variation. PMID:19485530

  7. Optimum Staging with Varying Thrust Attitude Angle

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1966-07-01

    Full Text Available Optimum staging programme for step rockets of arbitrary number of stages having different specific impulses and mass fractions with stages is derived, the optimization criterion being minimum take-off weight for a desired burntout velocity at an assigned altitude. Variation of thrust attitude angle from stage to stage and effects of gravity factor are taken into account. Analysis is performed for a degenerate problem obtained by relaxing the altitude constraint and it has been shown that problems of Weisbord, Subotowicz, Hall & Zambelli and Malina & Summerfield are the particular cases of the degenerate problem.

  8. Teddy Bear Stories

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Caldas-Coulthardt, Carmen

    This paper presents a semiotic analysis of a key cultural artefact, the teddy bear. After introducing the iconography of the teddy bear, it analyses different kinds of stories to show how teddy bears are endowed with meaning in everyday life: stories from children's books, reminiscenses by adults...... about their childhood teddy bears, and children's accounts of what they do with teddy bears, both written for school and told 'out of school', The chapter sees teddy bears as artefacts that provide a cultural channeling for the child's need of a transitional object and argues that the meanings of teddy...... bears have traditionally centred on interpersonal relations within the nuclear family, but have recently been institutionalized and commercialized....

  9. A 3-D Model of Stacked Thrusts in the Sevier Thrust Belt, Eastern Idaho

    Science.gov (United States)

    Clayton, R. W.; Clayton, S. R.

    2014-12-01

    Using published and new geologic map data and two exploratory wells for control, we constructed a three-dimensional geological model of the Pine Creek area in the Big Hole Mountains of eastern Idaho, where stacked Sevier thrust sheets are exposed at the surface. In this area, Cretaceous crustal shortening displaced and folded strata from Cambrian to Cretaceous in age. Using geologic map data as a primary input to a 3-D model presents a number of challenges, especially representing fault geometries at depth and maintaining strata thicknesses. The highly variable attitudes measured at the surface are also difficult to represent in a subsurface model because they require extensive extrapolation to depth. To overcome these challenges we EarthVision software, which has tools for model construction with minimal data inputs and uses a minimum tension algorithm to create geologically realistic surfaces. We also constructed two primary cross-sections to constrain strata and fault geometries according to structural principles, and used these to guide construction of fault and horizon surfaces. We then designated horizons with the best control as reference horizons to constrain strata geometries, and built the remaining horizons using isochores to add or subtract from those surfaces. The model shows classic flat-ramp thrust geometries as seen farther southeast in the Wyoming section of the thrust belt. The model also shows uniform southwestward tilting of faults and strata in the north end above younger thrusts, but strong effects from a duplex on a younger thrust fault encountered in the southern well, which rotated the strata and older faults above it.

  10. Versatile and Extensible, Continuous-Thrust Trajectory Optimization Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an innovative, versatile and extensible, continuous-thrust trajectory optimization tool for planetary mission design and optimization of...

  11. Active Dual Thrust Modulation of a Solid Rocket Motor

    Science.gov (United States)

    Tanaka, Masafumi; Yokomine, Yasushi

    Based on a combustion characteristic that some propellants cannot burn in an intermediate pressure range while they can burn at lower and higher pressure, an active thrust modulation system was developed. The motor changed its thrust in dual combustion mode. It chose alternately high and low thrusts during combustion. The transitions from the low mode to the high mode were attained by a secondary ignition system, and those from the high mode to the low mode were done by a brief gas release system. Up to three times mode transitions were successfully demonstrated. Required time for the mode transitions and the effects of the thrust modulations on the thrust performance were evaluated. On the present motor scale, the transition time from the low mode to the high mode ranged from 0.12 s to 0.23 s, and that from the high mode to the low mode was from 0.19 s to 0.38 s. The thrust variable range was adjustable by the throat area. The ratio of the low-mode thrust to the high mode thrust was variable from 3 to 5. Specific impulse was decreased from 195 s to 175 s, when the number of thrust modulations was increased.

  12. Low Power Magnetic Bearing Design for High Speed Rotating Machinery

    Science.gov (United States)

    Allaire, P. E.; Maslen, E. H.; Humphris, R. R.; Sortore, C. K.; Studer, P. A.

    1992-01-01

    Magnetic suspension technology has advanced to the point of being able to offer a number of advantages to a variety of applications in the rotating machinery and aerospace fields. One strong advantage is the decrease in power consumption. The design and construction of a set of permanent magnet biased, actively controlled magnetic bearing for a flexible rotor are presented. Both permanent magnets and electromagnets are used in a configuration which effectively provides the necessary fluxes in the appropriate air gaps, while simultaneously keeping the undesirable destabilizing forces to a minimum. The design includes two radial bearings and a thrust bearing. The theoretical development behind the design is briefly discussed. Experimental performance results for a set of operating prototype bearings is presented. The results include measurements of load capacity, bearing stiffness and damping, and the dynamic response of the rotor. With few exceptions, the experimental results matched very well with the predicted performance. The power consumption of these bearings was found to be significantly reduced from that for a comparable set of all electromagnetic bearings.

  13. The technology of the bearings used in the nuclear power generation system turbine generator units

    International Nuclear Information System (INIS)

    A bearing consists of all the stationary part which allow the relative motion in rotation or in translation, of a shaft line. Inside the bearing there is a journal bearing with a metallic anti-friction coating (the babbitt metal). The high power turbine generator unit rotors are supported by smooth transversal journal bearings fed with oil which fills the empty space and runs along the shaft. The technologies used for the bearings and the thrust bearings of the turbine generator units and the various shaft lines of the French CP0/CP1- and CP2/1300 MW-type nuclear power plants are described. The experience feedback is then discussed in terms of the dynamics of the shaft line, i.e. vibrational problems, the influence of the alignment and the babbitt metal incidents. (author)

  14. The experimental study on efficiency improvement of turbo machinery supported with magnetic bearings

    International Nuclear Information System (INIS)

    To implement a conventional electromagnetic bearing in small turbo machinery, it has problems such as load capacity and size. Therefore, in this paper, these problems are resolved by using a permanent magnet biased electromagnetic bearing as a thrust bearing of small turbo machinery. Because the flux path of the bearing is designed by reluctance path modulation using an electromagnet and a permanent magnet, the bearing improves upon non-linearity, power consumption, size and load capacity of a conventional electromagnetic bearing. Test rotating the shaft over 500,000DN were carried out to verify the performance of the proposed small turbo machinery. In addition, the relationships between mass flow rate and pressure rise were measured as changing the tip clearance to verify the feasibility of efficiency improvement and active surge control and these results were compared with theoretical results

  15. Proposed TEHL solution system for the thrust bearings inclusive of surface deformations

    Science.gov (United States)

    Rodkiewicz, C. M.; Yang, P.

    1995-01-01

    The coupled fluid and solid governing differential equations and their boundary conditions are expressed in dimensionless form which yield dimensionless problem parameters. The proposed solution system uses an efficient hybrid numerical approach. The boundary element method is employed for heat transfer in the pad, a finite difference method for the lubricating oil film, a finite element method for the boundary deformations, and the Newton-Raphson method for the pressure equations. It is shown that the proposed solution system provides not only the opportunity to include the thermal and elastic effects but also, if required, incorporation of the inertia forces and of the fore-region pressure build-up.

  16. Bear Spray Safety Program

    Science.gov (United States)

    Blome, C.D.; Kuzniar, R.L.

    2009-01-01

    A bear spray safety program for the U.S. Geological Survey (USGS) was officially initiated by the Firearms Safety Committee to address accident prevention and to promote personnel training in bear spray and its transportation, storage, and use for defense against wild animals. Used as part of a system including firearms, or used alone for those who choose not to carry a firearm, bear spray is recognized as an effective tool that can prevent injury in a wild animal attack.

  17. Thrust Production in a Mechanical Swimming Lamprey

    Science.gov (United States)

    Leftwich, Megan; Smits, Alexander

    2008-11-01

    To develop a comprehensive model of lamprey locomotion, we use a robotic lamprey as a means of investigating the surface pressure and wake structure during swimming. A programmable microcomputer actuates 11 servomotors that produce a traveling wave along the length of the lamprey body. The waveform is based on the motion of the American eel (Anguilla rostrata), as described by Tytell and Lauder (2004) and kinematic studies of living lamprey. The amplitude of the phase-averaged surface pressure distribution along the centerline of the robot increases toward the tail, which is consistent with previous momentum balance experiments indicating that thrust is produced mainly at the tail. The phase relationship between the pressure signal and the vortex shedding from the tail is also examined. The project is supported by NIH CNRS Grant 1R01NS054271.

  18. Small centrifugal pumps for low thrust rockets

    Science.gov (United States)

    Gulbrandsen, N. C.; Furst, R. B.; Burgess, R. M.; Scheer, D. D.

    1985-01-01

    This paper presents the results of a combined analytical and experimental investigation of low specific speed pumps for potential use as components of propellant feed systems for low thrust rocket engines. Shrouded impellers and open face impellers were tested in volute type and vaned diffuser type pumps. Full- and partial-emission diffusers and full- and partial-admission impellers were tested. Axial and radial loads, head and efficiency versus flow, and cavitation tests were conducted. Predicted performance of two pumps are compared when pumping water and liquid hydrogen. Detailed pressure loss and parasitic power values are presented for two pump configurations. Partial-emission diffusers were found to permit use of larger impeller and diffuser passages with a minimal performance penalty. Normal manufacturing tolerances were found to result in substantial power requirement variation with only a small pressure rise change. Impeller wear ring leakage was found to reduce pump pressure rise to an increasing degree as the pump flowrate was decreased.

  19. Secondary production of massive quarks in thrust

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Andre H. [Wien Univ. (Austria). Fakultaet fuer Physik; Vienna Univ. (Austria). Erwin Schroedinger International Institute for Mathematical Physics; Mateu, Vicent [Wien Univ. (Austria). Fakultaet fuer Physik; Pietrulewicz, Piotr [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2014-12-15

    We present a factorization framework that takes into account the production of heavy quarks through gluon splitting in the thrust distribution for e{sup +}e{sup -}?hadrons. The explicit factorization theorems and some numerical results are displayed in the dijet region where the kinematic scales are widely separated, which can be extended systematically to the whole spectrum. We account for the necessary two-loop matrix elements, threshold corrections, and include resummation up to N{sup 3}LL order. We include nonperturbative power corrections through a field theoretical shape function, and remove the O(?{sub QCD}) renormalon in the partonic soft function by appropriate mass-dependent subtractions. Our results hold for any value of the quark mass, from an infinitesimally small (merging to the known massless result) to an infinitely large one (achieving the decoupling limit). This is the first example of an application of a variable flavor number scheme to final state jets.

  20. Initiation system for low thrust motor igniter

    Science.gov (United States)

    Strand, L. D.; Davis, D. P.; Shafer, J. I.

    1972-01-01

    A test program was carried out to demonstrate an igniter motor initiation system utilizing the bimetallic material Pyrofuze for a solid propellant rocket with controlled low rate of thrust buildup. The program consisted of a series of vacuum ignition tests using a slab burning window motor that simulated the principal initial ballistic parameters of the full scale igniter motor. A Pyrofuze/pyrotechnic igniter system was demonstrated that uses a relatively low electrical current level for initiation and that eliminates the necessity of a pyrotechnic squib, with its accompanying accidental firing hazards and the typical basket of pyrotechnic pellets. The Pyrofuze ignition system does require an initial constraining of the igniter motor nozzle flow, and at the low initiating electrical current level the ignition delay time of this system was found to be quite sensitive to factors affecting local heat generation or loss rates.

  1. Secondary production of massive quarks in thrust

    International Nuclear Information System (INIS)

    We present a factorization framework that takes into account the production of heavy quarks through gluon splitting in the thrust distribution for e+e-?hadrons. The explicit factorization theorems and some numerical results are displayed in the dijet region where the kinematic scales are widely separated, which can be extended systematically to the whole spectrum. We account for the necessary two-loop matrix elements, threshold corrections, and include resummation up to N3LL order. We include nonperturbative power corrections through a field theoretical shape function, and remove the O(?QCD) renormalon in the partonic soft function by appropriate mass-dependent subtractions. Our results hold for any value of the quark mass, from an infinitesimally small (merging to the known massless result) to an infinitely large one (achieving the decoupling limit). This is the first example of an application of a variable flavor number scheme to final state jets.

  2. Bearing restoration by grinding

    Science.gov (United States)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  3. EcoBears

    DEFF Research Database (Denmark)

    Nielsen, Nick; Pedersen, Sandra Bleuenn; Sørensen, Jens Ager; Verdezoto, Nervo; Øllegaard, Nikolai

    In this paper, we introduce the EcoBears concept that aims to augment household appliances with functional and aesthetic features to promote their "use'' and "longevity of use'' to prevent their disposal. The EcoBears also aim to support the communication of environmental issues in the home setting....... We present our initial design and implementation of the EcoBears that consist of two bear modules (a mother and her cub). We also present our preliminary concept validations and lessons learned to be considered for future directions....

  4. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such rains also destroy the denning habitat of ringed seals, the polar bears' primary prey. Declines in the ringed seal population would mean a loss of food for polar bears. A trend toward stronger winds and increasing ice drift observed in some parts of the Arctic over the last five decades will likely increase energy expenditures and stress levels in polar bears that spend most of their lives on drifting sea ice. Polar bears face other limiting factors as well. Historically, the main threat to polar bears has been hunting. Satisfactory monitoring information has been obtained for most polar bear populations in recent years, however there is concern about hunting in areas without formal quota systems, such as Greenland. A range of toxic pollutants, including heavy metals, radioactivity, and persistent organic pollutants (POPs) are found throughout the Arctic. Of greatest concern are the effects of POPs on polar bears, which include a general weakening of the immune system, reduced reproductive success and physical deformities. The expansion of oil development in the Arctic poses additional threats; for example, disturbances to denning females in the Arctic National Wildlife Refuge in Alaska could undermine recruitment of the Beaufort Sea polar bear population. These threats, along with other effects of human activity in the Arctic, combine to pressure polar bears and their habitat. Large carnivores are sensitive indicators of ecosystem health and can be used to define the minimum area necessary to preserve intact ecosystems. WWF has identified the polar bear as a unique symbol of the complexities and interdependencies of the arctic marine ecosystem as it works toward its goal of preserving biodiversity for future generations.

  5. Electronics Engineering Department Thrust Area report FY'84

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C.; Phelps, P.L. (eds.)

    1984-01-01

    This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided.

  6. Morphological Considerations of Fish Fin Shape on Thrust Generation

    Directory of Open Access Journals (Sweden)

    Kenji Kikuchi

    2014-01-01

    Full Text Available In this study, we aimed to determine the relationship between thrust generation and fish fin shape. To compare the effect fin shape had on thrust generation, we categorized the morphological shapes of fish fins into equilateral polygonal shapes. Polygonal fins were used to generate thrust that depended only on shape. These fins were constructed of a hard elastic material to eliminate any influence of shape deformation. A servomotor with a reciprocal rotation moved a fin cyclically, and thrust was experimentally measured using a strain gage system. Thrust tended to be proportional to the inertia moment of a fin, which indicated difficulty with rotation. Moreover, this trend for thrust generation was directly related to the number of apexes of a polygonal fin. The force translated ratio, which was thrust divided by the force required for fin rotation, was evaluated to determine the hydrodynamic characteristics of fins. This finding showed that the force translated ratio of a fin increased with increased movable perimeter length. The greatest thrust was generated by a triangular fin rotated at its apex, which is often seen in general fish tail fins, whereas the hydrodynamic characteristics were the worst in polygonal fins.

  7. A Target Indirect Thrust Measurement Method of Pulse Detonation Engine

    Science.gov (United States)

    Huang, Xiqiao; Xiong, Yuefei; Li, Chao; Zheng, Longxi; Li, Qing

    2015-05-01

    An indirect thrust measurement method based on impulse of a target plate was developed, and a new thrust measurement system (TMS) was successfully designed and constructed. A series of multi-cycle experiments on thrust measurement were conducted to investigate the feasibility of this method with the newly-built indirect TMS. The thrust measurement of PDE was made at different plate target axial positions and operating frequencies. All the experiments were conducted using gasoline as fuel and air as oxidant. The experimental results implied that the thrust of PDE by using the indirect impulse method was a function of the target plate axial position, and there existed an optimum measurement position for PDE with a diameter of 60 mm. The optimum target plate position located at 3.33. According to the experimental results, the thrusts obtained by using indirect TMS were less than the actual values, and so the observed value of thrust was modified in order to make the thrust more reliable. A relative accurate calibration formula depending on the operating frequency was found.

  8. Electronics Engineering Department Thrust Area report FY'84

    International Nuclear Information System (INIS)

    This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided

  9. Impact of plasma noise on a direct thrust measurement system.

    Science.gov (United States)

    Pottinger, S J; Lamprou, D; Knoll, A K; Lappas, V J

    2012-03-01

    In order to evaluate the accuracy and sensitivity of a pendulum-type thrust measurement system, a linear variable differential transformer (LVDT) and a laser optical displacement sensor have been used simultaneously to determine the displacement resulting from an applied thrust. The LVDT sensor uses an analog interface, whereas the laser sensor uses a digital interface to communicate the displacement readings to the data acquisition equipment. The data collected by both sensors show good agreement for static mass calibrations and validation with a cold gas thruster. However, the data obtained using the LVDT deviate significantly from that of the laser sensor when operating two varieties of plasma thrusters: a radio frequency (RF) driven plasma thruster, and a DC powered plasma thruster. Results establish that even with appropriate shielding and signal filtering the LVDT sensor is subject to plasma noise and radio frequency interactions which result in anomalous thrust readings. Experimental data show that the thrust determined using the LVDT system in a direct current plasma environment and a RF discharge is approximately a factor of three higher than the thrust values obtained using a laser sensor system for the operating conditions investigated. These findings are of significance to the electric propulsion community as LVDT sensors are often utilized in thrust measurement systems and accurate thrust measurement and the reproducibility of thrust data is key to analyzing thruster performance. Methods are proposed to evaluate system susceptibility to plasma noise and an effective filtering scheme presented for DC discharges. PMID:22462919

  10. Transient analysis of blowdown thrust force under PWR LOCA

    International Nuclear Information System (INIS)

    The analytical results of blowdown characteristics and thrust forces were compared with the experiments, which were performed as pipe whip and jet discharge tests under the PWR LOCA conditions. The blowdown thrust forces obtained by Navier-Stokes momentum equation about a single-phase, homogeneous and separated two-phase flow, assuming critical pressure at the exit if a critical flow condition was satisfied. The following results are obtained. (1) The node-junction method is useful for both the analyses of the blowdown thrust force and of the water hammer phenomena. (2) The Henry-Fauske model for subcooled critical flow is effective for the analysis of the maximum thrust force under the PWR LOCA conditions. The jet thrust parameter of the analysis and experiment is equal to 1.08. (3) The thrust parameter of saturated blowdown has the same one with the value under pressurized condition when the stagnant pressure is chosen as the saturated one. (4) The dominant terms of the blowdown thrust force in the momentum equation are the pressure and momentum terms except that the acceleration term has large contribution only just after the break. (5) The blowdown thrust force in the analysis greatly depends on the selection of the exit pressure. (author)

  11. Development of a large support surface for an air-bearing type zero-gravity simulator

    Science.gov (United States)

    Glover, K. E.

    1976-01-01

    The methods used in producing a large, flat surface to serve as the supporting surface for an air-bearing type zero-gravity simulator using low clearance, thrust-pad type air bearings are described. Major problems encountered in the use of self-leveled epoxy coatings in this surface are discussed and techniques are recommended which proved effective in overcoming these problems. Performance requirements of the zero-gravity simulator vehicle which were pertinent to the specification of the air-bearing support surface are also discussed.

  12. New Highly Dynamic Approach for Thrust Vector Control

    Science.gov (United States)

    Hecht, M.; Ettl, J.; Grothe, D.; Hrbud, I.

    2015-09-01

    For a new launcher system a thrust vector control system is needed. This launch vehicle system consists of two rockets which are namely the VS-50 (two-stage suborbital vehicle) and the VLM-1 (three-stage microsatellite launch vehicle). VLM-1 and VS-50 are developed in a cooperation between the German Aerospace Center (DLR) and the Brazilian Aeronautics and Space Institute (IAE). To keep these two rockets on its trajectory during flight a highly dynamic thrust vector control system is required. For the purpose of developing such a highly dynamic thrust vector control system a master thesis was written by the author. The development includes all mechanical constructions as well as control algorithms and electronics design. Moreover an optimization of control algorithms was made to increase the dynamic capabilities of the thrust vector control system. The composition of the right components plus the sophisticated control algorithm make the thrust vector control system highly dynamic.

  13. Smoother thrust on multi-polar type linear DC motor

    Energy Technology Data Exchange (ETDEWEB)

    Wakiwaka, H.; Senoh, S.; Yajima, H; Yamada, H. [Shinshu Univ., Wakasato, Nagano (Japan). Faculty of Engineering; Oda, J. [Ohkura Electric Co., Ltd., Shirako, Wakou (Japan)

    1997-09-01

    A LDM has the merits of a high response and a direct linear motion. Therefore, a LDM is used widely in the fields of Factory Automation (FA). As compared with a mono-polar type Linear DC Motor (LDM), it is possible for a multi-polar type LDM to have a longer stroke and more thrust with thin shape. However, there are thrust ripple on multi-polar type one. In this paper, a design to prevent thrust ripple is discussed. In order to make a smoother thrust on multi-polar type LDM, the structure of the LDM is set as a 2-phase coil type. This paper clarifies that the thrust ripple of the LDM has the minimum value of 1.68%, the pole pitch of 15 mm, the coil width of 12 mm and the permanent magnet width of 10 mm.

  14. Linear kinematic air bearing

    Science.gov (United States)

    Mayall, S. D.

    1974-01-01

    Bearing provides continuous, smooth movement of the cat's-eye mirror, eliminating wear and deterioration of bearing surface and resulting oscillation effects in servo system. Design features self-aligning configuration; single-point, pivotal pad mounting, having air passage through it; and design of pads that allows for precise control of discharge path of air from pads.

  15. Arcturus and the Bears

    Science.gov (United States)

    Antonello, E.

    2009-08-01

    Arcturus is the brightest star in Bootes. The ancient Greek name Arktouros means Bear Guard. The star, however, is not close to Ursa Maior (Big She-Bear) and Ursa Minor (Little She-Bear), as the name would suggest. This curious discrepancy could be explained by the star proper motion, assuming the name Bear Guard is a remote cultural heritage. The proper motion analysis could allow us to get an insight also into an ancient myth regarding Ursa Maior. Though we cannot explain scientifically such a myth, some interesting suggestions can be obtained about its possible origin, in the context of the present knowledge of the importance of the cult of the bear both during the Palaeolithic times and for several primitive populations of modern times, as shown by the ethnological studies.

  16. Provenance, dispersal, and tectonic significance of the Evanston Formation and Sublette Range Conglomerate, Idaho-Wyoming-Utah thrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Salat, T.S. (ARCO Alaska, Inc., Anchorage (United States)); Steidtmann, J.R. (Univ. of Wyoming, Laramie (United States))

    1991-01-01

    Tectogenic sediments of the latest Cretaceous-Paleocene Evanston Formation were deposited in proximal braided streams in northeastern Utah, and in distal gravelly rivers in the Fossil basin of southwestern Wyoming. Paleocurrent data provide evidence for a north-to-south axial drainage system in both areas. The ubiquitous presence of Precambrian-Cambrian clast types throughout the Evanston Formation indicates a source area in the present day Bear River Range (Paris and Willard thrust plates). The Sublette Range Conglomerate is a crudely stratified, clast-supported, proximal braided stream deposit. Paleocurrent data and clast lithology also indicate a north-westerly source area on the Paris and Willard plates. It is proposed that the undated Sublette Range Conglomerate is a remnant of a proximal deposit which linked distal Evanston sediments in the Fossil basin with their source area on the Paris and Willard plates. Early Eocene reactivation of the Crawford thrust resulted in the present elevated position of the Sublette Range Conglomerate.

  17. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    Science.gov (United States)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V. Similar bursts in thrust are observed using a square waveform grid bias at 10 kHz and +/- 350 V for volumetric flow rates of 6, 10, and 12 sccm at 150, 350, and 350 W respectively. The only operating condition that exhibits repeated thrust spikes throughout thruster operation is the 24 sccm condition with a 5:1 mixture ratio at 150 W RF power using the 10 kHz square waveform acceleration grid bias. Thrust spikes for this condition measure 3 mN with an error of +/- 2.5 mN. There are no operating conditions tested that show continuous thrust production.

  18. Redefining Medlicott-Wadia's main boundary fault from Jhelum to Yamuna: An active fault strand of the main boundary thrust in northwest Himalaya

    Science.gov (United States)

    Thakur, V. C.; Jayangondaperumal, R.; Malik, M. A.

    2010-06-01

    The MBT demarcates a tectonic boundary between the Tertiary Sub Himalaya and the pre-Tertiary Lesser Himalaya. South of the MBT, another tectonically important fault extends from Muzaffarabad and Riasi in Jammu-Kashmir to Bilaspur and Nahan in Himachal. Medlicott and Wadia had designated this fault the Main Boundary Fault (MBF) in Simla Hills and Jammu region respectively. In between these two areas, later workers gave local-area names to the MBF as the Riasi Thrust in Jammu, Palampur Thrust in Kangra, Bilaspur Thrust in Simla Hills and Nahan Thrust in Sirmur. We have reviewed and established the tectonostratigraphic framework and physical continuity of the lower Tertiary belt and the MBF. The lower Tertiary belt, lying south of the MBT, has characteristic tectonostratigraphic setting with discontinuous bodies of stromatolite-bearing Proterozoic limestone overlain with depositional contact by the Paleocene-lower part Middle Eocene marine Subathu/Patala formation which in turn overlain by the Upper Oligocene-Lower Miocene non-marine Dharamsala/Murree Formation. To avoid confusion with the MBT, we designate collectively the MBF and related faults as the Medlicott-Wadia Thrust (MWT). The MWT extends east of Hazara-Kashmir syntaxis to river Yamuna, covering a distance of ˜ 700 km. Further east of Yamuna, the lower Tertiary belt pinches out and the MWT merges with the sensuo-stricto MBT. The Proterozoic limestone represents the basement over which the lower Tertiary sediments were deposited. The limestone basement with its cover was detached by the MWT, exhuming to the surface and thrusting over largely the Siwalik group. The reactivated Balakot-Bagh Fault, causative fault for the 2005 Kashmir earthquake, extends southeast with right-step to the Riasi Thrust. The Riasi Thrust shows evidence of reactivation and active tectonic activity in Jammu region. It extends further east to the Palampur Thrust in Kangra reentrant, which lies within the 1905 Kangra earthquake rupture zone. The Bilaspur Thrust, continuation of the Palampur Thrust, shows active faulting south of Simla hills between Sataun and Yamuna River. These observations indicate that the MWT represents a southern strand of the sensuo-stricto MBT and shows active faulting in some segments.

  19. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Science.gov (United States)

    2010-01-01

    ... Installation of an Automatic Takeoff Thrust Control System (ATTCS) I...Installation of an Automatic Takeoff Thrust Control System (ATTCS) I25...2Definitions. (a) Automatic Takeoff Thrust Control System (ATTCS)....

  20. Dynamic behavior of air lubricated pivoted-pad journal-bearing, rotor system. 2: Pivot consideration and pad mass

    Science.gov (United States)

    Nemeth, Z. N.

    1972-01-01

    Rotor bearing dynamic tests were conducted with tilting-pad journal bearings having three different pad masses and two different pivot geometries. The rotor was vertically mounted and supported by two three-pad tilting-pad gas journal bearings and a simple externally pressurized thrust bearing. The bearing pads were 5.1 cm (2.02 in.) in diameter and 2.8 cm (1.5 in.) long. The length to diameter ratio was 0.75. One pad was mounted on a flexible diaphragm. The bearing supply pressure ranged from 0 to 690 kilonewtons per square meter (0 to 100 psig), and speeds ranged to 38,500 rpm. Heavy mass pad tilting-pad assemblies produced three rotor-bearing resonances above the first two rotor critical speeds. Lower supply pressure eliminated the resonances. The resonances were oriented primarily in the direction normal to the diaphragm.

  1. Effect of cage design on characteristics of high-speed-jet-lubricated 35-millimeter-bore ball bearing. [turbojet engines

    Science.gov (United States)

    Schuller, F. T.; Pinel, S. I.; Signer, H. R.

    1980-01-01

    Parametric tests were conducted with a 35 mm bore angular contact ball bearing with a double outer land guided cage. Provisions were made for jet lubrication and outer-ring cooling of the bearing. Test conditions included a combined thrust and radial load at nominal shaft speeds of 48,000 rpm, and an oil-in temperature of 394 K (250 F). Successful operation of the test bearing was accomplished up to 2.5 million DN. Test results were compared with those obtained with similar bearing having a single outer land guided cage. Higher temperatures were generated with the double outer land guided cage bearing, and bearing power loss and cage slip were greater. Cooling the outer ring resulted in a decrease in overall bearing operating temperature.

  2. HTS magnetic bearings

    Science.gov (United States)

    Werfel, Frank N.; Flögel-Delor, Uta; Rothfeld, Rolf; Wippich, Dieter; Riedel, Thomas

    2002-08-01

    Radial HTS magnetic bearings (SMB) up to 200 mm size are developed and tested in prototype fast rotating machines to demonstrate the potential to replace conventional bearings. The individual rotational bearing components HTS and PM, their physical interaction and technology is reviewed. Characterisation experiments are conducted to understand the rotor dynamic behaviour. In terms of unbalance and critical speeds the suspended wheels and rotors compare favourably with conventional bearing devices. The rationale of our present bearing technology lies in the assembling of both low-speed magnetic bearings for centrifugal and wafer processing units up to 20,000 rpm as well as a high-speed optical mirror accelerated to rim speed of more than 500 m/s (174,000 rpm) confirming stable low-drag and low energy operation. Two new-type U shaped semicircle HTS bearings coupled each with a 6 W/80 K cryocooler of the Stirling type allow the contact-free operation of a Si wafer carrier in semiconductor wet processes.

  3. Electronegative Gas Thruster - Direct Thrust Measurement Project

    Science.gov (United States)

    Dankanich, John (Principal Investigator); Aanesland, Ane; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct thrust measurement. The initial target application is for Small Satellites, but can be extended to higher power. The Plasma propulsion with Electronegative GASES (PEGASES) concept simplifies ion thruster operation, eliminates a neutralizer requirement and should yield longer life capabilities and lower cost implementation over conventional gridded ion engines. The basic proof-of concept has been demonstrated and matured to TRL 2 over the past several years by researchers at the Laboratoire de Physique des Plasma in France. Due to the low maturity of the innovation, there are currently no domestic investments in electronegative gas thrusters anywhere within NASA, industry or academia. The end product of this Center Innovation Fund (CIF) project will be a validation of the proof-of-concept, maturation to TRL 3 and technology assessment report to summarize the potential for the PEGASES concept to supplant the incumbent technology. Information exchange with the foreign national will be one-way with the exception of the test results. Those test results will first go through a standard public release ITAR/export control review, and the results will be presented in a public technical forum, and the results will be presented in a public technical forum.

  4. Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)

    Science.gov (United States)

    Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.

  5. Structural style of the Marathon thrust belt, West Texas

    Science.gov (United States)

    Hickman, Robert G.; Varga, Robert J.; Altany, Robert M.

    2009-09-01

    The Marathon portion of the Ouachita thrust belt consists of a highly deformed allochthonous wedge of Cambrian-Pennsylvanian slope strata (Marathon facies) that was transported to the northwest and emplaced over Pennsylvanian foredeep sediments. The foredeep strata in turn overlie early-middle Paleozoic shelfal sediments which are deformed by late Paleozoic basement-involved reverse faults. The Dugout Creek thrust is the basal thrust of the allochthon. Shortening in this sheet and overlying sheets is ˜80%. Steep imbricate faults link the Dugout Creek thrust to upper level detachments forming complex duplex zones. Progressive thrusting and shortening within the allochthon folded the upper level detachments and associated thrust sheets. The Caballos Novaculite is the most competent unit within the Marathon facies and controlled development of prominent detachment folds. Deeper imbricate sheets composed of the Late Pennsylvanian foredeep strata, and possibly early-middle Paleozoic shelfal sediments developed concurrently with emplacement of the Marathon allochthon and folded the overlying allochthon. Following termination of thrusting in the earliest Permian, subsidence and deposition shifted northward to the Delaware, Midland and Val Verde foreland basins.

  6. Early history and reactivation of the rand thrust, southern California

    Science.gov (United States)

    Postlethwaite, Clay E.; Jacobson, Carl E.

    The Rand thrust of the Rand Mountains in the northwestern Mojave Desert separates an upper plate of quartz monzonite and quartzofeldspathic to amphibolitic gneiss from a lower plate of metagraywacke and mafic schist (Rand Schist). The Rand thrust is considered part of the regionally extensive Vincent/Chocolate Mountain thrust system, which is commonly believed to represent a Late Cretaceous subduction zone. The initial direction of dip and sense of movement along the Vincent/Chocolate Mountain thrust are controversial. Microfabrics of mylonites and quartzites from the Rand Mountains were analyzed in an attempt to determine transport direction for this region, but the results are ambiguous. In addition, the southwestern portion of the Rand thrust was found to have been reactivated as a low-angle normal fault after subduction. Reactivation might have occurred shortly after subduction, in which case it could account for the preservation of high-pressure mineral assemblages in the Rand Schist, or it could be related to mid-Tertiary extension in the western United States. In either event, the reactivation might be responsible for the complicated nature of the microfabrics. The Rand Schist exhibits an inverted metamorphic zonation. Isograds in the schist are not significantly truncated by the reactivated segment of the Rand thrust. This indicates that other segments of the Vincent/Chocolate Mountain thrust should be re-evaluated for the possibility of late movement, even if they show an apparently undisturbed inverted metamorphic zonation.

  7. Propeller thrust analysis using Prandtl's lifting line theory, a comparison between the experimental thrust and the thrust predicted by Prandtl's lifting line theory

    Science.gov (United States)

    Kesler, Steven R.

    The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.

  8. Electric sail control mode for amplified transverse thrust

    Science.gov (United States)

    Toivanen, P.; Janhunen, P.; Envall, J.

    2015-01-01

    The electric solar wind sail produces thrust by centrifugally spanned high voltage tethers interacting with the solar wind protons. The sail attitude can be controlled and attitude maneuvers are possible by tether voltage modulation synchronous with the sail rotation. Especially, the sail can be inclined with respect to the solar wind direction to obtain transverse thrust to change the osculating orbit angular momentum. Such an inclination has to be maintained by a continual control voltage modulation. Consequently, the tether voltage available for the thrust is less than the maximum voltage provided by the power system. Using a spherical pendulum as a model for a single rotating tether, we derive analytical estimations for the control efficiency for two separate sail control modes. One is a continuous control modulation that corresponds to strictly planar tether tip motion. The other is an on-off modulation with the tether tip moving along a closed loop on a saddle surface. The novel on-off mode is introduced here to both amplify the transverse thrust and reduce the power consumption. During the rotation cycle, the maximum voltage is applied to the tether only over two thrusting arcs when most of the transverse thrust is produced. In addition to the transverse thrust, we obtain the thrusting angle and electric power consumption for the two control modes. It is concluded that while the thrusting angle is about half of the sail inclination for the continuous modulation it approximately equals to the inclination angle for the on-off modulation. The efficiency of the on-off mode is emphasized when power consumption is considered, and the on-off mode can be used to improve the propulsive acceleration through the reduced power system mass.

  9. Ultra-precision bearings

    CERN Document Server

    Wardle, F

    2015-01-01

    Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearin

  10. Holocene shortening rates of an Andean-front thrust, Southern Precordillera, Argentina

    Science.gov (United States)

    Costa, Carlos H.; Ahumada, Emilio A.; Vázquez, Fabricio R.; Kröhling, Daniela M.

    2015-11-01

    A significant part of the Quaternary shortening between the Chilean trench and the relative stable interior of the South American plate at the Pampean flat slab (27-33°S), has been accommodated at the eastern foothills of the Andes and mainly within a narrow neotectonic belt along the eastern side of the Argentine Precordillera. Tectonic geodesy results point out that this area is being shortened at a ~ 2-4 mm/a rate, whereas shortening rates estimated over longer time periods (1-20 Ma) suggest values ranging from 1 mm/a to 16 mm/a. Geomorphic and geologic evidence indicate that the east-directed Las Higueras Thrust System is one of the main structures that has accommodated Quaternary deformation at this section of the Andean orogenic front (32° 05‧-32° 35‧S). An outcrop exhibiting the thrust propagation into fluvial sediments allows the Holocene shortening rates at the northern end of this structure to be estimated, based on retrodeformation of Holocene strata and radiocarbon dating of two charcoal-bearing beds. Estimated shortening rates yielded mean values of 1.90 ± 0.28 mm/a for the last 4495 ± 143 cal yr BP and 1.53 ± 0.26 for the last 8245 ± 48 cal yr BP. These results pose some uncertainties due to the incompleteness of the exposed deformation at the hanging wall. However, they correspond to a key timescale which helps to bridge the gap between rates derived from the short-term GPS data and the long-term permanent deformation rates obtained through geologic studies. Although the estimated rates suggest that slip on the thrust could have accelerated during the last ~ 4 ka, more data are necessary to reliably address this key issue.

  11. Gear bearing drive

    Science.gov (United States)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  12. Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  13. Nitrous Oxide Liquid Injection Thrust Vector Control System Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Nitrous Oxide-fed Liquid Thrust Vector Control system is proposed as an efficient method for vehicle attitude control during powered flight. Pulled from a N2O...

  14. Thrust imbalance of the Space Shuttle solid rocket motors

    Science.gov (United States)

    Foster, W. A., Jr.; Sforzini, R. H.; Shackelford, B. W., Jr.

    1981-01-01

    The Monte Carlo statistical analysis of thrust imbalance is applied to both the Titan IIIC and the Space Shuttle solid rocket motors (SRMs) firing in parallel, and results are compared with those obtained from the Space Shuttle program. The test results are examined in three phases: (1) pairs of SRMs selected from static tests of the four developmental motors (DMs 1 through 4); (2) pairs of SRMs selected from static tests of the three quality assurance motors (QMs 1 through 3); (3) SRMs on the first flight test vehicle (STS-1A and STS-1B). The simplified internal ballistic model utilized for computing thrust from head-end pressure measurements on flight tests is shown to agree closely with measured thrust data. Inaccuracies in thrust imbalance evaluation are explained by possible flight test instrumentation errors.

  15. Optimal Thrust Vectoring for an Annular Aerospike Nozzle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  16. Thrust Characteristics of Water Rocket and Their Improvement

    Science.gov (United States)

    Watanabe, Rikio; Tomita, Nobuyuki; Takemae, Toshiaki

    The propulsive characteristics of water rockets are analyzed theoretically and experimentally. The unsteady thrust force acting on a PET bottle and the air pressure inside the bottle are measured simultaneously by the thrust test stand we have developed. The semi-empirical thrust history is obtained utilizing the air pressure history and it is compared with the measured thrust history. The results show qualitative agreement. The observation of the flow inside bottle by a high-speed video camera shows that the air precedes water when it is about to be discharged entirely. We have developed a flow regulator attached to the nozzle cap to reduce the precursor air discharge that is considered as a result of the swirling flow inside the bottle. The experimental results show that the air discharge and the body vibration are suppressed effectively.

  17. Improved Rhenium Thrust Chambers for In-Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation-cooled, bipropellant thrust chambers are being considered for the ascent/descent engines and reaction control systems (RCS) for future NASA missions such...

  18. Improved Rhenium Thrust Chambers for In-Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation-cooled, bipropellant thrust chambers are being considered for the ascent/descent engines and reaction control systems for NASA missions such as Mars...

  19. A double pendulum plasma thrust balance and thrust measurement at a tandem mirror exhaust

    Science.gov (United States)

    Yang, T. F.; Liu, Ping; Chang-Díaz, F. R.; Lander, Harvey; Childs, R. A.; Becker, H. D.; Fairfax, S. A.

    1995-09-01

    For the purpose of measuring the plasma momentum flux in a plasma system, a highly sensitive and precision balance has been developed. It can measure a force, an impulse, or thrust as low as 0.1 mN free of mechanical noise, electrical and magnetic pickups. The double pendulum system consists of two parallel conducting plates. One or both of the plates can be suspended by needles. The needle suspended plate (or plates) can swing freely with negligible friction because of the sharp points of the needles. When one of the plates is impacted by an impulse it will swing relatively to the fixed plate or other movable plate. The capacitance between the plates changes as a result of such a motion. The change of capacitance as a function of time is recorded as an oscillating voltage signal. The amplitude of such a voltage signal is proportional to the impacting force or impulse. The proportional factor can be calibrated. The forces can thus be read out from the recorded value of the voltage. The equation of motion for the pendulum system has been solved analytically. The circuit equation for the electronic measurement system has been formulated and solved numerically. Using this balance the thrust at the exhaust of a Tandem Mirror plasma thruster has been measured. The analytical solution of the overall characteristics agrees greatly with the measurement.

  20. A double pendulum plasma thrust balance and thrust measurement at a tandem mirror exhaust

    International Nuclear Information System (INIS)

    For the purpose of measuring the plasma momentum flux in a plasma system, a highly sensitive and precision balance has been developed. It can measure a force, an impulse, or thrust as low as 0.1 mN free of mechanical noise, electrical and magnetic pickups. The double pendulum system consists of two parallel conducting plates. One or both of the plates can be suspended by needles. The needle suspended plate (or plates) can swing freely with negligible friction because of the sharp points of the needles. When one of the plates is impacted by an impulse it will swing relatively to the fixed plate or other movable plate. The capacitance between the plates changes as a result of such a motion. The change of capacitance as a function of time is recorded as an oscillating voltage signal. The amplitude of such a voltage signal is proportional to the impacting force or impulse. The proportional factor can be calibrated. The forces can thus be read out from the recorded value of the voltage. The equation of motion for the pendulum system has been solved analytically. The circuit equation for the electronic measurement system has been formulated and solved numerically. Using this balance the thrust at the exhaust of a Tandem Mirror plasma thruster has been measured. The analytical solution of the overall characteristics agrees greatly with the measurement. copyright 1995 American Institute of Physics

  1. A double pendulum plasma thrust balance and thrust measurement at a tandem mirror exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.F.; Liu, P.; Chang-Diaz, F.R.; Lander, H.; Childs, R.A.; Becker, H.D.; Fairfax, S.A. [Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    1995-09-01

    For the purpose of measuring the plasma momentum flux in a plasma system, a highly sensitive and precision balance has been developed. It can measure a force, an impulse, or thrust as low as 0.1 mN free of mechanical noise, electrical and magnetic pickups. The double pendulum system consists of two parallel conducting plates. One or both of the plates can be suspended by needles. The needle suspended plate (or plates) can swing freely with negligible friction because of the sharp points of the needles. When one of the plates is impacted by an impulse it will swing relatively to the fixed plate or other movable plate. The capacitance between the plates changes as a result of such a motion. The change of capacitance as a function of time is recorded as an oscillating voltage signal. The amplitude of such a voltage signal is proportional to the impacting force or impulse. The proportional factor can be calibrated. The forces can thus be read out from the recorded value of the voltage. The equation of motion for the pendulum system has been solved analytically. The circuit equation for the electronic measurement system has been formulated and solved numerically. Using this balance the thrust at the exhaust of a Tandem Mirror plasma thruster has been measured. The analytical solution of the overall characteristics agrees greatly with the measurement. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  2. Separability of drag and thrust in undulatory animals and machines

    OpenAIRE

    Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; MacIver, Malcolm A.; Patankar, Neelesh A.

    2014-01-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in u...

  3. Dynamic Model for Thrust Generation of Marine Propellers

    OpenAIRE

    Blanke, Mogens; Lindegaard, Karl-Petter; Fossen, Thor I.

    2000-01-01

    Mathematical models of propeller thrust and torque are traditionally based on steady state thrust and torque characteristics obtained in model basin or cavitation tunnel tests. Experimental results showed that these quasi steady state models do not accurately describe the transient phenomena in a thruster. A recently published dynamic model was based on the experimental observations. Describing zero advance speed conditions accurately, this model, however, does not work for a vessel at non- z...

  4. Experimental Validation of a Marine Propeller Thrust Estimation Scheme

    OpenAIRE

    Luca Pivano; Smogeli, Øyvind N.; Johansen, Tor A.; Thor Inge Fossen

    2007-01-01

    A thrust estimation scheme for a marine propeller has been experimentally tested in waves and with a device that simulates the influence of a vessel hull. The scheme is formed by a nonlinear propeller torque observer and a mapping to generate the thrust from the observed torque. The mapping includes the estimation of the advance number. This is utilized to improve the performance when the propeller is lightly loaded. The advance speed is assumed to be unknown, and only measurements of shaft s...

  5. Application of Chaboche Model in Rocket Thrust Chamber Analysis

    Science.gov (United States)

    Asraff, Ahmedul Kabir; Suresh Babu, Sheela; Babu, Aneena; Eapen, Reeba

    2015-12-01

    Liquid Propellant Rocket Engines are commonly used in space technology. Thrust chamber is one of the most important subsystems of a rocket engine. The thrust chamber generates propulsive thrust force for flight of the rocket by ejection of combustion products at supersonic speeds. Often double walled construction is employed for these chambers. The thrust chamber investigated here has its hot inner wall fabricated out of a high thermal conductive material like copper alloy and outer wall made of stainless steel. Inner wall is subjected to high thermal and pressure loads during operation of engine due to which it will be in the plastic regime. Main reasons for the failure of such chambers are fatigue in the plastic range (called as low cycle fatigue since the number of cycles to failure will be low in plastic range), creep and thermal ratcheting. Elasto plastic material models are required to simulate the above effects through a cyclic stress analysis. This paper gives the details of cyclic stress analysis carried out for the thrust chamber using different plasticity model combinations available in ANSYS (Version 15) FE code. The best model among the above is applied in the cyclic stress analysis of two dimensional (plane strain and axisymmetric) and three dimensional finite element models of thrust chamber. Cyclic life of the chamber is calculated from stress-strain graph obtained from above analyses.

  6. Thrust stand for vertically oriented electric propulsion performance evaluation

    International Nuclear Information System (INIS)

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.

  7. Caledonian shortening by combined folding and thrusting in the immediate footwall of the Caledonian sole thrust: The example of the Repparfjord Tectonic Window, northern Norway.

    Science.gov (United States)

    Jørgen Kjøll, Hans; Torgersen, Espen; Viola, Giulio

    2014-05-01

    The Repparfjord Tectonic Window (RTW) is a window through the Caledonian nappes in northern Norway that exposes a package of greenschist facies metasedimentary and metavolcanic rocks of Paleoproterozoic age. These were deformed and metamorphosed during the Svecofennian orogeny producing km-wavelength upright NE-SW folds. Pervasive effects of a later Caledonian overprint, caused by the emplacement of the Kalak Nappe Complex during the Silurian, are limited and confined to the northwestern edge of the window, where NW-SE-shortening caused the development of a compressional imbricate stack. Individual imbricates exploit preexisting, progressively tightening upright to overturned folds and are bound by generally very steep to sub-vertical discrete faults. One of these structures, the Skinnfjellet Fault Zone (SFZ), truncates the large doloarenite-hosted Nussir Cu deposit and has a present-day orientation that makes reverse displacement mechanically difficult. This study aims at a better understanding of the mechanical and temporal evolution of these steep thrusts. The SFZ strikes roughly NS, is sub-vertical and bears dip-slip lineations. It separates greenstones in the west from arcosic sandstones, conglomerates and the Nussir Cu deposit in the east. Kinematic indicators give east block up. Faulting occurred mostly under brittle conditions producing an approximately eight meter thick damage zone and a 40 cm thick fault gouge core. A second prominent fault is the Nussirjavrri Fault Zone (NFZ). The main fault plane dips moderately toward the NNE, bears a NW plunging lineation and a number of kinematic indicators indicate top-to-the-SSE thrusting. The fault trace is mappable for c. one km, but high-resolution geophysics indicates an ENE-WSW continuation. Mapping shows that the fault zone is folded openly with a fold axis trending NNE/SSW, consistent with the geometry of a subregional folding phase of inferred Caledonian age. The fault affects greenstones, graphitic slates and dolomites. The mylonitic thrust core thickness varies from 10 to 40 cm and is composed by alternating dark and light bands of chlorite, muscovite and graphite, together with quartz and carbonates. Interspersed within the foliation are interstitial euhedral pyrite and cm to dm scale dolomite clasts. Dolomite decarbonation is locally observed. Synkinematic quartz veins occur subparallel to the tectonic foliation. Quartz is dynamically recrystallized by SGRR and has an average grain size of c. 35µm. Thin sections show two distinct and strong LPO's. One is preserved within the core grains whereas the other is found within arrays of the recrystallized subgrains, whose distribution appears to be controlled by healed brittle fractures. Mapping indicates that the NFZ is cut by the SFZ and its overall transport direction to the SSE, in addition to its structural location at the front of the imbricate, strengthen its interpretation as a Caledonian structure (also consistent with dated and similarly oriented faults from the RTW). We suggest that the SFZ formed as an antithetic back thrust within the Caledonian imbricate stack, possibly exploiting the limbs of a preexisting large-scale antiform. During Caledonian shortening this Paleoproterozoic megafold was tightened, leading to a progressive steepening of the fold limbs and of the SFZ, while NFZ was progressively folded around the fold hinge.

  8. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  9. Electromechanical actuation for thrust vector control applications

    Science.gov (United States)

    Roth, Mary Ellen

    1990-01-01

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type control algorithms. Integrated testing of the controller and actuator will be conducted at a facility yet to be named. The EMA system described above is discussed in detail.

  10. Gas Foil Bearing Misalignment and Unbalance Effects

    Science.gov (United States)

    Howard, Samuel A.

    2008-01-01

    The effects of misalignment and unbalance on gas foil bearings are presented. The future of U.S. space exploration includes plans to conduct science missions aboard space vehicles, return humans to the Moon, and place humans on Mars. All of these endeavors are of long duration, and require high amounts of electrical power for propulsion, life support, mission operations, etc. One potential source of electrical power of sufficient magnitude and duration is a nuclear-fission-based system. The system architecture would consist of a nuclear reactor heat source with the resulting thermal energy converted to electrical energy through a dynamic power conversion and heat rejection system. Various types of power conversion systems can be utilized, but the Closed Brayton Cycle (CBC) turboalternator is one of the leading candidates. In the CBC, an inert gas heated by the reactor drives a turboalternator, rejects excess heat to space through a heat exchanger, and returns to the reactor in a closed loop configuration. The use of the CBC for space power and propulsion is described in more detail in the literature (Mason, 2003). In the CBC system just described, the process fluid is a high pressure inert gas such as argon, krypton, or a helium-xenon mixture. Due to the closed loop nature of the system and the associated potential for damage to components in the system, contamination of the working fluid is intolerable. Since a potential source of contamination is the lubricant used in conventional turbomachinery bearings, Gas Foil Bearings (GFB) have high potential for the rotor support system. GFBs are compliant, hydrodynamic journal and thrust bearings that use a gas, such as the CBC working fluid, as their lubricant. Thus, GFBs eliminate the possibility of contamination due to lubricant leaks into the closed loop system. Gas foil bearings are currently used in many commercial applications, both terrestrial and aerospace. Aircraft Air Cycle Machines (ACMs) and ground-based microturbines have demonstrated histories of successful long-term operation using GFBs (Heshmat et al., 2000). Small aircraft propulsion engines, helicopter gas turbines, and high-speed electric motors are potential future applications.

  11. An Assessment of Gas Foil Bearing Scalability and the Potential Benefits to Civilian Turbofan Engines

    Science.gov (United States)

    Bruckner, Robert J.

    2010-01-01

    Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.

  12. Radial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while minimizing it on the opposite side. The advantage of this configuration is that it makes it possible to approach the theoretical maximum force per unit area that could be exerted by a given amount of permanent-magnet material. The configuration is named after physicist Klaus Halbach, who conceived it for use in particle accelerators. Halbach arrays have also been studied for use in magnetic-levitation ("maglev") railroad trains. In a radial Halbach magnetic bearing, the basic Halbach arrangement is modified into a symmetrical arrangement of sector-shaped permanent magnets mounted on the outer cylindrical surface of a drum rotor (see Figure 2). The magnets are oriented to concentrate the magnetic field on their radially outermost surface. The stator coils are mounted in a stator shell surrounding the rotor.

  13. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  14. C60 molecular bearings.

    Science.gov (United States)

    Miura, K; Kamiya, S; Sasaki, N

    2003-02-01

    An ultralubricated system is reported which confines a C60 monolayer between graphite plates. C60 molecules act as molecular bearings, assisted by the nanogears of six-membered carbon rings between C60 molecules and graphite, in which the mean dynamical frictional forces are zero up to a high load of 100 nanonewtons. A stick-slip rolling model with a step rotation of a C60 molecule is proposed. This ultralubricated system, very promising for the realization of nano- and micromachines, is expected to open a new field of molecular bearings. PMID:12633375

  15. Modular gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  16. Preliminary Investigation of Molybdenum Disulfide-air-mist Lubrication for Roller Bearings Operating to DN Values of 1 x 10(exp 6) and Ball Bearings Operating to Temperatures of 1000 F

    Science.gov (United States)

    Macks, E F; Nemeth, Z N; Anderson, W J

    1951-01-01

    The effectiveness of molybdenum disulfide MoS2 as a bearing lubricant was determined at high temperature and at high speeds. A 1-inch-bore ball bearing operated at temperatures to 1000 F, a speed of 1725 rpm, and a thrust load of 20 pounds when lubricated only with MoS2-air mist. A 75-millimeter-bore cageless roller bearing, provided with a MoS2-syrup coating before operation, operated at DN values to 1 x 10(exp 6) with a load of 368 pounds.

  17. FEEP micro-thrust balance characterization and testing

    Science.gov (United States)

    Rocca, S.; Menon, C.; Nicolini, D.

    2006-04-01

    A micro-thrust stand developed by the National Physical Laboratory under ESA funding was calibrated and characterized. The balance is based on the nulled-pendulum principle. The thruster is positioned in a constrained pendulum that is free to move only along the line of thrust. A capacitive displacement sensor measures the movement of the pendulum and is connected via a servo closed loop to a force actuator that preserves the nulled position of the pendulum. The force exerted by the actuator is the measurement of the thrust generated by the field effect electric propulsion thruster. Part of the environmental vibration noise is cancelled by subtracting the signal produced by a dummy pendulum (not subjected to thrust) from the signal produced by the principal pendulum. The interface between the thruster and balance was designed with the aim of minimizing the interference of the electrical wires. This paper presents the results of the measurements that fully characterize the balance in terms of accuracy, resolution and thrust range. Improvements to the balance are suggested in order to increase its metrological performance.

  18. Engineering research, development and technology: Thrust area report FY 91

    International Nuclear Information System (INIS)

    The mission of the Engineering Research, Development, and Technology Program at Lawrence, Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) conduct high quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. The thrust area leader is also responsible for carrying out the work that follows from the Engineering Research, Development, and Technology Program so that the results can be applied as early as possible to the needs of LLNL programs. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year, 1991. Its intent is to provide timely summaries of objectives, theories, methods, and results

  19. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  20. Development of Flexible Bearing

    Directory of Open Access Journals (Sweden)

    K.S.Mohanraj

    2014-06-01

    Full Text Available Elastomeric base isolation systems are proven to be effective in reducing seismic forces transmitted to buildings. However, due to their cost, the use of these devices is currently limited to large and expensive buildings. A fiber reinforced elastomeric isolator utilizes fiber fabric, such as carbon fiber, glass fibre, and etc. as the reinforcement material instead of solid steel plates. The fibre fabric reinforcement is extensible in tension and has no flexural rigidity. Elastomers normally used in the isolator are natural rubber; neoprene, butyl rubber and nit rile rubber etc. These devices were fabricated by binding alternating layers of rubber and fibre mesh. The fibre mesh is used to increase the vertical stiffness of the bearings while maintaining low lateral stiffness. Characterizing the behaviour of a fibre reinforced bearing “shape factor” of the bearing, Poisson’s ratio of the elastomeric material and flexibility of the reinforcing sheets and investigate the effect of reinforcement flexibility on compressive behaviour of elastomeric bearings with different geometrical and material properties. Bonding with fibre reinforcements can increase the stiffness of elastic layers only when the elastic layer is compressed.

  1. Hybrid superconductor magnet bearings

    Science.gov (United States)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  2. Magnetically leviated superconducting bearing

    Science.gov (United States)

    Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT)

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  3. The Teddy Bears' Disc.

    Science.gov (United States)

    Laurillard, Diana

    1985-01-01

    Reports an evaluation of the Teddy Bear disc, an interactive videodisc developed at the Open University for a second-level course in metallurgy and materials technology. Findings from observation of students utilizing the videodisc are reviewed; successful design features and design problems are considered; and development costs are outlined. (MBR)

  4. Flexure Bearing Reduces Startup Friction

    Science.gov (United States)

    Clingman, W. Dean

    1991-01-01

    Design concept for ball bearing incorporates small pieces of shim stock, wire spokes like those in bicycle wheels, or other flexing elements to reduce both stiction and friction slope. In flexure bearing, flexing elements placed between outer race of ball bearing and outer ring. Elements flex when ball bearings encounter small frictional-torque "bumps" or even larger ones when bearing balls encounter buildups of grease on inner or outer race. Flexure of elements reduce high friction slopes of "bumps", helping to keep torque between outer ring and inner race low and more nearly constant. Concept intended for bearings in gimbals on laser and/or antenna mirrors.

  5. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    International Nuclear Information System (INIS)

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  6. Rotordynamics of automotive turbochargers. Linear and nonlinear rotordynamics - Bearing design - Rotor balancing

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Schaefer, Hung [Bosch Mahle Turbo Systems GmbH und Co. KG, Stuttgart (Germany)

    2012-11-01

    Describes the rotordynamics of automotive turbochargers. Requires only a minimum of mathematical background. Written by an R and D expert from industry. This book deals with rotordynamics of automotive turbochargers while encompassing the analysis of the dynamics of rotating machines at very high rotor speeds of 300,000 rpm and above. This interdisciplinary field involves 1. thermodynamics and turbo-matching knowledge to compute working conditions of turbochargers, 2. fluid and bearing dynamics to calculate various operating thrust loads and to design the rotating floating ring bearings (two-oil-film bearings), and 3. tribology to improve the rotor stability and to reduce the bearing friction. Mathematical background in modeling and simulation methods is necessary; however, the prerequisites have been kept to a minimum. The book addresses both practitioners working in the field of rotordynamics of automotive turbochargers and graduate students in mechanical engineering.

  7. Rotordynamics of Automotive Turbochargers Linear and Nonlinear Rotordynamics – Bearing Design – Rotor Balancing

    CERN Document Server

    Nguyen-Schäfer, Hung

    2012-01-01

    This book deals with rotordynamics of automotive turbochargers while encompassing the analysis of the dynamics of rotating machines at very high rotor speeds of 300,000 rpm and above. This interdisciplinary field involves 1. thermodynamics and turbo-matching knowledge to compute working conditions of turbochargers, 2. fluid and bearing dynamics to calculate various operating thrust loads and to design the rotating floating ring bearings (two-oil-film bearings), and 3. tribology to improve the rotor stability and to reduce the bearing friction. Mathematical background in modeling and simulation methods is necessary; however, the prerequisites have been kept to a minimum. The book addresses both practitioners working in the field of rotordynamics of automotive turbochargers and graduate students in mechanical engineering.

  8. Dynamic Model for Thrust Generation of Marine Propellers

    DEFF Research Database (Denmark)

    Blanke, Mogens; Lindegaard, Karl-Petter

    2000-01-01

    Mathematical models of propeller thrust and torque are traditionally based on steady state thrust and torque characteristics obtained in model basin or cavitation tunnel tests. Experimental results showed that these quasi steady state models do not accurately describe the transient phenomena in a thruster. A recently published dynamic model was based on the experimental observations. Describing zero advance speed conditions accurately, this model, however, does not work for a vessel at non- zero relative water speed. This paper derives a large signal dynamic model of propeller that includes the eects of transients in the ow over a wide range of operation. The results are essential for accurate thrust control in dynamic positioning and in underwater robotics.

  9. Separability of drag and thrust in undulatory animals and machines

    CERN Document Server

    Bale, Rahul; Neveln, Izaak D; Bhalla, Amneet Pal Singh; MacIver, Malcolm A; Patankar, Neelesh A

    2014-01-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal- istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation fram...

  10. Optimization of Flapping Airfoils for Maximum Thrust and Propulsive Efficiency

    Directory of Open Access Journals (Sweden)

    I. H. Tuncer

    2004-01-01

    Full Text Available A numerical optimization algorithm based on the steepest decent along the variation of the optimization function is implemented for maximizing the thrust and/or propulsive efficiency of a single flapping airfoil. Unsteady, low speed laminar flows are computed using a Navier-Stokes solver on moving overset grids. The flapping motion of the airfoil is described by a combined sinusoidal plunge and pitching motion. Optimization parameters are taken to be the amplitudes of the plunge and pitching motions, and the phase shift between them. Computations are performed in parallel in a work station cluster. The numerical simulations show that high thrust values may be obtained at the expense of reduced efficiency. For high efficiency in thrust generation, the induced angle of attack of the airfoil is reduced and large scale vortex formations at the leading edge are prevented. 

  11. Parametric study of thermal behavior of thrust chamber cooling channels

    Directory of Open Access Journals (Sweden)

    Karima E. Amori

    2007-01-01

    Full Text Available A numerical investigation is adopted for two dimensional thermal analysis of rocket thrust chamber wall (RL10, employing finite difference model with iterative scheme (implemented under relaxation factor of 0.9 for convergence to compute temperature distribution within thrust chamber wall (which is composed of Nickel and Copper layers. The analysis is conducted for different boundary conditions: only convection boundary conditions then combined radiation, convection boundary conditions also for different aspect ratio (AR of cooling channel. The results show that Utilizing cooling channels of high aspect ratio leads to decrease in temperature variation across thrust chamber wall, while no effects on heat transferred to the coolant is indicated. The radiation has a considerable effect on the computed wall temperature values.

  12. Interseismic deformation of the Montello thrust, northern Italy

    Science.gov (United States)

    Finocchio, D.; Barba, S.; Burrato, P.; De Martini, P.

    2011-12-01

    The Montello Anticline belongs to the southernmost thrust units of the S-verging Eastern Southern Alps (ESA), at the edge of the Veneto-Friuli plain (North-eastern Italy). The present-day tectonic setting of the area results from the Northward motion and underthrusting of Adria microplate with respect to Europe. Deformed fluvial terraces and deflection of the Piave River suggest that the Montello is an active growing anticline. Based on surface geology of folded strata, topographic expression of the anticline and geophysical data, the Montello Thrust was characterized as a 30-km-long structure rooted at about 11 km depth. However, the real seismogenic potential of the thrust fault that drives the anticlinal uplift is still questioned. In fact, on the one hand geodetic data shows a N-S oriented ca. 1.5 mm/a active shortening across the outermost structures of this sector of the ESA, and geologic and geomorphic data constrain a Quaternary slip rate of 0.5-1.5 mm/a. On the other hand earthquake catalogues indicates a minimum of seismic moment release in the Montello area with respect to the otherwise seismogenic Veneto-Friuli belt. To test the possible seismogenic behavior of the Montello Thrust , we modeled interseismic geodetic data and geological markers through a finite element analysis. We developed a NW-SE trending, 60 km long and 40 km deep 2D grid crossing the Montello thrust at its leading edge. The displacement was computed assuming elastoplastic rheology and plane strain. We tested different plausible fault geometries, starting from existing interpreted seismic lines, and choose the best-fitting one by comparing the model prediction with terrestrial leveling data, horizontal GPS velocities (permanent stations), and attitude of the geological strata. In our model, two different rheological layers are separated by a N-dipping low-angle plane (3°) at 8 km depth, which represents the regional monocline. The upper layer is elastoplastic and the lower layer is elastic. We tested the existence of two tectonic discontinuities above the regional monocline: the Montello thrust and a N-verging back-thrust detaching on the master fault. For this two thrusts, we assumed a tentative dip of about 45°. Below the regional monocline, we tested the existence of a possible continuation at depth of the Montello thrust, with a lower dip (25°). We filtered the data through spatial Gaussian smoothing with two widths (100 km and 50 km) and searched the best solution for these two cases. Results shows that only two models are compatible with the available data. In the first model, only the deeper portion of the Montello thrust below the regional monocline, is freely slipping. In the second model, also a portion of the thrust above the regional monocline, below 8 km depth, and a portion of the back-thrust, are freely slipping. In both cases, the regional monocline decouples the two layers (free-slip) in the southern part of the section. We plot the predicted stress and strain on the model section and discuss their patterns with respect to the possible seismogenic behavior of the modeled faults.

  13. Methods for determining atypical gate valve thrust requirements

    International Nuclear Information System (INIS)

    Evaluating the performance of rising stem, wedge type, gate valves used in nuclear power plant is not a problem when the valves can be design-basis tested and their operability margins determined diagnostically. The problem occurs when they cannot be tested because of plant system limitations or when they can be tested only at some less-than-design-basis condition. To evaluate the performance of these valves requires various analytical and/or extrapolation methods by which the design-basis stem thrust requirement can be determined. This has been typically accomplished with valve stem thrust models used to calculate the requirements or by extrapolating the results from a less-than-design-basis test. The stem thrust models used by the nuclear industry to determine the opening or closing stem thrust requirements for these gate valves have generally assumed that the highest load the valve experiences during closure (but before seating) is at flow isolation and during unwedging or before flow initiation in the opening direction. However, during full-scale valve testing conducted for the USNRC, several of the valves produced stem thrust histories that showed peak closing stem forces occurring before flow isolation in the closing direction and after flow initiation in the opening direction. All of the valves that exhibited this behavior in the closing direction also showed signs of internal damage. Initially, we dismissed the early peak in the closing stem thrust requirement as damage-induced and labeled it nonpredictable behavior. Opening responses were not a priority in our early research, so that phenomenon was set aside for later evaluation

  14. Methods for determining atypical gate valve thrust requirements

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R. Jr.; Watkins, J.C.; DeWall, K.G. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    Evaluating the performance of rising stem, wedge type, gate valves used in nuclear power plant is not a problem when the valves can be design-basis tested and their operability margins determined diagnostically. The problem occurs when they cannot be tested because of plant system limitations or when they can be tested only at some less-than-design-basis condition. To evaluate the performance of these valves requires various analytical and/or extrapolation methods by which the design-basis stem thrust requirement can be determined. This has been typically accomplished with valve stem thrust models used to calculate the requirements or by extrapolating the results from a less-than-design-basis test. The stem thrust models used by the nuclear industry to determine the opening or closing stem thrust requirements for these gate valves have generally assumed that the highest load the valve experiences during closure (but before seating) is at flow isolation and during unwedging or before flow initiation in the opening direction. However, during full-scale valve testing conducted for the USNRC, several of the valves produced stem thrust histories that showed peak closing stem forces occurring before flow isolation in the closing direction and after flow initiation in the opening direction. All of the valves that exhibited this behavior in the closing direction also showed signs of internal damage. Initially, we dismissed the early peak in the closing stem thrust requirement as damage-induced and labeled it nonpredictable behavior. Opening responses were not a priority in our early research, so that phenomenon was set aside for later evaluation.

  15. Automatic control of a primary electric thrust subsystem

    Science.gov (United States)

    Macie, T. W.; Macmedan, M. L.

    1975-01-01

    A concept for automatic control of the thrust subsystem has been developed by JPL and participating NASA Centers. This paper reports on progress in implementing the concept at JPL. Control of the Thrust Subsystem (TSS) is performed by the spacecraft computer command subsystem, and telemetry data is extracted by the spacecraft flight data subsystem. The Data and Control Interface Unit, an element of the TSS, provides the interface with the individual elements of the TSS. The control philosophy and implementation guidelines are presented. Control requirements are listed, and the control mechanism, including the serial digital data intercommunication system, is outlined. The paper summarizes progress to Fall 1974.

  16. Improvement of Rocket Performance by Increasing the Thrust

    International Nuclear Information System (INIS)

    This paper describes one of the methods to increase the performance of the rocket. Based of the result of the static test, the measure of the combustion chamber pressure and the thrust of the rocket will increase, if the throat diameter was decreased. The result of the static test showed that the throat diameter of the nozzle was smaller, where as the combustion chamber pressure, the thrust and the specific Impulse were higher. Its mean that the performance of the rocket was increased. (author)

  17. Design of Low-Thrust Gravity Assist Trajectories to Europa

    OpenAIRE

    Vasile, Massimiliano; Campagnola, Stefano

    2011-01-01

    This paper presents the design of a mission to Europa using solar electric propulsion as main source of thrust. A direct transcription method based on Finite Elements in Time was used for the design and optimisation of the entire low-thrust gravity assist transfer from the Earth to Europa. Prior to that, a global search algorithm was used to generate a set of suitable first guess solutions for the transfer to Jupiter, and for the capture in the Jovian system. In particular, a fast determinist...

  18. Radial loads and axial thrusts on centrifugal pumps

    International Nuclear Information System (INIS)

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump

  19. Problems of millipound thrust measurement. The "Hansen Suspension"

    Energy Technology Data Exchange (ETDEWEB)

    Carta, David G.

    2014-03-31

    Considered in detail are problems which led to the need and use of the 'Hansen Suspension'. Also discussed are problems which are likely to be encountered in any low level thrust measuring system. The methods of calibration and the accuracies involved are given careful attention. With all parameters optimized and calibration techniques perfected, the system was found capable of a resolution of 10 {mu} lbs. A comparison of thrust measurements made by the 'Hansen Suspension' with measurements of a less sophisticated device leads to some surprising results.

  20. Experimental Validation of a Marine Propeller Thrust Estimation Scheme

    Directory of Open Access Journals (Sweden)

    Luca Pivano

    2007-10-01

    Full Text Available A thrust estimation scheme for a marine propeller has been experimentally tested in waves and with a device that simulates the influence of a vessel hull. The scheme is formed by a nonlinear propeller torque observer and a mapping to generate the thrust from the observed torque. The mapping includes the estimation of the advance number. This is utilized to improve the performance when the propeller is lightly loaded. The advance speed is assumed to be unknown, and only measurements of shaft speed and motor torque have been used. Accurate results have been obtained in experimental tests.

  1. Dynamic Model for Thrust Generation of Marine Propellers

    DEFF Research Database (Denmark)

    Blanke, Mogens; Lindegaard, Karl-Petter; Fossen, Thor I.

    Mathematical models of propeller thrust and torque are traditionally based on steady state thrust and torque characteristics obtained in model basin or cavitation tunnel tests. Experimental results showed that these quasi steady state models do not accurately describe the transient phenomena in a...... thruster. A recently published dynamic model was based on the experimental observations. Describing zero advance speed conditions accurately, this model, however, does not work for a vessel at non- zero relative water speed. This paper derives a large signal dynamic model of propeller that includes the...

  2. Fabrication of liquid-rocket thrust chambers by electroforming

    Science.gov (United States)

    Duscha, R. A.; Kazaroff, J. M.

    1974-01-01

    Electroforming has proven to be an excellent fabrication method for building liquid rocket regeneratively cooled thrust chambers. NASA sponsored technology programs have investigated both common and advanced methods. Using common procedures, several cooled spool pieces and thrust chambers have been made and successfully tested. The designs were made possible through the versatility of the electroforming procedure, which is not limited to simple geometric shapes. An advanced method of electroforming was used to produce a wire-wrapped, composite, pressure-loaded electroformed structure, which greatly increased the strength of the structure while still retaining the advantages of electroforming.

  3. Break Down Analysis of Bearing

    Directory of Open Access Journals (Sweden)

    Zareena Begum,

    2015-07-01

    Full Text Available The present research work deals is to model new fore wheel bearing of agricultural machine used for ploughing which fail in regular usage. This bearing takes three formulations. They are bearing through Material Change Break Down Analysis The design is done in CATIA and Break Even Analysis is done in ANSYS. And find which one among the Bearing through Design or Bearing through Material Change is solution for the problem aimed for. Break Down Analysis is done in each of the cases to find the maximum forces to be applied on the bearings to get the maximum load that can be bared by the bearings. The objective of our project is to find the solution for the regular failure of bearings of machine through different material. Here we are using three materials i.e. steel, tungsten, zinc

  4. Kink bands in thrust regime: Examples from Srinagar—Garhwal area, Uttarakhand, India

    Indian Academy of Sciences (India)

    Shashank Shekhar; A M Bhola; P S Saklani

    2011-10-01

    This paper deciphers the late stress systems involved in the development of kink bands in the perspective of thrust regime. In kink bands, the correlation coefficient for - plots is positive near thrusts and negative away from thrusts. The plots show nearly linear relationship near thrusts and non-linear relationship away from thrusts. The rotation was prominent mechanism of kink band formation near thrusts and rotation coupled with shearing, along the kink planes away from thrusts. Along thrusts 1 is horizontal E–W trend and it rotates to horizontal N–S trend away from the thrust. The proposed model establishes that (1) the shearing along kink planes led to angular relationship, > and (2) the kink planes of conjugate kinks could be used for paleostress analysis even in those cases where shearing along these planes has occurred.

  5. Cataclasites-ultracataclasites in a major thrust zone: Gaissa Thrust, N. Norwegian Caledonides.

    Science.gov (United States)

    Rice, A. Hugh N.; Grasemann, Bernhard

    2015-04-01

    Narrow fault zones of intense deformation imply strain localisation. This is superbly shown by the ~horizontal Caledonian basal décollement in N. Norway, where ~127 km of top E-to-ESE thrust displacement is concentrated in a ~3 cm thick principle slip zone within lower strain hanging wall and footwall cataclasites less than a few centimetres thick. A scan of a transport-direction parallel 8.5x11.5cm thin-section of the fault is enlarged to 0.7x1.0m in the poster. The Caledonian external imbricate zone here places anchizone pre-Marinoan quartzite/shales onto diagenetic-zone post-Gaskiers red/green shales, silts and fine sandstones. Carbonates are absent. The displacement was estimated from balanced cross-sections and branch-line restorations. In the hangingwall cataclastic zone, a coarse qtz-rich/clay-rich cataclastic compositional layering dips at wall. Variations in cataclasites define an irregular, poor compositional layering. No sedimentary features are preserved. Foreland dipping fractures (<20° to detachment) cut the cataclasites with offsets of <1cm. High angle (conjugate) thin fractures, some with very minor offsets, cut across the whole fault. Thicker, irregular detachment parallel fractures also occur in the principle slip zone. These very late fractures, as well as minor voids in the principle slip zone, are filled with carbonate. Further work is in progress on the age, chemistry and textural evolution of the fault.

  6. Contrasting slip zone mineralogy of major thrusts in ancient subduction complexes: examples from the Pasagshak Point Thrust in Alaska and the Nobeoka Thrust in Japan

    Science.gov (United States)

    Yamaguchi, A.; Fukuchi, R.; Fujimoto, K.; Ishikawa, T.; Kato, Y.; Nozaki, T.; Meneghini, F.; Rowe, C. D.; Moore, C. A.; Tsutsumi, A.; Kimura, G.

    2014-12-01

    Two well-studied Cretaceous-Tertiary accretionary complexes, the Kodiak complex in Alaska and the Shimanto complex in Japan, were formed by subduction of a relatively young oceanic plate, and have similar lithologies characterized by thick terrigenous sediments with rare pelagic sediments. However, the occurrences of fault rock types and fluid-rock interaction patterns along major thrust zone differ significantly, instead of similar background temperatures (~250°C). In this presentation we compare two representative fault zones showing contrasting mineralogy and water-rock interaction patterns. Ultrafine-grained black fault rocks (BFRs) comprise the principal slip zone of the Pasagshak Point Thrust of the Kodiak accretionary complex. The geochemistry of the BFRs is characterized by Li and Sr enrichment, Rb and Cs depletion, and a low 87Sr/86Sr ratio. These geochemical signatures are explained by fluid-rock interactions at >350°C, which result in preferential removal of Rb and Cs and formation of plagioclase under the presence of fluids with high Li and Sr concentrations and low 87Sr/86Sr ratios. In contrast to the Pasagshak Point Thrust, the fault core of the Nobeoka Thrust in the Shimanto accretionary complex is mineralogically characterized by breakdown of plagioclase and enrichment in clay and carbonate minerals. Values of illite crystallinity expressed as a full width at half maximum of the illite (001) peak in clay-fraction XRD increase within fault zones, showing the absence of significant temperature rise. Temperatures of fault plane during fluid-rock interaction may affect the difference in mineralogical characters of the two fault zones. Further mineralogical and geochemical investigations are necessary to explore the nature of fluids and its role in faulting along seismogenic subduction plate boundaries.

  7. Passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  8. Government Risk-Bearing

    CERN Document Server

    1993-01-01

    The u.s. government bulks large in the nation's financial markets. The huge volume of government-issued and -sponsored debt affects the pricing and volume ofprivate debt and, consequently, resource allocation between competing alternatives. What is often not fully appreciated is the substantial influence the federal government wields overresource allocation through its provisionofcreditandrisk-bearing services to the private economy. Because peopleand firms generally seekto avoid risk, atsomeprice they are willing to pay another party to assume the risk they would otherwise face. Insurance companies are a class of private-sector firms one commonly thinks of as providing these services. As the federal government has expanded its presence in the U.S. economy during this century, it has increasingly developed programs aimed at bearing risks that the private sector either would not take on at any price, or would take on but atapricethoughtto besogreatthatmostpotentialbeneficiarieswouldnotpurchase the coverage. To...

  9. Magnetic bearing and motor

    Science.gov (United States)

    Studer, Philip A. (Inventor)

    1983-01-01

    A magnetic bearing assembly (10) has an intermediate rotatable section (33) having an outer cylindrical member (30) coaxially suspended by a torsion wire (72) around an axially polarized cylindrical magnet (32). Axial alignment between the pole faces (40-43) of the intermediate section (33) and end surfaces (50-53) of opposed end bells (20, 22) provides a path of least reluctance across intervening air gaps (60-63) for the magnetic flux emanating from magnet (32). Radial dislocation increases the reluctance and creates a radial restoring force. Substitution of radially polarized magnets 107 fixed to a magnetically permeable cylinder (32') and insertion of pairs of armature coil windings (109-112) between the cylinder pair (33') provides an integral magnetic bearing and torsion motor (100) able to provide arcuately limited rotational drive.

  10. Rotating plug bearing and seal

    International Nuclear Information System (INIS)

    Disclosed is a bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing. 19 claims, 3 figures

  11. Frictionless Bearing Uses Permanent Magnets

    Science.gov (United States)

    1965-01-01

    The purpose of this innovation was to develop a frictionless bearing for high speed, light load applications. The device involves the incorporation of permanent magnets in the bearing design. The repulsion of like magnetic poles provides concentric support of the inner member so that no metallic contact occurs between the bearing surfaces.

  12. Stacked magnet superconducting bearing

    International Nuclear Information System (INIS)

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines

  13. Separability of drag and thrust in undulatory animals and machines

    Science.gov (United States)

    Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; Maciver, Malcolm A.; Patankar, Neelesh A.

    2014-12-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle.

  14. Initial three-dimensional low-thrust trajectory design

    Science.gov (United States)

    Taheri, Ehsan; Abdelkhalik, Ossama

    2016-02-01

    This paper presents a method for rapid generation of three-dimensional low-thrust trajectories that utilizes Fourier series for shaping the position vector. The generated trajectories are feasible with respect to the given thrust acceleration constraints. An objective function is defined representing the overall mission cost, i.e. minimum ?V . Four missions from Earth to Mars, the near Earth asteroid 1989ML, comet Tempel 1 and asteroid Dionysus are considered for assessing the performance of the algorithm. The selected missions present a range of various difficulties with different levels of thrust acceleration constraints. The Fourier series technique is flexible in generating various shapes rather than using one global shape. The proposed method is capable of rapid generation of sub-optimal feasible trajectories that are totally different from and comparable to the solutions of the state-of-the-art three-dimensional shape-based methods. This feature is quite favorable at the preliminary stages of low-thrust mission designs where various trajectory alternatives are required. The results also show that the obtained trajectories can be used as initial guesses for high fidelity optimal control tools.

  15. Biomimetic thrust production with a modified Schmidt wave propeller

    Science.gov (United States)

    von Ellenrieder, Karl; Buzard, Joe; Bull, Hannuman

    2004-11-01

    An important feature of fish-like swimming is the interaction of large-scale body-shed vortices with an oscillating tail fin. The vortices are sensed along the sides of the body before reaching the tail fin and if the motion of the tail fin is actively coordinated with the arrival of the oncoming vortices, thrust can be produced very efficiently. A Schmidt wave-propeller works in a similar manner. However, the apparatus consists of an oscillating airfoil placed upstream of a second, stationary airfoil. Vortices shed from the oscillating airfoil interact with the stationary airfoil to produce extra thrust. Here, the two dimensional flow around a modified form of the Schmidt propeller, where the upstream airfoil oscillates in a pure heaving motion, is studied experimentally. Particle image velocimetry, dye flow visualization and force transducer measurements are used to examine the thrust and corresponding flow structure for Strouhal numbers (based on forcing frequency, freestream velocity and heaving amplitude) between 0.1 and 0.7. Vorticity and streamline patterns are extracted from phase-locked particle image velocimetry measurements. The experiments are performed underwater at chord-based Reynolds numbers between 3450 and 14200. It is found that the onset of thrust starts to occur at a Strouhal number of about 0.25. The flow structure is shown to be strongly dependent on the oscillation frequency.

  16. Seismic Activity along the Main Boundary Thrust (MBT), Pakistan

    International Nuclear Information System (INIS)

    Main Boundary Thrust (MBT) is the main frontal thrust of the Himalayan range, which runs about 1500 km from Assam in the east to Kashmir in the west. The MBT fault zone represents very high earthquake potential in this region, as it is the source of many earthquakes, which are amongst the greatest ever-recorded events. These include 1905 Kangra earthquake of M 8.6 1934 Bihar-Nepal earthquake of M 8.4 and the great Assam earthquakes of 1897 and 1950. The rupture, which caused these earthquakes, is occurred in the detachment in the vicinity of the surface trace of MBT. Keeping the above fact in view. A seismicity map of the area within the 100 km of the MBT have been prepared using the seismological data from various sources for the period of 1904-2004. on the basis of the spatial distribution of the epicenters, the MBT is considered to be active. Focal mechanism studies (FMS) of three events for the period of 1989-1993 within the MBT forming the western portion of Hazara Kashmir Syntaxis (near Islamabad) have been carried out. Two of them are left lateral strike slip, whereas one is thrust with minor left lateral strike slip component. Dominance of strike slip over thrusting/reverse has been observed with the clear indication of the left lateral splays activation of MBT. However more data is required to confirm this interpretation. (author)

  17. Seismic activity along the main boundary thrust (MBT), Pakistan

    International Nuclear Information System (INIS)

    Main Boundary Thrust (MBT) is the main frontal thrust of the Himalayan Range which runs about 1500 km from Assam in the east to Kashmir in the west The MBT fault Zone represents very high earthquake potential in this region, as it is the source of many earthquakes, which are amongst the greatest ever-recorded events. These include 1905 Kangra earthquake of M 8.6, 1934 Bihar-Nepal earthquake of M 8.4 and the great Assam earthquakes of 1897 and 1950. The rupture. Which caused these earthquakes. is occurred in the detachment in the vicinity of the surface trace of MBT. Keeping the above fact ill view a seismicity map of the area within the 100 km of the MBT have been prepared using the seismological data from various sources for the period of 1904-2004. On the basis of the spatial distribution of the cpicenters, the MBT is considered to be active. Focal mechanism studies (FMS) of three events for the period of 1989-1993 within the MBT forming the western portion of Hazara Kashmir Syntaxis (near Islamabad) have been carried out. Two of them are left lateral strike slip, whereas one is thrust with minor left lateral strike slip component, Dominance of strike slip over thrusting/reverse has been observed with the clear .indication of the left lateral splays activation of MBT. However more data is required to confirm this interpretation. (author)

  18. Operant Control of Pathological Tongue Thrust in Spastic Cerebral Palsy.

    Science.gov (United States)

    Thompson, George A., Jr.

    1979-01-01

    The behavior modification procedure, carried out at mealtime with a ten-year-old retarded boy who had spastic cerebral palsy, consisted of differential reinforcement and punishment, and resulted in substantial decreases in tongue thrust (reverse swallowing) and food expulsion, and a large increase in observed chewing. (Author/DLS)

  19. Engineering Research, Development and Technology, FY95: Thrust area report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  20. Measuring thrust and predicting trajectory in model rocketry

    OpenAIRE

    COURTNEY, MICHAEL; Courtney, Amy

    2009-01-01

    Methods are presented for measuring thrust using common force sensors and data acquisition to construct a dynamic force plate. A spreadsheet can be used to compute trajectory by integrating the equations of motion numerically. These techniques can be used in college physics courses, and have also been used with high school students concurrently enrolled in algebra 2.

  1. Performance of high speed ball bearings with lead plated retainers in liquid hydrogen for potential use in a radiation environment

    Science.gov (United States)

    Wisander, D. W.; Brewe, D. E.; Scibbe, H. W.

    1972-01-01

    Ball bearings (40-mm bore) with lead coated, aluminum-bronze retainers were operated successfully in liquid hydrogen at 30,000 rpm under a thrust load of 1780 newtons (400 lb) for running times up to 15 hours. The lead transfer films on the bearing surfaces prevented galling of bearing components. The lead coated retainers used in this investigation show promise for use in the high radiation environments, where polytetrafluoroethylene (PTFE) based materials are not suitable. Failure was a result of the loss of lead lubricant on the retainer-inner-land and ball-pocket surfaces. The longest bearing life (15 hr) was achieved with a lead coating thickness of 50 micrometers (0.002 in.) on the retainer. Other bearings had lives of 2 to 6 hours.

  2. Anti-backlash gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2009-01-01

    A gear bearing having a first gear and a second gear, each having a plurality of teeth. Each gear operates on two non-parallel surfaces of the opposing gear teeth to perform both gear and bearing functions simultaneously. The gears are moving at substantially the same speed at their contact points. The gears may be roller gear bearings or phase-shifted gear bearings, and may be arranged in a planet/sun system or used as a transmission. One preferred embodiment discloses and describes an anti-backlash feature to counter ''dead zones'' in the gear bearing movement.

  3. Component test results from the bearing life improvement program for the Space Shuttle Main Engine oxidizer turbopumps

    Science.gov (United States)

    Keba, John E.

    Interim results from a component test program to improve ball bearing life in the Space Shuttle Main Engine oxygen turbopumps are presented. Two specific bearing applications, using liquid oxygen as the bearing coolant, are addressed. The first, the thrust bearing of the low pressure pump, operates at relatively slow speed with predominantly axial load and little temperature rise in the bulk coolant. Testing has demonstrated a very significant reduction in bearing wear by increasing the bearing internal clearance. Heat generation data was obtained that indicates heavy, intermittent cage-to-ball contact occurs, providing a possible explanation for the observed wear. The second application is the turbine end bearings of the high pressure pump. These bearings operate at high speed and load with the possibility of significant coolant vaporization. Tests on production bearings and bearings having modified internal clearance and curvature yielded scattered but generally poor lives. A dramatic improvement was achieved by coating the standard cage with a thin film of fluorinated ethylene propylene and 15 percent molybdenum disulfide. Very promising results have also been obtained by replacing the standard balls with ones made of silicon nitride, especially in combination with the coated cage.

  4. High-Temperature Magnetic Bearings for Gas Turbine Engines

    Science.gov (United States)

    1996-01-01

    Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and coordination with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of the bearing times rpm) limit on engine speed and allow active vibration cancellation systems to be used--resulting in a more efficient, "more electric" engine. Finally, the Integrated High-Performance Turbine Engine Technology (IHPTET) Program, a joint Department of Defense/industry program, identified a need for a hightemperature (as high as 1200 F) magnetic bearing that could be demonstrated in a phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator are a series of electrical wire coils that form a series of electric magnets around the circumference. The magnets exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it in the center of the cavity. The engine rotor, bearings, and case form a flexible structure that contains a large number of modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system. Cobalt steel has a curie point greater than 1700 F, and copper wire has a melting point beyond that. Therefore, practical limitations associated with the maximum magnetic field strength in the cobalt steel and the stress in the rotating components limit the temperature to about 1200 F. The objective of this effort is to determine the limits in temperature and speed of a magnetic bearing operating in an engine. Our approach is to use our in-house experience in magnets, mechanical components, high-temperature materials, and surface lubrication to build and test a magnetic bearing in both a rig and an engine. Testing will be done at Lewis or through cooperative programs in industrial facilities.

  5. A 10 nN resolution thrust-stand for micro-propulsion devices.

    Science.gov (United States)

    Chakraborty, Subha; Courtney, Daniel G; Shea, Herbert

    2015-11-01

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 ?N thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 ?N thrust in air was first used to validate the thrust-stand. Better than 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 ?N of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 ?N resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors. PMID:26628174

  6. A 10 nN resolution thrust-stand for micro-propulsion devices

    Science.gov (United States)

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert

    2015-11-01

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 ?N thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 ?N thrust in air was first used to validate the thrust-stand. Better than 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 ?N of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 ?N resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.

  7. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  8. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    Science.gov (United States)

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. PMID:25775930

  9. 14 CFR 25.904 - Automatic takeoff thrust control system (ATTCS).

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 2010-01-01 false Automatic takeoff thrust control system (ATTCS). 25.904 Section 25...AIRPLANES Powerplant General § 25.904 Automatic takeoff thrust control system (ATTCS). Each applicant...

  10. Actively controlled superconducting bearings

    Science.gov (United States)

    Eyssa, Yehia M.; Huang, X.

    1991-01-01

    Actively controlled conventional radial beating using copper winding and soft magnetic material can provide only up to 200 N/sq cm of pressure. Large cryogenic pumps for space applications operating at 30,000 rpm and high rpm machines may require larger magnetic pressure. We show that using superconducting winding in the rotor and the stator of a magnetic bearing system increases the pressure by an order of magnitude. The paper addresses winding configuration, stability, ac losses, and power requirement for the superconducting winding.

  11. Interseismic Strain Accumulation Across Metropolitan Los Angeles: Puente Hills Thrust

    Science.gov (United States)

    Argus, D.; Liu, Z.; Heflin, M. B.; Moore, A. W.; Owen, S. E.; Lundgren, P.; Drake, V. G.; Rodriguez, I. I.

    2012-12-01

    Twelve years of observation of the Southern California Integrated GPS Network (SCIGN) are tightly constraining the distribution of shortening across metropolitan Los Angeles, providing information on strain accumulation across blind thrust faults. Synthetic Aperture Radar Interferometry (InSAR) and water well records are allowing the effects of water and oil management to be distinguished. The Mojave segment of the San Andreas fault is at a 25° angle to Pacific-North America plate motion. GPS shows that NNE-SSW shortening due to this big restraining bend is fastest not immediately south of the San Andreas fault across the San Gabriel mountains, but rather 50 km south of the fault in northern metropolitan Los Angeles. The GPS results we quote next are for a NNE profile through downtown Los Angeles. Just 2 mm/yr of shortening is being taken up across the San Gabriel mountains, 40 km wide (0.05 micro strain/yr); 4 mm/yr of shortening is being taken up between the Sierra Madre fault, at the southern front of the San Gabriel mountains, and South Central Los Angeles, also 40 km wide (0.10 micro strain/yr). We find shortening to be more evenly distributed across metropolitan Los Angeles than we found before [Argus et al. 2005], though within the 95% confidence limits. An elastic models of interseismic strain accumulation is fit to the GPS observations using the Back Slip model of Savage [1983]. Rheology differences between crystalline basement and sedimentary basin rocks are incorporated using the EDGRN/EDCMP algorithm of Wang et al. [2003]. We attempt to place the Back Slip model into the context of the Elastic Subducting Plate Model of Kanda and Simons [2010]. We find, along the NNE profile through downtown, that: (1) The deep Sierra Madre Thrust cannot be slipping faster than 2 mm/yr, and (2) The Puente Hills Thrust and nearby thrust faults (such as the upper Elysian Park Thrust) are slipping at 9 ±2 mm/yr beneath a locking depth of 12 ±5 km (95% confidence limits). Incorporating sedimentary basin rock either reduces the slip rate by 10 per cent or increases the locking rate by 20 per cent. The 9 mm/yr rate for the Puente Hills Thrust and nearby faults exceeds the cumulative 3-5 mm/yr rate estimated using paleoseismology along the Puente Hills Thrust (1.2-1.6 mm/yr, Dolan et al. 2003), upper Elysian Park Thrust (0.6-2.2 mm/yr, Oskin et al. 2000), and western Compton Thrust (1.2 mm/yr, Leon et al. 2009], though all the paleoseismic estimates are minimums. We infer that M 7 earthquakes in northern metropolitan Los Angeles may occur more frequently that previously thought.

  12. High-Temperature Magnetic Bearings Being Developed for Gas Turbine Engines

    Science.gov (United States)

    Kascak, Albert F.

    1998-01-01

    Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and cooperation with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of bearing times the rpm) limit on engine speed and allow active vibration cancellation systems to be used, resulting in a more efficient, "more electric" engine. Finally, the Integrated High Performance Turbine Engine Technology (IHPTET) program, a joint Department of Defense/industry program, identified a need for a high-temperature (1200 F) magnetic bearing that could be demonstrated in their Phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator's circumference are a series of electrical wire coils which form a series of electric magnets that exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it centered in the cavity. The engine rotor, bearings, and casing form a flexible structure with many modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system.

  13. Experimental progress towards the MicroThrust MEMS electrospray electric propulsion system

    OpenAIRE

    Ryan, Charles; Daykin-Iliopoulos, A.; Stark, John; Salaverri, Anna; Vargas, Ernesto; Rangsten, Pelle; Dandavino, Simon; Ataman, Caglar; Chakraborty, Subha; Courtney, Daniel; Shea, Herbert

    2013-01-01

    This paper describes the experimental progress towards an operational microfabricated electrospray thruster, as part of the EU FP7 “MicroThrust” Project. Microfabrication of an electrospray multiplexed thruster allows the seamless manufacturing of arrays of emitters, combining high specific impulse with sizeable thrust. The resulting thruster can thus be extremely efficient with a thrust approaching ?100µN, depending on array size. We are working within the European FP7 project MicroThrust co...

  14. Bearing Rigidity and Almost Global Bearing-Only Formation Stabilization

    OpenAIRE

    Zhao, Shiyu; Zelazo, Daniel

    2014-01-01

    A fundamental problem that the bearing rigidity theory studies is to determine when a framework can be uniquely determined up to a translation and a scaling factor by its inter-neighbor bearings. While many previous works focused on the bearing rigidity of two-dimensional frameworks, a first contribution of this paper is to extend these results to arbitrary dimensions. It is shown that a framework in an arbitrary dimension can be uniquely determined up to a translation and a...

  15. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators: New Anti-Thrust Hypothesis, Frequency Sweeps Methodology, Humidity and Enclosure Effects

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust, or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a grounded large-diameter metal sleeve. Strong dependence on humidity is also shown; the thrust significantly increased with decreasing humidity, e.g., 44 percent increase as relative humidity changed from 18 percent and dew point 33 degF to 50 percent and dew point of 57 degF.

  16. Superconducting bearings in flywheels

    International Nuclear Information System (INIS)

    Investigations are being carried out into the use of superconducting magnetic bearings to levitate energy storage flywheels. In a planned program of work, Cambridge University are aiming to produce a practical bearing system for Pirouette(TM). The Pirouette(TM) system is designed to provide 5 kWh of recoverable energy which is currently recoverable at a rate of 5 kW (future revisions will provide up to 50 kW). IES (a British Nuclear Fuels subsidiary) the owners of the Pirouette(TM) machine have supplied Cambridge with a flywheel. This flywheel weighs >40 kg and is being levitated using an Evershed-type arrangement in which the superconductor is being used to stabilize the interaction between two magnets. To date we have demonstrated stable levitation in static and low speed tests in a rig designed for low speeds of rotation in air. A second rig which is currently under construction at BNFL will run in vacuum at speeds of up to 50 (orig.)

  17. The Butte Valley and Layton Well Thrusts of eastern California: Distribution and regional significance

    Science.gov (United States)

    Wrucke, Chester T.; Stevens, Calvin H.; Wooden, Joseph L.

    1995-10-01

    The Butte Valley and Layton Well Thrusts are major structural features in two adjacent mountain ranges west of southern Death Valley. The Butte Valley Thrust in the southern Panamint Range underlies most of the range and emplaces Proterozoic rocks over strata as young as Jurassic(?) in age. The Layton Well Thrust to the southwest in the Slate Range has been interpreted to have Proterozoic rocks juxtaposed on rocks as young as Jurassic, suggesting that the Butte Valley Thrust and the Layton Well Thrust might be correlative. New information indicates that the allochthonous rocks of the Layton Well Thrust are Mesozoic in age and are not likely part of the same allochthon as that above the Butte Valley Thrust. In addition, the Butte Valley Thrust cuts sharply downward to the north and west across lower plate Paleozoic strata, suggesting that the fault roots beneath the Layton Well Thrust. The Layton Well Thrust probably belongs to the East Sierran thrust system and thus would be in the upper plate of the Butte Valley Thrust.

  18. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reverse thrust and propeller pitch settings... Powerplant Controls and Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the flight regime...

  19. The interaction between deepwater channel systems and growing thrusts and folds, toe-thrust region of the deepwater Niger Delta

    Science.gov (United States)

    Jolly, Byami; Whittaker, Alex; Lonergan, Lidia

    2015-04-01

    Gravity-driven seaward-verging thrusts, landward-verging back-thrusts and associated folds often characterize the slope and deepwater settings of passive margins. These structures, found in the 'toe-thrust' region of the system, exert a significant control on sediment gravity flows because they create and determine the location and configuration of sediment depocentres and transport systems. Consequently, a quantitative understanding of the interaction between sediment gravity flows and seabed topography is required to understand these systems effectively. Here we make quantitative measurements of the geomorphic response of submarine channels to growing tectonic structures with the aim of providing new constraints on the long-term erosional dynamics of submarine channel systems. This study exploits 3D seismic data in the outer toe-thrust region of the deepwater Niger Delta to analyze the interaction between Plio-Pleistocene channel systems and actively growing folds and thrusts. We mapped folds and thrusts from the seismic data and we used this data to reconstruct the history of fold growth. We then used the sea-bed seismic horizon to build a 50 m resolution Digital Elevation Model (DEM) of the sea floor in Arc-GIS. We extracted channel long- profiles across growing structures from the DEM, and made measurements of channel geometries at regular intervals along the channel length. This information was used to infer morphodyanamic processes that sculpted the channel systems through time, and to estimate the bed shear stresses and fluid velocities of typical flow events. The bathymetric long profiles of these channels are relatively linear with concavity that range from -0.08 to -0.34, and an average gradient of ~1o. Actively growing thrusts are typically associated with a local steepening in channel gradient by a factor of up to 3, and this effect extends 0.5 - 2 km upstream of the thrust. Within these knickzones, channel incision increases by approximately by a factor of > 2, with a corresponding width decrease of approximately 25%. Channel incision across growing structures is achieved through enhanced bed-shear stress driven incision (up to 200 Pa) and flow velocity (up to 5 ms-1), assuming typical bulk sediment concentrations of 0.6%. Comparison of structural uplift since 1.7 Ma, and channel incision over an equivalent period, shows that some of these channels are able to keep pace with the time-integrated uplift since 1.7 Ma, and may have reached a topographic (bathymetric) steady-state with respect to on-going thrusting. However, some of the sea-bed channels are yet to reach topographic steady-state because of factors which include recent change in gradient caused by structural uplift, and the impact of active channel diversion by growing structures. Generally, bed-shear stresses of ~150 Pa are sufficient to keep pace with structural strain rates of 10-15 s-1. More widely, our data demonstrates that submarine channel systems dynamically adjust their geometry and basal gradient in order to keep pace with growth of tectonic structures and our results suggest that these factors must be incorporated into models to fully predict the downslope pathways of sea-bed channels in structurally complex areas.

  20. Testing of Bearing Materials for Large Two-stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Klit, Peder; Persson, Sebastian

    2013-01-01

    In large two-stroke marine diesel engines bearings are designed with the intention that these need not be replaced during the life of the engine. The design has shown very good service experiences. The design parameters of the main bearings are, among others, based on the average maximum specific load which the bearing should operate under. In general, the frictional loss is less than 1% of the nominal power of the engine but is still a target for optimization. Fatigue mechanisms of bearing lining material are not fully understood and the design limits with regards to minimum oil film thickness, max oil film pressure and oil film pressure gradient is not established. Large two-stroke journal bearings are not suitable for fatigue test due to the size, the low rotational speed and the complexity of such test-rig. The Disc Fatigue Test Rig (DFTR) was designed with the purpose to test white metal coatings under realistic bearing conditions, in a confined time-frame. The test-rig simulates a scale model of a thrust bearing, in contrary to standard design the bearing lining material is applied to the rotating collar. On each side of the disc three stationary tilting-pads applies a load to the test disc, with a rotational speed of 2000 rpm. Parameters, such as bearing load, rotational speed, oil temperature, oil contamination is controlled/monitored in order to achieve repeatability and a systematic approach to the experiments. Test performed on the test-rig shows good correlation on the fatigue cracks with those experienced on large two-stroke journal bearings.

  1. Grease lubrication in rolling bearings

    CERN Document Server

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  2. Erosion influences the seismicity of active thrust faults

    Science.gov (United States)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.

    2014-11-01

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20?mm?yr-1, as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10?bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

  3. Design of Low-Thrust Gravity Assist Trajectories to Europa

    CERN Document Server

    Vasile, Massimiliano

    2011-01-01

    This paper presents the design of a mission to Europa using solar electric propulsion as main source of thrust. A direct transcription method based on Finite Elements in Time was used for the design and optimisation of the entire low-thrust gravity assist transfer from the Earth to Europa. Prior to that, a global search algorithm was used to generate a set of suitable first guess solutions for the transfer to Jupiter, and for the capture in the Jovian system. In particular, a fast deterministic search algorithm was developed to find the most promising set of swing-bys to reach Jupiter A second fast search algorithm was developed to find the best sequence of swing-bys of the Jovian moons. After introducing the global search algorithms and the direct transcription through Finite Elements in Time, the paper presents a number of first guess Solutions and a fully optimised transfer from the Earth to Europa.

  4. High Thrust-to-Power Annular Engine Technology

    Science.gov (United States)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  5. Propellant management for low thrust chemical propulsion systems

    Science.gov (United States)

    Hamlyn, K. M.; Dergance, R. H.; Aydelott, J. C.

    1981-01-01

    Low-thrust chemical propulsion systems (LTPS) will be required for orbital transfer of large space systems (LSS). The work reported in this paper was conducted to determine the propellant requirements, preferred propellant management technique, and propulsion system sizes for the LTPS. Propellants were liquid oxygen (LO2) combined with liquid hydrogen (LH2), liquid methane or kerosene. Thrust levels of 100, 500, and 1000 lbf were combined with 1, 4, and 8 perigee burns for transfer from low earth orbit to geosynchronous earth orbit. This matrix of systems was evaluated with a multilayer insulation (MLI) or a spray-on-foam insulation. Vehicle sizing results indicate that a toroidal tank configuration is needed for the LO2/LH2 system. Multiple perigee burns and MLI allow far superior LSS payload capability. Propellant settling, combined with a single screen device, was found to be the lightest and least complex propellant management technique.

  6. Engineering research, development and technology. Thrust area report, FY93

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  7. Investigation of electroforming techniques. [fabrication of regeneratively cooled thrust chambers

    Science.gov (United States)

    Malone, G. A.

    1975-01-01

    Copper and nickel electroforming was examined for the purpose of establishing the necessary processes and procedures for repeatable, successful fabrication of the outer structures of regeneratively cooled thrust chambers. The selection of electrolytes for copper and nickel deposition is described. The development studies performed to refine and complete the processes necessary for successful chamber shell fabrication and the testing employed to verify the applicability of the processes and procedures to small scale hardware are described. Specifications were developed to afford a guideline for the electroforming of high quality outer shells on regeneratively cooled thrust chamber liners. Test results indicated repeatable mechanical properties could be produced in copper deposits from the copper sulfate electrolyte with periodic current reversal and in nickel deposits from the sulfamate solution. Use of inert, removable channel fillers and the conductivizing of such is described. Techniques (verified by test) which produce high integrity bonds to copper and copper alloy liners are discussed.

  8. Investigation of Thrust Augmentation of a 1600-pound Thrust Centrifugal-flow-type Turbojet Engine by Injection of Refrigerants at Compressor Inlets

    Science.gov (United States)

    Jones, William L.; Dowman, Harry W.

    1947-01-01

    Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.

  9. Thrust Production and Wake Structure of an Actuated Lamprey Model

    Science.gov (United States)

    Buchholz, James; Smits, Alexander

    2004-11-01

    Thrust generation is studied for a flexible lamprey model which is actuated periodically to produce a streamwise traveling wave. Shape memory alloy actuators are used to achieve this deformation. The flow field is investigated using DPIV and flow visualization for a range of Strouhal numbers based on peak-to-peak amplitude of the trailing edge. The vortex kinematics in the spanwise and streamwise planes are examined, and a three-dimensional unsteady vortex model of the wake will be discussed.

  10. Low-thrust chemical propulsion system pump technology

    Science.gov (United States)

    Meadville, J. W.

    1980-01-01

    A study was conducted within the thrust range 450 to 9000 N (100 to 2000 pounds). Performance analyses were made on centrifugal, pitot, Barske, drag, Tesla, gear, piston, lobe, and vane pumps with liquid hydrogen, liquid methane, and liquid oxygen as propellants. Gaseous methane and hydrogen driven axial impulse turbines, vane expanders, piston expanders, and electric motors were studied as drivers. Data are presented on performance, sizes, weights, and estimated service lives and costs.

  11. Secondary injection fluidic thrust vectoring of an axisymmetric supersonic nozzle

    OpenAIRE

    Zmijanovic, Vladeta

    2013-01-01

    Secondary injection into the divergent section of a supersonic rocket nozzle is investigated for the fluidic thrust vectoring effects. The study was conducted in the framework of CNES PERSEUS program and was motivated by the need for an alternative vectoring solution aimed for a small space launcher. The thesis work, based on the combined experimental and numerical approaches, essentially comprises of a wide parametric study mainly concerning the position of the injection, the shape of the pr...

  12. The NPL/ESA Micro-Newton Thrust Balance

    Science.gov (United States)

    Hughes, Ben; Perez Luna, Jaime

    2012-07-01

    Europe is pursuing a number of unique science missions which require extremely high performance micro- propulsion systems to perform precision attitude control to meet their challenging scientific goals. A number of different propulsion systems are under development to try and meet these needs, including systems based on FEEP, mini-ion and cold gas thruster technologies. The critical performance requirements for the thrusters are related to thrust accuracy, dynamic response and noise, where very challenging requirements are set. Although it is anticipated that the thruster technologies can meet these challenging requirements, verification of these performances by test presents its own difficulties, since the magnitude of the thrust noise required is close to the limit of available measurement devices, and the practicalities of testing thrusters under vacuum provide their own challenges. To address the complex measurement requirements, the UK’s National Physical Laboratory (NPL) is working closely with ESTEC to develop a state-of-the-art thrust balance that will provide traceable (to international measurement standards) measurements with a target measurement uncertainty of 1 ?N (k = 2) and measurement bandwidth of 0 Hz to 10 Hz. The paper will focus on the design of the instrument, the detrimental effects of external vibration noise on the measurement, how this problem is being addressed and how we determine the measurement uncertainty in the presence of noise.

  13. Thrust Optimization in Pulsatile Vortex Generators in Liquid Medium

    Science.gov (United States)

    Krieg, Mike; Clark, Torin; Mohseni, Kamran

    2006-11-01

    Vortex rings are coherent structures effective at transporting momentum, circulation and energy across long distances through a fluid medium. An array of periodic vortex rings can be created by a series of pulsatile jets. Similar jet propulsion is the primary method of movement for Cephalopod such as squid. Inspired by the propulsion of squid and jellyfish we have designed and built vortex generators for propulsion and low speed maneuvering of small underwater vehicles. The vortex generator consists of a cavity with a moving diaphragm on one side and an exit orifice on the other side. The diaphragm or a plunger is activated by an electric motor. As a result, the amplitude, frequency, and profile of the actuated diaphragm are easily controlled. This investigation is focused on identifying the parameters that control the thrust generation in this mechanism and its optimization. A sensitive load cell is employed to directly measure thrust generation while these parameters are varied. It is found that the formation number, actuation frequency, and plunger profile are among the most relevant parameters that control thrust generation.

  14. Electric sail control mode for amplified transverse thrust

    CERN Document Server

    Toivanen, Petri; Envall, Jouni

    2014-01-01

    The electric solar wind sail produces thrust by centrifugally spanned high voltage tethers interacting with the solar wind protons. The sail attitude can be controlled and attitude maneuvers are possible by tether voltage modulation synchronous with the sail rotation. Especially, the sail can be inclined with respect to the solar wind direction to obtain transverse thrust to change the osculating orbit angular momentum. Such an inclination has to be maintained by a continual control voltage modulation. Consequently, the tether voltage available for the thrust is less than the maximum voltage provided by the power system. Using a spherical pendulum as a model for a single rotating tether, we derive analytical estimations for the control efficiency for two separate sail control modes. One is a continuous control modulation that corresponds to strictly planar tether tip motion. The other is an on-off modulation with the tether tip moving along a closed loop on a saddle surface. The novel on-off mode is introduce...

  15. Camera Layout Design for the Upper Stage Thrust Cone

    Science.gov (United States)

    Wooten, Tevin; Fowler, Bart

    2010-01-01

    Engineers in the Integrated Design and Analysis Division (EV30) use a variety of different tools to aid in the design and analysis of the Ares I vehicle. One primary tool in use is Pro-Engineer. Pro-Engineer is a computer-aided design (CAD) software that allows designers to create computer generated structural models of vehicle structures. For the Upper State thrust cone, Pro-Engineer was used to assist in the design of a layout for two camera housings. These cameras observe the separation between the first and second stage of the Ares I vehicle. For the Ares I-X, one standard speed camera was used. The Ares I design calls for two separate housings, three cameras, and a lighting system. With previous design concepts and verification strategies in mind, a new layout for the two camera design concept was developed with members of the EV32 team. With the new design, Pro-Engineer was used to draw the layout to observe how the two camera housings fit with the thrust cone assembly. Future analysis of the camera housing design will verify the stability and clearance of the camera with other hardware present on the thrust cone.

  16. Paleogene thrust tectonics in northwestern Venezuela: Petroleum system implications

    Energy Technology Data Exchange (ETDEWEB)

    Quijada, E.; Oropeza, S. [Maraven, S.A., Caracas (Venezuela)

    1996-08-01

    Oil exploration in northeastern Perija Mountains, northwestern Maracaibo basin, has been difficult, mainly due to the various tectonic events that have strongly deformed this area. This study is an attempt at better understanding the effect of a Paleogene thrusting event on the petroleum system development in the area. Subsidence analysis interpretation at both sides of the NNE directed Tigre fault (which separates the northern Perija Mountains from the rest of the Maracaibo basin) suggests the onset of a foreland basin during, at least, Paleocene-Early Eocene time. Continuous sedimentation occurred from Late Cretaceous to Early Eocene, as long as it kept pace with subsidence, in the west block of the fault, while the east block acted as an obstacle against the thrust-sheet movement, delaying its subsidence. Sedimentation for this time is associated with a thick unit of mainly paralic sediments west of that fault and thinner continental (fluvial) to shallow marine sediments, with an intra-Paleocene/Early Eocene unconformity, east of it. So, this tectonic event, associated with convergence from the north, caused a south-verging thrust sheet giving rise to differences in the evolution of the petroleum system on both sides of the Tigre fault, mainly regarding the existence of source rocks and their generation/migration of hydrocarbons, preservation time and critical moment. Finally, in order to evaluate the oil exploration opportunities in northeastern Perija mountains, it is advisable that any integrated interpretation of the petroleum system processes (generation-migration-accumulation) take into account this tectonic event.

  17. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special machining and heat treatment. Timken designed and manufactured all of the roller bearing related components such as the thrust bearing package. The production connecting rods and camshafts could not be used for the roller bearing engine, so new ones were produced according to the team’s designs using Timken steel. The remaining miscellaneous components were designed and procured by FEV. Timken prepared a display version of the crankshaft portion of the production engine without connecting rods which could be driven by a motor through a cogged-belt and electrically actuated clutch arrangement. A modified version was also made in which the engine was outfitted with roller bearings on the main bearing positions. Preliminary tests showed that the rollerized engine was running with 1/3 less friction than the standard display engine. Additional friction testing and noise characterization was cut short because of shipping damage to the rollerized engine display and because of other project priorities. The team did successfully demonstrate the ability to package roller bearings satisfactorily in numerous locations in a typical automotive engine. The scope of this project did not include durability demonstration and that subject would have to be addressed in any follow-on work. In the actual test phase, the rollerized engine did show significantly less friction in motored dynamometer tests compared to its production equivalent. The 5-10% improvement measured in this study was about half that seen in other studies. However, the fired test results did not show a reduction in friction which did not match prior experience or expectations. Subsequent teardown and inspection of the rollerized engine revealed potential sources of excessive friction in the experimental application. These features would be eliminated in a design not based on modification of production parts. The team is confident (based on experience) that friction reduction would be realized with proper modifications.

  18. YBCO texturation and applications of superconducting magnetic bearings in flywheels for energy storage

    International Nuclear Information System (INIS)

    A thrust bearing has been built consisting of 6 melt-textured YBCO pellets (diameter 30 x 18 mm) and a Nd-Fe-B ring magnet. The maximum levitation force of the bearing was 65 N at zero gap. Vertical stiffness at 1 mm gap was 440 N/cm, lateral stiffness was 130 N/cm. The bearing has been integrated into a flywheel system rotating a 2.8 kg disk at speeds up to 15 000 rpm. The maximum energy capacity was 4.8 Wh. It can be expected that further refinement of this technology should allow the operation of superconducting flywheels in the kWh range. (orig.)

  19. Direct thrust measurement of a permanent magnet helicon double layer thruster

    International Nuclear Information System (INIS)

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  20. Direct thrust measurement of a permanent magnet helicon double layer thruster

    Science.gov (United States)

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-01

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  1. The 7.5K lbf thrust engine preliminary design for Orbit Transfer Vehicle

    Science.gov (United States)

    Hayden, Warren R.; Sabiers, Ralph; Schneider, Judy

    1994-01-01

    This document summarizes the preliminary design of the Aerojet version of the Orbit Transfer Vehicle main engine. The concept of a 7500 lbf thrust LO2/GH2 engine using the dual expander cycle for optimum efficiency is validated through power balance and thermal calculations. The engine is capable of 10:1 throttling from a nominal 2000 psia to a 200 psia chamber pressure. Reservations are detailed on the feasibility of a tank head start, but the design incorporates low speed turbopumps to mitigate the problem. The mechanically separate high speed turbopumps use hydrostatic bearings to meet engine life requirements, and operate at sub-critical speed for better throttling ability. All components were successfully packaged in the restricted envelope set by the clearances for the extendible/retractable nozzle. Gimbal design uses an innovative primary and engine out gimbal system to meet the +/- 20 deg gimbal requirement. The hydrogen regenerator and LOX/GH2 heat exchanger uses the Aerojet platelet structures approach for a highly compact component design. The extendible/retractable nozzle assembly uses an electric motor driven jack-screw design and a one segment carbon-carbon or silicide coated columbium nozzle with an area ratio, when extended, of 1430:1. A reliability analysis and risk assessment concludes the report.

  2. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    Science.gov (United States)

    Bradley, Christopher M.

    The last 30 years materials engineers have been under continual pressure to develop materials with a greater temperature potential or to produce configurations that can be effectively cooled or otherwise protected at elevated temperature conditions. Turbines and thrust chambers produce some of the harshest service conditions for materials which lead to the challenges engineers face in order to increase the efficiencies of current technologies due to the energy crisis that the world is facing. The key tasks for the future of gas turbines are to increase overall efficiencies to meet energy demands of a growing world population and reduce the harmful emissions to protect the environment. Airfoils or blades tend to be the limiting factor when it comes to the performance of the turbine because of their complex design making them difficult to cool as well as limitations of their thermal properties. Key tasks for space transportation it to lower costs while increasing operational efficiency and reliability of our space launchers. The important factor to take into consideration is the rocket nozzle design. The design of the rocket nozzle or thrust chamber has to take into account many constraints including external loads, heat transfer, transients, and the fluid dynamics of expanded hot gases. Turbine engines can have increased efficiencies if the inlet temperature for combustion is higher, increased compressor capacity and lighter weight materials. In order to push for higher temperatures, engineers need to come up with a way to compensate for increased temperatures because material systems that are being used are either at or near their useful properties limit. Before thermal barrier coatings were applied to hot-section components, material alloy systems were able to withstand the service conditions necessary. But, with the increased demand for performance, higher temperatures and pressures have become too much for those alloy systems. Controlled chemistry of hot-section components has become critical, but at the same time the service conditions have put our best alloy systems to their limits. As a result, implementation of cooling holes and thermal barrier coatings are new advances in hot-section technologies now looked at for modifications to reach higher temperature applications. Current thermal barrier coatings used in today's turbine applications is known as 8%yttria-stabilized zirconia (YSZ) and there are no coatings for current thrust chambers. Current research is looking at the applicability of 8%yttria-stabilized hafnia (YSH) for turbine applications and the implementation of 8%YSZ onto thrust chambers. This study intends to determine if the use of thermal barrier coatings are applicable for high heat flux thrust chambers using industrial YSZ will be advantageous for improvements in efficiency, thrust and longer service life by allowing the thrust chambers to be used more than once.

  3. Superconducting bearings for flywheel applications

    OpenAIRE

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings in flywheels.

  4. Permanent and active magnetic bearings.

    Czech Academy of Sciences Publication Activity Database

    Kozánek, Jan; Stola?ík, M.; Šafr, M.

    Brno : Ústav termomechaniky AV ?R, 2000 - (Kratochvíl, C.; Fuis, V.; Houfek, L.), s. 29-30 ISBN 80-214-1665-3. [Kolokvium Diagnostika a aktivní ?ízení 2000. T?ešt´ (CZ), 09.10.2000-11.10.2000] R&D Projects: GA ?R GA101/00/1471 Keywords : contactless bearings * magnetic bearings Subject RIV: BI - Acoustics

  5. Permanent-Magnet Meissner Bearing

    Science.gov (United States)

    Robertson, Glen A.

    1994-01-01

    Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.

  6. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  7. Fire safety of rubber bearings

    International Nuclear Information System (INIS)

    The objective of the study is to experimentally evaluate the fire resistance of the natural-rubber bearings to be incorporated into a Fast Reactor (FBR) under study. Four experiments were performed to look at the effect of bearing diameters and heating conditions on the performance. The full-scale specimen sustained the design-basis load for more than 3.5 hours under 'standard fire.' Medium-size bearings showed resistance for 2-4 hours, according to heating temperatures. The paper also summarizes the methods and the results of simulation analyses of rubber bearings subjected to load/temperature conditions under fire. The vertical deformation of the bearings can be calculated very well, using the temperature profiles obtained from testing. However, the heat transfer analyses did not give good results, especially in the cases/portions where heat was generated due to rubber combustion. (author)

  8. Flywheel Challenge: HTS Magnetic Bearing

    International Nuclear Information System (INIS)

    A 200 mm cylindrical engineering prototype high temperature superconducting (HTS) was designed and fabricated. Measurements show that the 17 kg PM rotor can suspend safely 1000 kg in axial direction and 470 kg radially. The rationale for the bearing performance is to stabilize a 400 kg rotor of a new compact 5 kWh/280 kW flywheel energy storage system (COM - FESS). Measurements of the magnetic bearing force, stiffness and drag-torque are presented indicated the successful targeting a milestone in the HTS bearing technology. The influence of the PM configuration and the YBCO temperature on the bearing performance was experimentally studied, providing high-force or high-stiffness behaviour. The axial stiffness 5 kN/mm at 0.5 mm displacement is the highest value of a HTS bearing we know

  9. Space Station alpha joint bearing

    Science.gov (United States)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  10. Bearing development program for a 25 kWe solar-powered organic Rankine-cycle engine

    Science.gov (United States)

    Nesmith, B.

    1985-01-01

    The bearing development program is summarized for a 25-kWe power conversion subsystem (PCS) consisting of an organic Rankine-cycle engine, and permanent magnetic alternator (PMA) and rectifier to be used in a 100-kWe point-focusing distributed receiver solar power plant. The engine and alternator were hermetically sealed and used toluene as the working fluid. The turbine, alternator, and feed pump (TAP) were mounted on a single shaft operating at speeds up to 60,000 rev/min. Net thermal-to-electric efficiencies in the range of 21 to 23% were demonstrated at the maximum working fluid temperature of 400 C (750 F). A chronological summary of the bearing development program is presented. The primary causes of bearing wear problems were traced to a combination of rotordynamic instability and electrodynamic discharge across the bearing surfaces caused by recirculating currents from the PMA. These problems were resolved by implementing an externally supplied, flooded-bearing lubrication system and by electrically insulating all bearings from the TAP housing. This program resulted in the successful development of a stable, high-speed, toluene-lubricated five-pad tilting-pad journal bearing and Rayleigh step thrust bearing system capable of operating at all inclinations between horizontal and vertical.

  11. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    OpenAIRE

    Cahill, James A.; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L.; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-01-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear...

  12. Reduction of Low-Thrust Continuous Controls for Trajectory Dynamics and Orbital Targeting

    Science.gov (United States)

    Hudson, Jennifer S.

    A novel method to evaluate the trajectory dynamics of low-thrust spacecraft is developed. Using a two-body Newtonian model, the spacecraft thrust vector components are represented by Fourier series in terms of eccentric anomaly, and Gauss's variational equations are averaged over one orbit to obtain a set of secular equations. These secular equations are a function of 14 of the thrust Fourier coefficients, regardless of the order of the original Fourier series, and are sufficient to determine a low-thrust spiral trajectory with significantly reduced computational requirements as compared with integration of the full Newtonian problem. This method is applied to orbital targeting problems. The targeting problems are defined as two-point boundary value problems with fixed endpoint constraints. Average low-thrust controls that solve these problems are found using the averaged variational equations and a cost function represented also as a Fourier series. The resulting fuel costs and dynamic fidelity of the targeting solutions are evaluated. Low-thrust controls with equivalent average trajectory dynamics but different thrust profiles are also studied. Higher-order control coefficients that do not affect the average dynamics are used to reduce fuel costs and transform time-varying controls into controls with constant thrust arcs, which can be implemented more easily by low-thrust propulsion systems. These methods have applications to low-thrust mission design and space situational awareness. Example problems based on past missions and potential future scenarios demonstrate the effectiveness of these methods.

  13. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    Science.gov (United States)

    Rinehart, Aidan W.; Simon, Donald L.; Chicatelli, Amy; Sowers, Shane

    2015-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  14. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    Science.gov (United States)

    Chicatelli, Amy K.; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.

    2016-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  15. Magnetic Bearings at Draper Laboratory

    Science.gov (United States)

    Kondoleon, Anthony S.; Kelleher, William P.; Possel, Peter D.

    1996-01-01

    Magnetic bearings, unlike traditional mechanical bearings, consist of a series of components mated together to form a stabilized system. The correct design of the actuator and sensor will provide a cost effective device with low power requirements. The proper choice of a control system utilizes the variables necessary to control the system in an efficient manner. The specific application will determine the optimum design of the magnetic bearing system including the touch down bearing. Draper for the past 30 years has been a leader in all these fields. This paper summarizes the results carried out at Draper in the field of magnetic bearing development. A 3-D radial magnetic bearing is detailed in this paper. Data obtained from recently completed projects using this design are included. One project was a high radial load (1000 pound) application. The second was a high speed (35,000 rpm), low loss flywheel application. The development of a low loss axial magnetic bearing is also included in this paper.

  16. Emergency Flight Control Using Computer-Controlled Thrust

    Science.gov (United States)

    Burcham, Frank W., Jr.; Fullerton, C. Gordon; Stewart, James F.; Gilyard, Glenn B.; Conley, Joseph A.

    1995-01-01

    Propulsion Controlled Aircraft (PCA) systems are digital electronic control systems undergoing development to provide limited maneuvering ability through variations of individual engine thrusts in multiple-engine airplanes. Provide landing capability when control surfaces inoperable. Incorporated on existing and future airplanes that include digital engine controls, digital flight controls, and digital data buses, adding no weight for additional hardware to airplane. Possible to handle total failure of hydraulic system, depending on how surfaces respond to loss of hydraulic pressure, and broken control cables or linkages. Future airplanes incorporate data from Global Positioning System for guidance to any suitable emergency runway in world.

  17. EFFECT OF BEARING MACROGEOMETRY ON BEARING PERFORMANCE IN ELASTOHYDRODYNAMIC LUBRICATION

    Directory of Open Access Journals (Sweden)

    Emin GÜLLÜ

    2000-01-01

    Full Text Available During manufacturing, ideal dimension and mutual positioning of machine elements proposed in project desing can be achieved only within certain range of tolerances. These tolerances, being classified in two groups, related to micro and macro geometry of machine elements, don't have to effect the functioning of these elements. So, as for all machine elements, investigation of the effects of macro and micro tolerances for journal bearings is important. In this study, we have investigated the effect of macro geometric irregularities of journal bearings on performance characteristics. In this regard, we have studied the change of bearing performance in respect to deviation from ideal circle for an elliptic shaft with small ovality rolling in circular journal bearing.

  18. Nurse retention: outrunning the bear.

    Science.gov (United States)

    O'Connor, Stephen

    2003-01-01

    Did you hear the one about the hospital CEO who was hiking in the forest with the director of nursing? As they were heading down a trail, suddenly a bear jumped out of a bush and started chasing them. Both hikers started running for their lives when all of a sudden the CEO stopped, sat down on a rock and started to put on running shoes. The director of nursing said, "What are you doing? You can't outrun a bear!" The CEO replied, "I don't have to outrun the bear. I only have to outrun you." PMID:12886657

  19. Random bearings and their stability

    CERN Document Server

    Baram, R M

    2005-01-01

    Self-similar space-filling bearings have been proposed some time ago as models for the motion of tectonic plates and appearance of seismic gaps. These models have two features which, however, seem unrealistic, namely, high symmetry in the arrangement of the particles, and lack of a lower cutoff in the size of the particles. In this work, an algorithm for generating random bearings in both two and three dimensions is presented. Introducing a lower cutoff for the sizes of the particles, the instabilities of the bearing under an external force such as gravity are studied.

  20. Antiformal closure in ductile and brittle-ductile in fold-and-thrust belt tranverse zones, Moine Thrust Belt, NW Scotland

    Science.gov (United States)

    Leslie, G.; Krabbendam, M.

    2009-04-01

    Abrupt lateral changes in thrust geometry occur in many mountain-building fold-and-thrust belts. Such changes in architecture are referred to as so-called transverse zones, and are commonly thought to be related to kinematic responses to irregularities generated across pre-existing, sometimes re-activated, basement faults. In many cases however the causative structure is concealed, either by distal parts of the thrust belt or the foreland basin. Sharp lateral changes in the structural geometry of ductile thrust stacks are less widely studied and reported. In NW Scotland, the classic Caledonian WNW-vergent Moine Thrust Belt exposes excellent examples of the structural architecture in such transverse zones, both in kilometre-scale thick monolithic (meta-)sandstone packages subject to ductile deformation, and in much thinner heterolithic packages subject to brittle-ductile deformation. In both cases the amplitude of the antiformal disturbance associated with the transverse zone is much greater than amplitude of any irregularity identified in the basement below. In Neoproterozoic Moine rocks in the hanging wall of the Moine Thrust, a large-scale lateral culmination wall forms a component part of the Oykel Transverse Zone (OTZ), a kilometre-scale thick constrictional ductile shear zone striking sub-parallel to the WNW-directed thrust transport direction. The OTZ forms the SW limit of the Cassley Culmination. ESE-plunging mullions are an integral part of the fabric of the transverse zone and were generated by constriction sub-parallel to the WNW-directed thrust transport direction. Main folds and fabrics in the transverse zone hanging-wall are folded by main folds and fabrics in the footwall, demonstrating the overall foreland-propagating record of ductile deformation as the Cassley Culmination grew. Constriction and mullion development are attributed to differential, transtensional movement across the transverse zone during the later stages of culmination development. Subsequent formation of the classic Assynt Culmination below the Moine Thrust accentuated upwards-bulging of the Cassley Culmination above, amplifying the lateral change across the Oykel Tranverse Zone. The OTZ aligns with a pronounced gravity gradient; interpretive geophysical modelling relates this gradient to a buried basement ramp that possibly controlled the location of the transverse zone. Farther towards the foreland in the Assynt Culmination of the Moine Thrust Belt, the Traligill Transverse Zone also trends sub-parallel to the transport direction and is associated with an en echelon fault system cutting thrusts, with discontinuity of the thrust and thrust sheet architecture, and with oblique fold and thrust structures. This transverse zone is developed above a basement cross-fault which records repeated brittle reactivation of a Proterozoic shear zone. Thrusting thus deformed a sedimentary sequence that was already disrupted by faults aligned sub-parallel to the thrust transport direction. The amplitude of the anticlinal disturbance in the fold-and-thrust architecture along the Traligill Transverse Zone is much greater (c. 1000 m) than the vertical displacement (c. 100 m) determined along the fault; this is attributed to oblique transpressional thrust-stacking within the transverse zone, generated by the small angle between the thrust transport direction and the strike of the pre-existing fault.

  1. Bears, Big and Little. Young Discovery Library Series.

    Science.gov (United States)

    Pfeffer, Pierre

    This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume describes: (1) the eight species of bears, including black bear, brown bear, grizzly bear, spectacled bear, sun bear, sloth bear, polar bear, and giant panda; (2) geographical habitats of bears; (3)…

  2. Performance of high speed ball bearings with lead and lead alloy plated retainers in liquid hydrogen at 1.2 million DN

    Science.gov (United States)

    Brewe, D. E.; Scibbe, H. W.; Wisander, D. W.

    1973-01-01

    Ball bearings with lead- and lead-alloy-coated retainers were operated in liquid hydrogen at 30,000 rpm under a thrust load of 400 lb. Bearing lives were compared using different: (1) lead- and lead-alloy coatings, (2) coating thicknesses, (3) substrate materials, (4) retainer locating surfaces, and (5) plating techniques. Longer bearing run times were achieved using retainers with a lead-tin-copper alloy coating electroplated onto a leaded-bronze material and an aluminum-bronze alloy. Thirty percent of the bearings tested achieved the desired objective of 10 hours. All of the lead-alloy coated retainers exceeded this objective. A coating thickness of at least 0.0014 in. was used for all bearings exceeding the 10-hour goal.

  3. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    International Nuclear Information System (INIS)

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s-1, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s-1. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  4. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    Science.gov (United States)

    Lafleur, T.; Takahashi, K.; Charles, C.; Boswell, R. W.

    2011-08-01

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s-1, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s-1. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  5. Development of direct thrust measurement system for the completely electrodeless helicon plasma thruster

    International Nuclear Information System (INIS)

    In order to establish a completely electrodeless electric thruster, we have been studying the proposed electromagnetic acceleration methods, and estimating plasma performance using various diagnostics. Plasma thrust is the most important feature of the thruster; therefore estimation of the plasma thrust is necessary. In this study, we have developed a pendulum-target-type plasma thrust stand. Our experiment uses a Large Mirror Device and a high-power radiofrequency source (7 MHz, ∼5 kW) to produce high-density helicon plasma. The thruster uses both permanent magnets and electromagnets for generating magnetic field with a large radial component to increase electromagnetic acceleration by the proposed method of including an azimuthal current. In this paper, details of the developed thrust stand and experimental results for thrust, thrust efficiency and specific impulse are presented. (author)

  6. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, T.; Charles, C.; Boswell, R. W. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Takahashi, K. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Department of Electrical Engineering and Computer Science, Iwate University, Morioka 020-8551 (Japan)

    2011-08-15

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  7. Effect of Fuel Properties on the Specific Thrust of a Ramjet Engine

    Directory of Open Access Journals (Sweden)

    Alon Gany

    2006-07-01

    Full Text Available Various aspects of specific thrust in ramjet propulsion have been considered. It is shownthat while the peak specific impulse of ideal ramjet is theoretically obtained for fuel/air ratiof 0, the specific thrust which determines the thrust level of a given engine at certain operatingconditions, increases with increasing fuel/air ratio up to (approximately the stoichiometric ratio.Furthermore, in general, the specific thrust is related to the heat release per unit mass of airfqR, where the theoretical maximum is approximately proportional to its square root in stoichiometricconditions, fstqR. This can be the basis for selecting an appropriate fuel according to its potentialspecific thrust. It should be noted that certain metals such as magnesium, aluminum, and zirconiumcan provide about three-times higher specific heat release than hydrocarbons or hydrogen.Thus, these may be the better candidates for missions requiring high specific thrusts.

  8. Mixed-mu superconducting bearings

    Science.gov (United States)

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  9. Mixed-mu superconducting bearings

    International Nuclear Information System (INIS)

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs

  10. Erosion influence the seismicity of active thrust faults

    Science.gov (United States)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.

    2015-04-01

    Assessing seismic hazards remains one of the most challenging scientific issue in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show with a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1 to 20 mm/yr, as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1 to ~10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to promote the rupture of deep continental earthquakes up to the surface or to trigger shallow seismicity. We illustrate this last point by identifying seismic events in Taiwan, by the mean of a coupled statistical and mechanical approach, that were induced by intense erosional events.

  11. Research at IMU: achievements, thrust areas and future challenges

    Directory of Open Access Journals (Sweden)

    Wan-Loy Chu

    2013-04-01

    Full Text Available There have been significant achievements inresearch at IMU as indicated by the increasing amountof external funds obtained, and number of publicationsand postgraduate students produced since it startedits research activities in the year 2000. However, it isa great challenge indeed to ensure sustainability ofour research, which is currently heavily dependent oninternal funding. There is a need to realign our strategiesto further enhance our competitiveness in securingexternal funding for research. In line with this, theInstitute for Research, Development and Innovation(IRDI was officially established on 18 September2012. The Institute will serve as a platform to supportall research activities at IMU. There are four Centresof Excellence based on the identified thrust areas underIRDI, namely 1 Centre for Bioactive Molecules andDrug Discovery; 2 Centre for Environmental andPopulation Health; 3 Centre for Cancer and StemCell Research, and 4 Centre for Health ProfessionalEducation Research. Major findings based on research inthese four thrust areas are reviewed in this paper. Withthe strategic planning and establishment of IRDI, it isour aspiration to bring research at IMU to a higher level.

  12. Simulations of Pulse Detonation Engines with MHD Thrust Augmentation

    Science.gov (United States)

    Zeineh, Christopher; Roth, Timothy; Cole, Lord; Karagozian, Ann; Cambier, Jean-Luc

    2008-11-01

    Pulse detonation rocket engines (PDREs) have received significant attention in recent years due to their potentially superior performance over constant-pressure engines. Yet unsteady chamber pressures cause the PDRE flow to be either over-expanded or under-expanded for the majority of the cycle, with substantial performance loss in atmospheric flight applications. The present computational studies examine the potential benefits of using magneto-hydrodynamic (MHD) thrust augmentation by extracting energy via a generator in the PDRE nozzle and applying it to a separate, secondary stream. In the present studies, which involve both transient quasi-1D and 2D numerical simulations, the energy extracted from the nozzle flow is directly applied to a by-pass air stream through an MHD accelerator. The air stream is first shocked by the under-expanded nozzle flow and raised to high temperature, allowing thermal ionization. The specific conditions for thrust augmentation are examined. Alternative configurations utilizing a magnetic piston in the PDRE chamber are also explored. Results show potential performance gains but with significant challenges, depending on the operating and flight conditions.

  13. An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers

    Science.gov (United States)

    Scarritt, Sara K.; Marchand, Belinda G.; Brown, Aaron J.; Tracy, William H.; Weeks, Michael W.

    2010-01-01

    In earlier investigations, the adaptation and implementation of a modified two-level corrections (or targeting) process as the onboard targeting algorithm for the Trans-Earth Injection phase of Orion is presented. The objective of that targeting algorithm is to generate the times of ignition and magnitudes of the required maneuvers such that the desired state at entry interface is achieved. In an actual onboard flight software implementation, these times of ignition and maneuvers are relayed onto Flight Control for command and execution. Although this process works well when the burn durations or burn arcs are small, this might not be the case during a contingency situation when lower thrust engines are employed to perform the maneuvers. Therefore, a new model for the two-level corrections process is formulated here to accommodate finite burn arcs. This paper presents the development and formulation of the finite burn two-level corrector, used as an onboard targeting algorithm for the Trans-Earth Injection phase of Orion. A performance comparison between the impulsive and finite burn models is also presented. The present formulation ensures all entry constraints are met, without violating the available fuel budget, while allowing for low-thrust scenarios with long burn durations.

  14. Thermal and exhumation histories of the footwall and hanging wall of the Gavarnie thrust, West-Central Pyrenees: Implications for thrusting

    Science.gov (United States)

    Fitzgerald, P. G.; Metcalf, J. R.; Baldwin, S.; Muñoz, J.

    2010-12-01

    The Gavarnie thrust is a major south-vergent basement thrust fault in the Axial Zone of the Pyrenean orogen. In the Central and West-Central Pyrenees, the Gavarnie separates the Orri thrust sheet (foot wall) from the Nogueres thrust sheet (hanging wall). As convergence is accommodated during orogenesis, thrusting may result in burial of the footwall as well as creation of topography and relief in the hanging wall with concomitant erosion. Thus, thermochronologic data from the footwall may constrain a minimum time for the onset of thrusting by resetting or partially resetting a thermochronologic system, whereas in the hanging wall, initiation of rapid cooling will typically record the minimum timing of thrust movement. We compare thermochronology data (40Ar/39Ar K-feldspar, apatite fission track [AFT] and apatite (U-Th)/He [AHe]) from a profile in the hanging wall (Néouvielle massif) with thermochronology data from a profile in the footwall (Bielsa massif) of the Gavarnie thrust to constrain the thermal and exhumation history and hence the timing of thrusting. Integrated thermochronologic data and thermal modeling from Néouvielle indicates a complex series of thermal/exhumation events since the onset of thrusting in the Late Cretaceous. Monotonic multi-diffusion domain (MDD) models, in accordance with geologic evidence suggest residence at moderate temperatures (ca. 200-250°C) and subsequent cooling (erosion) beginning at 50-40 Ma continuing until ~25 Ma. Multiple cooling (exhumation) episodes at Néouvielle recorded by AFT and AHe data occur from ~30-25 Ma, from ~15-10 Ma and since the Late Miocene. At Bielsa, free MDD models, in accordance with geologic evidence indicate reheating (due to thrust burial) beginning at ~70 Ma and initiation of cooling (exhumation) at ~40-50 Ma. AFT and AHe data indicate rapid cooling from ~30 Ma, with cooling rates slowing at ~25 Ma, continuing until at least 17 Ma followed by a Late Miocene cooling event. Our preferred tectonic model is that during initial convergence in the Late Cretaceous-Paleocene, thrust motion along the Gavarnie thrust was such that the Nogueres thrust sheet buried and partially-reset K-feldspar ages in the footwall (Bielsa), but little cooling (due to erosion) occurred in the hanging wall (Neouvielle), most likely because little relief was created at that time. Cooling due to erosion at Neouvielle was initiated ca. 40-50 Ma, at about the same time as cooling was initiated at Biesla, both likely due to movement on the deeper Bielsa thrust, in essence creating relief in its hanging wall that included both the Nogueres and Orri thrust sheets and hence causing cooling due to erosion. The subsequent thermal histories of each of these massifs is similar, most likely as they responded in similar fashions to motion on deeper thrusts during continued deformation. This is a similar tectonic scenario in part as that determined from the Maladeta pluton (Orri thrust sheet) in the Central Pyrenees. However, in the west-central Pyrenees details of the thermal and cooling (exhumation) record are less straightforward due to the more complex structural setting and local fault displacement.

  15. Three-dimensional geometry of thrust surfaces and the origin of sinuous thrust traces in orogenic belts: Insights from scaled sandbox experiments

    Science.gov (United States)

    Chattopadhyay, A.; Jain, M.; Bhattacharjee, D.

    2014-12-01

    Sinuous traces of emerging thrust tips, comprising multiple salients and recesses, are commonly observed in orogenic belts (e.g. Lesser Himalayas of India, Nepal and Bhutan) and in accretionary prisms (e.g. Nankai Trough off the coast of Japan). Lateral (along the strike of the deformation zone) variation in the depths of foreland basins (i.e. variable sediment thickness) or in the strength of the basal detachment, or presence of a curved indenter has been traditionally cited to explain the formation of salients in fold-and-thrust belts, although they are not applicable in all cases. In the present work, we have carried out four series of scaled analog model experiments using dry quartz sand, changing the dip of the basal decollément (? = 0° or 5°) and the basal friction (?b = 0.5 or 0.3) to investigate the 3D shape of thrust surfaces under varying overall boundary conditions, but without any lateral variation of these parameters, within the models. The experimental results show that under all boundary conditions, thrust surfaces are curved both in their dip and strike directions (i.e. spoon-shaped in 3D). Multiple concave-upward and convex-upward segments constitute a thrust surface, which produces a sinuous trace when the tip line intersects the Earth's surface. It is also shown that thrust surface curvatures occur at different scales, and the overall thrust surface roughness (corrugations) has a self-affine fractal geometry.

  16. Active Magnetic Bearings – Magnetic Forces

    DEFF Research Database (Denmark)

    Kjølhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model validation and leads to novel approaches in identifying crucial rotor parameters. This is the main focus of this paper, where an intelligent AMB is being developed with the aim of aiding the accurate identif...

  17. Superconducting composite for magnetic bearings

    International Nuclear Information System (INIS)

    A composite includes granules of Type II superconducting material and granules of rare-earth permanent magnets that are distributed in a binder. The composite is a two-phase structure that combines the properties of the superconductor and magnets with the flexibility and toughness of a polymeric material. A bearing made from this composite has the load capacity and stiffness of a permanent magnet bearing with added stability from a Type II superconducting material. 7 figs

  18. Random bearings and their stability

    OpenAIRE

    Baram, R. Mahmoodi; Herrmann, H. J.

    2005-01-01

    Self-similar space-filling bearings have been proposed some time ago as models for the motion of tectonic plates and appearance of seismic gaps. These models have two features which, however, seem unrealistic, namely, high symmetry in the arrangement of the particles, and lack of a lower cutoff in the size of the particles. In this work, an algorithm for generating random bearings in both two and three dimensions is presented. Introducing a lower cutoff for the sizes of the ...

  19. Failure analysis of superconducting bearings

    International Nuclear Information System (INIS)

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behaviour

  20. Is tongue thrust that develops during orthodontic treatment an unrecognized potential road block?

    OpenAIRE

    Chawla H; Suri Sanjay; Utreja A

    2006-01-01

    The role of tongue thrust has often been suspected, long debated and largely dispelled as a primary etiological factor of malocclusion. However, tongue thrust may contribute to poor occlusal intercuspation both during and after treatment. A tongue thrust may also develop during orthodontic mechanotherapy as a result of the transient creation of intra and interarch spaces and this little recognized phenomenon was found to occur in many randomly followed cases. In many instances, this seemingly...

  1. Contouring Control for a CNC Milling Machine Driven by Direct thrust Controlled Linear Induction Motors

    OpenAIRE

    Khaled N. Faris; Hala S. Khalil,; Khaled S. Sakkoury

    2015-01-01

    According to various advantages of linear induction motor (LIM), such as high starting thrust force, high speed operation and reduction of mechanical losses, more applications have utilized this type of motors. Direct Thrust Control (DTC) technique is considered as one of the most efficient techniques that can be used for LIM. DTC is preferable to give a fast and good dynamic thrust response. So, to improve the accuracy and robustness of contouring control for CNC mach...

  2. Thrust Ripples Reduction for a Vector Controlled Permanent Magnet Linear Synchronous Motor with IMC Controller

    OpenAIRE

    RAMESH BABU.DEVA; MRS. B.ARUNDHATI; ALICE MARY.K

    2013-01-01

    The significant drawback of PMLSM is thrust ripples, which is mainly generated by the detent force caused by the interaction of the permanent magnet and iron core without input current in armature winding. It is the function of mover position relative to the stator. This will deteriorate the performance of the drive system in high precision applications. This paper focus on the thrust ripples reduction. To minimize the thrust ripples and realize the high-precision control, the components of t...

  3. Designing Rolling-Element Bearings

    Science.gov (United States)

    Moore, James D., Jr.

    2007-01-01

    Bearing Analysis Tool (BAT) is a computer program for designing rolling-element bearings for cryogenic turbomachines. BAT provides a graphical user interface (GUI) that guides the entry of data to develop mathematical models of bearings. The GUI breaks model data into logical subsets that are entered through logic-driven input screens. The software generates a threedimensional graphical model of a bearing as the data are entered. Most dataentry errors become immediately obvious in the graphical model. BAT provides for storage of all the data on a shaft/bearing system, enabling the creation of a library of proven designs. Data from the library can be transferred to subsequent projects by use of simple cut-and-paste routines. BAT includes a library of temperature- dependent cryogenic bearing-material properties for use in the mathematical models. BAT implements algorithms that (1) enable the user to select combinations of design and/or operating-condition parameters, and then (2) automatically optimize the design by performing trade studies over all of the parameter combinations. This feature enables optimization over a large trade space in a fraction of the time taken when using prior bearingmodel software.

  4. Thrust Ripples Reduction for a Vector Controlled Permanent Magnet Linear Synchronous Motor with IMC Controller

    Directory of Open Access Journals (Sweden)

    RAMESH BABU.DEVA

    2013-06-01

    Full Text Available The significant drawback of PMLSM is thrust ripples, which is mainly generated by the detent force caused by the interaction of the permanent magnet and iron core without input current in armature winding. It is the function of mover position relative to the stator. This will deteriorate the performance of the drive system in high precision applications. This paper focus on the thrust ripples reduction. To minimize the thrust ripples and realize the high-precision control, the components of thrust ripples are extracted first and then compensate with PI and IMC (Internal Model Control controller

  5. Seafloor expression and shallow structure of a fold-and-thrust system, Isfjorden, west Spitsbergen

    Directory of Open Access Journals (Sweden)

    Maria Blinova

    2012-09-01

    Full Text Available A detailed map of the structure of the west Spitsbergen fold-and-thrust belt in the Isfjorden area, Spitsbergen, is presented. The map was constructed from a dense grid of two-dimensional multichannel reflection seismic and bathymetric data. Joint interpretation of two data sets allowed a comparison of tectonic structures detected along the uppermost parts of the seismic sections and those reflected in the morphology of the seafloor. Three major, predominantly north-west–south-east striking faults were identified. The westernmost fault (T1 is a hinterland-directed (most likely out of sequence thrust, while the central and easternmost faults (T2 and T3 are foreland-directed (in-sequence thrusts. The thrusts divide Isfjorden into three subareas. Subarea 1 is bounded by thrust faults T1 and T2 and comprises Tertiary rocks surrounded by Jurassic–Cretaceous strata. The structural signature of Subarea 1 is that of a system of hinterland- and foreland-directed thrust faults, resulting in a seafloor relief characterized by parallel ridges and troughs. Subarea 2 is limited by thrust faults T2 and T3 and shows Jurassic–Cretaceous outcrops on the seafloor. Subarea 3 is situated east of the main thrust fault T3 and mainly involves outcrops of Triassic–Jurassic rocks. Together, Subareas 2 and 3 are dominated by foreland-directed, north-west–south-east and NNW–SSE-striking thrusts that are hardly detectable in bathymetric data.

  6. Thrust jet analysis of deep-inelastic large-rapidity-gap events

    OpenAIRE

    Aid, S; Andreev, V.(P.N. Lebedev Physical Institute, Moscow, Russia); Andrieu, B; Arndt, C; A. Babaev; Barrelet, E; Bartel, W.; Bernardi, G.; Beyer, R.; Bourov, S.; Brown, DP; Bruel, P.; Brune, C; G. Buschhorn; D. Calvet(Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France)

    1998-01-01

    A thrust analysis of Large-Rapidity-Gap events in deep-inelastic ep collisions is presented, using data taken with the H1 detector at HERA in 1994. The average thrust of the final states X, which emerge from the dissociation of virtual photons in the range 10 < Q2 < 100 GeV2, grows with hadronic mass M_X and implies a dominant 2-jet topology. Thrust is found to decrease with growing Pt, the thrust jet momentum transverse to the photon-proton collision axis. Distributions of ...

  7. Structural style of the Okcheon fold-thrust belt in the Taebaeksan Zone, Korea

    Science.gov (United States)

    Jang, Yirang; Kwon, Sanghoon; Yi, Keewook

    2015-06-01

    Structural interpretation of the distinct map pattern defined by highly connected thrust traces in the map view of the Taebaeksan Zone provides insight into the structural style of the northeastern Okcheon Belt. The map pattern can generally be explained by either a folded imbricate fan or a hinterland dipping duplex. The same geometry could also be formed by a complex combination of major imbricate thrusts and their connecting splays, having the structural architecture of a typical fold-thrust belt. However, a folded imbricate fan model is not adequate to explain the absence of late Paleozoic to early Mesozoic strata (i.e. the Pyeongan Supergroup) between two major thrusts (viz. the Pyeongchang and Machari thrusts) in this area. This result further suggests that the Yeongwol area, the western part of the Taebaeksan Zone, is a duplex that corresponds to a more internal and deeper hinterland part of the fold-thrust belt, while the imbricate thrusts with low connectivity in the Taebaek area, the eastern part of the Taebaeksan Zone, indicate a more external and shallower foreland portion of the belt. In addition, cross-cutting relations and newly obtained sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon ages from a cross-cutting dike and syntectonic sedimentary rocks suggest limited thrust reactivation after the early Jurassic and early Tertiary, respectively. In spite of this, the original geometry of the fold-thrust wedge in the Taebaeksan Zone remained well preserved.

  8. The Rovuma Delta deep-water fold-and-thrust belt, offshore Mozambique

    Science.gov (United States)

    Mahanjane, Estevão Stefane; Franke, Dieter

    2014-02-01

    We interpret two-dimensional seismic reflection data from the Rovuma Delta basin deep-water fold-and-thrust belts. Two major arcuate complexes with different architecture and extent are identified. While in the northern Palma arcuate complex a multitude of steep, east-dipping thrust-related fold anticlines formed above a single main detachment, in the southern Mocimboa arcuate complex multiple detachments resulted in the formation of thrust duplexes. In between the two arcuate domains, only few thrust-related fold anticlines developed.

  9. Experimental study of a low-thrust measurement system for thruster ground tests.

    Science.gov (United States)

    Gong, Jingsong; Hou, Lingyun; Zhao, Wenhua

    2014-03-01

    The development of thrusters used for the control of position and orbit of micro-satellites requires thrust stands that can measure low thrust. A new method to measure low thrust is presented, and the measuring device is described. The test results show that the thrust range is up to 1000 mN, the measurement error of the device is lower than ±1% of full scale, and the drift of the zero offset is less than ±1% of full scale. Its response rise time is less than 15 ms. It is employed to measure the working process of a model chemical thruster with repeatability. PMID:24689615

  10. Finite-thrust optimization of interplanetary transfers of space vehicle with bimodal nuclear thermal propulsion

    Science.gov (United States)

    Kharytonov, Oleksii M.; Kiforenko, Boris M.

    2011-08-01

    The nuclear thermal rocket (NTR) propulsion is one of the leading promising technologies for primary space propulsion for manned exploration of the solar system due to its high specific impulse capability and sufficiently high thrust-to-weight ratio. Another benefit of NTR is its possible bimodal design, when nuclear reactor is used for generation of a jet thrust in a high-thrust mode and (with an appropriate power conversion system) as a source of electric power to supply the payload and the electric engines in a low-thrust mode. The model of the NTR thrust control was developed considering high-thrust NTR as a propulsion system of limited power and exhaust velocity. For the proposed model the control of the thrust value is accomplished by the regulation of reactor thermal power and propellant mass flow rate. The problem of joint optimization of the combination of high- and low-thrust arcs and the parameters of bimodal NTR (BNTR) propulsion system is considered for the interplanetary transfers. The interplanetary trajectory of the space vehicle is formed by the high-thrust NTR burns, which define planet-centric maneuvers and by the low-thrust heliocentric arcs where the nuclear electric propulsion (NEP) is used. The high-thrust arcs are analyzed using finite-thrust approach. The motion of the corresponding dynamical system is realized in three phase spaces concerning the departure planet-centric maneuver by means of high-thrust NTR propulsion, the low-thrust NEP heliocentric maneuver and the approach high-thrust NTR planet-centric maneuver. The phase coordinates are related at the time instants of the change of the phase spaces due to the relations between the space vehicle masses. The optimal control analysis is performed using Pontryagin's maximum principle. The numerical results are analyzed for Earth-Mars "sprint" transfer. The optimal values of the parameters that define the masses of NTR and NEP subsystems have been evaluated. It is shown that the low-thrust NEP subsystem with Brayton cycle power conversion system is preferable in comparison with NEP subsystem with thermoemission power conversion system.

  11. Experimental data analysis during rolling of corrosion resistant steel using hydraulic thrust

    International Nuclear Information System (INIS)

    Efficiency of a system for controlling band thickness in two regimes (in the regime of maintenance of constant force on thrust screws and in the regime of maintenance of constant liquid pressure in hydraulic cylinder of thrust device) was examined and its effectiveness during test rolling of bands of 12Kh18N10T steel was evaluated. The efficiency of the system for controlling band thickness using hydraulic thrust cylinders of back-up rolls in the regime of maintenance of constant force on thrust screws was confirmed

  12. Effectiveness of Nitrous Oxide as a Liquid Injection Thrust Vector Control Fluid Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nitrous Oxide is proposed as an energetic liquid injection thrust vector control fluid for vehicle attitude control during dynamic vehicle maneuvers. Pulled from...

  13. 77 FR 70423 - Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC...

    Science.gov (United States)

    2012-11-26

    ... Energy Regulatory Commission Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of Application for Partial Transfer of Licenses, and Soliciting Comments and Motions To Intervene On October 25, 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor)...

  14. Dynamic friction and wear in a planar-contact encapsulated microball bearing using an integrated microturbine

    OpenAIRE

    McCarthy, Matthew; Waits, C. Mike; Ghodssi, Reza

    2008-01-01

    The demonstration and characterization of a novel planar-contact encapsulated microball bearing using a radial in-flow microturbine are presented. Stable operation of the air-driven silicon microturbine is shown for over 1 000 000 revolutions at speeds, pressure drops, and flow rates of up to 10 000 r/min, 0.45 lbf/in2, and 3.5 slm, respectively. Incorporation of a gas thrust plenum using a novel packaging scheme has enabled comprehensive spin-down friction characterization of the encapsulate...

  15. Transient Vibration Prediction for Rotors on Ball Bearings Using Load-Dependent Nonlinear Bearing Stiffness

    OpenAIRE

    Fleming David; Poplawski J.

    2004-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for nonlinear speed and load-dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optim...

  16. 36 CFR 13.1236 - Bear orientation.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Bear orientation. 13.1236... Developed Area § 13.1236 Bear orientation. All persons visiting the BCDA must receive an NPS-approved Bear Orientation. Failure to receive an NPS-approved Bear Orientation is prohibited....

  17. 49 CFR 229.69 - Side bearings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Side bearings. 229.69 Section 229.69....69 Side bearings. (a) Friction side bearings with springs designed to carry weight may not have more than 25 percent of the springs in any one nest broken. (b) Friction side bearings may not be run...

  18. Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments

    International Nuclear Information System (INIS)

    This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO2 laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum and the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample

  19. Data Archive and Portal Thrust Area Strategy Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Chitra; Stephan, Eric G.; Macduff, Matt C.; Hagler, Clay D.

    2014-09-30

    This report describes the Data Archive and Portal (DAP), a key capability of the U.S. Department of Energy's Atmosphere to Electron (A2e) initiative. The DAP Thrust Area Planning Group was organized to develop a plan for deploying this capability. Primarily, the report focuses on a distributed system--a DOE Wind Cloud--that functions as a repository for all A2e data. The Wind Cloud will be accessible via an open, easy-to-navigate user interface that facilitates community data access, interaction, and collaboration. DAP management will work with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud.

  20. Thrust Stand Measurements of the Conical Theta Pinch FARAD Thruster

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    It is found that the impulse of a pulsed inductive plasma thruster utilizing preionization is maximized for a particular ratio of the stored energy in the capacitor to the injected propellant mass. The fact that the impulse depends on the ratio of the initial stored energy to injected propellant mass agrees with previous current sheet studies, supporting the idea that a Townsend-like breakdown process strongly influences current sheet formation, and in turn, current sheet formation strongly affects the operational efficiency of the device. The optimum in half cone angle of the inductive coil can be explained in terms of a balance between the direct axial acceleration and the radial pinching contribution to thrust. From the trends in these data we conclude that operation at the correct ratio of capacitor energy to propellant mass is essential for efficient operation of pulsed inductive plasma thrusters employing a preionized propellant.

  1. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  2. Development of porous-ceramic hydrostatic bearings

    OpenAIRE

    Durazo-Cardenas, Isidro Sergio

    2003-01-01

    Porous-ceramic hydrostatic bearings have been recently developed. These bearings have demonstrated an exceptional overall performance when compared with conventional technology bearings. However, despite all the benefits, porous-ceramic hydrostatic bearings have yet to find widespread acceptance due to the problems found in tailoring the bearings geometry and size to suit precision engineering applications, while producing porous-structures with consistent and reproducible p...

  3. Development of porous ceramic air bearings

    OpenAIRE

    Roach, Christopher James

    2001-01-01

    Porous air bearings enjoy some important advantages over conventional air bearing types such as increased load carrying capacity, higher stiffness and improved damping. However, these types of bearings have yet to find widespread acceptance due to problems with obtaining materials with consistent permeability, instability issues relating to the volume of gas trapped at the bearing surface in the pores, and manufacturing the bearing without altering the permeability. Using...

  4. Future Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Chang, Jun-Dong

    2014-01-01

    One of the most important issues in the modern total hip arthroplasty (THA) is the bearing surface. Extensive research on bearing surfaces is being conducted to seek an ideal bearing surface for THA. The ideal bearing surface for THA should have superior wear characteristics and should be durable, bio-inert, cost-effective, and easy to implant. However, bearing surfaces that are currently being implemented do not completely fulfill these requirements, especially for young individuals for whom...

  5. Palinspastic reconstruction of the Alpine thrust belt at the Alpine-Carpathian transition - A geological Sudoku

    Science.gov (United States)

    Beidinger, A.; Decker, K.; Zamolyi, A.; Hölzel, M.; Hoprich, M.; Strauss, P.

    2009-04-01

    The palinspastic reconstruction of the Austroalpine thrust belt is part of the project Karpatian Tectonics, which is funded by OMV Austria. The objective is to reconstruct the evolution of the thrust belt through the Early to Middle Miocene in order to obtain information on the palaeogeographic position of the Northern Calcareous Alps (NCA) in the region of the present Vienna Basin. A particular goal of the study is to constrain the position of reservoir rocks within the Rhenodanubic Flysch units and the NCA with respect to the autochthonous Malmian source rocks overlying the European basement below the Alpine-Carpathian thrust wedge, and to constrain the burial history of these source rocks. Reconstruction uses regional 2D seismic lines crossing from the European foreland into the fold-thrust belt, 3D seismic data covering the external thrust sheets, and lithostratigraphic data from a total of 51 selected wells, which were drilled and provided by OMV Austria. The main criterion, whether a well was suitable for palinspastic reconstruction or not, was its penetration of Alpine thrust sheets down to the Autochthonous Molasse of the foreland. Additional wells, which do not penetrate the entire Alpine thrust complex but include the Allochthonous Molasse or the external Alpine-Carpathian nappes (Waschberg and Roseldorf thrust unit, Rhenodanubic Flysch nappes) in their well path, were also taken into account. The well data in particular comprise stratigraphic information on the youngest overthrust sediments of the different thrust units and the underlying Autochthonous foreland Molasse. These data allow constraining the timing of thrust events in the allochthonous thrust units and overthrusting of the Autochthonous Molasse. In the particular case of overthrust Autochthonous Molasse, additionally to the timing of overthrusting, which can be derived from the youngest overthrust sediments, the palaeogeographic position of the Alpine Carpathian thrust front could directly be inferred from well data for the specific time period. By further utilization of geological maps, geological cross sections and two regional c. 80 km long composite 2D seismic sections through the external Alpine thrusts, the positions of major thrusts could be approximated for five time slices. This procedure was applied for the front of the allochthonous Molasse units, the floor thrust of the Roseldorf thrust unit, the Waschberg thrust unit and the frontal thrusts of the Rhenodanubic Flysch and the NCA. In addition, several out-of-sequence thrusts within the Waschberg unit, the Molasse unit, the Rhenodanubic Flysch and the Calcareous Alps (floor thrust of the NCA and two internal thrusts) were taken into account. The reconstruction results in 5 palinspastic maps for the time slices early Egerian (25 Ma), early Eggenburgian (20 Ma), Ottnangian (17.5 Ma), Lower Karpatian (16.5 Ma) and the Karpatian/ Badenian stage boundary (16 Ma). Convergence rates, which were calculated for the four intervening time intervals, range from about 3 mm/yr to 5 mm/yr. These values compare well with estimated convergence rates reconstructed for the Miocene in the western Eastern Alps (Schmid et al., 1996), as well as with plate tectonic constraints on Tertiary convergence rates (Dewey et al., 1989). Dewey, J., Helman, M.L., Turco, E., Hutton, D.H.W.&Knott, S.D., 1989. Kinematics of the western Mediterranean, in: N.P. Coward, D. Dietrich & R.G. Park (eds.), Alpine Tectonics, Geol. Soc. Spec. Publ., 45: 265-283. Schmid, S.M., Pfiffner, O.A., Frotzheim, N., Schönborn, G. & Kissling, E., 1996. Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics, 15: 1036-1064.

  6. Use of structured surfaces for friction and wear control on bearing surfaces

    Science.gov (United States)

    Wang, Ling

    2014-10-01

    Surface texturing with purposely made regular micropatterns on flat or curved surfaces, as opposed to random roughness inherited from machining processes, has attracted significant attention in recent years. At the 2013 World Tribology Congress in Turin alone there were over 40 presentations related to surface texturing for tribological applications, from magnetic hard discs and hydrodynamic bearings to artificial joints. Although surface texturing has been reported being successfully applied in industrial applications such as seals, pistons, and thrust pad bearings, the demand for robust design is still high. Etsion has recently reviewed the modeling research mainly conducted by his group Etsion I (2013 Friction 1 195-209). This paper aims to review the state-of-the-art development of surface texturing made by a wider range of researchers.

  7. Thermal ground water flow systems in the thrust zone in southeastern Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, D.R.

    1983-05-01

    The results of a regional study of thermal and non-thermal ground water flow systems in the thrust zone of southern Idaho and western Wyoming are presented. The study involved hydrogeologic and hydrochemical data collection and interpretation. Particular emphasis was placed on analyzing the role that thrust zones play in controlling the movement of thermal and non-thermal fluids.

  8. Tongue Strength: Its Relationship to Tongue Thrusting, Open-Bite, and Articulatory Proficiency.

    Science.gov (United States)

    Dworkin, James P.; Culatta, Richard A.

    1980-01-01

    No significant differences in tongue strength were found between any of the three groups of 7- to 16-year old children: normal speaking with anterior tongue thrusting during swallow and open bite malocclusion, frontal lisping with anterior tongue thrusting during swallow and open bite malocclusion, and normal controls. (Author/DLS)

  9. Numerical and Experimental Investigations of Fluidic Thrust Vectoring with Oblique Shock Waves

    Science.gov (United States)

    Ouchi, K.; Yamada, K.; Hirota, M.; Hatanaka, Kazuaki; Saito, Tsutomu; Li, L.

    Mechanical thrust vectoring (MTV) has already been put to practical use. It controls the thrust direction of jet propulsion system by mechanically moving structural components such as exhaust nozzles and paddles. MTV has several advantages such as high mobility during supersonic flight in the high-altitude where effective turning is difficult to perform due to low atmospheric density.

  10. Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France-Spain)

    Science.gov (United States)

    Jolivet, Marc; Labaume, Pierre; Monié, Patrick; Brunel, Maurice; Arnaud, Nicolas; Campani, Marion

    2007-10-01

    In this work we combined apatite fission track and biotite/K-feldspar 40Ar/39Ar ages with tectonic data in the west central part of the Axial Zone of the Pyrenees. We discuss the exhumation ages and rates of the Néouvielle, Bordère-Louron, and Bielsa Variscan granites and their relationships with the timing and sequence of south vergent basement thrusting within the Pyrenean orogenic prism. The 40Ar/39Ar ages on K-feldspars from the Néouvielle massif (sample NV7) seem to indicate tectonic movements on the Eaux-Chaudes thrust during the early middle Eocene. Fission track results suggest that the exhumation of the Néouvielle massif occurred around 35 Ma and exhumation of the Bordère-Louron massif around 32 Ma in relation to thrusting on the Gavarnie thrust. The Bielsa massif was exhumed from around 19 Ma by out-of-sequence movements on the Bielsa thrust. We thus show that whereas most of the Pyrenean basement thrust faults (here the Eaux-Chaudes, Gavarnie, and Guarga thrusts) were active in sequence toward the southern foreland from the early Eocene to the earliest Miocene, some of them (here the Bielsa thrust) were activated out of sequence in the hinterland, later than the generally accepted Aquitanian age for the end of the Pyrenean compression. Finally, the apatite fission track modeling indicate a last cooling episode starting around 5 Ma which is most certainly related to the Pliocene reexcavation of the southern and northern flanks of the Pyrenees.

  11. The In-Space Propulsion Technology Project Low-Thrust Trajectory Tool Suite

    Science.gov (United States)

    Dankanich, John W.

    2008-01-01

    The ISPT project released its low-thrust trajectory tool suite in March of 2006. The LTTT suite tools range in capabilities, but represent the state-of-the art in NASA low-thrust trajectory optimization tools. The tools have all received considerable updates following the initial release, and they are available through their respective development centers or the ISPT project website.

  12. Spectroscopy-based thrust sensor for high-speed gaseous flows

    Science.gov (United States)

    Hanson, Ronald K. (Inventor)

    1993-01-01

    A system and method for non-intrusively obtaining the thrust value of combustion by-products of a jet engine is disclosed herein. The system includes laser elements for inducing absorption for use in determining the axial velocity and density of the jet flow stream and elements for calculating the thrust value therefrom.

  13. Capacidad de carga estática en rodamientos. Normalización y tendencias. // Basic static load rating of rolling bearing. Standardization and trends.

    Directory of Open Access Journals (Sweden)

    A. García Toll

    2007-01-01

    Full Text Available Para ilustrar la funcionalidad de la norma NC-ISO 76: 2006, establecida a partir de una adopción idéntica de la Norma ISO76: 1987/ amd.1: 1999 (E “Cojinetes de Rodamiento – Capacidad de Carga Estática”, son mostradas las correspondenciasentre las magnitudes de capacidad de carga estática declaradas en los catálogos técnicos de reconocidos fabricantes derodamientos con los valores presentes en NC-ISO 76 y considerando diferentes geometrías de rodamientos radiales debolas rígidos y de contacto angular, rodamientos axiales de bolas y rodamientos de rodillos cilíndricos. Adicionalmente, elestudio ha permitido establecer las dependencias entre la capacidad de carga nominal estática del rodamiento y algunosparámetros geométricos, como el diámetro del elemento rodante, el diámetro interior y la relación diámetro interior -diámetro exterior del cojinetePalabras claves: Rodamientos, capacidad de carga estática, Norma Cubana NC, Norma ISO.___________________________________________________________________________Abstract:At the present time, Standard NC-ISO 76: 2006 is a national standard established as identical adoption of ISOstandard 76:1987 / amd.1: 1999 (E "Rolling Bearings - Static Load Rating¨. In this sense, the static load rating ofrolling bearings declared in technical catalogs of renowned bearing manufacturers and the basic static load ratingaccording to calculation procedures stated in Standard NC-ISO 76 are compared. The evaluation has taken intoaccount different geometries of radial groove ball bearings, angular contact ball bearings, thrust ball bearings andradial roller bearings. Additionally, they are established dependences between the static load rating of rolling bearingsand the interior diameter of different types of radial and thrust bearings.Key words: static load rating, rolling bearing, NC/ISO Standard.

  14. Air bearing vacuum seal assembly

    International Nuclear Information System (INIS)

    An air bearing vacuum seal assembly is described that is capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangment to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 x 10-4Pa m3/s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum

  15. Self-similar cataclasis in the Saltville thrust zone, Knoxville, Tennessee

    Science.gov (United States)

    Babaie, Hassan A.; Hadizadeh, Jafar; Babaei, Abdolali

    1995-09-01

    Fault rocks from the Saltville thrust zone, Knoxville, Tennessee, display a fractal geometry of clast size over 3 orders of magnitude. The cataclastic fractal geometry occurs at each magnification in different clast size classes and at combined magnifications. The mean of the fractal dimension (D) measured at each of the optical photomicrographs is generally smaller than that of the scanning electron microscopy images because of the smaller clast density in the optical sections. The fractal dimensions measured on randomly selected areas of the sections cut parallel to the thrust and normal to the thrust along the dip and strike, show a normal distribution with its mean, median, and mode that correlate closely with the dimension of ideal, fractal cataclasis (DI) based on the Sierpinski carpet model. The cataclasis was a statistical random, isotropic, and homogeneous fractal process that deformed the carbonates similarly parallel and normal to the thrust plane and in different parts of the thrust zone.

  16. Strain gauge based thrust measurement system for a stationary plasma thruster

    Science.gov (United States)

    Stephen, R. John; Rajanna, K.; Dhar, Vivek; Kalyan Kumar, K. G.; Nagabushanam, S.

    2001-09-01

    A thrust measurement system has been developed for the purpose of measuring the thrust produced by a stationary plasma thruster. The measurement system designed and fabricated mainly consists of a thrust balance assembly with strain gauge sensors and associated signal conditioning circuitry. Performance of the system developed was studied, in a vacuum chamber under space simulated conditions, by activating the thruster using xenon as the propellant. Details of the in situ calibration procedure followed are given. The thrust output for discharge powers ranging from 170 to 260 watts was measured and found to be in the range of 4-14 millinewtons. The measurement accuracy and resolution were found to be ±1 mN and 0.3 mN respectively. Specific impulse and thrust efficiency were also estimated.

  17. PRTHRUST-J1 code for calculation of blowdown thrust force and its experimental verification

    International Nuclear Information System (INIS)

    This paper presents an outline of the PRTHRUST-J1 code for calculating blowdown thrust force and gives two numerical expamples to show the effectiveness of this code. One numerical example is the problem of saturated steam blowdown. The blowdown thrust forces obtained from the PRTHRUST-J1 code were compared with those of the simplified method of Moody. Fairly good agreement was found between these two results. The other numerical example is the problem of jet discharging tests with stop valve performed in Japan Atomic Energy Research Institute. Analysis was carried out by varying the discharge coefficient. The analytical blowdown thrust force and pressure in the discharging nozzle were compared with experimental results. Qualitative agreement was found between the analytical and experimental results of the blowdown thrust force. Generally speaking, the blowdown thrust forces obtained from the experiment were between the analytical results for discharge coefficients of 1.0 and 0.6. (orig.)

  18. Losses of Superconductor Journal Bearing

    Science.gov (United States)

    Han, Y. H.; Hull, J. R.; Han, S. C.; Jeong, N. H.; Oh, J. M.; Sung, T. H.

    2004-06-01

    A high-temperature superconductor (HTS) journal bearing was studied for rotational loss. Two HTS bearings support the rotor at top and bottom. The rotor weight is 4 kg and the length is about 300 mm. Both the top and bottom bearings have two permanent magnet (PM) rings with an iron pole piece separating them. Each HTS journal bearing is composed of six pieces of superconductor blocks of size 35×25×10 mm. The HTS blocks are encased in a cryochamber through which liquid nitrogen flows. The inner spool of the cryochamber is made from G-10 to reduce eddy current loss, and the rest of the cryochamber is stainless steel. The magnetic field from the PM rings is < 10 mT on the stainless part. The rotational drag was measured over the same speed range at several chamber pressures. Results indicate that a chamber pressure of 0.4 mtorr is sufficiently low to minimize windage loss, and the 10 mT design criterion for the magnetic field on the stainless part of the cryochamber is too high.

  19. High performance rolling element bearing

    Science.gov (United States)

    Bursey, Jr., Roger W. (Inventor); Olinger, Jr., John B. (Inventor); Owen, Samuel S. (Inventor); Poole, William E. (Inventor); Haluck, David A. (Inventor)

    1993-01-01

    A high performance rolling element bearing (5) which is particularly suitable for use in a cryogenically cooled environment, comprises a composite cage (45) formed from glass fibers disposed in a solid lubricant matrix of a fluorocarbon polymer. The cage includes inserts (50) formed from a mixture of a soft metal and a solid lubricant such as a fluorocarbon polymer.

  20. Fuzzy control of magnetic bearings

    Science.gov (United States)

    Feeley, J. J.; Niederauer, G. M.; Ahlstrom, D. J.

    1991-01-01

    The use of an adaptive fuzzy control algorithm implemented on a VLSI chip for the control of a magnetic bearing was considered. The architecture of the adaptive fuzzy controller is similar to that of a neural network. The performance of the fuzzy controller is compared to that of a conventional controller by computer simulation.

  1. Using U-Th-Pb petrochronology to determine rates of ductile thrusting: Time windows into the Main Central Thrust, Sikkim Himalaya

    Science.gov (United States)

    Mottram, Catherine M.; Parrish, Randall R.; Regis, Daniele; Warren, Clare J.; Argles, Tom W.; Harris, Nigel B. W.; Roberts, Nick M. W.

    2015-07-01

    Quantitative constraints on the rates of tectonic processes underpin our understanding of the mechanisms that form mountains. In the Sikkim Himalaya, late structural doming has revealed time-transgressive evidence of metamorphism and thrusting that permit calculation of the minimum rate of movement on a major ductile fault zone, the Main Central Thrust (MCT), by a novel methodology. U-Th-Pb monazite ages, compositions, and metamorphic pressure-temperature determinations from rocks directly beneath the MCT reveal that samples from ~50 km along the transport direction of the thrust experienced similar prograde, peak, and retrograde metamorphic conditions at different times. In the southern, frontal edge of the thrust zone, the rocks were buried to conditions of ~550°C and 0.8 GPa between ~21 and 18 Ma along the prograde path. Peak metamorphic conditions of ~650°C and 0.8-1.0 GPa were subsequently reached as this footwall material was underplated to the hanging wall at ~17-14 Ma. This same process occurred at analogous metamorphic conditions between ~18-16 Ma and 14.5-13 Ma in the midsection of the thrust zone and between ~13 Ma and 12 Ma in the northern, rear edge of the thrust zone. Northward younging muscovite 40Ar/39Ar ages are consistently ~4 Ma younger than the youngest monazite ages for equivalent samples. By combining the geochronological data with the >50 km minimum distance separating samples along the transport axis, a minimum average thrusting rate of 10 ± 3 mm yr-1 can be calculated. This provides a minimum constraint on the amount of Miocene India-Asia convergence that was accommodated along the MCT.

  2. Climate Change, Polar Bears and their management

    OpenAIRE

    Derenchenko, Liza

    2010-01-01

    This is a literature study of polar bears in the context of climate change: what kind of creatures are polar bears, what are the main interpretations of current climate change, how might the polar bear adapt to these changes (feeding strategies) and how are the bears being managed (hunting)? These are relevant questions , since climate change is on the agenda, and polar bears being the apex predators of the Arctic are a key representation of the wildlife there. The third element of polar bear...

  3. Dynamic Spin Rig Upgraded With a Five- Axis-Controlled Three-Magnetic-Bearing Support System With Forward Excitation

    Science.gov (United States)

    Morrison, Carlos R.; Mehmed, Oral

    2003-01-01

    The NASA Glenn Research Center Dynamic Spin Rig is used for experimental evaluation of vibration analysis methods and dynamic characteristics for rotating systems. Measurements are made while rotors are spun and vibrated in a vacuum chamber. The rig has been upgraded with a new active magnetic bearing rotor support and excitation system. This design is expected to provide operational improvements over the existing rig. The rig will be able to be operated in either the old or new configuration. In the old configuration, two ball bearings support the vertical shaft of the rig, with the test article located between the bearings. Because the bearings operate in a vacuum, lubrication is limited to grease. This limits bearing life and speed. In addition, the old configuration employs two voice-coil electromagnetic shakers to apply oscillatory axial forces or transverse moments to the rotor shaft through a thrust bearing. The excitation amplitudes that can be imparted to the test article with this system are not adequate for components that are highly damped. It is expected that the new design will overcome these limitations.

  4. Performance of 40-millimeter-bore ball bearings with lead- and lead-alloy-plated retainers in liquid hydrogen at 1.2 million DN

    Science.gov (United States)

    Brewe, D. E.; Wisander, D. W.; Scribbe, H. W.

    1972-01-01

    Forty-millimeter-bore ball bearings with lead- and lead-alloy-coated retainers were operated in liquid hydrogen at 30,000 rpm under a thrust load of 1780 N (400 lb.) Four different substrate materials were used for the retainer. Longer bearing run times were achieved with a lead-tin-copper alloy coating plated onto a leaded-bronze material (22.5 hr) and an aluminum-bronze alloy (19.3 hr). One bearing with a pure lead coating achieved the desired objective of 10 hr. This bearing had an aluminum - bronze substrate retainer and ran successfully for 12.4 hr. Additions of antimony to the lead provided an alloy coating with better wear resistance than pure lead; however, this coating was abrasive to the outer-race lands.

  5. Journal and Wave Bearing Impedance Calculation Software

    Science.gov (United States)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  6. Construction of Structural Transferring in Salient of Fold-thrust Belt, NW Taiwan

    Science.gov (United States)

    Tang, Yi-Chin; Yang, Kenn-Ming; Huang, Shiuh-Tsann; Wu, Jong-Chang; Ting, Hsin-Hsiu; Mei, Wen-Wei; Wang, Jar-Ben

    2015-04-01

    The salient in a fold-thrust belt corresponds to a pre-orogenic basin with thicker sedimentary deposits relative to the adjacent areas. Owing to pre-existing tectonic weakness and variation in stratal thickness in the deformed sedimentary basin, the major thrusts and their related fold structures display discontinuous segments and are connected by transfer structures, which are characterized by lateral variation in magnitude of displacement, slip direction and style of fault-related structure. Commonly any 2D structural profiles are constructed avoiding such structural transfer zones. On the other hand, comparison among a series of structural profiles always demonstrates anomalous changes of fault and fold shapes in two adjacent profiles though such changes are not indicated by surface geological settings. Analysis and construction of 3D geometry of a fold-thrust system by combining a series of 2D structural profiles can give a good opportunity to test and revised the constructed profiles and to delineate the characteristics of structural transferring along the fold-thrust belt. Foothills belt in NW Taiwan is characterized by the salient in the fold-thrust belt, which faces a pre-orogenic extensional basin. In this study, we compiled several constructed structural profiles across the belt to analyze the characteristics of variation in thrust fault shape, especially the dipping angle and depth of bedding slip surface, in the subsurface. We have revised, with supplement of seismic data, some of the profiles by topological constraints from the detailed surface geology and come to a reasonable construction of 3D geometry of the fold-thrust system. The structural transferring in the northern part of the salient is characterized by 1) major thrusts converging toward to the transfer zone in the inner part of the fold -thrust belt, and 2) appearance of W-E reactivated normal fault with high-angle dip to the south. Also in the inner part of the belt the high-angle major thrusts transfer into the low-angle ones to the south. In the main part of the salient the subsurface fault and fold structures intertwined with each other but can be clearly traced and show a specific style of transfer structure in the segment. Some major thrusts diminish to the south and are diverted and split into synclines and anticlines to the south. In the outer part of the fold-thrust belt the major thrusts are segmented by a series of W-E reactivated normal fault. Transfer zone between narrow-spaced and high-angle thrust related structures (fault-propagation folds) and wide-spaced and low-angle thrust related structures (fault-bend folds) appears in the southern part of the salient. Yet the correlation of thrusts on both sides of the transfer zone based on slip-surface still could enable us to identify the northern extension part of the low-angle thrust. In summary, we propose several common characters for structural transferring within the salient, which is manifested not only by lateral ramp of thrust but also by different style of fault-related fold.

  7. Refolding of thin-skinned thrust sheets by active basement-involved thrust faults in the Eastern Precordillera of western Argentina

    Directory of Open Access Journals (Sweden)

    A. Meigs

    2006-12-01

    Full Text Available Devastating earthquakes like the 1944 San Juan earthquake reflect active deformation in western Argentina. Although the earthquake caused considerable damage to San Juan, the source of the earthquake remains uncertain. Potential source faults occur in the thin-skinned fold-and-thrust belt Precordillera province and in the thick-skinned Sierras Pampeanas province, to the west and east, respectively of Sierra de Villicum, a thrust sheet in the eastern Precordillera northwest of San Juan. Sierra de Villicum is a west-vergent thrust sheet bound on the northwest by the Villicum thrust, which juxtaposes a southeast dipping panel of Cambro-Ordovician and Neogene strata in the hanging wall with Neogene red beds in the footwall. A series of Late Pleistocene fluvial terraces developed across the Villicum thrust show no evidence of active fold or fault deformation. Terraces are deformed by active folds and faults in the middle of the southeastern flank of the Sierra de Villicum thrust sheet. A southeast-facing, southwest-plunging monocline characterizes the Neogene red beds in the region of active folding. Co- and post-seismic surface rupture along roughly 6 km of the La Laja fault in 1944 occurred in the limb of the monocline. Evidence that surface deformation in the 1944 earthquake was dominated by folding includes terrace´s fold geometry, which is consistent with kink-band models for fold growth, and bedding-fault relationships that indicate that the La Laja fault is a flexural slip fault. A blind basement reverse fault model for the earthquake source and for active deformation reconciles the zone of terrace deformation, coseismic surface rupture on the La Laja fault, refolding of the Villicum thrust sheet, a basement arch between the Precordillera and eastern Precordillera, and microseismicity that extends northwestward from a depth of ~5 km beneath Sierra de Villicum to ~35 km depth. Maximum horizontal shortening rate is estimated to be ~3.0 mmyr-1 from the terrace fold model and correlation of the terraces with dated terraces located to the southwest of the study area. Basement rocks beneath Cerro Salinas, another eastern Precordillera thrust sheet to the southwest, are also characterized by an east-facing monoclinal geometry, which suggests that blind thrust faulting on east-vergent basement faults represents a significant, underappreciated seismic hazard in western Argentina.

  8. SOURCE TERM TARGETED THRUST FY 2005 NEW START PROJECTS

    International Nuclear Information System (INIS)

    While a significant amount of work has been devoted to developing thermodynamic data. describing the sorption of radionuclides to iron oxides and other geomedia, little data exist to describe the interaction of key radionuclides found in high-level radioactive waste with the uranium surfaces expected in corroded spent nuclear fuel (SNF) waste packages. Recent work indicates that actinide adsorption to the U(VI) solids expected in the engineered barrier system may play a key role in the reduction of dissolved concentrations of radionuclides such as Np(V). However, little is known about the mechanism(s) of adsorption, nor are the thermodynamic data available to represent the phenomenon in predictive modeling codes. Unfortunately, this situation makes it difficult to consider actinide adsorption to the U(VI) silicates in either geochemical or performance assessment (PA) predictions. The primary goal in the Source Term Targeted Thrust area is to ''study processes that control radionuclide release from the waste form''. Knowledge of adsorption of actinides to U(VI) silicate solids its and parameterization in geochemical models will be an important step towards this goal

  9. SOURCE TERM TARGETED THRUST FY 2005 NEW START PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-10-05

    While a significant amount of work has been devoted to developing thermodynamic data. describing the sorption of radionuclides to iron oxides and other geomedia, little data exist to describe the interaction of key radionuclides found in high-level radioactive waste with the uranium surfaces expected in corroded spent nuclear fuel (SNF) waste packages. Recent work indicates that actinide adsorption to the U(VI) solids expected in the engineered barrier system may play a key role in the reduction of dissolved concentrations of radionuclides such as Np(V). However, little is known about the mechanism(s) of adsorption, nor are the thermodynamic data available to represent the phenomenon in predictive modeling codes. Unfortunately, this situation makes it difficult to consider actinide adsorption to the U(VI) silicates in either geochemical or performance assessment (PA) predictions. The primary goal in the Source Term Targeted Thrust area is to ''study processes that control radionuclide release from the waste form''. Knowledge of adsorption of actinides to U(VI) silicate solids its and parameterization in geochemical models will be an important step towards this goal.

  10. Variable Flavor Number Scheme for Final State Jets in Thrust

    CERN Document Server

    Pietrulewicz, Piotr; Hoang, Andre H; Jemos, Ilaria; Mateu, Vicent

    2014-01-01

    We present results for mass effects coming from secondary radiation of heavy quark pairs related to gluon splitting in the thrust distribution for e+e- collisions. The results are given in the dijet limit where the hard interaction scale and the scales related to collinear and soft radiation are widely separated. We account for the corresponding fixed-order corrections at O(alpha_s^2) and the summation of all logarithmic terms related to the hard, collinear and soft scales as well as the quark mass at N3LL order. We also remove the O(Lambda_QCD) renormalon in the partonic soft function leading to an infrared evolution equation with a matching condition related to the massive quark threshold. The quark mass can be arbitrary, ranging from the infinitely heavy case, where decoupling takes place, down to the massless limit where the results smoothly merge into the well known predictions for massless quarks. Our results are formulated in the framework of factorization theorems for e+e- dijet production and provide...

  11. Numerical modeling of sedimentation controls on the growth of the fold-and-thrust belts

    Science.gov (United States)

    Fillon, Charlotte; Huismans, Ritske S.; van der Beek, Peter

    2013-04-01

    The main objective of this study is to understand the coupling between tectonics and surface processes during formation of a thin-skinned fold-and-thrust belt. We focus on the controls of syn-orogenic sedimentation on thrust development during wedge building. We use an Arbitrary Lagrangian Eulerian finite-element model (Sopale) to model the thin-skinned fold-and-thrust belt at upper crustal scales (7 km depth and 200 km length). Sopale takes into account the main features and processes that influence the development of a fold-and-thrust belt including detachment horizons, strain-softening, flexural isostasy, and erosion and sedimentation processes. Initial, more conceptual modeling focuses on wedge development coupled with syn-orogenic sedimentation. Wedge-top sedimentation directly affects the taper angle and clearly modifies the behavior of the wedge; a clear relationship between average thrust-sheet length and the thickness of syn-tectonic sediments is highlighted. Subsequently, a sediment cover that progrades towards the foreland with time is added to reproduce the late syn-orogenic burial of the southern Pyrenean fold-and-thrust belt by conglomerates and demonstrate that wedge top sedimentation can explain the out-of-sequence thrust belt activity in the southern central Pyrenees.

  12. Identifying multiple detachment horizons and an evolving thrust history through cross-section restoration and appraisal in the Moine Thrust Belt, NW Scotland

    Science.gov (United States)

    Watkins, Hannah; Bond, Clare E.; Butler, Robert W. H.

    2014-09-01

    Many thrust systems, including parts of the Moine Thrust Belt, are commonly interpreted as rather simple imbricate fans, splaying from a master detachment (floor thrust) at depth. We use field observations and geological map data to construct cross-sections through the Achnashellach Culmination, southern Moine Thrust Belt, Northwest Scotland, to test this interpretation. Initially cross-sections are constructed by assuming a single lower detachment; line length imbalances and thrust trajectory mismatches between deformed and restored-state sections indicate an invalid model. Significant differences in horizon lengths between two rock units are seen, indicating the position of a second detachment which, when incorporated into the deformed-state cross-section creates a valid structural model. The presence of this second detachment accounts for complex geometries seen at outcrop, and indicates that the Achnashellach Culmination is likely to have formed by the sequential activation of two detachment horizons. This new structural model has been derived using an iterative workflow involving cross-section construction, section balancing and integration of field observations from across the study area, ensuring model validity in three dimensions. This workflow is applicable to other systems in general.

  13. Varying frontal thrust spacing in mono-vergent wedges: An insight from analogue models

    Indian Academy of Sciences (India)

    Puspendu Saha; Santanu Bose; Nibir Mandal

    2013-06-01

    Sandbox experiments are used to study frontal thrust fault spacing, which is a function of physical properties within the thrust wedge. We consider three styles of thrust progression in mono-vergent wedges: Style I, II and III. In Style I, frontal thrusts progress forelandward, maintaining a constant spacing, whereas Style II and Style III progression show increasing and decreasing spacing, respectively. The three styles are shown as a function of the following factors: basal friction (b), initial surface slope () and basal slopes (), and surface erosion. For high b (?0.46), thrust progression occurs in Style II when > 2° and > 0.5°, and in Style III when and are high ( < 2° and < 0.5°). Style II transforms to Style I when the wedge undergoes syn-thrusting surface erosion. In contrast, low-basal friction (b = 0.36) gives rise to either Style I or III, depending on the magnitudes of and . Conditions with = = 0 developed Style I, whereas Style III in conditions with any non-zero values of and . In this case, surface erosion caused the process of thrust progression unsteady, and prompted outof-sequence thrusting in the wedge. This study finally presents an analysis of the three styles, taking into account the following two parameters: (1) instantaneous increase of hinterland thickness ( H2/He) and (2) forelandward gradient of wedge thickness ( H/x). Experimental data suggest that thrust sequences develop in Style II for low H/x and large He/He values and, in Style III as either H/x increases or He/He drops.

  14. Shaft Center Orbit in Dynamically Loaded Bearings

    DEFF Research Database (Denmark)

    Klit, Peder

    The aim of this work is to demonstrate how to utilize the bearings damping coefficients to estimate the orbit for a dynamically loaded journal bearing. The classical method for this analysis was developed by Booker in 1965 and described further in 1972. Several authors have refined this method over...... the years. In 1966 Jorgen W. Lund published an approach to find the dynamic coefficients of a journal bearing by a first order perturbation of the Reynold's equation. These coefficients made it possible to perform a rotor-bearing stability analysis for a statically loaded bearing. In the mid seventies...... Jorgen W. Lund pointed out in lecture notes that the dynamic damping coefficients of the bearing could be used to find the shaft orbit for dynamically loaded bearings. For simplicity the "Short-Width-Journal-Bearing Theory" is used as a basis for finding the damping coefficients in this work, but the...

  15. Live-trapping and handling brown bear

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper reports techniques developed to live trap and handle brown bears on the Kodiak National Wildlife Refuge. The brown bears Ursus middendorffi on the Kodiak...

  16. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  17. Brown bear telemetry and trapping: Special report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Brown bear studies were continued during the 1967 field season with emphasis on development of techniques for instrumenting bears with radio transmitters and...

  18. Is tongue thrust that develops during orthodontic treatment an unrecognized potential road block?

    Directory of Open Access Journals (Sweden)

    Chawla H

    2006-06-01

    Full Text Available The role of tongue thrust has often been suspected, long debated and largely dispelled as a primary etiological factor of malocclusion. However, tongue thrust may contribute to poor occlusal intercuspation both during and after treatment. A tongue thrust may also develop during orthodontic mechanotherapy as a result of the transient creation of intra and interarch spaces and this little recognized phenomenon was found to occur in many randomly followed cases. In many instances, this seemingly adaptive and secondary response of the tongue posture and function may persist and thereafter impede the resolution of intra and interarch problems.

  19. A review of some exact solutions to the planar equations of motion of a thrusting spacecraft

    Science.gov (United States)

    Petropoulos, A. E.; Sims, J. A.

    2002-01-01

    With the complexities in computing optimal low thrust trajectories, easily-computed, good sub-optimal trajectories provide both a practical alternative for mission designers and a starting point for optimisation. The present paper collects in one place for easy reference and comparison several exact solutions that have been obtained in the literature over the last few decades: the logarithmic spiral, Pinkham's variant thereof, Forbes spiral, the exponential sinusoid, the case of constant radial thrust, Markopoulos's Keplerian thrust arcs, Lawden's spiral, and the analogous Bishop and Azimov spiral.

  20. A METHOD OF COMPUTER CALCULATION OF AXIAL THRUST AND INTERNAL LEAKAGE IN CENTRIFUGAL PUMPS

    Directory of Open Access Journals (Sweden)

    Waldemar J?dral

    1991-01-01

    Full Text Available A simple method of calculation of radial pressure distribution on a disc rotating in a casing and then the axial thrust in centrifugal pumps is presented. The method is based on integral relations and allows to estimate rapidly the axial thrust value with accuracy sufficient for technical applications (the error less than 15%. The method allows to compute simultaneously Internal leakage losses in centrifugal pumps. The presented method may also be useful for the calculation of the pressure distribution and the axial thrust in other rotating machines, such as compressors, gas turbines, water turbines, hydraulic torque convertors and paper-pulp mills.

  1. Tethered towing using open-loop input-shaping and discrete thrust levels

    Science.gov (United States)

    Jasper, Lee; Schaub, Hanspeter

    2014-12-01

    Asteroid retrieval, satellite servicing, and debris removal concepts often rely on a thrusting vehicle to redirect and steer a passive object. One effective way to tow the object is through a tether. This study employs a discretized tether model attached to six degree-of-freedom end bodies. To reduce the risk of a post-burn collision between the end bodies, discrete thrust input shaping profiles are considered including a Posicast input and a bang-off-bang thrust profile. These input shaping techniques attain desirable collision avoidance performance by inducing a tumbling or gravity gradient motion of the tethered formation. Their performance is compared to an earlier frequency notched thruster profile.

  2. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  3. Air Bearing Lift Pad (ABLP)

    Science.gov (United States)

    Dane, Dan H.; Blaise, Herman T.

    1968-01-01

    Typical air bearings float on air films of only a few thousandths of an inch and so will only operate above very smooth, even surfaces. For the mechanical simulation of space, the small drag of the bladder type air pads is much more than can be coped with, and the practicality of large floor areas being machined for precision air bearings is nonexistent. To enable operation above surfaces that undulate slightly or feature cracks and discontinuities, an ABLP has been developed. It consists of a rigid pad beneath which an inflatable bladder is mounted. The bladder is inflated with air which then escapes through passages into a cavity in the center of the bladder to produce the lifting energy. As the air escapes about the perimeter of the bladder, a certain degree of balance and equilibrium is imparted to the pad as it is able to move a limited weight across slightly uneven surfaces.

  4. 14 CFR 25.623 - Bearing factors.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 2010-01-01 false Bearing factors. 25.623 Section 25.623...Construction General § 25.623 Bearing factors. (a) Except as provided...pounding or vibration, must have a bearing factor large enough to provide...

  5. 14 CFR 27.623 - Bearing factors.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 2010-01-01 false Bearing factors. 27.623 Section 27.623...Construction General § 27.623 Bearing factors. (a) Except as provided...pounding or vibration, must have a bearing factor large enough to provide...

  6. 14 CFR 23.623 - Bearing factors.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 2010-01-01 false Bearing factors. 23.623 Section 23.623...and Construction § 23.623 Bearing factors. (a) Each part that has...pounding or vibration, must have a bearing factor large enough to provide...

  7. 14 CFR 29.623 - Bearing factors.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 2010-01-01 false Bearing factors. 29.623 Section 29.623...Construction General § 29.623 Bearing factors. (a) Except as provided...pounding or vibration, must have a bearing factor large enough to provide...

  8. Steels For Rolling-Element Bearings

    Science.gov (United States)

    Zaretsky, Erwin V.

    1988-01-01

    Bearing lives increased by attention to details of processing and applications. NASA technical memorandum discusses selection of steels for long-life rolling-element bearings. After brief review of advances in manufacturing, report discusses effect of cleanliness of bearing material on fatigue in rolling element. Also discusses fracture toughnesses of through-hardened and case-hardened materials.

  9. The vented pressure fed gas journal bearing

    International Nuclear Information System (INIS)

    Hydrodynamic-type gas journal bearings with stabilising venting slots are often operated hydrostatically during starting-up as a means of 'jacking'. A simplified mathematical treatment of the circumferential gas flows in a vented, pressure-fed journal bearing is used to predict the relationship between load capacity, bearing geometry and gas properties. (author)

  10. Passive Thermal Management of Foil Bearings

    Science.gov (United States)

    Bruckner, Robert J. (Inventor)

    2015-01-01

    Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.

  11. Cool Polar Bears: Dabbing on the Texture

    Science.gov (United States)

    O'Connell, Jean

    2011-01-01

    In this article, the author describes how her second-graders created their cool polar bears. The students used the elements of shape and texture to create the bears. They used Monet's technique of dabbing paint so as to give the bear some texture on his fur.

  12. Fractal analysis of polar bear hairs

    Directory of Open Access Journals (Sweden)

    Wang Qing-Li

    2015-01-01

    Full Text Available Hairs of a polar bear (Ursus maritimus are of superior properties such as the excellent thermal protection. Why do polar bears can resist such cold environment? The paper concludes that its fractal porosity plays an important role, and its fractal dimensions are very close to the golden mean, 1.618, revealing the possible optimal structure of polar bear hair.

  13. Fractal analysis of polar bear hairs

    OpenAIRE

    Wang Qing-Li; Li Zheng-Biao; Kong Hai-Yan; He Ji-Huan

    2015-01-01

    Hairs of a polar bear (Ursus maritimus) are of superior properties such as the excellent thermal protection. Why do polar bears can resist such cold environment? The paper concludes that its fractal porosity plays an important role, and its fractal dimensions are very close to the golden mean, 1.618, revealing the possible optimal structure of polar bear hair.

  14. 14 CFR 27.623 - Bearing factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Bearing factors. 27.623 Section 27.623... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.623 Bearing factors. (a) Except... subject to pounding or vibration, must have a bearing factor large enough to provide for the effects...

  15. 14 CFR 23.623 - Bearing factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Bearing factors. 23.623 Section 23.623... Bearing factors. (a) Each part that has clearance (free fit), and that is subject to pounding or vibration, must have a bearing factor large enough to provide for the effects of normal relative motion. (b)...

  16. 14 CFR 25.623 - Bearing factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Bearing factors. 25.623 Section 25.623... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.623 Bearing factors. (a) Except... subject to pounding or vibration, must have a bearing factor large enough to provide for the effects...

  17. 14 CFR 29.623 - Bearing factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Bearing factors. 29.623 Section 29.623... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.623 Bearing factors. (a... subject to pounding or vibration, must have a bearing factor large enough to provide for the effects...

  18. 49 CFR 229.64 - Plain bearings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  19. Development of sputtered techniques for thrust chambers, task 1. [evaluation of filler materials for regeneratively cooled thrust chambers

    Science.gov (United States)

    Mullaly, J. R.; Schmid, T. E.; Hecht, R. J.

    1974-01-01

    Filler materials proposed for use in the sputter fabrication regeneratively cooled thrust chambers were evaluated. Low melting castable alloys, CERROBEND. CERROCAST, and CERROTRU, slurry applied SERMETEL 481 and flame-sprayed aluminum were investigated as filler materials. Sputter deposition from a cylindrical cathode inverted magnestron was used to apply an OFHC copper closeout layer to filled OFHC copper ribbed-wall cylindrical substrates. The sputtered closeout layer structure was evaluated with respect to filler material contamination, predeposition machining and finishing operations, and deposition parameters. The application of aluminum by flame-spraying resulted in excessiver filler porosity. Though the outgassing from this porosity was found to be detrimental to the closeout layer structure, bond strengths in excess of 10,500 psi were achieved. Removal of the aluminum from the grooves was readily accomplished by leaching in a 7.0 molar solution of sodium hydroxide at 353 K. Of the other filler materials evaluated, CERROTRU was found to be the most suitable material with respect to completely filling the ribbed-wall cylinders and vacuum system compatibility. However, bond contamination resulted in low closeout layer bond strength with the CERROTRU filler. CERROBEND, CERROCAST, and SERMETEL 481 were found to be unacceptable as filler materials.

  20. Microstructural degradation of bearing steels

    OpenAIRE

    Solano Alvarez, Wilberth

    2015-01-01

    The aim of the work presented in this thesis is to clarify one of the most fundamental aspects of fatigue damage in bearings steels through critical experiments, in particular whether damage in the form of cracks precedes hard ?white-etching matter" formation, which is carbon supersaturated nanoscaled ferrite. Heat treatments have been designed to create four different crack types and distributions: scarce martensite plate cracks, fine grain boundary cracks, abundant martensite plate cracks, ...

  1. Rolling element bearings in space

    Science.gov (United States)

    Kannel, J. W.; Dufrane, K. F.

    1986-01-01

    Some of the advances in tribology that have been associated with aerospace mechanisms are discussed. The needs of aerospace have been the dominant forces leading to improvements in understanding and applying tribology technology. In the past two decades improvements in understanding bearing torque, elastohydrodynamic lubrication, lubricant distribution, cage stability, and transfer film lubricants have been made. It is anticipated that further developments will be made in response to future aerospace requirements.

  2. Load-bearing glass structures

    OpenAIRE

    Leskina, Yana

    2010-01-01

    The purpose of this thesis was prove the possibility of using glass in buildings as a load-bearing element. For centuries, its use is limited to functions such as window glazing. In recent decades, the improvement of science and industry has allowed the use glass as a structural element. However, the design of such structures is still problematic. The study was conducted at the architectural workshop "Studio 44" as an example of glass covering of courtyards in the reconstruction of the Ge...

  3. Bearing strength of lunar soil.

    Science.gov (United States)

    Jaffe, L. D.

    1971-01-01

    Bearing load vs penetration curves have been measured on a 1.3 g sample of lunar soil from the scoop of the Surveyor 3 soil mechanics surface sampler, using a circular indentor 2 mm in diameter. Measurements were made in an Earth laboratory, in air. This sample provided a unique opportunity to evaluate earlier, remotely controlled, in-situ measurements of lunar surface bearing properties. Bearing capacity, measured at a penetration equal to the indentor diameter, varied from 0.02-0.04 N/sq cm at bulk densities of 1.15 g/cu cm to 30-100 N/sq cm at 1.9 g/cu cm. Deformation was by compression directly below the indentor at bulk densities below 1.61 g/cu cm, by outward displacement at bulk densities over 1.62 g/cu cm. Preliminary comparison of in-situ remote measurements with those on returned material indicates good agreement if the lunar regolith at Surveyor 3 has a bulk density of 1.6 g/cu cm at 2.5 cm depth.

  4. Scaling laws for radial foil bearings

    Science.gov (United States)

    Honavara Prasad, Srikanth

    The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims to provide the upper and lower bounds for the developed scale laws in terms of the bearing diameter.

  5. The COSC-1 drill core - a geological sample through a hot allochthon and the underlying thrust zone

    Science.gov (United States)

    Lorenz, Henning; Almqvist, Bjarne; Berthet, Théo; Klonowska, Iwona

    2015-04-01

    The ICDP (International Continental Scientific Drilling Program) supported Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project has the aim to study mountain building processes in a major Paleozoic orogen. COSC-1, drilled in 2014 near Åre (Sweden), was planned to sample a section from the hot allochthon of the Lower Seve Nappe through the thrust zone and into the underlying less metamorphic rocks of the Särv and/or Jämtlandian nappes. Diamond core drilling operations resulted in 2396.0 m of drill core with only about 2.5 m documented core loss (technical failure of the core catcher). Down to about 1800 m, the COSC-1 drill hole penetrated a succession that is dominated by gneisses of varying compositions (felsic, amphibole, calc-silicate gneisses, and more), often garnet and diopside bearing. Meta-gabbros and amphibolites are common and apparently correlate well with seismic reflectors between 500 and 1000 m depth. Also marbles, pegmatite dykes and minor mylonites occur. These rocks are highly strained. Small scale structures (e.g. isoclinal folding) are occasionally discernible in the narrow section provided by the drill cores. (Young) Fractures are sparse. Only a set of very steep fractures results in fluid conduction zones at several levels throughout the drill hole. At 175 m and between 1200 and 1300 m, this results in the dissolution of calcite-rich bands in the gneisses to form "micro-karst". First signs of the thrust zone below the Seve Nappe appear just below 1700 m in form of narrow deformation bands and thin mylonites. The mylonites increase in thickness and reach a thickness of around 1 m between 1900 and 2000 m. Below c. 2100 m, mylonites are dominating and garnets become common (but are not present in all mylonites). The deepest rock of mafic origin (possibly amphibolite in the Seve Nappe) was identified at 2314 m, a transition from gneiss into lower grade metasedimentary rocks occurs between 2345 and 2360 m. The lower part of the drill core to TD is dominated by quartzites and meta-arkoses (field name) of unclear tectonostratigraphic position that are mylonitised to varying degree. The drill hole does not penetrate the base of the thrust zone. The rocks sampled in the lowermost part of the drill core are the thickest mylonites encountered, tens of metres thick and (again) rich in garnet. Geological conclusions with relevance to mountain building have to wait for detailed analysis of the drill core. However, direct observations are: - The gneisses of the Lower Seve Nappe are much more homogenous than expected. - Thick (hundreds of metres) mafic bodies (Arnbom 1980, and unpublished geological maps) are absent. The maximum thickness in the drill core is about 30 m. - The thrust zone below the Seve Nappe is much thicker than expected. After more than 500 m the lower boundary was not encountered. - The drill hole seems to leave the Seve Nappe and enter lower grade metamorphic rocks. However, the mylonites at the bottom of the drill hole contain many and large garnets (up to cm size).

  6. Improvement of journal bearing operation at heavy misalignment using bearing flexibility and compliant liners

    DEFF Research Database (Denmark)

    Thomsen, Kim; Klit, Peder

    2012-01-01

    A flexure journal bearing design is proposed that will improve operational behaviour of a journal bearing at pronounced misalignment. Using a thermoelastohydrodynamic model, it is shown that the proposed flexure journal bearing has vastly increased the hydrodynamic performance compared to the stiff bearing when misaligned. The hydrodynamic performance is evaluated on lubricant film thickness, pressure and temperature. Furthermore, the influence of a compliant bearing liner is investigated and it is found that it increases the hydrodynamic performance when applied to a stiff bearing, whereas the liner has practically no influence on the flexure journal bearing's performance.

  7. Improvement of journal bearing operation at heavy misalignment using bearing flexibility and compliant liners

    DEFF Research Database (Denmark)

    Thomsen, Kim; Klit, Peder

    2012-01-01

    A flexure journal bearing design is proposed that will improve operational behaviour of a journal bearing at pronounced misalignment. Using a thermoelastohydrodynamic model, it is shown that the proposed flexure journal bearing has vastly increased the hydrodynamic performance compared to the stiff...... bearing when misaligned. The hydrodynamic performance is evaluated on lubricant film thickness, pressure and temperature. Furthermore, the influence of a compliant bearing liner is investigated and it is found that it increases the hydrodynamic performance when applied to a stiff bearing, whereas the...... liner has practically no influence on the flexure journal bearing's performance....

  8. Calculation of the thrust of a wave-powered marine propelling device

    International Nuclear Information System (INIS)

    A scheme for calculating the thrust of a wave propelling device with limiters is proposed. The scheme can be extended to similar propelling devices with a more complex wing suspension or a more complex wing system

  9. Low-Cost and Light-Weight Transpiration-Cooled Thrust Chambers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort aims to evaluate the feasibility of using transpiration-cooled Titanium as the primary material in small-scale thrust chambers for in-space...

  10. rf power system for thrust measurements of a helicon plasma source

    Science.gov (United States)

    Kieckhafer, Alexander W.; Walker, Mitchell L. R.

    2010-07-01

    A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows good transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.

  11. rf power system for thrust measurements of a helicon plasma source

    International Nuclear Information System (INIS)

    A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows good transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.

  12. Low thrust chemical orbit to orbit propulsion system propellant management study

    Science.gov (United States)

    Dergance, R. H.; Hamlyn, K. M.; Tegart, J. R.

    1981-01-01

    Low thrust chemical propulsion systems were sized for transfer of large space systems from LEO to GEO. The influence of propellant combination, tankage and insulation requirements, and propellant management techniques on the LTPS mass and volume were studied. Liquid oxygen combined with hydrogen, methane or kerosene were the propellant combinations. Thrust levels of 445, 2230, and 4450 N were combined with 1, 4 and 8 perigee burn strategies. This matrix of systems was evaluated using multilayer insulation and spray-on-foam insulation systems. Various combinations of toroidal, cylindrical with ellipsoidal domes, and ellipsoidal tank shapes were investigated. Results indicate that low thrust (445 N) and single perigee burn approaches are considerably less efficient than the higher thrust level and multiple burn strategies. A modified propellant settling approach minimized propellant residuals and decreased system complexity, in addition, the toroid/ellipsoidal tank combination was predicted to be shortest.

  13. A reliability approach to machine tool bearings

    International Nuclear Information System (INIS)

    Based on the machine tool working characteristics, a method to determine the bearing dynamic load rating with a specified reliability is presented. Unlike the conventional methods for machine tool bearing design which are almost empirical, the proposed method is based on the bearing fatigue reliability. Also, unlike the common design methods of other industrial bearings which cannot consider the machine tool peculiarity, the obtained method is based on power and torque characteristics of machine tools. Designing the machine tool bearings by use of the method can obtain the expected reliability

  14. A motor with superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Superconducting bearings may be one of the most promising near term applications of HTSC. For use at liquid nitrogen temperature and below, they offer the advantage of lower energy consumption and higher reliability. Different bearing configurations have been proposed. But in order to substitute for conventional bearings a further increase in the critical current density of the superconductor and improved bearing concepts are necessary. For this it is necessary to take into account the peculiarities of the interaction between permanent magnets and bulk superconductors. As a contribution to this programme we present the model of a motor with superconducting magnetic bearings. (orig.)

  15. Design of optimal Earth pole-sitter transfers using low-thrust propulsion

    OpenAIRE

    j. Heiligers; Ceriotti, M.; C.R. McInnes; Biggs, J.D.

    2011-01-01

    Recent studies have shown the feasibility of an Earth pole-sitter mission using low-thrust propulsion. This mission concept involves a spacecraft following the Earth's polar axis to have a continuous, hemispherical view of one of the Earth's poles. Such a view will enhance future Earth observation and telecommunications for high latitude and polar regions. To assess the accessibility of the pole-sitter orbit, this paper investigates optimum Earth pole-sitter transfers employing low-thrust pro...

  16. Optimizing low-thrust and gravity assist maneuvers to design interplanetary trajectories

    OpenAIRE

    Vasile, Massimiliano; Bernelli-Zazzera, Franco

    2011-01-01

    In this paper a direct method based on a transcription by finite elements in time has been used to design optimal interplanetary trajectories, exploiting a combination of gravity assist maneuvers and low-thrust propulsion. A multiphase parametric approach has been used to introduce swing-bys, treated as coast phases between two thrusted or coasting trajectory arcs. Gravity maneuvers are at first modeled with a linked-conic approximation and then introduced through a full three-dimensional pro...

  17. Effects of Flat Slab Subduction on Andean Thrust Kinematics and Foreland Basin Evolution in Western Argentina

    Science.gov (United States)

    Horton, B. K.; Fuentes, F.; McKenzie, N. R.; Constenius, K. N.; Alvarado, P. M.

    2014-12-01

    Debate persists over the effects of flat-slab subduction on the kinematics of overriding plate deformation and the evolution of retroarc sedimentary basins. In western Argentina, major spatial and temporal variations in the geometry of the subducting Nazca slab since ~15 Ma provide opportunities to evaluate the late Cenozoic response of the Andean fold-thrust belt and foreland basin to subhorizontal subduction. Preliminary results from several structural and sedimentary transects spanning the frontal thrust belt and foreland basin system between 31°S and 35°S reveal Oligocene-middle Miocene hinterland exhumation during normal-slab subduction followed thereafter by progressive slab shallowing with initial rapid cratonward propagation of ramp-flat thrust structures (prior to basement-involved foreland uplifts) and accompanying wholesale exhumation and recycling of the early Andean foreland basin (rather than regional dynamic subsidence). Detrital zircon U-Pb geochronologic data prove instrumental for revealing shifts in thrust-belt exhumation, defining depositional ages within the foreland basin, and constraining the timing of activity along frontal thrust structures. In both the San Juan (31-32°S) and Malargüe (34-35°S) segments of the fold-thrust belt, geochronological results for volcaniclastic sandstones and syndeformational growth strata are consistent with a major eastward advance in shortening at 12-9 Ma. This episode of rapid thrust propagation precedes the reported timing of Sierras Pampeanas basement-involved foreland uplifts and encompasses modern regions of both normal- and flat-slab subduction, suggesting that processes other than slab dip (such as inherited crustal architecture, critical wedge dynamics, and arc magmatism) are additional regulators of thrust-belt kinematics and foreland basin evolution.

  18. Contemporary tectonics of the Himalayan frontal fault system: folds, blind thrusts and the 1905 Kangra earthquake

    Science.gov (United States)

    Yeats, Robert S.; Lillie, Robert J.

    The Sub-Himalayan fold-thrust belt consists of deformed late Cenozoic and older deposits south of the Main Boundary thrust (MBT). In Pakistan, east of the Indus River, the Sub-Himalaya comprises the Potwar Plateau and the Salt Range, which is thrust southward over the Jhelum River floodplain along the Salt Range thrust. Although an estimated 9-14 mm a -1 shortening has been taken up on the Salt Range thrust during the last 2 Ma, the range-front scarp does not show signs of recent faulting. Shortening may be shifting southward to the Lilla overpressured anticline, which rises from the Jhelum floodplain as a fault-propagation fold. Farther east, shortening is partitioned among several anticlines underlain by foreland- and hinterland-dipping blind thrusts. Southeast of the main deformation zone, the Pabbi Hills overpressured anticline is best explained as a fault-propagation fold. Throughout the Potwar Plateau and Salt Range, thrusts and folds rise from a basal décollement horizon in Eocambrian evaporites. The Pakistani part of the décollement horizon could generate large earthquakes only if these evaporites die out northward at seismogenic depths. In India and Nepal, the Sub-Himalaya is narrower, reflecting the absence of evaporites and a steeper slope of the basement towards the hinterland. The southern boundary of the Sub-Himalaya is the Himalayan Front fault, discontinuous because part of the shortening is expressed at the surface by folding. Broad, alluvial synclinal valleys (dun valleys) are bounded on the south by rising barrier anticlines of Siwalik molasse. The 1905 Kangra earthquake (M8) produced uplift on the Mohand anticline and the Dehra Dun Valley, suggesting that this earthquake occurred on a décollement horizon above basement, downdip from the fold. If so, the Kangra event is the largest known earthquake on a blind thrust expressed at the surface as a fold.

  19. A Control Approach for Thrust-Propelled Underactuated Vehicles and its Application to VTOL Drones

    OpenAIRE

    Hua, Minh-Duc; Hamel, Tarek; Morin, Pascal; Samson, Claude

    2009-01-01

    A control approach is proposed for a class of underactuated vehicles in order to stabilize reference trajectories either in thrust direction, velocity, or position. The basic modeling assumption is that the vehicle is propulsed via a thrust force along a single body-fixed direction and that it has full torque actuation for attitude control (i.e., a typical actuation structure for aircrafts, Vertical Take-Off and Landing (VTOL) vehicles, submarines, etc.). Additional assumptions on the externa...

  20. A METHOD OF COMPUTER CALCULATION OF AXIAL THRUST AND INTERNAL LEAKAGE IN CENTRIFUGAL PUMPS

    OpenAIRE

    Waldemar J?dral

    1991-01-01

    A simple method of calculation of radial pressure distribution on a disc rotating in a casing and then the axial thrust in centrifugal pumps is presented. The method is based on integral relations and allows to estimate rapidly the axial thrust value with accuracy sufficient for technical applications (the error less than 15%). The method allows to compute simultaneously Internal leakage losses in centrifugal pumps. The presented method may also be useful for the calculation of the pressure d...

  1. Orbital Maneuvers Using Low Thrust to Place a Satellite in a Constellation

    OpenAIRE

    Vivian Martins Gomes; Antonio Fernando Bertachini de Almeida Prado; Helio Koiti Kuga

    2007-01-01

    This paper considers the problem of low thrust suboptimal maneuvers to insert a satellite in a constellation. It is assumed that a satellite constellation is given with all the Keplerian elements of the satellite members having known values. Then, it is necessary to maneuver a new satellite from a parking orbit to its position in the constellation. The control available to perform this maneuver is the application of a low thrust to the satellite and the objective is to perform this maneuver w...

  2. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage

    OpenAIRE

    Hailer, F.; Kutschera, V.E.; Hallström, B.M.; Klassert, D.; Fain, S R; Leonard, Jennifer A.; Arnason, U.; Janke, A.

    2012-01-01

    Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pl...

  3. A prototype construction of bearing heater system

    International Nuclear Information System (INIS)

    A bearing heater system has been successfully constructed using transformer-like method of 1000 VA power, 220 V primary voltage, and 50 Hz electrical frequency. The bearing heater consists of primary coil 230 turns, U type and bar-type iron core with 36 cm2, 9 cm2 ,and 3 cm2 cross-section, and electrical isolation. The bearing heater is used to enlarge the diameter of the bearing so that it can be easily fixed on an electric motor shaft during replacement because the heating is conducted by treated the bearing as a secondary coil of a transformer. This bearing heater can be used for bearing with 3 and 6 cm of inner diameter and 12 cm of maximum outside diameter. (author)

  4. Upper crustal shortening and forward modeling of the Himalayan fold thrust belt along the Budhi-Gandaki River, central Nepal

    Science.gov (United States)

    Khanal, S.; Robinson, D. M.

    2009-12-01

    Geologic mapping along the Budhi-Gandaki River in central Nepal reveals 6 significant structures: 1) South Tibetan Detachment system; 2) Main Central thrust; 3) Ramgarh thrust; 4) Lesser Himalayan duplex including the Trishuli thrust; 5) Main Boundary thrust; and 6) Main Frontal thrust system. A balanced cross-section between the South Tibetan Detachment system and Main Frontal thrust reveals that the region has a minimum total shortening of 76% or 420 km. The breakdown of the accommodation of shortening on each thrust is as follows: Main Central thrust - 115 km; Ramgarh thrust - 120 km; Lesser Himalayan duplex including the Trishuli thrust - 156 km; Main Boundary thrust - 10 km; Main Frontal thrust system - 19 km. In order to validate the balanced cross-section, a reconstruction program was used to forward model the system. By moving faults with appropriate amounts of displacement over a reasonable configuration of undeformed stratigraphy from the hinterland to foreland, the deformation of the Himalayan thrust belt along the Budhi-Gandaki River cross-section is reproduced. The forward modeling program moves hanging wall rock over stationary footwall rock using each individual fault identified in the balanced cross-section. Hanging wall rock deforms as it is thrust over footwall structures. Using forward modeling, the cross-section has a shortening estimate of 412 km or 75%. The two shortening estimates are virtually identical indicating the balanced cross-section along the Budi-Gandaki River is viable and admissible. Keywords: Nepal Himalaya, Budhi-Gandaki River, Upper crustal shortening, Forward modeling

  5. Constraints on the tectonics of the Mule Mountains thrust system, southeast California and southwest Arizona

    Science.gov (United States)

    Tosdal, R.M.

    1990-01-01

    The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in this Blythe-Quartzsite region. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust N-NE (015??-035??) over a lower plate metamorphic terrane. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic(?) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79??2 Ma and 70??4 Ma. Results suggest that the thrust system forms the southern boundary of the narow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling. -from Author

  6. Fluvial Terraces Deformation Induced by Thrust Faulting : an Experimental Approach to Better Estimate Crustal Shortening Velocities

    Science.gov (United States)

    Dominguez, S.; Malavieille, J.; Avouac, J. P.

    2003-04-01

    We present structural models based on quantitative sandbox experiments, performed using video processing techniques, to study surface ground deformation associated to thrust fault propagation. Accurate correlation of CCD camera pictures and laser interferometry technique allows detailed displacement field measurements in planar view and in cross section during model deformation. We use this approach to improve the empirical mechanical models of deformation that are generally used to derive fault slip rate from fluvial terraces uplift amplitude. We test different thrust fault geometries and material rheology in frontal convergence to analyze the deformation of passive morphological markers analog to abandoned fluvial terraces. One of the main results of this work is that the kinematics relations between fault slip and surface deformation strongly evolves during thrust fault activity and that different stages can be discriminated. This evolution is related to changes in fault geometry during thrust fault localization and propagation. The fault plane evolves from diffuse conjugated shear bands associated to the forward propagation of the basal décollement to a localized flat fault plane that progressively deform into a sigmoid shape. Material rheology and sedimentation/erosion process can also play a significant role and have to be taken into account. The results are applied to field observations from the northern and southern piedmont of the Chinese Tien-Shan range where quaternary fluvial terraces are deformed by active thrust faults and fault propagation folds. Holocene crustal shortening rates are estimated combining experimental results and structural observations, including thrust fault geometry and rheology of the sedimentary sequence.

  7. Fold development related to contractional salt tectonics: Southeastern Pyrenean thrust front, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Sans, M.; Verges, J. [Universitat de Barcelona (Spain)

    1996-12-31

    In the outermost region of the southeastern Pyrenees, a suite of thrusted folds detach above an upper Eocene salt that was about 300 m thick before deformation. The foremost anticlines formed during the Oligocene and represent a small amount of shortening. In map view; they display a relay pattern slightly oblique to the margin of the salt layer, where deformation stops. The three-dimensional edge effects caused by the pinch-out of the Cardona salt play an important role in the development of the frontal structures in the southeastern Pyrenees. Fold evolution has been reconstructed by interpreting variations along the strike of the folds as an indicator of deformation sequence. Where the sedimentary pile contains an upper detachment, thrusts developed fishtail geometries in which thrusts of alternating vergence were stacked up. Where an upper detachment is lacking, a thrusted anticline formed, into whose core salt migrated during the early phases of folding. Whether or not an upper detachment is present, anticlines continued to amplify during and after thrusting. Folding blocked further slip on some thrusts and promoted the development of pop-up structures.

  8. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears.

    Science.gov (United States)

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-03-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. PMID:25490862

  9. Conditioning of alpha bearing wastes

    International Nuclear Information System (INIS)

    Alpha bearing wastes are generated during the reprocessing of spent fuel, mixed oxide fuel fabrication, decommissioning and other activities. The safe and effective management of these wastes is of particular importance owing to the radiotoxicity and long lived characteristics of certain transuranic (TRU) elements. The management of alpha bearing wastes involves a number of stages which include collection, characterization, segregation, treatment, conditioning, transport, storage and disposal. This report describes the currently available matrices and technologies for the conditioning of alpha wastes and relates them to their compatibility with the other stages of the waste management process. The selection of a specific immobilization process is dependent on the waste treatment state and the subsequent handling, transport, storage and disposal requirements. The overall objectives of immobilization are similar for all waste producers and processors, which are to produce: (a) Waste forms with sufficient mechanical, physical and chemical stability to satisfy all stages of handling, transport and storage (referred to as the short term requirements), and (b) Waste forms which will satisfy disposal requirements and inhibit the release of radionuclides to the biosphere (referred to as the long term requirements). Cement and bitumen processes have already been successfully applied to alpha waste conditioning on the industrial scale in many of the IAEA Member States. Cement systems based on BFS and pozzolanic cements have emerged as the principal encapsulation matrices for the full range of alpha bearing wastes. Alternative technologies, such as polymers and ceramics, are being developed for specific waste streams but are unlikely to meet widespread application owing to cost and process complexity. The merits of alpha waste conditioning are improved performance in transport, storage and disposal combined with enhanced public perception of waste management operations. These factors need to be assessed in relation to the economic and radiological implications of conditioning. 104 refs, 26 figs, 17 tabs

  10. Mechanical Initiation and Propagation Mechanism of a Thrust Fault: A Case Study of the Yima Section of the Xiashi-Yima Thrust (North Side of the Eastern Qinling Orogen, China)

    Science.gov (United States)

    Cai, Wu; Dou, Linming; Li, Zhenlei; He, Jiang; He, Hu; Ding, Yanlu

    2015-09-01

    Thrust faults exist extensively in nature, and their activities often cause earthquakes and disasters involving underground engineering, such as the May 12, 2008 Wenchuan Earthquake; the April 20, 2013 Ya'an Earthquake; and the Nov. 3, 2011 Yima Qianqiu Coal-Mining Accident in China. In this paper, the initiation and propagation of a thrust are discussed from a mechanical viewpoint using fault mechanics and fault-slip analysis, taking as an example the Yima section of the Xiashi-Yima thrust (north side of the eastern Qinling Orogen, China). The research primarily focuses on the stress field and the formation trajectory of the thrust and the genesis of the large-scale inversion thrust sheet. The results show that the thrust results from failures in the compressive deformation state and that its stress state is entirely compressive shear. The rupture trajectory of the thrust develops upward, and the fault fracture zone forms similarly to a listric fault, up-narrow and down-wide. The model results and the genesis of the large-scale inversion thrust sheet are consistent with in situ exploration observations. This investigation can be extended to other thrust faults with similar characteristics, particularly for the design of mining operations in tectonic-active areas. Moreover, this research can be used to further study the mechanism of thrust faults and provide support for the feasibility of using fault-slip analysis to assess fault stability.

  11. Dutch climate policy. Main thrust, background and basic choices

    International Nuclear Information System (INIS)

    In 1994, the Dutch government signed bilateral Sustainable Development Agreements (SDA) with the governments of Bhutan, Benin and Costa Rica. These agreements, based on reciprocity, equality and participation, have been designed with the aim of developing new forms of North-South cooperation. One of the projects being implemented under the terms of the agreements is a workshop on Dutch climate policy, to be organised by the four SDA partners. The aim of the workshop is to transfer Dutch policy background and at the same time spur critical debate. The present document is to serve as the basic discussion paper at the workshop. The aim of this paper is to describe the main thrust and background of Dutch climate policy and its implicit basic choices. It is these choices that ultimately determine the terms of such a policy and provide the most relevant starting point for a critical dialogue. The information in this paper is based on related government policy documents and the sources on which these are based. The central focus of this paper is climate policy in the Netherlands. It is obviously not Dutch society as a whole that is participating in international discussions or putting policy into place, but the Dutch government, as its representative. It may well be the case that adequate public support exists for reducing the risks of climate change, but that such support is lacking when it comes to the concrete policy measures deemed necessary by the government. Furthermore, Dutch citizens may engage in a variety of activities which are of influence on greenhouse gas emissions - e.g. buying certain consumer products - but which are difficult for the government to control, because of international trade agreements, for example. For the purposes of the workshop, though, we take it that the Dutch government, as the elected representative of the Dutch population and discussion partner of the SDA countries, can also be addressed when it comes to public support and activities of the populace on which the government can exert little or no influence. Second, opinions within Dutch society regarding appropriate climate policy are not homogeneous but diverse. There is wide range of opinions and interests - economic and ecological, among others - impacting in the public arena, and Dutch government policy is consequently the outcome of the balance existing at a particular moment in time. Alongside the perspective embodied in official Dutch policy and reviewed in this paper, then, there also exist other visions on climate policy and climate change in the Netherlands

  12. Fail-Safe Operation of a High-Temperature Magnetic Bearing Investigated for Gas Turbine Engine Applications

    Science.gov (United States)

    Choi, Benjamin B.; Montague, Gerald T.

    2002-01-01

    The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed a three-axis high-temperature magnetic bearing suspension rig to enhance the safety of the bearing system up to 1000 F. This test rig can accommodate thrust and radial bearings up to a 22.84 cm (9 in.) diameter with a maximum axial loading of 22.25 kN (5000 lb) and a maximum radial loading up to 4.45 kN (1000 lb). The test facility was set up to test magnetic bearings under high-temperature (1100 F) and high-speed (20,000 rpm) conditions. The magnetic bearing is located at the center of gravity of the rotor between two high-temperature grease-packed mechanical ball bearings. The drive-end duplex angular contact ball bearing, which is in full contact, acts as a moment release and provides axial stability. The outboard end ball bearing has a 0.015-in. radial clearance between the rotor to act as a backup bearing and to compensate for axial thermal expansion. There is a 0.020-in. radial air gap between the stator pole and the rotor. The stator was wrapped with three 1-kW band heaters to create a localized hot section; the mechanical ball bearings were outside this section. Eight threaded rods supported the stator. These incorporated a plunger and Bellville washers to compensate for radial thermal expansion and provide rotor-to-stator alignment. The stator was instrumented with thermocouples and a current sensor for each coil. Eight air-cooled position sensors were mounted outside the hot section to monitor the rotor. Another sensor monitored this rotation of the outboard backup bearing. Ground fault circuit interrupts were incorporated into all power amplifier loops for personnel safety. All instrumentation was monitored and recorded on a LabView-based data acquisition system. Currently, this 12-pole heteropolar magnetic bearing has 13 thermal cycles and over 26 hr of operation at 1000 F.

  13. Seismic isolation rubber bearings for nuclear facilities

    International Nuclear Information System (INIS)

    This paper describes results of biaxial breaking tests by compression and shear and by tension and shear for seismic isolation rubber bearings with bolted-type connections. The bearings used in the tests were low-damping rubber bearings, high-damping rubber bearings, and lead-rubber bearings. Three modes of failure of the bolted-type bearings were observed in the tests. They are the breaking failure by tension and shear; the breaking failure by compression and shear; and the buckling failure by compression and shear. The first and the second modes of failures are almost independent of the types and the sizes of the bearings. The breaking conditions of those failure modes are described in the axial-stress-shear-strain plane. This expression is useful for the evaluation of safety margins of the bearings. The paper outlines the basic design of the nuclear-grade bearings which were used for large-scale rubber bearing tests in a research project for seismic isolation of FBR plants. It also discusses the protection method against aging and the quality control which are important for implementation. (orig./HP)

  14. Seismic isolation rubber bearings for nuclear facilities

    International Nuclear Information System (INIS)

    This paper describes results of biaxial breaking tests by compression and shear and by tension and shear for seismic isolation rubber bearings with bolted-type connections. The bearings used in the tests were low-damping rubber bearings, high-damping rubber bearings, and lead-rubber bearings. Three modes of failure of the bolted-type bearings were observed in the tests. They are the breaking failure by tension and shear; the breaking failure by compression and shear; and the buckling failure by compression and shear. The first and the second modes of failures are almost independent of the types and the sizes of the bearings. The breaking conditions of those failure modes are described in the axial stress-shear strain plane. This expression is useful for the evaluation of safety margins of the bearings. The paper outlines the basic design of the nuclear-grade bearings which were used for large-scale rubber bearing tests in a research project for seismic isolation of fast breeder reactor (FBR) plants. The paper also discusses the protection method against aging and the quality control which are important for implementation

  15. Interference Fit Life Factors for Roller Bearings

    Science.gov (United States)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2008-01-01

    The effect of hoop stresses in reducing cylindrical roller bearing fatigue life was determined for various classes of inner ring interference fit. Calculations were performed for up to seven interference fit classes for each of ten bearing sizes. Each fit was taken at tightest, average and loosest values within the fit class for RBEC-5 tolerance, thus requiring 486 separate analyses. The hoop stresses were superimposed on the Hertzian principal stresses created by the applied radial load to calculate roller bearing fatigue life. The method was developed through a series of equations to calculate the life reduction for cylindrical roller bearings based on interference fit. All calculated lives are for zero initial bearing internal clearance. Any reduction in bearing clearance due to interference fit was compensated by increasing the initial (unmounted) clearance. Results are presented as tables and charts of life factors for bearings with light, moderate and heavy loads and interference fits ranging from extremely light to extremely heavy and for bearing accuracy class RBEC 5 (ISO class 5). Interference fits on the inner bearing ring of a cylindrical roller bearing can significantly reduce bearing fatigue life. In general, life factors are smaller (lower life) for bearings running under light load where the unfactored life is highest. The various bearing series within a particular bore size had almost identical interference fit life factors for a particular fit. The tightest fit at the high end of the RBEC-5 tolerance band defined in ANSI/ABMA shaft fit tables produces a life factor of approximately 0.40 for an inner-race maximum Hertz stress of 1200 MPa (175 ksi) and a life factor of 0.60 for an inner-race maximum Hertz stress of 2200 MPa (320 ksi). Interference fits also impact the maximum Hertz stress-life relation.

  16. Performance characteristics of two multiaxis thrust-vectoring nozzles at Mach numbers up to 1.28

    Science.gov (United States)

    Wing, David J.; Capone, Francis J.

    1993-01-01

    The thrust-vectoring axisymmetric (VA) nozzle and a spherical convergent flap (SCF) thrust-vectoring nozzle were tested along with a baseline nonvectoring axisymmetric (NVA) nozzle in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0 to 1.28 and nozzle pressure ratios from 1 to 8. Test parameters included geometric yaw vector angle and unvectored divergent flap length. No pitch vectoring was studied. Nozzle drag, thrust minus drag, yaw thrust vector angle, discharge coefficient, and static thrust performance were measured and analyzed, as well as external static pressure distributions. The NVA nozzle and the VA nozzle displayed higher static thrust performance than the SCF nozzle throughout the nozzle pressure ratio (NPR) range tested. The NVA nozzle had higher overall thrust minus drag than the other nozzles throughout the NPR and Mach number ranges tested. The SCF nozzle had the lowest jet-on nozzle drag of the three nozzles throughout the test conditions. The SCF nozzle provided yaw thrust angles that were equal to the geometric angle and constant with NPR. The VA nozzle achieved yaw thrust vector angles that were significantly higher than the geometric angle but not constant with NPR. Nozzle drag generally increased with increases in thrust vectoring for all the nozzles tested.

  17. Thrust wedges with décollement levels and syntectonic erosion: A view from analog models

    Science.gov (United States)

    Konstantinovskaya, E.; Malavieille, J.

    2011-04-01

    Analog sandbox models have been set up to study the impact of syntectonic erosion on thrust wedges with one and two décollement levels. Different accretion mechanisms are activated depending on interactions between surface processes and wedge mechanics: frontal accretion, backthrusting, underthrusting and underplating due to décollement induced duplex formation at depth. These mechanisms may function simultaneously, being located at different parts across the wedge. For all the experiments, a high friction is imposed at the base of models and the volume of eroded material remains equal to the volume of newly accreted material, maintaining a constant surface slope during the shortening. Erosion limits the forward propagation of thrust wedges and favors the underthrusting of basal layers allowing duplex formation. Erosion promotes development of major backthrusts in the thrust wedges without or with one décollement, but no backthrusts was formed in the wedges with two décollements. Slow erosion allows lower extent of basal underthrusting in comparison with regular-rate erosion. Variations in the erosion taper lead to changes in duplex geometry and exhumation rate in thrust wedges with one or two décollements. The 6° erosion taper promotes formation of antiformal stack at the rear part of thrust wedge, high rate of basal underthrusting and high extent of erosional removal. The cover layers are nearly completely eroded above the antiformal stack and form the synformal klippe in frontal part of thrust wedges. The 8° erosion taper allows development of individual ramp-anticlines and active forward thrusting of cover layers above the décollement and low rate of basal underplating below it, with consequent low extent of erosional removal. The results of our experiments support the observations on structural evolution and erosion in the Alberta Foothills of the Canadian Rockies.

  18. Active thrusting within the Himalayan orogenic wedge in the Kashmir Himalayas

    Science.gov (United States)

    Gavillot, Y.

    2011-12-01

    Numerous lines of evidence indicate that significant distributed deformation occurs within the Himalayan fold-thrust belt. Active thrust faults lie as much as 100 km north of the active thrust front. Whereas geochemical and topographical data provide circumstantial evidence for internal deformation in Nepal, new mapping demonstrates that an active emergent thrust fault system extends stepwise from the Balakot-Bagh fault (source of the Mw 7.6 2005 Kashmir earthquake in Pakistan) more than 200 km to the southeast on the Riasi fault (RT). The RT with a fault length of ~70 km, is a ~50° northeast-dipping reverse fault system, which sits ~40 km north of the deformation front in the Kashmiri Himalaya of northwest India. Our mapping demonstrates that the Riasi thrust consists of two strands. The northern strand, Main Riasi thrust (MRT) strand, places Precambrian Sirban Limestone on folded unconsolidated (Pleistocene?) conglomerates. Undeformed younger alluvial deposits (Holocene?) overlyie the MRT, which implies no Holocene (?) surface rupture on this strand. To the south, the surface expression of the Riasi frontal thrust (RFT) includes a fault scarp and offset ~10 ka terrace deposits dated with 36CL depth profiles. OSL and 10Be depth profile dating indicate an age range between ~80 ka to ~30 ka for the Bidda terrace in the upper plate of the MRT, yielding estimates of long-term uplift rate of 5.0 ± 2.2 mm/yr, slip rate of 6.4 ± 2.9 mm/yr, and shortening rate of 4.1 ± 1.9mm/yr. Given a ~34 mm/yr India-Asia convergence rate in the NW Himalaya, our results indicate that internal deformation within the orogenic belt accounts for at least ~10% of the total India-Eurasia plate convergence, with remaining shortening absorbed mainly at the deformation front.

  19. Two High-Temperature Foil Journal Bearings

    Science.gov (United States)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  20. Low-friction coatings for air bearings in fuel cell air compressors

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O. O.; Fenske, G. R.; Erdemir, A.; Woodford, J.; Sitts, J.; Elshot, K.; Griffey, K.

    2000-01-06

    In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the US Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. The authors present here an evaluation of the Argonne coating for air compressor thrust bearings. With two parallel 440C stainless steel discs in unidirectional sliding contact, the NFC reduced the frictional force four times and the wear rate by more than two orders of magnitude. Wear mechanism on the uncoated surface involved oxidation and production of iron oxide debris. Wear occurred on the coated surfaces primarily by a polishing mechanism.

  1. Nonlinear Dynamic Response of Compliant Journal Bearings

    OpenAIRE

    Glavatskih S.; Cha M.

    2012-01-01

    This paper investigates the dynamic response of the compliant tilting pad journal bearings subjected to synchronous excitation. Bearing compliance is affected by the properties of pad liner and pad support geometry. Different unbalance eccentricities are considered. It is shown that bearing dynamic response is non-linear. Journal orbit complexity increases with pad compliance though the orbit amplitudes are marginally affected at low loads. At high loads, the journal is forced to operate outs...

  2. Bearing Health Assessment Based on Chaotic Characteristics

    OpenAIRE

    Chen Lu; Qian Sun; Laifa Tao; Hongmei Liu; Chuan Lu

    2013-01-01

    Vibration signals extracted from rotating parts of machinery carry a lot of useful information about the condition of operating machine. Due to the strong non-linear, complex and non-stationary characteristics of vibration signals from working bearings, an accurate and reliable health assessment method for bearing is necessary. This paper proposes to utilize the selected chaotic characteristics of vibration signal for health assessment of a bearing by using self-organizing map (SOM). Both Gra...

  3. Grizzly bear diet shifting on reclaimed mines

    OpenAIRE

    Bogdan Cristescu; Stenhouse, Gordon B.; Boyce, Mark S.

    2015-01-01

    Industrial developments and reclamation change habitat, possibly altering large carnivore food base. We monitored the diet of a low-density population of grizzly bears occupying a landscape with open-pit coal mines in Canada. During 2009–2010 we instrumented 10 bears with GPS radiocollars and compared their feeding on reclaimed coal mines and neighboring Rocky Mountains and their foothills. In addition, we compared our data with historical bear diet for the same population collected in 2001–2...

  4. Effect of Rolling Bearing Refurbishment and Restoration on Bearing Life and Reliability

    Science.gov (United States)

    Zaretsky, Erwin V.; Branzai, Emanuel V.

    2005-01-01

    For nearly four decades it has been a practice in commercial and military aircraft application that rolling-element bearings removed at maintenance or overhaul be reworked and returned to service. The work presented extends previously reported bearing life analysis to consider the depth (Z(45)) to maximum shear stress (45) on stressed volume removal and the effect of replacing the rolling elements with a new set. A simple algebraic relationship was established to determine the L(10) life of bearing races subject to bearing rework. Depending on the extent of rework and based upon theoretical analysis, representative life factors (LF) for bearings subject to rework ranged from 0.87 to 0.99 the lives of new bearings. Based on bearing endurance data, 92 percent of the bearing sets that would be subject to rework would result in L(10) lives equaling and/or exceeding that predicted for new bearings with the remaining 8 percent having the potential to achieve the analytically predicted life of new bearings when one of the rings is replaced at rework.. The potential savings from bearing rework varies from 53 to 82 percent that of new bearings depending on the cost, size and complexity of the bearing.

  5. Technical Development Path for Foil Gas Bearings

    Science.gov (United States)

    DellaCorte, Christopher

    2008-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  6. Thrust-induced consanguinity in diverse genetic types of uranium deposits: North American and other examples

    International Nuclear Information System (INIS)

    In comparison with the genesis of most mineral deposits, the tandem of source, transport, and precipitation has been given particular attention in the study of uranium metallogeny. Of these, transport is the member which has seen perhaps only a one-sided scrutiny. In the past, research has focused on the physico-chemical aspects of the fluids, with the structural environments through which the fluids advance remaining less specified. It is the tectonics s.1. which provides the link between the metal sources and the eventual area of precipitation. This paper centers on thrusts as a particularly important type of structural deformation. The combinations of differing permeabilities and varying fluids contents and compositions within the thrust-bound blocks with specific types of thermal gradients have led to increased anisotropy and triggering of the formation of localized hydrothermal cells. Sources of various kinds, variable lithologies, differing stratigraphies and distinct metamorphic grade could all be involved within the thrust domain. Obviously, these diverse environments produce or substantially contribute to the contrasting and numerous ''genetic'' types of uranium deposits: conglomeratic, albitite, unconformity, intra- and peribatholitic, etc. The differing genetic types of deposits might be seen as converging to some degree through the involvement of more universal processes, as for example by a unifying metallotect: the thrust. Thrusts, therefore represent particular controlling structures and targets (s.1.) in uranium exploration. (author). 49 refs, 2 figs

  7. Thrust generation by a heaving flexible foil: Resonance, nonlinearities, and optimality

    Science.gov (United States)

    Paraz, Florine; Schouveiler, Lionel; Eloy, Christophe

    2016-01-01

    Flexibility of marine animal fins has been thought to enhance swimming performance. However, despite numerous experimental and numerical studies on flapping flexible foils, there is still no clear understanding of the effect of flexibility and flapping amplitude on thrust generation and swimming efficiency. Here, to address this question, we combine experiments on a model system and a weakly nonlinear analysis. Experiments consist in immersing a flexible rectangular plate in a uniform flow and forcing this plate into a heaving motion at its leading edge. A complementary theoretical model is developed assuming a two-dimensional inviscid problem. In this model, nonlinear effects are taken into account by considering a transverse resistive drag. Under these hypotheses, a modal decomposition of the system motion allows us to predict the plate response amplitude and the generated thrust, as a function of the forcing amplitude and frequency. We show that this model can correctly predict the experimental data on plate kinematic response and thrust generation, as well as other data found in the literature. We also discuss the question of efficiency in the context of bio-inspired propulsion. Using the proposed model, we show that the optimal propeller for a given thrust and a given swimming speed is achieved when the actuating frequency is tuned to a resonance of the system, and when the optimal forcing amplitude scales as the square root of the required thrust.

  8. Capture of near-Earth objects with low-thrust propulsion and invariant manifolds

    Science.gov (United States)

    Tang, Gao; Jiang, Fanghua

    2016-01-01

    In this paper, a mission incorporating low-thrust propulsion and invariant manifolds to capture near-Earth objects (NEOs) is investigated. The initial condition has the spacecraft rendezvousing with the NEO. The mission terminates once it is inserted into a libration point orbit (LPO). The spacecraft takes advantage of stable invariant manifolds for low-energy ballistic capture. Low-thrust propulsion is employed to retrieve the joint spacecraft-asteroid system. Global optimization methods are proposed for the preliminary design. Local direct and indirect methods are applied to optimize the two-impulse transfers. Indirect methods are implemented to optimize the low-thrust trajectory and estimate the largest retrievable mass. To overcome the difficulty that arises from bang-bang control, a homotopic approach is applied to find an approximate solution. By detecting the switching moments of the bang-bang control the efficiency and accuracy of numerical integration are guaranteed. By using the homotopic approach as the initial guess the shooting function is easy to solve. The relationship between the maximum thrust and the retrieval mass is investigated. We find that both numerically and theoretically a larger thrust is preferred.

  9. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    Science.gov (United States)

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  10. Engineering Research and Development and Technology thrust area report FY92

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R.T.; Minichino, C. [eds.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  11. Blowdown thrust force and pipe whip analyses of large diameter pipes under LWR LOCA conditions

    International Nuclear Information System (INIS)

    An instantaneous pipe rupture is postulated as a hypothetical accident in the design of the nuclear power plants. The ruptured pipe at double ended guillotine break would move rapidly and impact surrounding structures. This dynamic motion is called a pipe whip. Pipe whip restraints and other protective structures are installed to limit the pipe whip motion in the nuclear power plants. In order to design such protective structures, it is necessary to evaluate the blowdown thrust force for a ruptured large diameter pipe under the loss of coolant accident (LOCA) conditions. The present paper shows (1) the verification of the thermal-hydraulic analysis code RELAP4/MOD6 and its post-processor BLOWDOWN for the blowdown thrust force analysis under both BWR and PWR LOCA conditions by comparison between analytical and experimental results. (2) pipe whip analysis of an 8 inch diameter pipe using the general purpose finite element code ADINA with analytical blowdown thrust force under PWR LOCA conditions, and (3) blowdown thrust force analyses for various diameters of pipes under both BWR and PWR LOCA conditions. The jet discharge and the pipe whip tests were carried out using 4, 6 and 8 inch pipes at the Japan Atomic Energy Research Institute (JAERI). BLOWDOWN was developed to calculate blowdown thrust force at JAERI in 1981

  12. High-speed engine/component performance assessment using exergy and thrust-based methods

    Science.gov (United States)

    Riggins, D. W.

    1996-01-01

    This investigation summarizes a comparative study of two high-speed engine performance assessment techniques based on energy (available work) and thrust-potential (thrust availability). Simple flow-fields utilizing Rayleigh heat addition and one-dimensional flow with friction are used to demonstrate the fundamental inability of conventional energy techniques to predict engine component performance, aid in component design, or accurately assess flow losses. The use of the thrust-based method on these same examples demonstrates its ability to yield useful information in all these categories. Energy and thrust are related and discussed from the stand-point of their fundamental thermodynamic and fluid dynamic definitions in order to explain the differences in information obtained using the two methods. The conventional definition of energy is shown to include work which is inherently unavailable to an aerospace Brayton engine. An engine-based energy is then developed which accurately accounts for this inherently unavailable work; performance parameters based on this quantity are then shown to yield design and loss information equivalent to the thrust-based method.

  13. Engineering Research and Development and Technology thrust area report FY92

    International Nuclear Information System (INIS)

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering

  14. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    Science.gov (United States)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  15. R+D works for the further development of high temperature reactors. (1) Captive bearing experiments for active magnetic bearings. (2) Captive bearing test for HTR blowers

    International Nuclear Information System (INIS)

    When using active magnetic bearings as blower shaft bearings, blower motors and bearings must be protected against mechanical damage in case of faults (example: total electrical supply failure due to the supply cables breaking). So-called captive bearings are provided, in order to be able to shut the blowers down safely in such faults. These captive bearings are roller bearings which are additionally fitted in the area of the blower shaft bearings, to prevent mechanical contact between the blower rotor and stator. As there was little experience available for the given boundary conditions, such as - speed, - acceleration, - bearing load, - bearing dimensions, - ambient conditions, appropriate development and tests had to be carried out. It was important to determine suitable captive bearings and the necessary ambient conditions, which will make it possible to support the failures of the magnetic bearings to be expected in 40 years' operation of the reactor without damage and to meet the requirements of the captive bearings. (orig./GL)

  16. Gearbox Reliability Collaborative Bearing Calibration

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.

    2011-10-01

    NREL has initiated the Gearbox Reliability Collaborative (GRC) to investigate the root cause of the low wind turbine gearbox reliability. The GRC follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. At the core of the project are two 750kW gearboxes that have been redesigned and rebuilt so that they are representative of the multi-megawatt gearbox topology currently used in the industry. These gearboxes are heavily instrumented and are tested in the field and on the dynamometer. This report discusses the bearing calibrations of the gearboxes.

  17. Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust Axial-Flow Turbojet Engine. II - Operational Characteristics. II; Operational Characteristics

    Science.gov (United States)

    Fleming, William A.

    1948-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.

  18. Long-term bearing wear tests of conventional journal bearings and development of hydrostatic bearings for the LOFT drag-disc turbine transducer

    International Nuclear Information System (INIS)

    The details of a two-year development program concerning materials for use as turbine bearings in a pressurized water reactor environment are reported. Two types of bearings have been examined, both conventional journal bearings and hydrostatic bearings. The results of long-term bearing wear tests conducted at 590 K and 15.1 MPa in water are presented. The feasibility of using hydrostatic bearings for the same transducer is demonstrated

  19. Journal bearing performance and metrology issues

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2009-01-01

    Full Text Available Purpose: In this paper, a radial clearance of a journal bearings and the metrology of the radial clearance measurement is described.Design/methodology/approach: In this experimental study out-of-roundness and radial clearance of journal bearings were measured with high precision and the impact of their metrology was examined on the specific oil film thickness of the bearing. Some metrological issues were emerged and these should be taken into account when bearings are designed.Findings: An investigation showed that the radial clearance measurements can vary from one measuring device to another and the specified clearance may not necessarily meet the design criteria of specific oil film thickness. The study indicates that the radial clearance measurement can differ from one measuring device to another depending upon the precision that can be achieved by the device. The radius of the bearing or the shaft also varies along the circumference, mainly due to out-of-roundness. The out-of-roundness contributes to the error in radial clearance measurement and hence similar to the cut off length specified with the surface roughness, the out-of-roundness needs to be specified with the radial clearance.Practical implications: The radial clearance of a journal bearing is a key design parameter and bearing performance mainly depends upon this parameter. In this paper was showed that the metrology of the radial clearance measurement plays a significant role and not only that the bearing manufacturer or the user of the bearing is aware of this fact but the bearing designer must also take this fact into account while designing bearingsOriginality/value: This paper showed that The radial clearance is a sensitive micro-geometry parameter and hence metrology plays a vital role in making decisions

  20. Active hydrostatic bearing with magnetorheological fluid

    Science.gov (United States)

    Hesselbach, J.; Abel-Keilhack, C.

    2003-05-01

    Special bearings based on magnetic fluids are well known in literature. These bearings use the magnetic pressure inside a ferrofluid that is exposed to a magnetic field. The biggest disadvantage of this principle is the small load that can be supported. In one reference [B. M. Berkovsky, V. F. Medvedev, and M. S. Krakov, Magnetic Fluids, Engineering Applications (Oxford University Press, Oxford, 1993)], the specific load is specified as 1 N cm-2. To support heavy loads very large support areas are needed. We will present a completely different concept for bearings with magnetorheological fluids. Hydrostatic bearings get their load bearing capacity from the hydrostatic pressure produced by an external pump and should not be confused with hydrodynamic bearings presented in another reference [R. Patzwald, M. S. thesis, Institute für Werkzeugmaschinen und Fabrikbetrieb, Technische Universität, Berlin (2001)]. The main disadvantage of hydrostatic bearings is that the bearing gap varies with the payload. Conventional systems compensate for these variations with a change of the oil flow rate, that is done, for example, by external valves. Our contribution will present a hydrostatic bearing that uses magnetorheological fluids. Due to the fact that magnetorheological fluids change their rheological properties with the change of an external magnetic field, it is possible to achieve a constant bearing gap even if the payload changes. The great advantage of this system compared to valve based systems is the short response time to payload changes, because the active element (i.e., the fluid) acts directly inside the bearing gap, and not outside like in the case of valves.

  1. The Effect of High Concentration Guanidinium Azo-Tetrazolate on Thrust and Specific Impulse of a Hybrid Rocket

    Science.gov (United States)

    Tilahun, Dagim; Wright, A.; Foley, P.; Reason, M.

    2001-04-01

    A thrust and impulse study of the hybrid rocket fuel additive, Guanidinium Azo-Tetrazolate (GAT), was conducted at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility. GAT is an organic salt with a high percentage of nitrogen. GAT was mixed with the standard hybrid rocket fuel, Hydroxyl-Terminated Polybutadiene (HTPB), in concentrations of 15% and 25%, by mass. The fuel grains with the GAT additive were fired for 4 second runs with oxygen flows of 0.04, 0.06, 0.08, and 0.10 lbm/sec. For each run, average thrust, standard deviation of thrust, total impulse, and specific impulse were measured. Average thrust, standard deviation of thrust, specific impulse and total impulse vs. oxygen flow were plotted. Similar data was collected for plain HTPB/PAPI fuels for comparison. GAT is found to increase the thrust output when added to the standard hybrid rocket fuel, HTPB. 25% GAT fuel produced approximately the same thrust as the 15% GAT fuel. Specific impulse was slightly lower with both 15% and 25% GAT fuels. Standard Deviation of thrust was used as a crude measure of amplitude of oscillations during combustion. GAT-added fuels showed a limited decrease in thrust oscillation amplitude.

  2. Phylogeography of mitochondrial DNA variation in brown bears and polar bears

    Science.gov (United States)

    Shields, Gerald F.; Adams, Deborah; Garner, Gerald; Labelle, Martine; Pietsch, Jacy; Ramsay, Malcolm; Schwartz, Charles; Titus, Kimberly; Williamson, Scott

    2000-01-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples.

  3. Torsional spring is the optimal flexibility arrangement for thrust production of a flapping wing

    Science.gov (United States)

    Moore, M. Nicholas J.

    2015-09-01

    While it is understood that flexibility can improve the propulsive performance of flapping wings and fins, the flexibility distribution leading to optimal performance has not been explored. Using 2D small-amplitude theory and a fast Chebyshev method, we examine how thrust depends on the chord-wise distribution of wing stiffness. Through numerical optimization, we find that focusing flexibility at the wing's front, e.g., through a torsional spring, maximizes thrust. A wing with an optimally chosen spring constant typically generates 36% more thrust than a wing of optimal uniform stiffness. These results may relate to material distributions found in nature, such as insect wings, and may apply to the design of biomimetic swimmers and flyers, such as ornithopters.

  4. Magnetic Thrust Chamber Propulsion System for Controlling Laser-Produced Plasma by Magnetic Fields

    Science.gov (United States)

    Maeno, Akihiro; Hanaya, Tomonari; Nakashima, Hideki; Fujioka, Shinsuke; Sunahara, Atsushi; Johzaki, Tomoyuki; Mori, Yoshitaka

    Laser Fusion Rocket (LFR) is an advanced propulsion system that converts Inertial Fusion Energy into thrust energy in Magnetic Thrust Chamber. We study this system through numerical simulation and laser-produced plasma experiment at Extreme Ultra-Violet (EUV) facility of Institute of Laser Engineering (ILE), Osaka University. We conducted experiments at that facility that has single-beam Nd:YAG laser (the maximum energy 2 J). We observed polystyrene plasma distribution in magnetic field of neodymium permanent magnet. The results of those experiments show that the laser-produced plasma was redirected by magnetic field. In the future, we plan to measure Impulse bit with a thrust stand at GEKKO-XII facility of ILE that has 12-beam glass laser (the maximum energy 6 kJ).

  5. Thrust reversing effects on horizontal tail effectiveness of twin-engine fighter aircraft

    Science.gov (United States)

    Capone, F. J.; Mason, M. L.; Carson, G. T., Jr.

    1983-01-01

    The Langley Research Center has conducted an experimental program to determine the interference effects of thrust reversing on horizontal tail effectiveness of a twin engine, general research fighter model at approach (Mach number 0.15) and in-flight (Mach number 0.60 and 0.90) speeds. Twin vertical tails were tested at three longitudinal locations. Two nonaxisymmetric nozzle reverser concepts were studied. The effects of thrust reversing on horizontal tail effectiveness were found to be very dependent upon vertical tail locations. At approach speeds thrust reverser operation usually resulted in large variations in horizontal tail effectiveness as either nozzle pressure ratio or model angle of attack was varied. Either increases or decreases in tail effectiveness ocurred due to reverse operation depending upon tail location. At in-flight conditions there were always decreases in tail effectiveness due to reverser operation regardless of vertical tail location.

  6. Feedback Optimal Control of Low-thrust Orbit Transfer in Central Gravity Field

    Directory of Open Access Journals (Sweden)

    Ashraf H. Owis

    2013-05-01

    Full Text Available Low-thrust trajectories with variable radial thrust is studied in this paper. The problem is tackled by solving the Hamilton- Jacobi-Bellman equation via State Dependent Riccati Equation( STDE technique devised for nonlinear systems. Instead of solving the two-point boundary value problem in which the classical optimal control is stated, this technique allows us to derive closed-loop solutions. The idea of the work consists in factorizing the original nonlinear dynamical system into a quasi-linear state dependent system of ordinary differential equations. The generating function technique is then applied to this new dynamical system, the feedback optimal control is solved. We circumvent in this way the problem of expanding the vector field and truncating higher-order terms because no remainders are lost in the undertaken approach. This technique can be applied to any planet-to-planet transfer; it has been applied here to the Earth-Mars low-thrust transfer

  7. Synergistic use of high and low thrust propulsion systems for piloted missions to Mars

    Science.gov (United States)

    Gilland, James H.

    1991-01-01

    The use of high-thrust, relatively-low-specific-impulse systems, such as chemical or nuclear thermal propulsion, in conjunction with low thrust, high-specific-impulse nuclear electric propulsion (NEP), has been considered for a representative piloted Mars mission. It is concluded that the single-burn option in an all-propulsive mission scenario does not yield a significant performance advantage in reduced trip time for reasonable masses. The multiple burn option allows significant reductions in trip time relative to the NEP system, and may provide a performance advantage over nuclear thermal propulsion depending upon the system assumptions. The combined systems serve to reduce NEP power requirements for fast trip times, and to reduce high thrust systems' sensitivity to mission opportunity. It is considered that 5 kg/kWe systems can provide significant improvements in mass and trip time over the single systems at power levels of 5 to 10 MWe.

  8. Resistive thrust production can be as crucial as added mass mechanisms for inertial undulatory swimmers

    CERN Document Server

    Piñeirua, Miguel; Thiria, Benjamin

    2015-01-01

    In this paper, we address a crucial point regarding the description of moderate to high Reynolds numbers aquatic swimmers. For decades, swimming animals have been classified in two different families of propulsive mechanisms based on the Reynolds number: the "resistive" swimmers, using local friction to produce the necessary thrust force for locomotion at low Reynolds number and the "reactive" swimmers, lying in the high Reynolds range, and using added mass acceleration (described by perfect fluid theory). However, inertial swimmers are also systems that dissipate energy, due to their finite size, therefore involving strong resistive contributions, even for high Reynolds numbers. Using a complete model for the hydrodynamic forces, involving both reactive and resistive contributions, we revisit here the physical mechanisms responsible for the thrust production of such swimmers. We show, for instance, that the resistive part of the force balance is as crucial as added mass effects in the modeling of the thrust ...

  9. Reliability assessment of thrust chamber cooling concepts using probabilistic analysis techniques

    Science.gov (United States)

    Rapp, Douglas C.

    1993-01-01

    The reliability of OFHC (Oxygen Free High Conductivity) copper and NARloy-Z thrust chambers is assessed by applying probabilistic structural analysis techniques to incorporate design parameter variability and uncertainty. Thrust chambers specifically evaluated are the cylindrical test fixtures employed in a plug-nozzle configuration at the NASA Lewis Research Center. Direct sampling Monte Carlo simulations based on a simplified life prediction methodology established probability densities of firing cycles to structural failure. Simulated cyclic lives demonstrated modest agreement to experiment. Similarly, regions of high structural failure probability were determined using a limit state approach employing calculated cumulative distribution functions for effective stress response and an assumed material strength distribution. A probability of failure of 0.012 was calculated at the center of the coolant channel hot-gas-side wall for an OFHC milled channel. Structural response was found to be sensitive to the uncertainties in the thrust chamber thermal environment and the material's thermal expansion coefficient.

  10. Blowdown thrust force and pipe whip analyses of large diameter pipes under LWR LOCA conditions

    International Nuclear Information System (INIS)

    An instantaneous pipe rupture is postulated as a hypothetical accident in the design of the nuclear power plants. The ruptured pipe at double ended guillotine break would move rapidly and impact surrounding structures. This dynamic motion is called a pipe whip. The present paper shows the verification of the thermal-hydraulic analysis code RELAP4/MOD6 and its post-processor BLOWDOWN for the blowdown thrust force analysis under both BWR and PWR LOCA conditions by comparison between analytical and experimental results, pipe whip analysis of an 8 inch diameter pipe using the general purpose finite element code ADINA with analytical blowdown thrust force under PWR LOCA conditions, and blowdown thrust force analyses for various diameters of pipes under both BWR and PWR LOCA conditions. (orig./GL)

  11. Combustion-Characteristic-Based Active Thrust Modulation of a Solid Rocket Motor

    Science.gov (United States)

    Tanaka, Masafumi; Gaspard, Guillaume; Urakawa, Katsuya

    A new concept of thrust modulation of solid propellant rocket motor is proposed. Some propellants cannot burn at intermediate pressure, while they can burn at lower and higher pressures. When one applies such a propellant to a motor, two combustion modes or two thrust levels are attainable without any change of the nozzle configuration. In the experiments different ignition conditions brought independent two combustion modes (low mode and high mode) in the same motor geometry. Some motors showed a natural transition from low mode to high mode. As an example, the alternative thrust levels were 50 N and 180 N. The natural transition was restricted with use of the partitioned grain. An active transition method was explored by exerting pressure perturbation through a vent hole with a ball valve. The valve system worked for the transition from high mode to low mode, but the reverse transition was not achieved well.

  12. Thrust efficiency optimization of the pulsed plasma thruster SIMP-LEX

    Science.gov (United States)

    Nawaz, Anuscheh; Albertoni, Riccardo; Auweter-Kurtz, Monika

    2010-08-01

    The effect of electric parameters on the thrust efficiency of an ablative pulsed plasma thruster was studied. Analytically, it was shown that a higher efficiency can be obtained by increasing energy of a bank of capacitors. This can be achieved by changing the inductance per distance of the plasma sheet, or reducing the resistance of the circuit and the mass bit. Further, an optimum discharge time was found when the capacitance and the inductance were varied. A low initial inductance increases the thrust efficiency. Experimentally, these trends can be verified by comparing two thrusters: SIMP-LEX and ADD SIMP-LEX, with their different initial inductances. For ADD SIMP-LEX, the optimal thrust efficiency for different capacities was determined to be 31% at 60?F for a 17 J configuration.

  13. Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure

    Science.gov (United States)

    Liu, Shi-Jie; Lin, Zhi-Yong; Sun, Ming-Bo; Liu, Wei-Dong

    2011-09-01

    The thrust vectoring ability of a continuous rotating detonation engine is numerically investigated, which is realized via increasing local injection stagnation pressure of half of the simulation domain compared to the other half. Under the homogeneous injection condition, both the flow-field structure and the detonation wave propagation process are analyzed. Due to the same injection condition along the inlet boundary, the outlines of fresh gas zones at different moments are similar to each other. The main flow-field features under thrust vectoring cases are similar to that under the baseline condition. However, due to the heterogeneous injection system, both the height of the fresh gas zone and the pressure value of the fresh gas in the high injection pressure zone are larger than that in the low injection pressure zone. Thus the average pressure in half of the engine is larger than that in the other half and the thrust vectoring adjustment is realized.

  14. Optimal trajectories for spacecraft with low electric-jet thrust in mission to asteroid Apophis

    Science.gov (United States)

    Ivashkin, V. V.; Krylov, I. V.

    2012-07-01

    There is considered the problem of space flights to the asteroid Apophis. We analyze the flight scheme, which includes the geocentric stage, when a spacecraft with a high-thrust engine is accelerated; the heliocentric stage, in which the spacecraft moves using a low-thrust engine; and, finally, the deceleration stage, when the spacecraft becomes an artificial satellite orbiting the asteroid. We solve the problem of optimal control for the ideal and piecewise-constant low thrust, as well as determine the optimal value and direction of the hyperbolic velocity at "infinity" achieved by the spacecraft when it leaves the Earth sphere of influence. There is defined the set of space trajectories for a wide range of start dates and various flight durations using a complex method of optimization. We estimate the final mass of the spacecraft and the mass of the payload that can be delivered to the asteroid using the Soyuz-Fregat launcher.

  15. Changes in illite crystallinity within an ancient tectonic boundary thrust caused by thermal, mechanical, and hydrothermal effects: an example from the Nobeoka Thrust, southwest Japan

    Science.gov (United States)

    Fukuchi, Rina; Fujimoto, Koichiro; Kameda, Jun; Hamahashi, Mari; Yamaguchi, Asuka; Kimura, Gaku; Hamada, Yohei; Hashimoto, Yoshitaka; Kitamura, Yujin; Saito, Saneatsu

    2014-12-01

    Illite crystallinity (IC), the full width at half maximum of the illite (001) peak in clay-fraction X-ray diffraction (XRD), is a common geothermometer widely applied to various tectonic settings. Paleotemperature estimation using IC presents methodological ambiguity because IC is not only affected by background temperature but also by mechanical, hydrothermal, and surface weathering effects. To clarify the influences of these effects on IC in the fault zone, we analyzed the IC and the illite 001 peak intensity of continuous borehole core samples from the Nobeoka Thrust, a fossilized tectonic boundary thrust in the Shimanto Belt, the Cretaceous-Paleogene Shimanto accretionary complex in southwest Japan. We also carried out grinding experiments on borehole core samples and sericite standard samples as starting materials and investigated the effect of mechanical comminution on the IC and illite peak intensity of the experimental products. We observed the following: (1) the paleotemperatures of the hanging wall and footwall of the Nobeoka Thrust are estimated to be 288°C to 299°C and 198°C to 249°C, respectively, which are approximately 20°C to 30°C lower than their previously reported temperatures estimated by vitrinite reflectance; (2) the fault core of the Nobeoka Thrust does not exhibit IC decrease; (3) the correlation of IC and illite peak intensity in the hanging wall damage zone were well reproduced by the grinding experiment, suggesting that the effect of mechanical comminution increases toward the fault core and; (4) the abrupt increase in IC value accompanied by high illite peak intensity is explained by hydrothermal alterations including plagioclase breakdown and the formation of white micas. Our results indicate that IC has potential for quantifying the effects of mechanical comminution and hydrothermal alteration within a fault zone.

  16. Experimental study on instantaneous thrust and lift of two plunging wings in tandem

    Science.gov (United States)

    Gong, Wu Qi; Jia, Bo Bo; Xi, Guang

    2016-01-01

    Two tandem wings undergoing a two-dimensional sinusoidal plunging motion are studied in a low Reynolds number water tunnel. The influence of the phase angle and leading-edge vortex (LEV) on the peak value of the instantaneous thrust and lift is studied. The instantaneous lift and thrust are measured by a force sensor; the velocity and vorticity fields are captured by digital particle image velocimetry. For the forewing, noticeable differences at various phase angles are found in the peak value of the instantaneous lift and thrust rather than in their minimum value. The LEV of the hindwing increased the maximum effective angle of attack of the forewing and enhanced the jet-like flow behind the forewing, which accounts for the increase in peak value. For the hindwing, the phase angle determines the sign of the forewing-shed LEV when the hindwing encounters this LEV. If the forewing-shed LEV before the leading edge of the hindwing has the opposite sense of rotation as the LEV of the hindwing, the velocity of the flow on the windward side of the hindwing increases, resulting in high instantaneous thrust and lift. If the two LEVs have the same sense of rotation, the forewing-shed LEV hinders the growth of the hindwing LEV because of the small effective angle of attack, leading to low instantaneous thrust and lift. Non-circulatory forces on the wings are calculated according to a potential flow model. Results show that the non-circulatory force has important effects on the peak value and symmetry of the instantaneous lift and thrust curves.

  17. Exhumation of the southern Pyrenean fold-thrust belt (Spain) from orogenic growth to decay

    Science.gov (United States)

    Rushlow, Caitlin R.; Barnes, Jason B.; Ehlers, Todd A.; Vergés, Jaume

    2013-07-01

    The deformation and exhumation history of an orogen reflects the interactions between tectonic and surface processes. We investigate orogenic wedge deformation, erosion, and sedimentation in the Pyrenees by (a) quantifying the spatiotemporal patterns of exhumation across the southern fold-thrust belt (FTB) with bedrock apatite fission track (AFT) thermochronology and (b) comparing the results with existing deformation, exhumation, and sedimentation chronologies. Eighteen new samples record exhumation during and after orogenesis between 90 and 10 Ma. Rocks from the range core (Axial Zone) record rapid exhumation that progresses east to west and north to south, consistent with patterns of tectonically driven uplift. Synorogenic sediments shed into piggyback basins on the southern fold-thrust belt during mountain building retain a detrital exhumation signal from the Axial Zone. In contrast, samples from other structural positions record exhumation of the thin-skinned Pyrenean thrust sheets, suggesting sediment burial and heating of sufficient magnitudes to reset the AFT system (>~3 km). In some locations, exhumation of these fold-thrust structures is likely an erosional response to thrust-driven rock uplift. We identify an exhumation phase ~25-20 Ma that occurs along the central and eastern Spanish Pyrenees at the boundary between thick- and thin-skinned portions of the wedge. We suggest that this distributed exhumation event records (a) a taper response in the southern orogenic wedge to sediment loading and/or (b) a shift to wetter, stormier climate conditions following convergence-driven uplift and full topographic development. A final exhumation phase between ~20 and 10 Ma may record the excavation of the southern fold-thrust system following base level lowering in the Ebro Basin.

  18. Shaft Center Orbit in Dynamically Loaded Bearings

    DEFF Research Database (Denmark)

    Klit, Peder

    2005-01-01

    The aim of this work is to demonstrate how to utilize the bearings damping coe±cients to estimate the orbit for a dynamically loaded journal bearing. The classical method for this analysis was developed by Booker in 1965 [1]and described further in 1972 [2]. Several authors have re¯ned this method...... over the years. In 1966 Jorgen W. Lund [5]published an approach to ¯nd the dynamic coe±cients of a journal bearing by a ¯rst order perturbation of the Reynold's equation. These coe±cients made it possible to perform a rotor-bearing stability analysis for a statically loaded bearing. In the mid...... seventies Jorgen W. Lund pointed out in lecture notes that the dynamic damping coe±cients of the bearing could be used to ¯nd the shaft orbit for dynamically loaded bearings. For simplicity the "Short-Width-Journal-Bearing Theory" is used as a basis for ¯nding the damping coe±cients in this work, but the...

  19. Can polar bear hairs absorb environmental energy?

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2011-01-01

    Full Text Available A polar bear (Ursus maritimus has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  20. Lubrication of rolling-element bearings

    Science.gov (United States)

    Parker, R. J.

    1980-01-01

    The lubrication of rolling element bearings is surveyed. Emphasis is on the critical design aspects related to speed, temperature, and ambient pressure environment. Types of lubrication including grease, jets, mist, wick, and through the race are discussed. The historical development, present state of technology, and the future problems of rolling element bearing lubrication are discussed.

  1. Precision instrumentation for rolling element bearing characterization.

    Science.gov (United States)

    Marsh, Eric R; Vigliano, Vincent C; Weiss, Jeffrey R; Moerlein, Alex W; Vallance, R Ryan

    2007-03-01

    This article describes an instrument to measure the error motion of rolling element bearings. This challenge is met by simultaneously satisfying four requirements. First, an axial preload must be applied to seat the rolling elements in the bearing races. Second, one of the races must spin under the influence of an applied torque. Third, rotation of the remaining race must be prevented in a way that leaves the radial, axial/face, and tilt displacements free to move. Finally, the bearing must be fixtured and measured without introducing off-axis loading or other distorting influences. In the design presented here, an air bearing reference spindle with error motion of less than 10 nm rotates the inner race of the bearing under test. Noninfluencing couplings are used to prevent rotation of the bearing outer race and apply an axial preload without distorting the bearing or influencing the measurement. Capacitive displacement sensors with 2 nm resolution target the nonrotating outer race. The error motion measurement repeatability is shown to be less than 25 nm. The article closes with a discussion of how the instrument may be used to gather data with sufficient resolution to accurately estimate the contact angle of deep groove ball bearings. PMID:17411223

  2. Air-Bearing Table for Machine Shops

    Science.gov (United States)

    Ambrisco, D.

    1986-01-01

    Frequent workpiece repositioning made easier. Air-bearing table facilitates movement of heavy workpiece during machining or between repeated operations at different positions. Table assembly consists of workpiece supporting fixture riding on air bearing. Table especially useful for inertia welding, in which ease of mobility is important.

  3. Precision instrumentation for rolling element bearing characterization

    International Nuclear Information System (INIS)

    This article describes an instrument to measure the error motion of rolling element bearings. This challenge is met by simultaneously satisfying four requirements. First, an axial preload must be applied to seat the rolling elements in the bearing races. Second, one of the races must spin under the influence of an applied torque. Third, rotation of the remaining race must be prevented in a way that leaves the radial, axial/face, and tilt displacements free to move. Finally, the bearing must be fixtured and measured without introducing off-axis loading or other distorting influences. In the design presented here, an air bearing reference spindle with error motion of less than 10 nm rotates the inner race of the bearing under test. Noninfluencing couplings are used to prevent rotation of the bearing outer race and apply an axial preload without distorting the bearing or influencing the measurement. Capacitive displacement sensors with 2 nm resolution target the nonrotating outer race. The error motion measurement repeatability is shown to be less than 25 nm. The article closes with a discussion of how the instrument may be used to gather data with sufficient resolution to accurately estimate the contact angle of deep groove ball bearings

  4. Can polar bear hairs absorb environmental energy?

    OpenAIRE

    He Ji-Huan; Wang Qing-Li; Sun Jie

    2011-01-01

    A polar bear (Ursus maritimus) has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  5. 33 CFR 117.543 - Bear Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  6. Comparison of solution approaches for minimum-fuel, low-thrust, power-limited orbital transfers

    Science.gov (United States)

    Mease, Kenneth D.; Vinh, Nguyen X.; Haissig, Christine M.

    1990-01-01

    An initial assessment of the feasibility of a function space gradient method for computing solutions to minimum-fuel power-limited transfers encompassing a wide range of thrust to weight ratios is conducted. Three transfers between coplanar ellipses are used as test cases. The gradient method performs best at the high end of the thrust to weight ratio range. At the lower end, there is reduced sensitivity of the fuel consumption to the control profiles. The minimum fuel consumption and the trajectory are computed quite accurately but the control profiles are in error. An approximate analytical solution, obtained by Edelbaum using the method of averaging, is discussed.

  7. Development of a CFRP Engine Thrust Frame for the Next Generation Launchers

    Science.gov (United States)

    Fatemi, Javad; van der Bas, Finn; Cruijssen, Henk

    2012-07-01

    This paper addresses the activities related to the development of technologies for a composite Engine Thrust Frame (ETF) for the next generation launchers. In particular, the design and analyses of a full Carbon Fibre Reinforced Plastic (CFRP) engine thrust frame are presented in more detail. The ETF concept is composed of three main parts, i.e. an aluminium top-ring which connects the ETF to the upper-stage tank, a CFRP cone, and a CFRP cone-cap which connects the Vinci engine to the ETF. The main challenging requirements for development of a CFRP ETF are recalled. The ETF concept and its mechanical performances are assessed.

  8. Systematic underestimation of the thrust of vaults among some builders of the 19th century

    OpenAIRE

    Wendland, David

    2007-01-01

    In building manuals of the 18th and 19th century, we can often read either that vaults don't exert any outward thrust at all, or that their thrust can be easily absorbed by very simple means. Although the theories which are formulated to support these statements are not correct, they have been largely applied even after having been refuted. In case-studies of the works of three builders of vault constructions – in their time highly recognized namely for their technical knowledge, especial...

  9. Single thrust period missions to Uranus for unmanned nuclear-electric propulsion systems

    Science.gov (United States)

    Zola, C. L.

    1973-01-01

    The effects of trip time, propulsion time, and specific powerplant mass are studied for optimized unmanned probe spacecraft on missions to Uranus with nuclear-electric propulsion systems. Electric propulsion is confined to a single thrust period at the beginning of each mission. Mission profiles include both high-thrust and electric-propulsion Earth-departure modes for planet flyby and orbital capture. Effects of propulsion time and propulsion system parameters are evaluated, and typical design features of the nuclear-electric spacecraft are outlined. Payload capability comparisons are made with systems employing ballistic transfer and solar-electric propulsion.

  10. Experimental and simulation study of a Gaseous oxygen/Gaseous hydrogen vortex cooling thrust chamber

    Science.gov (United States)

    Yu, Nanjia; Zhao, Bo; Li, Gongnan; Wang, Jue

    2016-01-01

    In this paper, RNG k-? turbulence model and PDF non-premixed combustion model are used to simulate the influence of the diameter of the ring of hydrogen injectors and oxidizer-to-fuel ratio on the specific impulse of the vortex cooling thrust chamber. The simulation results and the experimental tests of a 2000 N Gaseous oxygen/Gaseous hydrogen vortex cooling thrust chamber reveal that the efficiency of the specific impulse improves significantly with increasing of the diameter of the ring of hydrogen injectors. Moreover, the optimum efficiency of the specific impulse is obtained when the oxidizer-to-fuel ratio is near the stoichiometric ratio.

  11. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    Science.gov (United States)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  12. Pyrolysis Caused Tail-Off Thrust in a Solid Rocket Motor: A Semi-Empirical Model

    Directory of Open Access Journals (Sweden)

    P.R. Madhava Panicker

    1998-01-01

    Full Text Available Knowledge of tail-off thrust characteristics of solid rocket motors used for an upper stage of satellite launch 'Vehicle is essential for proper sequencing of stage separation. The phenomenon is highly complex and theoretical models accurately describing the tail-off thrust are not available. Only rough estimates can be made through ground testing. A semi-empirical model is derived by the authorsusing the Indian polar satellite launch vehicle (PSL V flight data and is used for fixing the time of stage separation. The model has been validated using data over an extended duration from another flight ofthe PSL V. The method adopted for modelling is described.

  13. Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket

    Energy Technology Data Exchange (ETDEWEB)

    Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1 Kasuga-kouen, Kasuga, Fukuoka 816-8580 (Japan); Fujioka, Shinsuke; Johzaki, Tomoyuki [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-087 (Japan); Mori, Yoshitaka [Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan); Sunahara, Atsushi [Institute for Laser Technology, Suita, Osaka 565-087 (Japan)

    2011-08-15

    An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.

  14. Nonlinear Dynamic Response of Compliant Journal Bearings

    Directory of Open Access Journals (Sweden)

    Glavatskih S.

    2012-07-01

    Full Text Available This paper investigates the dynamic response of the compliant tilting pad journal bearings subjected to synchronous excitation. Bearing compliance is affected by the properties of pad liner and pad support geometry. Different unbalance eccentricities are considered. It is shown that bearing dynamic response is non-linear. Journal orbit complexity increases with pad compliance though the orbit amplitudes are marginally affected at low loads. At high loads, the journal is forced to operate outside the bearing clearance. The polymer liner reduces the maximum oil film pressure by a factor of 2 when compared to the white metal liner. The nonlinear dynamic response of compliant tilting pad journal bearings is thoroughly discussed.

  15. Bearing Tests of Magnesium-alloy Sheet

    Science.gov (United States)

    Sharp, W H; Moore, R L

    1943-01-01

    Bearing tests of AM-3S, AM-52S, and AM-C57S magnesium-alloy sheet in various thicknesses and tempers were made. Bearing yield and ultimate strengths were determined and compared for various edge distances and for various ratios of loading-pin diameter to sheet thickness. Tensile strengths were determined and ratios of average bearing yield and ultimate strength to tensile strength are given. The results of the tests indicated that ultimate bearing strengths increased with edge distances up to 1.5 to 2 times the diameter of the loading pin; that ultimate bearing strengths are a function of the ratio of pin diameter to sheet thickness; and that these properties are effected only slightly by increases in edge distance greater than 1.5 diameters.

  16. Rotor and bearing system for a turbomachine

    Science.gov (United States)

    Lubell, Daniel; Weissert, Dennis

    2006-09-26

    A rotor and bearing system for a turbomachine. The turbomachine includes a drive shaft, an impeller positioned on the drive shaft, and a turbine positioned on the drive shaft proximate to the impeller. The bearing system comprises one gas journal bearing supporting the drive shaft between the impeller and the turbine. The area between the impeller and the turbine is an area of increased heat along the drive shaft in comparison to other locations along the drive shaft. The section of the drive shaft positioned between impeller and the turbine is also a section of the drive shaft that experiences increased stressed and load in the turbomachine. The inventive bearing machine system positions only one radial bearing in this area of increased stress and load.

  17. Active Magnetic Bearings – Magnetic Forces

    DEFF Research Database (Denmark)

    Kjølhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... validation and leads to novel approaches in identifying crucial rotor parameters. This is the main focus of this paper, where an intelligent AMB is being developed with the aim of aiding the accurate identification of damping and stiffness coefficients of journal bearings and seals. The main contribution of...... current and bearing gap variations, monitoring the bearing input signals. Advantages and drawbacks of the different methodologies are critically discussed. The experimental determination of linearity ranges is found and the characterization of magnetic forces with a high accuracy of less than 1% is...

  18. Trends in Controllable Oil Film Bearings

    DEFF Research Database (Denmark)

    Santos, Ilmar

    This work gives an overview about the theoretical and experimental achievements of mechatronics applied to oil film bearings, with the aim of: controlling the lateral vibration of flexible rotating shafts; modifying bearing dynamic characteristics, as stiffness and damping properties; increasing...... the rotational speed ranges by improving damping and eliminating instability problems, for example, by compensating cross-coupling destabilizing effects; reducing startup torque and energy dissipation in bearings; compensating thermal effects. It is shown that such controllable bearings can act as...... "smart" components and be applied to rotating machines with the goal of avoiding unexpected stops of plants, performing rotordynamic tests and identifying model parameters "on site". Emphasis is given to the controllable lubrication (active lubrication) applied to different types of oil film bearings, i...

  19. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 1: Journal bearing performance

    Science.gov (United States)

    Ruscitto, D.; Mccormick, J.; Gray, S.

    1978-01-01

    A 38.1 mm (1.5 inch) diameter Hydresil Compliant Surface Air Lubricated Journal Bearing was designed and tested to obtain bearing performance characteristics at both room temperature and 315 C (600 F). Testing was performed at various speeds up to 60,000 rpm with varying loads. Rotating sensors provided an opportunity to examine the film characteristics of the compliant surface bearing. In addition to providing minimum film thickness values and profiles, many other insights into bearing operation were gained such as the influence of bearing fabrication accuracy and the influence of smooth foil deflection between the bumps.

  20. Relationships between basin architecture, basin closure, and occurrence of sulphide-bearing schists: an example from Tampere Schist Belt, Finland

    DEFF Research Database (Denmark)

    Kalliomäki, Henrik; Torvela, Taija

    The Tampere Schist Belt (TSB) in southern Finland is a c. 1.92-1.88 Ga volcano-sedimentary basin that underwent inversion and closure between c. 1.89-1.88 Ga. We present field observations from the Tampere palaeobasin, where the primary structures have been exceptionally well preserved. The TSB, therefore, offers an excellent opportunity to examine the volcano-sedimentary evolution of an ancient marginal basin, and the mechanics of and strain distribution during its subsequent closure. The aim of this study is to investigate the structural development and the architecture of a part of the TSB in more detail, including the relationships between the volcano-sedimentary sequences, the tectonic structures, and the sulphide-bearing schist horizons. Important insights are gained into understanding the mechanisms of the basin closure and the localisation of the sulphide mineralisation within the basin. We use the observations to construct a new conceptual tectonic model for the closure of the southeastern margin of the Tampere basin. The observed volcano-sedimentary and structural features suggest a change in the local structural style from thick-skinned inversion to thin-skinned thrusting, in order to accommodate the crustal shortening during basin closure. Furthermore, it is suggested that there is a genetic relationship between the interpreted palaeothrusts and the sulphide-bearing schist horizons in the study area: early, gently dipping thrusts acted as both channels and traps for the mineralising fluids that possibly sourced either locally or from relatively shallow depths from the base of the basin infill. The continued compression caused a subsequent rotation of the thrusts into their present subvertical position.