WorldWideScience

Sample records for thin-film solar cells

  1. Investigation on Silicon Thin Film Solar Cells

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  2. Thin-film solar cell

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  3. Silicon Thin-Film Solar Cells

    2007-01-01

    We review the field of thin-film silicon solar cells with an active layer thickness of a few micrometers. These technologies can potentially lead to low cost through lower material costs than conventional modules, but do not suffer from some critical drawbacks of other thin-film technologies, such as limited supply of basic materials or toxicity of the components. Amorphous Si technology is the oldest and best established thin-film silicon technology. Amorphous silicon is deposited at low t...

  4. Advances in thin-film solar cells

    Dharmadasa, I M

    2012-01-01

    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  5. Thin-film solar cells. Duennschichtsolarzellen

    Bloss, W.H.; Pfisterer, F.; Schock, H.W. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Physikalische Elektronik)

    1990-01-01

    The authors present the state of the art in research and development, technology, production and marketing, and of the prospects of thin-film solar cells. Thin-film solar cells most used at present are based on amorphous silicon and on the compound semiconductors CuInSe{sub 2} and CdTe. Efficiencies in excess 12% have been achieved (14.1% with CuInSe{sub 2}). Stability is the main problem with amorphous silicon. Thin-film solar cells made from compound semiconductors do not have this problem, though their cost-effective series production needs to be shown still. The development potential of the three types mentioned will be ca. 30% in terms of efficiency: in terms of production cost, it is estimated with some certainty to be able to reach the baseline of 1 DM/Watt peak output (W{sub p}). (orig.).

  6. US Polycrystalline Thin Film Solar Cells Program

    Ullal, Harin S.; Zweibel, Kenneth; Mitchell, Richard L.

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R and D on copper indium diselenide and cadmium telluride thin films. The objective of the program is to support research to develop cells and modules that meet the U.S. Department of Energy's long-term goals by achieving high efficiencies (15 to 20 percent), low-cost ($50/m(sup 2)), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe2 and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The U.S. Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe2 and CdTe with subcontracts to start in spring 1990.

  7. US polycrystalline thin film solar cells program

    Ullal, H S; Zweibel, K; Mitchell, R L [Solar Energy Research Inst., Golden, CO (USA)

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  8. Recent developments in thin film solar cells

    Dhere, N.G. (Inst. Militar de Engenharia, Rio de Janeiro, RJ (Brazil))

    1990-12-15

    In recent years, remarkable progress has been made in improving the photovoltaic (PV) conversion efficiencies of thin film solar cells. The best active-area efficiencies (air mass 1.5) of thin film solar cells reported are as follows: polycrystalline CuInSe{sub 2}, 14.1%; CuIn(Ga)Se{sub 2}, 12.9%; CdTe, 12.3%, total area; single-junction hydrogenated amorphous silicon (a-Si:H), 12.0%; multiple-junction a-Si:H, 13.3%; cleaved epitaxial GaAs-Ga{sub 1-x}Al{sub x}As, 21.5%, total area. Laboratory methods for preparing small thin film solar cells are evaporation, closed-space sublimation, closed-space vapor transport, vapor phase epitaxy and metallo-organic chemical vapor deposition, while economic large-area deposition techniques such as sputtering, glow discharge reduction, electrodeposition, spraying and screen printing are being used for module fabrication. The following aperture-area efficiencies have been measured, at the Solar Energy Research Inst., for thin film modules: a-Si:H, 9.8%, 933 cm{sup 2}; CuIn(Ga)Se{sub 2}, 11.1%, 938 cm{sup 2}; CdTe, 7.3%, 838 cm{sup 2}. The instability issue of a-Si:H continues to be a high priority area. It is necessary to improve the open-circuit voltage of CuIn(Ga)Se{sub 2} cells, which do not seem to exhibit any intrinsic degradation mechanisms. With continued progress and increased production, PV modules are likely to become competitive for medium-scale power requirements in the mid-1990s. (orig.).

  9. Thin-film cadmium telluride solar cells

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  10. Thin-film silicon solar cell technology

    Shah, A.V.; Meier, J.; Kroll, U.; Droz, C.; Bailat, J. [University of Neuchatel (Switzerland). Inst. of Microtechnology; Schade, H. [RWE Schott Solar GmbH, Putzbrunn (Germany); Vanecek, M. [Academy of Sciences, Prague (Czech Republic). Inst. of Physics; Vallat Sauvain, E.; Wyrsch, N. [University of Neuchatel (Switzerland). Inst. of Microtechnology; Unaxis SPTec S A, Neuchatel (Switzerland)

    2004-07-01

    This paper describes the use, within p-i-n- and n-i-p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon ({mu}c-Si:H) thin films (layers), both deposited at low temperatures (200{sup o}C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. These properties are linked to the microstructure and hence to the i-layer deposition rate, that in turn, affects throughput in production. The importance of contact and reflection layers in achieving low electrical and optical losses is explained, particularly for the superstrate case. Especially the required properties for the transparent conductive oxide (TCO) need to be well balanced in order to provide, at the same time, for high electrical conductivity (preferably by high electron mobility), low optical absorption and surface texture (for low optical losses and pronounced light trapping). Single-junction amorphous and microcrystalline p-i-n-type solar cells, as fabricated so far, are compared in their key parameters (J{sub sc},FF,V{sub oc}) with the [theoretical] limiting values. Tandem and multijunction cells are introduced; the {mu}c-Si: H/a-Si: H or [micromorph] tandem solar cell concept is explained in detail, and recent results obtained here are listed and commented. Factors governing the mass-production of thin-film silicon modules are determined both by inherent technical reasons, described in detail, and by economic considerations. The cumulative effect of these factors results in distinct efficiency reductions from values of record laboratory cells to statistical averages of production modules. Finally, applications of thin-film silicon PV modules, especially in building-integrated PV (BIPV) are shown. In this context, the energy yields of thin-film silicon modules emerge as a valuable gauge for module performance, and compare very favourably with those of

  11. Antimony selenide thin-film solar cells

    Zeng, Kai; Xue, Ding-Jiang; Tang, Jiang

    2016-06-01

    Due to their promising applications in low-cost, flexible and high-efficiency photovoltaics, there has been a booming exploration of thin-film solar cells using new absorber materials such as Sb2Se3, SnS, FeS2, CuSbS2 and CuSbSe2. Among them, Sb2Se3-based solar cells are a viable prospect because of their suitable band gap, high absorption coefficient, excellent electronic properties, non-toxicity, low cost, earth-abundant constituents, and intrinsically benign grain boundaries, if suitably oriented. This review surveys the recent development of Sb2Se3-based solar cells with special emphasis on the material and optoelectronic properties of Sb2Se3, the solution-based and vacuum-based fabrication process and the recent progress of Sb2Se3-sensitized and Sb2Se3 thin-film solar cells. A brief overview further addresses some of the future challenges to achieve low-cost, environmentally-friendly and high-efficiency Sb2Se3 solar cells.

  12. Nanocrystalline silicon based thin film solar cells

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  13. Materials availability for thin film solar cells

    Makita, Yunosuke

    1997-04-01

    Materials availability is one of the most important factors when we consider the mass-production of next generation photovoltaic devices. "In (indium)" is a vital element to produce high efficient thin film solar cells such as InP and CuIn(Ga)Se2 but its lifetime as a natural resource is suggested to be of order of 10˜15 years. The lifetime of a specific natural resource as an element to produce useful device substances is directly related with its abundance in the earth's crust, consumption rate and recycling rate (if recycling is economically meaningful). The chemical elements having long lifetime as a natural resource are those existing in the atmosphere such as N (nitrogen) and O (oxygen); the rich elements in the earth's crust such as Si, Ca, Sr and Ba; the mass-used metals such as Fe (iron), Al (aluminum) and Cu (copper) that reached the stage of large-scale recycling. We here propose a new paradigm of semiconductor material-science for the future generation thin film solar cells in which only abundant chemical elements are used. It is important to remark that these abundant chemical elements are normally not toxic and are fairly friendly to the environment. β-FeSi2 is composed of two most abundant and nontoxic chemical elements. This material is one of the most promising device materials for future generation energy devices (solar cells and thermoelectric device that is most efficient at temperature range of 700-900 °C). One should remind of the versatility of β-FeSi2 that this material can be used not only as energy devices but also as photodetector, light emitting diode and/or laser diode at the wavelength of 1.5 μm that can be monolithically integrated on Si substrates due to the relatively small lattice mismatch.

  14. Light management in thin-film silicon solar cells

    Isabella, O.

    2013-01-01

    Solar energy can fulfil mankind’s energy needs and secure a more balanced distribution of primary sources of energy. Wafer-based and thin-film silicon solar cells dominate todays’ photovoltaic market because silicon is a non-toxic and abundant material and high conversion efficiencies are achieved with silicon-based solar cells. To stay competitive with bulk crystalline silicon and other thin-film solar cell technologies, thin-film silicon solar cells have to achieve a conversion efficiency l...

  15. Silicon Thin-Film Solar Cells

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  16. Copper zinc tin sulfide-based thin film solar cells

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  17. Broadband back grating design for thin film solar cells

    Janjua, Bilal

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  18. Thin film cadmium telluride solar cells

    Chu, T. L.; Chu, Shirley S.; Ang, S. T.; Mantravadi, M. K.

    1987-08-01

    Thin-film p-CdTe/CdS/SnO2:F/glass solar cells of the inverted configuration were prepared by the deposition of p-type CdTe films onto CdS/SnO2:F/glass substrates using CVD or close-spaced sublimation (CSS) techniques based on the procedures of Chu et al. (1983) and Nicholl (1963), respectively. The deposition rates of p-CdTe films deposited by CSS were higher than those deposited by the CVD technique (4-5 min were sufficient), and the efficiencies higher than 10 percent were obtained. However, the resistivity of films prepared by CSS was not as readily controlled as that of the CVD films. The simplest technique to reduce the resistivity of the CSS p-CdTe films was to incorporate a dopant, such as As or Sb, into the reaction mixture during the preparation of the source material. The films with resistivities in the range of 500-1000 ohm cm were deposited in this manner.

  19. UV imprinting for thin film solar cell application

    UV imprinting is an interesting, low cost technique to produce large area thin film solar cells incorporating nanometric textures. Here, we review and present new results confirming that replicas of the most common textures used in photovoltaics can be obtained by UV imprinting with an excellent fidelity. The use of these replicas as substrates for amorphous and micromorph thin film silicon solar cells is also shown, together with a comparison with devices obtained on the original textures

  20. UV imprinting for thin film solar cell application

    Escarré, J.; Battaglia, C.; Söderström, K.; Pahud, C.; Biron, R.; Cubero, O.; Haug, F.-J.; Ballif, C.

    2012-02-01

    UV imprinting is an interesting, low cost technique to produce large area thin film solar cells incorporating nanometric textures. Here, we review and present new results confirming that replicas of the most common textures used in photovoltaics can be obtained by UV imprinting with an excellent fidelity. The use of these replicas as substrates for amorphous and micromorph thin film silicon solar cells is also shown, together with a comparison with devices obtained on the original textures.

  1. UV imprinting for thin film solar cell application

    Escarre, J; Battaglia, C; Soederstroem, K.; Pahud, C.; Biron, R.; Cubero, O.; Haug, F.-J.; Ballif, C.

    2012-01-01

    UV imprinting is an interesting, low cost technique to produce large area thin film solar cells incorporating nanometric textures. Here, we review and present new results confirming that replicas of the most common textures used in photovoltaics can be obtained by UV imprinting with an excellent fidelity. The use of these replicas as substrates for amorphous and micromorph thin film silicon solar cells is also shown, together with a comparison with devices obtained on the original textures.

  2. Recent technological advances in thin film solar cells

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  3. Light trapping in thin film organic solar cells

    Zheng Tang

    2014-10-01

    Full Text Available A major issue in organic solar cells is the poor mobility and recombination of the photogenerated charge carriers. The active layer has to be kept thin to facilitate charge transport and minimize recombination losses. However, optical losses due to inefficient light absorption in the thin active layers can be considerable in organic solar cells. Therefore, light trapping schemes are critically important for efficient organic solar cells. Traditional light trapping schemes for thick solar cells need to be modified for organic thin film solar cells in which coherent optics and wave effects play a significant role. In this review, we discuss the light trapping schemes for organic thin film solar cells, which includes geometric engineering of the structure of the solar cell at the micro and nanoscale, plasmonic structures, and more.

  4. Light management in thin-film silicon solar cells

    Isabella, O.

    2013-01-01

    Solar energy can fulfil mankind’s energy needs and secure a more balanced distribution of primary sources of energy. Wafer-based and thin-film silicon solar cells dominate todays’ photovoltaic market because silicon is a non-toxic and abundant material and high conversion efficiencies are achieved

  5. Annealing of Solar Cells and Other Thin Film Devices

    Escobar, Hector; Kuhlman, Franz; Dils, D. W.; Lush, G. B.; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    Annealing is a key step in most semiconductor fabrication processes, especially for thin films where annealing enhances performance by healing defects and increasing grain sizes. We have employed a new annealing oven for the annealing of CdTe-based solar cells and have been using this system in an attempt to grow US on top of CdTe by annealing in the presence of H2S gas. Preliminary results of this process on CdTe solar cells and other thin-film devices will be presented.

  6. Indium tin oxide-silicon thin film solar cell

    Heterojunction solar cells consisting of amorphous indium tin oxide (ITO) thin films on silicon films have been fabricated and studied. The results show that the devices give a photovoltaic effect and rectifying characteristics. One of the main characteristics of amorphous ITO thin films is better transparency (>85%) over the complete useful window of the solar spectrum. The polarity observed is found to be consistent with V/sub oc/ = 0.34 volt, I/sub sc/ = 22mA/cm/sup 2/ and fill factor = 0.48. An attempt has been made to understand the conduction mechanism of indium tin oxide - silicon heterojunction

  7. Thin Film Solar Cells and their Optical Properties

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  8. Molecular solution processing of metal chalcogenide thin film solar cells

    Yang, Wenbing

    2013-01-01

    The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (C...

  9. Low cost thin film poly-silicon solar cells

    NONE

    2005-07-01

    This report presents the results of a project to design and develop a high density plasma based thin-film poly-silicon (TFPS) deposition system based on PQL proprietary advanced plasma technology to produce semiconductor quality TFPS for fabricating a TFPS solar cell. Details are given of the TFPS deposition system, the material development programme, solar cell structure, and cell efficiencies. The reproducibility of the deposition process and prospects for commercial exploitation are discussed.

  10. Thin-film crystalline silicon solar cells

    Brendel, Rolf

    2011-01-01

    This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.

  11. Polycrystalline thin-film solar cells and modules

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  12. Polycrystalline thin-film solar cells and modules

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  13. Thin-film silicon solar cell technology

    Shah, A. V.; Schade, H.; Vaněček, Milan; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Bailat, J.

    2004-01-01

    Roč. 12, - (2004), s. 113-142. ISSN 1062-7995 R&D Projects: GA MŽP SN/320/11/03 Institutional research plan: CEZ:AV0Z1010914 Keywords : thin-film silicon modules * hydrogen erated amorphous silicon(a-Si:H) * hydrogen erated microcrystalline (ćc-Si:H) * transparent conductive oxydes(TCOs) * building-integrated photovoltaics(BIPV) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.196, year: 2004

  14. Light trapping effects in thin film silicon solar cells

    Haug, FJ; Söderström, T; Dominé, D.; Ballif, C.

    2009-01-01

    We present advanced light trapping concepts for thin film silicon solar cells. When an amorphous and a microcrystalline absorber layers are combined into a micromorph tandem cell, light trapping becomes a challenge because it should combine the spectral region from 600 to 750 nm for the amorphous top cell and from 800 to 1100 for the microcrystalline bottom cell. Because light trapping is typically achieved by growing on textured substrates, the effect of interface textures on the material an...

  15. Buried contact multijunction thin film silicon solar cell

    Green, M. [Univ. of New South Wales, Sydney (Australia)

    1995-08-01

    In early 1994, the Center for Photovoltaic Devices and Systems announced the filing of patent applications on an improved silicon thin film photovoltaic module approach. With material costs estimated to be about 20 times lower than those in present silicon solar cell modules along with other production advantages, this technology appears likely to make low cost, high performance solar modules available for the first time. This paper describes steps involved in making a module and module performance.

  16. CZTSSe thin film solar cells: Surface treatments

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  17. Design of a thin film CdTe solar cell

    Meyers, P.V.

    1988-01-15

    Cadmium telluride was originally considered for thin film solar cells because of its optimum band gap, high optical absorption coefficient and ability to be doped. Furthermore, it is a stable compound which can be produced by a wide variety of methods from stable raw materials. As thin film photovoltaics mature, however, it is clear that several more subtle attributes have a significant impact on the viability of commercialization. We discuss the observations which have provided insight and direction to Ametek's CdTe solar cell program. Rather than try to modify the inherent material properties of CdTe, advances have been made by designing a solar cell that exploits existing properties. Specifically, the tendency to self-compensate, which makes low resistance contacting difficult, is turned into an advantage in the n-i-p configuration; the CdTe provides an intrinsic layer with good carrier collection efficiency.

  18. Metal nanoparticles for thin film solar cells

    Gritti, Claudia

    nanoantennas absorbing photons with energy smaller than the semiconductor gap but larger than the Schottky barrier height between metal and semiconductor. The optimization of the fabrication process of GaAs and a-Si:H Schottky solar cells is first conducted and subsequently, the incorporation of Au or Ag...... efficiency in such spectral range; after an overview of the different technologies available today, the employment of localized surface plasmons (LSPs) through the incorporation of metallic nanoparticles within the photovoltaic device is chosen as a cheap and simple method. The LSP resonance wavelength...... to increase light trapping and can come along regardless, we aim, as first target, to absorb forbidden (for the semiconductor) photons by the NPs which can excite hot electrons inside the metal NP and emit them directly into the conduction band of the solar cell semiconductor, without going through...

  19. Light-Induced Degradation of Thin Film Silicon Solar Cells

    Hamelmann, F. U.; Weicht, J. A.; Behrens, G.

    2016-02-01

    Silicon-wafer based solar cells are still domination the market for photovoltaic energy conversion. However, most of the silicon is used only for mechanical stability, while only a small percentage of the material is needed for the light absorption. Thin film silicon technology reduces the material demand to just some hundred nanometer thickness. But even in a tandem stack (amorphous and microcrystalline silicon) the efficiencies are lower, and light-induced degradation is an important issue. The established standard tests for characterisation are not precise enough to predict the performance of thin film silicon solar cells under real conditions, since many factors do have an influence on the degradation. We will show some results of laboratory and outdoor measurements that we are going to use as a base for advanced modelling and simulation methods.

  20. Laser annealing of thin film polycrystalline silicon solar cell

    Chowdhury A.

    2013-11-01

    Full Text Available Performances of thin film polycrystalline silicon solar cell grown on glass substrate, using solid phase crystallization of amorphous silicon can be limited by low dopant activation and high density of defects. Here, we investigate line shaped laser induced thermal annealing to passivate some of these defects in the sub-melt regime. Effect of laser power and scan speed on the open circuit voltage of the polysilicon solar cells is reported. The processing temperature was measured by thermal imaging camera. Enhancement of the open circuit voltage as high as 210% is achieved using this method. The results are discussed.

  1. Thin film solar cells from earth abundant materials growth and characterization of Cu2(ZnSn)(SSe)4 thin films and their solar cells

    Kodigala, Subba Ramaiah

    2013-01-01

    The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further developm

  2. Interfacial Properties of CZTS Thin Film Solar Cell

    N. Muhunthan

    2014-01-01

    Full Text Available Cu-deficient CZTS (copper zinc tin sulfide thin films were grown on soda lime as well as molybdenum coated soda lime glass by reactive cosputtering. Polycrystalline CZTS film with kesterite structure was produced by annealing it at 500°C in Ar atmosphere. These films were characterized for compositional, structural, surface morphological, optical, and transport properties using energy dispersive X-ray analysis, glancing incidence X-ray diffraction, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, UV-Vis spectroscopy, and Hall effect measurement. A CZTS solar cell device having conversion efficiency of ~0.11% has been made by depositing CdS, ZnO, ITO, and Al layers over the CZTS thin film deposited on Mo coated soda lime glass. The series resistance of the device was very high. The interfacial properties of device were characterized by cross-sectional SEM and cross-sectional HRTEM.

  3. New 3-dimensional nanostructured thin film silicon solar cells

    Vaněček, Milan; Neykova, Neda; Babchenko, Oleg; Purkrt, Adam; Poruba, Aleš; Remeš, Zdeněk; Holovský, Jakub; Hruška, Karel; Meier, J.; Kroll, U.

    München: WIP- Renewable energies, 2010, s. 2763-2766. ISBN 3-936338-26-4. [European Photovoltaic Solar Energy Conference /25./ and World Conference on Photovoltaic Energy Conversion /5./. Valencia (ES), 06.09.2010-10.09.2010] R&D Projects: GA MŠk(CZ) 7E09057 EU Projects: European Commission(XE) 214134 - N2P Institutional research plan: CEZ:AV0Z10100521 Keywords : thin film solar cells, * TCO transparent conductive oxides * a-Si * high stable efficiency, * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Methods for fabricating thin film III-V compound solar cell

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  5. Thin Film Solar Cells: Organic, Inorganic and Hybrid

    Dankovich, John

    2004-01-01

    Thin film solar cells are an important developing resource for hundreds of applications including space travel. In addition to being more cost effective than traditional single crystal silicon cells, thin film multi-crystaline cells are plastic and light weight. The plasticity of the cells allows for whole solar panels to be rolled out from reams. Organic layers are being investigated in order to increase the efficiency of the cells to create an organic / inorganic hybrid cell. The main focus of the group is a thin film inorganic cell made with the absorber CuInS2. So far the group has been successful in creating the layer from a single-source precursor. They also use a unique method of film deposition called chemical vapor deposition for this. The general makeup of the cell is a molybdenum back contact with the CuInS2 layer, then CdS, ZnO and aluminum top contacts. While working cells have been produced, the efficiency so far has been low. Along with quantum dot fabrication the side project of this that is currently being studied is adding a polymer layer to increase efficiency. The polymer that we are using is P3OT (Poly(3-octylthiopene-2,5-diyll), retroregular). Before (and if) it is added to the cell, it must be understood in itself. To do this simple diodes are being constructed to begin to look at its behavior. The P3OT is spin coated onto indium tin oxide and silver or aluminum contacts are added. This method is being studied in order to find the optimal thickness of the layer as well as other important considerations that may later affect the composition of the finished solar cell. Because the sun is the most abundant renewable, energy source that we have, it is important to learn how to harness that energy and begin to move away from our other depleted non-renewable energy sources. While traditional silicon cells currently create electricity at relatively high efficiencies, they have drawbacks such as weight and rigidness that make them unattractive

  6. Plasmonic versus dielectric enhancement in thin-film solar cells

    Dühring, Maria Bayard; Mortensen, N. Asger; Sigmund, Ole

    2012-01-01

    Several studies have indicated that broadband absorption of thin-film solar cells can be enhanced by use of surface-plasmon induced resonances of metallic parts like strips or particles. The metallic parts may create localized modes or scatter incoming light to increase absorption in thin...... its metallic counterpart. We show that the enhanced normalized short-circuit current for a cell with silicon strips can be increased 4 times compared to the best performance for strips of silver, gold, or aluminium. For this particular case, the simple dielectric grating may outperform its plasmonic...

  7. Development of CIGS2 thin film solar cells

    Research and development of CuIn1-xGa xSe2-yS y (CIGSS) thin-film solar cells on ultralightweight flexible metallic foil substrates is being carried out at FSEC PV Materials Lab for space applications. Earlier, the substrate size was limited to 3 cm x 2.5 cm. Large-area sputtering systems and scrubber for hydrogen selenide and sulfide have been designed and constructed for preparation of CIGSS thin-films on large (15 cm x 10 cm) substrates. A selenization/sulfurization furnace donated by Shell (formerly Siemens) Solar has also been refurbished and upgraded. The sputtering target assembly design was modified for proper clamping of targets and effective cooling. A new design of the magnetic assembly for large-area magnetron sputtering sources was implemented so as to achieve uniform deposition on large area. Lightweight stainless steel foil and ultralightweight titanium foil substrates were utilized to increase the specific power of solar cells. Sol-gel derived SiO2 layers were coated on titanium foil by dip coating method. Deposition parameters for the preparation of molybdenum back contact layers were optimized so as to minimize the residual stress as well as reaction with H2S. Presently large (15 cm x 10 cm) CuIn1-xGa xS2 (CIGS2) thin film solar cells are being prepared on Mo-coated titanium and stainless steel foil by sulfurization of CuGa/In metallic precursors in diluted Ar:H2S(4%). Heterojunction partner CdS layers are deposited by chemical bath deposition. The regeneration sequence of ZnO/ZnO:Al targets was optimized for obtaining consistently good-quality, transparent and conducting ZnO/ZnO:Al bilayer by RF magnetron-sputter deposition. Excellent facilities at FSEC PV Materials Lab are one of its kinds and could serve as a nucleus of a small pilot plant for CIGSS thin film solar cell fabrication

  8. Characterization of thin-film silicon materials and solar cells through numerical modeling

    Pieters, B.E.

    2008-01-01

    At present most commercially available solar cells are made of crystalline silicon (c-Si). The disadvantages of crystalline silicon solar cells are the high material cost and energy consumption during production. A cheaper alternative can be found in thin-film silicon solar cells. The thin-film sili

  9. Thin-film intermediate band chalcopyrite solar cells

    Chalcopyrite-based solar cells currently lead the efficiency tables of thin-film photovoltaic technologies. Further improvements are foreseen upon implementation of an intermediate band in the absorber layers. We present a theoretical analysis of the efficiency limit for this type of device as a function of factors such as the gap of the host, the relative position of the intermediate band with respect to the band edge and the level of light concentration used as illumination. We have also considered the impact of non-idealities on the performance of the device, particularly the effect of electronic losses related to non-radiative recombination

  10. Thin-film Solar Cells for Space Applications

    Lush, Gregory B.

    2003-01-01

    The proposed work supports MURED goals by fostering research and development activities at Fisk and UTEP which contribute substantially to NASA's mission, preparing faculty and students at Fisk and UTEP to successfully participate in the conventional, competitive research and education process, and increasing the number of students to successfully complete degrees in NASA related fields. The project also addresses directly a core need of NASA for space power and is consistent with the Core Responsibilities of the John Glenn Space Center. Current orbital missions are limited by radiation from high energy particles trapped in the Van Allen Belt because that solar radiation degrades cell performance by damaging the crystalline lattice. Some potential orbits have been inaccessible because the radiation is too severe. Thin-film solar cells, if they can be adapted for use in the unfriendly space environment, could open new orbits to satellites by providing a radiation hard source of power. The manned mission to Mars requires photovoltaic devices for both the trip there and as a power supply on the surface. Solar arrays using thin films offer a low power/weight ratio solution that provides reliable photovoltaic power.

  11. Analysis of loss mechanisms in polycrystalline thin film solar cells

    Sites, J. R.

    1990-08-01

    Our goal for thin-film polycrystalline solar cell analysis was to increase the useful information extracted from relatively straightforward electrical measurements. The strategy was to (1) systematize measurements and reporting, (2) organize results in terms of quantitative values for individual sources of current and voltage loss, and (3) evaluate possible analytical techniques to enhance precision and avoid pitfalls, and (4) insist on a viable physical explanation of each loss mechanism. Current-voltage, quantum efficiency, and capacitance measurements on CuInSe2 and CdTe solar cells from a variety of sources have been analyzed. In many cases losses were identified that may be lessened relatively easily. However, the operating voltage loss due to excessive forward recombination current throughout the depletion region remains the primary obstacle to efficiencies competitive with single crystal cells.

  12. Analysis of loss mechanisms in polycrystalline thin film solar cells

    Sites, J.R. (Colorado State Univ., Fort Collins, CO (USA))

    1990-08-01

    Our goal for thin-film polycrystalline solar cell analysis was to increase the useful information extracted from relatively straightforward electrical measurements. The strategy was to (1) systematize measurements and reporting, (2) organize results in terms of quantitative values for individual sources of current and voltage loss, and (3) evaluate possible analytical techniques to enhance precision and avoid pitfalls, and (4) insist on a viable physical explanation of each loss mechanism. Current-voltage, quantum efficiency, and capacitance measurements on CuInSe{sub 2} and CdTe solar cells from a variety of sources have been analyzed. In many cases losses were identified that may be lessened relatively easily. However, the operating voltage loss due to excessive forward recombination current throughout the depletion region remains the primary obstacle to efficiencies competitive with single crystal cells. 1 tab., 4 figs., 26 refs.

  13. Chemically Deposited Thin-Film Solar Cell Materials

    Raffaelle, R.; Junek, W.; Gorse, J.; Thompson, T.; Harris, J.; Hehemann, D.; Hepp, A.; Rybicki, G.

    2005-01-01

    We have been working on the development of thin film photovoltaic solar cell materials that can be produced entirely by wet chemical methods on low-cost flexible substrates. P-type copper indium diselenide (CIS) absorber layers have been deposited via electrochemical deposition. Similar techniques have also allowed us to incorporate both Ga and S into the CIS structure, in order to increase its optical bandgap. The ability to deposit similar absorber layers with a variety of bandgaps is essential to our efforts to develop a multi-junction thin-film solar cell. Chemical bath deposition methods were used to deposit a cadmium sulfide (CdS) buffer layers on our CIS-based absorber layers. Window contacts were made to these CdS/CIS junctions by the electrodeposition of zinc oxide (ZnO). Structural and elemental determinations of the individual ZnO, CdS and CIS-based films via transmission spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and energy dispersive spectroscopy will be presented. The electrical characterization of the resulting devices will be discussed.

  14. 2D modelling of polycrystalline silicon thin film solar cells

    Leendertz Caspar

    2013-07-01

    Full Text Available The influence of grain boundary (GB properties on device parameters of polycrystalline silicon (poly-Si thin film solar cells is investigated by two-dimensional device simulation. A realistic poly-Si thin film model cell composed of antireflection layer, (n+-type emitter, thick p-type absorber, and (p+-type back surface field was created. The absorber consists of a low-defect crystalline Si grain with an adjacent highly defective grain boundary layer. The performances of a reference cell without GB, one with n-type and one with p-type GB, respectively, are compared. The doping concentration and defect density at the GB are varied. It is shown that the impact of the grain boundary on the poly-Si cell is twofold: a local potential barrier is created at the GB, and a part of the photogenerated current flows within the GB. Regarding the cell performance, a highly doped n-type GB is less critical in terms of the cell’s short circuit current than a highly doped p-type GB, but more detrimental in terms of the cell’s open circuit voltage and fill factor.

  15. Commercial Development Of Ovonic Thin Film Solar Cells

    Ovshinsky, Stanford R.

    1983-09-01

    subsequent paper) which has clearly demonstrated that the basic barrier to low-cost production has been broken through and that one can now speak realistically of delivering power directly from the sun for under a dollar per peak watt merely by making larger versions of this basic continuous web, large-area thin-film machine. We have made one square foot amorphous silicon alloy PIN devices with conversion efficiencies in the range of 7%, and in the laboratory, we have reported smaller area PIN de-vices in the 10% conversion efficiency range. In addition, much higher energy conversion efficiencies can be obtained within the same process by using multi-cell layered or tandem thin-film solar cell structures (see Figure 1). These devices exhibit enhanced efficiency by utilizing a wider range of the solar spectrum. Since the theoretical maximum efficiency for multi-cell structures is over 60%, one can certainly realistically anticipate the pro-duction of thin-film amorphous photovoltaic devices with efficiencies as high as 30%. Our production device is already a two-cell tandem, as we have solved not only the problems of interfacing the individual cell components but also the difficulties associated with a one foot square format deposited on a continuous web. Figure 2 shows a continuous roll of Ovonic solar cells. Realistic calculations for a three-cell tandem thin-film device using amorphous semiconductor alloys with 1.8eV, 1.5eV, and 1.0eV optical band gaps indicate that solar energy conversion efficiencies of 20-30% can be achieved.

  16. Trends in development of CuInSe sub 2 thin-film solar cells

    Nakata, Tokio; Kunioka, Akio (Aoyama Gakuin Univ. School of Science and Engineering, Tokyo, Japan (JP))

    1988-11-30

    Recently, efforts for developing thin-film solar cells aimed to help reduce appliance cost are extensive. Already, amorphous Si solar cells and CdTe solar cells have been introduced to the market as power supply for hand-held calculators and other domestic appliances. Before thin-film solar cells can be used for electric power, the conversion efficiency must be improved. In this circumstance, attention is focused on CuInSe{sub 2} thin-film solar cells. Great efficiency improvement is expected when they are combined with amorphous Si solar cells into a tandem structure. This material will not deteriorate during a reasonable period of use, so it is very reliable. This paper discusses recent activities for developing CuInSe{sub 2} thin-film solar cells and tandem solar cells combining amorphous Si and CuInSe{sub 2} solar cells and discusses the future outlook. 23 refs., 7 figs., 4 tabs.

  17. Thin-film CdS/CdTe solar cells

    A thin-film solar cell with the configuration soda-lime glass ITO/CdS/CdTe/Au was reported earlier to have more than 10% conversion efficiency. To further improve the low-cost potential of the device, an SnO/sub 2/ layer was developed to replace ITO, and a new contact to CdTe using Ni or stainless steel to replace Au. The contact also improves the stability of the device. A low-cost method for monolithic integration of these cells to make a module is discussed. By this method, a module of 32 cm/sup 2/ area and 8.5% efficiency was fabricated. A simple and effective ''cross-cut'' method for minimizing the effects of shorting defects is also described

  18. High-efficient n-i-p thin-film silicon solar cells

    Yang, G.

    2015-01-01

    In this thesis we present results of the development of n-i-p thin-film silicon solar cells on randomly textured substrates, aiming for highly efficient micromorph solar cells (i.e., solar cells based on a μc-Si:H bottom cell and a-Si:H top cell). For the efficiency of n-i-p thin-film silicon solar

  19. Potential of thin-film solar cell module technology

    Shimada, K.; Ferber, R. R.; Costogue, E. N.

    1985-01-01

    During the past five years, thin-film cell technology has made remarkable progress as a potential alternative to crystalline silicon cell technology. The efficiency of a single-junction thin-film cell, which is the most promising for use in flat-plate modules, is now in the range of 11 percent with 1-sq cm cells consisting of amorphous silicon, CuInSe2 or CdTe materials. Cell efficiencies higher than 18 percent, suitable for 15 percent-efficient flat plate modules, would require a multijunction configuration such as the CdTe/CuInSe2 and tandem amorphous-silicon (a-Si) alloy cells. Assessments are presented of the technology status of thin-film-cell module research and the potential of achieving the higher efficiencies required for large-scale penetration into the photovoltaic (PV) energy market.

  20. Transparent electrode requirements for thin film solar cell modules

    Rowell, Michael W.

    2011-01-01

    The transparent conductor (TC) layer in thin film solar cell modules has a significant impact on the power conversion efficiency. Reflection, absorption, resistive losses and lost active area either from the scribed interconnect region in monolithically integrated modules or from the shadow losses of a metal grid in standard modules typically reduce the efficiency by 10-25%. Here, we perform calculations to show that a competitive TC must have a transparency of at least 90% at a sheet resistance of less than 10 Ω/sq (conductivity/absorptivity ≥ 1 Ω -1) for monolithically integrated modules. For standard modules, losses are much lower and the performance of alternative lower cost TC materials may already be sufficient to replace conducting oxides in this geometry. © 2011 The Royal Society of Chemistry.

  1. Molecular solution processing of metal chalcogenide thin film solar cells

    Yang, Wenbing

    The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (CISS) and kesterite Cu2ZnSn(S,Se) 4 organized in chronological order. Chalcopyrite CISS is a very promising material. It has been demonstrated to achieve the highest efficiency among thin film solar cells. Scaled-up industry production at present has reached the giga-watt per year level. The process however mainly relies on vacuum systems which account for a significant percentage of the manufacturing cost. In the first section of this dissertation, hydrazine based solution processed CISS has been explored. The focus of the research involves the procedures to fabricate devices from solution. The topics covered in Chapter 2 include: precursor solution synthesis with a focus on understanding the solution chemistry, CISS absorber formation from precursor, properties modification toward favorable device performance, and device structure innovation toward tandem device. For photovoltaics to have a significant impact toward meeting energy demands, the annual production capability needs to be on TW-level. On such a level, raw materials supply of rare elements (indium for CIS or tellurium for CdTe) will be the bottleneck limiting the scalability. Replacing indium with zinc and tin, earth abundant kesterite CZTS exhibits great potential to reach the goal of TW-level with no limitations on raw material availability. Chapter 3 shows pioneering work towards solution processing of CZTS film at low temperature. The solution processed devices show performances which rival vacuum

  2. Characterization of thin-film silicon materials and solar cells through numerical modeling

    Pieters, B.E.

    2008-01-01

    At present most commercially available solar cells are made of crystalline silicon (c-Si). The disadvantages of crystalline silicon solar cells are the high material cost and energy consumption during production. A cheaper alternative can be found in thin-film silicon solar cells. The thin-film silicon used in this type of solar cells is in a different phase than c-Si and usually alloyed with hydrogen. The most common thin-film silicon phases are hydrogenated amorphous silicon (a-Si:H) and hy...

  3. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate

    Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin

    2016-01-01

    There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination. PMID:27435899

  4. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.

    Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin

    2016-01-01

    There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination. PMID:27435899

  5. Amorphous silicon thin films: The ultimate lightweight space solar cell

    Vendura, G. J., Jr.; Kruer, M. A.; Schurig, H. H.; Bianchi, M. A.; Roth, J. A.

    1994-01-01

    Progress is reported with respect to the development of thin film amorphous (alpha-Si) terrestrial solar cells for space applications. Such devices promise to result in very lightweight, low cost, flexible arrays with superior end of life (EOL) performance. Each alpha-Si cell consists of a tandem arrangement of three very thin p-i-n junctions vapor deposited between film electrodes. The thickness of this entire stack is approximately 2.0 microns, resulting in a device of negligible weight, but one that must be mechanically supported for handling and fabrication into arrays. The stack is therefore presently deposited onto a large area (12 by 13 in), rigid, glass superstrate, 40 mil thick, and preliminary space qualification testing of modules so configured is underway. At the same time, a more advanced version is under development in which the thin film stack is transferred from the glass onto a thin (2.0 mil) polymer substrate to create large arrays that are truly flexible and significantly lighter than either the glassed alpha-Si version or present conventional crystalline technologies. In this paper the key processes for such effective transfer are described. In addition, both glassed (rigid) and unglassed (flexible) alpha-Si cells are studied when integrated with various advanced structures to form lightweight systems. EOL predictions are generated for the case of a 1000 W array in a standard, 10 year geosynchronous (GEO) orbit. Specific powers (W/kg), power densities (W/sq m) and total array costs ($/sq ft) are compared.

  6. Charge carrier dynamics in thin film solar cells

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  7. A Review on Development Prospect of CZTS Based Thin Film Solar Cells

    Xiangbo Song

    2014-01-01

    Full Text Available Cu2ZnSnS4 is considered as the ideal absorption layer material in next generation thin film solar cells due to the abundant component elements in the crust being nontoxic and environmentally friendly. This paper summerized the development situation of Cu2ZnSnS4 thin film solar cells and the manufacturing technologies, as well as problems in the manufacturing process. The difficulties for the raw material’s preparation, the manufacturing process, and the manufacturing equipment were illustrated and discussed. At last, the development prospect of Cu2ZnSnS4 thin film solar cells was commented.

  8. High-efficient n-i-p thin-film silicon solar cells

    Yang, G.

    2015-01-01

    In this thesis we present results of the development of n-i-p thin-film silicon solar cells on randomly textured substrates, aiming for highly efficient micromorph solar cells (i.e., solar cells based on a μc-Si:H bottom cell and a-Si:H top cell). For the efficiency of n-i-p thin-film silicon solar cells the interfaces between different layers are very important. In this thesis the influence of some important interfaces in the n-i-p configuration solar cells on the solar-cell performance has ...

  9. Photovoltaic solar cell from low-cost thin-film technology

    Full text : One of the main hindrances of using solar energy for electrical power supply is the high initial cost. Thin-film technologies hold considerable promise for substantial cost reduction for photovoltaic solar cells. The paper reviews the present state of the most advanced thin-film technologies. Amorphous silicon solar cells have surmounted the barrier to mass production. Pilot manufacturing lines are under construcion for CdTe thin-film module. Cu(In, Ga)Se2 has reached a record efficiency of 18.8 percent in the laboratory and pilot productions have benn announced by various companies

  10. Photovoltaic solar cell from low-cost thin-film technology

    One of the main hindrances of using solar energy for electrical power supply is the high initial cost. Thin-film technologies hold considerable promise for substantial cost reduction for photovoltaic solar cells. The paper reviews the present state of the most advanced thin-film technologies. Amorphous silicon (a-Si:H) solar cells have surmounted the barrier to mass production. Pilot manufacturing lines are under construction for CdTe thin-film module. Cu(In, Ga)Se2 has reached a record efficiency of 18.8 percent in the laboratory and pilot productions have been announced by various companies

  11. Advances in thin-film solar cells for lightweight space photovoltaic power

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  12. Influence of CuxS back contact on CdTe thin film solar cells

    Lei Zhi; Feng Lianghuan; Zeng Guanggen; Li Wei; Zhang Jingquan; Wu Lili; Wang Wenwu

    2013-01-01

    We present a detailed study on CuxS polycrystalline thin films prepared by chemical bath method and utilized as back contact material for CdTe solar cells.The characteristics of the films deposited on Si-substrate are studied by XRD.The results show that as-deposited CuxS thin film is in an amorphous phase while after annealing,samples are in polycrystalline phases with increasing temperature.The thickness of CuxS thin films has great impact on the performance of CdS/CdTe solar cells.When the thickness of the film is about 75 nm the performance of CdS/CdTe thin film solar cells is found to be the best.The energy conversion efficiency can be higher than 12.19%,the filling factor is higher than 68.82% and the open-circuit voltage is more than 820 mV.

  13. Molybdenum Back-Contact Optimization for CIGS Thin Film Solar Cell

    J.R. Ray

    2011-01-01

    Full Text Available Molybdenum (Mo thin films are most widely used as an ohmic back-contact in the copper indium diselenide (CIS and its alloy copper indium gallium diselenide (CIGS based thin film solar cell. Radio frequency (RF magnetron sputtering system used to deposit Mo thin films on soda lime glass substrate. The deposition was carried out using argon (Ar gas at different Ar controlled (working pressures (1 mTorr to 10 mTorr and at different RF powers (60 W to 100 W. The influence of both the working pressure and the RF power on the Mo thin films was studied by investigating its structural, morphological, electrical, and optical measurements. The results reveal that a stress-free, low-sheet-resistance (~1 Ω/cm2, and reflecting (~ 55 % Mo thin film was observed at 1 mTorr working pressure and 100 W RF power.

  14. Preparation of vanadium diselenide thin films and their application in CdTe solar cells

    Vanadium diselenide thin films were prepared by electron beam evaporation. The properties of vanadium diselenide thin films were investigated using X-ray diffraction, scanning electron microscope, transmission spectra, electrical and Hall measurements. To further investigate the application of vanadium diselenide thin films, device performance in CdTe solar cells with a vanadium diselenide layer was also studied. The results indicate that vanadium diselenide thin films had a stable hexagonal structure after annealing. The thin films were p-type semiconductor materials with the high work function and high carrier concentration. Vanadium diselenide thin films could form a good ohmic contact to CdTe solar cells. Thus, cell performance was greatly improved when introduced a vanadium diselenide buffer layer. - Highlights: • VSe2 was prepared by electron beam evaporation. • VSe2 was a p-type material with the high work function and high carrier concentration. • VSe2 was used as a Cu-free buffer layer in CdTe solar cells. • Performance of CdTe solar cells was improved

  15. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    de Jong, M.M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic subst

  16. Crystalline silicon thin film growth by ECR plasma CVD for solar cells

    This thesis describes the background, motivation and work carried out towards this PhD programme entitled 'Crystalline Silicon Thin Film Growth by ECR Plasma CVD for Solar Cells'. The fundamental principles of silicon solar cells are introduced with a review of silicon thin film and bulk solar cells. The development and prospects for thin film silicon solar cells are described. Some results of a modelling study on thin film single crystalline solar cells are given which has been carried out using a commercially available solar cell simulation package (PC-1D). This is followed by a description of thin film deposition techniques. These include Chemical Vapour Deposition (CVD) and Plasma-Assisted CVD (PACVD). The basic theory and technology of the emerging technique of Electron Cyclotron Resonance (ECR) PACVD, which was used in this research, are introduced and the potential advantages summarised. Some of the basic methods of material and cell characterisation are briefly described, together with the work carried out in this research. The growth by ECR PACVD at temperatures 2 illumination. The best efficiency in the ECR grown structures was 13.76% using an epitaxial emitter. Cell performance was analysed in detail and the factors controlling performance identified by fitting self-consistently the fight and dark current-voltage and spectral response data using PC-1D. Finally, the conclusions for this research and suggestions for further work are outlined. (author)

  17. Hydrogen passivation of polycrystalline Si thin film solar cells

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage VOC of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage Vbrk of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in Vbrk. Plasma simulations were carried out, which indicate that best VOC corresponds to a minimum in ion energy. VOC was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range (≤400 C) is slow and takes several hours for the VOC to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in VOC, which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature Tdep=200-700 C and were characterized by Raman, ESR and VOC measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration of 2.5.1016 cm-3 after passivation was found for poly

  18. High power impulse magnetron sputtering of CIGS thin films for high efficiency thin film solar cells

    Olejníček, Jiří; Hubička, Zdeněk; Kohout, Michal; Kšírová, Petra; Kment, Štěpán; Brunclíková, Michaela; Čada, Martin; Darveau, S.A.; Exstrom, C.L.

    2014-01-01

    Roč. 1, č. 3 (2014), s. 135-137. ISSN 2336-2626 R&D Projects: GA MŠk LH12045 Institutional support: RVO:68378271 Keywords : CIGS * HiPIMS * emission spectroscopy * thin films * magnetron sputtering Subject RIV: BL - Plasma and Gas Discharge Physics http://fyzika.feld.cvut.cz/misc/ppt/articles/2014/olejnicek.pdf

  19. Indium sulfide thin films as window layer in chemically deposited solar cells

    Indium sulfide (In2S3) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO3)3 as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In2S3. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In2S3 thin films are photosensitive with an electrical conductivity value in the range of 10−3–10−7 (Ω cm)−1, depending on the film preparation conditions. We have demonstrated that the In2S3 thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO2:F/In2S3/Sb2S3/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm2. - Highlights: • In2S3 thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In2S3 films. • We made chemically deposited solar cells using the In2S3 thin films

  20. Poly CdTe thin films solar cells

    Marfaing, Y.

    1982-01-01

    CdTe is potentially one of the most interesting materials for the photovoltaic conversion of solar energy. The width of its forbidden band of 1.5 eV puts it to the maximum of the theoretical yield curve (24%). Its high coefficient of optical absorption in the main band allows the use of thin films (2 to 3 microns). It is appropriate for production of thin polycristalline films with good optical and photoelectrical properties, which is probably due to its ionic character. The goal of the research performed as part of this contract is to determine the optimum conditions for the use of CdTe as photovoltaic converter. The authors think that the virtual efficiency of this material calls for confirmation and evidence provided by a systematic and profound investigation.

  1. Hydrogen passivation of polycrystalline Si thin film solar cells

    Gorka, Benjamin

    2010-12-15

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage V{sub OC} of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage V{sub brk} of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in V{sub brk}. Plasma simulations were carried out, which indicate that best V{sub OC} corresponds to a minimum in ion energy. V{sub OC} was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range ({<=}400 C) is slow and takes several hours for the V{sub OC} to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in V{sub OC}, which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature T{sub dep}=200-700 C and were characterized by Raman, ESR and V{sub OC} measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration

  2. Spray-on Thin Film PV Solar Cells: Advances, Potentials and Challenges

    Morteza Eslamian

    2014-01-01

    Full Text Available The capability to fabricate photovoltaic (PV solar cells on a large scale and at a competitive price is a milestone waiting to be achieved. Currently, such a fabrication method is lacking because the effective methods are either difficult to scale up or expensive due to the necessity for fabrication in a vacuum environment. Nevertheless, for a class of thin film solar cells, in which the solar cell materials can be processed in a solution, up scalable and vacuum-free fabrication techniques can be envisioned. In this context, all or some layers of polymer, dye-sensitized, quantum dot, and copper indium gallium selenide thin film solar cells illustrate some examples that may be processed in solution. The solution-processed materials may be transferred to the substrate by atomizing the solution and carrying the spray droplets to the substrate, a process that will form a thin film after evaporation of the solvent. Spray coating is performed at atmospheric pressure using low cost equipment with a roll-to-roll process capability, making it an attractive fabrication technique, provided that fairly uniform layers with high charge carrier separation and transport capability can be made. In this paper, the feasibility, the recent advances and challenges of fabricating spray-on thin film solar cells, the dynamics of spray and droplet impaction on the substrate, the photo-induced electron transfer in spray-on solar cells, the challenges on characterization and simulation, and the commercialization status of spray-on solar cells are discussed.

  3. Broadband Absorption Enhancement in Thin Film Solar Cells Using Asymmetric Double-Sided Pyramid Gratings

    Alshal, Mohamed A.; Allam, Nageh K.

    2016-07-01

    A design for a highly efficient modified grating crystalline silicon (c-Si) thin film solar cell is demonstrated and analyzed using the two-dimensional (2-D) finite element method. The suggested grating has a double-sided pyramidal structure. The incorporation of the modified grating in a c-Si thin film solar cell offers a promising route to harvest light into the few micrometers active layer. Furthermore, a layer of silicon nitride is used as an antireflection coating (ARC). Additionally, the light trapping through the suggested design is significantly enhanced by the asymmetry of the top and bottom pyramids. The effects of the thickness of the active layer and facet angle of the pyramid on the spectral absorption, ultimate efficiency (η), and short-circuit current density (J sc) are investigated. The numerical results showed 87.9% efficiency improvement over the conventional thin film c-Si solar cell counterpart without gratings.

  4. Textured conducting glass by nanosphere lithography for increased light absorption in thin-film solar cells

    Nanoscale surface texturing in thin-film solar cells has been shown to enhance device efficiency by increasing light absorption through reduced reflectance and increased light scattering across a broad range of wavelengths and angles. However, light trapping in the industrial thin-film cells is still sub-optimal and creating optimized nanoscale texture over a large area remains challenging. In this article, we present a well-controlled low-cost process to fabricate a periodic nanocone texture optimized for maximum light absorption in thin-film microcrystalline silicon solar cells. The texture is fabricated using nanosphere lithography with the period controlled by the nanosphere diameter and the texture shape and aspect ratio controlled by the reactive ion etching conditions. Finite-difference time-domain optical simulations are used to optimize the texture in the state-of-the-art microcrystalline cells, and optical absorption measurements show that the same cells fabricated on the optimized nanocone-textured substrates exhibit a relative short-circuit current increase of close to 30% compared to a reference state-of-the-art cell with a randomly textured zinc oxide layer. This nanocone texturing technique is compatible with standard thin-film cell fabrication processes and can also be used for other thin-film cells (CIGS, CdTe, CZTS, etc) to maximize light absorption and minimize layer thickness enabling more efficient carrier collection and lower overall cost. (paper)

  5. Hybrid solar cells using CdS thin films deposited via spray pyrolysis technique

    The paper presents the photovoltaic performance of hybrid solar cells comprising of thin films of cadmium sulphide and poly(3-hexyl)thiophene. Cadmium sulphide thin films were deposited using spray pyrolysis technique. Current-voltage characterizations were performed for cadmium sulphide/poly(3-hexyl)thiophene heterojunctions in dark and under illumination (100 mWcm−2). The best device yields a short circuit current density of 1.54 mA/cm2, an open circuit voltage of 343 mV, and a power conversion efficiency of 0.15%. - Highlights: • Hybrid solar cells were fabricated using CdS and poly(3-hexyl)thiophene. • CdS thin films were grown by spray pyrolysis technique. • The best cell performance was achieved for the 100 nm thick CdS films. • The highest short circuit current was measured as 1.54 mAcm−2 for the best cell

  6. Characterization of thin film ZnCdS/CdTe solar cells

    Mahammad Hussain, O.; Sreedhara Reddy, P.; Srinivasalu Naidu, B.; Uthanna, S.; Jayarama Reddy, P. (Sri Venkateswara Univ., Tirupati (India). Dept. of Physics)

    1991-07-01

    n-ZnCdS/p-CdTe polycrystalline thin film solar cells were fabricated by laser evaporating CdTe onto sprayed ZnCdS films. The cells were characterized by studying current-voltage, capacitance-voltage and spectral response measurements. A maximum efficiency of 7.6% was observed for a cell area of 1 cm{sup 2}. (author).

  7. A Review on Development Prospect of CZTS Based Thin Film Solar Cells

    Xiangbo Song; Xu Ji; Ming Li; Weidong Lin; Xi Luo; Hua Zhang

    2014-01-01

    Cu2ZnSnS4 is considered as the ideal absorption layer material in next generation thin film solar cells due to the abundant component elements in the crust being nontoxic and environmentally friendly. This paper summerized the development situation of Cu2ZnSnS4 thin film solar cells and the manufacturing technologies, as well as problems in the manufacturing process. The difficulties for the raw material’s preparation, the manufacturing process, and the manufacturing equipment were illustrate...

  8. Transparent conductive zinc oxide basics and applications in thin film solar cells

    Klein, Andreas; Rech, Bernd

    2008-01-01

    Zinc oxide (ZnO) belongs to the class of transparent conducting oxides which can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review. The editors and authors of this book are specialists in deposition, analysis and fabrication of thin-film solar cells and especially of ZnO. This book is intended as an overview and a data collection for students, engineers and scientist.

  9. Comparing n- and p-type polycrystalline silicon absorbers in thin-film solar cells

    We have investigated fine grained polycrystalline silicon thin films grown by direct chemical vapor deposition on oxidized silicon substrates. More specifically, we analyze the influence of the doping type on the properties of this model polycrystalline silicon material. This includes an investigation of defect passivation and benchmarking of minority carrier properties. In our investigation, we use a variety of characterization techniques to probe the properties of the investigated polycrystalline silicon thin films, including Fourier Transform Photoelectron Spectroscopy, Electron Spin Resonance, Conductivity Activation, and Suns-Voc measurements. Amphoteric silicon dangling bond defects are identified as the most prominent defect type present in these layers. They are the primary recombination center in the relatively lowly doped polysilicon thin films at the heart of the current investigation. In contrast with the case of solar cells based on Czochralski silicon or multicrystalline silicon wafers, we conclude that no benefit is found to be associated with the use of n-type dopants over p-type dopants in the active absorber of the investigated polycrystalline silicon thin-film solar cells. - Highlights: • Comparison of n- and p-type absorbers for thin-film poly-Si solar cells • Extensive characterization of the investigated layers' characteristics • Literature review pertaining the use of n-type and p-type dopants in silicon

  10. Comparing n- and p-type polycrystalline silicon absorbers in thin-film solar cells

    Deckers, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium); Bourgeois, E. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Jivanescu, M. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Abass, A. [Photonics Research Group (INTEC), Ghent University-imec, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Van Gestel, D.; Van Nieuwenhuysen, K.; Douhard, B. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); D' Haen, J.; Nesladek, M.; Manca, J. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Gordon, I.; Bender, H. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); Stesmans, A. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Mertens, R.; Poortmans, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium)

    2015-03-31

    We have investigated fine grained polycrystalline silicon thin films grown by direct chemical vapor deposition on oxidized silicon substrates. More specifically, we analyze the influence of the doping type on the properties of this model polycrystalline silicon material. This includes an investigation of defect passivation and benchmarking of minority carrier properties. In our investigation, we use a variety of characterization techniques to probe the properties of the investigated polycrystalline silicon thin films, including Fourier Transform Photoelectron Spectroscopy, Electron Spin Resonance, Conductivity Activation, and Suns-Voc measurements. Amphoteric silicon dangling bond defects are identified as the most prominent defect type present in these layers. They are the primary recombination center in the relatively lowly doped polysilicon thin films at the heart of the current investigation. In contrast with the case of solar cells based on Czochralski silicon or multicrystalline silicon wafers, we conclude that no benefit is found to be associated with the use of n-type dopants over p-type dopants in the active absorber of the investigated polycrystalline silicon thin-film solar cells. - Highlights: • Comparison of n- and p-type absorbers for thin-film poly-Si solar cells • Extensive characterization of the investigated layers' characteristics • Literature review pertaining the use of n-type and p-type dopants in silicon.

  11. Effects of Different Parameters In Enhancing The Efficiency of Plasmonic Thin Film Solar Cells

    N.Alekhya Reddy

    2014-09-01

    Full Text Available Efficiency of thin film solar cells are less comparing to thick film solar cells which can be enhanced by utilizing the metal nanoparticles near their localized Plasmon resonance. In this paper, we have reviewed the Plasmon resonance of metallic nanoparticles and its application in solar cell technology. Beside this, we have also reviewed about different parameters which dominate the nanoparticles to increase optical absorption. Thus a cost-effective model has been proposed.

  12. The impact of sodium contamination in tin sulfide thin-film solar cells

    Vera Steinmann

    2016-02-01

    Full Text Available Through empirical observations, sodium (Na has been identified as a benign contaminant in some thin-film solar cells. Here, we intentionally contaminate thermally evaporated tin sulfide (SnS thin-films with sodium and measure the SnS absorber properties and solar cell characteristics. The carrier concentration increases from 2 × 1016 cm−3 to 4.3 × 1017 cm−3 in Na-doped SnS thin-films, when using a 13 nm NaCl seed layer, which is detrimental for SnS photovoltaic applications but could make Na-doped SnS an attractive candidate in thermoelectrics. The observed trend in carrier concentration is in good agreement with density functional theory calculations, which predict an acceptor-type NaSn defect with low formation energy.

  13. Properties of ITO-AZO bilayer thin films prepared by magnetron sputtering for applications in thin-film silicon solar cells

    In this paper we study the electro-optical behavior and the application of indium-tin oxide (ITO) and aluminum-doped zinc oxide (AZO) bilayer thin films for silicon solar cells. ITO-AZO bilayer thin films were deposited on glass substrates using radio-frequency magnetron sputtering. The experimental results show that a decrease in the electrical resistivity of the ITO-AZO bilayer thin films has been achieved without significant degradation of optical properties. In the best case the resistivity of the bilayer films reached a minimum of 5.075 x 10-4 Ω cm when the thickness of the AZO buffer layer was 12 nm. The ITO-AZO bilayer films were applied as the front electrodes of amorphous silicon solar cells and the short-circuit current density of the solar cells was considerably increased. (orig.)

  14. Characterization of Thin Films for Polymer Solar Cells

    Tromholt, Thomas

    The field of polymer solar cells has undergone an extensive development in recent years after the invention of semiconducting polymers in 1991. Efficiencies have gradually increased to above 10 %, and high throughput processing methods such as roll-to-roll coating allow for production of thousands...... of solar cells with low embedded time, material, and energy consumption as compared to silicon solar cells. Consequently, different demonstration products of small mobile gadgets based on polymer solar cells have been produced, which are fully competitive with conventional energy technologies......, illustrating the maturity of the technology. However, a limiting factor in terms of full commercialization is the stability of polymer solar cells. While is has been estimated that 10 years lifetime is needed, existing technologies only provide stabilities up to 1 year. Degradation of polymer solar cell is a...

  15. Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells

    Zong-Liang Tseng; Chien-Hung Chiang; Chun-Guey Wu

    2015-01-01

    Sputtering made ZnO thin film was used as an electron-transport layer in a regular planar perovskite solar cell based on high quality CH3NH3PbI3 absorber prepared with a two-step spin-coating. An efficiency up to 15.9% under AM 1.5G irradiation is achieved for the cell based on ZnO film fabricated under Ar working gas. The atmosphere of the sputtering chamber can tune the surface electronic properties (band structure) of the resulting ZnO thin film and therefore the photovoltaic performance o...

  16. Low cost and high performance light trapping structure for thin-film solar cells

    Wang, DongLin; Su, Gang

    2015-01-01

    Nano-scaled dielectric and metallic structures are popular light tapping structures in thin-film solar cells. However, a large parasitic absorption in those structures is unavoidable. Most schemes based on such structures also involve the textured active layers that may bring undesirable degradation of the material quality. Here we propose a novel and cheap light trapping structure based on the prism structured SiO2 for thin-film solar cells, and a flat active layer is introduced purposefully. Such a light trapping structure is imposed by the geometrical shape optimization to gain the best optical benefit. By examining our scheme, it is disclosed that the conversion efficiency of the flat a-Si:H thin-film solar cell can be promoted to exceed the currently certified highest value. As the cost of SiO2-based light trapping structure is much cheaper and easier to fabricate than other materials, this proposal would have essential impact and wide applications in thin-film solar cells.

  17. Efficiency loss prevention in monolithically integrated thin film solar cells by improved front contact

    Deelen, J. van; Barink, M.; Klerk, L.; Voorthuijzen, P.; Hovestad, A.

    2015-01-01

    Modeling indicates a potential efficiency boost of 17% if thin-film solar panels are featured with a metallic grid. Variations of transparent conductive oxide sheet resistance, cell length, and grid dimensions are discussed. These parameters were optimized simultaneously to obtain the best result. M

  18. Polyol-mediated Synthesis of Chalcogenide Nanoparticles for Thin-film Solar Cells

    Dong, Hailong

    2014-01-01

    The aim of this work was polyol-mediated syntheses of chalcogenide nanoparticles for printable thin-film solar cells. In this thesis, chalcogenide nanoparticles, such as Cu2Se, In2Se3, CZTS, Se@CuSe and Te@Bi2Te3, have been successfully synthesized via a polyol-mediated method.

  19. Optical and structural properties of sputtered CdS films for thin film solar cell applications

    Kim, Donguk [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Park, Young [High-Speed Railroad Infrastructure System Research Team, Korea Railroad Research Institute, Uiwang 437-757 (Korea, Republic of); Kim, Minha [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Choi, Youngkwan [Water Facility Research Center, K-water, 125, 1689 Beon-gil, Yuseong-daero, Yuseong-gu, Daejeon 305-730 (Korea, Republic of); Park, Yong Seob [Department of Photoelectronics Information, Chosun College of Science and Technology, Gwangju (Korea, Republic of); Lee, Jaehyoeng, E-mail: jaehyeong@skku.edu [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2015-09-15

    Graphical abstract: Photo current–voltage curves (a) and the quantum efficiency (QE) (b) for the solar cell with CdS film grown at 300 °C. - Highlights: • CdS thin films were grown by a RF magnetron sputtering method. • Influence of growth temperature on the properties of CdS films was investigated. • At higher T{sub g}, the crystallinity of the films improved and the grains enlarged. • CdS/CdTe solar cells with efficiencies of 9.41% were prepared at 300 °C. - Abstract: CdS thin films were prepared by radio frequency magnetron sputtering at various temperatures. The effects of growth temperature on crystallinity, surface morphology and optical properties of the films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectra, UV–visible spectrophotometry, and photoluminescence (PL) spectra. As the growth temperature was increased, the crystallinity of the sputtered CdS films was improved and the grains were enlarged. The characteristics of CdS/CdTe thin film solar cell appeared to be significantly influenced by the growth temperature of the CdS films. Thin film CdS/CdTe solar cells with efficiencies of 9.41% were prepared at a growth temperature of 300 °C.

  20. Disorder improves nanophotonic light trapping in thin-film solar cells

    Paetzold, U. W., E-mail: u.paetzold@fz-juelich.de; Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U. [IEK5—Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Michaelis, D.; Waechter, C. [Fraunhofer Institut für Angewandte Optik und Feinmechanik, Albert Einstein Str. 7, D-07745 Jena (Germany)

    2014-03-31

    We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500 nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500 nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

  1. Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells

    Söderström, T; Haug, F.-J.; Niquille, X.; Terrazzoni, V; Ballif, C.

    2009-01-01

    The micromorph solar cell (stack of amorphous and microcrystalline cells) concept is the key for achieving high efficiency stabilized thin film silicon solar cells. We introduce a device structure that allows a better control of the light in-coupling into the two subcell components. It is based on an asymmetric intermediate reflector, which increases the effective thickness of the a-Si:H by a factor of more than three. Hence, the a- Si:H thickness reduction dimi...

  2. MIS and PN junction solar cells on thin-film polycrystalline silicon

    Ariotedjo, A.; Emery, K.; Cheek, G.; Pierce, P.; Surek, T.

    1981-05-01

    The Photovoltaic Advanced Silicon (PVAS) Branch at the Solar Energy Research Institute (SERI) has initiated a comparative study to assess the potential of MIS-type solar cells for low-cost terrestrial photovoltaic systems in terms of performance, stability, and cost-effectiveness. Several types of MIS and SIS solar cells are included in the matrix study currently underway. This approach compares the results of MIS and p/n junction solar cells on essentially identical thin-film polycrystalline silicon materials. All cell measurements and characterizations are performed using uniform testing procedures developed in the Photovoltaic Measurements and Evaluation (PV M and E) Laboratory at SERI. Some preliminary data on the different cell structures on thin-film epitaxial silicon on metallurgical-grade substrates are presented here.

  3. Characterization of thin film ZnCdS/CdTe solar cells

    Hussain, O.M.; Reddy, P.S.; Naidu, B.S.; Uthanna, S.; Reddy, P.J. (Sri Venkateswara Univ., Tirupati (IN). Dept. of Physics)

    1991-11-01

    Thin films of II-VI compound semiconductors have attracted considerable interest in recent years due to their wide range of applications in the fabrication of cost effective solar cells. Among these, cadmium telluride is one of the most attractive candidates with a direct band gap of 1.5 eV which is optimum for solar energy conversion. Generally, n-CdS is used as window layer to p-CdTe to fabricate heterojunction solar cells because of its reasonable optical transparency and the ease of depositing low-resistivity films. n-ZnCdS/p-CdTe polycrystalline thin film solar cells were fabricated by laser evaporating CdTe onto sprayed ZnCdS films. The cells were characterized by studying current-voltage, capacitance-voltage and spectral response measurements. A maximum efficiency of 7.6% was observed for a cell area of 1 cm{sup 2}. (author).

  4. Novel wide band gap materials for highly efficient thin film tandem solar cells

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV's goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a

  5. Indium sulfide thin films as window layer in chemically deposited solar cells

    Lugo-Loredo, S. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Peña-Méndez, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Messina-Fernández, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63190 Tepic, Nayarit (Mexico); Alvarez-Gallegos, A. [Universidad Autónoma del Estado de Morelos, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, C.P. 62209, Cuernavaca Morelos (Mexico); Vázquez-Dimas, A.; Hernández-García, T. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico)

    2014-01-01

    Indium sulfide (In{sub 2}S{sub 3}) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO{sub 3}){sub 3} as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In{sub 2}S{sub 3}. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In{sub 2}S{sub 3} thin films are photosensitive with an electrical conductivity value in the range of 10{sup −3}–10{sup −7} (Ω cm){sup −1}, depending on the film preparation conditions. We have demonstrated that the In{sub 2}S{sub 3} thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO{sub 2}:F/In{sub 2}S{sub 3}/Sb{sub 2}S{sub 3}/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm{sup 2}. - Highlights: • In{sub 2}S{sub 3} thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In{sub 2}S{sub 3} films. • We made chemically deposited solar cells using the In{sub 2}S{sub 3} thin films.

  6. Optical Layers for Thin-film Silicon Solar Cells

    Cuony, Peter

    2011-01-01

    In this work we develop and analyze optical layers for use in Micromorph solar cells, a tandem configuration with an amorphous silicon top cell and a microcrystalline silicon bottom cell. The morphology of the front electrode has a decisive role in maximizing the efficiency of a solar cell. To reach a better understanding of the requirements for the front electrode surface, we present a wide range of morphologies that can be obtained with as-grown rou...

  7. Low resistivity molybdenum thin film towards the back contact of dye-sensitized solar cell

    Vuong Son; Tran Thi Ha; Luong T Thu Thuy; Nguyen Ngoc Ha; Nguyen Duc Chien; Mai Anh Tuan

    2015-12-01

    This paper reports the optimization of the molybdenum thin film electrode as the back contact of dye-sensitized solar cell (DSSC). The molybdenum thin film was grown on the glass substrate by direct current sputtering techniques of which the sputtering power was 150Wat 18 sccm flow rate of Ar. At such sputtering parameters, the Mo film can reach the lowest resistivity of 1.28E−6 cm at 400 nm thick. And the reflection of Mo membrane was 82%. This value is considered as a very good result for preparation of the back contact of DSSC.

  8. Application of rapid thermal processing on SiNx thin film to solar cells

    Youjie LI; Peiqing LUO; Zhibin ZHOU; Rongqiang CUI; Jianhua HUANG; Jingxiao WANG

    2008-01-01

    Rapid thermal processing (RTP) of SiNx thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were dis-cussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiNx thin film by about 200% after the RTP was reached. PC-1D simulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique.

  9. Performance of thin-film Cds/CdTe solar cells

    Hussain, O.M.; Reddy, P.J. (Sri Venkateswara Univ., Tirupati (India). Dept. of Physics)

    1991-07-15

    Cadmium telluride is a very promising material for producing efficient thin-film solar cells because is has a direct bandgap of 1.5 eV, which is optimum for solar energy conversion. Many researchers have employed close space vapour transport, screen printing, thermal evaporation and electrochemical deposition techniques for the fabrication of Cds/CdTe solar cells, and have obtained a conversion efficiency of about 10%. In this investigation polycrystalline thin-film Cds/CdTe solar cells were fabricated by employing a laser evaporation technique for the deposition of CdTe films. The cells were characterized by studying the current-voltage, capacitance-voltage and spectral response measurements. (Author).

  10. Novel Thin Film Solar Cells: Film Formation/Properties and Device Physics

    Song, Tze-Bin

    2015-01-01

    Thin film solar cells have attracted considerable attentions due to their lightweight, low material consumption, ease of fabrication, and potentially high power-conversion efficiency. However, significant cost reductions as well as large-scale production are necessary to compete with the conventional utility power. To reduce cost, vacuum-free manufacture process for each solar cell component is needed. This dissertation focus on novel and cost-effective methods on solution processes of thin f...

  11. Failure analysis of thin-film amorphous-silicon solar-cell modules

    Kim, Q.

    1984-01-01

    A failure analysis of thin film amorphous silicon solar cell modules was conducted. The purpose of this analysis is to provide information and data for appropriate corrective action that could result in improvements in product quality and reliability. Existing techniques were expanded in order to evaluate and characterize degradational performance of a-Si solar cells. Microscopic and macroscopic defects and flaws that significantly contribute to performance degradation were investigated.

  12. On the Scalar Scattering Theory for Thin-Film Solar Cells

    Jäger, K.

    2012-01-01

    Nano-textured interfaces between two media of different refractive indices scatter light. The angular distribution and the intensity of the scattered light are deter- mined by the geometry of the nano-textures and the difference of the refractive indices of the two media. Thin-film silicon solar cells (TFSSC), which convert sunlight directly into electricity, have nano-textured interfaces. These interfaces scatter the light incident on the solar cell. The scattering leads to a longer average ...

  13. Thermal Characteristics of Multilayer Insulation Materials for Flexible Thin-Film Solar Cell Array of Stratospheric Airship

    Kangwen Sun

    2014-01-01

    Full Text Available Flexible thin-film solar cell is an efficient energy system on the surface of stratospheric airship for utilizing the solar energy. In order to ensure the normal operation of airship platform, the thermal control problem between the flexible thin-film solar cell and the airship envelope should be properly resolved. In this paper, a multilayer insulation material (MLI is developed first, and low temperature environment test is carried out to verify the insulation effect of MLI. Then, a thermal heat transfer model of flexible thin-film solar cell and MLI is proposed, and the equivalent thermal conductivity coefficients of flexible thin-film solar cell and Nomex honeycomb are calculated based on the environment test and the temperature profile of flexible thin-film solar cell versus each layer of MLI. Finally, FLUENT is used for modeling and simulation analysis on the flexible thin-film solar cell and MLI, and the simulation results agree well with the experimental data, which validate the correctness of the proposed heat transfer model of MLI. In some way, our study can provide helpful support for further engineering applications of flexible thin-film solar cell.

  14. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Takeuchi, Ichiro, E-mail: takeuchi@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740 (United States); Yao, Yangyi; Hsu, Wei-Lun; Dagenais, Mario [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740 (United States)

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  15. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure

  16. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  17. Interfacial Properties of CZTS Thin Film Solar Cell

    N. Muhunthan; Om Pal Singh; Thakur, M. K.; P. Karthikeyan; Dinesh Singh; Saravanan, M; V. N. Singh

    2014-01-01

    Cu-deficient CZTS (copper zinc tin sulfide) thin films were grown on soda lime as well as molybdenum coated soda lime glass by reactive cosputtering. Polycrystalline CZTS film with kesterite structure was produced by annealing it at 500°C in Ar atmosphere. These films were characterized for compositional, structural, surface morphological, optical, and transport properties using energy dispersive X-ray analysis, glancing incidence X-ray diffraction, Raman spectroscopy, scanning electron micro...

  18. Selective Ablation of Thin Films with Picosecond-Pulsed Lasers for Solar Cells

    Račiukaitis, G.; Gečys, P.; Gedvilas, M.; Regelskis, K.; Voisiat, B.

    2010-10-01

    Functional thin-films are of high importance in modern electronics for flat panel displays, photovoltaics, flexible and organic electronics. Versatile technologies are required for patterning thin-film materials on rigid and flexible substrates. The large-area applications of thin films such as photovoltaics need high speed and simple to use techniques. Ultra-short laser processing with its flexibility is one of the ways to achieve high quality material etching but optimization of the processes is required to meet specific needs of the applications. Lasers with picosecond pulse duration were applied in selective ablation of conducting, semi-conducting and isolating films in the complex multilayered thin-film solar cells based on amorphous Si and CuInxGa(1-x)Se2 (CIGS) deposited on glass and polymer substrates. Modeling of energy transition between the layers and temperature evolution was performed to understand the processes. Selection of the right laser wavelength was important to keep the energy coupling in a well defined volume at the interlayer interface. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material. Use of high repetition rate lasers with picosecond pulse duration offers new possibilities for high quality and efficiency patterning of advanced materials for thin-film electronics.

  19. Thin film solar cell inflatable ultraviolet rigidizable deployment hinge

    Simburger, Edward J. (Inventor); Matsumoto, James H. (Inventor); Giants, Thomas W. (Inventor); Garcia, III, Alec (Inventor); Perry, Alan R. (Inventor); Rawal, Suraj (Inventor); Marshall, Craig H. (Inventor); Lin, John K. H. (Inventor); Day, Jonathan Robert (Inventor); Kerslake, Thomas W. (Inventor)

    2010-01-01

    A flexible inflatable hinge includes curable resin for rigidly positioning panels of solar cells about the hinge in which wrap around contacts and flex circuits are disposed for routing power from the solar cells to the power bus further used for grounding the hinge. An indium tin oxide and magnesium fluoride coating is used to prevent static discharge while being transparent to ultraviolet light that cures the embedded resin after deployment for rigidizing the inflatable hinge.

  20. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    Chu, T.L. (University of South Florida, Tampa, FL (United States))

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  1. Recent advances in the transparent conducting ZnO for thin-film Si solar cells

    Moon, Taeho; Shin, Gwang Su; Park, Byungwoo

    2015-11-01

    The key challenge for solar-cell development lies in the improvement of power-conversion efficiency and the reduction of fabrication cost. For thin-film Si solar cells, researches have been especially focused on the light trapping for the breakthrough in the saturated efficiencies. The ZnO-based transparent conducting oxides (TCOs) have therefore received strong attention because of their excellent light-scattering capability by the texture-etched surface and cost effectiveness through in-house fabrication. Here, we have highlighted our recent studies on the transparent conducting ZnO for thin-film Si solar cells. From the electrical properties and their degradation mechanisms, bilayer deposition and organic-acid texturing approaches for enhancing the light trapping, and finally the relation between textured ZnO and electrical cell performances are sequentially introduced in this review article. [Figure not available: see fulltext.

  2. Photon management in thin-film solar cells; Photon-Management in Duennschicht-Solarzellen

    Fahr, Stephan

    2011-11-22

    In this thesis procedures were presented, which modify the propagation of the incident light in such a way that by this the efficiency of thin-film solar cells is increased. The strength of the presented numerical studies lies thereby in the rigorous solution of Maxwell's equations. Fundamental statements concerning the lay-out of an ideal texture could be made, which for present thin-film solar cells over the whole relevant spectral range both suppresses reflection losses and leads to an elongation of the effective path. Object of the thesis was also the design of a spectral- and angular-selective filter, which confines the acceptance angle of a solar cell with the aim of an improved absorption in the long-wave spectral region. Furthermore also tandem cells on the base of amorphous and microcrystalline silicon were studied.

  3. High-efficiency thin-film solar cells for the conversion of concentrated radiation

    Andreev, V. M.; Burba, T. S.; Dorgan, V. V.; Trofim, V. G.; Chumak, V. A.

    1987-09-01

    The objective of the study was to investigate the possibility of increasing the efficiency of thin-film solar cells with coplanar back contacts for the conversion of concentrated solar radiation. It is shown that, in the thin-film solar cells described here, the cell shading factor can be reduced to a minimum since it does not depend on the p-contact area but is determined solely by the area of etched grooves in a thin (7 microns) layer of GaAs. The cells used in the study have a shading factor of 2.5 percent, and a further reduction by an order of magnitude is shown to be possible.

  4. High-efficiency thin-film solar cells for the conversion of concentrated radiation

    Andreev, V.M.; Burba, T.S.; Dorgan, V.V.; Trofim, V.G.; Chumak, V.A.

    1987-09-01

    The objective of the study was to investigate the possibility of increasing the efficiency of thin-film solar cells with coplanar back contacts for the conversion of concentrated solar radiation. It is shown that, in the thin-film solar cells described here, the cell shading factor can be reduced to a minimum since it does not depend on the p-contact area but is determined solely by the area of etched grooves in a thin (7 microns) layer of GaAs. The cells used in the study have a shading factor of 2.5 percent, and a further reduction by an order of magnitude is shown to be possible. 6 references.

  5. Modeling and analysis of CuGaS2 thin-film solar cell

    Singh, Pravesh; Gautam, Ruchita; Verma, Ajay Singh; Kumari, Sarita

    2016-05-01

    The authors have performed, the modeling of thin film CuGaS2 based solar cell with ZnTe buffer layer. The efficiency of the cell, short circuit current density and fill factor are calculated. In addition the effect of thickness of absorption layer over performance parameters of the cell is studied and it is found that maximum efficiency of the cell is achieved for 2000 nm thick absorption layer.

  6. Advanced electrical simulation of thin film solar cells

    Advanced electrical simulation of copper indium gallium diselenide solar cells is illustrated by setting up a demonstration case in SCAPS (Solar Cell Capacitance Simulator), the solar cell simulation programme of the University of Gent. The model includes band gap grading, multivalent defects and metastable transitions between defects. This simplified demonstration model clearly and quantitatively illustrates some topics that were extensively discussed in recent literature: metastable defects exist in either an acceptor or in a donor configuration; the occupation of these configurations is set during initial conditions at higher temperature, and then frozen in during cell operation at lower temperature. These occupations can strongly influence the effective doping profile in the absorber, and hence possible energy barriers in the structure. The dependence of such barriers on the initial conditions and on the operating voltage can cause a considerable dependence of the current–voltage characteristics on the initial conditions, especially of the fill factor. At the same time, the demonstration model illustrates some of the recent extensions of SCAPS. - Highlights: ► SCAPS, the Solar Cell Capacitance Simulator of UGent is freely available. ► SCAPS is keeping up with the sophistication of state-of-the-art solar cells. ► It can now handle: multivalent and metastable defects; grading of all properties. ► It is shown how metastable defects can lead to metastable cell characteristics. ► A relation conduction band barrier-fill factor is numerically established

  7. Advances in Thin-Film Si Solar Cells by Means of SiOx Alloys

    Lucia V. Mercaldo; Iurie Usatii; Paola Delli Veneri

    2016-01-01

    The conversion efficiency of thin-film silicon solar cells needs to be improved to be competitive with respect to other technologies. For a more efficient use of light across the solar spectrum, multi-junction architectures are being considered. Light-management considerations are also crucial in order to maximize light absorption in the active regions with a minimum of parasitic optical losses in the supportive layers. Intrinsic and doped silicon oxide alloys can be advantageously applied wi...

  8. Admittance spectroscopy characterize graphite paste for back contact of CdTe thin film solar cells

    2010-01-01

    CdTe thin film solar cells with a doped-graphite paste back contact layer were studied using admittance spectroscopy technology.The positions and the capture cross sections of energy level in the forbidden band were calculated,which are the important parameters to affect solar cell performance.The results showed that there were three defects in the CdTe thin films solar cells with the doped-graphite paste back contact layer,whose positions in the forbidden band were close to 0.34,0.46 and 0.51 eV,respectively above the valence band,and capture cross sections were 2.23×10-16,2.41×10-14,4.38×10-13 cm2,respectively.

  9. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  10. Development of a high voltage top cell for silicon thin-film solar cells

    Walder , Cordula

    2015-01-01

    he development of multijunction solar cells is a promising approach to increase the efficiency of silicon thin-film photovoltaics. The objective of this work is to investigate how to optimise a high bandgap top cell and if the use of hydrogenated amorphous silicon alloys (a-SiO:H, a-SiC:H) as absorber materials is reasonable. According to the simulation results of this work, hydrogenated amorphous silicon (a-Si:H) is the preferable top cell absorber material for a triple cell. However, for a ...

  11. Advanced characterization techniques for thin film solar cells

    Rau, Uwe; Kirchartz, Thomas

    2011-01-01

    Written by scientists from leading institutes in Germany, USA and Spain who use these techniques as the core of their scientific work and who have a precise idea of what is relevant for photovoltaic devices, this text contains concise and comprehensive lecture-like chapters on specific research methods.They focus on emerging, specialized techniques that are new to the field of photovoltaics yet have a proven relevance. However, since new methods need to be judged according to their implications for photovoltaic devices, a clear introductory chapter describes the basic physics of thin-film

  12. Plasmonic Light Trapping in Thin-Film Solar Cells: Impact of Modeling on Performance Prediction

    Alberto Micco

    2015-06-01

    Full Text Available We present a comparative study on numerical models used to predict the absorption enhancement in thin-film solar cells due to the presence of structured back-reflectors exciting, at specific wavelengths, hybrid plasmonic-photonic resonances. To evaluate the effectiveness of the analyzed models, they have been applied in a case study: starting from a U-shaped textured glass thin-film, µc-Si:H solar cells have been successfully fabricated. The fabricated cells, with different intrinsic layer thicknesses, have been morphologically, optically and electrically characterized. The experimental results have been successively compared with the numerical predictions. We have found that, in contrast to basic models based on the underlying schematics of the cell, numerical models taking into account the real morphology of the fabricated device, are able to effectively predict the cells performances in terms of both optical absorption and short-circuit current values.

  13. Processing and modeling issues for thin-film solar cell devices. Final report

    Birkmire, R.W.; Phillips, J.E. [Univ. of Delaware, Newark, DE (United States). Institute of Energy Conversion

    1997-11-01

    During the third phase of the subcontract, IEC researchers have continued to provide the thin film PV community with greater depth of understanding and insight into a wide variety of issues including: the deposition and characterization of CuIn{sub 1-x}Ga{sub x}Se{sub 2}, a-Si, CdTe, CdS, and TCO thin films; the relationships between film and device properties; and the processing and analysis of thin film PV devices. This has been achieved through the systematic investigation of all aspects of film and device production and through the analysis and quantification of the reaction chemistries involved in thin film deposition. This methodology has led to controlled fabrications of 15% efficient CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells over a wide range of Ga compositions, improved process control of the fabrication of 10% efficient a-Si solar cells, and reliable and generally applicable procedures for both contacting and doping films. Additional accomplishments are listed below.

  14. Progress in Thin Film Solar Cells Based on Cu2ZnSnS4

    Hongxia Wang

    2011-01-01

    Full Text Available The research in thin film solar cells has been dominated by light absorber materials based on CdTe and Cu(In,GaSe2 (CIGS in the last several decades. The concerns of environment impact of cadmium and the limited availability of indium in those materials have driven the research towards developing new substitute light absorbers made from earth abundant, environment benign materials. Cu2ZnSnS4 (CZTS semiconductor material has emerged as one of the most promising candidates for this aim and has attracted considerable interest recently. Significant progress in this relatively new research area has been achieved in the last three years. Over 130 papers on CZTS have been published since 2007, and the majority of them are on the preparation of CZTS thin films by different methods. This paper, will review the wide range of techniques that have been used to deposit CZTS semiconductor thin films. The performance of the thin film solar cells using the CZTS material will also be discussed.

  15. Thermal Characteristics of Multilayer Insulation Materials for Flexible Thin-Film Solar Cell Array of Stratospheric Airship

    Kangwen Sun; Qinzhen Yang; Yang Yang; Shun Wang; Jianming Xu; Qiang Liu; Yong Xie; Peng Lou

    2014-01-01

    Flexible thin-film solar cell is an efficient energy system on the surface of stratospheric airship for utilizing the solar energy. In order to ensure the normal operation of airship platform, the thermal control problem between the flexible thin-film solar cell and the airship envelope should be properly resolved. In this paper, a multilayer insulation material (MLI) is developed first, and low temperature environment test is carried out to verify the insulation effect of MLI. Then, a therma...

  16. Development of a thin film solar cell interconnect for the PowerSphere concept

    Progressive development of microsatellite technologies has resulted in increased demand for lightweight electrical power subsystems including solar arrays. The use of thin film photovoltaics has been recognized as a key solution to meet the power needs. The lightweight cells can generate sufficient power and still meet critical mass requirements. Commercially available solar cells produced on lightweight substrates are being studied as an option to fulfill the power needs. The commercially available solar cells are relatively inexpensive and have a high payoff potential. Commercially available thin film solar cells are primarily being produced for terrestrial applications. The need to convert the solar cell from a terrestrial to a space compatible application is the primary challenge. Solar cell contacts, grids and interconnects need to be designed to be atomic oxygen resistant and withstand rapid thermal cycling environments. A mechanically robust solar cell interconnect is also required in order to withstand handling during fabrication and survive during launch. The need to produce the solar cell interconnects has been identified as a primary goal of the PowerSphere program and is the topic of this paper. Details of the trade study leading to the final design involving the solar cell wrap around contact, flex blanket, welding process, and frame will be presented at the conference

  17. Development of a Thin Film Solar Cell Interconnect for the Powersphere Concept

    Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.; Lin, John K.; Scarborough, Stephen

    2003-01-01

    Progressive development of microsatellite technologies has resulted in increased demand for lightweight electrical power subsystems including solar arrays. The use of thin film photovoltaics has been recognized as a key solution to meet the power needs. The lightweight cells can generate sufficient power and still meet critical mass requirements. Commercially available solar cells produced on lightweight substrates are being studied as an option to fulfill the power needs. The commercially available solar cells are relatively inexpensive and have a high payoff potential. Commercially available thin film solar cells are primarily being produced for terrestrial applications. The need to convert the solar cell from a terrestrial to a space compatible application is the primary challenge. Solar cell contacts, grids and interconnects need to be designed to be atomic oxygen resistant and withstand rapid thermal cycling environments. A mechanically robust solar cell interconnect is also required in order to withstand handling during fabrication and survive during launch. The need to produce the solar cell interconnects has been identified as a primary goal of the Powersphere program and is the topic of this paper. Details of the trade study leading to the final design involving the solar cell wrap around contact, flex blanket, welding process, and frame will be presented at the conference.

  18. Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells

    Battaglia, Corsin; Escarré, Jordi; SöDerströM, Karin; Erni, Lukas; Ding, Laura; Bugnon, Grégory; Billet, Adrian; Boccard, Mathieu; Barraud, Loris; De Wolf, Stefaan; Haug, Franz-Josef; Despeisse, Matthieu; Ballif, Christophe

    2011-01-01

    We demonstrate high-efficiency thin-film silicon solar cells with transparent nanotextured front electrodes fabricated via ultraviolet nanoimprint lithography on glass substrates. By replicating the morphology of state-of-the-art nanotextured zinc oxide front electrodes known for their exceptional light trapping properties, conversion efficiencies of up to 12.0% are achieved for micromorph tandem junction cells. Excellent light incoupling results in a remarkable summed short-circuit current d...

  19. Microcrystalline/micromorph silicon thin-film solar cells prepared by VHF-GD technique

    Meier, Johannes; Vallat-Sauvain, Evelyne; Dubail, S.; Kroll, U.; Dubail, J.; Golay, S.; Feitknecht, Luc; Torres, Pedro; Faÿ, Sylvie; Fischer, D.; Shah, Arvind

    2008-01-01

    Hydrogenated microcrystalline silicon prepared at low temperatures by the glow discharge technique is examined here with respect to its role as a new thin-film photovoltaic absorber material. XRD and TEM characterisations reveal that microcrystalline silicon is a semiconductor with a very complex morphology. Microcrystalline p–i–n cells with open-circuit voltages of up to 560–580 mV could be prepared. “Micromorph” tandem solar cells show under outdoor conditions higher short-circuit currents ...

  20. Comparison of silicon oxide and silicon carbide absorber materials in silicon thin-film solar cells

    Walder Cordula; Kellermann Martin; Wendler Elke; Rensberg Jura; von Maydell Karsten; Agert Carsten

    2015-01-01

    Since solar energy conversion by photovoltaics is most efficient for photon energies at the bandgap of the absorbing material the idea of combining absorber layers with different bandgaps in a multijunction cell has become popular. In silicon thin-film photovoltaics a multijunction stack with more than two subcells requires a high bandgap amorphous silicon alloy top cell absorber to achieve an optimal bandgap combination. We address the question whether amorphous silicon carbide (a-SiC:H) or ...

  1. Porous copper zinc tin sulfide thin film as photocathode for double junction photoelectrochemical solar cells.

    Dai, Pengcheng; Zhang, Guan; Chen, Yuncheng; Jiang, Hechun; Feng, Zhenyu; Lin, Zhaojun; Zhan, Jinhua

    2012-03-21

    Porous copper zinc tin sulfide (CZTS) thin film was prepared via a solvothermal approach. Compared with conventional dye-sensitized solar cells (DSSCs), double junction photoelectrochemical cells using dye-sensitized n-type TiO(2) (DS-TiO(2)) as the photoanode and porous p-type CZTS film as the photocathode shows an increased short circuit current, external quantum efficiency and power conversion efficiency. PMID:22322239

  2. Thin-Film Solar Cells on Metal Foil Substrates for Space Power

    Raffaelle, Ryne P.; Hepp, Aloysius F.; Hoffman, David J.; Dhere, N.; Tuttle, J. R.; Jin, Michael H.

    2004-01-01

    Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. The objective of this research is to continue development of an innovative photovoltaic technology for satellite power sources that could provide up to an order of magnitude saving in both weight and cost, and is inherently radiation-tolerant through use of thin film technology and thin foil substrates such as 5-mil thick stainless steel foil or 1-mil thick Ti. Current single crystal technology for space power can cost more than $300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn(1-x),Ga(x)S2, (CIGS2), CuIn(1-x), G(x)Se(2-y),S(y), (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite, for example, the array manufacturing cost alone may exceed $2 million. Moving to thin film technology could reduce this expense to less than $500 K. Previous work at FSEC demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6"x 4") substrates. This paper presents further progress in processing on metal foil substrates. Also, previous work at DayStar demonstrated the feasibility of flexible-thin-film copper-indium-gallium-diselenide (CIGS) solar cells with a power-to-weight ratio in excess of 1000 W/kg. We will comment on progress on the critical issue of scale-up of the solar cell absorber deposition process. Several important technical issues need to be resolved

  3. Schottky solar cells based on CsSnI3 thin-films

    Chen, Zhuo; Wang, Jian J.; Ren, Yuhang; Yu, Chonglong; Shum, Kai

    2012-08-01

    We describe a Schottky solar cell based on the perovskite semiconductor CsSnI3 thin-film. The cell consists of a simple layer structure of indium-tin-oxide/CsSnI3/Au/Ti on glass substrate. The measured power conversion efficiency is 0.9%, which is limited by the series and shunt resistance. The influence of light intensity on open-circuit voltage and short-circuit current supports the Schottky solar cell model. Additionally, the spectrally resolved short-circuit current was measured, confirming the unintentionally doped CsSnI3 is of p-type characteristics. The CsSnI3 thin-film was synthesized by alternately depositing layers of SnCl2 and CsI on glass substrate followed by a thermal annealing process.

  4. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Wang, Lan; Lin, Xianzhong; Ennaoui, Ahmed; Wolf, Christian; Lux-Steiner, Martha Ch.; Klenk, Reiner

    2016-02-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  5. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Wang Lan

    2016-01-01

    Full Text Available We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  6. Current Approach in Surface Plasmons for Thin Film and Wire Array Solar Cell Applications

    Keya Zhou

    2015-07-01

    Full Text Available Surface plasmons, which exist along the interface of a metal and a dielectric, have been proposed as an efficient alternative method for light trapping in solar cells during the past ten years. With unique properties such as superior light scattering, optical trapping, guide mode coupling, near field concentration, and hot-electron generation, metallic nanoparticles or nanostructures can be tailored to a certain geometric design to enhance solar cell conversion efficiency and to reduce the material costs. In this article, we review current approaches on different kinds of solar cells, such as crystalline silicon (c-Si and amorphous silicon (a-Si thin film solar cells, organic solar cells, nanowire array solar cells, and single nanowire solar cells.

  7. Radiation resistance of thin-film solar cells for space photovoltaic power

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  8. PEDOT:PSS emitters on multicrystalline silicon thin-film absorbers for hybrid solar cells

    Junghanns, Marcus; Plentz, Jonathan; Andrä, Gudrun; Gawlik, Annett; Höger, Ingmar; Falk, Fritz

    2015-02-01

    We fabricated an efficient hybrid solar cell by spin coating poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) on planar multicrystalline Si (mc-Si) thin films. The only 5 μm thin Si absorber layers were prepared by diode laser crystallization of amorphous Si deposited by electron beam evaporation on glass. On these absorber layers, we studied the effect of SiOx and Al2O3 terminated Si surfaces. The short circuit density and power conversion efficiency (PCE) of the mc-Si/Al2O3/PEDOT:PSS solar cell increase from 20.6 to 25.4 mA/cm2 and from 7.3% to 10.3%, respectively, as compared to the mc-Si/SiOx/PEDOT:PSS cell. Al2O3 lowers the interface recombination and improves the adhesion of the polymer film on the hydrophobic mc-Si thin film. Open circuit voltages up to 604 mV were reached. This study demonstrates the highest PCE so far of a hybrid solar cell with a planar thin film Si absorber.

  9. Multi-Material Front Contact for 19% Thin Film Solar Cells

    Joop van Deelen; Yasemin Tezsevin; Marco Barink

    2016-01-01

    The trade-off between transmittance and conductivity of the front contact material poses a bottleneck for thin film solar panels. Normally, the front contact material is a metal oxide and the optimal cell configuration and panel efficiency were determined for various band gap materials, representing Cu(In,Ga)Se2 (CIGS), CdTe and high band gap perovskites. Supplementing the metal oxide with a metallic copper grid improves the performance of the front contact and aims to increase the efficiency...

  10. Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates

    Chi Hwan Lee; Dong Rip Kim; In Sun Cho; Nemeth William; Qi Wang; Xiaolin Zheng

    2012-01-01

    Fabrication of thin-film solar cells (TFSCs) on substrates other than Si and glass has been challenging because these nonconventional substrates are not suitable for the current TFSC fabrication processes due to poor surface flatness and low tolerance to high temperature and chemical processing. Here, we report a new peel-and-stick process that circumvents these fabrication challenges by peeling off the fully fabricated TFSCs from the original Si wafer and attaching TFSCs to virtually any sub...

  11. Optimization of amorphous silicon thin film solar cells for flexible photovoltaics

    Söderström, T; Haug, F. -J.; Terrazzoni-Daudrix, V.; Ballif, C.

    2008-01-01

    We investigate amorphous silicon (a-Si:H) thin film solar cells in the n-i-p or substrate configuration that allows the use of nontransparent and flexible substrates such as metal or plastic foils such as polyethylene- naphtalate (PEN). A substrate texture is used to scatter the light at each interface, which increases the light trapping in the active layer. In the first part, we investigate the relationship between the substrate morphology and the short circui...

  12. Light trapping in thin-film solar cells measured by Raman spectroscopy

    Ledinský, Martin; Moulin, E.; Bugnon, G.; Ganzerová, Kristína; Vetushka, Aliaksi; Meillaud, F.; Fejfar, Antonín; Ballif, C.

    2014-01-01

    Roč. 105, č. 11 (2014), "111106-1"-"111106-4". ISSN 0003-6951 R&D Projects: GA ČR GA14-15357S; GA MŠk(CZ) LM2011026; GA MŠk 7E12029 EU Projects: European Commission(XE) 283501 - FAST TRACK Institutional support: RVO:68378271 Keywords : light trapping * microcrystalline silicon * thin film solar cell * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014

  13. Bimodal nanostructured TiO2 thin films for dye sensitized solar cells

    Zukalová, Markéta; Kavan, Ladislav; Zukal, Arnošt; Graetzel, M.

    Málaga: BrownWalker Press, 2012. s. 99-99. ISBN 978-1-61233-558-2. [EMR 2012 : The Energy and Materials Research Conference. 20.06.2012-22.06.2012, Torremolinos] R&D Projects: GA ČR(CZ) GAP108/12/0814 Institutional support: RVO:61388955 Keywords : TiO2 * thin films * dye-sensitized solar cell Subject RIV: CG - Electrochemistry

  14. Microscopic characterizations of nanostructured silicon thin films for solar cells

    Fejfar, Antonín; Klapetek, P.; Zlámal, J.; Vetushka, Aliaksi; Ledinský, Martin; Kočka, Jan

    Warrendale: MRS , 2011 - (Yan, B.; Higashi, S.; Tsai, C.; Wang, Q.; Gleskova, H.), s. 313-321. ( MRS Symposium Proceeding. 1321). ISBN 9781605112985. [Materials Research Society Spring Meeting. San Francisko (US), 25.04.2011-29.04.2011] R&D Projects: GA MŠk(CZ) LC06040; GA MŠk(CZ) MEB061012; GA AV ČR KAN400100701; GA MŠk LC510 Grant ostatní: 7. Framework programme EU(XE) no. 240826 Institutional research plan: CEZ:AV0Z10100521 Keywords : silicon * scanning probe methods * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Positron annihilation study on CuInSe2 solar cell thin films

    Positron annihilation spectroscopy has been used to investigate CuInSe2 solar cell thin films. The films were grown on Mo-coated soda lime glass substrates by the electrochemical deposition processing technique. As-grown samples are found to contain large concentration of vacancy defects. The selenium (Se) atmosphere and sulfur (S) atmosphere annealing of as-grown samples at 800 K can dramatically reduce the number of vacancy defects and the film becomes crystalline. In addition, a defect layer of about 50 nm thickness was observed at the surface of the CuInSe2 thin film. This layer results from the electrochemical deposition method, but the defect concentration in the defect layer can be greatly reduced by annealing in selenium atmosphere. The Doppler broadening line shape parameter correlation plot provided evidence that the positron trapping defect states where in three samples. - Highlights: ► As-grown CuInSe2 thin films contain large concentration of defects. ► A defect layer of about 50 nm exists in the CuInSe2 thin film surface. ► The defect concentration in the defect layer can be greatly reduced.

  16. Positron annihilation study on CuInSe{sub 2} solar cell thin films

    Zhang, Lijuan [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Wang, Tao [Institute of Fluid Physics, CAEP, P.O. Box 919-106, Mianyang 621900 (China); Li, Ji [Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Hao, Yingping; Liu, Jiandang [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhang, Peng [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China); Cheng, Bin [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhang, Zhongwei [Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Wang, Baoyi [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China); Ye, Bangjiao, E-mail: bjye@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2012-12-15

    Positron annihilation spectroscopy has been used to investigate CuInSe{sub 2} solar cell thin films. The films were grown on Mo-coated soda lime glass substrates by the electrochemical deposition processing technique. As-grown samples are found to contain large concentration of vacancy defects. The selenium (Se) atmosphere and sulfur (S) atmosphere annealing of as-grown samples at 800 K can dramatically reduce the number of vacancy defects and the film becomes crystalline. In addition, a defect layer of about 50 nm thickness was observed at the surface of the CuInSe{sub 2} thin film. This layer results from the electrochemical deposition method, but the defect concentration in the defect layer can be greatly reduced by annealing in selenium atmosphere. The Doppler broadening line shape parameter correlation plot provided evidence that the positron trapping defect states where in three samples. - Highlights: Black-Right-Pointing-Pointer As-grown CuInSe{sub 2} thin films contain large concentration of defects. Black-Right-Pointing-Pointer A defect layer of about 50 nm exists in the CuInSe{sub 2} thin film surface. Black-Right-Pointing-Pointer The defect concentration in the defect layer can be greatly reduced.

  17. Electrical conductivity of chlorophyll with poly thiophene thin film as a bulk heterojunction solar cell

    Full text: In this work, electrical conductivity of the combinations mixture with different ratio of Poly thiophene (PT) and Chlorophyll (CHLO) thin film as a bulk heterojunction solar cell was studied. Spin coating technique was used to deposit the combination of PT and CHLO thin film on the Aurum (Au) layer which acts as a substrate. The optical characterization of thin film was measured using UV-Visible Spectrophotometer and four point probes were used to determine the film electrical properties in the dark and under the light. From the optical absorption study, the combination mixture between PT and CHLO altered the energy band gap of the thin film. The increasing of the mixture ratio of both solutions decreased the electrical conductivity in the dark and also under light. Under the light, the electrical conductivity of combine mixture shows the increasing with the increased of light intensity. The lowest mixture ratio shows the highest electrical conductivity ± 1.389 S/m under dark and increased with the increasing of the light intensity. (author)

  18. Low temperature p+ nc-Si:H window layers for large area thin-film solar cells

    Tse, Wing Fai Lydia

    2007-01-01

    Hydrogenated nanocrystalline silicon (nc-Si:H) has attracted attention recently over amorphous silicon (a-Si:H) for use in thin-film solar cell applications primarily due to its higher stability and light absorbing capacity. In addition, there is increasing interest in device fabrication on low-cost, light weight and flexible substrates where optimizing deposition conditions of nc-Si:H thin films at low substrate temperatures (< 200 °C) poses challenges. In such solar cells, the thin boron...

  19. First principles study of Bi dopen CdTe thin film solar cells: electronic and optical properties

    Seminóvski Pérez, Yohanna; Palacios Clemente, Pablo; Wahnón Benarroch, Perla

    2011-01-01

    Nowadays, efficiency improvement of solar cells is one of the most important issues in photovoltaic systems and CdTe is one of the most promising thin film photovoltaic materials we can found. CdTe reported efficiencies in solar energy conversion have been as good as that found in polycrystalline Si thin film cell [1], besides CdTe can be easily produced at industrial scale.

  20. Geometric photovoltaics applied to amorphous silicon thin film solar cells

    Kirkpatrick, Timothy

    Geometrically generalized analytical expressions for device transport are derived from first principles for a photovoltaic junction. Subsequently, conventional planar and unconventional coaxial and hemispherical photovoltaic architectures are applied to detail the device physics of the junction based on their respective geometry. For the conventional planar cell, the one-dimensional transport equations governing carrier dynamics are recovered. For the unconventional coaxial and hemispherical junction designs, new multi-dimensional transport equations are revealed. Physical effects such as carrier generation and recombination are compared for each cell architecture, providing insight as to how non-planar junctions may potentially enable greater energy conversion efficiencies. Numerical simulations are performed for arrays of vertically aligned, nanostructured coaxial and hemispherical amorphous silicon solar cells and results are compared to those from simulations performed for the standard planar junction. Results indicate that fundamental physical changes in the spatial dependence of the energy band profile across the intrinsic region of an amorphous silicon p-i-n junction manifest as an increase in recombination current for non-planar photovoltaic architectures. Despite an increase in recombination current, however, the coaxial architecture still appears to be able to surpass the efficiency predicted for the planar geometry, due to the geometry of the junction leading to a decoupling of optics and electronics.

  1. Full potential of radial junction Si thin film solar cells with advanced junction materials and design

    Qian, Shengyi; Misra, Soumyadeep; Lu, Jiawen; Yu, Zhongwei; Yu, Linwei; Xu, Jun; Wang, Junzhuan; Xu, Ling; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2015-07-01

    Combining advanced materials and junction design in nanowire-based thin film solar cells requires a different thinking of the optimization strategy, which is critical to fulfill the potential of nano-structured photovoltaics. Based on a comprehensive knowledge of the junction materials involved in the multilayer stack, we demonstrate here, in both experimental and theoretical manners, the potential of hydrogenated amorphous Si (a-Si:H) thin film solar cells in a radial junction (RJ) configuration. Resting upon a solid experimental basis, we also assess a more advanced tandem RJ structure with radially stacking a-Si:H/nanocrystalline Si (nc-Si:H) PIN junctions, and show that a balanced photo-current generation with a short circuit current density of Jsc = 14.2 mA/cm2 can be achieved in a tandem RJ cell, while reducing the expensive nc-Si:H absorber thickness from 1-3 μ m (in planar tandem cells) to only 120 nm. These results provide a clearly charted route towards a high performance Si thin film photovoltaics.

  2. Thin-film silicon solar cells. A review and selected trends

    A case is developed for considering silicon as the prime medium-term candidate for semiconductor photovoltaic cells; the argumentation is based on other materials not being abundantly available, highly toxic and/or very expensive. Crystalline silicon solar cells have excellent efficiencies, however, according to data presented by the authors on material fluxes and energy consumption there are serious bottlenecks for this technique with respect to future large-scale applications both from an economical as well as from an ecological point of view. Thus, the authors consider thin-film silicon solar cells as the main option for large-scale energy applications in the foreseeable future. Thin-film silicon solar cells are either polycrystalline or amorphous. The first category is gaining in interest at this moment, but major technological problems remain unresolved, e.g., growth of a high-quality crystalline structure on foreign (low-cost) substrates, reduction of deposition temperature and increase of deposition rate. The second category has so far yielded only limited stable efficiencies, although progress has been recently achieved in improving the stability of solar cells using stacked or tandem/triple structures. Novel approaches to further improve the stable efficiencies, such as using low-level doping profiles within the i-layer of the p-i-n solar cell, are listed. Entirely microcrystalline p-i-n solar cells that are stable and can be deposited at low temperatures (220C) with rates up to 1 A/s by the VHF plasma deposition technique are described as further, recent contribution to thin-film silicon photovoltaic technology

  3. 3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell

    Uepping, Johannes; Miclea, Paul T.; Wehrspohn, Ralf B. [Institute of Physics, Martin-Luther-University of Halle-Wittenberg, Heinrich-Damerow-Str. 4, 06120 Halle (Germany); Rockstuhl, Carsten; Lederer, Falk [Institute of Condensed Matter Theory and Solid States Optics, Friedrich Schiller University Jena, 07743 Jena (Germany); Peters, Marius [Freiburg Centre for Material Research, University of Freiburg, 79104 Freiburg (Germany); Steidl, Lorenz; Zentel, Rudolf [Dept. of Chemistry, Pharmacy and Earth Science, Johannes Gutenberg University of Mainz, Duesbergweg 10-14 (Germany); Lee, Seung-Mo; Knez, Mato [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Lambertz, Andreas; Carius, Reinhard [Institute of Energy Research, IEF-5 Photovoltaics, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Bielawny, Andreas

    2008-12-15

    The concept of 3D photonic intermediate reflectors for micromorph silicon tandem solar cells has been investigated. In thin-film silicon tandem solar cells consisting of amorphous and microcrystalline silicon with two junctions of a-Si/{mu}c-Si, efficiency enhancements can be achieved by increasing the current density in the a-Si top cell. It is one goal to provide an optimized current matching at high current densities. For an ideal photon-management between top and bottom cell, a spectrally selective intermediate reflective layer (IRL) is necessary, which is less dependent of the angle of incidence than state-of-the-art thickness dependent massive interlayers. The design, preparation and characterization of a 3D photonic thin-film filter device for this purpose has been pursued straight forward in simulation and experimental realization. The inverted opal is capable of providing a suitable optical band stop with high reflectance and the necessary long wavelength transmittance as well and provides further options for improved light trapping. We have determined numerically the relative efficiency enhancement of an a-Si/{mu}c-Si tandem solar cell using a conductive 3D-photonic crystal. We have further fabricated such structures by ZnO-replication of polymeric opals using chemical vapour deposition and atomic layer deposition techniques and present the results of their characterization. Thin film photonic IRL have been prepared at the rear side of a-Si solar cells. Completed with a back contact, this is the first step to integrate this novel technology into an a-Si/{mu}c-Si tandem solar cell process. The spectral response of the cell is presented and compared with reference cells. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Cross-sectional electrostatic force microscopy of thin-film solar cells

    Ballif, C.; Moutinho, H. R.; Al-Jassim, M. M.

    2001-01-01

    In a recent work, we showed that atomic force microscopy (AFM) is a powerful technique to image cross sections of polycrystalline thin films. In this work, we apply a modification of AFM, namely, electrostatic force microscopy (EFM), to investigate the electronic properties of cleaved II-VI and multijunction thin-film solar cells. We cleave the devices in such a way that they are still working with their nominal photovoltaic efficiencies and can be polarized for the measurements. This allows us to differentiate between surface effects (work function and surface band bending) and bulk device properties. In the case of polycrystalline CdTe/CdS/SnO2/glass solar cells, we find a drop of the EFM signal in the area of the CdTe/CdS interface (±50 nm). This drop varies in amplitude and sign according to the applied external bias and is compatible with an n-CdS/p-CdTe heterojunction model, thereby invalidating the possibility of a deeply buried n-p CdTe homojunction. In the case of a triple-junction GaInP/GaAs/Ge device, we observe a variation of the EFM signal linked to both the material work-function differences and to the voltage bias applied to the cell. We attempt a qualitative explanation of the results and discuss the implications and difficulties of the EFM technique for the study of such thin-film devices.

  5. Analysis of the p+/p window layer of thin film solar cells by simulation

    林爱国; 丁建宁; 袁宁一; 王书博; 程广贵; 卢超

    2012-01-01

    The application of a p+/p configuration in the window layer of hydrogenated amorphous silicon thin film solar cells is simulated and analyzed utilizing an AMPS-1D program.The differences between p+-p-i-n configuration solar cells and p-i-n configuration solar cells are pointed out.The effects of dopant concentration,thickness of p+-layer,contact barrier height and defect density on solar cells are analyzed.Our results indicate that solar cells with a p+-p-i-n configuration have a better performance.The open circuit voltage and short circuit current were improved by increasing the dopant concentration of the p+ layer and lowering the front contact barrier height.The defect density at the p/i interface which exceeds two orders of magnitude in the intrinsic layer will deteriorate the cell property.

  6. Analysis of the p+/p window layer of thin film solar cells by simulation

    The application of a p+/p configuration in the window layer of hydrogenated amorphous silicon thin film solar cells is simulated and analyzed utilizing an AMPS-1D program. The differences between p+−p—i—n configuration solar cells and p—i—n configuration solar cells are pointed out. The effects of dopant concentration, thickness of p+-layer, contact barrier height and defect density on solar cells are analyzed. Our results indicate that solar cells with a p+−p—i—n configuration have a better performance. The open circuit voltage and short circuit current were improved by increasing the dopant concentration of the p+ layer and lowering the front contact barrier height. The defect density at the p/i interface which exceeds two orders of magnitude in the intrinsic layer will deteriorate the cell property. (semiconductor materials)

  7. The role of front and back electrodes in parasitic absorption in thin-film solar cells

    Boccard Mathieu; Cuony Peter; Hänni Simon; Stuckelberger Michael; Haug Franz-Josef; Meillaud Fanny; Despeisse Matthieu; Ballif Christophe

    2014-01-01

    When it comes to parasitic absorption in thin-film silicon solar cells, most studies focus on one electrode only, most of the time the substrate (in n-i-p configuration) or superstrate (in p-i-n configuration). We investigate here simultaneously the influence of the absorption in both front and back electrodes on the current density of tandem micromorph solar cells in p-i-n configuration. We compare four possible combinations of front and back electrodes with two different doping levels, but ...

  8. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  9. Computational and experimental study of a multi-layer absorptivity enhanced thin film silicon solar cell

    We report on the computational design, fabrication and validation of a multi-layer silicon based thin film solar cell. The cell structure consists of a thin absorber layer of amorphous silicon deposited on a back-reflector aluminum layer and coated on top with ITO transparent conductive oxide. The structure is mounted on a glass substrate. We first use constrained optimization techniques along with numerical solvers of the electromagnetic equations (i.e. FDTD) to tune the geometry of the design. The resulting structure suggests that photon absorptivity in the thin film silicon can be enhanced by as much as 100% over the uncoated layer. The proposed design is then fabricated using thin film deposition techniques, along with a control sample of bare silicon absorber for comparison. AFM imaging and spectrophotometry experiments are applied to image and record the surface roughness and measure the reflectivity spectrum of the sample. Using the measured reflectivity spectrum, we then use inverse optimization to estimate the realized thin film dimensions, deposition error and unwanted oxidation volume. At the end, we use a statistical Monte Carlo analysis as a second method of verification to demonstrate that the measured spectra are in accordance with the expected curves from simulation, and to estimate the effects of fabrication error. - Highlights: • Design, fabrication and validation of multi-layer silicon solar cell are studied. • The cell consists of aluminum, amorphous silicon and ITO layers. • The proposed designs are fabricated by deposition techniques. • Inverse optimization is used to estimate the realized dimensions and errors

  10. Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells

    The use of nanoparticles in solar cells has created many controversies. In this paper, different mechanisms of nanoparticles with different materials with diameters varying from 50 to 200 nm, surface coverage at 5, 20, and 60 %, and different locations are analyzed systematically for efficient light trapping in a thin-film c-Si solar cell. Mie theory and the finite difference time domain method are used for analysis to give a design principle with nanoparticles for the solar cell application. Metals exhibit plasmonic resonances and angular scattering, while dielectrics show anti-reflection and scattering in the incident direction. A table is given to summarize the advantages and disadvantages in different conditions. The silicon absorption enhancement with nanoparticles on top is mainly in the shorter wavelengths below 700 nm, and both Al and SiO2 nanoparticles with diameter around 100 nm show the most significant enhancement. The silicon absorption enhancement with embedded nanoparticles takes place in the longer wavelengths over 700 nm, and Ag and SiO2 nanoparticles with larger diameter around 200 nm perform better. However, the light absorbed by Ag nanoparticles will be converted to heat and will lead to decrease in cell efficiency; hence, the choice of metallic nanoparticles in applications to solar cells should be carefully considered. The design principle proposed in this work gives a guideline by choosing reasonable parameters for the different requirements in the application of thin-film solar cells

  11. Nc-Si Thin Film Deposited at Low Temperature and Nc-Si Heterojunction Solar Cell

    赵占霞; 崔容强; 孟凡英; 于化丛; 周之斌

    2004-01-01

    This paper reported some results about intrinsic nanocrystalline silicon thin films deposited by high frequency (HF) sputtering on p-type c-Si substrates at low temperature. Samples were examined by atomic force microscopy (AFM), X-ray diffraction (XRD), infrared absorption, and ellipsometry. XRD measurements show that this film has a new microstructure, which is different from the films deposited by other methods. The ellipsometry result gives that the optical band gap of the film is about 2.63 eV. In addition, the n-type nc-Si ∶ H/p-type c-Si heterojunction solar cell, which has open circuit voltage (Uoc) of 558 mV and short circuit current intensity (Isc) of 29 mA/cm2, was obtained based on the nanocrystalline silicon thin film. Irradiated under AM1.5, 100 mW/cm2 light intensity, the Uoc, Isc, and FF can keep stable for 10 h.

  12. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 deg. C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu2-xSe phase was confirmed by XRD pattern and spherical grains of 30 ± 4 - 40 ± 4 nm in size aggregated over about 130 ± 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm2 light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells

  13. Sustainability of photovoltaics. The case for thin-film solar cells

    To ensure photovoltaics become a major sustainable player in a competitive power-generation market, they must provide abundant, affordable electricity, with environmental impacts drastically lower than those from conventional power generation. The recent reduction in the cost of 2nd generation thin-film PV is remarkable, meeting the production milestone of $1 per watt in the fourth quarter of 2008. This achievement holds great promise for the future. However, the questions remaining are whether the expense of PV modules can be lowered further, and if there are resource- and environmental-impact constraints to growth. I examine the potential of thin-films in a prospective life-cycle analysis, focusing on direct costs, resource availability, and environmental impacts. These three aspects are closely related; developing thinner solar cells and recycling spent modules will become increasingly important in resolving cost, resource, and environmental constraints to large scales of sustainable growth. (author)

  14. Identification of critical stacking faults in thin-film CdTe solar cells

    Cadmium telluride (CdTe) is a p-type semiconductor used in thin-film solar cells. To achieve high light-to-electricity conversion, annealing in the presence of CdCl2 is essential, but the underlying mechanism is still under debate. Recent evidence suggests that a reduction in the high density of stacking faults in the CdTe grains is a key process that occurs during the chemical treatment. A range of stacking faults, including intrinsic, extrinsic, and twin boundary, are computationally investigated to identify the extended defects that limit performance. The low-energy faults are found to be electrically benign, while a number of higher energy faults, consistent with atomic-resolution micrographs, are predicted to be hole traps with fluctuations in the local electrostatic potential. It is expected that stacking faults will also be important for other thin-film photovoltaic technologies

  15. Sinusoidal nanotextures for light management in silicon thin-film solar cells

    Köppel, G.; Rech, B.; Becker, C.

    2016-04-01

    Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low-cost glass substrates enabling conversion efficiencies up to 12.1%. Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun-facing glass-silicon interface into 10 μm thin liquid phase crystallized silicon thin-film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti-reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well-balanced compromise between optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin-film solar cells on glass.

  16. n +-Microcrystalline-Silicon Tunnel Layer in Tandem Si-Based Thin Film Solar Cells

    Lee, Ching-Ting; Lee, Hsin-Ying; Chen, Kuan-Hao

    2016-06-01

    In this study, the p-SiC/i-Si/n-Si cell and the p-SiC/i-SiGe/n-Si cell deposited using plasma-enhanced chemical vapor deposition were cascaded for forming the tandem Si-based thin film solar cells to absorb the wide solar spectrum. To further improve the performances of the tandem Si-based thin film solar cells, a 5-nm-thick n +-microcrystalline-Si (n +-μc-Si) tunnel layer deposited using the laser-assisted plasma-enhanced chemical vapor deposition was inserted between the p-SiC/i-Si/n-Si cell and the p-SiC/i-SiGe/n-Si cell. Since both the plasma and the CO2 laser were simultaneously utilized to efficiently decompose the reactant and doping gases, the carrier concentration and the carrier mobility of the n +-μc-Si tunnel layer were significantly improved. The ohmic contact formed between the p-SiC layer and the n +-μc-Si tunnel layer with low resistance was beneficial to the generated current transportation and the carrier recombination rate. Therefore, the conversion efficiency of the tandem solar cells was promoted from 8.57% and 8.82% to 9.91% compared to that without tunnel layer and with 5-nm-thick n +-amorphous-Si tunnel layer.

  17. Five roads towards increased optical absorption and high stable efficiency for thin film silicon solar cells

    Vaněček, Milan; Poruba, Aleš; Remeš, Zdeněk; Holovský, Jakub; Purkrt, Adam; Babchenko, Oleg; Hruška, Karel; Meier, J.; Kroll, U.

    Munich: WIP- Renewable Energies, 2009 - (Sinke, W.; Ossenbrink, H.; Helm, P.), 2286-2289 ISBN 3-936338-25-6. [European Photovoltaic Solar Energy Conference /24./. Hamburg (DE), 21.09.2009-25.09.2009] R&D Projects: GA MŠk(CZ) 7E09057 EU Projects: European Commission(XE) 214134 - N2P; European Commission(XE) 19670 - ATHLET Institutional research plan: CEZ:AV0Z10100521 Keywords : thin film silicon solar cells * amorphous silicon * nanostructure * high stable efficiency Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Water vapour passivation of poly-Si thin film solar cells

    Pikna, Peter; Fejfar, Antonín; Píč, Vlastimil; Müller, Martin; Ledinský, Martin; Vetushka, Aliaksi; Kočka, Jan

    München: WIP Wirtschaft und Infrastruktur GmbH & Co Planungs KG, 2012 - (Nowak, S.), s. 2393-2395 ISBN 3-936338-28-0. [European Photovoltaic Solar Energy Conference and Exhibition (PVSEC) /17./. Frankfurt (DE), 24.09.2012-28.09.2012] R&D Projects: GA MŠk 7E10061; GA MPO FR-TI2/736; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 240826 - POLYSIMODE Institutional research plan: CEZ:AV0Z10100521 Keywords : polycrystalline * silicon * thin film solar cell * water vapour passivation * in situ investigation * Suns-Voc Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Advances in Thin-Film Si Solar Cells by Means of SiOx Alloys

    Lucia V. Mercaldo

    2016-03-01

    Full Text Available The conversion efficiency of thin-film silicon solar cells needs to be improved to be competitive with respect to other technologies. For a more efficient use of light across the solar spectrum, multi-junction architectures are being considered. Light-management considerations are also crucial in order to maximize light absorption in the active regions with a minimum of parasitic optical losses in the supportive layers. Intrinsic and doped silicon oxide alloys can be advantageously applied within thin-film Si solar cells for these purposes. Intrinsic a-SiOx:H films have been fabricated and characterized as a promising wide gap absorber for application in triple-junction solar cells. Single-junction test devices with open circuit voltage up to 950 mV and ~1 V have been demonstrated, in case of rough and flat front electrodes, respectively. Doped silicon oxide alloys with mixed-phase structure have been developed, characterized by considerably lower absorption and refractive index with respect to standard Si-based films, accompanied by electrical conductivity above 10−5 S/cm. These layers have been successfully applied both into single-junction and micromorph tandem solar cells as superior doped layers with additional functionalities.

  20. Nanotextured thin film silicon solar cells:optical model

    Špringer, Jiří; Poruba, Aleš; Fejfar, Antonín; Vaněček, Milan; Feitknecht, L.; Wyrsch, N.; Meier, J.; Shah, A.

    London : James & James, 2000 - (Scheer, H.; McNelis, B.; Palz, W.; Ossenbrink, H.; Helm, P.), s. 434-437 ISBN 1-902916-18-2. [European Photovoltaic Solar Energy Conference /16./. Glasgow (GB), 01.05.2000-05.05.2000] Institutional research plan: CEZ:AV0Z1010914 Keywords : si-films * modeling * texturization Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications.

    Cho, Jin Woo; Ismail, Agus; Park, Se Jin; Kim, Woong; Yoon, Sungho; Min, Byoung Koun

    2013-05-22

    Cu2ZnSnS4 (CZTS) is a very promising semiconductor material when used for the absorber layer of thin film solar cells because it consists of only abundant and inexpensive elements. In addition, a low-cost solution process is applicable to the preparation of CZTS absorber films, which reduces the cost when this film is used for the production of thin film solar cells. To fabricate solution-processed CZTS thin film using an easily scalable and relatively safe method, we suggest a precursor solution paste coating method with a two-step heating process (oxidation and sulfurization). The synthesized CZTS film was observed to be composed of grains of a size of ~300 nm, showing an overall densely packed morphology with some pores and voids. A solar cell device with this film as an absorber layer showed the highest efficiency of 3.02% with an open circuit voltage of 556 mV, a short current density of 13.5 mA/cm(2), and a fill factor of 40.3%. We also noted the existence of Cd moieties and an inhomogeneous Zn distribution in the CZTS film, which may have been triggered by the presence of pores and voids in the CZTS film. PMID:23611655

  2. Epitaxially grown crystalline silicon thin-film solar cells reaching 16.5% efficiency with basic cell process

    We report about the current performance of crystalline silicon thin-film (cSiTF) solar cells that are a very attractive alternative to conventional wafer-based silicon solar cells if sufficiently high cell efficiencies are achieved at acceptable cost of production. Applying a standard cell process (diffused POCl3 emitter, front contacts by photolithography, no surface texture) to thin-films deposited with a lab-type reactor, specifically designed for high-throughput photovoltaic applications, on highly-doped Cz substrates we routinely obtain efficiencies above 16%. On 1 Ω cm FZ material substrates we reach efficiencies up to 18.0%, which is among the highest thin-film efficiencies ever reported. Additionally, a comparison to microelectronic-grade epitaxially grown cSiTF material underlines the excellent electrical quality of the epitaxial layers deposited.

  3. Damage mechanisms in thin film solar cells during sputtering deposition of transparent conductive coatings

    Amorphous silicon (a-Si) based thin film solar cell grown on flexible stainless steel substrate is one of the most promising energy conversion devices in the future. This type of solar cell uses a transparent conductive oxide (TCO) film as top electrode. It has been a widely accepted opinion that the radio frequency sputtering deposition of the TCO film produces a higher yield than direct current sputtering, and the reason is not clear. Here we show that the damage to the solar cell during the sputtering process is caused by a reverse bias applied to the n-i-p junction. This reverse bias is related to the characteristics of plasma discharge. The mechanism we reveal may significantly affect the solar cell process

  4. Impact of the nanorod structure on the tandem thin-film solar cell.

    Tang, M; Chang, S T; Huang, C-X; Liu, Y T; Chen, Y H

    2011-07-01

    The novel thin-film solar cell was investigated with a nanorod structure that could solve the conflict between light absorption and carrier transport in the amorphous silicon (a-Si)/amorphous silicon-germanium (a-SiGe) tandem thin-film solar cell. This structure has an n-type a-Si nanorod array on the substrate, and an a-SiOx p-layer and an a-SiGe i-layer are sequentially grown along the surface of each n-type a-Si nanorod, for the bottom cell. After the above bottom-cell process, a similar process is used to fabricate an amorphous Si p-i-n top cell on the bottom cell. Under sunlight illumination, the light is absorbed along the vertical direction of the nanorod, but as the carrier transport is along the horizontal direction, the nanorod may absorb most of the sunlight. In the meantime, the solar cell is still thin enough for the effective transport of photogenerated carriers. PMID:22121598

  5. Thin Film Photovoltaic/Thermal Solar Panels

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  6. Present status of the development of thin-film solar cells

    Dhere, N.G. (Solar Energy Research Inst., Golden, CO (USA))

    1989-01-01

    The principle types of thin-film solar cells are based on single-junction and multi-junction hydrogenated amorphous silicon (a-Si:H), copper indium diselenide (CuInSe{sub 2}) and cadmium telluride (CdTe). Impressive gains in the performance of these cells have been reported in recent months. The problem of contacts to CdTe cells has been circumvented, resulting in the development of stable 11% efficient n-CdS/i-CdTe/p-ZnTe heterostructure solar cells. Total small-area (1 cm {sup 2}) efficiencies which have been measured at SERI under standard conditions (global AM 1.5) are as follows: single-junction a-Si:h, 11.5-12%; triple-junction a-Si:H:F, 12.4% (active area 13.3%); CuGaInSe {sub 2}, 14.1% (active area); CdTe, 10-11%; and CuInSe{sub 2}-a-Si:H cascade cells, 14.6%. Hydrogenated amorphous silicon solar-cell panels are being commercialized in several countries. Small-scale production of CdTe panels has also been undertaken. Recently, a CuInSe{sub 2} module with the world's highest thin-film module efficiency, 11.1% , an aperture area of 938 cm{sup 2} and a total power of 10.4 W, has been tested at SERI. (author).

  7. Photonic and plasmonic structures for enhancing efficiency of thin film silicon solar cells

    Pattnaik, Sambit

    Crystalline silicon solar cells use high cost processing techniques as well as thick materials that are ˜ 200µm thick to convert solar energy into electricity. From a cost viewpoint, it is highly advantageous to use thin film solar cells which are generally made in the range of 0.1-3µm in thickness. Due to this low thickness, the quantity of material is greatly reduced and so is the number and complexity of steps involved to complete a device, thereby allowing a continuous processing capability improving the throughput and hence greatly decreasing the cost. This also leads to faster payback time for the end user of the photovoltaic panel. In addition, due to the low thickness and the possibility of deposition on flexible foils, the photovoltaic (PV) modules can be flexible. Such flexible PV modules are well suited for building-integrated applications and for portable, foldable, PV power products. For economical applications of solar cells, high efficiency is an important consideration. Since Si is an indirect bandgap material, a thin film of Si needs efficient light trapping to achieve high optical absorption. The previous work in this field has been mostly based on randomly textured back reflectors. In this work, we have used a novel approach, a periodic photonic and plasmonic structure, to optimize current density of the devices by absorbing longer wavelengths without hampering other properties. The two dimensional diffraction effect generated by a periodic structure with the plasmonic light concentration achieved by silver cones to efficiently propagate light in the plane at the back surface of a solar cell, achieves a significant increase in optical absorption. Using such structures, we achieved a 50%+ increase in short circuit current in a nano-crystalline (nc-Si) solar cell relative to stainless steel. In addition to nc-Si solar cells on stainless steel, we have also used the periodic photonic structure to enhance optical absorption in amorphous cells and

  8. Performance of thin-film CdS/CdTe solar cells

    Hussain, O. M.; Reddy, P. J.

    1991-07-01

    A polycrystalline thin-film CdS/CdTe solar cell has been fabricated by means of a laser evaporation of CdTe onto thermally-evaporated CdS films. The cell has demonstrated a maximum efficiency of about 8.25 percent, in conjunction with a quantum efficiency of about 80 percent. The In-doped CdS 0.5-micron thick films were deposited onto conducting glass substrates at 473 K and annealed at 673 K in a hydrogen atmosphere; the Sb-doped CdTe 5-micron thickness films were deposited and then heat-treated in air at 673 K.

  9. Physical vapor deposition of CdTe thin films at low temperature for solar cell applications

    Cadmium telluride is successfully utilized as an absorber material for thin film solar cells. Industrial production makes use of high substrate temperatures for the deposition of CdTe absorber layers. However, in order to exploit flexible substrates and to simplify the manufacturing process, lower deposition temperatures are beneficial. Based on the phase diagram of CdTe, predictions on the stoichiometry of CdTe thin films grown at low substrate temperatures are made in this work. These predictions were verified experimentally using additional sources of Cd and Te during the deposition of the CdTe thin films at different substrate temperatures. The deposited layers were analyzed with energy-dispersive X-ray spectroscopy. In case of CdTe layers which were deposited at substrate temperatures lower than 200 C without usage of additional sources we found a non-stoichiometric growth of the CdTe layers. The application of the additional sources leads to a stoichiometric growth for substrate temperatures down to 100 C which is a significant reduction of the substrate temperature during deposition.

  10. Research on the optimum hydrogenated silicon thin films for application in solar cells

    Lei Qing-Song; Wu Zhi-Meng; Geng Xin-Hua; Zhao Ying; Sun Jian; Xi Jian-Ping

    2006-01-01

    Hydrogenated silicon (Si:H) thin films for application in solar cells were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃. The electrical,structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (Ⅰ - Ⅴ) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.

  11. Method of making a thin film cadmium telluride solar cell

    A method for making a photovoltaic cell is described comprising the steps of: (a) depositing a transparent or semi-transparent conductive window layer onto a substrate; (b) depositing a layer of cadmium telluride including phosphorus onto the window layer; (c) depositing a layer of lead telluride onto the layer of cadmium telluride; and (d) depositing a metallic electrode onto the lead telluride layer

  12. Multi-Material Front Contact for 19% Thin Film Solar Cells

    Joop van Deelen

    2016-02-01

    Full Text Available The trade-off between transmittance and conductivity of the front contact material poses a bottleneck for thin film solar panels. Normally, the front contact material is a metal oxide and the optimal cell configuration and panel efficiency were determined for various band gap materials, representing Cu(In,GaSe2 (CIGS, CdTe and high band gap perovskites. Supplementing the metal oxide with a metallic copper grid improves the performance of the front contact and aims to increase the efficiency. Various front contact designs with and without a metallic finger grid were calculated with a variation of the transparent conductive oxide (TCO sheet resistance, scribing area, cell length, and finger dimensions. In addition, the contact resistance and illumination power were also assessed and the optimal thin film solar panel design was determined. Adding a metallic finger grid on a TCO gives a higher solar cell efficiency and this also enables longer cell lengths. However, contact resistance between the metal and the TCO material can reduce the efficiency benefit somewhat.

  13. Enhanced light trapping with double-groove grating in thin-film amorphous silicon solar cells

    Wu, Jun

    2016-05-01

    A design to enhance light absorption in thin-film amorphous silicon (a-Si) solar cells is proposed. It is achieved by patterning a double-groove grating with waveguide layer as the absorbing layer and coating a double-groove grating anti-reflective layer in the front window of the cell. The broadband absorption under normal incidence can be achieved for both TE and TM polarizations. It is shown that the averaged integrated absorptions have very large angle independence for the optimized solar cell. An qualitative understanding of such broadband enhanced absorption effect, which is attributed to the guided mode resonance, is presented. The conclusions can be exploited to guide the design of solar cells based on a grating structure.

  14. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy

    Energy band alignment plays an important role in thin film solar cells. This article presents an overview of the energy band alignment in chalcogenide thin film solar cells with a particular focus on the commercially available material systems CdTe and Cu(In,Ga)Se2. Experimental results from two decades of photoelectron spectroscopy experiments are compared with density functional theory calculations taken from literature. It is found that the experimentally determined energy band alignment is in good agreement with theoretical predictions for many interfaces. These alignments, in particular the theoretically predicted alignments, can therefore be considered as the intrinsic or natural alignments for a given material combination. The good agreement between experiment and theory enables a detailed discussion of the interfacial composition of Cu(In,Ga)Se2/CdS interfaces in terms of the contribution of ordered vacancy compounds to the alignment of the energy bands. It is furthermore shown that the most important interfaces in chalcogenide thin film solar cells, those between Cu(In,Ga)Se2 and CdS and between CdS and CdTe are quite insensitive to the processing of the layers.There are plenty of examples where a significant deviation between experimentally-determined band alignment and theoretical predictions are evident. In such cases a variation of band alignment of sometimes more than 1 eV depending on interface preparation can be obtained. This variation can lead to a significant deterioration of device properties. It is suggested that these modifications are related to the presence of high defect concentrations in the materials forming the contact. The particular defect chemistry of chalcogenide semiconductors, which is related to the ionicity of the chemical bond in these materials and which can be beneficial for material and device properties, can therefore cause significant device limitations, as e.g. in the case of the CuInS2 thin film solar cells or for new

  15. Analysis of the diode characteristics of thin film solar cells based on CdTe

    A physical approach to the optimization of photoelectric processes in thin film multilayer systems has been developed. By means of a simulation of the influence of light-diode characteristics on the efficiency factor, it is concluded that the optimization of the photoelectric processes in ITO/CdS/CdTe/Cu/Au film solar cells is mainly determined by two competing physical mechanisms: an increase in the efficiency of the process of distribution of nonequilibrium charge carriers and a reduction in the efficiency of their generation, as the CdS layer thickness grows

  16. Unlinking absorption and haze in thin film silicon solar cells front electrodes

    Boccard, Mathieu; Cuony, Peter; Battaglia, Corsin; Despeisse, Matthieu; Ballif, Christophe

    2010-01-01

    We study the respective influence of haze and free carrier absorption (FCA) of transparent front electrodes on the photogenerated current of micromorph thin film silicon solar cells. To decouple the haze and FCA we develop bi-layer front electrodes: a flat indium tin oxide layer assures conduction and allows us to tune FCA while the haze is adjusted by varying the thickness of a highly transparent rough ZnO layer. We show how a minimum amount of FCA leads only to a few percents absorption for...

  17. Large CZTS Nanoparticles Synthesized by Hot-Injection for Thin Film Solar Cells

    Engberg, Sara Lena Josefin; Lam, Yeng Ming; Schou, Jørgen

    The kesterite material, Cu2ZnSn(SxSe1-x)4 (CZTS), shows great promise as the absorber layer for future thin film solar cells. Solution processing allows for comparatively fast and inexpensive fabrication, and holds the record efficiency in the kesterite family. However, for nanoparticle (NP...... microscopy (SEM) as well as other surface characterization techniques. Our first photovoltaic device consisting of soda lime glass/Mo/CZTS/CdS/ZnO has been built from doctor blading of approx. 20 nm Cu2ZnSnS4 NPs in octanethiol, and annealed in Se-atmosphere. It had an efficiency of 1.4%....

  18. Amorphous Hydrogenated Carbon-Nitrogen Alloy Thin Films for Solar Cell Application

    ZHOU Zhi-Bin; DING Zheng-Ming; PANG Qian-Jun; CUI Rong-Qiang

    2001-01-01

    Amorphous hydrogenated carbon-nitrogen alloy (a-CNx :H) thin films have been deposited on silicon substratesby improved dc magnetron sputtering from a graphite target in nitrogen and hydrogen gas discharging. Thefilms are investigated by using Raman spectroscopy, x-ray photoelectron spectroscopy, spectral ellipsometer and electron spin resonance techniques. The optimized process condition for solar cell application is discussed. Thephotovoltaic property of a-CNx:H/silicon heterojunctions can be improved by the adjustment of the pressureratio of hydrogen to nitrogen and unbalanced magnetic field intensity. Open-circuit voltage and short-circuitcurrent reach 300mV and 5.52 Ma/cm2, respectively.

  19. Thin film tandem solar cells based on II-VI compounds

    Bloss, W. H.; Kimmerle, J.; Pfisterer, F.; Schock, H. W.

    The R & D efforts for the production of thin film tandem solar cells are presented. The tandem structures are based on II-VIand related compounds and are arranged as electrically isolated (4-terminal) cascades. For the high-bandgap part the material combinations under investigation are p-ZnTe/n-Zn(x)Cd(1-x)S, pn-ZnSe(y)Te(1-y), and p-CuGaSe2/n-Zn(x)Cd(1-x)S. The preliminary results of the investigations on all systems are promising; open circuit voltages of 1.3 V have been achieved.

  20. Progress in Thin Film Solar Cells Based on Cu2ZnSnS4

    Hongxia Wang

    2011-01-01

    The research in thin film solar cells has been dominated by light absorber materials based on CdTe and Cu(In,Ga)Se2 (CIGS) in the last several decades. The concerns of environment impact of cadmium and the limited availability of indium in those materials have driven the research towards developing new substitute light absorbers made from earth abundant, environment benign materials. Cu2ZnSnS4 (CZTS) semiconductor material has emerged as one of the most promising candidates for this aim and h...

  1. Large CZTS Nanoparticles Synthesized by Hot-Injection for Thin Film Solar Cells.

    Engberg, Sara Lena Josefin; Lam, Yeng Ming; Schou, Jørgen

    2015-01-01

    The kesterite material, Cu2ZnSn(SxSe1-x)4 (CZTS), shows great promise as the absorber layer for future thin film solar cells. Solution processing allows for comparatively fast and inexpensive fabrication, and holds the record efficiency in the kesterite family. However, for nanoparticle (NP) solution processing to be a feasible fabrication route, the amount of carbon in the film has to be limited. In our work, we try to limit the organic material in the film by synthesizing larger NPs. Larger...

  2. In Situ Measuring System Designed for Improvement of Poly-Si Thin Film Solar Cells

    Pikna, Peter; Fejfar, Antonín; Ledinský, Martin; Vetushka, Aliaksi; Kočka, Jan; Benda, V.

    Honolulu, 2011. [The Fourth International Forum on Multidisciplinary Education and Research for Energy Science. 17.12.2011-21.12. 2011, Honolulu, Hawaii] R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional research plan: CEZ:AV0Z10100521 Keywords : polycrystalline silicon * thin film solar cells * water vapor passivation Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Surface Photovoltage Spectroscopy and AFM Analysis of CIGSe Thin Film Solar Cells

    Gorji, Nima E.; Ugo Reggiani; Leonardo Sandrolini

    2015-01-01

    The band gap, grain size, and topography of a Cu(In,Ga)Se2 (CIGSe) thin film solar cell are analyzed using surface photovoltage spectroscopy (SPV) and atomic force microscopy (AFM) techniques. From the steep increase in SPV signal the band gap of the CIGSe absorber, In2S3 and ZnO layers are extracted and found to be 1.1, 1.3 and 2.6 eV, respectively. Already below the band gap of ZnO layer, a slight SPV response at 1.40 eV photon energies is observed indicating the presence of deep donor stat...

  4. 13.4% efficient thin-film CdS/CdTe solar cells

    Chu, T. L.; Chu, S. S.; Ferekides, C.; Wu, C. Q.; Britt, J.; Wang, C.

    1991-12-01

    Cadmium telluride is a promising thin-film photovoltaic material as shown by the more than 10% efficient CdS/CdTe heterojunction solar cells. In this work, thin-film CdS/CdTe solar cells have been prepared using CdS films grown from an aqueous solution and p-CdTe films deposited by close-spaced sublimation (CSS). The properties of CdS films deposited from an ammonical solution of a Cd-salt, an ammonium salt, and thiourea have been controlled by optimizing the temperature and composition of the solution. The solution-grown CdS films have a high photoconductivity ratio, and its optical transmission is superior to that of vacuum evaporated CdS films. The properties of p-CdTe films deposited by CSS have been optimized by controlling the temperature and composition of the source material, and the substrate temperature. The properties of CdS/CdTe heterojunctions have been studied; junction photovoltage spectroscopy is used for the qualitative comparison of junction characteristics. Solar cells of 1-cm2 area with an AM 1.5 efficiency of 13.4% are reported.

  5. 13. 4% efficient thin-film CdS/CdTe solar cells

    Chu, T.L.; Chu, S.S.; Ferekides, C.; Wu, C.Q.; Britt, J.; Wang, C. (Department of Electrical Engineering, University of South Florida, Tampa, Florida (USA))

    1991-12-15

    Cadmium telluride is a promising thin-film photovoltaic material as shown by the more than 10% efficient CdS/CdTe heterojunction solar cells. In this work, thin-film CdS/CdTe solar cells have been prepared using CdS films grown from an aqueous solution and {ital p}-CdTe films deposited by close-spaced sublimation (CSS). The properties of CdS films deposited from an ammonical solution of a Cd-salt, an ammonium salt, and thiourea have been controlled by optimizing the temperature and composition of the solution. The solution-grown CdS films have a high photoconductivity ratio, and its optical transmission is superior to that of vacuum evaporated CdS films. The properties of {ital p}-CdTe films deposited by CSS have been optimized by controlling the temperature and composition of the source material, and the substrate temperature. The properties of CdS/CdTe heterojunctions have been studied; junction photovoltage spectroscopy is used for the qualitative comparison of junction characteristics. Solar cells of 1-cm{sup 2} area with an AM 1.5 efficiency of 13.4% are reported.

  6. Thin film polycrystalline silicon: Promise and problems in displays and solar cells

    Fonash, S.J. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Thin film polycrystalline Si (poly-Si) with its carrier mobilities, potentially good stability, low intragrain defect density, compatibility with silicon processing, and ease of doping activation is an interesting material for {open_quotes}macroelectronics{close_quotes} applications such as TFTs for displays and solar cells. The poly-Si films needed for these applications can be ultra-thin-in the 500{Angstrom} to 1000{Angstrom} thickness range for flat panel display TFTs and in the 4{mu}m to 10{mu}m thickness range for solar cells. Because the films needed for these microelectronics applications can be so thin, an effective approach to producing the films is that of crystallizing a-Si precursor material. Unlike cast materials, poly-Si films made this way can be produced using low temperature processing. Unlike deposited poly-Si films, these crystallized poly-Si films can have grain widths that are much larger than the film thickness and almost atomically smooth surfaces. This thin film poly-Si crystallized from a-Si precursor films, and its promise and problems for TFTs and solar cells, is the focus of this discussion.

  7. Study on AlxNiy Alloys as Diffusion Barriers in Flexible Thin Film Solar Cells%Study on AlxNiy Alloys as Diffusion Barriers in Flexible Thin Film Solar Cells

    岳红云; 吴爱民; 秦福文; 李廷举

    2011-01-01

    Co-sputtered AlxNiy thin films were used as diffusion barriers between aluminum and hydrogenated microcrystalline silicon (μc-Si:H) for flexible thin film solar cells. The stoichiometric ratio of AlxNiy showed a significant effect on the structures of the films. The obtained Al3Ni2 film was amorphous, while polycrystalline films were obtained when the ratio of aluminum to nickel was 1:1 and 2:3. An auger electron spectroscope and four-point probe system were applied to test the resistance to the interdiffusion between aluminum and silicon, as well as the conductivities of the AlxNiy barriers. The data of auger depth profile showed that the content of silicon was the minimum in the aluminum layer after sputtering for 4 min using AlNi thin film as the barrier layer. Compared to other AlxNiy alloys, the AlNi thin film possessed the lowest sheet resistance.

  8. Crystalline silicon thin-film solar cells. Final report; Duennschicht-Solarzellen aus kristallinem Silizium. Abschlussbericht

    Raeuber, A.; Wettling, W.; Eyer, A.; Faller, F.; Hebling, C.; Hurrle, A.; Lautenschlager, H.; Luedemann, R.; Lutz, F.; Reber, S.; Schetter, C.; Schillinger, N.; Schindler, R.; Schumacher, J.O.; Warta, W.

    1998-09-01

    Activities under the project covered all the processes involved in the fabrication of a crystalline silicon thin-film solar cell applying the high-temperature method, so that R and D work was carried out from testing of materials suitable for the dielectric and semiconductive layers required, development of the process sequences for fabrication of the solar cells, simulation and optimisation of the cell design through to final characterisation of the thin films and solar cells. Several cell designs were tested in parallel for intercomparison. Several high-temperature resistant materials were tested for their suitability to serve as substrate materials.The final project report presents the basic research work and studies on the physical and technological aspects of the crystalline thin-film solar cell as well as the major results of specific development work. The report shows that significant progress could be achieved. The efficiencies of all solar cell designs developed under the project are between 9 and 11%, including those using substrate materials easily available in industry, and it could be demonstrated that the solar cells are equal in potential to the wafer-based silicon cell. (orig./CB) [Deutsch] Es wurden alle wesentlichen Teilprozesse, die fuer die Entwicklung einer kristallinen Silicium Duennschicht-Solarzelle nach dem Hochtemperaturverfahren wichtig sind, bearbeitet. Der Projektrahmen reichte von der Materialentwicklung fuer die dielektrischen und halbleitenden Schichten ueber die Entwicklung der Solarzellenprozessschritte, die Simulation und Optimierung des Zellendesigns bis zur Charakterisierung von Schichten und Solarzellen. Dabei wurden mehrere verschiedene Zellentypen parallel untersucht und miteinander verglichen. In einer Studie wurden verschiedene hochtemperaturfeste Materialien auf ihre Eignung als Substrate hin untersucht. In dem hier vorgelegten Abschlussbericht werden die erarbeiteten Grundlagen zur Physik und Technologie der kristallinen

  9. Refractive index extraction and thickness optimization of Cu2ZnSnSe4 thin film solar cells

    ElAnzeery, H.; El Daif, O.; Buffière, M.; Oueslati, S.; Ben Messaoud, K.; Agten, D.; Brammertz, G.; Guindi, R.; Kniknie, B.; Meuris, M.; Poortmans, J.

    2015-01-01

    Cu2nSnSe4 (CZTSe) thin film solar cells are promising emergent photovoltaic technologies based on low-bandgap absorber layer with high absorption coefficient. To reduce optical losses in such devices and thus improve their efficiency, numerical simulations of CZTSe solar cells optical characteristic

  10. Transparent conducting oxide contacts and textured metal back reflectors for thin film silicon solar cells

    Franken, R. H.-J.

    2006-09-01

    With the growing population and the increasing environmental problems of the 'common' fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic (PV) systems, can play a major role in the urgently needed energy transition in electricity production. At the present time PV module production is dominated by the crystalline wafer technology. Thin film silicon technology is an alternative solar energy technology that operates at lower efficiencies, however, it has several significant advantages, such as the possibility of deposition on cheap (flexible) substrates and the much smaller silicon material consumption. Because of the small thickness of the solar cells, light trapping schemes are needed in order to obtain enough light absorption and current generation. This thesis describes the research on thin film silicon solar cells with the focus on the optimization of the transparent conducting oxide (TCO) layers and textured metal Ag substrate layers for the use as enhanced light scattering back reflectors in n-i-p type of solar cells. First we analyzed ZnO:Al (TCO) layers deposited in an radio frequent (rf) magnetron deposition system equipped with a 7 inch target. We have focused on the improvement of the electrical properties without sacrificing the optical properties by increasing the mobility and decreasing the grain boundary density. Furthermore, we described some of the effects on light trapping of ZnO:Al enhanced back reflectors. The described effects are able to explain the observed experimental data. Furthermore, we present a relation between the surface morphology of the Ag back contact and the current enhancement in microcrystalline (muc-Si:H) solar cells. We show the importance of the lateral feature sizes of the Ag surface on the light scattering and introduce a method to characterize the quality of the back reflector by combining the vertical and lateral feature sizes

  11. Band alignment measurements at heterojunction interfaces in layered thin film solar cells & thermoelectrics

    Fang, Fang

    2011-12-01

    Public awareness of the increasing energy crisis and the related serious environmental concerns has led to a significantly growing demand for alternative clean and renewable energy resources. Thin film are widely applied in multiple renewable energy devices owing to the reduced amount of raw materials and increase flexibility of choosing from low-cost candidates, which translates directly into reduced capital cost. This is a key driving force to make renewable technology competitive in the energy market. This thesis is focused on the measurement of energy level alignments at interfaces of thin film structures for renewable energy applications. There are two primary foci: II -VI semiconductor ZnSe/ZnTe thin film solar cells and Bi2Te3/Sb2Te3 thin film structures for thermoelectric applications. In both cases, the electronic structure and energy band alignment at interfaces usually controls the carrier transport behavior and determines the quality of the device. High-resolution photoemission spectroscopy (lab-based XPS & synchrotron-based UPS) was used to investigate the chemical and electronic properties of epitaxial Bi2Te3 and Sb2Te3 thin films, in order to validate the anticipated band alignment at interfaces in Bi 2Te3/Sb2Te3 superlattices as one favoring electron-transmission. A simple, thorough two-step treatment of a chemical etching in dilute hydrochloric acid solution and a subsequent annealing at ˜150°C under ultra-high vacuum environment is established to remove the surface oxides completely. It is an essential step to ensure the measurements on electronic states are acquired on stoichimetric, oxide-free clean surface of Bi 2Te3 and Sb2Te3 films. The direct measurement of valence band offsets (VBO) at a real Sb 2Te3/Bi2Te3 interface is designed based on the Kraut model; a special stacking film structure is prepared intentionally: sufficiently thin Sb2Te3 film on top of Bi2Te 3 that photoelectrons from both of them are collected simultaneously. From a

  12. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement. PMID:26736028

  13. Texture-Etched SnO2 Glasses Applied to Silicon Thin-Film Solar Cells

    Bing-Rui Wu

    2014-01-01

    Full Text Available Transparent electrodes of tin dioxide (SnO2 on glasses were further wet-etched in the diluted HCl:Cr solution to obtain larger surface roughness and better light-scattering characteristic for thin-film solar cell applications. The process parameters in terms of HCl/Cr mixture ratio, etching temperature, and etching time have been investigated. After etching process, the surface roughness, transmission haze, and sheet resistance of SnO2 glasses were measured. It was found that the etching rate was increased with the additions in etchant concentration of Cr and etching temperature. The optimum texture-etching parameters were 0.15 wt.% Cr in 49% HCl, temperature of 90°C, and time of 30 sec. Moreover, silicon thin-film solar cells with the p-i-n structure were fabricated on the textured SnO2 glasses using hot-wire chemical vapor deposition. By optimizing the texture-etching process, the cell efficiency was increased from 4.04% to 4.39%, resulting from the increment of short-circuit current density from 14.14 to 15.58 mA/cm2. This improvement in cell performances can be ascribed to the light-scattering effect induced by surface texturization of SnO2.

  14. Recrystallized thin-film silicon solar cell on graphite substrate with laser single side contact and hydrogen passivation

    Li Da

    2015-01-01

    Full Text Available Laser single side contact formation (LSSC and the hydrogen passivation process are studied and developed for crystalline silicon thin film (CSiTF solar cells on graphite substrates. The results demonstrate that these two methods can improve cell performance by increasing the open circuit voltage and fill factor. In comparison with our previous work, we have achieved an increase of 3.4% absolute cell efficiency for a 40 μm thick 4 cm2 aperture area silicon thin film solar cell on graphite substrate. Current density-voltage (J-V measurement, quantum efficiency (QE and light beam induced current (LBiC are used as characterization methods.

  15. Crystalline silicon for thin film solar cells. Final report; Kristallines Silizium fuer Duennschichtsolarzellen. Schlussbericht

    Wagner, H.

    2001-07-01

    Thin film solar cells based on silicon are of great interest for cost-effective conversion of solar energy into electric power. In order to reach this goal, intensive research is still necessary, pointing, e.g., to a further enhancement of the conversion efficiency, an improvement of stability and a reduction of the production time. Aim of the project work was the achievement of knowledge on microcrystalline silicon and its application in thin film solar cells by means of a broad research and development program. Material research focused on growth processes of the microcrystalline material, the incorporation and stability of hydrogen, the electronic transport and defects. In particular the transition from amorphous to microcrystalline material which is obtained for the present deposition methods by minor variations of the deposition parameters as well as the enhancement of the deposition rate were intensively studies. Another focus of research aimed toward the development and improvement of zinc oxide films which are of central importance for this type of solar cells for the application as transparent contacts. A comprehensive understanding was achieved. The films were incorporated in thin film solar cells and with conversion efficiencies >8% for single cells (at relatively high deposition rate) and 10% (stable) for tandem cells with amorphous silicon, top values were achieved by international standards. The project achievements serve as a base for a further development of this type of solar cell and for the transfer of this technology to industry. (orig.) [German] Duennschichtsolarzellen auf der Basis von Silizium sind von grossem Interesse fuer eine kostenguenstige Umwandlung von Sonnenenergie in elektrischen Strom. Um dieses Ziel zu erreichen, ist jedoch noch intensive Forschung, u.a. zur weiteren Steigerung des Wirkungsgrades, zur Verbesserung der Stabilitaet und zur Verkuerzung des Produktionsprozesses erforderlich. Ziel der Projektarbeiten war, durch ein

  16. Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells

    Söderström, T.; Haug, F.-J.; Niquille, X.; Terrazzoni, V.; Ballif, C.

    2009-02-01

    The micromorph solar cell (stack of amorphous and microcrystalline cells) concept is the key for achieving high efficiency stabilized thin film silicon solar cells. We introduce a device structure that allows a better control of the light in-coupling into the two subcell components. It is based on an asymmetric intermediate reflector, which increases the effective thickness of the a-Si:H by a factor of more than three. Hence, the a-Si:H thickness reduction diminishes the light induced degradation, and micromorph tandem cells with 11.2% initial and 9.8% stabilized efficiencies (1000 h, 50 °C, and 100 mW/cm2) are made on plastic substrates with Tg<180 °C.

  17. ZnO transparent conductive oxide for thin film silicon solar cells

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  18. Electronic structure of electrodeposited thin film CdTe solar cells

    Ullal, H. S.

    1988-05-01

    Independent experimental verification done at four research laboratories, namely, Ametek, Colorado State University (CSU), Institute of Energy Conversion (IEC), and Solar Energy Research Institute (SERI) confirm the n-i-p model proposed by Ametek. The experiments done for the verification of the n-i-p structure are the high frequency capacitance-voltage, light and voltage bias quantum efficiency, and EBIC measurements. All experimental evidence suggests that the n-i-p model is appropriate for the existing n-CdS/i-CdTe/p-ZnTe cell structure. From the C-V measurements, the depletion width has been estimated at 1.7 to 2.0 microns and corresponds to the thickness of the CdTe film. This unique thin films device design has resulted in improved stability and a SERI-verified world record single-junction total area AM1.5 global efficiency of 11 percent. Further refinements in device design and cell processing should result in 12 to 13 percent efficiencies for thin-film CdTe solar cells in the not-too-distant future.

  19. Electronic structure of electrodeposited thin film CdTe solar cells

    Ullal, H.S.

    1988-05-01

    Independent experimental verification done at four research laboratories, namely, Ametek, Colorado State University (CSU), Institute of Energy Conversion (IEC), and Solar Energy Research Institute (SERI) confirm the n-i-p model proposed by Ametek. The experiments done for the verification of the n-i-p structure are the high frequency capacitance-voltage, light and voltage bias quantum efficiency, and EBIC measurements. All experimental evidence suggests that the n-i-p model is appropriate for the existing n-CdS/i-CdTe/p-ZnTe cell structure. From the C-V measurements, the depletion width has been estimated at 1.7-2.0 ..mu..m and corresponds to the thickness of the CdTe film. This unique thin films device design has resulted in improved stability and a SERI-verified world record single-junction total area AM1.5 global efficiency of 11%. Further refinements in device design and cell processing should result in 12-13% efficiencies for thin-film CdTe solar cells in the not-too-distant future.

  20. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    de Jong, M. M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the

  1. A facile fabrication of chemically converted graphene oxide thin films and their uses as absorber materials for solar cells

    Adelifard, Mehdi; Darudi, Hosein

    2016-07-01

    There is a great interest in the use of graphene sheets in thin film solar cells with low-cost and good-optoelectronic properties. Here, the production of absorbent conductive reduced graphene oxide (RGO) thin films was investigated. RGO thin films were prepared from spray-coated graphene oxide (GO) layers at various substrate temperature followed by a simple hydrazine-reducing method. The structural, morphological, optical, and electrical characterizations of graphene oxide (GO) and RGO thin films were investigated. X-ray diffraction analysis showed a phase shift from GO to RGO due to hydrazine treatment, in agreement with the FTIR spectra of the layers. FESEM images clearly exhibited continuous films resulting from the overlap of graphene nanosheets. The produced low-cost thin films had high absorption coefficient up to 1.0 × 105 cm-1, electrical resistance as low as 0.9 kΩ/sq, and effective optical band gap of about 1.50 eV, close to the optimum value for solar conversion. The conductive absorbent properties of the reduced graphene oxide thin films would be useful to develop photovoltaic cells.

  2. Morphology dependent dye-sensitized solar cell properties of nanocrystalline zinc oxide thin films

    Research highlights: → Nano-crystalline zinc oxide thin films were electrosynthesized from an aqueous zinc acetate [Zn(CH3COO)2.2H2O] solution onto FTO coated conducting glass substrates using two different electrochemical routes, namely (i) without an organic surfactant and (ii) with an organic surfactant, viz. PVA (poly-vinyl alcohol) or SDS (sodium dodecyl sulfate). → The reproducibility of the catalytic activity of the SDS and PVA surfactants in the modification of the morphologies was observed. → Vertically aligned nest-like and compact structures were observed from the SDS and PVA mediated films, respectively, while the grain size in the ZnO thin films without an organic surfactant was observed to be ∼150 nm. → The dye sensitized ZnO electrodes displayed excellent properties in the conversion process from light to electricity. The efficiencies of the surfactant mediated nanocrystalline ZnO thin films, viz. ZnO:SDS and ZnO:PVA, sensitized with ruthenium-II (N3) dye were observed to be 0.49% and 0.27%, respectively. - Abstract: Nano-crystalline zinc oxide thin films were electrosynthesized with an aqueous zinc acetate [Zn(CH3COO)2.2H2O] solution on to FTO coated glass substrates. Two different electrochemical baths were used, namely (i) without an organic surfactant and (ii) with an organic surfactant, viz. PVA (poly-vinyl alcohol) and SDS (sodium dodecyl sulfate). The organic surfactants played an important role in modifying the surface morphology, which influenced the size of the crystallites and dye-sensitized solar cell (DSSC) properties. The vertically aligned thin and compact hexagonal crystallites were observed with SDS mediated films, while the grain size in the films without an organic surfactant was observed to be ∼150 nm. The conversion efficiencies of the ZnO:SDS:Dye and ZnO:PVA:Dye thin films were observed to be 0.49% and 0.27%, respectively.

  3. Effect of CdCl2 annealing treatment on CdS thin films and CdTe/CdS thin film solar cells

    In order to study the effect of CdCl2 annealing treatment on thin CdS films and CdTe/CdS thin film solar cells, a comparative study was carried out on three types of CdTe/CdS solar cells, which had different kinds of CdS window layer: as-deposited CdS, air-annealed CdS without CdCl2 pre-coating, and CdCl2-annealed CdS. When annealed in air the CdS film was partially oxidated to CdO and CdSO4. These oxides increased the series resistance of the CdTe solar cell and led to the lowest fill factor. The presence of CdCl2 on the surface of a CdS thin film during heat treatment in air protected it from oxidation and promoted the recrystallization of the CdS film, resulting in large and closely packed grains with a grain size of ∝ 50 -150 nm. CdTe/CdS solar cell with such a kind of CdS window layer showed the largest short circuit current and highest conversion efficiency of 12.4%. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    Finger, F., E-mail: f.finger@fz-juelich.d [IEF-5 Photovoltaik, Forschungszentrum Juelich, 52425 Juelich (Germany); Astakhov, O.; Bronger, T.; Carius, R.; Chen, T.; Dasgupta, A.; Gordijn, A. [IEF-5 Photovoltaik, Forschungszentrum Juelich, 52425 Juelich (Germany); Houben, L. [IFF, Mikrostruktur, Forschungszentrum Juelich, 52425 Juelich (Germany); Huang, Y.; Klein, S. [IEF-5 Photovoltaik, Forschungszentrum Juelich, 52425 Juelich (Germany); Luysberg, M. [IFF, Mikrostruktur, Forschungszentrum Juelich, 52425 Juelich (Germany); Wang, H.; Xiao, L. [IEF-5 Photovoltaik, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2009-04-30

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form ({mu}c-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the {mu}c-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  5. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  6. The role of front and back electrodes in parasitic absorption in thin-film solar cells

    Boccard Mathieu

    2014-07-01

    Full Text Available When it comes to parasitic absorption in thin-film silicon solar cells, most studies focus on one electrode only, most of the time the substrate (in n-i-p configuration or superstrate (in p-i-n configuration. We investigate here simultaneously the influence of the absorption in both front and back electrodes on the current density of tandem micromorph solar cells in p-i-n configuration. We compare four possible combinations of front and back electrodes with two different doping levels, but identical sheet resistance and identical light-scattering properties. In the infrared part of the spectrum, parasitic absorption in the front or back electrode is shown to have a similar effect on the current generation in the cell, which is confirmed by modeling. By combining highly transparent front and back ZnO electrodes and high-quality silicon layers, a micromorph device with a stabilized efficiency of 11.75% is obtained.

  7. The role of front and back electrodes in parasitic absorption in thin-film solar cells

    Boccard, Mathieu; Cuony, Peter; Hänni, Simon; Stuckelberger, Michael; Haug, Franz-Josef; Meillaud, Fanny; Despeisse, Matthieu; Ballif, Christophe

    2014-07-01

    When it comes to parasitic absorption in thin-film silicon solar cells, most studies focus on one electrode only, most of the time the substrate (in n-i-p configuration) or superstrate (in p-i-n configuration). We investigate here simultaneously the influence of the absorption in both front and back electrodes on the current density of tandem micromorph solar cells in p-i-n configuration. We compare four possible combinations of front and back electrodes with two different doping levels, but identical sheet resistance and identical light-scattering properties. In the infrared part of the spectrum, parasitic absorption in the front or back electrode is shown to have a similar effect on the current generation in the cell, which is confirmed by modeling. By combining highly transparent front and back ZnO electrodes and high-quality silicon layers, a micromorph device with a stabilized efficiency of 11.75% is obtained.

  8. Deep level transient spectroscopy measurements on CuInS2-thin film solar cells

    During the last decade CuInS2 was investigated for its use as absorber in thin film solar cells. Now these cells are ready for volume production. The advantages against already used materials are e. g. high absorbing capacity and cost-efficient and sustainable production. Because of the great discrepancy between predicted degree of efficiency and the already reached degree more investigations are necessary. To get a better understanding of the electron transport and recombination in order to arise efficiency we characterize the solar cells by deep level transient spectroscopy (DLTS). This method gives information about crystal defects depending on their electric position. Transient capacity measurements in the range of 25 K and 350 K allow us to determine activation energy and concentration of electron traps

  9. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluate roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency

  10. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    Shao, Guojian; Lou, Chaogang; Kang, Jian; Zhang, Hao [School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu Province (China)

    2015-12-21

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluate roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.

  11. Light trapping regimes in thin-film silicon solar cells with a photonic pattern.

    Zanotto, Simone; Liscidini, Marco; Andreani, Lucio Claudio

    2010-03-01

    We present a theoretical study of crystalline and amorphous silicon thin-film solar cells with a periodic pattern on a sub-micron scale realized in the silicon layer and filled with silicon dioxide right below a properly designed antireflection (AR) coating. The study and optimization of the structure as a function of all the photonic lattice parameters, together with the calculation of the absorption in a single layer, allows to identify the different roles of the periodic pattern in determining an increase of the absorbance. From one side, the photonic crystal and the AR coating act as impedance matching layers, thus minimizing reflection of incident light over a particularly wide range of frequencies. Moreover a strong absorption enhancement is observed when the incident light is coupled into the quasi guided modes of the photonic slab. We found a substantial increase of the short-circuit current when the parameters are properly optimized, demonstrating the advantage of a wavelength-scale, photonic crystal based approach for patterning of thin-film silicon solar cells. PMID:20389438

  12. Thin film CdTe solar cells by close spaced sublimation: Recent results from pilot line

    CdTe is an attractive material to produce high efficient and low cost thin film solar cells. The semiconducting layers of this kind of solar cell can be deposited by the Close Spaced Sublimation (CSS) process. The advantages of this technique are high deposition rates and an excellent utilization of the raw material, leading to low production costs and competitive module prices. CTF Solar GmbH is offering equipment and process knowhow for the production of CdTe solar modules. For further improvement of the technology, research is done at a pilot line, which covers all relevant process steps for manufacture of CdTe solar cells. Herein, we present the latest results from the process development and our research activities on single functional layers as well as for complete solar cell devices. Efficiencies above 13% have already been obtained with Cu-free back contacts. An additional focus is set on different transparent conducting oxide materials for the front contact and a Sb2Te3 based back contact. - Highlights: ► Laboratory established on industrial level for CdTe solar cell research ► 13.0% cell efficiency with our standard front contact and Cu-free back contact ► Research on ZnO-based transparent conducting oxide and Sb2Te3 back contacts ► High resolution scanning electron microscopy analysis of ion polished cross section

  13. Copper and Transparent-Conductor Reflectarray Elements on Thin-Film Solar Cell Panels

    Dreyer, Philippe; Nicolay, Sylvain; Ballif, Christophe; Perruisseau-Carrier, Julien

    2013-01-01

    This work addresses the integration of reflectarray antennas (RA) on thin film Solar Cell (SC) panels, as a mean to save real estate, weight, or cost in platforms such as satellites or transportable autonomous antenna systems. Our goal is to design a good RA unit cell in terms of phase response and bandwidth, while simultaneously achieving high optical transparency and low microwave loss, to preserve good SC and RA energy efficiencies, respectively. Since there is a trade-off between the optical transparency and microwave surface conductivity of a conductor, here both standard copper and transparent conductors are considered. The results obtained at the unit cell level demonstrates the feasibility of integrating RA on a thin-film SC, preserving for the first time good performance in terms of both SC and RA efficiency. For instance, measurement at X-band demonstrate families of cells providing a phase range larger than 270{\\deg} with average microwave loss of -2.45dB (resp. -0.25dB) and average optical transpa...

  14. Enhanced photon management in silicon thin film solar cells with different front and back interface texture.

    Tamang, Asman; Hongsingthong, Aswin; Jovanov, Vladislav; Sichanugrist, Porponth; Khan, Bakhtiar A; Dewan, Rahul; Konagai, Makoto; Knipp, Dietmar

    2016-01-01

    Light trapping and photon management of silicon thin film solar cells can be improved by a separate optimization of the front and back contact textures. A separate optimization of the front and back contact textures is investigated by optical simulations taking realistic device geometries into consideration. The optical simulations are confirmed by experimentally realized 1 μm thick microcrystalline silicon solar cells. The different front and back contact textures lead to an enhancement of the short circuit current by 1.2 mA/cm(2) resulting in a total short circuit current of 23.65 mA/cm(2) and an energy conversion efficiency of 8.35%. PMID:27481226

  15. Temperature dependent electrical characterization of thin film Cu2ZnSnSe4 solar cells

    Impedance spectroscopy (IS) and current–voltage characteristics measurements were applied to study properties of a Cu2ZnSnSe4 (CZTSe) thin film solar cell. IS measurements were done in the frequency range 20 Hz to 10 MHz. The measurement temperature was varied from 10 K to 325 K with a step ▵T  =  5 K. Temperature dependence of V oc revealed an activation energy of 962 meV, which is in the vicinity of the band gap energy of CZTSe and hence the dominating recombination mechanism in this solar cell is bulk recombination. Different temperature ranges, where electrical properties change, were found. Interface states at grain boundaries with different properties were revealed to play an important role in impedance measurements. These states can be described by introducing a constant phase element in the equivalent circuit. (paper)

  16. Temperature dependent electrical characterization of thin film Cu2ZnSnSe4 solar cells

    Kask, E.; Krustok, J.; Giraldo, S.; Neuschitzer, M.; López-Marino, S.; Saucedo, E.

    2016-03-01

    Impedance spectroscopy (IS) and current-voltage characteristics measurements were applied to study properties of a Cu2ZnSnSe4 (CZTSe) thin film solar cell. IS measurements were done in the frequency range 20 Hz to 10 MHz. The measurement temperature was varied from 10 K to 325 K with a step ▵T  =  5 K. Temperature dependence of V oc revealed an activation energy of 962 meV, which is in the vicinity of the band gap energy of CZTSe and hence the dominating recombination mechanism in this solar cell is bulk recombination. Different temperature ranges, where electrical properties change, were found. Interface states at grain boundaries with different properties were revealed to play an important role in impedance measurements. These states can be described by introducing a constant phase element in the equivalent circuit.

  17. Kelvin Probe Measurements on Solar Cells and Other Thin Film Devices

    Delk, John; Dils, D. W.; Lush, G. B.; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    The Kelvin Probe (KP) has been used for years to measure the surface potential of metals and semiconductors. The KP is an elegantly simple but powerful tool invented by Lord Kelvin around the turn of the century. Using changes in surface potentials as a result of changing the intensity and wavelength of illumination, the KP returns data on material parameters such as band gap energies and the energy levels of interface states. We have employed the KP in the study of CdTe-based solar cells and quantum dot-based solar cells, as well as other thin-film devices. We hope eventually that the KP will be used as an in-line testing station for a fabrication process so that unfinished devices that will not meet requirements can be thrown out before the processing is completed, thus saving resources. Results of these studies will be presented.

  18. Hydrophobic perfluoropolymer thin-film encapsulation for enhanced stability of inverted polymer solar cells

    We report hydrophobic perfluoropolymer thin-film encapsulation for enhancing the air ambient stability of inverted polymer solar cells (PSCs). Using a perfluoropolymer, poly(perfluorodecylmethacrylate) (PFDMA), as an encapsulation material, an orthogonal process that enables a solution-processing of encapsulation polymers to be coated directly on the inverted PSCs without damaging the underlying organic components is possible. Particularly, with PFDMA encapsulation, the air ambient stability was significantly enhanced, showing only an efficiency reduction of 23.3% after 456 hours of air exposure. The enhanced device stability can be attributed to the hydrophobic property of the PFDMA surface, which suppresses the transmission of air ambient gas molecules into the solar cells. Thus, the PFDMA coating can be beneficial in achieving high-stability organic electronics by using an easy-to-use route.

  19. Laser crystallization induced multicrystalline silicon thin film solar cells on glass : european HIGH-EF project

    The european project HIGH-EF is aimed at developing a unique process for silicon thin films based solar cells on glass substrate. To provide high solar cells efficiency (more than 12 percent) a combination of laser crystallization of a seed layer and an additional solid phase epitaxy of thicker layer is realized. In a first step, the crystallization of the seed layer is obtained by scanning a focused in-line laser beam obtained by a specific optical lens system. In a second step, epitaxial growth of a large grains active silicon layer is achieved by solid phase epitaxy. Process optimization is supported by numerical simulations of both melting and crystallization process of the seed layer as well as epitaxial solid phase crystallization

  20. Enhanced photon management in silicon thin film solar cells with different front and back interface texture

    Tamang, Asman; Hongsingthong, Aswin; Jovanov, Vladislav; Sichanugrist, Porponth; Khan, Bakhtiar A.; Dewan, Rahul; Konagai, Makoto; Knipp, Dietmar

    2016-08-01

    Light trapping and photon management of silicon thin film solar cells can be improved by a separate optimization of the front and back contact textures. A separate optimization of the front and back contact textures is investigated by optical simulations taking realistic device geometries into consideration. The optical simulations are confirmed by experimentally realized 1 μm thick microcrystalline silicon solar cells. The different front and back contact textures lead to an enhancement of the short circuit current by 1.2 mA/cm2 resulting in a total short circuit current of 23.65 mA/cm2 and an energy conversion efficiency of 8.35%.

  1. Post-growth process for flexible CdS/CdTe thin film solar cells with high specific power.

    Cho, Eunwoo; Kang, Yoonmook; Kim, Donghwan; Kim, Jihyun

    2016-05-16

    We demonstrated a flexible CdS/CdTe thin film solar cell with high specific power of approximately 254 W/kg. A flexible and ultra-light weight CdS/CdTe cell treated with pre-NP etch process exhibited high conversion efficiency of 13.56% in superstrate configuration. Morphological, structural and optical changes of CdS/CdTe thin films were characterized when pre-NP etch step was incorporated to the conventional post-deposition process. Improvement of photovoltaic parameters can be attributed to the removal of the oxide and the formation of Te-rich layer, which benefit the activation process. Pre-NP etched cell maintained their flexibility and performance under the repeated tensile strain of 0.13%. Our method can pave a way for manufacturing flexible CdS/CdTe thin film solar cells with high specific power for mobile and aerospace applications. PMID:27409952

  2. Two-dimensional high efficiency thin-film silicon solar cells with a lateral light trapping architecture

    Fang, Jia; Liu, Bofei; Zhao, Ying; Zhang, Xiaodan

    2014-01-01

    Introducing light trapping structures into thin-film solar cells has the potential to enhance their solar energy harvesting as well as the performance of the cells; however, current strategies have been focused mainly on harvesting photons without considering the light re-escaping from cells in two-dimensional scales. The lateral out-coupled solar energy loss from the marginal areas of cells has reduced the electrical yield indeed. We therefore herein propose a lateral light trapping structur...

  3. In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells

    Buehlmann, P.; Bailat, J.; Dominé, D.; Billet, A.; Meillaud, F.; Feltrin, A.; Ballif, C.

    2007-10-01

    We show that SiO-based intermediate reflectors (SOIRs) can be fabricated in the same reactor and with the same process gases as used for thin-film silicon solar cells. By varying input gas ratios, SOIR layers with a wide range of optical and electrical properties are obtained. The influence of the SOIR thickness in the micromorph cell is studied and current gain and losses are discussed. Initial micromorph cell efficiency of 12.2% (Voc=1.40V, fill factor=71.9%, and Jsc=12.1mA/cm2) is achieved with top cell, SOIR, and bottom cell thicknesses of 270, 95, and 1800nm, respectively.

  4. Enhancing light trapping properties of thin film solar cells by plasmonic effect of silver nanoparticles.

    Jung, Junhee; Ha, Kyungyeon; Cho, Jaehyun; Ahn, Shihyun; Park, Hyeongsik; Hussain, Shahzada Qamar; Choi, Mansoo; Yi, Junsin

    2013-12-01

    The preparation of thin film silicon solar cells containing Ag nanoparticles is reported in this article. Ag nanoparticles were deposited on fluorine doped tin oxide coated glass substrates by the evaporation and condensation method. a-Si:H solar cells were deposited on these substrates by cluster type plasma enhanced chemical vapor deposition. We discuss the double textured surface effect with respect to both the surface morphology of the substrate and the plasmonic effect of the Ag nanoparticles. Ag nanoparticles of various sizes from 10 to 100 nm were deposited. The haze values of the Ag embedded samples increased with increasing particle size whereas the optical transmittance decreased at the same conditions. The solar cell with the 30 nm size Ag nanoparticles showed a short circuit current density of 12.97 mA/cm2, which is 0.53 mA/cm2 higher than that of the reference solar cell without Ag nanoparticles, and the highest quantum efficiency for wavelengths from 550 to 800 nm. When 30 nm size nanoparticles were employed, the conversion efficiency of the solar cell was increased from 6.195% to 6.696%. This study reports the application of the scattering effect of Ag nanoparticles for the improvement of the conversion efficiency of amorphous silicon solar cells. PMID:24266153

  5. Time Domain Characterization of Light Trapping States in Thin Film Solar Cells

    Pfeiffer W.

    2013-03-01

    Full Text Available Spectral interferometry of the backscattered radiation reveals coherence lifetimes of about 150 fs for nanolocalized electromagnetic modes in textured layered nanostructures as they are commonly used in thin film photovoltaics to achieve high cell efficiencies.

  6. Enhancement of light trapping in thin-film solar cells through Ag

    Yiming Bai; Han Zhang; Jun Wang; Nuofu Chen; Jianxi Yao; Tianmao Huang; Xingwang Zhang; Zhigang Yin; Zhen Fu

    2011-01-01

    Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle's light-trapping efficiency lies on the light-scattering direction of metal nanoparticles. Based on FSE analysis of Ag nanoparticles with radii of 53 and 88 nm, the forward-scattering spectra and light-trapping efficiencies are calculated. The contributions of dipole and quadrupole modes to light-trapping effect are also analyzed quantitatively. When the surface coverage of Ag nanoparticles is 5%, light-trapping efficiencies are 15.5% and 32.3%, respectively, for 53- and 88-nm Ag nanoparticles. Results indicate that the plasmon quadrupole mode resonance of Ag nanoparticles could further enhance the light-trapping effect for TF solar cells.%@@ Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle's light-trapping efficiency lies on the light-scattering direction of metal nanoparticles.Based on FSE analysis of Ag nanoparticles with radii of 53 and 88 nm, the forward-scattering spectra and light-trapping efficiencies are calculated.The contributions of dipole and quadrupole modes to light-trapping effect are also analyzed quantitatively.When the surface coverage of Ag nanoparticles is 5%, light-trapping efficiencies are 15.5% and 32.3%, respectively, for 53- and 88-nm Ag nanoparticles.Results indicate that the plasmon quadrupole mode resonance of Ag nanoparticles could further enhance the light-trapping effect for TF solar cells.

  7. Light trapping in thin film solar cells using photonic engineering device concepts

    Mutitu, James Gichuhi

    In this era of uncertainty concerning future energy solutions, strong reservations have arisen over the continued use and pursuit of fossil fuels and other conventional sources of energy. Moreover, there is currently a strong and global push for the implementation of stringent measures, in order to reduce the amount of green house gases emitted by every nation. As a consequence, there has emerged a sudden and frantic rush for new renewable energy solutions. In this world of renewable energy technologies is where we find photovoltaic (PV) technology today. However, as is, there are still many issues that need to be addressed before solar energy technologies become economically viable and available to all people, in every part of the world. This renewed interest in the development of solar electricity, has led to the advancement of new avenues that address the issues of cost and efficiency associated with PV. To this end, one of the prominent approaches being explored is thin film solar cell (TFSC) technology, which offers prospects of lower material costs and enables larger units of manufacture than conventional wafer based technology. However, TFSC technologies suffer from one major problem; they have lower efficiencies than conventional wafer based solar cell technologies. This lesser efficiency is based on a number of reasons, one of which is that with less material, there is less volume for the absorption of incident photons. This shortcoming leads to the need for optical light trapping; which is concerned with admitting the maximum amount of light into the solar cell and keeping the light within the structure for as long as possible. In this thesis, I present the fundamental scientific ideas, practice and methodology behind the application of photonic engineering device concepts to increase the light trapping capacity of thin film solar cells. In the introductory chapters, I develop the basic ideas behind light trapping in a sequential manner, where the effects

  8. Nanoimprint lithography for high-efficiency thin-film silicon solar cells.

    Battaglia, Corsin; Escarré, Jordi; Söderström, Karin; Erni, Lukas; Ding, Laura; Bugnon, Grégory; Billet, Adrian; Boccard, Mathieu; Barraud, Loris; De Wolf, Stefaan; Haug, Franz-Josef; Despeisse, Matthieu; Ballif, Christophe

    2011-02-01

    We demonstrate high-efficiency thin-film silicon solar cells with transparent nanotextured front electrodes fabricated via ultraviolet nanoimprint lithography on glass substrates. By replicating the morphology of state-of-the-art nanotextured zinc oxide front electrodes known for their exceptional light trapping properties, conversion efficiencies of up to 12.0% are achieved for micromorph tandem junction cells. Excellent light incoupling results in a remarkable summed short-circuit current density of 25.9 mA/cm(2) for amorphous top cell and microcrystalline bottom cell thicknesses of only 250 and 1100 nm, respectively. As efforts to maximize light harvesting continue, our study validates nanoimprinting as a versatile tool to investigate nanophotonic effects of a large variety of nanostructures directly on device performance. PMID:21302973

  9. Silicon Light: a European FP7 project aiming at high efficiency thin film silicon solar cells on foil. Monolithic series interconnection of flexible thin-film PV devices

    Soppe, W. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Haug, F.J. [Ecole Polytechnique Federale de Lausanne EPFL, Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, 2000 Neuchatel (Switzerland); Couty, P. [VHFTechnologies SA, Rue Edouard-Verdan 2, CH-1400 Yverdon-les-Bains (Switzerland); Duchamp, M. [Technical University of Denmark, Center for Electron Nanoscopy, DK-2800 Kongens Lyngby (Denmark); Schipper, W. [Nanoptics GmbH, Innungstr.5, 21244 Buchholz (Germany); Krc, J. [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia); Sanchez, G. [Universidad Politecnica de Valencia, I.U.I. Centro de Tecnologia Nanofotonica, 46022 Valencia (Spain); Leitner, K. [Umicore Thin Film Products AG, Balzers (Liechtenstein); Wang, Q. [Shanghai Jiaotong University, Research Institute of Micro/Nanometer Science and Technology, 800 Dongchuan Road, Min Hang, 200240 Shanghai (China)

    2011-09-15

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: (a) advanced light trapping by implementing nanotexturization through UV Nano Imprinting Lithography (UV-NIL); (b) growth of crack-free silicon absorber layers on highly textured substrates; (c) development of new TCOs which should combine the best properties of presently available materials like ITO and AZO. The paper presents the midterm status of the project results, showing model calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils with nanotexture is shown. Microcrystalline and amorphous silicon single junction cells with stable efficiencies with more than 8% have been made, paving the way towards a-Si/{mu}c-Si tandem cells with more than 11% efficiency.

  10. Sputtered CdTe thin film solar cells with Cu2Te/Au back contact

    In this work, Cu2Te/Au back contact for CdTe thin film solar cells were prepared by vacuum evaporation. Influence of annealing temperature on the structure and electrical properties of Cu2Te films were investigated by field emission scanning electron microscope, X-ray diffraction, and Hall effect measurement. Also, CdS/CdTe thin film solar cells were fabricated by magnetron sputtering process, which is favorable for large area deposition and mass production, and the photovoltaic characteristics were studied. As the annealing temperature was increased, the crystal structure transformed from Cu2Te for as-deposited film to Cu2−xTe hexagonal phase, and the grains in the film became bigger. The electrical resistivity was slightly higher by the annealing. The cell efficiency was significantly improved by the heat treatment, and showed a maximum value of 9.14% at 180 °C. From these results, Cu2Te/Au contact acts as the proper pseudo-ohmic contact onto CdTe film. However, further increase of annealing temperature caused the deterioration of cell performance. - Highlights: • Annealing effects of the vacuum evaporated Cu2Te films were investigated. • The transformation from Cu2Te to Cu2−xTe hexagonal phase occurred by annealing. • The performance of the solar cell was highly increased by annealing at 180 °C. • Cu2Te/Au contact acts as the proper pseudo-ohmic contact onto CdTe film

  11. Titanium oxide thin film improving efficiency in polymer/fullerene solar cells

    Feu, W.H.M.; Martins, R.F.; Krambrock, K.; Cury, L.A.; Guimaraes, P.S.S. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Reis, G.A.; Franchello, F.; Dias, I.F.L. [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica

    2011-07-01

    Full text. Polymer/fullerene based solar cells are of great interest in polymer-based photovoltaic due to low cost fabrication in large areas and on flexible substrates, and roll-to-roll manufacturing. Standard power conversion efficiencies of about 5 - 8% are reported in such organic photovoltaic cells (OPVC) but in order to improve device performance new materials and device architectures are needed. Our OPVC thin films consists of blend of P3HT-PCBM (1:1 by weight) and are spin-coated over indium tin oxide (ITO)-glass substrate covered with poly(3,4-ethylenedioxylenethiophene) polystyrene sulfonic acid (PEDOT:PSS) forming the hole electrode. The collector electrode is a lower-work-function metal, which is in our case Al. Many papers reported the use of lithium fluoride (LiF) layer for a better ohmic contact, but this insulating layer can also reduce the electron collection efficiency if its thickness is above few nanometers. From current-voltage curves in dark and under illumination we show an improvement in the fill factor (FF) and better quality of an OPVC when LiF layer is replaced by titanium oxide (TiO) thin film. The final device is annealed to 150 deg C well below the crystallization temperature for TiO{sub 2} (anatase), resulting in an amorphous phase of this oxide but keeping good conductive quality.

  12. Five roads towards increased optical absorption and high stable efficiency for thin film silicon solar cells

    Vaněček, Milan; Poruba, Aleš; Remeš, Zdeněk; Holovský, Jakub; Purkrt, Adam; Babchenko, Oleg; Hruška, Karel; Meier, J.; Kroll, U.

    Munich: WIP- Renewable Energies, 2009 - (Sinke, W.; Ossenbrink, H.; Helm, P.), s. 2286-2289 ISBN 3-936338-25-6. [European Photovoltaic Solar Energy Conference /24./. Hamburg (DE), 21.09.2009-25.09.2009] R&D Projects: GA MŠk(CZ) 7E09057 EU Projects: European Commission(XE) 214134 - N2P; European Commission(XE) 19670 - ATHLET Institutional research plan: CEZ:AV0Z10100521 Keywords : high stable efficiency * amorphous silicon * thin film solar cell * 3-dimensional nanostructuring * transparent conductive oxides Subject RIV: BM - Solid Matter Physics ; Magnetism http://dx.doi.org/10.4229/24thEUPVSEC2009-3BO.9.1

  13. Effect of Ag doping on opto-electrical properties of CdS thin films for solar cell applications

    Highlights: • Polycrystalline CdS thin films are fabricated by means of Close Spaced Sublimation technique. • Ag is doped by simple ion-exchange technique in order to reduce resistivity of CdS thin films. • Remarkable reduction in resistivity without introducing many transparency losses. - Abstract: Cadmium sulfide (CdS) polycrystalline thin films of different thicknesses (ranging from 370 nm to 750 nm) were fabricated on corning glass substrates using Close Spaced Sublimation (CSS) technique. Optical and electrical investigation revealed that CdS thin films show an appreciable transparency (50–70% transmission) in visible range and a highly resistive behavior (106 Ω cm). Samples were doped by silver (Ag) at different concentrations, using ion exchange technique, in order to reduce the resistivity of CdS thin films and to improve their efficiency as a window layer for solar cell application. The doping of Ag in pure CdS thin films resulted into an increase of surface roughness and a decrease both in electrical resistivity and in transparency. By optimizing annealing parameters, we were able to properly control the optical properties of the present system. In fact, the Ag doping of pure CdS films has led to a decrease of the sample resistivity by three orders of magnitude (103 Ω cm) against a 20% cut in optical transmission

  14. Effect of Ag doping on opto-electrical properties of CdS thin films for solar cell applications

    Nazir, Adnan, E-mail: adnan.nazir@iit.it [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad (Pakistan); Toma, Andrea [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Shah, Nazar Abbas [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Panaro, Simone [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Butt, Sajid [Department of Materials Science and Engineering, Institute of Space Technology (IST), Islamabad 44000 (Pakistan); School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad (Pakistan); Sagar, Rizwan ur Rehman [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Raja, Waseem [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Rasool, Kamran [Micro and Nano Devices Group, Department of Metallurgy and Materials Engineering Pakistan, Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Maqsood, Asghari [Department of Physics, Air University, Islamabad (Pakistan)

    2014-10-01

    Highlights: • Polycrystalline CdS thin films are fabricated by means of Close Spaced Sublimation technique. • Ag is doped by simple ion-exchange technique in order to reduce resistivity of CdS thin films. • Remarkable reduction in resistivity without introducing many transparency losses. - Abstract: Cadmium sulfide (CdS) polycrystalline thin films of different thicknesses (ranging from 370 nm to 750 nm) were fabricated on corning glass substrates using Close Spaced Sublimation (CSS) technique. Optical and electrical investigation revealed that CdS thin films show an appreciable transparency (50–70% transmission) in visible range and a highly resistive behavior (10{sup 6} Ω cm). Samples were doped by silver (Ag) at different concentrations, using ion exchange technique, in order to reduce the resistivity of CdS thin films and to improve their efficiency as a window layer for solar cell application. The doping of Ag in pure CdS thin films resulted into an increase of surface roughness and a decrease both in electrical resistivity and in transparency. By optimizing annealing parameters, we were able to properly control the optical properties of the present system. In fact, the Ag doping of pure CdS films has led to a decrease of the sample resistivity by three orders of magnitude (10{sup 3} Ω cm) against a 20% cut in optical transmission.

  15. A two-layer structured PbI2 thin film for efficient planar perovskite solar cells

    Ying, Chao; Shi, Chengwu; Wu, Ni; Zhang, Jincheng; Wang, Mao

    2015-07-01

    In this paper, a two-layer structured PbI2 thin film was constructed by the spin-coating procedure using a 0.80 M PbI2 solution in DMF and subsequent close-spaced vacuum thermal evaporation using PbI2 powder as a source. The bottom PbI2 thin film was compact with a sheet-like appearance, parallel to the FTO substrate, and can be easily converted to a compact perovskite thin film to suppress the charge recombination of the electrons of the TiO2 conduction band and the holes of the spiro-OMeTAD valence band. The top PbI2 thin film was porous with nano-sheet arrays, perpendicular to the FTO substrate, and can be easily converted to a porous perovskite thin film to improve the hole migration from the perovskite to spiro-OMeTAD and the charge separation at the perovskite/spiro-OMeTAD interface. The planar perovskite solar cells based on the two-layer structured PbI2 thin film exhibited a photoelectric conversion efficiency of 11.64%, along with an open-circuit voltage of 0.90 V, a short-circuit photocurrent density of 19.29 mA cm-2 and a fill factor of 0.67.

  16. Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells

    Conductive zinc oxide (ZnO) grown by low pressure chemical vapor deposition (LPCVD) technique possesses a rough surface that induces an efficient light scattering in thin film silicon (TF Si) solar cells, which makes this TCO an ideal candidate for contacting such devices. IMT-EPFL has developed an in-house LPCVD process for the deposition of nanotextured boron doped ZnO films used as rough TCO for TF Si solar cells. This paper is a general review and synthesis of the study of the electrical, optical and structural properties of the ZnO:B that has been performed at IMT-EPFL. The influence of the free carrier absorption and the grain size on the electrical and optical properties of LPCVD ZnO:B is discussed. Transport mechanisms at grain boundaries are studied. It is seen that high doping of the ZnO grains facilitates the tunnelling of the electrons through potential barriers that are located at the grain boundaries. Therefore, even if these potential barriers increase after an exposition of the film to a humid atmosphere, the heavily doped LPCVD ZnO:B layers show a remarkable stable conductivity. However, the introduction of diborane in the CVD reaction induces also a degradation of the intra-grain mobility and increases over-proportionally the optical absorption of the ZnO:B films. Hence, the necessity to finely tune the doping level of LPCVD ZnO:B films is highlighted. Finally, the next challenges to push further the optimization of LPCVD ZnO:B films for thin film silicon solar cells are discussed, as well as some remarkable record cell results achieved with LPCVD ZnO:B as front electrode.

  17. Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells

    Fay, Sylvie, E-mail: Sylvie.fay@epfl.c [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Breguet 2, 2000 Neuchatel (Switzerland); Steinhauser, Jerome [Now at Oerlikon Solar Lab, Neuchatel CH-2000 (Switzerland); Nicolay, Sylvain; Ballif, Christophe [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Breguet 2, 2000 Neuchatel (Switzerland)

    2010-03-31

    Conductive zinc oxide (ZnO) grown by low pressure chemical vapor deposition (LPCVD) technique possesses a rough surface that induces an efficient light scattering in thin film silicon (TF Si) solar cells, which makes this TCO an ideal candidate for contacting such devices. IMT-EPFL has developed an in-house LPCVD process for the deposition of nanotextured boron doped ZnO films used as rough TCO for TF Si solar cells. This paper is a general review and synthesis of the study of the electrical, optical and structural properties of the ZnO:B that has been performed at IMT-EPFL. The influence of the free carrier absorption and the grain size on the electrical and optical properties of LPCVD ZnO:B is discussed. Transport mechanisms at grain boundaries are studied. It is seen that high doping of the ZnO grains facilitates the tunnelling of the electrons through potential barriers that are located at the grain boundaries. Therefore, even if these potential barriers increase after an exposition of the film to a humid atmosphere, the heavily doped LPCVD ZnO:B layers show a remarkable stable conductivity. However, the introduction of diborane in the CVD reaction induces also a degradation of the intra-grain mobility and increases over-proportionally the optical absorption of the ZnO:B films. Hence, the necessity to finely tune the doping level of LPCVD ZnO:B films is highlighted. Finally, the next challenges to push further the optimization of LPCVD ZnO:B films for thin film silicon solar cells are discussed, as well as some remarkable record cell results achieved with LPCVD ZnO:B as front electrode.

  18. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  19. Surface textured molybdenum doped zinc oxide thin films prepared for thin film solar cells using pulsed direct current magnetron sputtering

    In this study, we examined the effect of etching on the electrical properties, transmittance, and scattering of visible light in molybdenum doped zinc oxide, ZnO:Mo (MZO) thin films prepared by pulsed direct current magnetron sputtering. We used two different etching solutions - KOH and HCl - to alter the surface texture of the MZO thin film so that it could trap light. The experimental results showed that an MZO film with a minimum resistivity of about 8.9 x 10-4 Ω cm and visible light transitivity of greater than 80% can be obtained without heating at a Mo content of 1.77 wt.%, sputtering power of 100 W, working pressure of 0.4 Pa, pulsed frequency of 10 kHz, and film thickness of 500 nm. To consider the effect of resistivity and optical diffuse transmittance, we performed etching of an 800 nm thick MZO thin film with 0.5 wt.% HCl for 3-6 s at 300 K. Consequently, we obtained a resistivity of 1.74-2.75 x 10-3 Ω cm, total transmittance at visible light of 67%-73%, diffuse transmittance at visible light of 25.1%-28.4%, haze value of 0.34-0.42, and thin film surface crater diameters of 220-350 nm.

  20. Reduced adverse effects on Si thin film solar cells caused by growth chamber air exposure

    Yang, Fan; Zhang, Lin; Zheng, Yi; Schimitt, Francimar; Tso, Alan; Li, Lipan; Tsuei, Lun; Yuan, Zheng; Shieh, Brian [Thin Film Solar Products Division, Applied Materials, Santa Clara, CA 95054 (United States)

    2010-06-15

    The cost of photovoltaic (PV) energy is reduced by increasing solar cell power conversion efficiency and decreasing manufacture cost. An effective way of lowering the cost of Si thin film solar cells (TFSC) is to grow panels on large-area substrates. In this paper we study the effect of air residual to Si TFSC grown on 5.7 m{sup 2} glass in plasma-enhanced chemical vapor deposition (PECVD) chambers. Structural and chemical analysis show that oxygen incorporated into the Si films behaved as impurity dopant in the hydrogenated microcrystalline Si ({mu}c-Si) layers and reduced the efficiency of amorphous Si (a-Si)/{mu}c-Si tandem junction solar cells when the film had oxygen concentration >2 x 10{sup 19} atoms/cm{sup 3}. Higher oxygen content further suppressed the {mu}c-Si crystallization. We found that hydrogen plasma treatment of process chamber before Si film deposition effectively reduced the adverse effects of air exposure and improved both film quality and solar cell performance. The hydrogen-treated chamber produced contamination-free, solar cells with consistent, initial efficiency >10%. (author)

  1. Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application

    Highlights: • Niobium pentoxide films were prepared by microwave assisted magnetron sputtering. • Optical and mechanical properties of Nb2O5 thin films were investigated. • The surface of thin films was homogenous, crack free and exhibited low RMS roughness. • Prepared Nb2O5 coatings were well transparent from ca., 350 nm. • Hardness of deposited coatings was ca., 7 GPa. - Abstract: In this paper investigation results of niobium pentoxide thin films deposited by microwave assisted reactive magnetron sputtering process were described. Surface of prepared coatings was examined with the aid of atomic force microscope (AFM) operating in the contact-mode and in ultra high vacuum conditions. The surface of thin films was homogenous, crack free and exhibit low root mean square (RMS) roughness of about 0.34 nm. X-ray photoelectron spectroscopy (XPS) studies were performed to determine the chemical states of the niobium at the surface of thin films. Contact angle and surface free energy were additionally investigated to examine the surface properties of the deposited coatings. Optical properties of the Nb2O5 thin films showed, that prepared coatings were well transparent from 350 nm to longer wavelength range. Based on transmission and reflection measurements the values of refractive index and extinction coefficient were determined. The antireflective coating based on Nb2O5 thin films for solar cells application was proposed. The hardness and Young's modulus measurements were performed by the nanoindentation technique. These investigations revealed that the hardness of the deposited coatings was ca., 7 GPa. Also scratch tests were applied, which have shown that the Nb2O5 thin films were scratch resistant

  2. Electrical Properties of Al, Ag, Cu, Ti and SS Thin Film for Electrode of Solar Cell

    The Al, Ag, Cu, Ti and SS materials were deposited on the surface of glass substrate using plasma DC sputtering technique. The deposition process was done with the following plasma parameters : deposition time, gas pressure and substrate temperature with the aim to obtain a good conductance of thin films. Variation of substrate deposition time was 1 - 15 minutes, gas pressure was 5x10-2 - 7x10-2 torr and of temperature was 100 - 300 oC. The resistance measurement has been done by four points probes and the conductivity was calculated using mathematic formulation. It was obtained that the minimum resistance in the order of R = 0.07 Ω, was found at Ag materials and this was obtained at the following plasma parameters : deposition time 15 minutes, gas pressure 6x10-2 torr and temperature 300 oC, while, the resistance of : Cu, Al, Ti and SS materials were R = 0.13 Ω, R = 450 Ω, R = 633 Ω, R = 911 Ω respectively, It could be concluded that the Ag thin film has a minimum resistance, high conductivity compared to the other materials Al, Cu, Ti and SS. Ag is therefore the suitable material for applying as electrode of solar cell. (author)

  3. 薄膜太阳电池研究综述%Review of Thin Film Solar Cells

    蔺旭鹏; 强颖怀; 肖裕鹏; 徐明磊

    2012-01-01

    The thin film solar cell is one of the most promising new energy sources, which provides a new and feasible way to relieve energy crisis and protect human living environment. The latest progress of several materials for fabricating thin film solar cells are reviewed, which contains silicon-based thin films (α-silicon, poly-silicon), multi-compound (CdTe, CIS, CIGS, CZTS) , organic thin film and dye-sensitized solar cells and so on. The advantages and shortcomings of the thin films such as the cost and conversion efficiency are analyzed, respectively. For lowering the cost and improving efficiency more effectively, continuous innovation of new technology and new structure should be the development tendency of the thin film solar cells.%薄膜太阳电池是最具发展潜力的新型能源之一,对缓解能源危机、保护人类生存环境提供了一种新的切实可行的方法.综述了目前国际上研究较多的几种薄膜太阳电池的最新进展,包括硅基薄膜(非晶硅、多晶硅)、多元化合物类(碲化镉、铜铟硒、铜铟镓硒、铜锌锡硫等)、有机薄膜太阳电池以及染料敏化太阳电池等.分析并总结了其在成本、转换效率等方面的优劣.为更有效地降低成本及提高电池效率,新技术、新结构的不断创新应该是未来薄膜太阳电池的发展趋势.

  4. Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells

    Gokilamani, N.; Muthukumarasamy, N.; Thambidurai, M.; Ranjitha, A.; Velauthapillai, Dhayalan

    2015-03-01

    Nanocrystalline TiO2 thin films have been prepared by sol-gel dip coating method. The X-ray diffraction results showed that TiO2 thin films annealed at 400, 450 and 500 °C are of anatase phase and the peak corresponding to the (101) plane is present in all the samples. The grain size of TiO2 thin films was found to increase with increasing annealing temperature. The grain size is found to be 20, 25 and 33 nm for the films annealed at 400, 450 and 500 °C. The structure of the TiO2 nanocrystalline thin films have been examined by high-resolution transmission electron microscope, Raman spectroscopy and FTIR spectroscopy. TiO2 thin films were sensitized by natural dyes extracted from basella alba rubra spinach. It was found that the absorption peak of basella alba rubra extract is at about 665 nm. The dye-sensitized TiO2-based solar cell sensitized using basella alba rubra exhibited a J sc of 4.35 mA cm-2, V oc of 0.48 V, FF of 0.35 and efficiency of 0.70 %. Natural dyes as sensitizers for dye-sensitized solar cells are promising because of their environmental friendliness, low-cost production and fully biodegradable.

  5. Optimized grid design for thin film solar panels

    Deelen, J. van; Klerk, L.; Barink, M.

    2014-01-01

    There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid d

  6. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-05-01

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  7. Inductively coupled hydrogen plasma processing of AZO thin films for heterojunction solar cell applications

    Highlights: • A high-density plasma reactor of inductively coupled plasma source is used in this work. • The conductivity and transmittance can be enhanced simultaneously in the hydrogen process. • The formation of additional donors and passivation due to the hydrogen plasma processing. • The photovoltaic improvement due to the improved AZO layer and hetero-interface quality in the solar cells. - Abstract: Al-doped ZnO (AZO) thin films deposited by means of RF magnetron sputtering were processed in a low frequency inductively coupled plasma of H2, aiming at heterojunction (HJ) solar cell applications. A variety of characterization results show that the hydrogen plasma processing exerts a significant influence on the microstructures, electrical and optical properties of the AZO films. The incorporation of hydrogen under the optimum treatment simultaneously promoted the transmittance and conductivity due to the hydrogen associated passivation effect on the native defects and the formation of shallow donors in the films, respectively. A p-type c-Si based HJ solar cell with a front AZO contact was also treated in as-generated non-equilibrium hydrogen plasma and the photovoltaic performance of the solar cell was prominently improved. The underlying mechanism was discussed in terms of the beneficial impacts of high-density hydrogen plasma on the properties of AZO itself and the hetero-interfaces involved in the HJ structure (interface defect and energy band configuration)

  8. Inductively coupled hydrogen plasma processing of AZO thin films for heterojunction solar cell applications

    Zhou, H.P. [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, West High-Tech Zone, Chengdu, Sichuan 611731 (China); Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 Singapore (Singapore); Xu, S., E-mail: shuyan.xu@nie.edu.sg [Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 Singapore (Singapore); Zhao, Z. [School of Microelectronics and Solid-state electronics, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Rd, Chengdu 610054 (China); Xiang, Y., E-mail: Xiang@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, West High-Tech Zone, Chengdu, Sichuan 611731 (China); Institute of Electronic and Information Engineering in Dongguan,UESTC, Dongguan 523808, Guangdong (China)

    2014-10-15

    Highlights: • A high-density plasma reactor of inductively coupled plasma source is used in this work. • The conductivity and transmittance can be enhanced simultaneously in the hydrogen process. • The formation of additional donors and passivation due to the hydrogen plasma processing. • The photovoltaic improvement due to the improved AZO layer and hetero-interface quality in the solar cells. - Abstract: Al-doped ZnO (AZO) thin films deposited by means of RF magnetron sputtering were processed in a low frequency inductively coupled plasma of H{sub 2}, aiming at heterojunction (HJ) solar cell applications. A variety of characterization results show that the hydrogen plasma processing exerts a significant influence on the microstructures, electrical and optical properties of the AZO films. The incorporation of hydrogen under the optimum treatment simultaneously promoted the transmittance and conductivity due to the hydrogen associated passivation effect on the native defects and the formation of shallow donors in the films, respectively. A p-type c-Si based HJ solar cell with a front AZO contact was also treated in as-generated non-equilibrium hydrogen plasma and the photovoltaic performance of the solar cell was prominently improved. The underlying mechanism was discussed in terms of the beneficial impacts of high-density hydrogen plasma on the properties of AZO itself and the hetero-interfaces involved in the HJ structure (interface defect and energy band configuration)

  9. Optical and Electrical Properties of the Different Magnetron Sputter Power 300°C Deposited -ZnO Thin Films and Applications in p-i-n -Si:H Thin-Film Solar Cells

    Fang-Hsing Wang

    2013-01-01

    Full Text Available A compound of ZnO with 3 wt% Ga2O3 (ZnO : Ga2O3 = 97 : 3 in wt%, GZO was sintered at C as a target. The GZO thin films were deposited on glass using a radio frequency magnetron sputtering system at C by changing the deposition power from 50 W to 150 W. The effects of deposition power on the crystallization size, lattice constant (c, resistivity, carrier concentration, carrier mobility, and optical transmission rate of the GZO thin films were studied. The blue shift in the transmission spectrum of the GZO thin films was found to change with the variations of the carrier concentration because of the Burstein-Moss shifting effect. The variations in the optical band gap ( value of the GZO thin films were evaluated from the plots of , revealing that the measured value decreased with increasing deposition power. As compared with the results deposited at room temperature by Gong et al., (2010 the C deposited GZO thin films had apparent blue shift in the transmission spectrum and larger value. For the deposited GZO thin films, both the carrier concentration and mobility linearly decreased and the resistivity linearly increased with increasing deposition power. The prepared GZO thin films were also used as transparent electrodes to fabricate the amorphous silicon thin-film solar cells, and their properties were also measured.

  10. Enhanced light absorption in thin-film solar cells with light propagation direction conversion.

    Suemune, Ikuo

    2013-05-01

    Enhancement of optical absorption in thin-film solar cells (TF-SCs) has been the long-lasting issue to achieve high efficiencies. Grating couplers have been studied for the conversion of incident light into guided modes propagating along TF-SCs to extend optical path for higher optical absorption. However the wavelength band for the efficient conversion remained relatively narrow and the overall improvement of TF-SC efficiencies has been limited. This paper demonstrates that the grating height design as well as the phase matching condition is important for the enhancement of optical absorption in TF-SCs with the calculation of short-circuit currents as a figure of merit for optimization. The influence of the light absorption coefficients and grating coupling strengths on the light absorption bandwidth is also discussed. PMID:24104442

  11. Nanoimprint-textured glass superstrates for light trapping in crystalline silicon thin-film solar cells

    Köppel, G.; Preidel, V.; Mangold, S.; Rudigier-Voigt, E.; Hývl, Matěj; Fejfar, Antonín; Rech, B.; Becker, C.

    Amsterdam: Elsevier Ltd, 2015 - (Gordon, I.; Conibeer, G.; Krc, J.; Slaoui, A.; Niki, S.), s. 118-126. (84). ISSN 1876-6102. [EMRS 2015 Spring meeting – Symposium C on Advanced Inorganic Materials and Structures for Photovoltaics. Lille (FR), 11.05.2015-15.05.2015] R&D Projects: GA ČR GA13-25747S; GA ČR GA13-12386S; GA MŠk(CZ) LM2011026; GA ČR GB14-37427G Grant ostatní: AVČR(CZ) M100101216 Institutional support: RVO:68378271 Keywords : nanoimprint lithography * light trapping * polycrystalline silicon thin-film solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Influence of Ligands on the Formation of Kesterite Thin Films for Solar Cells: A Comparative Study.

    Huang, Tang Jiao; Yin, Xuesong; Tang, Chunhua; Qi, Guojun; Gong, Hao

    2016-05-10

    The preparation of solar-cell-grade Cu2 ZnSnS4 (CZTS) thin films from ligand-capped small-grained CZTS particles remains hindered by problems of phase segregation, composition non-uniformity, and in particular carbon-layer formation. Herein, through a systematic comparative study of annealed films of CZTS nanocrystals prepared using conventional oleylamine and those prepared using formamide, these problems are found to be mainly attributable to the influence of the ligands, and mechanisms are proposed. Importantly, the origin of the carbon layer in oleylamine-capped CZTS films is revealed to be the reaction between oleylamine and sulfur. This carbon layer has a very poor electrical conductivity, which can be the reason for the limited performance of such films. Fortunately, these problems can almost all be avoided by replacing oleylamine with formamide to form CZTS films. PMID:27059551

  13. Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells

    Nipples on the surface of moth eye facets exhibit almost perfect broadband anti-reflection properties. We have studied the facet surface micro-protuberances, known as corneal nipples, of the chestnut leafminer moth Cameraria ohridella by atomic force microscopy, and simulated the optics of the nipple arrays by three-dimensional electromagnetic simulation. The influence of the dimensions and shapes of the nipples on the optics was studied. In particular, the shape of the nipples has a major influence on the anti-reflection properties. Furthermore, we transferred the structure of the almost perfect broadband anti-reflection coatings to amorphous silicon thin film solar cells. The coating that imitates the moth-eye array allows for an increase of the short circuit current and conversion efficiency of more than 40%.

  14. Dip coated nanocrystalline CdZnS thin films for solar cell application

    Dongre, J. K.; Chaturvedi, Mahim; Patil, Yuvraj; Sharma, Sandhya; Jain, U. K.

    2015-07-01

    Nanocrystalline cadmium sulfide (CdS) and zinc cadmium sulfide (ZnCdS) thin films have been grown via simple and low cost dip coating technique. The prepared films are characterized by X-ray diffraction (XRD), atomic force microscopic (AFM) and UV-VIS spectrophotometer techniques to reveal their structural, morphological and optical properties. XRD shows that both samples grown have zinc blende structure. The grain size is calculated as 6.2 and 8 nm using Scherrer's formula. The band gap value of CdS and CdZnS film is estimated to be 2.58 and 2.69 eV respectively by UV-vis spectroscopy. Photoelectrochemical (PEC) investigations are carried out using cell configuration as n-CdZnS/(1M NaOH + 1M Na2S + 1M S)/C. The photovoltaic output characteristic is used to calculate fill-factor (FF) and solar conversion efficiency (η).

  15. Deposition and doping of CdS/CdTe thin film solar cells

    1% oxygen is incorporated into both CdS and CdTe layers through RF sputtering of CdS/CdTe thin film solar cells. The optical and electrical parameters of the oxygenated and O2-free devices are compared after CdCl2 treatment and annealing in ambient Ar and/or air. The effects of ambient annealing on the electrical and optical properties of the films are investigated using current—voltage characterization, field emission scanning electron microscopy, X-ray diffraction, and optical transmission spectroscopy. The 1% oxygen content can slightly increase the grain size while the crystallinity does not change. Annealing in ambient Ar can increase the transmission rate of the oxygenated devices. (paper)

  16. Metastability of copper indium gallium diselenide polycrystalline thin film solar cell devices

    Lee, Jinwoo

    High efficiency thin film solar cells have the potential for being a world energy solution because of their cost-effectiveness. Looking to the future of solar energy, there is the opportunity and challenge for thin film solar cells. The main theme of this research is to develop a detailed understanding of electronically active defect states and their role in limiting device performance in copper indium gallium diselenide (CIGS) solar cells. Metastability in the CIGS is a good tool to manipulate electronic defect density and thus identify its effect on the device performance. Especially, this approach keeps many device parameters constant, including the chemical composition, grain size, and interface layers. Understanding metastability is likely to lead to the improvement of CIGS solar cells. We observed systematic changes in CIGS device properties as a result of the metastable changes, such as increases in sub-bandgap defect densities and decreases in hole carrier mobilities. Metastable changes were characterized using high frequency admittance spectroscopy, drive-level capacitance profiling (DLCP), and current-voltage measurements. We found two distinctive capacitance steps in the high frequency admittance spectra that correspond to (1) the thermal activation of hole carriers into/out of acceptor defect and (2) a temperature-independent dielectric relaxation freeze-out process and an equivalent circuit analysis was employed to deduce the dielectric relaxation time. Finally, hole carrier mobility was deduced once hole carrier density was determined by DLCP method. We found that metastable defect creation in CIGS films can be made either by light-soaking or with forward bias current injection. The deep acceptor density and the hole carrier density were observed to increase in a 1:1 ratio, which seems to be consistent with the theoretical model of VCu-V Se defect complex suggested by Lany and Zunger. Metastable defect creation kinetics follows a sub-linear power law

  17. Organic solar cells based on liquid crystalline and polycrystalline thin films

    Yoo, Seunghyup

    This dissertation describes the study of organic thin-film solar cells in pursuit of affordable, renewable, and environmentally-friendly energy sources. Particular emphasis is given to the molecular ordering found in liquid crystalline or polycrystalline films as a way to leverage the efficiencies of these types of cells. Maximum efficiencies estimated based on excitonic character of organic solar cells show power conversion efficiencies larger than 10% are possible in principle. However, their performance is often limited due to small exciton diffusion lengths and poor transport properties which may be attributed to the amorphous nature of most organic semiconductors. Discotic liquid crystal (DLC) copper phthalocyanine was investigated as an easily processible building block for solar cells in which ordered molecular arrangements are enabled by a self-organization in its mesophases. An increase in photocurrent and a reduction in series resistance have been observed in a cell which underwent an annealing process. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements suggest that structural and morphological changes induced after the annealing process are related to these improvements. In an alternative approach, p-type pentacene thin films prepared by physical vapor deposition were incorporated into heterojunction solar cells with C60 as n-type layers. Power conversion efficiencies of 2.7% under broadband illumination (350--900 nm) with a peak external quantum efficiency of 58% have been achieved with the broad spectral coverage across the visible spectrum. Analysis using an exciton diffusion model shows this efficient carrier generation is mainly due to the large exciton diffusion length of pentacene films. Joint XRD and AFM studies reveal that the highly crystalline nature of pentacene films can account for the observed large exciton diffusion length. In addition, the electrical characteristics are studied as a function of light intensity using

  18. Effects of Bi Incorporation on Cu(In1-x,Gax)Se2 Thin Films and Solar Cells

    Nakakoba, Hiroya; Yatsushiro, Yuta; Mise, Takahiro; Kobayashi, Taizo; Nakada, Tokio

    2012-10-01

    The effects of bismuth (Bi) incorporation into Cu(In1-x,Gax)Se2 (CIGS) thin films and solar cells have been investigated. 10-50-nm-thick Bi thin layers were deposited onto Mo-coated soda-lime glass (SLG) and SiOx-coated SLG substrates by vacuum evaporation. CIGS thin films were then deposited by a three-stage process at substrate temperatures of 450-550 °C. The grain growth of CIGS thin films was enhanced, and the open-circuit voltage and hence the conversion efficiency was improved by the Bi incorporation when the SLG substrates were used. However, little effect was observed when the alkali barrier SiOx layer was deposited on SLG substrates. As a result, we found that the Bi incorporation is beneficial for improving the cell performance when sodium exists simultaneously in CIGS layers.

  19. Effects of Antimony Doping on Cu(In1-x,Gax)Se2 Thin Films and Solar Cells

    Yatsushiro, Yuta; Nakakoba, Hiroya; Mise, Takahiro; Kobayashi, Taizo; Nakada, Tokio

    2012-10-01

    The effects of antimony (Sb) doping into Cu(In1-x,Gax)Se2 (CIGS) thin films and solar cells have been investigated. 10-50-nm-thick Sb thin layers were deposited onto Mo-coated sodalime glass (SLG) and SiOx-coated SLG substrates by vacuum evaporation. CIGS thin films were then deposited by a three-stage process at substrate temperatures of 450-550 °C. The grain growth of CIGS thin films was enhanced, and the open-circuit voltage and hence the conversion efficiency improved with the Sb doping when the SLG substrates were used. However, little or no effect was observed when the alkali barrier SiOx layer was deposited on SLG substrates. As a result, we found that Sb doping is beneficial for improving the cell performance when sodium exists simultaneously in CIGS layers.

  20. Effective Ag doping by He-Ne laser exposure to improve the electrical and the optical properties of CdTe thin films for heterostructured thin film solar cells

    The cadmium telluride (CdTe) thin film solar cell is one of the strongest candidates due to the optimum band gap energy (about 1.4 eV) for solar energy absorption, high light absorption capability and lower cost requirements for solar cell production. However, the maximum efficiency of a CdTe thin film solar cell still remains just 16.5% despite its excellent absorption coefficient; i.e., the electrical properties of CdTe thin film, including the resistivity, must be improved to enhance the energy conversion efficiency. Silver (Ag) was doped by using helium-neon (He-Ne) laser (632.8 nm) exposure into sputtering-deposited p-type CdTe thin films. The resistivity of the Ag-doped CdTe thin films was reduced from 2.97 x 104 Ω-cm to the order of 5.16 x 10'-'2 Ω-cm. The carrier concentration of CdTe thin films had increased to 1.6 x 1018 cm-3 after a 15-minute exposure to the He-Ne laser. The average absorbance value of CdTe thin films was improved from 1.81 to 3.01 by the doping of Ag due to impurity-scattering. These improved properties should contribute to the efficiency of the photovoltaic effect of the photogenerated charged carriers. The methodology in this study is very simple and effective to dope a multilayered thin film solar cell with a relatively short process time, no wet-process, and selective treatment.

  1. Development of Earth-Abundant Tin(II) Sulfide Thin-Film Solar Cells by Vapor Deposition

    Sinsermsuksakul, Prasert

    2013-01-01

    To sustain future civilization, the development of alternative clean-energy technologies to replace fossil fuels has become one of the most crucial and challenging problems of the last few decades. The thin film solar cell is one of the major photovoltaic technologies that is promising for renewable energy. The current commercial thin film PV technologies are based on \\(Cu(In,Ga)Se_2\\) and CdTe. Despite their success in reducing the module cost below $1/Wp, these absorber materials face limit...

  2. Overview and Challenges of Thin Film Solar Electric Technologies

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  3. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    Cong Chen; Yu Cheng; Qilin Dai; Hongwei Song

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp lay...

  4. Characterization & Modification of Copper and Iron Oxide Nanoparticles for Application as Absorber Material in Silicon based Thin Film Solar Cells

    Nuys, Maurice

    2015-01-01

    The present thesis deals with the characterization and modification of semiconducting copper oxide (CuO, Cu2O) and iron oxide (gamma-Fe2O3, alpha-Fe2O3) nanoparticles, which provide a basis for an innovative solar cell concept involving nanoparticles composed of almost unlimitedly available elements as absorber material in thin film solar cells. This approach is promising to meet the requirements of increasing the production capacity and lowering the production costs if the nanoparticles exhi...

  5. Characteristics of in-substituted CZTS thin film and bifacial solar cell.

    Ge, Jie; Chu, Junhao; Jiang, Jinchun; Yan, Yanfa; Yang, Pingxiong

    2014-12-10

    Implementing bifacial photovoltaic devices based on transparent conducting oxides (TCO) as the front and back contacts is highly appealing to improve the efficiency of kesterite solar cells. The p-type In substituted Cu2ZnSnS4 (CZTIS) thin-film solar cell absorber has been fabricated on ITO glass by sulfurizing coelectroplated Cu-Zn-Sn-S precursors in H2S (5 vol %) atmosphere at 520 °C for 30 min. Experimental proof, including X-ray diffraction, Raman spectroscopy, UV-vis-NIR transmission/reflection spectra, PL spectra, and electron microscopies, is presented for the interfacial reaction between the ITO back contact and CZTS absorber. This aggressive reaction due to thermal processing contributes to substitutional diffusion of In into CZTS, formation of secondary phases and electrically conductive degradation of ITO back contact. The structural, lattice vibrational, optical absorption, and defective properties of the CZTIS alloy absorber layer have been analyzed and discussed. The new dopant In is desirably capable of improving the open circuit voltage deficit of kesterite device. However, the nonohmic back contact in the bifacial device negatively limits the open circuit voltage and fill factor, evidencing by illumination-/temperature-dependent J-V and frequency-dependent capacitance-voltage (C-V-f) measurements. A 3.4% efficient solar cell is demonstrated under simultaneously bifacial illumination from both sides of TCO front and back contacts. PMID:25340540

  6. Back surface studies of Cu(In,Ga)Se2 thin film solar cells

    Simchi, Hamed

    Cu(In,Ga)Se2 thin film solar cells have attracted a lot of interest because they have shown the highest achieved efficiency (21%) among thin film photovoltaic materials, long-term stability, and straightforward optical bandgap engineering by changing relative amounts of present elements in the alloy. Still, there are several opportunities to further improve the performance of the Cu(In,Ga)Se2 devices. The interfaces between layers significantly affect the device performance, and knowledge of their chemical and electronic structures is essential in identifying performance limiting factors. The main goal of this research is to understand the characteristics of the Cu(In,Ga)Se2-back contact interface in order to design ohmic back contacts for Cu(In,Ga)Se2-based solar cells with a range of band gaps and device configurations. The focus is on developing either an opaque or transparent ohmic back contact via surface modification or introduction of buffer layers in the back surface. In this project, candidate back contact materials have been identified based on modeling of band alignments and surface chemical properties of the absorber layer and back contact. For the first time, MoO3 and WO 3 transparent back contacts were successfully developed for Cu(In,Ga)Se 2 solar cells. The structural, optical, and surface properties of MoO 3 and WO3 were optimized by controlling the oxygen partial pressure during reactive sputtering and post-deposition annealing. Valence band edge energies were also obtained by analysis of the XPS spectra and used to characterize the interface band offsets. As a result, it became possible to illuminate of the device from the back, resulting in a recently developed "backwall superstrate" device structure that outperforms conventional substrate Cu(In,Ga)Se2 devices in the absorber thickness range 0.1-0.5 microm. Further enhancements were achieved by introducing moderate amounts of Ag into the Cu(In,Ga)Se2 lattice during the co-evaporation method

  7. Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications

    Copper indium gallium selenide (CIGS) has emerged as a promising candidate for thin film solar cells, with efficiencies approaching those of silicon-based solar cells. To achieve optimum performance in CIGS solar cells, uniform, conductive, stress-free, well-adherent, reflective, crystalline molybdenum (Mo) thin films with preferred orientation (110) are desirable as a back contact on large area glass substrates. The present study focuses on cylindrical rotating DC magnetron sputtered bilayer Mo thin films on 300 mm × 300 mm soda lime glass (SLG) substrates. Key sputtering variables, namely power and Ar gas flow rates, were optimized to achieve best structural, electrical and optical properties. The Mo films were comprehensively characterized and found to possess high degree of thickness uniformity over large area. Best crystallinity, reflectance and sheet resistance was obtained at high sputtering powers and low argon gas flow rates, while mechanical properties like adhesion and residual stress were found to be best at low sputtering power and high argon gas flow rate, thereby indicating a need to arrive at a suitable trade-off during processing. - Highlights: • Sputtering of bilayer molybdenum thin films on soda lime glass • Large area deposition using rotating cylindrical direct current magnetron • Trade of sputter process parameters power and pressure • High uniformity of thickness and best electrical properties obtained • Suitable mechanical and optical properties of molybdenum are achieved for CIGS application

  8. Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications

    Badgujar, Amol C.; Dhage, Sanjay R., E-mail: dhage@arci.res.in; Joshi, Shrikant V.

    2015-08-31

    Copper indium gallium selenide (CIGS) has emerged as a promising candidate for thin film solar cells, with efficiencies approaching those of silicon-based solar cells. To achieve optimum performance in CIGS solar cells, uniform, conductive, stress-free, well-adherent, reflective, crystalline molybdenum (Mo) thin films with preferred orientation (110) are desirable as a back contact on large area glass substrates. The present study focuses on cylindrical rotating DC magnetron sputtered bilayer Mo thin films on 300 mm × 300 mm soda lime glass (SLG) substrates. Key sputtering variables, namely power and Ar gas flow rates, were optimized to achieve best structural, electrical and optical properties. The Mo films were comprehensively characterized and found to possess high degree of thickness uniformity over large area. Best crystallinity, reflectance and sheet resistance was obtained at high sputtering powers and low argon gas flow rates, while mechanical properties like adhesion and residual stress were found to be best at low sputtering power and high argon gas flow rate, thereby indicating a need to arrive at a suitable trade-off during processing. - Highlights: • Sputtering of bilayer molybdenum thin films on soda lime glass • Large area deposition using rotating cylindrical direct current magnetron • Trade of sputter process parameters power and pressure • High uniformity of thickness and best electrical properties obtained • Suitable mechanical and optical properties of molybdenum are achieved for CIGS application.

  9. Investigation of blister formation in sputtered Cu2ZnSnS4 absorbers for thin film solar cells

    Blister formation in Cu2ZnSnS4 (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device. Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials

  10. Synthesis of nanostructured CuInS{sub 2} thin films and their application in dye-sensitized solar cells

    Zhao, Yu; Zhuang, Mixue; Liu, Zhen; Wei, Aixiang [Guangdong University of Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangzhou (China); Luo, Fazhi [Guangdong University of Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangzhou (China); The Fifth Electronics Research Institute of Ministry of Industry and Information Technology, Guangzhou (China); Liu, Jun [Guangdong University of Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangzhou (China); Zhejiang University, State Key Lab of Silicon Materials, Hangzhou (China)

    2016-03-15

    CuInS{sub 2} (CIS) nanostructure thin films were successfully synthesized on FTO conductive glass substrates by solvothermal method. It is found that the surface morphology and microstructure of CIS thin films can be tailored by simply adjusting the concentration of oxalic acid. CIS nanostructure films with texture of ''nanosheet array'' and ''flower-like microsphere'' were obtained and used as Pt-free counter electrode for dye-sensitized solar cells (DSSCs). The nanosheet array CIS was found to have a better electrocatalytic activity than the flower-like microsphere one. DSSCs based on nanosheet array CIS thin film counter electrode show conversion efficiency of 3.33 %, which is comparable to the Pt-catalyzed DSSCs. The easy synthesis, low cost, morphology tunable and excellent electrocatalytic property may make the CuInS{sub 2} nanostructure competitive as counter electrode in DSSCs. (orig.)

  11. Synthesis of nanostructured CuInS2 thin films and their application in dye-sensitized solar cells

    Zhao, Yu; Luo, Fazhi; Zhuang, Mixue; Liu, Zhen; Wei, Aixiang; Liu, Jun

    2016-03-01

    CuInS2 (CIS) nanostructure thin films were successfully synthesized on FTO conductive glass substrates by solvothermal method. It is found that the surface morphology and microstructure of CIS thin films can be tailored by simply adjusting the concentration of oxalic acid. CIS nanostructure films with texture of "nanosheet array" and "flower-like microsphere" were obtained and used as Pt-free counter electrode for dye-sensitized solar cells (DSSCs). The nanosheet array CIS was found to have a better electrocatalytic activity than the flower-like microsphere one. DSSCs based on nanosheet array CIS thin film counter electrode show conversion efficiency of 3.33 %, which is comparable to the Pt-catalyzed DSSCs. The easy synthesis, low cost, morphology tunable and excellent electrocatalytic property may make the CuInS2 nanostructure competitive as counter electrode in DSSCs.

  12. Electron Backscatter Diffraction: An Important Tool for Analyses of Structure-Property Relationships in Thin-Film Solar Cells

    Abou-Ras, D.; Kavalakkatt, J.; Nichterwitz, M.; Schäfer, N.; Harndt, S.; Wilkinson, A. J.; Tsyrulin, K.; Schulz, H.; Bauer, F.

    2013-09-01

    The present work gives an overview of the application of electron backscatter diffraction (EBSD) in the field of thin-film solar cells, which consist of stacks of polycrystalline layers on various rigid or flexible substrates. EBSD provides access to grain-size and local-orientation distributions, film textures, and grain-boundary types. By evaluation of the EBSD patterns within individual grains of the polycrystalline solar cell layers, microstrain distributions also can be obtained. These microstructural properties are of considerable interest for research and development of thin-film solar cells. Moreover, EBSD may be performed three-dimensionally, by alternating slicing of cross sections in a focused ion-beam machine and EBSD acquisition. To relate the microstructural properties to the electrical properties of individual layers as well as to the device performances of corresponding solar cells, EBSD can be combined with electron-beam-induced current and cathodoluminescence measurements and with various scanning-probe microscopy methods such as Kelvin-probe force, scanning spreading resistance, or scanning capacitance microscopy on identical specimen positions. Together with standard device characterization of thin-film solar cells, these scanning microscopy measurements provide the means for extensive analysis of structure-property relationships in solar-cell stacks with polycrystalline layers.

  13. Surface and interface characterization of thin-film silicon solar cell structures

    Gerlach, Dominic

    2013-02-21

    The properties of Si thin films for solar cells, the interaction with different substrates and the influence of dopants are examined with synchrotron based x-ray spectroscopy - primarily X-ray emission spectroscopy (XES) and hard X-ray photoelectron spectroscopy (HAXPES). The films are studied as-deposited (i.e., amorphous, a-Si) and after conversion into polycrystalline (poly-Si) employing solid phase crystallization (SPC). Si L{sub 2,3} XES spectra of thin-film Si samples can be described by a superposition of a-Si and monocrystalline Si-wafer (c-Si) reference spectra. According to a quantification based on that superposition principle, none of the investigated samples are completely crystallized - a measurable a-Si component always remains (5-20 %) regardless of deposition and treatment conditions. Based on additional results from electron back scattering diffraction different models are developed which may explain this finding. According to these models, the remnant a-Si component can be attributed to amorphous/disordered material at the grain boundaries. Using one of these models, the thickness of this grain-surrounding material s could be approximated to be (1.5 {+-} 0.5) nm. Further investigations of the SPC process reveal a faster crystallization for boron-doped samples, and a slower crystallization for phosphorous-doped samples, when compared to the crystallization of undoped a Si:H thin films. The peculiarities of B K XES spectra (and observed changes upon SPC) indicate that boron could act as a nucleation center promoting crystallization. Si L{sub 2,3} XES spectra of a-Si:H and P-doped poly-Si exhibit spectral features above the valence band maximum at 100 eV that could be attributed to a-Si defect states and n{sup +}-dopant states, respectively. The SPC crystallization velocity of Si thin films on ZnO:Al/glass is found to be faster than that on SiNx/glass substrate. Multiple indications for oxidization at the poly-Si/ZnO:Al interface are found based on

  14. Characterization of Cu1.4Te Thin Films for CdTe Solar Cells

    Guangcan Luo

    2014-01-01

    Full Text Available The copper telluride thin films were prepared by a coevaporation technique. The single-phase Cu1.4Te thin films could be obtained after annealing, and annealing temperature higher than 220°C could induce the presence of cuprous telluride coexisting phase. Cu1.4Te thin films also demonstrate the high carrier concentration and high reflectance for potential photovoltaic applications from the UV-visible-IR transmittance and reflectance spectra, and Hall measurements. With contacts such as Cu1.4Te and Cu1.4Te/CuTe, cell efficiencies comparable to those with conventional back contacts have been achieved. Temperature cycle tests show that the Cu1.4Te contact buffer has also improved cell stability.

  15. Optimization of thin film silicon solar cells on highly textured substrates

    Despeisse, Matthieu; Battaglia, Corsin; Boccard, Mathieu; Bugnon, Gregory; Charriere, Mathieu; Cuony, Peter; Haenni, Simon; Loefgren, Linus; Meillaud, Fanny; Parascandolo, Gaetano; Soederstroem, Thomas; Ballif, Christophe [Photovoltaics and Thin Film Electronics Laboratory, Institute of Micro-engineering (IMT), Ecole Polytechnique Federale de Lausanne (EPFL), Rue Breguet 2, 2000 Neuchatel (Switzerland)

    2011-08-15

    Doped layers made of nanostructured silicon phases embedded in a silicon oxide matrix were implemented in thin film silicon solar cells. Their combination with optimized deposition processes for the silicon intrinsic layers is shown to allow for an increased resilience of the cell design to the substrate texture, with high electrical properties conserved on rough substrates. The presented optimizations thus permit turning the efficient light trapping provided by highly textured front electrodes into increased cell efficiencies, as reported for single junction cells and for amorphous silicon (a-Si)/microcrystalline silicon tandem cells. Initial and stabilized efficiencies of 12.7 and 11.3%, respectively, are reported for such tandem configuration implementing a 1.1 {mu}m thick microcrystalline silicon bottom cell. SEM image after FIB cut of an amorphous silicon/microcrystalline silicon tandem cell reported with a stabilized efficiency of 11.3% for a bottom cell thickness of about 1.1 {mu}m. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. AgSb(SxSe1−x)2 thin films for solar cell applications

    Highlights: ► AgSb(SxSe1−x)2 thin films were formed by heating Na2SeSO3 dipped Sb2S3/Ag layers. ► S/Se ratio was varied by changing the dipping time in Na2SeSO3 solution. ► Characterized the films using XRD, XPS, SEM, Optical and electrical measurements. ► Band gap engineering of 1−1.1 eV for x = 0.51 and 0.52 respectively. ► PV Glass/FTO/CdS/AgSb(SxSe1−x)2/C were prepared showing Voc = 410 mV, Jsc = 5.7 mA/cm2. - Abstract: Silver antimony sulfoselenide (AgSb(SxSe1−x)2) thin films were prepared by heating glass/Sb2S3/Ag layers after selenization using sodium selenosulphate solution. First, Sb2S3 thin films were deposited on glass substrates from a chemical bath containing SbCl3 and Na2S2O3. Then Ag thin films were thermally evaporated onto glass/Sb2S3, followed by selenization by dipping in an acidic solution of Na2SeSO3. The duration of selenium dipping was varied as 30 min and 2 h. The heating condition was at 350 °C for 1 h in vacuum. Analysis of X-ray diffraction pattern of the thin films formed after heating showed the formation of AgSb(SxSe1−x)2. Morphology and elemental analysis were done by scanning electron microscopy and energy dispersive X-ray detection. Depth profile of composition of the thin films was performed by X-ray Photoelectron Spectroscopy. The spectral study showed the presence of Ag, Sb, S, and Se, and the corresponding binding energy analysis confirmed the formation of AgSb(SxSe1−x)2. Photovoltaic structures (PV) were prepared using AgSb(SxSe1−x)2 thin films as absorber and CdS thin films as window layers on FTO coated glass substrates. The PV structures were heated at 60–80 °C in air for 1 h to improve ohmic contact. Analysis of J–V characteristics of the PV structures showed Voc from 230 to 490 mV and Jsc 0.28 to 5.70 mA/cm2, under illumination of AM1.5 radiation using a solar simulator

  17. Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells

    Python, M.; Madani, O.; Domine, D.; Meillaud, F.; Vallat-Sauvain, E.; Ballif, C. [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering IMT, Photovoltaics and thin film electronics laboratory, Breguet 2, 2000 Neuchatel (Switzerland)

    2009-10-15

    The effect of substrate morphology on the growth and electrical properties of single-junction microcrystalline silicon cells is investigated. A large variety of V-shaped and U-shaped substrates are characterized by scanning electron microscopy (SEM) and the growth of thin-film microcrystalline silicon ({mu}c-Si:H) devices is observed by cross-sectional transmission electron microscopy (TEM). It is shown that enhanced electrical properties of solar cells are obtained when U-shaped substrates are used and the effect is universal, i.e. independent of the substrate or feature size. U-shaped substrates prevent the formation of two dimensional ''cracks'', which are identified as zones of porous material, from propagating throughout the active part of the solar cell. A numerical growth simulation program reproduces satisfactorily these experimental observations. According to these simulations, shadowing effect due to surface morphology and low adatom surface diffusion length are responsible for the formation of cracks in {mu}c-Si:H material. (author)

  18. Interface properties of Cd-free buffer layers on on CIGSe thin film solar cells

    In order to replace the toxic Cadmium, the substitution of the CdS buffer layer in thin film solar cells based on Cu(In,Ga)(S,Se)2 (CIGSSe) is of great interest. Alternative buffer layers like (In,Al)2S3, In2S3, or (Zn1-x,Mgx)O deposited by conventional sputter and chemical bath deposition techniques, have shown efficiencies close to or comparable to those of CdS containing solar cells. To understand the chemical and electronic properties of these buffer layers and its influence on the absorber, we studied the buffer-absorber interface using photoelectron spectroscopy (XPS, UPS) and inverse photoelectron spectroscopy (IPES). The combination of these non-destructive techniques provides detailed information about the chemical properties of the studied surface, as well as can be used for a direct determination of the conduction and valence band alignment at the heterojunction. Band-gap values at the surface as derived by UPS and IPES are also verified by electron energy loss spectroscopy (EELS). The results are discussed in conjunction with the respective cell parameters.

  19. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm–800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact

  20. Preparation and Properties of Evaporated CdTe and All Thin Film CdTe/CdS Solar Cells

    Shahzad, Naseem

    1991-05-01

    Cadmium telluride thin films were prepared by vacuum evaporation of CdTe powder in an attempt to fabricate all thin film solar cells of the type CdTe/CdS. Characterization of CdTe has shown it to have a band gap of 1.522 eV and a resistivity of 22Ω-cm. As prepared, solar cells exhibited low values of output parameters. Given quantity of copper was then deposited on top of the CdTe/CdS solar cells and the whole system was annealed at 350° C. This copper doping changed the output parameters favorably with a maximum efficiency of 1.9%.

  1. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    Pathirane, M., E-mail: minoli.pathirane@uwaterloo.ca; Iheanacho, B.; Lee, C.-H.; Wong, W. S. [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Tamang, A.; Knipp, D. [Research Center for Functional Materials and Nanomolecular Science, Jacobs University Bremen, Bremen 28759 (Germany); Lujan, R. [Electronic Materials and Devices Laboratory, Palo Alto Research Center, Palo Alto, California 93003 (United States)

    2015-10-05

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm–800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact.

  2. Comparison of silicon oxide and silicon carbide absorber materials in silicon thin-film solar cells

    Walder Cordula

    2015-01-01

    Full Text Available Since solar energy conversion by photovoltaics is most efficient for photon energies at the bandgap of the absorbing material the idea of combining absorber layers with different bandgaps in a multijunction cell has become popular. In silicon thin-film photovoltaics a multijunction stack with more than two subcells requires a high bandgap amorphous silicon alloy top cell absorber to achieve an optimal bandgap combination. We address the question whether amorphous silicon carbide (a-SiC:H or amorphous silicon oxide (a-SiO:H is more suited for this type of top cell absorber. Our single cell results show a better performance of amorphous silicon carbide with respect to fill factor and especially open circuit voltage at equivalent Tauc bandgaps. The microstructure factor of single layers indicates less void structure in amorphous silicon carbide than in amorphous silicon oxide. Yet photoconductivity of silicon oxide films seems to be higher which could be explained by the material being not truly intrinsic. On the other hand better cell performance of amorphous silicon carbide absorber layers might be connected to better hole transport in the cell.

  3. Comparison of silicon oxide and silicon carbide absorber materials in silicon thin-film solar cells

    Walder, Cordula; Kellermann, Martin; Wendler, Elke; Rensberg, Jura; von Maydell, Karsten; Agert, Carsten

    2015-02-01

    Since solar energy conversion by photovoltaics is most efficient for photon energies at the bandgap of the absorbing material the idea of combining absorber layers with different bandgaps in a multijunction cell has become popular. In silicon thin-film photovoltaics a multijunction stack with more than two subcells requires a high bandgap amorphous silicon alloy top cell absorber to achieve an optimal bandgap combination. We address the question whether amorphous silicon carbide (a-SiC:H) or amorphous silicon oxide (a-SiO:H) is more suited for this type of top cell absorber. Our single cell results show a better performance of amorphous silicon carbide with respect to fill factor and especially open circuit voltage at equivalent Tauc bandgaps. The microstructure factor of single layers indicates less void structure in amorphous silicon carbide than in amorphous silicon oxide. Yet photoconductivity of silicon oxide films seems to be higher which could be explained by the material being not truly intrinsic. On the other hand better cell performance of amorphous silicon carbide absorber layers might be connected to better hole transport in the cell.

  4. Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p-n junction solar cells.

    Park, Si-Nae; Sung, Shi-Joon; Sim, Jun-Hyoung; Yang, Kee-Jeong; Hwang, Dae-Kue; Kim, JunHo; Kim, Gee Yeong; Jo, William; Kim, Dae-Hwan; Kang, Jin-Kyu

    2015-07-01

    Nanoporous p-type semiconductor thin films prepared by a simple solution-based process with appropriate thermal treatment and three-dimensional (3D) p-n junction solar cells fabricated by depositing n-type semiconductor layers onto the nanoporous p-type thin films show considerable photovoltaic performance compared with conventional thin film p-n junction solar cells. Spin-coated p-type Cu2ZnSnS4 (CZTS) thin films prepared using metal chlorides and thiourea show unique nanoporous thin film morphology, which is composed of a cluster of CZTS nanograins of 50-500 nm, and the obvious 3D p-n junction structure is fabricated by the deposition of n-type CdS on the nanoporous CZTS thin films by chemical bath deposition. The photovoltaic properties of 3D p-n junction CZTS solar cells are predominantly affected by the scale of CZTS nanograins, which is easily controlled by the sulfurization temperature of CZTS precursor films. The scale of CZTS nanograins determines the minority carrier transportation within the 3D p-n junction between CZTS and CdS, which are closely related with the photocurrent of series resistance of 3D p-n junction solar cells. 3D p-n junction CZTS solar cells with nanograins below 100 nm show power conversion efficiency of 5.02%, which is comparable with conventional CZTS thin film solar cells. PMID:26061271

  5. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    InxGa1−xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm−3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells

  6. Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells.

    Meng, Xianqin; Depauw, Valérie; Gomard, Guillaume; El Daif, Ounsi; Trompoukis, Christos; Drouard, Emmanuel; Jamois, Cécile; Fave, Alain; Dross, Frédéric; Gordon, Ivan; Seassal, Christian

    2012-07-01

    In this paper, we present the integration of an absorbing photonic crystal within a monocrystalline silicon thin film photovoltaic stack fabricated without epitaxy. Finite difference time domain optical simulations are performed in order to design one- and two-dimensional photonic crystals to assist crystalline silicon solar cells. The simulations show that the 1D and 2D patterned solar cell stacks would have an increased integrated absorption in the crystalline silicon layer would increase of respectively 38% and 50%, when compared to a similar but unpatterned stack, in the whole wavelength range between 300 nm and 1100 nm. In order to fabricate such patterned stacks, we developed an effective set of processes based on laser holographic lithography, reactive ion etching and inductively coupled plasma etching. Optical measurements performed on the patterned stacks highlight the significant absorption increase achieved in the whole wavelength range of interest, as expected by simulation. Moreover, we show that with this design, the angle of incidence has almost no influence on the absorption for angles as high as around 60°. PMID:22828615

  7. Transition metal oxide window layer in thin film amorphous silicon solar cells

    Pin-type hydrogenated amorphous silicon solar cells have been fabricated by replacing state of the art silicon based window layer with more transparent transition metal oxide (TMO) materials. Three kinds of TMOs: vanadium oxide, tungsten oxide, and molybdenum oxide (MoOx) were comparatively investigated to reveal the design principles of metal oxide window layers. It was found that MoOx exhibited the best performance due to its higher work function property compared to other materials. In addition, the band alignment between MoOx and amorphous Si controls the series resistance, which was verified through compositional variation of MoOx thin films. The design principles of TMO window layer in amorphous Si solar cells are summarized as follows: A wide optical bandgap larger than 3.0 eV, a high work function larger than 5.2 eV, and a band alignment condition rendering efficient hole collection from amorphous Si absorber layer. - Highlights: • High work function metal oxides can potentially replace the conventional p-a-SiC. • V2Ox, WOx, and MoOx are comparatively investigated in this study. • MoOx is the most relevant material due to its highest work function. • Slightly oxygen deficient MoOx exhibited performance enhancement at x = 2.9

  8. Quantitative determination of element distributions in silicon based thin film solar cells using SNMS.

    Gastel, M; Breuer, U; Holzbrecher, H; Becker, J S; Dietze, H J; Kubon, M; Wagner, H

    1995-10-01

    The determination of elemental distributions in thin film solar cells based on amorphous silicon using electron beam SNMS is possible by quantifying the measured ion intensities. The relative sensitivity factors (RSFs) for all elements measured have to be known. The RSFs have been determined experimentally using implantation and bulk standards with known concentrations of the interesting elements. The measured RSFs have been compared with calculated RSFs. The model used for the calculation of the RSFs takes into account the probability for electron impact ionization and the dwell time of the neutrals inside the postionization region. The comparison between measured and calculated RSF shows, that this model is capable to explain the RSFs for most elements. Differences between calculated and measured values can be explained by the formation of hydride and fluoride molecules (in case of H and F) and influences of the angular distribution of the sputtered neutrals in case of Al. The experimentally determined RSFs have been used for a quantification of depth profiles of the i-, buffer-, p- and front contact layers of a-Si solar cells. PMID:15048522

  9. Diode laser crystallization processes of Si thin-film solar cells on glass

    Yun Jae Sung

    2014-07-01

    Full Text Available The crystallization of Si thin-film on glass using continuous-wave diode laser is performed. The effect of various processing parameters including laser power density and scanning speed is investigated in respect to microstructure and crystallographic orientation. Optimal laser power as per scanning speed is required in order to completely melt the entire Si film. When scan speed of 15–100 cm/min is used, large linear grains are formed along the laser scan direction. Laser scan speed over 100 cm/min forms relatively smaller grains that are titled away from the scan direction. Two diode model fitting of Suns-Voc results have shown that solar cells crystallized with scan speed over 100 cm/min are limited by grain boundary recombination (n = 2. EBSD micrograph shows that the most dominant misorientation angle is 60°. Also, there were regions containing high density of twin boundaries up to ~1.2 × 10-8/cm2. SiOx capping layer is found to be effective for reducing the required laser power density, as well as changing preferred orientation of the film from ⟨ 110 ⟩ to ⟨ 100 ⟩ in surface normal direction. Cracks are always formed during the crystallization process and found to be reducing solar cell performance significantly.

  10. Diode laser crystallization processes of Si thin-film solar cells on glass

    Yun, Jae Sung; Ahn, Cha Ho; Jung, Miga; Huang, Jialiang; Kim, Kyung Hun; Varlamov, Sergey; Green, Martin A.

    2014-07-01

    The crystallization of Si thin-film on glass using continuous-wave diode laser is performed. The effect of various processing parameters including laser power density and scanning speed is investigated in respect to microstructure and crystallographic orientation. Optimal laser power as per scanning speed is required in order to completely melt the entire Si film. When scan speed of 15-100 cm/min is used, large linear grains are formed along the laser scan direction. Laser scan speed over 100 cm/min forms relatively smaller grains that are titled away from the scan direction. Two diode model fitting of Suns-Voc results have shown that solar cells crystallized with scan speed over 100 cm/min are limited by grain boundary recombination (n = 2). EBSD micrograph shows that the most dominant misorientation angle is 60°. Also, there were regions containing high density of twin boundaries up to ~1.2 × 10-8/cm2. SiOx capping layer is found to be effective for reducing the required laser power density, as well as changing preferred orientation of the film from ⟨ 110 ⟩ to ⟨ 100 ⟩ in surface normal direction. Cracks are always formed during the crystallization process and found to be reducing solar cell performance significantly.

  11. Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers

    The purpose of the present study was to examine the possibility of laser-machining of CuInSe2-based photovoltaic devices. Therefore, ablation thresholds and ablation rates of ZnO, CuInSe2 and Mo thin films have been measured for irradiation with nanosecond laser pulses of ultraviolet and visible light and subpicosecond laser pulses of a Ti : sapphire laser. The experimental results were compared with the theoretical evaluation of the samples heat regime obtained from numerical calculations. In addition, the photo-electrical properties of the solar cells were measured before and after laser-machining. Scanning electron microscopy and energy dispersive x-ray analyses were employed to characterize the laser-induced ablation channels. As a result, two phenomena were found to limit the laser-machining process: (i) residues of Mo that were projected onto the walls of the ablation channel and (ii) the metallization of the CuInSe2 semiconductor close to the channel. Both effects lead to a shunt in the device that decreases the photovoltaic efficiency. As a consequence of these limiting effects, micromachining of CuInSe2-based solar cells was not possible with nanosecond laser pulses. Only subpicosecond laser pulses provided selective or complete ablation of the thin layers without a relevant change in the photoelectrical properties

  12. Modified textured surface MOCVD-ZnO:B transparent conductive layers for thin-film solar cells

    Modified textured surface boron-doped ZnO (ZnO:B) transparent conductive layers for thin-film solar cells were fabricated by low-pressure metal organic chemical vapor deposition (LP-MOCVD) on glass substrates. These modified textured surface ZnO:B thin films included two layers. The first ZnO:B layer, which has a pyramid-shaped texture, was deposited under conventional growth conditions, and the second layer, which has a sphere-like structure, at a relatively lower growth temperature. Typical bi-layer ZnO:B thin films exhibit a high electron mobility of 27.6 cm2/(V·s) due to improved grain boundary states. For bi-layer ZnO:B, the haze value increases and the total transmittance decreases with the increasing film thickness of the second modification layer. When applied in hydrogenated microcrystalline silicon (μc-Si:H) thin-film solar cells, the modified textured surface ZnO:B layers present relatively higher conversion efficiency than conventional ZnO:B films. (semiconductor materials)

  13. Preparation of CulnS2 Thin Films on the Glass Substrate by DC Sputtering for Solar Cell Component

    The CuInS2 alloys were deposited on glass substrate using plasma DC sputtering technique. A CuInS2 alloy target was made from Cu, In, Se powder with impurity of 99.998%. The deposition process was done with the following process parameter variations: deposition time and substrate temperature were the range of 15 to 45 min and 150 to 300 ℃, the gas pressure was kept at 1.4x10-1 Torr. The purpose of the research is to obtain the solar cell component of CuInS2 thin films. The electrical and optical properties measurement has been done by four-point probe and UV-Vis. Crystal structure was analyzed using X-ray diffraction (XRD). The result shows that minimum resistance of CuInS2 thin films is 35.7 kΩ and optical transmittance is 14.7 %. The crystal structure of CuInS2 is oriented at (112) plane and by Touc-plot method was obtained that the band gap energy of thin films is 1.45 eV. It could be concluded that the CuInS2 thin film can be used as a solar cell component. (author)

  14. The investigation of optimal Silicon/Silicon(1-x)Germanium(x) thin-film solar cells with quantitative analysis

    Ehsan, Md Amimul

    Thin-film solar cells are emerging from the research laboratory to become commercially available devices for low cost electrical power generation applications. Silicon which is a cheap, abundant and non-toxic elemental semiconductor is an attractive candidate for these solar cells. Advanced modeling and simulation of Si thin-film solar cells has been performed to make this technology more cost effective without compromising the performance and efficiency. In this study, we focus on the design and optimization of Si/Si1-xGex heterostructures, and microcrystalline and nanocrystalline Si thin-film solar cells. Layer by layer optimization of these structures was performed by using advanced bandgap engineering followed by numerical analysis for their structural, electrical and optical characterizations. Special care has been introduced for the selection of material layers which can help to improve the light absorption properties of these structures for harvesting the solar spectrum. Various strategies such as the optimization of the doping concentrations, Ge contents in Si1-xGex buffer layer, incorporation of the absorber layers and surface texturing have been in used to improve overall conversion efficiencies of the solar cells. To be more specific, the observed improvement in the conversion efficiency of these solar cells has been calculated by tailoring the thickness of the buffer, absorber, and emitter layers. In brief, an approach relying on the phenomena of improved absorption of the buffer and absorber layer which leads to a corresponding gain in the open circuit voltage and short circuit current is explored. For numerical analysis, a PC1D simulator is employed that uses finite element analysis technique for solving semiconductor transport equations. A comparative study of the Si/Si1-xGex and Ge/Si1-xGex is also performed. We found that due to the higher lattice mismatch of Ge to Si, thin-film solar cells based on Si/Si1-xGex heterostructures performed much

  15. CdTe thin film solar cells with reduced CdS film thickness

    A study was performed to reduce the CdS film thickness in CdTe thin film solar cells to minimize losses in quantum efficiency. Using close space sublimation deposition for CdS and CdTe a maximum efficiency of ∼ 9.5% was obtained with the standard CdS film thickness of ∼ 160 nm. Reduction of the film CdS thickness to less than 100 nm leads to poor cell performance with ∼ 5% efficiency, mainly due to a lower open circuit voltage. An alternative approach has been tested to reduce the CdS film thickness (∼ 80 nm) by depositing a CdS double layer. The first CdS layer was deposited at high substrate temperature in the range of 520-540 deg. C and the second CdS layer was deposited at low substrate temperature of ∼ 250 deg. C. The cell prepared using a CdS double layer show better performance with cell efficiency over 10%. Quantum efficiency measurement confirmed that the improvement in the device performance is due to the reduction in CdS film thickness. The effect of double layer structure on cell performance is also observed with chemical bath deposited CdS using fluorine doped SnO2 as substrate.

  16. Advances in CuInSe sub 2 and CdTe thin film solar cells

    Shafarmann, W.N.; Birkmire, R.W.; Farding, D.A.; McCandless, B.E.; Mondal, A.; Phillips, J.E.; Varrin, R.D. Jr. (Delaware Univ., Newark (USA). Inst. of Energy Conversion)

    1991-05-01

    Research on CuInSe{sub 2} and CdTe thin film solar cells is discussed. CuInSe{sub 2} was deposited by selenization of Cu/In layers and was used to make a 10% efficient CuInSe{sub 2}/(CdZn)S cell. Characterization of the reaction mechanisms is described. The open-circuit voltage V{sub oc} of CuInSe{sub 2}/(CdZn)S cells is dominated by recombination in the space charge region, so increassing the band gap or decreasing the width of this region should increase V{sub oc}. Increasing the band gap with a thin Cu(InGa)Se{sub 2} layer at the CuInSe{sub 2} surface has demonstrated increased V{sub oc} with collection out to the CuInSe{sub 2} band gap. A post-deposition treatment and contacting process for evaporated CdS/CdTe cells was developed and high efficiency cells were made. Several steps in the process, including a CdCl{sub 2} coating, a 400deg C heat treatment, and a contact containing copper are critical. ZnTe films were deposited from an aqueous solution as a contact to CdTe. (orig.).

  17. Thin film silicon solar cells for space applications: Study of proton irradiation and thermal annealing effects on the characteristics of solar cells and individual layers

    Kuendig, J.; Goetz, M; Shah, Arvind; Gerlach, L.; Fernandez, E

    2008-01-01

    The paper reports on the effects of a proton irradiation campaign on a series of thin-film silicon solar cells (single- and double-junction). The effect of subsequent thermal annealing on solar cells degraded by proton irradiation is investigated. A low-temperature annealing behaviour can be observed (at temperatures around 100 to 160°C) for microcrystalline silicon solar cells. To further explore this effect, a second proton irradiation campaign has been carried out, but this time on microcr...

  18. Defect engineering in solar cell manufacturing and thin film solar cell development

    Sopori, B.L. [National Renewable Energy Lab., Golden, CO (United States)

    1995-08-01

    During the last few years many defect engineering concepts were successfully applied to fabricate high efficiency silicon solar cells on low-cost substrates. Some of the research advances are described.

  19. Thin Film Silicon Nanowire/PEDOT:PSS Hybrid Solar Cells with Surface Treatment.

    Wang, Hao; Wang, Jianxiong; Hong, Lei; Tan, Yew Heng; Tan, Chuan Seng; Rusli

    2016-12-01

    SiNW/PEDOT:PSS hybrid solar cells are fabricated on 10.6-μm-thick crystalline Si thin films. Cells with Si nanowires (SiNWs) of different lengths fabricated using the metal-catalyzed electroless etching (MCEE) technique have been investigated. A surface treatment process using oxygen plasma has been applied to improve the surface quality of the SiNWs, and the optimized cell with 0.7-μm-long SiNWs achieved a power conversion efficiency (PCE) of 7.83 %. The surface treatment process is found to remove surface defects and passivate the SiNWs and substantially improve the average open circuit voltage from 0.461 to 0.562 V for the optimized cell. The light harvesting capability of the SiNWs has also been investigated theoretically using optical simulation. It is found that the inherent randomness of the MCEE SiNWs, in terms of their diameter and spacing, accounts for the excellent light harvesting capability. In comparison, periodic SiNWs of comparable dimensions have been shown to exhibit much poorer trapping and absorption of light. PMID:27356558

  20. Topics on thin film CdS/CdTe solar cells

    Tyan Yuansheng

    1988-01-15

    Efficient thin film CdS/CdTe solar cells can be prepared by the close-spaced sublimation technique onto soda-lime glass coated with either indium tin oxide or tin oxide. Oxygen is needed to enchance the p characteristics of CdTe; a high substrate temperature is needed to reduce the interfacial defects at the CdS/CdTe junction. Cells with gold electrodes are not stable owing to Au-CdTe interaction. Alternative electrodes to CdTe can be prepared by using a HNO/sub 3/-H/sub 3/PO/sub 4/ surface treatment. The cells showed 30-40% efficiency degradation when aged over 2 years at 100/sup 0/C under continuous air mass 1 illumination. The degradation appears to result from a decrease in the carrier concentration with aging. The aging process is not sensitive to ambience but is sensitive to the presence of light or voltage bias. It is believed to be related to the dependence of the effective carrier concentration on the cooling rate subsequent to the CdTe deposition. Defect interaction may be a possible cause of the aging behavior but photoluminescence and deep-level studies have not established the mechanism involved. The evidence suggests that trace impurities can have significant effects on the behavior of the cells and could be responsible for the aging behavior.

  1. Applications of microcrystalline hydrogenated cubic silicon carbide for amorphous silicon thin film solar cells

    We demonstrated the fabrication of n-i-p type amorphous silicon (a-Si:H) thin film solar cells using phosphorus doped microcrystalline cubic silicon carbide (μc-3C-SiC:H) films as a window layer. The Hot-wire CVD method and a covering technique of titanium dioxide TiO2 on TCO was utilized for the cell fabrication. The cell configuration is TCO/TiO2/n-type μc-3C-SiC:H/intrinsic a-Si:H/p-type μc- SiCx (a-SiCx:H including μc-Si:H phase)/Al. Approximately 4.5% efficiency with a Voc of 0.953 V was obtained for AM-1.5 light irradiation. We also prepared a cell with the undoped a-Si1-xCx:H film as a buffer layer to improve the n/i interface. A maximum Voc of 0.966 V was obtained

  2. Fabrication of CdS/CdTe-Based Thin Film Solar Cells Using an Electrochemical Technique

    I. M. Dharmadasa

    2014-06-01

    Full Text Available Thin film solar cells based on cadmium telluride (CdTe are complex devices which have great potential for achieving high conversion efficiencies. Lack of understanding in materials issues and device physics slows down the rapid progress of these devices. This paper combines relevant results from the literature with new results from a research programme based on electro-plated CdS and CdTe. A wide range of analytical techniques was used to investigate the materials and device structures. It has been experimentally found that n-, i- and p-type CdTe can be grown easily by electroplating. These material layers consist of nano- and micro-rod type or columnar type grains, growing normal to the substrate. Stoichiometric materials exhibit the highest crystallinity and resistivity, and layers grown closer to these conditions show n → p or p → n conversion upon heat treatment. The general trend of CdCl2 treatment is to gradually change the CdTe material’s n-type electrical property towards i-type or p-type conduction. This work also identifies a rapid structural transition of CdTe layer at 385 ± 5 °C and a slow structural transition at higher temperatures when annealed or grown at high temperature. The second transition occurs after 430 °C and requires more work to understand this gradual transition. This work also identifies the existence of two different solar cell configurations for CdS/CdTe which creates a complex situation. Finally, the paper presents the way forward with next generation CdTe-based solar cells utilising low-cost materials in their columnar nature in graded bandgap structures. These devices could absorb UV, visible and IR radiation from the solar spectrum and combine impact ionisation and impurity photovoltaic (PV effect as well as making use of IR photons from the surroundings when fully optimised.

  3. Directly patterned TiO2 nanostructures for efficient light harvesting in thin film solar cells

    Ram, Sanjay K.; Rizzoli, Rita; Desta, Derese; Jeppesen, Bjarke R.; Bellettato, Michele; Samatov, Ivan; Tsao, Yao-Chung; Johannsen, Sabrina R.; Neuvonen, Pekka T.; Pedersen, Thomas Garm; Pereira, Rui N.; Pedersen, Kjeld; Balling, Peter; Nylandsted Larsen, Arne

    2015-09-01

    A novel, scalable, and low-cost strategy for fabricating sub-wavelength scale hierarchical nanostructures by direct patterning of TiO2 nanoparticles on glass substrates is reported. Two nanostructural designs of light-trapping back-surface reflectors (BSR) have been fabricated for increasing the photon-harvesting properties of thin-film solar cells: a quasi-periodic nano-crater design and a random nano-bump design. The efficient light-scattering properties of the nano-crater design over a broad wavelength range are demonstrated by the measured haze factor being larger than 40% at wavelengths (~700 nm) near the band edge of amorphous silicon (a-Si:H). The a-Si:H-based n-i-p solar cell fabricated with an only ~200 nm thick absorber layer on the nano-crater BSR shows a short-circuit current density (J sc) of ~16.1 mA cm-2 representing a 28% enhancement compared to the cell deposited on a non-textured flat substrate. Measurements of the external quantum efficiency of the cell fabricated on the quasi-periodic nano-crater surface at long wavelengths, λ  >  700 nm, demonstrate an increase of a factor of 5 relative to that of a flat reference solar cell. The theoretical modeling results of optical absorption corroborate well with the experimental findings and are used to identify the volumes of strong optical absorption in the a-Si:H active layer of the textured BSR devices.

  4. Directly patterned TiO2 nanostructures for efficient light harvesting in thin film solar cells

    A novel, scalable, and low-cost strategy for fabricating sub-wavelength scale hierarchical nanostructures by direct patterning of TiO2 nanoparticles on glass substrates is reported. Two nanostructural designs of light-trapping back-surface reflectors (BSR) have been fabricated for increasing the photon-harvesting properties of thin-film solar cells: a quasi-periodic nano-crater design and a random nano-bump design. The efficient light-scattering properties of the nano-crater design over a broad wavelength range are demonstrated by the measured haze factor being larger than 40% at wavelengths (∼700 nm) near the band edge of amorphous silicon (a-Si:H). The a-Si:H-based n-i-p solar cell fabricated with an only ∼200 nm thick absorber layer on the nano-crater BSR shows a short-circuit current density (J sc) of ∼16.1 mA cm−2 representing a 28% enhancement compared to the cell deposited on a non-textured flat substrate. Measurements of the external quantum efficiency of the cell fabricated on the quasi-periodic nano-crater surface at long wavelengths, λ  >  700 nm, demonstrate an increase of a factor of 5 relative to that of a flat reference solar cell. The theoretical modeling results of optical absorption corroborate well with the experimental findings and are used to identify the volumes of strong optical absorption in the a-Si:H active layer of the textured BSR devices. (paper)

  5. Natively textured surface hydrogenated gallium-doped zinc oxide transparent conductive thin films with buffer layers for solar cells

    Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. These natively textured HGZO thin films exhibit rough pyramid-like textured surface, high optical transmittances in the visible and near infrared region and excellent electrical properties. The experiment results indicate that tungsten-doped indium oxide (In2O3:W, IWO) buffer layers can effectively improve the surface roughness and enhance the light scattering ability of HGZO thin films. The root-mean-square roughness of HGZO, IWO (10 nm)/HGZO and IWO (30 nm)/HGZO thin films are 28, 44 and 47 nm, respectively. The haze values at the wavelength of 550 nm increase from 7.0% of HGZO thin film without buffer layer to 18.37% of IWO (10 nm)/HGZO thin film. The optimized IWO (10 nm)/HGZO exhibits a high optical transmittance of 82.18% in the visible and near infrared region (λ ∼ 400–1100 nm) and excellent electrical properties with a relatively low sheet resistance of 3.6 Ω/□ and the resistivity of 6.21 × 10−4 Ωcm. - Highlights: • Textured hydrogenated gallium-doped zinc oxide (HGZO) films were developed. • Tungsten-doped indium oxide (IWO) buffer layers were applied for the HGZO films. • Light-scattering ability of the HGZO films can be improved through buffer layers. • Low sheet resistance and high haze were obtained for the IWO(10 nm)/HGZO film. • The IWO/HGZO films are promising transparent conductive layers for solar cells

  6. A rational elemental-directed alcohol-thermal route to CdSe nanostructures for thin film solar cells

    We have reported an alcohol-thermal method to in-situ synthesis of Cadmium Selenide (CdSe) nanocrystals/thin films on Cd/indium-doped tin oxide (ITO) substrates through a direct reaction of Se and Cd. In the synthetic system, ligands and surfactants are not introduced, and concentration of reaction precursors is not high, thus not only it is a very economic and environmental-friendly route, but also the CdSe film without any impurities is obtained. The Cd deposited on ITO substrates by magnetron sputtering acted as dual roles: reactant source and hard template for the final product. The microstructure is analyzed by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Poly(3-hexylthiophene) (P3HT) is deposited on CdSe film to fabricate a hybrid thin film solar cell device with ITO/CdSe/P3HT/Al structure to demonstrate solar light to electrical energy conversion. - Highlights: • CdSe nanocrystals/thin films were fabricated by an easy alcohol-thermal approach. • The method requires no ligands, high concentration of precursors or surfactants. • The photovoltaic device was based on the hybrid thin film of CdSe NCs and P3HT composites

  7. Very low cost thin film CdS-Cu2S solar cell development using chemical spraying

    Samara, G. A.; Jordan, J. F.

    1975-01-01

    A chemical spray process for the production of thin film CdS-Cu2S solar cells is discussed that is projected to cost less than $60/kW in very large scale production. The average efficiency of these cells has been improved from less than 0.3% in 1971 about 4.5% at present. Further developments for the process are considered to raise the efficiency, and to attain long life stability.

  8. Optimized Packing Density of Large CZTS Nanoparticles Synthesized by Hot-injection for Thin Film Solar Cells.

    Engberg, Sara Lena Josefin; Lam, Yeng Ming; Schou, Jørgen

    2015-01-01

    The absorbing kesterite material, Cu2ZnSn(SxSe1-x)4 (CZTS), is very promising for future thin film solar cells. The material is non-toxic, the elements abundant, and it has a high absorption coefficient. These properties make CZTS a potential candidate also for large-scale applications. Here, solution processing allows for comparatively fast and inexpensive fabrication, and also holds the record efficiency in the kesterite family. Unfortunately, the record cell is deposited with a highly toxi...

  9. Unlinking absorption and haze in thin film silicon solar cells front electrodes

    Boccard, Mathieu; Cuony, Peter; Battaglia, Corsin; Despeisse, Matthieu; Ballif, Christophe [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, 2000 Neuchatel (Switzerland)

    2010-11-15

    We study the respective influence of haze and free carrier absorption (FCA) of transparent front electrodes on the photogenerated current of micromorph thin film silicon solar cells. To decouple the haze and FCA we develop bi-layer front electrodes: a flat indium tin oxide layer assures conduction and allows us to tune FCA while the haze is adjusted by varying the thickness of a highly transparent rough ZnO layer. We show how a minimum amount of FCA leads only to a few percents absorption for a single light path but to a strong reduction of the cell current in the infrared part of the spectrum. Conversely, a current enhancement is shown with increasing front electrode haze up to a saturation of the current gain. This saturation correlates remarkably well with the haze of the front electrode calculated in silicon. This allows us to clarify the requirements for the front electrodes of micromorph cells. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Thin film cadmium telluride solar cells by two chemical vapor deposition techniques

    Chu, T.L.

    1988-01-15

    Cadmium telluride (CdTe) has long been recognized as a promising thin film photovoltaic material. In this work, polycrystalline p-CdTe films have been deposited by two chemical vapor deposition techniques, namely the combination of vapors of elements (CVE) and close-spaced sublimation (CSS). The CVE technique is more flexible in controlling the composition of deposited films while the CSS technique can provide very high deposition rates. The resistivity of p-CdTe films deposited by the CVE and CSS techniques can be controlled by intrinsic (cadmium vacancies) or extrinsic (arsenic or antimony) doping, and the lowest resistivity obtainable is about 200 ..cap omega.. cm. Both front-wall (CdTe/TCS/glass) and back-wall (TCS/CdTe/substrate) cells have been prepared. The back-wall cells are less efficient because of the high and irreproducible p-CdTe-substrate interface resistance. The CSS technique is superior to the CVE technique because of its simplicity and high deposition rates; however, the cleaning of the substrate in situ is more difficult. The interface cleanliness is an important factor determining the electrical and photovoltaic characteristics of the heterojunction. Heterojunction CdS/CdTe solar cells of area 1 cm/sup 2/ with conversion efficiencies higher than 10% have been prepared and junction properties characterized.

  11. Structural, optical, and surface properties of WO3 thin films for solar cells

    Highlights: • WO3 films were deposited by RF reactive sputtering, and annealed in different temperatures. • As deposited films were amorphous while >400 °C annealed films were crystallized as pure monoclinic WO3 phase. • Annealing at 400–500 °C led to an oxygen deficient surface with a sub-stoichiometric WO3−x phase. • Optical bandgap decreased from 3.35 eV to 3.17 eV for the films annealed at 500 °C. • Results are compared with MoO3 films deposited by a similar technique. - Abstract: Transparent back contacts can be used in thin film solar cells facilitating their potential application in tandem cells, bifacial devices and solar windows. In this study, tungsten oxide (WO3) thin films were deposited by Radio Frequency (RF) reactive sputtering in Ar + O2 ambient. The effects of post deposition anneals in air on the structural, optical, and surface properties of the deposited films were investigated using X-ray diffraction, UV/Vis/NIR spectrophotometry, and X-ray photoelectron spectroscopy, respectively. As-deposited films exhibited amorphous structures with no change after annealing at 300 °C. Samples annealed at 400 and 500 °C were crystallized and identified as pure monoclinic WO3 phase with (2 0 0) and (0 0 2) preferred orientation, respectively, determined by XRD fiber texture analysis. Scherrer analysis of excess broadening indicated a coherency length of 50 and 65 nm for the 400 and 500 °C annealed films, respectively. High resolution XPS studies showed the presence of W6+ (WO3) oxidation states at the surface of the as-deposited and the 300 °C annealed films. Annealing at 400–500 °C led to an oxygen deficient surface with a sub-stoichiometric WO3−x phase. UV/Vis/NIR spectrophotometry revealed that post processing decreased the optical bandgap from 3.30 eV for the as-deposited films to 3.17 eV for the 500 °C annealed films. Results are compared with MoO3 films deposited by a similar technique

  12. Structural, optical, and surface properties of WO{sub 3} thin films for solar cells

    Simchi, H., E-mail: simchi@udel.edu [Institute of Energy Conversion, University of Delaware, 451 Wyoming Rd., Newark, DE 19716 (United States); Department of Materials Science and Engineering, University of Delaware, 201 Dupont Hall, Newark, DE 19716 (United States); McCandless, B.E.; Meng, T. [Institute of Energy Conversion, University of Delaware, 451 Wyoming Rd., Newark, DE 19716 (United States); Shafarman, W.N. [Institute of Energy Conversion, University of Delaware, 451 Wyoming Rd., Newark, DE 19716 (United States); Department of Materials Science and Engineering, University of Delaware, 201 Dupont Hall, Newark, DE 19716 (United States)

    2014-12-25

    Highlights: • WO{sub 3} films were deposited by RF reactive sputtering, and annealed in different temperatures. • As deposited films were amorphous while >400 °C annealed films were crystallized as pure monoclinic WO{sub 3} phase. • Annealing at 400–500 °C led to an oxygen deficient surface with a sub-stoichiometric WO{sub 3−x} phase. • Optical bandgap decreased from 3.35 eV to 3.17 eV for the films annealed at 500 °C. • Results are compared with MoO{sub 3} films deposited by a similar technique. - Abstract: Transparent back contacts can be used in thin film solar cells facilitating their potential application in tandem cells, bifacial devices and solar windows. In this study, tungsten oxide (WO{sub 3}) thin films were deposited by Radio Frequency (RF) reactive sputtering in Ar + O{sub 2} ambient. The effects of post deposition anneals in air on the structural, optical, and surface properties of the deposited films were investigated using X-ray diffraction, UV/Vis/NIR spectrophotometry, and X-ray photoelectron spectroscopy, respectively. As-deposited films exhibited amorphous structures with no change after annealing at 300 °C. Samples annealed at 400 and 500 °C were crystallized and identified as pure monoclinic WO{sub 3} phase with (2 0 0) and (0 0 2) preferred orientation, respectively, determined by XRD fiber texture analysis. Scherrer analysis of excess broadening indicated a coherency length of 50 and 65 nm for the 400 and 500 °C annealed films, respectively. High resolution XPS studies showed the presence of W{sup 6+} (WO{sub 3}) oxidation states at the surface of the as-deposited and the 300 °C annealed films. Annealing at 400–500 °C led to an oxygen deficient surface with a sub-stoichiometric WO{sub 3−x} phase. UV/Vis/NIR spectrophotometry revealed that post processing decreased the optical bandgap from 3.30 eV for the as-deposited films to 3.17 eV for the 500 °C annealed films. Results are compared with MoO{sub 3} films

  13. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells

    Wang, DongLin

    2014-01-01

    Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350nm-800nm, the conversion efficiency of solar cells can be further enhanced.

  14. Controlling the processable ZnO and polythiophene interface for dye-sensitized thin film organic solar cells

    Dye-sensitized thin film hybrid solar cells (DS thin film solar cell) were fabricated by one-pot process using solution processable zinc oxide (ZnO) precursor as electron acceptor, ester-functionalized polythiophene copolymer as donor and a squaraine dye. Incorporation of slight amount of ester functionality (6%) in the regioregular poly-3-hexylthiophene (P3HT) main chain leads to enhancement in the photoconversion efficiency of the ester functionalized polymer (P3HT-E) from 0.8% to about 1% (AM1.5, 100 mw/cm2). Photocurrent associated with both of the P3HT-E (400–650 nm) and the squaraine dye (650–750 nm) were observed in incident photon to current efficiency curve of the DS thin film solar cell. This proves that the ZnO/dye/P3HT-E interface could be fabricated by one-pot coating process from ternary mixture based on a ZnO precursor. - Highlights: • Single step and one pot fabrication of dye-sensitized polymer-ZnO hybrid solar cells. • In situ generation of ZnO using its diethyl zinc precursor. • Enhanced photovoltaic performance by introduction of ester functionalized polymers. • Demonstration of far-red photon harvesting by polymer-dye-ZnO ternary blend

  15. Influence of optical properties of ZnO thin-films deposited by spray pyrolysis and RF magnetron sputtering on the output performance of silicon solar cell

    ZnO thin-films were deposited by spray pyrolysis and RF magnetron sputtering techniques. The optical reflection of these thin-films is measured using UV-Vis spectrophotometer. The measured optical reflection data is used in PC-1D simulation software to study the output performance of commercial silicon wafer-based solar cell. As far as optical performance is concerned it could be demonstrated that the sprayed ZnO thin-film under laboratory conditions show equivalent performance compared to sputtered ZnO thin-film. The influence of optical properties of 65 nm thick zinc oxide thin-films deposited by vacuum and non-vacuum techniques on quantum efficiency and IV characteristics of commercial silicon-wafer based solar cell is studied and reported here.

  16. Simulation approach for studying the performances of original superstrate CIGS thin films solar cells

    Bouchama, I., E-mail: bouchama_idris@yahoo.fr [Laboratoire Procedes Materiaux et Energie solaire PROMES-CNRS, Rambla de la Thermodynamique, Technosud, 66100 Perpignan (France); Laboratoire L.I.S., Universite Ferhat Abbas de Setif (Algeria); Djessas, K. [Laboratoire Procedes Materiaux et Energie solaire PROMES-CNRS, Rambla de la Thermodynamique, Technosud, 66100 Perpignan (France); Djahli, F. [Laboratoire L.I.S., Universite Ferhat Abbas de Setif (Algeria); Bouloufa, A. [Laboratoires C.C.N.S. et E. M., Universite Ferhat Abbas de Setif (Algeria)

    2011-08-31

    In this work, we report on the performances of superstrate Cu(In,Ga)Se{sub 2} (CIGS) thin film solar cells with an alternative SLG/SnO{sub 2}:F/CIGS/In{sub 2}Se{sub 3}/Zn structure using AMPS-1D (Analysis of Microelectronic and Photonic structures) device simulator. An inverted surface layer, n-type CIGS layer, is inserted between the In{sub 2}Se{sub 3} buffer and CIGS absorber layers and the SnO{sub 2}:F layer is just a transparent conducting oxide (TCO). The simulation has been carried out by lighting through SnO{sub 2}:F. The obtained results show that the existence of so-called 'ordered defect compound' (ODC) layer in such a structure is the critical factor responsible for the optimization of the performances. Photovoltaic parameters were determined using the current density-voltage (J-V) curve. An optimal absorber and ODC layer thickness has been estimated, that improve significantly the devices efficiency exceeding 15% AM1.5 G. The variation of carrier density in In{sub 2}Se{sub 3} layer has an influence on the superstrate CIGS cells performances. Moreover, the quantum efficiency (Q.E.) characteristics display a maximum value of about 80% in the visible range.

  17. Analysis of post deposition processing for CdTe/CdS thin film solar cells

    McCandless, B.E.; Birkmire, R.W. (Inst. of Energy Conversion, Univ. of Delaware, Newark, DE (United States))

    1991-12-01

    A post-deposition process for optimizing the efficiency of thin film CdTe/CdS solar cells deposited by physical vapor deposition has been developed and the effects of the individual process steps on the materials and device properties have been analyzed. A 400degC heat treatment with CdCl{sub 2} restructures the CdTe resulting in enhanced grain size and crystallographic reorientation. Structural and optical measurements indicate interdiffusion of sulfur and tellurium during the heat treatment resulting in formation of a CdS{sub x}Te{sub 1-x} layer with a narrower band gap than CdTe. Bifacial current-voltage and quantum efficiency analysis of the CdTe devices at various stages of the optimization process shows the evolution of the device from a p-i-n structure to a heterojunction. A chemical treatment improves the open circuit voltage (V{sub oc}) and Cu/Au contact to the CdTe. The optimization process can be applied to cells using CdTe and CdS deposited by different methods. (orig.).

  18. Native Defect Control of CdTe Thin Film Solar Cells by Close-Spaced Sublimation

    Okamoto, Tamotsu; Kitamoto, Shinji; Yamada, Akira; Konagai, Makoto

    2001-05-01

    The control of native defects in the CdTe thin film solar cells was investigated using a novel source for close-spaced sublimation (CSS) process which was prepared by vacuum evaporation with elemental Cd and Te (evaporated source). The evaporated sources were prepared on glass substrates at room temperature, and the Cd/Te ratio was controlled by varying the Cd and Te beam equivalent pressures. In the cells using the Te-rich source, the conversion efficiency was less than 0.2% because of the extremely low shunt resistance. On the other hand, a conversion efficiency above 15% was obtained by using the Cd-rich source. Capacitance-voltage (C-V) characteristics revealed that the acceptor concentration in the CdTe layer increased with increasing Cd/Te ratio of the evaporated source. Furthermore, photoluminescence spectra implied that the formation of the Cd vacancies in the CdTe layer was suppressed using the Cd-rich source.

  19. Deposition and characterization of (Zn,Mg)O buffer layers on CIGSSe thin film solar cells

    Hussmann, Benjamin; Erfurth, Felix; Schoell, Achim [Universitaet Wuerzburg (Germany). Experimentelle Physik II; Niesen, Thomas; Palm, Joerg [Avancis GmbH, Muenchen (Germany); Grimm, Alexander [Hahn-Meitner-Institut Berlin (Germany); Umbach, Eberhard [Universitaet Wuerzburg (Germany). Experimentelle Physik II; Forschungszentrum Karlsruhe (Germany)

    2008-07-01

    (Zn, Mg)O buffer layers on Cu(In,Ga)(S,Se){sub 2}(CIGSSe) thin film solar cells are promising alternatives to CdS buffer layers by featuring comparable efficiencies, better environmental compatibility and the possibility to implement the deposition process into a vacuum processing line. The (Zn,Mg)O buffer layers are deposited by radio frequency magnetron co-sputtering from two separate ZnO and MgO ceramic sputter targets to control the Mg-content and therefore the band gap of the buffer layer. In our experimental setup the sputter preparation chamber is connected with a UHV analysis system which allows in-situ characterization with X-ray photoelectron spectroscopy (XPS). The interface between the absorber and the buffer layer is believed to have a major influence on the cell efficiency and is thus of particular interest in this work. This interface has been investigated during layer deposition by sequentially interrupting the sputter process and performing XPS scans. We observed island growth of (Zn,Mg)O on CIGSSe and a strong oxidation of the absorber surface induced by the deposit. In order to complement the chemical and electronic information with structural data, energy dispersive X-ray analysis, X-ray diffraction, and scanning electron microscopy have been applied.

  20. Simulation approach for studying the performances of original superstrate CIGS thin films solar cells

    In this work, we report on the performances of superstrate Cu(In,Ga)Se2 (CIGS) thin film solar cells with an alternative SLG/SnO2:F/CIGS/In2Se3/Zn structure using AMPS-1D (Analysis of Microelectronic and Photonic structures) device simulator. An inverted surface layer, n-type CIGS layer, is inserted between the In2Se3 buffer and CIGS absorber layers and the SnO2:F layer is just a transparent conducting oxide (TCO). The simulation has been carried out by lighting through SnO2:F. The obtained results show that the existence of so-called 'ordered defect compound' (ODC) layer in such a structure is the critical factor responsible for the optimization of the performances. Photovoltaic parameters were determined using the current density-voltage (J-V) curve. An optimal absorber and ODC layer thickness has been estimated, that improve significantly the devices efficiency exceeding 15% AM1.5 G. The variation of carrier density in In2Se3 layer has an influence on the superstrate CIGS cells performances. Moreover, the quantum efficiency (Q.E.) characteristics display a maximum value of about 80% in the visible range.

  1. Absorption enhancement in thin film a-Si solar cells with double-sided SiO2 particle layers

    陈乐; 王庆康; 沈向前; 陈文; 黄堃; 刘代明

    2015-01-01

    Light absorption enhancement is very important for improving the power conversion efficiency of a thin film a-Si solar cell. In this paper, a thin-film a-Si solar cell model with double-sided SiO2 particle layers is designed, and then the underlying mechanism of absorption enhancement is investigated by finite difference time domain (FDTD) simulation;finally the feasible experimental scheme for preparing the SiO2 particle layer is discussed. It is found that the top and bottom SiO2 particle layers play an important role in anti-reflection and light trapping, respectively. The light absorption of the cell with double-sided SiO2 layers greatly increases in a wavelength range of 300 nm–800 nm, and the ultimate efficiency increases more than 22%compared with that of the flat device. The cell model with double-sided SiO2 particle layers reported here can be used in varieties of thin film solar cells to further improve their performances.

  2. Absorption enhancement in thin film a-Si solar cells with double-sided SiO2 particle layers

    Chen, Le; Wang, Qing-Kang; Shen, Xiang-Qian; Chen, Wen; Huang, Kun; Liu, Dai-Ming

    2015-10-01

    Light absorption enhancement is very important for improving the power conversion efficiency of a thin film a-Si solar cell. In this paper, a thin-film a-Si solar cell model with double-sided SiO2 particle layers is designed, and then the underlying mechanism of absorption enhancement is investigated by finite difference time domain (FDTD) simulation; finally the feasible experimental scheme for preparing the SiO2 particle layer is discussed. It is found that the top and bottom SiO2 particle layers play an important role in anti-reflection and light trapping, respectively. The light absorption of the cell with double-sided SiO2 layers greatly increases in a wavelength range of 300 nm-800 nm, and the ultimate efficiency increases more than 22% compared with that of the flat device. The cell model with double-sided SiO2 particle layers reported here can be used in varieties of thin film solar cells to further improve their performances. Project supported by the National High-Tech Research and Development Program of China (Grant No. 2011AA050518), the University Research Program of Guangxi Education Department, China (Grant No. LX2014288), and the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2013GXNSBA019014).

  3. Ion beam treatment of functional layers in thin-film silicon solar cells

    Zhang, Wendi

    2013-10-01

    In silicon thin-film solar cells, transparent conductive layers have to fulfill the following requirements: high conductivity as effective contact, high transparency to transmit the light into the cell, and a textured surface which provides light scattering. Magnetron sputtered and wet-chemically textured aluminum doped zinc oxide (ZnO:Al) films are widely used as the transparent conductor. The technological goal of this dissertation is to develop an alternative to the wet etching process for light trapping in the thin silicon absorber layers through modification of the glass/ZnO:Al or ZnO:Al/Si interfaces by ion beam treatment. The study focuses on the textured growth of ZnO:Al films on ion beam pretreated glass substrates, and the preparation and application of textured glass for light trapping. The technological aspects such as the etch rates of the glass substrate and ZnO:Al films with different ion beam configurations were studied. The experimental etch rates are compared with simulated and theoretically predicted values. With regard to the ion beam treatment of glass substrate, the influence of the ion pretreated glass on the growth of ZnO:Al films was investigated. The ZnO:Al films grown on ion beam pretreated glass substrates exhibit self-textured morphology with surface roughness of 40 nm while remaining highly conductive. Silicon thin-film solar cells prepared on the as-grown rough ZnO:Al films show that this front contact can provide excellent light trapping effect. The highest initial efficiencies for amorphous single junction solar cells on as-grown rough ZnO:Al films was 9.4%. The as-grown rough morphology was attributed to large conical ZnO:Al grains initiated from the ion pretreated glass surface. It was found that the roughness of the as-grown rough ZnO:Al film is proportional to the number of O dangling bonds created by ion beam treatment on the glass substrate. A growth model was proposed to explain the growth mechanism of ZnO:Al films on Zn- and

  4. Novel R2R Manufacturable Photonic-Enhanced Thin Film Solar Cells; January 28, 2010 -- January 31, 2011

    Slafer, D.; Dalal, V.

    2012-03-01

    Final subcontract report for PV Incubator project 'Novel R2R Manufacturable Photonic-Enhanced Thin Film Solar Cells.' The goal of this program was to produce tandem Si cells using photonic bandgap enhancement technology developed at ISU and Lightwave Power that would have an NREL-verified efficiency of 7.5% on 0.25 cm{sup 2} area tandem junction cell on plastic substrates. This goal was met and exceeded within the timeframe and budget of the program. On smaller area cells, the efficiency was even higher, {approx}9.5% (not verified by NREL). Appropriate polymers were developed to fabricate photonic and plasmonic devices on stainless steel, Kapton and PEN substrates. A novel photonic-plasmon structure was developed which shows a promise of improving light absorption in thin film cells, a better light absorption than by any other scheme.

  5. Cu-doped CdS and its application in CdTe thin film solar cell

    Cu is widely used in the back contact formation of CdTe thin film solar cells. However, Cu is easily to diffuse from the back contact into the CdTe absorber layer and even to the cell junction interface CdS/CdTe. This phenomenon is generally believed to be the main factor affecting the CdTe solar cell stability. In this study Cu was intentionally doped in CdS thin film to study its effect on the microstructural, optical and electrical properties of the CdS material. Upon Cu doping, the VCd− and the surface-state-related photoluminescence emissions were dramatically decreased/quenched. The presence of Cu atom hindered the recrystallization/coalescence of the nano-sized grains in the as-deposited CdS film during the air and the CdCl2 annealing. CdTe thin film solar cell fabricated with Cu-doped CdS window layers demonstrated much decreased fill factor, which was induced by the increased space-charge recombination near the p-n junction and the worsened junction crystalline quality. Temperature dependent current-voltage curve measurement indicated that the doped Cu in the CdS window layer was not stable at both room and higher temperatures

  6. Characterization of Nanocrystalline SiGe Thin Film Solar Cell with Double Graded-Dead Absorption Layer

    Chao-Chun Wang

    2012-01-01

    Full Text Available The nanocrystalline silicon-germanium (nc-SiGe thin films were deposited by high-frequency (27.12 MHz plasma-enhanced chemical vapor deposition (HF-PECVD. The films were used in a silicon-based thin film solar cell with graded-dead absorption layer. The characterization of the nc-SiGe films are analyzed by scanning electron microscopy, UV-visible spectroscopy, and Fourier transform infrared absorption spectroscopy. The band gap of SiGe alloy can be adjusted between 0.8 and 1.7 eV by varying the gas ratio. For thin film solar cell application, using double graded-dead i-SiGe layers mainly leads to an increase in short-circuit current and therefore cell conversion efficiency. An initial conversion efficiency of 5.06% and the stabilized efficiency of 4.63% for an nc-SiGe solar cell were achieved.

  7. Cu-doped CdS and its application in CdTe thin film solar cell

    Yi Deng

    2016-01-01

    Full Text Available Cu is widely used in the back contact formation of CdTe thin film solar cells. However, Cu is easily to diffuse from the back contact into the CdTe absorber layer and even to the cell junction interface CdS/CdTe. This phenomenon is generally believed to be the main factor affecting the CdTe solar cell stability. In this study Cu was intentionally doped in CdS thin film to study its effect on the microstructural, optical and electrical properties of the CdS material. Upon Cu doping, the VCd− and the surface-state-related photoluminescence emissions were dramatically decreased/quenched. The presence of Cu atom hindered the recrystallization/coalescence of the nano-sized grains in the as-deposited CdS film during the air and the CdCl2 annealing. CdTe thin film solar cell fabricated with Cu-doped CdS window layers demonstrated much decreased fill factor, which was induced by the increased space-charge recombination near the p-n junction and the worsened junction crystalline quality. Temperature dependent current-voltage curve measurement indicated that the doped Cu in the CdS window layer was not stable at both room and higher temperatures.

  8. Cu-doped CdS and its application in CdTe thin film solar cell

    Deng, Yi [School of Automation, Wuhan University of Technology, Wuhan, Hubei 430070 (China); College of Electronic and Information Engineering, Hankou University, Wuhan, Hubei 430212 (China); Yang, Jun; Yang, Ruilong; Shen, Kai; Wang, Dezhao [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Deliang, E-mail: eedewang@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-01-15

    Cu is widely used in the back contact formation of CdTe thin film solar cells. However, Cu is easily to diffuse from the back contact into the CdTe absorber layer and even to the cell junction interface CdS/CdTe. This phenomenon is generally believed to be the main factor affecting the CdTe solar cell stability. In this study Cu was intentionally doped in CdS thin film to study its effect on the microstructural, optical and electrical properties of the CdS material. Upon Cu doping, the V{sub Cd{sup −}} and the surface-state-related photoluminescence emissions were dramatically decreased/quenched. The presence of Cu atom hindered the recrystallization/coalescence of the nano-sized grains in the as-deposited CdS film during the air and the CdCl{sub 2} annealing. CdTe thin film solar cell fabricated with Cu-doped CdS window layers demonstrated much decreased fill factor, which was induced by the increased space-charge recombination near the p-n junction and the worsened junction crystalline quality. Temperature dependent current-voltage curve measurement indicated that the doped Cu in the CdS window layer was not stable at both room and higher temperatures.

  9. Micromorph thin-film silicon solar cells with transparent high-mobility hydrogenated indium oxide front electrodes

    Battaglia, Corsin; Erni, Lukas; Boccard, Mathieu; Barraud, Loris; Escarré, Jordi; SöDerströM, Karin; Bugnon, Grégory; Billet, Adrian; Ding, Laura; Despeisse, Matthieu; Haug, Franz-Josef; De Wolf, Stefaan; Ballif, Christophe

    2011-01-01

    We investigate the performance of hydrogenated indium oxide as a transparent front electrode for micromorph thin-film silicon solar cells on glass. Light trapping is achieved by replicating the morphology of state-of-the-art zinc oxide electrodes, known for their outstanding light trapping properties, via ultraviolet nanoimprint lithography. As a result of the high electron mobility and excellent near-infrared transparency of hydrogenated indium oxide, the short-circuit current density of the...

  10. Mechanical synthesis of high purity Cu-In-Se alloy nanopowder as precursor for printed CISe thin film solar cells

    Zaghi, Armin E.; Buffiere, Marie; Brammertz, Guy; Batuk, Maria; Lenaers, Nick; Kniknie, Bas; Hadermann, Joke; MEURIS, Marc; Poortmans, Jef; Vleugels, Jef

    2014-01-01

    Mechanical alloying and ball milling are low cost, up-scalable techniques for the preparation of high purity chalcogenide nanopowders to be used as precursor material for printing thin film solar cells. In this study, high purity copper indium selenium (Cu-In-Se) alloy nanopowders with 20-200 nm particle size were synthesized from macroscopic elemental Cu, In and Se powders via mechanical alloying and planetary ball milling. The particle size distribution, morphology, composition, and purity ...

  11. The effect of ZnS segregation on Zn-rich CZTS thin film solar cells

    Li, Wei; Chen, Jian; Yan, Chang; Hao, Xiaojing, E-mail: xj.hao@unsw.edu.au

    2015-05-25

    Highlights: • Secondary phase segregation in CZTS based solar cells has been studied by TEM. • A “Zn layer exchange” behaviour was found in sulphurisation of Zn/SnCu stacked layers. • XAS reveals a large spike-like CBO (>0.86 eV) between CZTS and ZnS. • Larger ZnS secondary phase proportion increases solar cell’s V{sub oc} but limits J{sub sc}. - Abstract: Analysis of ZnS segregation behaviour and its influence on the device performance has been made on the Zn-rich Cu{sub 2}ZnSnS{sub 4} thin film solar cells. Cross-sectional transmission electron microscopy images reveal that ZnS is the main secondary phase in the Cu{sub 2}ZnSnS{sub 4} layer obtained from a sulphurised Zn/CuSn metallic stack. The excess Zn diffuses from back contact region to top surface of Cu{sub 2}ZnSnS{sub 4} layer accumulating in the form of ZnS. The solar cell with a higher Zn concentration shows a large quantity of isolated ZnS grains at Cu{sub 2}ZnSnS{sub 4} top surface which is close to CdS/Cu{sub 2}ZnSnS{sub 4} heterojunction interface. Soft X-ray absorption spectroscopy indicates a large spike-like conduction band offset between Cu{sub 2}ZnSnS{sub 4} and ZnS. Consequently, such much ZnS precipitates would increase series resistance and generate lower short-circuit current and external quantum efficiency. However, appropriate amount of ZnS at the space charge region of the solar cell has beneficial effects by reducing the heterojunction interface recombination. Therefore, an improved open-circuit voltage and a higher shunt resistance are achieved. This paper provides a possible method to intentionally segregate ZnS at the space charge region by depositing the Zn layer at the bottom of co-sputtered CuSn layer. Although it is difficult to synthesis a pure phase Cu{sub 2}ZnSnS{sub 4} absorber, we can utilise the ZnS secondary phase to improve the Cu{sub 2}ZnSnS{sub 4} solar performance by controlling the Zn-excess amount.

  12. The effect of ZnS segregation on Zn-rich CZTS thin film solar cells

    Highlights: • Secondary phase segregation in CZTS based solar cells has been studied by TEM. • A “Zn layer exchange” behaviour was found in sulphurisation of Zn/SnCu stacked layers. • XAS reveals a large spike-like CBO (>0.86 eV) between CZTS and ZnS. • Larger ZnS secondary phase proportion increases solar cell’s Voc but limits Jsc. - Abstract: Analysis of ZnS segregation behaviour and its influence on the device performance has been made on the Zn-rich Cu2ZnSnS4 thin film solar cells. Cross-sectional transmission electron microscopy images reveal that ZnS is the main secondary phase in the Cu2ZnSnS4 layer obtained from a sulphurised Zn/CuSn metallic stack. The excess Zn diffuses from back contact region to top surface of Cu2ZnSnS4 layer accumulating in the form of ZnS. The solar cell with a higher Zn concentration shows a large quantity of isolated ZnS grains at Cu2ZnSnS4 top surface which is close to CdS/Cu2ZnSnS4 heterojunction interface. Soft X-ray absorption spectroscopy indicates a large spike-like conduction band offset between Cu2ZnSnS4 and ZnS. Consequently, such much ZnS precipitates would increase series resistance and generate lower short-circuit current and external quantum efficiency. However, appropriate amount of ZnS at the space charge region of the solar cell has beneficial effects by reducing the heterojunction interface recombination. Therefore, an improved open-circuit voltage and a higher shunt resistance are achieved. This paper provides a possible method to intentionally segregate ZnS at the space charge region by depositing the Zn layer at the bottom of co-sputtered CuSn layer. Although it is difficult to synthesis a pure phase Cu2ZnSnS4 absorber, we can utilise the ZnS secondary phase to improve the Cu2ZnSnS4 solar performance by controlling the Zn-excess amount

  13. The crystal structure of CdS-CdTe thin film heterojunction solar cells

    Rogers, K.D.; Painter, J.D.; Healy, M.J.; Lane, D.W. [Cranfield Univ. (United Kingdom). Dept. of Mater. and Medical Sci.; Ozsan, M.E. [B.P. Solar Ltd., Middlesex (United Kingdom)

    1999-02-08

    A detailed structural analysis of electrodeposited CdS-CdTe thin film heterojunction solar cells was undertaken. X-ray diffraction and Rutherford backscattering spectrometry were used to provide stoichiometric and microcrystalline data at increasing depths through the CdTe and CdS films. A model of the nature and extent of interdiffusion caused by a post deposition anneal is developed. A region in both pre-annealed and post-annealed samples which possesses a significantly different microstructure to that of the bulk CdTe, was identified. Within this region a stoichiometric gradient occurs and the grain size and preferred orientation decrease with increasing depth. Maximum CdTe film stress (post anneal) is estimated to be 140 MPa close to the interface and a shift in optical band gap of 6 x 10{sup -3} eV was also determined from structural measurements. We provide evidence that sulphur diffusion into CdTe is structurally rather than thermodynamically limited within these systems. (orig.) 15 refs.

  14. Mercury telluride as an ohmic contact to efficient thin film cadmium telluride solar cells

    The formation of a stable, reproducible, low-resistance contact to p-CdTe thin films is a major problem in the fabrication of efficient solar cells. Two general approaches to this problem are: the formation of a region of high carrier concentration under the contact to reduce the contact resistance, and the use of contact materials with a higher work function than p-CdTe. The second approach is investigated in this work using p-HgTe as the contact material. The deposition of p-HgTe on p-CdTe was carried out by the direct combination of the elemental vapors in a gas flow system and by the close-spaced sublimation, (CSS) technique. The process parameters in the direct combination technique are more readily controlled than those in the CSS technique. The p-HgTe/p-CdTe contact resistance has been found to be very similar to the Au/p-CdTe contact resistance

  15. Characterization of Highly Efficient CdTe Thin Film Solar Cells by Low-Temperature Photoluminescence

    Okamoto, Tamotsu; Matsuzaki, Yuichi; Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    1998-07-01

    Highly efficient CdTe thin film solar cells prepared by close-spaced sublimation (CSS) method with a glass/ITO/CdS/CdTe/Cu-doped carbon/Ag structure were characterized by low-temperature photoluminescence (PL) measurement. A broad 1.42 eV band probably due to VCd Cl defect complexes appeared as a result of CdCl2 treatment. CdS/CdTe junction PL revealed that a CdSxTe1-x mixed crystal layer was formed at the CdS/CdTe interface region during the deposition of CdTe by CSS and that CdCl2 treatment promoted the formation of the mixed crystal layer. Furthermore, in the PL spectra of the heat-treated CdTe after screen printing of the Cu-doped carbon electrode, a neutral-acceptor bound exciton (ACu0, X) line at 1.590 eV was observed, suggesting that Cu atoms were incorporated into CdTe as effective acceptors after the heat treatment.

  16. Dip coated nanocrystalline CdZnS thin films for solar cell application

    Nanocrystalline cadmium sulfide (CdS) and zinc cadmium sulfide (ZnCdS) thin films have been grown via simple and low cost dip coating technique. The prepared films are characterized by X-ray diffraction (XRD), atomic force microscopic (AFM) and UV-VIS spectrophotometer techniques to reveal their structural, morphological and optical properties. XRD shows that both samples grown have zinc blende structure. The grain size is calculated as 6.2 and 8 nm using Scherrer’s formula. The band gap value of CdS and CdZnS film is estimated to be 2.58 and 2.69 eV respectively by UV-vis spectroscopy. Photoelectrochemical (PEC) investigations are carried out using cell configuration as n-CdZnS/(1M NaOH + 1M Na2S + 1M S)/C. The photovoltaic output characteristic is used to calculate fill-factor (FF) and solar conversion efficiency (η)

  17. Dip coated nanocrystalline CdZnS thin films for solar cell application

    Dongre, J. K., E-mail: jk-dongre@yahoo.com; Chaturvedi, Mahim; Patil, Yuvraj; Sharma, Sandhya; Jain, U. K. [Government Autonomous Post Graduate College Chhindwara, 480001 (India)

    2015-07-31

    Nanocrystalline cadmium sulfide (CdS) and zinc cadmium sulfide (ZnCdS) thin films have been grown via simple and low cost dip coating technique. The prepared films are characterized by X-ray diffraction (XRD), atomic force microscopic (AFM) and UV-VIS spectrophotometer techniques to reveal their structural, morphological and optical properties. XRD shows that both samples grown have zinc blende structure. The grain size is calculated as 6.2 and 8 nm using Scherrer’s formula. The band gap value of CdS and CdZnS film is estimated to be 2.58 and 2.69 eV respectively by UV-vis spectroscopy. Photoelectrochemical (PEC) investigations are carried out using cell configuration as n-CdZnS/(1M NaOH + 1M Na2S + 1M S)/C. The photovoltaic output characteristic is used to calculate fill-factor (FF) and solar conversion efficiency (η)

  18. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  19. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  20. Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis

    Jiao Bao-Chen; Zhang Xiao-Dan; Wei Chang-Chun; Sun Jian; Ni Jian; Zhao Ying

    2011-01-01

    Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10-3 Ω· cm and particle grains. The double-layers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58×10-3 Ω· cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substrate-layer, and the second-layer plays a large part in the resistivity of the double-layer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.

  1. Transmission Electron Microscopy of the Textured Silver Back Reflector of a Thin Film Silicon Solar Cell: From Crystallography to Optical Absorption

    Duchamp, Martial; Söderström, K.; Jeangros, Q.;

    2011-01-01

    The study of light trapping in amorphous, microcrystalline and micromorph thin-film Si solar cells is an important and active field of investigation. It has been demonstrated that the use of a rough Ag back-reflector lead to an increase of short circuit current but also to losses through the...... the origin of optical absorption losses previously measured in Ag back-reflector of thin-film Si solar cells....

  2. A NEW CONCEPT TOWARD INDUSTRIALIZATION OF Cu-Ⅲ-Ⅵ2 THIN FILM SOLAR CELLS AND SOME PRELIMINARY EXPERIMENT RESULTS

    L.X. Shao; H.L. Hwang

    2005-01-01

    A new concept of full vacuum manufacturing for Cu-Ⅲ-Ⅳ2 thin-film solar cells has been discussed. Cu-Ⅲ-Ⅳ2 thin-film solar cells manufactured using full in-line reactive sputtering will result in lower cost than that of the conventional method with CdS layer fabricated with chemical bath deposition (CBS) method. Using reactive sputtering process with organometallic gases, the compositions and electronic properties of Cu-Ⅲ-Ⅳ2 thin-film can be fine-tuned and precisely controlled. n-type Cu-Ⅲ-Ⅳ2 film and ZnS suffer layer can also be deposited using the in-line sputtering instead of using the CdS layer. The environmental pollution problems arising from using CdS can be eliminated and the ultimate goal of full in-line process development can then be realized. Some preliminary experimental results on a modal solar cell fabricated by the new technique in the new concept have been presented.

  3. Polycrystalline silicon thin film solar cells prepared by PECVD-SPC

    Buitrago, R.H.; Risso, G.A.; Cutrera, M.; Battioni, M.; De Bernardez, L.; Schmidt, J.A.; Arce, R.D.; Koropecki, R.R. [Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET-UNL, Guemes 3450, CP 3000, Santa Fe (Argentina)

    2008-07-15

    Among the most promising technological alternatives for the development of photovoltaic modules and cells of a low cost, good energetic conversion and feasibility for mass production, polycrystalline silicon thin film solar cells deposited directly on a transparent substrate are currently being considered the best. We have developed in our laboratory a PECVD reactor capable of producing the deposition of amorphous hydrogenated silicon at rates of above 2 nm/seg, allowing a significant production per line on the plant. Discharge gas is silane, to which diborane or phosphine is added so as to form the cell. Basically, work is done on a structure of cell type TCO/n+/p-/p+/M, which has 2 {mu}m of total thickness. Schott AF-37 glass is used as a substrate, for their ability to withstand temperatures of up to 800 C. The amorphous cell is subsequently annealed at gradual temperatures of 100 C to achieve dehydrogenation up to 650-700 C for 12 h until their complete crystallization is achieved. Our results show a complete crystallization of silicon with a grain size of less than a micron, with a dehydrogenation process at 500 C, leaving a remainder of less than 1% in hydrogen as monohydrate. The parameters of the cell estimated from the IV curve yield low values, FF<0.55, Icc <200 {mu}A and Voc<420 mV. The high series resistance is due to the grain size and defect density, which will be attempted to be improved by post-hydrogenation and rapid thermal annealing (RTA) methods at high temperatures. (author)

  4. Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells

    Han, Lihao; Abdi, Fatwa F.; Van De Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Arno H. M. Smets

    2014-01-01

    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2 % under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten–bismuth vanadate (W:BiVO_4) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light t...

  5. Development of copper sulfide/cadmium sulfide thin-film solar cells

    Szedon, J. R.; Biter, W. J.; Dickey, H. C.

    1982-03-08

    The most important accomplishments during this period were to demonstrate and to elucidate further the complex effects that occur during the aging of Cu/sub 2/S/CdS thin-film solar cells in flowing wet oxygen. There are two distinct effects. At constant illumination, the short-circuit current of cells aged at room temperature consistently decreases with time. The second effect, related to diode opposing current, is more involved and may result from several competing mechanisms. Over the short term (approx. 4 to 5 hours), the magnitude of diode opposing current decreases. After approx. 20 hours of aging, opposing current generally returns to the level achieved after hydrogen annealing which immediately preceded the aging sequence. Optical measurements of the spectral transmission of the Cu/sub 2/S layers in a cell content have been made using a silicon detector epoxied to the back of a CdS cell after the copper foil substrate was removed. There is no significant change in Cu/sub 2/S transmission behavior for wavelengths ranging from 525 to 1000 nm during wet-oxygen aging for periods of 2 to 36 hours. This suggests that the decrease in J/sub SC/ at constant illumination, for the aging experiments in a flowing wet-oxygen ambient, arises because of changes in minority-carrier transport properties of the Cu/sub 2/S. Before developing a method for using an epoxied silicon detector to measure optical behavior of the Cu/sub 2/S layer, we explored the possibility of using a junction-containing wafer of silicon as a substrate for deposited CdS films. Some monolithic structures were successfully fabricated. Comparisons were made of CdS grain structure details in the junction detector area and in an adjacent metallized area.

  6. In situ monitoring the growth of thin-film ZnS/Zn (S,O) bilayer on Cu-chalcopyrite for high performance thin film solar cells

    Saez-Araoz, R.; Abou-Ras, D. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienicker Strasse 100, 14109 Berlin (Germany); Niesen, T.P. [AVANCIS GmbH and Co KG Otto-Hahn-Ring 6, 81739 Munich (Germany); Neisser, A.; Wilchelmi, K. [SULFURCELL Solartechnik GmbH Barbara-McClintock-Strasse 11, 12489 Berlin (Germany); Lux-Steiner, M.Ch. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienicker Strasse 100, 14109 Berlin (Germany); Ennaoui, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienicker Strasse 100, 14109 Berlin (Germany)], E-mail: ennaoui@helmholtz-berlin.de

    2009-02-02

    This paper highlights the crucial role that the control of the chemical bath deposition (CBD) process plays for buffer production of Cu-chalcopyrite solar-cell devices. ZnS/Zn (S,O) bilayer was deposited on CuInS{sub 2} (CIS) and Cu(In,Ga)(SSe){sub 2} (CIGSSe) and monitored using turbidity measurements of the solution. The results were correlated to the X-ray photoemission spectra of the samples obtained by interruption of the process at sequential stages. Two different feature regimes were distinguished: In the first stage, a heterogeneous reaction takes place on the absorber resulting in the formation of pure ZnS. The second stage of the process is homogeneous, and the in-situ turbidity measurement shows a loss in the transmission of light through the CBD solution. The measured ZnL3M45M45 Auger-peaks, during this second stage of the process, show a shift of the kinetic energy from pure ZnS to a solid-solution ZnS/ZnO ('Zn (S,O)') with decreasing amount of sulfur. These results are supported by the observations from Energy-filtered transmission electron microscopy. This paper also demonstrates that monitoring of the CBD process combined with the basic understanding using surface and interface analysis have contributed to improve the reproducibility and to enhance the photovoltaic performance of Cu-chalcopyrite thin-film solar modules.

  7. In situ monitoring the growth of thin-film ZnS/Zn (S,O) bilayer on Cu-chalcopyrite for high performance thin film solar cells

    This paper highlights the crucial role that the control of the chemical bath deposition (CBD) process plays for buffer production of Cu-chalcopyrite solar-cell devices. ZnS/Zn (S,O) bilayer was deposited on CuInS2 (CIS) and Cu(In,Ga)(SSe)2 (CIGSSe) and monitored using turbidity measurements of the solution. The results were correlated to the X-ray photoemission spectra of the samples obtained by interruption of the process at sequential stages. Two different feature regimes were distinguished: In the first stage, a heterogeneous reaction takes place on the absorber resulting in the formation of pure ZnS. The second stage of the process is homogeneous, and the in-situ turbidity measurement shows a loss in the transmission of light through the CBD solution. The measured ZnL3M45M45 Auger-peaks, during this second stage of the process, show a shift of the kinetic energy from pure ZnS to a solid-solution ZnS/ZnO ('Zn (S,O)') with decreasing amount of sulfur. These results are supported by the observations from Energy-filtered transmission electron microscopy. This paper also demonstrates that monitoring of the CBD process combined with the basic understanding using surface and interface analysis have contributed to improve the reproducibility and to enhance the photovoltaic performance of Cu-chalcopyrite thin-film solar modules

  8. Co-electroplated Kesterite Bifacial Thin-Film Solar Cells: A Study of Sulfurization Temperature.

    Ge, Jie; Chu, Junhao; Yan, Yanfa; Jiang, Jinchun; Yang, Pingxiong

    2015-05-20

    Earth-abundant material, kesterite Cu2ZnSnS4 (CZTS), demonstrates the tremendous potential to serve as the absorber layer for the bifacial thin-film solar cell. The exploration of appropriate sulfurization conditions including annealing temperature is significant to gain insight into the growth mechanism based on the substrates using transparent conductive oxides (TCO) and improve device performance. The kesterite solar absorbers were fabricated on ITO substrates by sulfurizing co-electroplated Cu-Zn-Sn-S precursors in argon diluted H2S atmosphere at different temperatures (475-550 °C) for 30 min. Experimental proof, including cross-section scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, UV-vis-NIR transmission spectrum, and Raman and far-infrared spectroscopy, is presented for the crystallization of CZTS on an ITO substrate and the interfacial reaction between the ITO back contact and CZTS absorber. The complete conversion of precursor into CZTS requires at least 500 °C sulfurization temperature. The aggressive interfacial reaction leading to the out-diffusion of In into CZTS to a considerable extent, formation of tin sulfides, and electrically conductive degradation of ITO back contact occurs at the sulfurization temperatures higher than 500 °C. The bifacial devices obtained by 520 °C sulfurization exhibit the best conversion efficiencies and open circuit voltages. However, the presence of non-ohmic back contact (secondary diode), the short minority lifetime, and the high interfacial recombination rates negatively limit the open circuit voltage, fill factor, and efficiency, evidenced by illumination/temperature-dependent J-V, frequency-dependent capacitance-voltage (C-V-f), time-resolved PL (TRPL), and bias-dependent external quantum efficiency (EQE) measurements. PMID:25871647

  9. Optimized conditions for the improvement of thin film CdS/CdTe solar cells

    Efficient thin film CdS/CdTe solar cell performance requires optimum parameters of each layer of this cell and of the barrier structure. Moreover, the effect of optical losses, recombination losses at front and back surface of CdTe and recombination losses in the space-charge region (SCR) must be considered in order to really analyze the role of these parameters on the performance of these cells. This work is focused on studying theoretically the effect of the thickness of the front contact (ITO), thickness of the window layer (CdS), thickness of the absorber layer (CdTe), width of the space-charge region and electron lifetime on the efficiency of CdS/CdTe solar cells. The reflection losses from interfaces and absorption losses in ITO and CdS, front and rear surface recombination losses of CdTe as well as recombination losses in SCR have been studied. It has been observed that the short-circuit current strongly depends on the thickness of ITO, thickness of CdS, thickness CdTe and electron lifetime. The concentration of uncompensated impurities (Na − Nd) in CdTe, which determines the width of SCR, plays a key role in the generation of photocurrent. The recombination losses in the SCR decrease rapidly with increasing the carrier lifetime in this region and can be ignored at lifetime of 10−7 s. The reflectivity from the back contact introduces a small influence in increasing the short-current density particularly at thick absorber layer (5–8 μm). Under the conditions of Na − Nd ~ 1016 cm−3, τn = 10−6 s, dCdTe = 8 μm, dITO = 100 nm, and dCdS = 100 nm, the recombination and optical losses record their minimum ratio of 27%. Most of these losses (24%) are due to the optical losses. The efficiency of CdS/CdTe under these parameters is about 18.2% which is exactly matching with the recent experimental studies. Moreover, an ultrathin CdTe (= 1 μm) is sufficient to introduce high efficiency of 16.4%. - Highlights: • This work represents a theoretical study

  10. Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off

    Using the epitaxial lift-off (ELO) technique, a III-V device structure can be separated from its GaAs substrate by selective wet etching of a thin release layer. The thin-film structures obtained by the ELO process can be cemented or van der Waals bonded on arbitrary smooth surface carriers for further processing. It is shown that the ELO method, initially able to separate millimetre-sized GaAs layers with a lateral etch rate of about 1 mm/h, has been developed to a process capable to free the entire 2-in. epitaxial structures from their substrates with etch rates up to 30 mm/h. With these characteristics the method has a large potential for the production of high efficiency thin-film solar cells. By choosing the right deposition and ELO strategy, the thin-film III-V cells can be adequately processed on both sides allowing for an entire range of new cell structures. In the present work, the performance of semi-transparent bifacial solar cells, produced by the deposition of metal grid contacts on both sides, was evaluated. Reflection of light at the rear side of the bifacial GaAs solar cells was found to result in an enhanced collection probability of the photon-induced carriers compared to that of regular III-V cells on a GaAs substrate. To enhance this effect, thin-film GaAs cells with gold mirror back contacts were prepared. Even in their present premature stage of development, these single-junction thin-film cells reached a record efficiency of 24.5% which is already very close to the 24.9% efficiency that was obtained with a regular GaAs cell on a GaAs substrate. From this it could be concluded that, as a result of the photon confinement, ELO cells require a significantly thinner base layer than regular GaAs cells while at the same time they have the potential to reach a higher efficiency

  11. Sputtered Al-doped ZnO transparent conducting thin films suitable for silicon solar cells

    Ben Ayadi, Z., E-mail: Zouhaier.BenAyadi@fsg.rnu.tn [Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Mahdhi, H. [Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Djessas, K. [Laboratoire Procédés, Matériaux et Energie Solaire (PROMES-CNRS), TECNOSUD, Rambla de la Thermodynamique, 66100 Perpignan (France); Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 68860, Perpignan Cedex9 (France); Gauffier, J.L. [Département de Génie Physique, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4 (France); and others

    2014-02-28

    Highly transparent conducting Al-doped zinc oxide (AZO) thin films have been grown onto p-type porous silicon substrates by RF-magnetron sputtering at room temperature using aluminum doped nanocrystalline powder. The obtained AZO films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. The films are highly transparent in the visible wavelength region with a transmittance higher than 85% and an electrical resistivity of 1.56 × 10{sup −4} Ω·cm was obtained at room temperature. On the other hand, we have studied the position of the p–n junction involved in the In{sub 2}O{sub 3}:SnO{sub 2}/(n)AZO/Si(p) structure, by electron-beam induced current technique. Current density–voltage characterizations in dark and under illumination were also investigated. The cell exhibits an efficiency of 5%. - Highlights: • Al-doped zinc oxide (AZO) thin films were grown by RF-magnetron sputtering. • AZO nanopowder compacted target was prepared by a sol–gel method. • AZO thin films are polycrystalline and have preferred orientation along c-axis. • We report a photovoltaic effect in Si(p)/porous silicon/AZO heterostructure. • The cell exhibits an efficiency of 5%.

  12. Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell

    Wang, Mang; Yi, Jie; Yang, Sui; Cao, Zhou; Huang, Xiaopan; Li, Yuanhong; Li, Hongxing; Zhong, Jianxin

    2016-09-01

    Mg doped ZnO (ZMO) film with the tunable bandgap can adjust the conduction band offset of the window/chalcopyrite absorber heterointerface to positive to reduce the interface recombination and resulting in an increasement of chalcopyrite based solar cell efficiency. A systematic study of the effect of the electrodeposition potential on morphology, crystalline structure, crystallographic orientation and optical properties of ZMO films was investigated. It is interestingly found that the prepared doped samples undergo a significant morphological change induced by the deposition potential. With negative shift of deposition potential, an obvious morphology evolution from nanorod structrue to particle covered films was observed. A possible growth mechanism for explaining the morphological change is proposed and briefly discussed. The combined optical techniques including absorption, transmission and photoluminescence were used to study the obtained ZMO films deposited at different potential. The sample deposited at -0.9 V with the hexagonal nanorods morphology shows the highest optical transparency of 92%. The photoluminescence spectra reveal that the crystallization of the hexagonal nanorod ZMO thin film deoposited at -0.9 V is much better than the particles covered ZMO thin film. Combining the structural and optical properties analysis, the obtained normal hexagonal nanorod ZMO thin film could potentially be useful in nanostructured chalcopyrite solar cells to improve the device performance.

  13. Characterization of Optic Properties ZnO:Al Thin Film on Glass Substrate for Solar Cell Window

    It has been characterized a ZnO:Al thin film growth using sputtering technique for solar cell window. The aims of this research is to get a ZnO:Al thin film that can be used as a TCO (Transparent Conducting Oxide) on amorphous silicon solar cell. To get an optimum properties, deposition process has been done for various parameters, such as composition/concentration of Al, substrate temperature, gas pressure and deposition time. Based on experiments result, it is found that the optimum result was achieved at temperature 450 oC, gas pressure 6 x 10 -2 torr and time 1.5 hours. From optical properties (transmittance) measurements using UV-vis, it was found that the optimum results was achieved at temperature 450 oC. At this conditions, wave length (500 - 800) nm, the transmittance was (50 - 82) %, at pressure 6 x 10 -2 torr the transmittance was (50 - 80) % and at deposition time 1.5 hours was (49 - 81) %. For ZnO thin film, was at wave length (500 - 800) nm, the transmittance was (78 - 80) %. From micro structure analysis using SEM, it was found that the thickness layer of ZnO was 1.5 μm and 1.3 μm for ZnO: Al. While from surface morphology it was found that for ZnO thin layer the grains was distributed homogeneously, while for ZnO: Al the grains was distributed unhomogeneously. (author)

  14. Polymer and organic solar cells viewed as thin film technologies: What it will take for them to become a success outside academia

    Krebs, Frederik C; Jørgensen, Mikkel

    2013-01-01

    The polymer and organic solar cell technology is critically presented in the context of other thin film technologies with a specific focus on what it will take to make them a commercial success. The academic success of polymer and organic solar cells far outweigh any other solar cell technology w...

  15. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  16. Surface Modification of Aerosol-Assisted CVD Produced TiO2 Thin Film for Dye Sensitised Solar Cell

    SuPei Lim

    2014-01-01

    Full Text Available We report a simple and convenient method for the preparation of Ag/TiO2 thin films supported on indium tin oxide, which was achieved by sonochemical deposition of Ag+ on aerosol-assisted chemical vapour deposited TiO2 thin films. Posttreatment was performed on the film by immersion in HCl. The as-prepared composite film was characterised by X-ray diffraction, ultraviolet-visible absorption spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy. The photoelectrochemical measurements and J-V characterisation showed approximately fivefold increase in photocurrent density generation and approximately sevenfold enhancement in dye sensitiser solar cell (DSSC conversion efficiency, which was achieved after modification of the TiO2 film with HCl posttreatment and Ag particle deposition. The improved photocurrent density of 933.30 μA/cm2, as well as DSSC power conversion efficiency of 3.63% with high stability, is an indication that the as-synthesised thin film is a potential candidate for solar energy conversion applications.

  17. Combined model of non-conformal layer growth for accurate optical simulation of thin-film silicon solar cells

    Sever, M.; Lipovsek, B.; Krc, J.; Campa, A.; Topic, M. [University of Ljubljana, Faculty of Electrical Engineering Trzaska cesta 25, Ljubljana 1000 (Slovenia); Sanchez Plaza, G. [Technical University of Valencia, Valencia Nanophotonics Technology Center (NTC) Valencia 46022 (Spain); Haug, F.J. [Ecole Polytechnique Federale de Lausanne EPFL, Institute of Microengineering IMT, Photovoltaics and Thin-Film Electronics Laboratory, Neuchatel 2000 (Switzerland); Duchamp, M. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Institute for Microstructure Research, Research Centre Juelich, Juelich D-52425 (Germany); Soppe, W. [ECN-Solliance, High Tech Campus 5, Eindhoven 5656 AE (Netherlands)

    2013-12-15

    In thin-film silicon solar cells textured interfaces are introduced, leading to improved antireflection and light trapping capabilities of the devices. Thin-layers are deposited on surface-textured substrates or superstrates and the texture is translated to internal interfaces. For accurate optical modelling of the thin-film silicon solar cells it is important to define and include the morphology of textured interfaces as realistic as possible. In this paper we present a model of thin-layer growth on textured surfaces which combines two growth principles: conformal and isotropic one. With the model we can predict the morphology of subsequent internal interfaces in thin-film silicon solar cells based on the known morphology of the substrate or superstrate. Calibration of the model for different materials grown under certain conditions is done on various cross-sectional scanning electron microscopy images of realistic devices. Advantages over existing growth modelling approaches are demonstrated - one of them is the ability of the model to predict and omit the textures with high possibility of defective regions formation inside the Si absorber layers. The developed model of layer growth is used in rigorous 3-D optical simulations employing the COMSOL simulator. A sinusoidal texture of the substrate is optimised for the case of a micromorph silicon solar cell. More than a 50 % increase in short-circuit current density of the bottom cell with respect to the flat case is predicted, considering the defect-free absorber layers. The developed approach enables accurate prediction and powerful design of current-matched top and bottom cell.

  18. Impacts of proton irradiation on optical and electrical properties of Cu(In,Ga)Se2 thin films and solar cells

    The optical and electrical properties of proton irradiated Cu(In,Ga)Se2 (CIGS) solar cells and the thin films that compose the CIGS solar cell structure were investigated. The transmittance and resistivity of transparent conducting oxide window layers remained constant for a fluence of up to 3 × 1015 cm-2. For CIGS thin films, the number of non-radiative recombination center increases under proton irradiation. In CIGS solar cells, decreasing JSC reflected the degradation of the depletion layer of the CdS/CIGS interface. These results constitute the first step in clarifying the degradation mechanism of CIGS solar cells. (author)

  19. Impact of contamination on hydrogenated amorphous silicon thin films and solar cells

    Woerdenweber, Jan

    2011-09-26

    This thesis deals with atmospheric contamination and cross-contamination of boron (single-chamber process) of the intrinsic absorber layer (i-layer) of p-i-n thin film solar cells based on hydrogenated amorphous silicon. The atmospheric contaminations were introduced by means of intentional leaks. Hereby, the focus is on the influence of contamination species (oxygen and nitrogen), quantity of contamination (leak flow), source of contamination (leaks at chamber wall or in the process gas pipe), and plasma power on the properties of solar cells. Thereby, the minimum requirements for the purity of vacuum and process gas as well as leak conditions of the recipient and gas pipe system have been determined. Additionally, deposition regimes were developed, where the incorporation of impurities is significantly suppressed. For standard processes critical levels of nitrogen and oxygen contamination are determined to be {proportional_to} 4 x 10{sup 18} cm{sup -3} and {proportional_to} 2 x 10{sup 19} cm{sup -3}, respectively, for a leak situated at the chamber wall. Above these concentrations the solar cell efficiency deteriorates. In literature, incorporation of oxygen and nitrogen in doping configuration is assumed to be the reason for the cell deterioration. This assumption is supported by additional material studies of contaminated absorber layers done in this work. The difference in critical concentration is due to the higher doping efficiency of nitrogen compared to that for oxygen. Nevertheless, applying an air leak the critical concentrations of O and N are reached almost simultaneously since the incorporation probability of oxygen is about one order of magnitude higher compared to that for nitrogen. Applying a leak in the process gas pipe the critical oxygen contamination level increases to {proportional_to} 2 x 10{sup 20} cm{sup -3} whereas the critical nitrogen level remains unchanged compared to a chamber wall leak. Applying a deposition regime with a very high

  20. In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells

    Buehlmann, Peter; Bailat, J.; Dominé, Didier; Billet, Adrian; Meillaud, F.; Feltrin, Andrea; Ballif, Christophe

    2008-01-01

    We show that SiO-based intermediate reflectors (SOIRs) can be fabricated in the same reactor and with the same process gases as used for thin-film silicon solar cells. By varying input gas ratios, SOIR layers with a wide range of optical and electrical properties are obtained. The influence of the SOIR thickness in the micromorph cell is studied and current gain and losses are discussed. Initial micromorph cell efficiency of 12.2% (Voc=1.40 V, fill factor=71.9%, and Jsc=12.1 mA/cm2) is achiev...

  1. Electronic grain boundary properties in polycrystalline Cu(In,Ga)Se2 semiconductors for thin film solar cells

    Solar cells based on polycrystalline Cu(In,Ga)Se2 (CIGSe) thin film absorbers reach the highest energy conversion efficiency among all thin film solar cells. The record efficiency is at least partly attributed to benign electronic properties of grain boundaries (GBs) in the CIGSe layers. However, despite a high amount of research on this phenomenon the underlying physics is not sufficiently understood. This thesis presents an elaborate study on the electronic properties of GBs in CIGSe thin films. Kelvin probe force microscopy (KPFM) was employed to investigate the electronic properties of GBs in dependence of the Ga-content. Five CIGSe thin lms with various Ga-contents were grown by means of similar three stage co-evaporation processes. Both as grown as well as chemically treated (KCN etched) thin films were analyzed. The chemical treatment was employed to remove surface oxides. No difference in electronic GB properties was found with or without the chemical treatment. Therefore, we conclude that a moderate surface oxidation does not alter the electronic properties of GBs. In general, one can observe significant variations of electronic potential barriers at GBs. Under consideration of the averaging effect of the work function signal of nanoscale potential distributions in KPFM measurements which was quantified in the course of this thesis both positive and negative potential barriers in a range between ∼-350 mV and ∼+450 mV were detected. Additionally, variations in the defect densities at GBs between ∼3.1 x 1011 cm-2 and ∼2.1 x 1012 cm-2 were found. However, no correlation between the electronic properties of GBs and the Ga-content of CIGSe thin films was discovered. Consequently, one cannot explain the drop in device efficiency observed for CIGSe thin film solar cells with a high Ga-content by a change of the electronic properties of GBs. Combined KPFM and electron backscatter diffraction measurements were employed for the first time on CIGSe thin films

  2. Electronic grain boundary properties in polycrystalline Cu(In,Ga)Se{sub 2} semiconductors for thin film solar cells

    Baier, Robert

    2012-06-25

    Solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGSe) thin film absorbers reach the highest energy conversion efficiency among all thin film solar cells. The record efficiency is at least partly attributed to benign electronic properties of grain boundaries (GBs) in the CIGSe layers. However, despite a high amount of research on this phenomenon the underlying physics is not sufficiently understood. This thesis presents an elaborate study on the electronic properties of GBs in CIGSe thin films. Kelvin probe force microscopy (KPFM) was employed to investigate the electronic properties of GBs in dependence of the Ga-content. Five CIGSe thin lms with various Ga-contents were grown by means of similar three stage co-evaporation processes. Both as grown as well as chemically treated (KCN etched) thin films were analyzed. The chemical treatment was employed to remove surface oxides. No difference in electronic GB properties was found with or without the chemical treatment. Therefore, we conclude that a moderate surface oxidation does not alter the electronic properties of GBs. In general, one can observe significant variations of electronic potential barriers at GBs. Under consideration of the averaging effect of the work function signal of nanoscale potential distributions in KPFM measurements which was quantified in the course of this thesis both positive and negative potential barriers in a range between ∼-350 mV and ∼+450 mV were detected. Additionally, variations in the defect densities at GBs between ∼3.1 x 10{sup 11} cm{sup -2} and ∼2.1 x 10{sup 12} cm{sup -2} were found. However, no correlation between the electronic properties of GBs and the Ga-content of CIGSe thin films was discovered. Consequently, one cannot explain the drop in device efficiency observed for CIGSe thin film solar cells with a high Ga-content by a change of the electronic properties of GBs. Combined KPFM and electron backscatter diffraction measurements were employed for the

  3. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells.

    Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively. PMID:26413646

  4. Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source

    Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin

    2015-08-01

    Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.

  5. Fabrication of solution processed 3D nanostructured CuInGaS2 thin film solar cells

    In this study we demonstrate the fabrication of CuInGaS2 (CIGS) thin film solar cells with a three-dimensional (3D) nanostructure based on indium tin oxide (ITO) nanorod films and precursor solutions (Cu, In and Ga nitrates in alcohol). To obtain solution processed 3D nanostructured CIGS thin film solar cells, two different precursor solutions were applied to complete gap filling in ITO nanorods and achieve the desirable absorber film thickness. Specifically, a coating of precursor solution without polymer binder material was first applied to fill the gap between ITO nanorods followed by deposition of the second precursor solution in the presence of a binder to generate an absorber film thickness of ∼1.3 μm. A solar cell device with a (Al, Ni)/AZO/i-ZnO/CdS/CIGS/ITO nanorod/glass structure was constructed using the CIGS film, and the highest power conversion efficiency was measured to be ∼6.3% at standard irradiation conditions, which was 22.5% higher than the planar type of CIGS solar cell on ITO substrate fabricated using the same precursor solutions. (paper)

  6. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-08-01

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03046c

  7. Impacts of electron irradiation on the optical and electrical properties of CIGS thin films and solar cells

    Full text : A thin film solar cell composed of polycrystalline Cu(In,Ga)Se2 (CIGS) is essentially light-weight and shows high conversion efficiency and excellent radiation tolerance. These characteristics lead to CIGS solar cells very attractive for space applications. However, only a few irradiation studies have been carried out on CIGS thin films and entire solar cell structure, resulting in limited knowledge on the mechanisms responsible for the irradiation-induced damage. In addition, the cell performance is known to change due to the damp heat and/or light soaking effects. Accordingly, understanding the degradation mechanisms of CIGS, ZnO, a buffer, Mo, and even glass components is necessary for not only space use but also commercial use. In this presentation, electron irradiation effects will be discussed for CIGS solar cells and each layer that composed the CIGS solar cell structure such as CIGS, CdS, undoped ZnO, and Ga- or Al-doped ZnO films. Electron irradiation experiments were carried out using the DYNAMITRON electron accelerator. The electron energy was fixed at 2 MeV and the fluence was varied between 1 * 1013 and 1 * 1018 cm-2. All the irradiated CIGS films exhibited common PL peaks originating from donor to acceptor transitions. PL peak intensity due to Cu-related point defects, which did not affect solar cell performance significantly, increased in CIGS thin films with increasing electron irradiation. Conversely, transmittance spectra of all the irradiated ZnO and ZnO:Al films did not change by the electron irradiation up to 6 * 1017 cm-2. The normalized performance parameters of the irradiated CIGS solar cell such as Voc, Jsc, and η are shown in article as a function of irradiation fluence. η tended to decrease in comparison with Voc and Jsc for large irradiation fluence. Shunt resistance and series resistance of the CIGS solar cells degraded even though the resistivity of each layer did not change after electron irradiation. The result

  8. Characterization of Highly Efficient CdTe Thin Film Solar Cells by the Capacitance-Voltage Profiling Technique

    Okamoto, Tamotsu; Yamada, Akira; Konagai, Makoto

    2000-05-01

    The electrical properties of highly efficient CdTe thin film solar cells prepared by close-spaced sublimation (CSS) were investigated by capacitance-voltage (C-V) measurement. According to the dependence of the cell performance on the substrate temperature in the CSS process, the open-circuit voltage (Voc) increased with increasing the substrate temperature below 630°C@. The carrier concentration profiles revealed that the net acceptor concentration exponentially increased from the CdS/CdTe interface to the rear and that the acceptor concentration increased with increasing substrate temperature. This result suggests that Voc is improved as a result of the increase in the acceptor concentration.

  9. Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p-n junction solar cells

    Park, Si-Nae; Sung, Shi-Joon; Sim, Jun-Hyoung; Yang, Kee-Jeong; Hwang, Dae-Kue; Kim, Junho; Kim, Gee Yeong; Jo, William; Kim, Dae-Hwan; Kang, Jin-Kyu

    2015-06-01

    Nanoporous p-type semiconductor thin films prepared by a simple solution-based process with appropriate thermal treatment and three-dimensional (3D) p-n junction solar cells fabricated by depositing n-type semiconductor layers onto the nanoporous p-type thin films show considerable photovoltaic performance compared with conventional thin film p-n junction solar cells. Spin-coated p-type Cu2ZnSnS4 (CZTS) thin films prepared using metal chlorides and thiourea show unique nanoporous thin film morphology, which is composed of a cluster of CZTS nanograins of 50-500 nm, and the obvious 3D p-n junction structure is fabricated by the deposition of n-type CdS on the nanoporous CZTS thin films by chemical bath deposition. The photovoltaic properties of 3D p-n junction CZTS solar cells are predominantly affected by the scale of CZTS nanograins, which is easily controlled by the sulfurization temperature of CZTS precursor films. The scale of CZTS nanograins determines the minority carrier transportation within the 3D p-n junction between CZTS and CdS, which are closely related with the photocurrent of series resistance of 3D p-n junction solar cells. 3D p-n junction CZTS solar cells with nanograins below 100 nm show power conversion efficiency of 5.02%, which is comparable with conventional CZTS thin film solar cells.Nanoporous p-type semiconductor thin films prepared by a simple solution-based process with appropriate thermal treatment and three-dimensional (3D) p-n junction solar cells fabricated by depositing n-type semiconductor layers onto the nanoporous p-type thin films show considerable photovoltaic performance compared with conventional thin film p-n junction solar cells. Spin-coated p-type Cu2ZnSnS4 (CZTS) thin films prepared using metal chlorides and thiourea show unique nanoporous thin film morphology, which is composed of a cluster of CZTS nanograins of 50-500 nm, and the obvious 3D p-n junction structure is fabricated by the deposition of n-type CdS on the

  10. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    Ambrosio, R., E-mail: rambrosi@uacj.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Moreno, M.; Torres, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Carrillo, A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Vivaldo, I.; Cosme, I. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Heredia, A. [Universidad Popular Autónoma del Estado de Puebla, Puebla (Mexico)

    2015-09-15

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σ{sub dark} changed by 5 order of magnitude under illumination, V{sub d} was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH{sub 4}, H{sub 2}, Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σ{sub RT}), activation energy (E{sub a}), and optical band gap (E{sub g}). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications.

  11. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σdark changed by 5 order of magnitude under illumination, Vd was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH4, H2, Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σRT), activation energy (Ea), and optical band gap (Eg). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications

  12. SnS Thin Film Prepared by Pyrolytic Synthesis as an Efficient Counter Electrode in Quantum Dot Sensitized Solar Cells.

    Dai, Xiaoyan; Shi, Chengwu; Zhang, Yanru; Liu, Feng; Fang, Xiaqin; Zhu, Jun

    2015-09-01

    The SnS thin films were successfully prepared by pyrolysis procedure for the counter electrodes in quantum dot sensitized solar cells (QDSCs) using the methanol solution containing stannous chloride dihydrate (0.40 mol x L(-1)) and thiourea (0.40 mol x L(-1)) as precursor solution at 300 degrees C in the air atmosphere. The electrochemical catalytic activity of the SnS thin films prepared by pyrolytic synthesis for the redox couple of S(2-)/S(2-) was investigated by electrochemical impedance spectroscopy. The result revealed that the charge transfer resistance of the as-prepared SnS thin film with the dipping-heating cycles of 5 was 106.4 Ω and the corresponded QDSCs gave a short circuit photocurrent density of 8.69 mA x cm(-2), open circuit voltage of 0.42 V, and fill factor of 0.43, yielding the photoelectric conversion efficiency of 1.57%, under the illumination of simulated AM 1.5 sunlight (100 mWx cm(-2)). PMID:26716249

  13. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures

    Ha, Kyungyeon; Jang, Eunseok; Jang, Segeun; Lee, Jong-Kwon; Jang, Min Seok; Choi, Hoseop; Cho, Jun-Sik; Choi, Mansoo

    2016-02-01

    We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.

  14. Thin film silicon solar cells for space applications. Study of proton irradiation and thermal annealing effects on the characteristics of solar cells and individual layers

    Kuendig, J.; Goetz, M.; Shah, A. [Institute of Microtechnology (IMT), Thin-film silicon and Photovoltaic group, University of Neuchatel, A.-L. Breguet 2, 2000 Neuchatel (Switzerland); Gerlach, L.; Fernandez, E. [ESA-ESTEC, Keplerlaan 1, NL 2200 AG Noordwijk, The (Netherlands)

    2003-09-30

    The paper reports on the effects of a proton irradiation campaign on a series of thin-film silicon solar cells (single- and double-junction). The effect of subsequent thermal annealing on solar cells degraded by proton irradiation is investigated. A low-temperature annealing behaviour can be observed (at temperatures around 100 to 160C) for microcrystalline silicon solar cells. To further explore this effect, a second proton irradiation campaign has been carried out, but this time on microcrystalline silicon layers. The effect of proton irradiation and subsequent thermal annealing on the optical and electronic properties of microcrystalline silicon is, thus, thoroughly investigated.

  15. Effective Light Trapping in Thin Film Silicon Solar Cells with Nano- and Microscale Structures on Glass Substrate.

    Bong, Sungjae; Ahn, Shihyun; Anh, Le Huy Tuan; Kim, Sunbo; Park, Hyeongsik; Shin, Chonghoon; Park, Jinjoo; Lee, Younjung; Yi, Junsin

    2016-05-01

    For thin film silicon-based solar cells, effective light trapping at a broad range of wavelengths (400-1100 nm) is necessary. Normally, etching is only carried out with TCOs, such as SnO2:F and impurity doped ZnO, to form nano-sized craters in the surface morphology to confer a light trapping effect. However, in this study, prior to ZnO:Al etching, periodic structures on the glass substrates were made by photolithography and wet etching to increase the light scattering and internal reflection. The use of periodic structures on the glass substrate resulted in higher haze ratios in the range from 550 nm to 1100 nm, which is the optical absorption wavelength region for thin film silicon solar cells, than obtained by simple ZnO:Al etching. The periodically textured glass with micro-sized structures compensates for the low haze ratio at the middle and long wavelengths of wet etched ZnO:Al. ZnO:Al was deposited on the periodically textured glass, after which the ZnO:Al surface was also etched randomly using a mixed acid solution to form nano-sized craters. The thin film silicon solar cells with 350-nm-thick amorphous silicon absorber layer deposited on the periodic structured glass and etched ZnO:Al generated up to 10.68% more photocurrent, with 11.2% increase of the conversion efficiency compared to the cell deposited on flat glass and etched ZnO:Al. PMID:27483855

  16. Optimized conditions for the improvement of thin film CdS/CdTe solar cells

    Mohamed, H.A., E-mail: hussein_abdelhafez2000@yahoo.com

    2015-08-31

    Efficient thin film CdS/CdTe solar cell performance requires optimum parameters of each layer of this cell and of the barrier structure. Moreover, the effect of optical losses, recombination losses at front and back surface of CdTe and recombination losses in the space-charge region (SCR) must be considered in order to really analyze the role of these parameters on the performance of these cells. This work is focused on studying theoretically the effect of the thickness of the front contact (ITO), thickness of the window layer (CdS), thickness of the absorber layer (CdTe), width of the space-charge region and electron lifetime on the efficiency of CdS/CdTe solar cells. The reflection losses from interfaces and absorption losses in ITO and CdS, front and rear surface recombination losses of CdTe as well as recombination losses in SCR have been studied. It has been observed that the short-circuit current strongly depends on the thickness of ITO, thickness of CdS, thickness CdTe and electron lifetime. The concentration of uncompensated impurities (N{sub a} − N{sub d}) in CdTe, which determines the width of SCR, plays a key role in the generation of photocurrent. The recombination losses in the SCR decrease rapidly with increasing the carrier lifetime in this region and can be ignored at lifetime of 10{sup −7} s. The reflectivity from the back contact introduces a small influence in increasing the short-current density particularly at thick absorber layer (5–8 μm). Under the conditions of N{sub a} − N{sub d} ~ 10{sup 16} cm{sup −3}, τ{sub n} = 10{sup −6} s, d{sub CdTe} = 8 μm, d{sub ITO} = 100 nm, and d{sub CdS} = 100 nm, the recombination and optical losses record their minimum ratio of 27%. Most of these losses (24%) are due to the optical losses. The efficiency of CdS/CdTe under these parameters is about 18.2% which is exactly matching with the recent experimental studies. Moreover, an ultrathin CdTe (= 1 μm) is sufficient to introduce high

  17. A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program

    Simya, O. K.; Mahaboobbatcha, A.; Balachander, K.

    2015-06-01

    A comparative study of thin film solar cells based on CZTS, CZTSe, and CZTSSe (Copper Zinc Tin Sulphur Selenium) absorbers layers were simulated with Cadmium Sulphide (CdS) as buffer layer and Zinc Oxide (ZnO) as window layer using a solar cell capacitance simulator (SCAPS). The influences of series resistance, band to band recombination, defects and interfaces, thickness of (CZTS|CZTSe|CZTSSe) absorber layer, (CdS) buffer layer and transparent conductive oxide layer (ZnO) on the photovoltaic cell parameters were studied in detail. Improvements in efficiency were achieved by changing the back contact metal work function (BMWF) and choosing the flat band option in SCAPS software. Based on the best possible optimisation, an efficiency (η) of 12.03%, 13.16% and 15.77% were obtained for CZTS, CZTSe, and CZTSSe respectively. The performance of thin film photovoltaic devices (TFPV), for Mo back contact before optimisation and the SCAPS simulated values (flat band) after optimisation were described in detail to have in-depth understanding for better design of experiments (DOE) to obtain high efficiency solar cells.

  18. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  19. Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage

    Si, Fai Tong; Kim, Do Yun; Santbergen, Rudi; Tan, Hairen; van Swaaij, René A. C. M. M.; Smets, Arno H. M.; Isabella, Olindo; Zeman, Miro

    2014-08-01

    We have fabricated a-SiOx:H/a-Si:H/nc-Si:H/nc-Si:H quadruple-junction thin-film silicon-based solar cells (4J TFSSCs) to obtain high spectral utilization and high voltages. By processing the solar cells on micro-textured superstrates, extremely high open-circuit voltages for photovoltaic technology based on thin-film silicon alloys up to 2.91 V have been achieved. Optical simulations of quadruple-junction solar cells using an advanced in-house model are a crucial tool to effectively tackle the challenging task of current matching among the individual sub-cells in such devices. After optimizing the optical design of the device and the absorber thicknesses, an energy conversion efficiency of 11.4% has been achieved. The open-circuit voltage, short-circuit current density, and fill factor were 2.82 V, 5.49 mA/cm2, and 73.9%, respectively. Based on this demonstration, strategies for further development of highly efficient 4J TFSSCs are proposed.

  20. ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells

    ZnO thin films synthetized by chemical bath deposition are used as buffer layer between the anode and the organic electron donor in organic solar cells. Films deposited from zinc nitrate solutions are annealed in room air at 300 deg. C for half an hour. The X-ray diffraction and microanalysis studies show that ZnO polycrystalline thin films are obtained. The solar cells used are based on the couple copper phthalocyanine as electron donor and (N,N-diheptyl-3,4,9,10-perylenetetracarboxylicdiimide-PTCDI-C7) as electron acceptor. It is shown that the presence of the ZnO buffer layer improves the energy conversion efficiency of the cells. Such improvement could be attributed to a better energy level alignment at the anode/electron donor interface. The anode roughness induced by the ZnO buffer layer can also transform the planar interface organic electron donor/electron acceptor into roughen topography. This increases the interface area, where carrier separation takes place, which improves solar cells performances.

  1. Thin-film cadmium telluride solar cells: Final subcontract report, 1 May 1985--31 May 1988

    Chu, T.L.

    1988-06-01

    This report describes results of research performed to demonstrate thin-film cadmium telluride heterojunction solar cells with a total area greater than 1 cm/sup 2/ and efficiencies of 13% or higher. Efforts were directed to (1) the deposition, resistivity control, and characterization of p-CdTe films by combining the vapor of the elements (CVE) and close-spaced sublimation (CSS) techniques; (2) the deposition and characterization of transparent conducting semiconductors; (3) the deposition of p-HgTe as a low-resistance ohmic contact to p-CdTe; (4) the electrical properties of CdS/CdTe heterojunctions; and (5) the preparation and evaluation of heterojunction solar cells. CdS/CdTe solar cells showed the best photovoltaic characteristics, and the best cell had a conversion efficiency of about 10.6%. 20 refs., 30 figs., 1 tab.

  2. Light-scattering effectiveness of two-dimensional disordered surface textures in thin-film silicon solar cells.

    Yeh, Pinghui S; Chen, Chien-Wei; Yang, Bing-Ru; Hong, Lu-Sheng

    2014-05-01

    To compare the light-scattering effectiveness of surface-textured solar cells of various design parameters such as density, diameter, refractive index, and location, this study used a new parameter, optical path length gain (OPLG), that is more sensitive than Haze. By modeling two-dimensional disordered textures as a structure that comprises many randomly distributed, small, spherical scatterers, ray-tracing simulations of surface-textured thin-film silicon solar cells were performed. The simulation results suggest that: (1) the optimal scatterer diameter for hydrogenated amorphous silicon (a-Si:H) solar cells is ~50 nm, producing an average OPLG of 3.5; and (2) the optimal scatterer diameter for a-Si:H/μc-Si:H (hydrogenated microcrystalline silicon) tandem cells is ~75 nm, producing an average OPLG of 3.4 and an increase in the bandwidth of the absorption spectrum of 14.5%. PMID:24921870

  3. Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells

    Fay, Sylvie [Institute of Microtechnology (IMT), University of Neuchatel, Rue A.-L. Breguet 2, 2000 Neuchatel (Switzerland)], E-mail: sylvie.fay@unine.ch; Steinhauser, Jerome; Oliveira, Nuno; Vallat-Sauvain, Evelyne; Ballif, Christophe [Institute of Microtechnology (IMT), University of Neuchatel, Rue A.-L. Breguet 2, 2000 Neuchatel (Switzerland)

    2007-10-15

    Polycrystalline Boron-doped ZnO films deposited by low pressure chemical vapor deposition technique are developed for their use as transparent contacts for thin-film silicon solar cells. The size of the columnar grains that constitute the ZnO films is related to their light scattering capability, which has a direct influence on the current generation in thin-film silicon solar cells. Furthermore, if the doping level of the ZnO films is kept below 1 x 10{sup 20} cm{sup -3}, the electron mobility can be drastically enhanced by growing large grains, and the free carrier absorption is reduced. All these considerations have been taken in account to develop ZnO films finely optimized for the fabrication of microcrystalline thin-film silicon solar cells. These TCO allow the achievement of solar cell conversion efficiencies close to 10%.

  4. Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells

    Polycrystalline Boron-doped ZnO films deposited by low pressure chemical vapor deposition technique are developed for their use as transparent contacts for thin-film silicon solar cells. The size of the columnar grains that constitute the ZnO films is related to their light scattering capability, which has a direct influence on the current generation in thin-film silicon solar cells. Furthermore, if the doping level of the ZnO films is kept below 1 x 1020 cm-3, the electron mobility can be drastically enhanced by growing large grains, and the free carrier absorption is reduced. All these considerations have been taken in account to develop ZnO films finely optimized for the fabrication of microcrystalline thin-film silicon solar cells. These TCO allow the achievement of solar cell conversion efficiencies close to 10%

  5. Electrochemical deposition of molybdenum sulfide thin films on conductive plastic substrates as platinum-free flexible counter electrodes for dye-sensitized solar cells

    In this study, pulsed electrochemical deposition (pulsed ECD) was used to deposit molybdenum sulfide (MoSx) thin films on indium tin oxide/polyethylene naphthalate (ITO/PEN) substrates as flexible counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The surface morphologies and elemental distributions of the prepared MoSx thin films were examined using field-emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy. The chemical states and crystallinities of the prepared MoSx thin films were examined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The optical transmission (T (%)) properties of the prepared MoSx samples were determined by ultraviolet–visible spectrophotometry. Cyclic voltammetry (CV) and Tafel-polarization measurements were performed to analyze the electrochemical properties and catalytic activities of the thin films for redox reactions. The FE-SEM results showed that the MoSx thin films were deposited uniformly on the ITO/PEN flexible substrates via the pulsed ECD method. The CV and Tafel-polarization curve measurements demonstrated that the deposited MoSx thin films exhibited excellent performances for the reduction of triiodide ions. The photoelectric conversion efficiency (PCE) of the DSSC produced with the pulsed ECD MoSx thin-film CE was examined by a solar simulator. In combination with a dye-sensitized TiO2 working electrode and an iodine-based electrolyte, the DSSC with the MoSx flexible CE showed a PCE of 4.39% under an illumination of AM 1.5 (100 mW cm−2). Thus, we report that the MoSx thin films are active catalysts for triiodide reduction. The MoSx thin films are prepared at room temperature and atmospheric pressure and in a simple and rapid manner. This is an important practical contribution to the production of flexible low-cost thin-film CEs based on plastic substrates. The MoSx thin films produced by pulsed ECD are good candidates for catalysts in

  6. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders.

    Yang, Yanchun; Wang, Gang; Zhao, Wangen; Tian, Qingwen; Huang, Lijian; Pan, Daocheng

    2015-01-14

    Solution deposition approaches play an important role in reducing the manufacturing cost of Cu2ZnSnSe4 (CZTSe) thin film solar cells. Here, we present a novel precursor-based solution approach to fabricate highly efficient CZTSe solar cells. In this approach, low-cost elemental Cu, Zn, Sn, and Se powders were simultaneously dissolved in the solution of thioglycolic acid and ethanolamine, forming a homogeneous CZTSe precursor solution to deposit CZTSe nanocrystal thin films. Based on high-quality CZTSe absorber layer, pure selenide CZTSe solar cell with a photoelectric conversion efficiency of 8.02% has been achieved without antireflection coating. PMID:25494493

  7. Preparation and characterization of Cu2-xZn1+ySnS4 for thin films solar cells

    D'Angelo Bandres, Renato

    2015-01-01

    CZTS non-stoichiometric thin films [Cu2-xZn1+xSnS4)] for solar cells applications have been successfully deposited on glass substrates using two different types of synthesis and two effective non vacuum deposition methods: as is dip-coating into a sol or drop-wise ink spin-coating. The first synthesis (dip coating) is a two-solution sol-gel, where the first solution is composed of metal salts dissolved in methanol and the second thiourea dissolved in ethylene glycol. As a tin source, tin chlo...

  8. ZnO nanorod arrays for highly efficient thin film a-Si and micromorph solar cells

    Neykova, Neda; Hruška, Karel; Remeš, Zdeněk; Vaněček, Milan

    Roma: University of Roma Tor Vergata, 2012 - (DE Crescenzi, M.). s. 75-75 [International Conference on NANO-structures self-assembly - NANOSEA 2012 /4./. 25.06.2012-29.06.2012, S. Margherita di Pula - Sardinie] R&D Projects: GA ČR(CZ) GAP108/11/0937 EU Projects: European Commission(XE) 214134 - N2P Institutional research plan: CEZ:AV0Z10100521 Keywords : ZnO nanocolumns * thin film solar cells * EBL Subject RIV: BM - Solid Matter Physics ; Magnetism

  9. Study of alternative back contacts for thin film Cu2ZnSnSe4-based solar cells

    Oueslati, Souhaib; Brammertz, Guy; Buffiere, Marie; ElAnzeery, Hossam; Mangin, Denis; ElDaif, Ounsi; Touayar, Oualid; Koble, Christine; MEURIS, Marc; Poortmans, Jef

    2015-01-01

    Cu2ZnSnSe4 thin film solar cells are usually fabricated on a soda lime glass substrate with a molybdenum (Mo) back contact. It is suspected that degradation in electrical performance occurs due to the formation of a barrier between the absorber and Mo back contact. To overcome such degradation, Titanium Nitride (TiN), Titanium Tungsten (TiW), Chromium (Cr), Titanium (Ti) and Aluminum (Al) deposited on Mo-coated glass substrates are investigated as alternative back contact materials. Physical ...

  10. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-12-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance.

  11. Structural and optical properties of electrodeposited culnSe2 thin films for photovoltaic solar cells

    Optical an structural properties of electrodeposited copper indium diselenide, CulnSe2, thin films were studied for its application in photovoltaic devices. X-ray diffraction patterns showed that thin films were grown in chalcopyrite phase after suitable treatments. Values of Eg for the CulnSe2 thin films showed a dependence on the deposition potential as determined by optical measurements. (Author) 47 refs

  12. Enhanced performance of flexible nanocrystalline silicon thin-film solar cells using seed layers with high hydrogen dilution.

    Lee, Ji-Eun; Kim, Donghwan; Yoon, Kyung Hoon; Cho, Jun-Sik

    2013-12-01

    Flexible hydrogenated nanocrystalline (nc-Si:H) thin-film solar cells were prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD), and the effect of highly crystalline intrinsic Si seed layers at the initial growth stage of i nc-Si:H absorbers on their structural and electrical properties and on the performance of solar cells was investigated. The crystallization of i nc-Si:H absorbers was significantly enforced by the introduction of highly crystalline seed layers, resulting in the reduction of defect-dense a-Si:H grain boundary and incubation layer thickness. The open circuit voltage of the nc-Si:H solar cells with the seed layers was improved by the decrease of charged defect density in the defect-rich amorphous region. PMID:24266159

  13. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm2 aperture area on the graphite substrate. The optical properties of the SiNx/a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiNx/a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiNx/a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance

  14. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    Li, Da; Kunz, Thomas [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Wolf, Nadine [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Liebig, Jan Philipp [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Göken, Mathias [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Brabec, Christoph J. [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Institute of Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen (Germany)

    2015-05-29

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm{sup 2} aperture area on the graphite substrate. The optical properties of the SiN{sub x}/a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN{sub x}/a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN{sub x}/a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance.

  15. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.

    Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong

    2015-10-14

    Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost. PMID:26390182

  16. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    Soppe, W.; Haug, F.-J.; Couty, P.;

    2011-01-01

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano ...... with nanotexture is shown. Microcrystalline and amorphous silicon single junction cells with stable efficiencies with more than 8 % have been made, paving the way towards a-Si/ c-Si tandem cells with more than 11% efficiency.......Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... Imprinting Lithography (UV-NIL); b) growth of crack-free silicon absorber layers on highly textured substrates; c) development of new TCOs which should combine the best properties of presently available materials like ITO and AZO. The paper presents the midterm status of the project results, showing model...

  17. Analysis of radiation resistance of InGaP/GaAs dual-junction thin-film space solar cell

    Thin-film III-V multi-junction solar cells can realize the advantages of being high-efficiency and light-weight, as such these cells meets the requirement for higher specific power and lower stowage volume solar panels. Here we report the development results of an InGaP/GaAs thin-film dual-junction (TF2J) solar cell. In this paper, we study the radiation resistance of the TF2J cells with efficiency of 20-23% under AM0.1 sun at 25degC. The cells were subjected to proton irradiation with an energy range of 100keV-10MeV. The results were compared with the radiation resistance of a conventional InGaP/GaAs/Ge triple-junction (3J) cell. In the proton energy range of 200-400keV, radiation resistance of the TF2J cell is superior to that of the 3J cell. Particularly, the 1sc of the TF2J cell is significantly higher than that of the 3J cell after exposure to 380keV protons, which results in higher remaining factor of Pmax for the TF2J cell. In additions, Voc of the cells after the irradiations are almost equivalent, even though the TF2J cell is a dual-junction structure. The higher 1sc of the TF2J cell after irradiation is due to higher radiation resistance of the GaAs subcell according to the comparison of the spectral response. (author)

  18. Quantifying the effectiveness of SiO2/Au light trapping nanoshells for thin film poly-Si solar cells

    2010-01-01

    In order to enhance light absorption of thin film poly-crystalline silicon(TF poly-Si)solar cells over a broad spectral range, and quantify the effectiveness of nanoshell light trapping structure over the full solar spectrum in theory,the effective photon trapping flux(EPTF)and effective photon trapping efficiency(EPTE)were firstly proposed by considering both the external quantum efficiency of TF poly-Si solar cell and scattering properties of light trapping structures.The EPTF,EPTE and scattering spectrum exhibit different behaviors depending on the geometric size and density of nanoshells that form the light trapping layer.With an optimum size and density of SiO2/Au nanoshell light trapping layer,the EPTE could reach up to 40%due to the enhancement of light trapping over a broad spectral range,especially from 500 to 800 nm.

  19. Preparation routes based on magnetron sputtering for tungsten disulfide (WS2) films for thin-film solar cells

    The semiconductor tungsten disulfide (WS2) exhibits van der Waals bonding, crystallizes in a layer-type structure and is of interest as an absorber layer for thin-film solar cells. In this review article different preparation routes for WS2 thin films, based on magnetron sputtering, are reviewed. Films prepared by direct magnetron sputtering, though exhibiting quite a good structural quality, are not or only poorly photoactive. This can be attributed to the generation of recombination centers, especially sulfur vacancies, during the ion bombardment of the films, due to the low defect-formation energy of tungsten disulfide, an intrinsic property of transition metal dichalcogenides. A promising preparation route, which leads to photoactive WS2 films, is a two-step process, where, in a first step, a sulfur-rich, X-ray amorphous tungsten sulfide is deposited at low substrate temperatures onto a thin metal film (Ni, Co). This film sandwich is after wards annealed in an ampoule in a sulfur atmosphere or in flowing gas with a sufficient H2S partial pressure. From in-situ transmission electron microscopy and energy-dispersive X-ray diffraction, it was found that the WS2 film crystallization with a pronounced (001) texture is closely related to the formation of the liquid (eutectic) metal-sulfur phase. Based on these in-situ investigations the growth of the 2-dimensional WS2 nanosheets from an amorphous WS3+x precursor can be described as an amorphous solid-liquid-crystalline solid process (SLS), somewhat similar to the well-known vapor-liquid-solid (VLS) process for the growth of whiskers or nanorods and nanotubes. Research opportunities, to overcome current limitations for a broad use of WS2 (and MoS2) as thin-film solar cell absorbers are given. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Characterization of CdS Thin-Film in High Efficient CdS/CdTe Solar Cells

    Tsuji, Miwa; Aramoto, Tetsuya; Ohyama, Hideaki; Hibino, Takeshi; Omura, Kuniyoshi

    2000-07-01

    Cadmium sulfide (CdS) thin films are the most commonly used window materials for high efficient cadmium telluride (CdTe) and chalcopyrite polycrystalline thin-film photovoltaic devices. High efficient CdS/CdTe solar cells with thin CdS films have been developed using ultrathin CdS films with a thickness of less than 0.1 μm. CdS films were deposited on transparent conductive oxide (TCO)/glass substrates by the metal organic chemical vapor deposition (MOCVD) technique. CdTe films were subsequently deposited by the close-spaced sublimation (CSS) technique. The screen printing and sintering method fabricated carbon and silver electrodes. Cell performance depends primarily on the electrical and optical properties of CdS films. Therefore we started to develop higher-quality CdS films and found clear differences between high- and low-quality CdS films from the analyses of scanning electron microscope (SEM), atomic force microscope (AFM), secondary ion mass spectroscopy (SIMS), thermal desorption spectrometry (TDS) and Fourier transforms-infrared spectrometry (FT-IR) measurements. As a result of controlling the quality of CdS films, a photovoltaic conversion efficiency of 10.5% has been achieved for size of 1376 cm2 of the solar cells under the Air Mass (AM) 1.5 conditions of the Japan Quality Assurance Organization.

  1. Ultimate form freedom in thin film solar cells by postmanufacture laser-based processing

    Gilot, J.; Emelin, B.; Galagan, Y.; Mandamparambil, R.; Andriessen, R.

    2015-01-01

    Thin film photovoltaics can be beneficial for specific applications like building integrated photovoltaics. To fully exploit the differentiator of form freedom, the interconnections in thin film modules can be tuned depending on the required module output. Traditionally, an alternation of coating an

  2. Combinatorial Reactive Sputtering of In2S3 as an Alternative Contact Layer for Thin Film Solar Cells

    Siol, Sebastian; Dhakal, Tara P.; Gudavalli, Ganesh S.; Rajbhandari, Pravakar P.; DeHart, Clay; Baranowski, Lauryn L.; Zakutayev, Andriy

    2016-06-08

    High-throughput computational and experimental techniques have been used in the past to accelerate the discovery of new promising solar cell materials. An important part of the development of novel thin film solar cell technologies, that is still considered a bottleneck for both theory and experiment, is the search for alternative interfacial contact (buffer) layers. The research and development of contact materials is difficult due to the inherent complexity that arises from its interactions at the interface with the absorber. A promising alternative to the commonly used CdS buffer layer in thin film solar cells that contain absorbers with lower electron affinity can be found in ..beta..-In2S3. However, the synthesis conditions for the sputter deposition of this material are not well-established. Here, In2S3 is investigated as a solar cell contact material utilizing a high-throughput combinatorial screening of the temperature-flux parameter space, followed by a number of spatially resolved characterization techniques. It is demonstrated that, by tuning the sulfur partial pressure, phase pure ..beta..-In2S3 could be deposited using a broad range of substrate temperatures between 500 degrees C and ambient temperature. Combinatorial photovoltaic device libraries with Al/ZnO/In2S3/Cu2ZnSnS4/Mo/SiO2 structure were built at optimal processing conditions to investigate the feasibility of the sputtered In2S3 buffer layers and of an accelerated optimization of the device structure. The performance of the resulting In2S3/Cu2ZnSnS4 photovoltaic devices is on par with CdS/Cu2ZnSnS4 reference solar cells with similar values for short circuit currents and open circuit voltages, despite the overall quite low efficiency of the devices (-2%). Overall, these results demonstrate how a high-throughput experimental approach can be used to accelerate the development of contact materials and facilitate the optimization of thin film solar cell devices.

  3. Combinatorial Reactive Sputtering of In2S3 as an Alternative Contact Layer for Thin Film Solar Cells.

    Siol, Sebastian; Dhakal, Tara P; Gudavalli, Ganesh S; Rajbhandari, Pravakar P; DeHart, Clay; Baranowski, Lauryn L; Zakutayev, Andriy

    2016-06-01

    High-throughput computational and experimental techniques have been used in the past to accelerate the discovery of new promising solar cell materials. An important part of the development of novel thin film solar cell technologies, that is still considered a bottleneck for both theory and experiment, is the search for alternative interfacial contact (buffer) layers. The research and development of contact materials is difficult due to the inherent complexity that arises from its interactions at the interface with the absorber. A promising alternative to the commonly used CdS buffer layer in thin film solar cells that contain absorbers with lower electron affinity can be found in β-In2S3. However, the synthesis conditions for the sputter deposition of this material are not well-established. Here, In2S3 is investigated as a solar cell contact material utilizing a high-throughput combinatorial screening of the temperature-flux parameter space, followed by a number of spatially resolved characterization techniques. It is demonstrated that, by tuning the sulfur partial pressure, phase pure β-In2S3 could be deposited using a broad range of substrate temperatures between 500 °C and ambient temperature. Combinatorial photovoltaic device libraries with Al/ZnO/In2S3/Cu2ZnSnS4/Mo/SiO2 structure were built at optimal processing conditions to investigate the feasibility of the sputtered In2S3 buffer layers and of an accelerated optimization of the device structure. The performance of the resulting In2S3/Cu2ZnSnS4 photovoltaic devices is on par with CdS/Cu2ZnSnS4 reference solar cells with similar values for short circuit currents and open circuit voltages, despite the overall quite low efficiency of the devices (∼2%). Overall, these results demonstrate how a high-throughput experimental approach can be used to accelerate the development of contact materials and facilitate the optimization of thin film solar cell devices. PMID:27173477

  4. Modification of opto-electronic properties of ZnO by incorporating metallic tin for buffer layer in thin film solar cells

    In this report, the effect of incorporation of metallic tin (Sn) on opto-electronic properties of ZnO thin films is presented. ZnO thin films were deposited through ‘automated chemical spray pyrolysis’ (CSP) technique; later different quantities of ‘Sn’ were evaporated on it and subsequently annealed. Vacuum annealing showed a positive effect on crystallinity of films. Creation of sub band gap levels due to ‘Sn’ diffusion was evident from the absorption and PL spectra. The tin incorporated films showed good photo response in visible region. Tin incorporated ZnO thin films seem to satisfy the desirable criteria for buffer layer in thin film solar cells

  5. Modification of opto-electronic properties of ZnO by incorporating metallic tin for buffer layer in thin film solar cells

    Deepu, D. R.; Jubimol, J.; Kartha, C. Sudha; Louis, Godfrey; Vijayakumar, K. P., E-mail: kpv@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Cochin-682022 (India); Kumar, K. Rajeev [Department of Instrumentation, Cochin University of Science and Technology, Cochin-682022 (India)

    2015-06-24

    In this report, the effect of incorporation of metallic tin (Sn) on opto-electronic properties of ZnO thin films is presented. ZnO thin films were deposited through ‘automated chemical spray pyrolysis’ (CSP) technique; later different quantities of ‘Sn’ were evaporated on it and subsequently annealed. Vacuum annealing showed a positive effect on crystallinity of films. Creation of sub band gap levels due to ‘Sn’ diffusion was evident from the absorption and PL spectra. The tin incorporated films showed good photo response in visible region. Tin incorporated ZnO thin films seem to satisfy the desirable criteria for buffer layer in thin film solar cells.

  6. Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells

    Krishnan, Aravind; Krishna, Siva Rama; Khan, Mohammed Zafar Ali

    2013-01-01

    In this paper, we present a theoretical study on the absorption efficiency enhancement of a thin film amorphous Silicon (a-Si) photovoltaic cell over a broad spectrum of wavelengths using multiple nanoparticle arrays. The light absorption efficiency is enhanced in the lower wavelengths by a nanoparticle array on the surface and in the higher wavelengths by another nanoparticle array embedded in the active region. The efficiency at intermediate wavelengths is enhanced by the constructive interference of plasmon coupled light. We optimize this design by tuning the radius of particles in both arrays, the period of the array and the distance between the two arrays. The optimization results in 61.44% increase in total quantum efficiency for a 500 nm thick a-Si substrate.

  7. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    Höger, Ingmar; Himmerlich, Marcel; Gawlik, Annett; Brückner, Uwe; Krischok, Stefan; Andrä, Gudrun

    2016-01-01

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiOxNy) or silicon oxide (SiO2) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiOxNy formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiOxNy top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  8. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiOxNy) or silicon oxide (SiO2) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiOxNy formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiOxNy top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%

  9. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe; Andrä, Gudrun [Leibniz-Institut für Photonische Technologien, PF 100239, 07702 Jena (Germany); Himmerlich, Marcel; Krischok, Stefan [Institut für Mikro-und Nanotechnologien, Technische Universität Ilmenau, PF 100565, 98684 Ilmenau (Germany)

    2016-01-28

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) or silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  10. Characterization of CdS thin film in high efficient CdS/CdTe solar cells

    Tsuji, Miwa; Aramoto, Tetsuya; Ohyama, Hideaki; Hibino, Takeshi; Omura, Kuniyoshi

    2000-06-01

    Cadmium sulfide (CdS) thin film is the most commonly used window material for high-efficient cadmium telluride (CdTe) thin-film photovoltaic devices. High-efficient CdS/CdTe solar cells have been developed using ultra-thin CdS films having a thickness of below 0.1 μm. CdS film is deposited on transparent conductive oxide (TCO) film coated glass substrates by the metal organic chemical vapor deposition (MOCVD) technique, CdTe film is subsequently deposited by the close-spaced sublimation (CSS) technique. Finally, carbon and Ag-In electrodes are fabricated by the screen printing and sintering method. Cell performance depends primarily on the electrical and optical properties of CdS film, and hence we started to develop higher quality CdS film and found out clear differences between high- and low-quality CdS films from various analyses: SEM, AFM, SIMS, TDS and FT-IR. As a result of controlling qualities of CdS films, photovoltaic conversion efficiency of 10.5% has been achieved for a size of 1376 cm 2 of the solar module under air mass (AM) 1.5 conditions by the Japan Quality Assurance Organization (JQA).

  11. Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency.

    Lin, Yinyue; Xu, Zhen; Yu, Dongliang; Lu, Linfeng; Yin, Min; Tavakoli, Mohammad Mahdi; Chen, Xiaoyuan; Hao, Yuying; Fan, Zhiyong; Cui, Yanxia; Li, Dongdong

    2016-05-01

    Three-dimensional (3-D) structures have triggered tremendous interest for thin-film solar cells since they can dramatically reduce the material usage and incident light reflection. However, the high aspect ratio feature of some 3-D structures leads to deterioration of internal electric field and carrier collection capability, which reduces device power conversion efficiency (PCE). Here, we report high performance flexible thin-film amorphous silicon solar cells with a unique and effective light trapping scheme. In this device structure, a polymer nanopillar membrane is attached on top of a device, which benefits broadband and omnidirectional performances, and a 3-D nanostructure with shallow dent arrays underneath serves as a back reflector on flexible titanium (Ti) foil resulting in an increased optical path length by exciting hybrid optical modes. The efficient light management results in 42.7% and 41.7% remarkable improvements of short-circuit current density and overall efficiency, respectively. Meanwhile, an excellent flexibility has been achieved as PCE remains 97.6% of the initial efficiency even after 10 000 bending cycles. This unique device structure can also be duplicated for other flexible photovoltaic devices based on different active materials such as CdTe, Cu(In,Ga)Se2 (CIGS), organohalide lead perovskites, and so forth. PMID:27052357

  12. Evaluation of electrical and optical characteristics of ZnO/CdS/CIS thin film solar cell

    Hadi, Zarei; Rasoul, Malekfar

    2016-02-01

    In this study, device modeling and simulation are conducted to explain the effects of each layer thickness and temperature on the performance of ZnO/CdS/CIS thin film solar cells. Also, the thicknesses of the CIS and CdS absorber layers are considered in this work theoretically and experimentally. The calculations of solar cell performances are based on the solutions of the well-known three coupling equations: the continuity equation for holes and electrons and the Poisson equation. Our simulated results show that the efficiency increases by reducing the CdS thickness. Increasing the CIS thickness can increase the efficiency but it needs more materials. The efficiency is more than 19% for a CIS layer with a thickness of 2 μm. CIS nanoparticles are prepared via the polyol route and purified through centrifugation and precipitation processes. Then nanoparticles are dispersed to obtain stable inks that could be directly used for thin-film deposition via spin coating. We also obtain x-ray diffraction (XRD) peak intensities and absorption spectra for CIS experimentally. Finally, absorption spectra for the CdS window layer in several deposition times are investigated experimentally.

  13. Polymer assisted solution processing of Ti-doped indium oxide transparent conducting thin films for organic solar cells

    Highlights: • Polymer assisted solution process. • Ti-doped indium oxide (TIO) transparent conducting films. • Replacement of sputtered ITO with polymer-assisted-solution-coated TIO films. • High mobility transparent conducting films. • Application of polymer-assisted-solution-coated TIO films to organic solar cells. - Abstract: We report the preparation and evaluation of Ti-doped indium oxide (TIO) transparent conducting films by a polymer-assisted solution (PAS) process, as well as the evaluation of this type of film as a transparent cathode in an inverted organic solar cell (IOCS). Both Ti- and In-PASs have been synthesized by coordinating Ti- and In-anionic complexes with polyethyleneimine. The final TIO–PAS was formed by mixing Ti-PAS into In-PAS with a Ti concentration between 1 at.% and 7 at.%. The TIO–PAS was spin-coated onto glass substrates to form uniform thin films of Ti-doped indium oxide, which were then annealed at high temperature. The optimum Ti concentration to achieve the best electrical and optical properties of PAS–TIO films was found to be 3 at.%. With the film thickness of 650 nm, PAS–TIO films had a sheet resistance of 65 Ω/sq and an optical transmittance greater than 85%. The feasibility of PAS-coated TIO thin film as a transparent electrode was evaluated by applying it to the fabrication of IOSCs, which showed the energy conversion efficiency of 4.60%

  14. The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method

    Mkawi, E. M.; Ibrahim, K.; Ali, M. K. M.; Farrukh, M. A.; Mohamed, A. S.

    2015-11-01

    Al-doped ZnO (AZO) thin films were potentiostatically deposited on indium tin oxide substrates. The influence of the doping level of the ZnO:Al films was investigated. The results of the X-ray diffraction and scanning electron microscopy analysis revealed that the structural properties of the AZO films were found polycrystalline with a hexagonal wurtzite-type structure along the (002) plane. The grain size of the AZO films was observed as approximately 3 μm in the film doping with 4 mol% ZnO:Al concentration. The thin films also exhibited an optical transmittance as high as 90 % in the wavelength range of 100-1,000 nm. The optical band gap increased from 3.33 to 3.45 eV. Based on the Hall studies, the lowest resistivity (4.78 × 10-3 Ω cm) was observed in the film doping with 3 mol% ZnO:Al concentration. The sheet resistant, carrier concentration and Hall mobility values were found as 10.78 Ω/ square, 9.03 × 1018 cm-3 and 22.01 cm2/v s, respectively, which showed improvements in the properties of AZO thin films. The ZnO:Al thin films were used as a buffer layer in thin-film solar cells with the structure of soda-lime glass/Mo/Cu2ZnSnS4/ZnS/ZnO/Al grid. The best solar cell efficiency was 2.3 % with V OC of 0.430 V, J SC of 8.24 mA cm-2 and FF of 68.1 %.

  15. Development of thin film amorphous silicon oxide/microcrystalline silicon double-junction solar cells and their temperature dependence

    Sriprapha, K.; Piromjit, C.; Limmanee, A.; Sritharathikhun, J. [Institute of Solar Energy Technology Development (SOLARTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand)

    2011-01-15

    We have developed thin film silicon double-junction solar cells by using micromorph structure. Wide bandgap hydrogenated amorphous silicon oxide (a-SiO:H) film was used as an absorber layer of top cell in order to obtain solar cells with high open circuit voltage (V{sub oc}), which are attractive for the use in high temperature environment. All p, i and n layers were deposited on transparent conductive oxide (TCO) coated glass substrate by a 60 MHz-very-high-frequency plasma enhanced chemical vapor deposition (VHF-PECVD) technique. The p-i-n-p-i-n double-junction solar cells were fabricated by varying the CO{sub 2} and H{sub 2} flow rate of i top layer in order to obtain the wide bandgap with good quality material, which deposited near the phase boundary between a-SiO:H and hydrogenated microcrystalline silicon oxide ({mu}c-SiO:H), where the high V{sub oc} can be expected. The typical a-SiO:H/{mu}c-Si:H solar cell showed the highest initial cell efficiency of 10.5%. The temperature coefficient (TC) of solar cells indicated that the values of TC for conversion efficiency ({eta}) of the double-junction solar cells were inversely proportional to the initial V{sub oc}, which corresponds to the bandgap of the top cells. The TC for {eta} of typical a-SiO:H/{mu}c-Si:H was -0.32%/ C, lower than the value of conventional a-Si:H/{mu}c-Si:H solar cell. Both the a-SiO:H/{mu}c-Si:H solar cell and the conventional solar cell showed the same light induced degradation ratio of about 20%. We concluded that the solar cells using wide bandgap a-SiO:H film in the top cells are promising for the use in high temperature regions. (author)

  16. On-Orbit Demonstration Of Thin-Film Multi-Junction Solar Cells And Lithium-Ion Capacitors As Bus Components

    Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Toyota, Hiroyuki; Imaizumi, Mitsuru; Kobayashi, Yuki; Takamoto, Tatsuya; Uno, Masatoshi; Shimada, Takanobu

    2011-10-01

    This paper describes an on-orbit demonstration plan for a lightweight solar panel using thin-film multi-junction (MJ) solar cells and aluminum-laminated lithium-ion capacitors (LICs). Thin-film MJ solar cells such as inverted metamorphic InGaP/GaAs/InGaAs 3J cells have flexibility as well as conversion efficiencies superior to conventional rigid 3J solar cells. A substantial reduction of satellite mass is achieved by the combination of thin-film MJ solar cells and light flexible paddles. An LIC is a hybrid-type capacitor that uses activated carbon as the cathode and carbon material pre-doped with lithium ion as the anode. LICs can be rapidly charged and discharged, and can operate in a wide temperature range for long periods. LICs are therefore suitable for long-term missions such as planetary explorations. Although these devices are very promising, so far there has been no opportunity to demonstrate their use in orbit. A lightweight thin solar panel with thin-film MJ solar cells will be installed on the Small Scientific Satellite Platform for Rapid Investigation and Test-A (SPRINT-A) satellite, which will be launched on the Epsilon launch vehicle in 2013. Utilizing the capacitor-like voltage behavior of LICs, we will employ a simple constant-power charging circuit without feedback control.

  17. Non-toxic and environmentally friendly route for preparation of copper indium sulfide based thin film solar cells

    Highlights: • Substrate structure of spray pyrolyzed CuInS2/In2S3 heterojunction solar cells. • Low cost and environmentally friendly fabrication of CuInS2 based solar cells. • Low RF power deposition of TCO layer. • AZO–Ag–AZO sandwich structure. • Effect of the thickness of buffer layer on the photovoltaic performance. - Abstract: In this study, copper based thin film solar cells with substrate structure have been built via spray pyrolysis method. Toxic material usage was avoided during the material deposition and the post-treatment steps. Novel device configuration of Mo/CuInS2/In2S3/ZnO/AZO–Ag–AZO was studied as a function of the In2S3 buffer layer thickness. In order to utilize the zinc oxide (ZnO) and aluminum doped zinc oxide (AZO) transparent conductive layers, deposited by physical vapor deposition (PVD), on top of the spray pyrolyzed thin films, the RF power was lowered to 30 W. Although this minimized the unwanted penetration of the highly energetic particles, created during PVD process, sheet resistivity of the AZO films increased enormously. Hence very thin silver layer has been deposited between two AZO films. This resulted the decrease in the sheet resistivity more than 106 times. Electrical measurements under illumination revealed that short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) and efficiency (η) of the Mo/CuInS2/In2S3/ZnO/AZO–Ag–AZO type solar cells increased with increasing the thickness of the In2S3 layer. The maximum Jsc of 9.20 mA/cm2, Voc of 0.43 V, FF of 0.44 have been observed for the 0.94 μm-thick In2S3 layer. Extraordinarily thick buffer layer provided better diffusion barrier between the absorber and the TCO layers and also resulted better photosensitivity. These could be the key factors to produce substrate configuration of the spray pyrolyzed thin film solar cells

  18. Non-toxic and environmentally friendly route for preparation of copper indium sulfide based thin film solar cells

    Sankir, Nurdan Demirci, E-mail: nsankir@etu.edu.tr; Aydin, Erkan; Ugur, Esma; Sankir, Mehmet

    2015-08-15

    Highlights: • Substrate structure of spray pyrolyzed CuInS{sub 2}/In{sub 2}S{sub 3} heterojunction solar cells. • Low cost and environmentally friendly fabrication of CuInS{sub 2} based solar cells. • Low RF power deposition of TCO layer. • AZO–Ag–AZO sandwich structure. • Effect of the thickness of buffer layer on the photovoltaic performance. - Abstract: In this study, copper based thin film solar cells with substrate structure have been built via spray pyrolysis method. Toxic material usage was avoided during the material deposition and the post-treatment steps. Novel device configuration of Mo/CuInS{sub 2}/In{sub 2}S{sub 3}/ZnO/AZO–Ag–AZO was studied as a function of the In{sub 2}S{sub 3} buffer layer thickness. In order to utilize the zinc oxide (ZnO) and aluminum doped zinc oxide (AZO) transparent conductive layers, deposited by physical vapor deposition (PVD), on top of the spray pyrolyzed thin films, the RF power was lowered to 30 W. Although this minimized the unwanted penetration of the highly energetic particles, created during PVD process, sheet resistivity of the AZO films increased enormously. Hence very thin silver layer has been deposited between two AZO films. This resulted the decrease in the sheet resistivity more than 10{sup 6} times. Electrical measurements under illumination revealed that short circuit current density (J{sub sc}), open circuit voltage (V{sub oc}), fill factor (FF) and efficiency (η) of the Mo/CuInS{sub 2}/In{sub 2}S{sub 3}/ZnO/AZO–Ag–AZO type solar cells increased with increasing the thickness of the In{sub 2}S{sub 3} layer. The maximum J{sub sc} of 9.20 mA/cm{sup 2}, V{sub oc} of 0.43 V, FF of 0.44 have been observed for the 0.94 μm-thick In{sub 2}S{sub 3} layer. Extraordinarily thick buffer layer provided better diffusion barrier between the absorber and the TCO layers and also resulted better photosensitivity. These could be the key factors to produce substrate configuration of the spray pyrolyzed

  19. Growth of polycrystalline CdS and CdTe thin layers for high efficiency thin film solar cells

    Romeo, N.; Bosio, A.; Tedeschi, R.; Canevari, V. [Parma Univ. (Italy). Dipartimento di Fisica

    2000-10-16

    Recently, conversion efficiencies close to 16% for thin film solar cells based on the CdS/CdTe heterojunction have been reported. These relevant results, however, have not yet solved the problems which arise when industrial production is undertaken as the demand for low cost imposes constraints which considerably limit the final efficiency of the cells. In this paper, we will show that very high conversion efficiencies can still be achieved even making use of low cost soda-lime glass as substrate. In fact, the Na contained in this kind of glass diffuses during the fabrication of the cell into the active layers of the device causing a substantial decrease of the fill factor and consequently of the efficiency of the cell. In particular, we will describe the methods and the magnetron sputtering techniques used to grow a polycrystalline CdS thin film with a controlled Na content. We will also describe the details of the growth via the close-spaced sublimation (CSS) technique of the CdTe polycrystalline film, which are crucial for the heterojunction and the back contact which has been fabricated exploiting the characteristics of Sb{sub 2}Te{sub 3} which is a low gap p-type semiconductor with a high conductivity. (orig.)

  20. Easily accessible polymer additives for tuning the crystal-growth of perovskite thin-films for highly efficient solar cells

    Dong, Qingqing; Wang, Zhaowei; Zhang, Kaicheng; Yu, Hao; Huang, Peng; Liu, Xiaodong; Zhou, Yi; Chen, Ning; Song, Bo

    2016-03-01

    For perovskite solar cells (Pero-SCs), one of the key issues with respect to the power conversion efficiency (PCE) is the morphology control of the perovskite thin-films. In this study, an easily-accessible additive polyethylenimine (PEI) is utilized to tune the morphology of CH3NH3PbI3-xClx. With addition of 1.00 wt% of PEI, the smoothness and crystallinity of the perovskite were greatly improved, which were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). A summit PCE of 14.07% was achieved for the p-i-n type Pero-SC, indicating a 26% increase compared to those of the devices without the additive. Both photoluminescence (PL) and alternating current impedance spectroscopy (ACIS) analyses confirm the efficiency results after the addition of PEI. This study provides a low-cost polymer additive candidate for tuning the morphology of perovskite thin-films, and might be a new clue for the mass production of Pero-SCs.For perovskite solar cells (Pero-SCs), one of the key issues with respect to the power conversion efficiency (PCE) is the morphology control of the perovskite thin-films. In this study, an easily-accessible additive polyethylenimine (PEI) is utilized to tune the morphology of CH3NH3PbI3-xClx. With addition of 1.00 wt% of PEI, the smoothness and crystallinity of the perovskite were greatly improved, which were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). A summit PCE of 14.07% was achieved for the p-i-n type Pero-SC, indicating a 26% increase compared to those of the devices without the additive. Both photoluminescence (PL) and alternating current impedance spectroscopy (ACIS) analyses confirm the efficiency results after the addition of PEI. This study provides a low-cost polymer additive candidate for tuning the morphology of perovskite thin-films, and might be a new clue for the mass production of Pero-SCs. Electronic supplementary information (ESI) available: J-V curves & characteristics

  1. Pulsed electrically detected magnetic resonance study of spin relaxation and recombination in thin-film silicon solar cells

    Fehr, Matthias; Behrends, Jan; Schnegg, Alexander; Lips, Klaus; Rech, Bernd [Helmholtz-Zentrum Berlin, Silizium Photovoltaik, Berlin (Germany); Astakhov, Oleksander; Finger, Friedhelm [Forschungszentrum Juelich (Germany). IEF-5 Photovoltaik

    2009-07-01

    We have investigated the influence of paramagnetic states on electronic transport processes in thin-film pin solar cells with pulsed Electrically Detected Magnetic Resonance (pEDMR) at X-Band frequency and low temperature (10 K). The solar cells consist of an intrinsic microcrystalline absorber layer and amorphous or microcrystalline n/p contacting layers. In addition to the identification of the participating paramagnetic centres by their g-factors, pEDMR can be used to study the dynamics of the electronic processes in detail. We present measurements of modified EPR pulse sequences in order to identify the dominating relaxation mechanisms within correlated solid-state spin-pairs. By this technique a monitoring of the spin and charge motion is possible. In the outlook we present measurements of the electron spin echo envelope and critically discuss modulations in terms of dipolar coupling within the spin-pairs or hyperfine couplings to surrounding nuclei.

  2. Evaluation of back contact in spray deposited SnS thin film solar cells by impedance analysis.

    Patel, Malkeshkumar; Ray, Abhijit

    2014-07-01

    The role of back metal (M) contact in sprayed SnS thin film solar cells with a configuration Glass/F:SnO2/In2S3/SnS/M (M = Graphite, Cu, Mo, and Ni) was analyzed and discussed in the present study. Impedance spectroscopy was employed by incorporating constant phase elements (CPE) in the equivalent circuit to investigate the degree of inhomogeneity associated with the heterojunction and M/SnS interfaces. A best fit to Nyquist plot revealed a CPE exponent close to unity for thermally evaporated Cu, making it an ideal back contact. The Bode phase plot also exhibited a higher degree of disorders associated with other M/SnS interfaces. The evaluation scheme is useful for other emerging solar cells developed from low cost processing schemes like spray deposition, spin coating, slurry casting, electrodeposition, etc. PMID:24882468

  3. Ultra-Lightweight Hybrid Thin-Film Solar Cells: A Survey of Enabling Technologies for Space Power Applications

    Hepp, Aloysius F.; McNatt, Jeremiah S.; Bailey, Sheila G.; Dickman, John E.; Raffaelle, Ryne P.; Landi, Brian J.; Anctil, Annick; DiLeo, Roberta; Jin, Michael H.-C.; Lee, Chung-Young; Friske, Theresa J.; Sun, Sam-S.; Zhang, Cheng; Choi, S.; Ledbetter, Abram; Seo, Kang; Bonner, Carl E.; Banger, Kulbinder K.; Castro, Stephanie L.; Rauh, David

    2007-01-01

    The development of hybrid inorganic/organic thin-film solar cells on flexible, lightweight, space-qualified, durable substrates provides an attractive solution for fabricating solar arrays with high mass specific power (W/kg). Next generation thin-film technologies may well involve a revolutionary change in materials to organic-based devices. The high-volume, low-cost fabrication potential of organic cells will allow for square miles of solar cell production at one-tenth the cost of conventional inorganic materials. Plastic solar cells take a minimum of storage space and can be inflated or unrolled for deployment. We will explore a cross-section of in-house and sponsored research efforts that aim to provide new hybrid technologies that include both inorganic and polymer materials as active and substrate materials. Research at University of Texas at Arlington focuses on the fabrication and use of poly(isothianaphthene-3,6-diyl) in solar cells. We describe efforts at Norfolk State University to design, synthesize and characterize block copolymers. A collaborative team between EIC Laboratories, Inc. and the University of Florida is investigating multijunction polymer solar cells to more effectively utilize solar radiation. The National Aeronautics and Space Administration (NASA)/Ohio Aerospace Institute (OAI) group has undertaken a thermal analysis of potential metallized substrates as well as production of nanoparticles of CuInS2 and CuInSe2 in good yield at moderate temperatures via decomposition of single-source precursors. Finally, preliminary work at the Rochester Institute of Technology (R.I.T.) to assess the impact on performance of solar cells of temperature and carbon nanotubes is reported. Technologies that must be developed to enable ultra-lightweight solar arrays include: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. For NASA applications, any solar cell or array technology must not only meet

  4. Effect of load voltage on thin film cuprous sulfide: Cadmium sulfide solar cells thermally cycled in a simulated space environment

    Smithrick, J. J.; Thomas, R. D.

    1971-01-01

    Thin-film Cu2S-CdS solar cells, loaded at various fixed values of load resistance, were thermally cycled for 1429 cycles in a simulated space environment. Cell performance was measured under controlled conditions in air before and after thermal cycling. These data were used to determine the effect of load voltage on cell performance. The performance of the cells was relatively independent of load voltage up to about 0.39 volt. This appears to be a threshold voltage, beyond which there was a significant loss in cell performance. Fortunately, this threshold voltage appears to be sufficiently higher than the maximum power voltage of 0.33 volt so that it can be avoided in most applications.

  5. Development of a rapid thermal annealing process for polycrystalline silicon thin-film solar cells on glass

    In this report, we discuss the influence of rapid thermal annealing (RTA) on the performance of polycrystalline Si (poly-Si) thin-film solar cells on glass where the poly-Si layers are differently prepared. The first part presents a comprehensive study of RTA treatments on poly-Si thin-films made by solid phase crystallization (SPC) (standard material of CSG Solar AG, Thalheim). By varying both plateau temperature (up to 1050 deg. C) and duration (up to 1000 s) of the annealing profile, we determined the parameters for a maximum open-circuit voltage (VOC). In addition, we applied our standard plasma hydrogenation treatment in order to passivate the remaining intra-grain defects and grain boundaries by atomic hydrogen resulting in a further increase of VOC. We found, that the preceding RTA treatment increases the effect of hydrogenation already at comparable low RTA temperatures. The effect on hydrogenation increases significantly with RTA temperature. In a second step we investigated the effect of the RTA and hydrogenation on large-grained poly-Si films based on the epitaxial thickening of poly-Si seed layers.

  6. Estimation of local built-in potential of amorphous silicon thin-film solar cells by Kelvin force microscopy

    Itoh, Takashi; Ito, Takanori; Kuriyama, Hiroshi; Nonomura, Shuichi

    2016-04-01

    The local surface potential of pin-type hydrogenated amorphous silicon (a-Si:H) thin-film solar cells has been evaluated by Kelvin force microscopy (KFM). We have also estimated the local built-in potential of the solar cells by KFM. In the surface morphology image of the solar cells, large convex grains related to the textured structure of the substrate were found. The surface potential distribution related to the surface morphology was observed in the solar cells. A similar surface potential distribution was also found in an n-type hydrogenated microcrystalline Si (µc-Si:H) film. The surface potential of the solar cells was not the same as that of the n-type film. The difference in average surface potential between the n-type hydrogenated microcrystalline Si (µc-Si:H) film and the solar cells increased with increasing built-in potential. The difference in local surface potential on large convex grains was smaller than that in the region between the large convex grains.

  7. Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cell performance

    Courel, Maykel; Andrade-Arvizu, J. A.; Vigil-Galán, O.

    2015-09-01

    One of the most important issues in kesterite Cu2ZnSnS4 (CZTS)-based thin film solar cells is low open circuit voltage, which is mainly related to loss mechanisms that take place in both CZTS bulk material and CdS/CZTS interface. A device model for CZTS/CdS solar cell which takes into account loss mechanisms influence on solar cell performance is presented. The simulation results showed that our model is able to reproduce experimental observations reported for CZTS/CdS-based solar cells with the highest conversion efficiencies, measured under room temperature and AM1.5 intensity. The comparison of simulation results to experimental observations demonstrated that among the different loss mechanisms, trap-assisted tunneling losses are the major hurdle to boost open circuit voltage. Under this loss mechanism, a solar cell efficiency enhancement up to 10.2% with CdS donor concentration decrease was reached. Finally, the possible path toward a further solar cell efficiency improvement is discussed.

  8. CdTe thin film solar cells produced using a chamberless inline process via metalorganic chemical vapour deposition

    Cd1−xZnxS and CdTe:As thin films were deposited using a recently developed chamberless inline process via metalorganic chemical vapour deposition (MOCVD) at atmospheric pressure and assessed for fabrication of CdTe photovoltaic (PV) solar cells. Initially, CdS and Cd1−xZnxS coatings were applied onto 15 × 15 cm2 float glass substrates, characterised for their optical properties, and then used as the window layer in CdTe solar cells which were completed in a conventional MOCVD (batch) reactor. Such devices provided best conversion efficiency of 13.6% for Cd0.36Zn0.64S and 10% for CdS which compare favourably to the existing baseline MOCVD (batch reactor) devices. Next, sequential deposition of Cd0.36Zn0.64S and CdTe:As films was realised by the chamberless inline process. The chemical composition of a 1 μm CdTe:As/150 nm Cd0.36Zn0.64S bi-layer was observed via secondary ions mass spectroscopy, which showed that the key elements are uniformly distributed and the As doping level is suitable for CdTe device applications. CdTe solar cells formed using this structure provided a best efficiency of 11.8% which is promising for a reduced absorber thickness of 1.25 μm. The chamberless inline process is non-vacuum, flexible to implement and inherits from the legacy of MOCVD towards doping/alloying and low temperature operation. Thus, MOCVD enabled by the chamberless inline process is shown to be an attractive route for thin film PV applications. - Highlights: • CdS, CdZnS and CdTe thin films grown by a chamberless inline process • The inline films assessed for fabricating CdTe solar cells • 13.6% conversion efficiency obtained for CdZnS/CdTe cells

  9. Manipulation of MWCNT Concentration in MWCNT/TiO2 Nanocomposite Thin Films for Dye-Sensitized Solar Cell

    Huda Abdullah

    2014-01-01

    Full Text Available Dye-sensitized solar cell (DSSC using multiwalled carbon nanotube/titanium dioxide (MWCNT/TiO2 was successfully synthesized using sol-gel method. In this method, it has been performed under various acid treatments MWCNT concentration level at (a 0.00 g, (b 0.01 g, (c 0.02 g, and (d 0.03 g. Atomic force microscopy (AFM was used to study surface roughness of the MWCNT/TiO2 thin films. The average roughness results for 0.00 g, 0.01 g, 0.02 g, and 0.03 g were 10.995, 18.308, 24.322, and 25.723 nm, respectively. High resolution transmission electron microscopy (HR-TEM analysis showned the inner structural design of the MWCNT/TiO2 particles. The TiO2 nanoparticles covered almost all the area of MWCNT particles. Field emission scanning electron microscopy (FESEM gave the morphological surface structure of the thin films. The thin films formed in good distribution with homogenous design. The DSSC with MWCNT/TiO2 electrode containing 0.03 g MWCNT were resulted in the highest efficiency of 2.80% with short-circuit current density Jsc of 9.42 mA/cm2 and open-circuit voltage Voc of 0.65 V.

  10. Optimization of processing and modeling issues for thin film solar cell devices: Final report, February 3, 1997--September 1, 1998

    Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S.; McCandless, B. E.

    2000-02-28

    This final report describes results achieved under a 20-month NREL subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE's long-range efficiency, reliability and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development and improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to device structure and module encapsulation.

  11. Quantitative analysis of spatially resolved electroluminescence of Cu(In,Ga)Se2 and a-Si:H thin-film solar cells and modules0

    Tran, Thi-Minh-Hang

    2015-01-01

    Electroluminescence (EL) is the reciprocal process of the standard operational mode of a solar cell. EL imaging technique allows a fast detection of defects in solar cells and modules with low noise and high resolution. Recently, EL has become one of the most commonly used characterization tools for photovoltaic devices. There has been a significant amount of research into the interpretation and analysis of EL of silicon wafers, solar cells and modules, but very little, to date, on thin-film ...

  12. Photoelectrode thin film of dye-sensitized solar cell fabricated by anodizing method and spin coating and electrochemical impedance properties of DSSC

    The paper studies the photoelectrode thin film of dye-sensitized solar cell (DSSC) fabricated by anodizing method, explores the structure and properties of the fabricated photoelectrode thin film, measures the photoelectric conversion efficiency of DSSC, and finds the electrochemical impedance properties of DSSCs assembled by photoelectrode thin films in different thicknesses. Besides, in order to increase the specific surface area of nanotubes, this paper deposits TiO2 nanoparticles (TNP) on the surface of titanium oxide nanotube (TNT). As shown in experimental results, the photoelectric conversion efficiency of the DSSC fabricated by the study rises to 6.5% from the original 5.43% without TnB treatment, with an increase of photoelectric conversion efficiency by 19.7%. In addition, when the photoelectrode thin film is fabricated with mixture of TNTs and TNP in an optimal proportion of 2:8 and the photoelectrode thin film thickness is 15.5 μm, the photoelectric conversion efficiency can reach 7.4%, with an increase of 36.7% from the original photoelectric conversion efficiency at 5.43%. Besides, as found in the results of electrochemical impedance analysis, the DSSC with photoelectrode thin film thickness at 15.5 μm has the lowest charge-conduction resistance (Rk) value 9.276 Ω of recombined electron and conduction resistance (Rw) value 3.25 Ω of electrons in TiO2.

  13. Thin-Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates

    Zheng, Maxwell

    2015-08-25

    The design and performance of solar cells based on InP grown by the nonepitaxial thin-film vapor-liquid-solid (TF-VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p-doping process for TF-VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open-circuit voltage (VOC) of 692 mV, short-circuit current (JSC) of 26.9 mA cm-2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP. The design and performance of solar cells based on indium phosphide (InP) grown by the nonepitaxial thin-film vapor-liquid-solid growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and an indium tin oxide transparent top electrode. The highest measured open circuit voltage (VOC) under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP.

  14. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.

    Singh, Manjeet; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2014-09-24

    In the solar cell field, development of simple, low-cost, and low-temperature fabrication processes has become an important trend for energy-saving and environmental issues. Copper indium gallium selenide (CIGS) solar cells have attracted much attention due to the high absorption coefficient, tunable band gap energy, and high efficiency. However, vacuum and high-temperature processing in fabrication of solar cells have limited the applications. There is a strong need to develop simple and scalable methods. In this work, a CIGS solar cell based on all printing steps and low-temperature annealing is developed. CIGS absorber thin film is deposited by using dodecylamine-stabilized CIGS nanoparticle ink followed by printing buffer layer. Silver nanowire (AgNW) ink and sol-gel-derived ZnO precursor solution are used to prepare a highly conductive window layer ZnO/[AgNW/ZnO] electrode with a printing method that achieves 16 Ω/sq sheet resistance and 94% transparency. A CIGS solar cell based on all printing processes exhibits efficiency of 1.6% with open circuit voltage of 0.48 V, short circuit current density of 9.7 mA/cm(2), and fill factor of 0.34 for 200 nm thick CIGS film, fabricated under ambient conditions and annealed at 250 °C. PMID:25180569

  15. Determination of optical and mechanical properties of Nb{sub 2}O{sub 5} thin films for solar cells application

    Mazur, M. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, Wrocław (Poland); Szymańska, M., E-mail: magdalena.szymanska@its.waw.pl [Centre for Material Testing and Mechatronics, Motor Transport Institute, Jagiellonska 80, Warsaw (Poland); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, Warsaw (Poland); Kaczmarek, D. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, Wrocław (Poland); Kalisz, M. [Centre for Material Testing and Mechatronics, Motor Transport Institute, Jagiellonska 80, Warsaw (Poland); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, Warsaw (Poland); Wojcieszak, D.; Domaradzki, J. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, Wrocław (Poland); Placido, F. [University of the West of Scotland, High Street, Paisley, PA1 2BE, and SUPA, Scottish Universities Physics Alliance (United Kingdom)

    2014-05-01

    Highlights: • Niobium pentoxide films were prepared by microwave assisted magnetron sputtering. • Optical and mechanical properties of Nb{sub 2}O{sub 5} thin films were investigated. • The surface of thin films was homogenous, crack free and exhibited low RMS roughness. • Prepared Nb{sub 2}O{sub 5} coatings were well transparent from ca., 350 nm. • Hardness of deposited coatings was ca., 7 GPa. - Abstract: In this paper investigation results of niobium pentoxide thin films deposited by microwave assisted reactive magnetron sputtering process were described. Surface of prepared coatings was examined with the aid of atomic force microscope (AFM) operating in the contact-mode and in ultra high vacuum conditions. The surface of thin films was homogenous, crack free and exhibit low root mean square (RMS) roughness of about 0.34 nm. X-ray photoelectron spectroscopy (XPS) studies were performed to determine the chemical states of the niobium at the surface of thin films. Contact angle and surface free energy were additionally investigated to examine the surface properties of the deposited coatings. Optical properties of the Nb{sub 2}O{sub 5} thin films showed, that prepared coatings were well transparent from 350 nm to longer wavelength range. Based on transmission and reflection measurements the values of refractive index and extinction coefficient were determined. The antireflective coating based on Nb{sub 2}O{sub 5} thin films for solar cells application was proposed. The hardness and Young's modulus measurements were performed by the nanoindentation technique. These investigations revealed that the hardness of the deposited coatings was ca., 7 GPa. Also scratch tests were applied, which have shown that the Nb{sub 2}O{sub 5} thin films were scratch resistant.

  16. Research Progress on a- Si:H Thin Film Solar Cells%非晶硅薄膜太阳能电池研究进展

    尹炳坤; 蒋芳

    2012-01-01

    介绍了非晶硅薄膜太阳能电池的发展现状及制约非晶硅薄膜太阳能发展的两个关键性因素:转化效率低、光致衰减。对近年来提高非晶硅薄膜太阳能转化效率的新技术和非晶硅薄膜太阳能电池光致衰减的特性及模型进行综叙;重点阐述窗口层材料、中间层、叠层电池等提高非晶硅薄膜太阳能电池转化效率的新技术。文章最后对非晶硅膜太阳能电池未来的发展趋势进行了展望。%The research progress on a - Si thin film solar cells and two key factors restricting the development of a - Si : H thin film solar: low transformation efficiency and light - induced degradation test were introduced. The new tech- nique to improve transformation efficiency on a - Si : H thin film solar cells and both characteristics and model of light - induced degradation test of a - Si: H thin film solar were reviewed. Window layer materiaels, intermediate layer, light trapping structure and other all new technologies to improve the transformation efficiency of a - Si : H thin film solar were emphased on. The development trend of a - Si : H thin film solar cells was predicted.

  17. Characterization of thin film CdS-CdTe solar cells. [CDS-CDTE

    Singh, V.P.; Brafman, H.; Makwana, J. (Texas Univ., El Paso (USA). Dept. of Electrical Engineering); McClure, J.C. (Texas Univ., El Paso, TX (USA). Metallurgical and Materials Engineering Dept.)

    1991-02-01

    Current-voltage, junction capacitance and optical characteristics of thin film CdS-CdTe cells on sprayed CdS films were measured. These characteristics have some interesting features such as reversal of the polarity of the a.c. short-circuit current and the a.c. open-circuit voltage when a large forward bias is applied across the cell. The reverse saturation current density j{sub 0} increases from 5.9x10{sup -9} A cm{sup -2} in the dark to 18.1x10{sup -6} A cm{sup -2} under '1 sun' illumination. Diode ideality factors are higher than 2.0 and the slope {alpha} of log I vs. V curve is almost temperature independent. The zero-bias depletion layer width is 1.9 {mu}m. The experimental results are interpreted by a model which proposes a highly compensated layer in CdTe and a high space charge layer in CdTe next to the CdS-CdTe interface. The origin of the high space charge layer is thought to be the ionization of a deep trap level at energy E{sub T} below the conduction band edge. For our calculations, we have used E{sub T}=0.45 eV. (orig.).

  18. New diarylmethanofullerene derivatives and their properties for organic thin-film solar cells

    Daisuke Sukeguchi

    2009-02-01

    Full Text Available A number of diarylmethanofullerene derivatives were synthesized. The cyclopropane ring of the derivatives has two aryl groups substituted with electron-withdrawing and -donating groups, the latter with long alkyl chains to improve solubility in organic solvents, an important property in processing cells. First reduction potentials of most derivatives were less negative than that of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM, which is possibly ascribed to their electron-withdrawing nature. Organic thin-film photovoltaic cells fabricated with poly(3-hexylthiophene (P3HT as the electron-donor and diarylmethanofullerene derivatives as the electron-acceptor material were examined. The {(methoxycarbonylphenyl[bis(octyloxyphenyl]methano}fullerene showed power conversion efficiency as high as PCBM, but had higher solubility in a variety of organic solvents than PCBM. The Voc value was higher than that of PCBM, which is derived from the electron-donating (octyloxyphenyl group, possibly raising the LUMO level. Photovoltaic effects of the devices fabricated with the derivatives having some electron-withdrawing groups were also examined.

  19. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the so

  20. Development of thin film space solar cells with multi-junction

    The present and future state of research and development in JAXA are introduced on the downsizing and weight reduction of solar panels. The circumstance of development, special feature and efficiency in the latest solar cells are explained. Further, its radiation resistance is shown by comparison with the three-junction solar cells used at present. (M.H.)

  1. Effect of fluorine plasma treatment with chemically reduced graphene oxide thin films as hole transport layer in organic solar cells

    Yu, Youn-Yeol; Kang, Byung Hyun; Lee, Yang Doo; Lee, Sang Bin; Ju, Byeong-Kwon, E-mail: bkju@korea.ac.kr

    2013-12-15

    The inorganic materials such as V{sub 2}O{sub 5}, MoO{sub 3} and WO{sub 3} were investigated to replace PEDOT:PSS as hole transport layer (HTL) in organic electronic devices such as organic solar cells (OSCs) and organic lighting emission diodes. However, these methods require vacuum techniques that are long time process and complex. Here, we report about plasma treatment with SF{sub 6} and CF{sub 4} using reactive ion etching on reduced graphene oxide (rGO) thin films that are obtained using an eco-friendly method with vitamin C. The plasma treated rGO thin films have dipoles since they consist of covalent bonds with fluorine on the surface of rGO. This means it is possible to increase the electrostatic potential energy than bare rGO. Increased potential energy on the surface of rGO films is worth applying organic electronic devices as HTL such as OSCs. Consequently, the power conversion efficiency of OSCs increased more than the rGO films without plasma treatment.

  2. Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells.

    Zhou, Yuanyuan; Yang, Mengjin; Game, Onkar S; Wu, Wenwen; Kwun, Joonsuh; Strauss, Martin A; Yan, Yanfa; Huang, Jinsong; Zhu, Kai; Padture, Nitin P

    2016-01-27

    Wide-bandgap perovskite solar cells (PSCs) based on organolead (I, Br)-mixed halide perovskites (e.g., MAPbI2Br and MAPbIBr2 perovskite with bandgaps of 1.77 and 2.05 eV, respectively) are considered as promising low-cost alternatives for application in tandem or multijunction photovoltaics (PVs). Here, we demonstrate that manipulating the crystallization behavior of (I, Br)-mixed halide perovskites in antisolvent bath is critical for the formation of smooth, dense thin films of these perovskites. Since the growth of perovskite grains from a precursor solution tends to be more rapid with increasing Br content, further enhancement in the nucleation rate becomes necessary for the effective decoupling of the nucleation and the crystal-growth stages in Br-rich perovskites. This is enabled by introducing simple stirring during antisolvent-bathing, which induces enhanced advection transport of the extracted precursor-solvent into the bath environment. Consequently, wide-bandgap planar PSCs fabricated using these high quality mixed-halide perovskite thin films, Br-rich MAPbIBr2, in particular, show enhanced PV performance. PMID:26726763

  3. Growth, etching, and stability of sputtered ZnO:Al for thin-film silicon solar cells

    Owen, Jorj Ian

    2011-07-01

    Aluminum-doped zinc oxide (ZnO:Al) can fulfill many requirements in thin-film solar cells, acting as (1) a transparent contact through which the incident light is transmitted, (2) part of the back reflector, and (3) a source of light scattering. Magnetron sputtered ZnO:Al thin-films are highly transparent, conductive, and are typically texturized by post-deposition etching in a dilute hydrochloric acid (HCl) solution to achieve light scattering. The ZnO:Al thin-film electronic and optical properties, as well as the surface texture after etching, depend on the deposition conditions and the post-deposition treatments. Despite having been used in thin-film solar cells for more than a decade, many aspects regarding the growth, effects of heat treatments, environmental stability, and etching of sputtered ZnO:Al are not fully understood. This work endeavors to further the understanding of ZnO:Al for the purpose improving silicon thin-film solar cell efficiency and reducing ZnO:Al production costs. With regard to the growth of ZnO:Al, the influence of various deposition conditions on the resultant electrical and structural properties and their evolution with film thickness were studied. The surface electrical properties extracted from a multilayer model show that while carrier concentration of the surface layer saturates already at film thickness of 100 nm, the surface mobility continues to increases with film thickness, and it is concluded that electronic transport across grain boundaries limits mobility in ZnO:Al thin films. ZnO:Al deposited onto a previously etched ZnO:Al surface grows epitaxially, preserving both the original orientation and grain structure. Further, it is determined that a typical ZnO:Al used in thin-film silicon solar cells grows Zn-terminated on glass substrates. Concerning the affects of heat treatments and stability, it is demonstrated that a layer of amorphous silicon can protect ZnO:Al from degradation during annealing, and the mobility of Zn

  4. Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS-CdTe solar cells

    Thin film CdS/CdTe heterojunction device is a leading technology for the solar cells of the next generation. We report on two novel device configurations for these cells where the traditional CdS window layer is replaced by nanowires (NW) of CdS, embedded in an aluminum oxide matrix or free-standing. An estimated 26.8% improvement in power conversion efficiency over the traditional device structure is expected, primarily because of the enhanced spectral transmission of sunlight through the NW-CdS layer and a reduction in the junction area/optical area ratio. In initial experiments, nanostructured devices of the two designs were fabricated and a power conversion efficiency value of 6.5% was achieved.

  5. Improving low pressure chemical vapor deposited zinc oxide contacts for thin film silicon solar cells by using rough glass substrates

    Steinhauser, J., E-mail: jerome.steinhauser@oerlikon.com; Boucher, J.-F.; Omnes, E.; Borrello, D.; Vallat-Sauvain, E.; Monteduro, G.; Marmelo, M.; Orhan, J.-B.; Wolf, B.; Bailat, J.; Benagli, S.; Meier, J.; Kroll, U.

    2011-12-01

    Compared to zinc oxide grown (ZnO) on flat glass, rough etched glass substrates decrease the sheet resistance (R{sub sq}) of zinc oxide layers grown on it. We explain this R{sub sq} reduction from a higher thickness and an improved electron mobility for ZnO layers deposited on rough etched glass substrates. When using this etched glass substrate, we also obtain a large variety of surface texture by changing the thickness of the ZnO layer grown on it. This new combination of etched glass and ZnO layer shows improved light trapping potential compared to ZnO films grown on flat glass. With this new approach, Micromorph thin film silicon tandem solar cells with high total current densities (sum of the top and bottom cell current density) of up to 26.8 mA cm{sup -2} were fabricated.

  6. Optimized Packing Density of Large CZTS Nanoparticles Synthesized by Hot-injection for Thin Film Solar Cells

    Engberg, Sara Lena Josefin; Lam, Yeng Ming; Schou, Jørgen

    The absorbing kesterite material, Cu2ZnSn(SxSe1-x)4 (CZTS), is very promising for future thin film solar cells. The material is non-toxic, the elements abundant, and it has a high absorption coefficient. These properties make CZTS a potential candidate also for large-scale applications. Here......, solution processing allows for comparatively fast and inexpensive fabrication, and also holds the record efficiency in the kesterite family. Unfortunately, the record cell is deposited with a highly toxic solvent, hydrazine. This toxic solvent can be avoided through the nanocrystal ink approach...... the amount of ligands necessary to stabilize the particles in solution. Today, CZTS nanoparticles synthesized through the so-called hot-injection method vary between 2 nm and 60 nm in diameter. In our group, we have synthesized particles larger than 200 nm. Transmission electron microscopy (TEM) allows us...

  7. Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells

    Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ∼ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ∼ 80%) and excellent electrical properties (Rs ∼ 10 Ω at d ∼ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density JSC = 10.62 mA/cm2, open-circuit voltage VOC = 0.93 V and fill factor = 64%).

  8. Highly transparent front electrodes with metal fingers for p-i-n thin-film silicon solar cells

    Moulin Etienne

    2015-01-01

    Full Text Available The optical and electrical properties of transparent conductive oxides (TCOs, traditionally used in thin-film silicon (TF-Si solar cells as front-electrode materials, are interlinked, such that an increase in TCO transparency is generally achieved at the cost of reduced lateral conductance. Combining a highly transparent TCO front electrode of moderate conductance with metal fingers to support charge collection is a well-established technique in wafer-based technologies or for TF-Si solar cells in the substrate (n-i-p configuration. Here, we extend this concept to TF-Si solar cells in the superstrate (p-i-n configuration. The metal fingers are used in conjunction with a millimeter-scale textured foil, attached to the glass superstrate, which provides an antireflective and retroreflective effect; the latter effect mitigates the shadowing losses induced by the metal fingers. As a result, a substantial increase in power conversion efficiency, from 8.7% to 9.1%, is achieved for 1-μm-thick microcrystalline silicon solar cells deposited on a highly transparent thermally treated aluminum-doped zinc oxide layer combined with silver fingers, compared to cells deposited on a state-of-the-art zinc oxide layer.

  9. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front

    Uhrenfeldt, Christian; Villesen, Thorbjørn Falk; Tetu, Amelie;

    2015-01-01

    Plasmonic resonances in metal nanoparticles are considered candidates for improved thin film Si photovoltaics. In periodic arrays the influence of collective modes can enhance the resonant properties of such arrays. We have investigated the use of periodic arrays of Al nanoparticles placed on the...... front of a thin film Si test solar cell. It is demonstrated that the resonances from the Al nanoparticle array cause a broadband photocurrent enhancement ranging from the ultraviolet to the infrared with respect to a reference cell. From the experimental results as well as from numerical simulations it...

  10. Cu2ZnSnS4 thin films solar cells: material and device characterization

    Malerba, Claudia

    2014-01-01

    Cu2ZnSnS4 (CZTS) quaternary compound has attracted much attention in the last years as new abundant, low cost and non-toxic material, with desirable properties for thin film photovoltaic (PV) applications. In this work, CZTS thin films were grown using two different processes, based on vacuum deposition of precursors, followed by a heat treatment in sulphur atmosphere. The precursors were deposited using two different approaches: (i) electron-beam evaporation of multiple stacks made of ZnS, S...

  11. Characterization of the Organic Thin Film Solar Cells with Active Layers of PTB7/PC71BM Prepared by Using Solvent Mixtures with Different Additives

    Masakazu Ito

    2014-01-01

    Full Text Available Organic thin film solar cells (OTFSCs were fabricated with blended active layers of poly[[4,8-bis[(2-ethylhexyloxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexylcarbonyl]thieno[3,4-b]thiophenediyl

  12. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  13. Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector and diffraction grating

    The influence of various designing parameters were investigated and explored for high performance solar cells. Single layer grating based solar cell of 50 μm thickness gives maximum efficiency up to 24 % whereas same efficiency is achieved with the use of three bilayers grating based solar cell of 30 μm thickness. Remarkably, bilayer grating based solar cell design not only gives broadband absorption but also enhancement in efficiency with reduced cell thickness requirement. This absorption enhancement is attributed to the high reflection and diffraction from DBR and grating respectively. The obtained short-circuit current were 29.6, 32.9, 34.6 and 36.05 mA/cm2 of 5, 10, 20 and 30 μm cell thicknesses respectively. These presented designing efforts would be helpful to design and realize new generation of solar cells

  14. Conducting glasses recovered from thin film transistor liquid crystal display wastes for dye-sensitized solar cell cathodes.

    Chen, C-C; Chang, F-C; Peng, C Y; Wang, H Paul

    2015-01-01

    Transparent conductive glasses such as thin film transistor (TFT) array and colour filter glasses were recovered from the TFT-liquid crystal display panel wastes by dismantling and sonic cleaning. Noble metals (i.e. platinum (Pt)) and indium tin oxide (ITO) are generally used in the cathode of a dye-sensitized solar cell (DSSC). To reduce the DSSC cost, Pt was replaced with nano nickel-encapsulated carbon-shell (Ni@C) nanoparticles, which were prepared by carbonization of Ni²⁺-β-cyclodextrin at 673 K for 2 h. The recovered conductive glasses were used in the DSSC electrodes in the substitution of relatively expensive ITO. Interestingly, the efficiency of the DSSC having the Ni@C-coated cathode is as high as 2.54%. Moreover, the cost of the DSSC using the recovered materials can be reduced by at least 24%. PMID:25399759

  15. Polarization and Dielectric Study of Methylammonium Lead Iodide Thin Film to Reveal its Nonferroelectric Nature under Solar Cell Operating Conditions

    Hoque, Md Nadim Ferdous; Yang, Mengjin; Li, Zhen; Islam, Nazifah; Pan, Xuan; Zhu, Kai; Fan, Zhaoyang

    2016-07-08

    Researchers have debated whether methylammonium lead iodide (MAPbI3), with a perovskite crystal structure, is ferroelectric and therefore contributes to the current--voltage hysteresis commonly observed in hybrid perovskite solar cells (PSCs). We thoroughly investigated temperature-dependent polarization, dielectric, and impedance spectroscopies, and we found no evidence of ferroelectric effect in a MAPbI3 thin film at normal operating conditions. Therefore, the effect does not contribute to the hysteresis in PSCs, whereas the large component of ionic migration observed may play a critical role. Our temperature-based polarization and dielectric studies find that MAPbI3 exhibits different electrical behaviors below and above ca. 45 degrees C, suggesting a phase transition around this temperature. In particular, we report the activation energies of ionic migration for the two phases and temperature-dependent permittivity of MAPbI3. This study contributes to the understanding of the material properties and device performance of hybrid perovskites.

  16. Influence of contaminations on the performance of thin-film silicon solar cells prepared after in situ reactor plasma cleaning

    This paper addresses the influence of the chemical memory effect (CME) of in situ plasma cleaning by using the fluorinated gases on the properties of subsequently deposited thin-film silicon solar cells and discusses methods to avoid or reduce this effect. Secondary ion mass spectrometry (SIMS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) profiles analysis showed a high impurity concentration in the intrinsic (i)-layer of p-i-n solar cells prepared directly after in situ cleaning. With increasing number of cell depositions these contaminations decrease and the solar cell performance recovers to the standard value. Restoring solar cell performance is accompanied by a decrease of contaminants concentration in the i-layer. The intentional variation of the F-content in the i-layer obtained by adding SiF4 to the process gas mixture during a-Si:H i-layer preparation reveals that for solar cells a fluorine content above 1.5 x 1019 cm-3 is critical. We applied NF3 or SF6 + O2 as cleaning gases and optimized the cleaning procedure. In case of using NF3 as the cleaning gas, the CME was less pronounced as compared to the SF6 + O2 case and by additional procedures, like increasing the total gas flow rate during deposition, hydrogen plasma treatment of reaction chamber, the high solar cell quality could be achieved directly after in situ reactor cleaning. Low concentration of impurities in such cells was observed. Also the long-term illumination test (light-soaking for 1000 h, AM1.5 radiation) shows the same stabilized efficiency as compared to reference cells

  17. Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles

    Cai, Boyuan; Li, Xiangping; Zhang, Yinan; Jia, Baohua

    2016-05-01

    Enhancing the light absorption in microcrystalline silicon bottom cell of a silicon-based tandem solar cell for photocurrent matching holds the key to achieving the overall solar cell performance breakthroughs. Here, we present a concept for significantly improving the absorption of both subcells simultaneously by simply applying tailored metallic nanoparticles both on the top and at the rear surfaces of the solar cells. Significant light absorption enhancement as large as 56% has been achieved in the bottom subcells. More importantly the thickness of the microcrystalline layer can be reduced by 57% without compromising the optical performance of the tandem solar cell, providing a cost-effective strategy for high performance tandem solar cells.

  18. In-situ transmission measurements as process control for thin-film silicon solar cells

    Meier, M.; Muthmann, S.; Flikweert, A. J.; Dingemans, G.; M. C. M. van de Sanden,; Gordijn, A.

    2011-01-01

    In this work, in-situ transmission measurements using plasma as light source are presented for the determination of growth rate and crystallinity during silicon thin-film growth. The intensity of distinct plasma emission lines was measured at the backside of the transparent substrates on which silic

  19. Nano-level characterization of silicon thin films and solar cells

    Fejfar, Antonín

    Tokyo: Ohmsha, 2013 - (Konagai, M.), s. 468-478 ISBN 978-4-274-21399-1 R&D Projects: GA MŠk(CZ) LM2011026 Grant ostatní: AVČR(CZ) M100101217 Institutional support: RVO:68378271 Keywords : silicon * thin films * atomic force microscopy * photoresponse Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Solar control on irradiated Ta2O2 thin films

    Thin films consisting of Ta2O5 have been used in industry in applications related to thin-film capacitors, optical waveguides, and antireflection coatings on solar cells. Ta2O5 films are used for several special applications as highly refractive material and show different optical properties depending on the deposition methods. Sol-gel technique has been used for the preparation of Ta2O5 thin films. Ta2O5 thin films were prepared by sol-gel proses on glass substrates to obtain good quality films. These films were exposed to gamma radiation from Co-60 radioisotope. Ta2O5 coated thin films were placed against the source and irradiated for 8 different gamma doses; between 0.35 and 21.00 kGy at room temperature. Energetic gamma ray can affect the samples and change its colour. On the other hand some of the Ta2O5 coated thin films were irradiated with beta radiation from Sr-90 radioisotope. The effect of gamma irradiation on the solar properties of Ta2O5 films is compared with that of beta irradiation. The solar properties of the irradiated thin films differ significantly from those of the unirradiated ones. After the irradiation of the samples transmittance and reflectance are measured for solar light between 300 and 2100 nm, by using Perkin Elmer Lambda 9 UV/VIS/NIR Spectrophotometer. Change in the direct solar transmittance, reflectance and absorptance with absorbed dose are determined. Using the optical properties, the redistribution of the absorbed component of the solar radiation and the shading coefficient (SC) are calculated as a function of the convective heat-transfer coefficient. Solar parameters are important for the determination of the shading coefficient. When the secondary internal heat transfer factor (qi), direct solar transmittance (□e), and solar factor (g) are known, it is possible to determine shading coefficient via the dose rates. The shading coefficient changes as the dose rate is increased. In this study, the shading coefficient is related to

  1. The role of Ag in (Ag,Cu)2ZnSnS4 thin film for solar cell application

    Highlights: • (Ag,Cu)2ZnSnS4 thin film was synthesized through metallic stacking layers. • Ag incorporation reduces the size and amount of voids at back contact. • Less planar defects and Cu vacancy are formed in the (Ag,Cu)2ZnSnS4. • Solar cell performance was improved with Ag incorporation. - Abstract: Recently, Ag incorporation into Cu(In,Ga)Se2 structure was found to benefit the solar cell performance. However, (Ag,Cu)2ZnSnS4 used as the solar cell absorber is not widely reported even though Ag2ZnSnS4 has shown much better photocatalysts activity for H2 evolution than Cu2ZnSnS4. In this paper, (Ag,Cu)2ZnSnS4 thin film solar cell was synthesized through sulfurization of Ag/Zn/Cu/Sn metallic stacked layers. In order to understand the actual role of Ag in the Cu2ZnSnS4 structure, the changing chemical environment, microstructure and intragrain defect due to the Ag incorporation, were studied by X-ray photoelectron spectroscopy and transmission electron microscopy. After sulfurization, Ag is uniformly distributed in the absorber and is incorporated into Cu2ZnSnS4 crystal structure but no obvious change of the Cu2ZnSnS4 chemical environment is detected. A large density of voids is formed at the Cu2ZnSnS4/Mo interface and some of these voids are found to be coated with CdS which is believed to be detrimental to Cu2ZnSnS4 device performance. In contrast, Ag incorporation reduces the size and amount of voids and thus effectively eliminates CdS deposited at back contact region. Moreover, fewer planar defects and Cu vacancies are formed in the (Ag,Cu)2ZnSnS4 sample than Cu2ZnSnS4 sample as suggested by electron diffraction patterns. Therefore, improved solar cell performance should result from the formation of (Ag,Cu)2ZnSnS4 structure

  2. Effect of In Situ Thermal Annealing on Structural, Optical, and Electrical Properties of CdS/CdTe Thin Film Solar Cells Fabricated by Pulsed Laser Deposition

    Alaa Ayad Al-mebir; Paul Harrison; Ali Kadhim; Guanggen Zeng; Judy Wu

    2016-01-01

    An in situ thermal annealing process (iTAP) has been introduced before the common ex situ cadmium chloride (CdCl2) annealing to improve crystal quality and morphology of the CdTe thin films after pulsed laser deposition of CdS/CdTe heterostructures. A strong correlation between the two annealing processes was observed, leading to a profound effect on the performance of CdS/CdTe thin film solar cells. Atomic force microscopy and Raman spectroscopy show that the iTAP in the optimal processing w...

  3. Preparation and Characterization of Cu2ZnSnS4 Thin Films and Solar Cells Fabricated from Quaternary Cu-Zn-Sn-S Target

    Min Xie; Daming Zhuang; Ming Zhao; Zuolong Zhuang; Liangqi Ouyang; Xiaolong Li; Jun Song

    2013-01-01

    CZTS thin films were fabricated through sputtering from a quaternary Cu-Zn-Sn-S target, followed by a sulfurization process. CZTS thin-film solar cells were also fabricated and a highest efficiency of 4.04% was achieved. It has been found that obvious Zn loss occurs during the sputtering and poorly crystallized CZTS are formed in the sputtered films. The Zn loss leads to the appearance of SnS. A sulfurization process can obviously improve the crystallinity of CZTS and films with grain size of...

  4. The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells

    Wang Guang-Hong; Zhao Lei; Yan Bao-Jun; Chen Jing-Wei; Wang Ge; Diao Hong-Wei; Wang Wen-Jing

    2013-01-01

    Different aluminum-doped ZnO (AZO)/metal composite thin films,including AZO/Ag/Al,AZO/Ag/nickelchromium alloy (NiCr),and AZO/Ag/NiCr/Al,are utilized as the back reflectors of p-i-n amorphous silicon germanium thin film solar cells.NiCr is used as diffusion barrier layer between Ag and Al to prevent mutual diffusion,which increases the short circuit current density of solar cell.NiCr and NiCr/Al layers are used as protective layers of Ag layer against oxidation and sulfurization,the higher efficiency of solar cell is achieved.The experimental results show that the performance of a-SiGe solar cell with AZO/Ag/NiCr/Al back reflector is best.The initial conversion efficiency is achieved to be 8.05%.

  5. Efficient light incoupling into silicon thin-film solar cells by anti-reflecting MgO/high-compact-AZO with air-side textured glass

    Light incoupling effects have been enhanced at front interfaces of silicon (Si) thin-film solar cells. Firstly, a MgO thin film was introduced at glass substrate/Al-doped ZnO (AZO) interface for anti-reflection effect. We additionally found that the surface morphology of AZO films grown on MgO film after texture-etching is dependent on the compactness of AZO. For high-compact AZO films, the texture-etched MgO/AZO double layer exhibited significantly enhanced light-scattering capability. Secondly, we made textured surfaces at air/glass interface through simple plasma-etching without sacrificial layers or masks by optimizing the etching pressure. The additional air-side texture contributed to further improvement of total light scattering from the MgO/AZO-coated glass substrate. Fabricated microcrystalline Si thin-film solar cells employing the MgO coated glass with air-side surface texture showed decreased cell reflectance and increased quantum efficiency. The Jsc increased from 21.7 to 26.5 mA cm−2 and final efficiency of 9.49% was achieved. Based on our experimental results, the suggested structure, the MgO coating on glass substrate of which air-side surface is texture-etched, can offer a promising approach to improve the light incoupling and efficiency of Si thin-film solar cells. (paper)

  6. Development of a Thin-Film Solar Cell Interconnect for the Powersphere Concept

    Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig; Lin, John K.; Scarborough, Stephen E.

    2005-01-01

    Dual junction amorphous silicon (a-Si) solar cells produced on polyimide substrate have been selected as the best candidate to produce a lightweight solar array for the PowerSphere program. The PowerSphere concept features a space-inflatable, geodetic solar array approximately 0.6 meters in diameter and capable of generating about 20W of electrical power. Trade studies of various wiring concepts and connection methods led to an interconnect design with a copper contact that wraps around the edge, to the back of the solar cell. Applying Plasma Vapor Deposited (PVD) copper film to both sides and the edge of the solar cell produces the wrap around contact. This procedure results in a contact pad on the back of the solar cell, which is then laser welded to a flex circuit material. The flex circuit is constructed of copper in a custom designed routing pattern, and then sandwiched in a Kapton insulation layer. The flex circuit then serves as the primary power distribution system between the solar cells and the spacecraft. Flex circuit material is the best candidate for the wiring harness because it allows for low force deployment of the solar cells by the inflatable hinges on the PowerSphere. An additional frame structure, fabricated and assembled by ILC Dover, will reinforce the wrap around contact-flex blanket connection, thus providing a mechanically robust solar cell interconnect for the PowerSphere multifunctional program. The PowerSphere team will use the wraparound contact design approach as the primary solution for solar cell integration and the flex blanket for power distribution.

  7. Flexible Cu(In,Ga)Se2 thin-film solar cells%柔性铜铟镓硒薄膜太阳电池

    闫礼; 乔在祥

    2011-01-01

    The general structure and researching status of flexible Cu (In,Ga)Se2 (CIGS) thin-film solar cells was described.The crucial technologies and challenges in the development of flexible CIGS solar cells were also involved.%介绍了柔性铜铟镓硒薄膜太阳电池的基本结构、研究现况、关键技术,同时指出了未来面临的挑战.

  8. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.

    Han, Lihao; Abdi, Fatwa F; van de Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Smets, Arno H M

    2014-10-01

    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2% under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten-bismuth vanadate (W:BiVO4 ) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO4 and the nc-Si:H cell. PMID:25138735

  9. Polycrystalline thin film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report, 20 March 1995--19 March 1996

    Trefny, J U; Mao, D [Colorado School of Mines, Golden, CO (United States)

    1997-04-01

    The objective of this project is to develop improved processes for fabricating CdTe/CdS polycrystalline thin-film solar cells. Researchers used electrodeposition to form CdTe; electrodeposition is a non-vacuum, low-cost technique that is attractive for economic, large-scale production. During the past year, research and development efforts focused on several steps that are most critical to the fabricating high-efficiency CdTe solar cells. These include the optimization of the CdTe electrodeposition process, the effect of pretreatment of CdS substrates, the post-deposition annealing of CdTe, and back-contact formation using Cu-doped ZnTe. Systematic investigations of these processing steps have led to a better understanding and improved performance of the CdTe-based cells. Researchers studied the structural properties of chemical-bath-deposited CdS thin films and their growth mechanisms by investigating CdS samples prepared at different deposition times; investigated the effect of CdCl{sub 2} treatment of CdS films on the photovoltaic performance of CdTe solar cells; studied Cu-doped ZnTe as a promising material for forming stable, low-resistance contacts to the p-type CdTe; and investigated the effect of CdTe and CdS thickness on the photovoltaic performance of the resulting cells. As a result of their systematic investigation and optimization of the processing conditions, researchers improved the efficiency of CdTe/CdS cells using ZnTe back-contact and electrodeposited CdTe. The best CdTe/CdS cell exhibited a V{sub oc} of 0.778 V, a J{sub sc} of 22.4 mA/cm{sup 2}, a FF of 74%, and an efficiency of 12.9% (verified at NREL). In terms of individual parameters, researchers obtained a V{sub oc} over 0.8 V and a FF of 76% on other cells.

  10. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    Bozzola, A.; Kowalczewski, P.; Andreani, L. C.

    2014-03-01

    Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 10-80 μm, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100 cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies.

  11. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 10–80 μm, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100 cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies

  12. Compositional and Interfacial Modification of Cu2 ZnSn(S,Se)4 Thin-Film Solar Cells Prepared by Electrochemical Deposition.

    Seo, Se Won; Jeon, Jong-Ok; Seo, Jung Woo; Yu, Yi Yin; Jeong, Jeung-Hyun; Lee, Doh-Kwon; Kim, Honggon; Ko, Min Jae; Son, Hae Jung; Jang, Ho Won; Kim, Jin Young

    2016-03-01

    A highly efficient Cu2 ZnSn(S,Se)4 (CZTSSe)-based thin-film solar cell (9.9%) was prepared using an electrochemical deposition method followed by thermal annealing. The Cu-Zn-Sn alloy films was grown on a Mo-coated glass substrate using a one-pot electrochemical deposition process, and the metallic precursor films was annealed under a mixed atmosphere of S and Se to form CZTSSe thin films with bandgap energies ranging from 1.0 to 1.2 eV. The compositional modification of the S/(S+Se) ratio shows a trade-off effect between the photocurrent and photovoltage, resulting in an optimum bandgap of roughly 1.14 eV. In addition, the increased S content near the p-n junction reduces the dark current and interface recombination, resulting in a further enhancement of the open-circuit voltage. As a result of the compositional and interfacial modification, the best CZTSSe-based thin-film solar cell exhibits a conversion efficiency of 9.9%, which is among the highest efficiencies reported so far for electrochemically deposited CZTSSe-based thin-film solar cells. PMID:26822494

  13. A general water-based precursor solution approach to deposit earth abundant Cu2ZnSn(S,Se)4 thin film solar cells

    Yang, Yanchun; Kang, Xiaojiao; Huang, Lijian; Wei, Song; Pan, Daocheng

    2016-05-01

    Earth abundant Cu2ZnSn(S,Se)4 (CZTSSe) has been considered as one of the most promising thin film solar cell absorber candidates. Here, we develop a facile water-based precursor solution approach for depositing high-efficiency Cu2ZnSn(S,Se)4 thin film solar cells. In this environmentally friendly approach, inexpensive elemental Cu, Zn, Sn and S powders are used as the starting materials and are dissolved in the aqueous solution of thioglycolic acid and methylamine, forming a homogeneous precursor solution for depositing Cu2ZnSnS4 nanocrystal thin film. As-deposited CZTS nanocrystal thin films are selenized to form the large-grain CZTSSe absorber layers. It was found that Na doping plays an important role in the formation of the extremely dense and flat CZTSSe absorber layer, and fill factor can be significantly improved for Na-doped CZTSSe solar cells, which lead to a photoelectric conversion efficiency of 6.96% with an open-circuit voltage of 378 mV, a short current density of 28.17 mA cm-2, and a fill factor of 65.4%.

  14. Effect of In Situ Thermal Annealing on Structural, Optical, and Electrical Properties of CdS/CdTe Thin Film Solar Cells Fabricated by Pulsed Laser Deposition

    Alaa Ayad Al-mebir

    2016-01-01

    Full Text Available An in situ thermal annealing process (iTAP has been introduced before the common ex situ cadmium chloride (CdCl2 annealing to improve crystal quality and morphology of the CdTe thin films after pulsed laser deposition of CdS/CdTe heterostructures. A strong correlation between the two annealing processes was observed, leading to a profound effect on the performance of CdS/CdTe thin film solar cells. Atomic force microscopy and Raman spectroscopy show that the iTAP in the optimal processing window produces considerable CdTe grain growth and improves the CdTe crystallinity, which results in significantly improved optoelectronic properties and quantum efficiency of the CdS/CdTe solar cells. A power conversion efficiency of up to 7.0% has been obtained on thin film CdS/CdTe solar cells of absorber thickness as small as 0.75 μm processed with the optimal iTAP at 450°C for 10–20 min. This result illustrates the importance of controlling microstructures of CdTe thin films and iTAP provides a viable approach to achieve such a control.

  15. Investigation of blister formation in sputtered Cu{sub 2}ZnSnS{sub 4} absorbers for thin film solar cells

    Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla, Sweden and Solid State Electronics, Angström Laboratory, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Sterner, Jan [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla (Sweden); Platzer-Björkman, Charlotte [Solid State Electronics, Angström Laboratory, Uppsala University, Box 534, SE-75121 Uppsala (Sweden)

    2015-11-15

    Blister formation in Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device. Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials.

  16. Comparative study on the annealing types on the properties of Cu2ZnSnS4 thin films and their application to solar cells

    Hong, Chang Woo; Shin, Seung Wook; Gurav, K. V.; Vanalakar, S. A.; Yeo, Soo Jung; Yang, Han Seung; Yun, Jae Ho; Kim, Jin Hyeok

    2015-04-01

    Comparative studies on the properties of Cu2ZnSnS4 (CZTS) thin films and performance of CZTS thin film solar cells (TFSCs) prepared by different sulfurization types such as commerical furnace (CF) and rapid thermal annealing (RTA) systems have been investigated. The CZTS thin film prepared using CF showed the dense microstructure with many voids and secondary phases, while that prepared using RTA showed the dense microstructure without void and with some secondary phases. The RTA annealed CZTS TFSC have shown better performance than that prepared using CF. The best performance of CZTS TFSC using RTA was 1.9% efficiency (Voc: 505 mV, Jsc: 7.5 mA/cm2 and FF: 50.2%).

  17. Electrodeposition and Characterization of CulnSe2 Thin Films for Solar Cells

    LI Jianzhuang; ZHAO Xiujian; XIA Donglin

    2007-01-01

    CuInSe2 (CIS) thin films were prepared by electrodeposition from the de-ionized water solution consisting of CuCl2, InCl3, H2SeO3 and Na-citrate onto Mo/soda-lime glass (SLG) substrates. A thermal processing in Se atmosphere at 450 ℃ was carried out for the electrodepositied films to improve the stoichiometry. The composition and morphology of selenized CIS thin films were studied using energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), respectively. X-ray diffraction(XRD) studies show that the annealing in Se atmosphere at 450 ℃ promotes the structural formation of CIS chalcopyrite structure.

  18. Preparation of conjugated polymer-based composite thin film for application in solar cell

    Yu, Yang-Yen, E-mail: yyyu@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chien, Wen-Chen [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Ko, Yu-Hsin [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chen, Chih-Ping [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chang, Chao-Ching [Department of Chemical and Materials Engineering, Tamkang University, 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (China)

    2015-06-01

    This paper reports on the enhanced cell efficiency of structures and properties of regioregular poly(3-hexylthiophene) (P3HT)/multiwalled carbon nanotube (MWNT) hybrid materials. The prepared hybrid materials were characterized using ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Different concentrations of these MWNTs were suspended in polymer solutions and spin-cast onto indium tin oxide (ITO) glass. Solar cells with a device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) /P3HT:MWNTs/aluminum were then produced using evaporated aluminum as the back contact. The results showed that the ratio of P3HT to MWNTs considerably influenced the performance of the fabricated solar cells. The efficiency of the solar cells increased with the ratio of carbon nanotubes. Monochromatic incident photon-to-electron conversion efficiency analysis was performed and the results indicated that at the optimal P3HT/MWNTs ratio (= 1/1), the solar cells demonstrated a high-quality conversion of 2.16% with a fill factor of 42.22%, an open circuit voltage of 0.56 V, and a short circuit current of 9.12 mA/cm{sup 2}. - Highlights: • Solar cells ITO/PEDOT:PSS(DMSO)/P3HT:MWNT/Al were fabricated. • Optimal ratio of P3HT to MWNT was investigated. • Solar cell with 2.16% efficiency was obtained.

  19. Preparation of conjugated polymer-based composite thin film for application in solar cell

    This paper reports on the enhanced cell efficiency of structures and properties of regioregular poly(3-hexylthiophene) (P3HT)/multiwalled carbon nanotube (MWNT) hybrid materials. The prepared hybrid materials were characterized using ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Different concentrations of these MWNTs were suspended in polymer solutions and spin-cast onto indium tin oxide (ITO) glass. Solar cells with a device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) /P3HT:MWNTs/aluminum were then produced using evaporated aluminum as the back contact. The results showed that the ratio of P3HT to MWNTs considerably influenced the performance of the fabricated solar cells. The efficiency of the solar cells increased with the ratio of carbon nanotubes. Monochromatic incident photon-to-electron conversion efficiency analysis was performed and the results indicated that at the optimal P3HT/MWNTs ratio (= 1/1), the solar cells demonstrated a high-quality conversion of 2.16% with a fill factor of 42.22%, an open circuit voltage of 0.56 V, and a short circuit current of 9.12 mA/cm2. - Highlights: • Solar cells ITO/PEDOT:PSS(DMSO)/P3HT:MWNT/Al were fabricated. • Optimal ratio of P3HT to MWNT was investigated. • Solar cell with 2.16% efficiency was obtained

  20. Analysis of the High Conversion Efficiencies β-FeSi2 and BaSi2 n-i-p Thin Film Solar Cells

    Jung-Sheng Huang

    2014-01-01

    Full Text Available Both β-FeSi2 and BaSi2 are silicides and have large absorption coefficients; thus they are very promising Si-based new materials for solar cell applications. In this paper, the dc I-V characteristics of n-Si/i-βFeSi2/p-Si and n-Si/i-BaSi2/p-Si thin film solar cells are investigated by solving the charge transport equations with optical generations. The diffusion current densities of free electron and hole are calculated first. Then the drift current density in the depletion regions is obtained. The total current density is the sum of diffusion and drift current densities. The conversion efficiencies are obtained from the calculated I-V curves. The optimum conversion efficiency of n-Si/i-βFeSi2/p-Si thin film solar cell is 27.8% and that of n-Si/i-BaSi2/p-Si thin film solar cell is 30.4%, both are larger than that of Si n-i-p solar cell (η is 20.6%. These results are consistent with their absorption spectrum. The calculated conversion efficiency of Si n-i-p solar cell is consistent with the reported researches. Therefore, these calculation results are valid in this work.