WorldWideScience

Sample records for terephthalic acid synthesis

  1. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  2. Determining organic impurities in mother liquors from oxidative terephthalic acid synthesis by microemulsion electrokinetic chromatography.

    Huang, Hsi-Ya; Wei, Mercury; Lin, Yu-Ru; Lu, Pin-Hsuan

    2009-03-20

    In this study, a microemulsion electrokinetic chromatography (MEEKC) method was developed to analyze and detect several aromatic acids (benzoic acid (BA), isophthalic acid (IPA), terephthalic acid (TPA), p-toluic acid (p-TA), 4-carboxylbenzaldehyde (4-CBA), trimesic acid (TSA), trimellitic acid (TMA), o-phthalic acid (OPA), and hemimellitic acid (HMA)), which are common organic impurities produced by liquid-phase catalytic oxidation of p-xylene to TPA. The effects of microemulsion composition, column temperature, column length and applied voltage were examined in order to optimize the aromatic acid separations. This work demonstrated that variation in the concentration of surfactant (sodium dodecyl sulfate (SDS)) and oil phase (octane) had a pronounced effect on separation of the nine aromatic acids. It was also found that a decrease in column length had the greatest effect on shortening separation time and improving separation resolution for these aromatic acids when compared to that of an increase in column temperature or applied voltage. However, the nature and concentration of cosurfactants and organic modifiers were found to play only minor roles in the separation mechanism. Thus, a separation with baseline resolution was achieved within 14 min by using a microemulsion solution of pH 2.0 containing 3.7% SDS, 0.975% octane, and 5.0% cyclohexanol; and a 50-cm capillary column (effective length of 40-cm) at 26 degrees C. As a result, the developed MEEKC method successfully determined eight impurities of aromatic acids in the mother liquors produced from the oxidation synthesis of TPA. PMID:19167001

  3. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural.

    Pacheco, Joshua J; Davis, Mark E

    2014-06-10

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed. PMID:24912153

  4. Effects of synthesis conditions on chemical structures and physical properties of copolyesters from lactic acid, ethylene glycol and dimethyl terephthalate

    2009-07-01

    Full Text Available Lactic acid/ethylene terephthalate copolyesters were synthesized by the standard melt polycondensation of lactic acid (L, ethylene glycol (EG and dimethyl-terephthalate (DMT. Effects of reaction temperatures and types of catalysts on the structures and properties of the copolymers were examined. In addition, feasibility of promoting the copolymerization process by a novel synthesis step of using thermo-stabilizers was investigated. The results show that a reaction temperature of higher than 180°C is necessary to produce copolymers with appreciable molecular weight. However, degradation was observed when the reaction temperature is higher than 220°C. Triphenyl phosphate (TPP shows promising results as a potential thermo-stabilizer to minimize this problem. It was found that Sb2O3 and Tin(II octoate are most effective among 4 types of catalysts employed in this study. 1H-NMR results indicate that copolymers have a random microstructure composed mainly of single L units alternately linked with ET blocks at various sequential lengths. The longer ET sequence in the chain structure leads to the increase in melting temperature of the copolymer. TGA results show that the resulting copolymers possessed greater thermal stability than commercially-available aliphatic PLA, as a result of the inclusion of T (terephthalate units in the chain structure.

  5. Electrochemical synthesis of FeS2 thin film: An effective material for peroxide sensing and terephthalic acid degradation

    Electrochemically FeS2 thin films have been synthesized on ITO substrates at room temperature (25 °C). UV–Vis, X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) were used for the characterization of nanostructure FeS2 thin films. Two probe I–V measurements convey that the material is p type and a p-n junction (diode) was found to be developed between FeS2 and ITO layer. Cyclic voltametry study shows that FeS2/ITO electrode facilitates the reduction of hydrogen peroxide and exhibits excellent electro-catalytic activity towards its sensing. Photocatalytic study reveals that the synthesized thin films are also efficient to degrade terephthalic acid (TA). - Graphical abstract: Electrochemically FeS2 thin films have been synthesized on ITO substrate. The synthesized material is effective for the reduction of H2O2 and the sensitivity of the material is strongly dependent on pH and temperature. Photocatalytic study reveals that the material is quite effective towards decomposition of terephthalic acid. These results indicate that the material can play a dual role as pollutant cleanup for environmental interest. - Highlights: • Electrochemically FeS2 thin films are synthesized. • The material is effective to sense the H2O2 and degrade terephthalic acid. • It plays a dual role as pollutant cleanup for environmental interest

  6. Electrochemical synthesis of FeS{sub 2} thin film: An effective material for peroxide sensing and terephthalic acid degradation

    Jana, Sumanta [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 WB (India); Mondal, Palash; Tripathi, Subhankar [Department of Chemistry, Vivekananda Mahavidyalaya, Burdwan, 713103 WB (India); Mondal, Anup [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 WB (India); Chakraborty, Biswajit, E-mail: biswajitmailbag@gmail.com [Department of Chemistry, Vivekananda Mahavidyalaya, Burdwan, 713103 WB (India)

    2015-10-15

    Electrochemically FeS{sub 2} thin films have been synthesized on ITO substrates at room temperature (25 °C). UV–Vis, X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) were used for the characterization of nanostructure FeS{sub 2} thin films. Two probe I–V measurements convey that the material is p type and a p-n junction (diode) was found to be developed between FeS{sub 2} and ITO layer. Cyclic voltametry study shows that FeS{sub 2}/ITO electrode facilitates the reduction of hydrogen peroxide and exhibits excellent electro-catalytic activity towards its sensing. Photocatalytic study reveals that the synthesized thin films are also efficient to degrade terephthalic acid (TA). - Graphical abstract: Electrochemically FeS{sub 2} thin films have been synthesized on ITO substrate. The synthesized material is effective for the reduction of H{sub 2}O{sub 2} and the sensitivity of the material is strongly dependent on pH and temperature. Photocatalytic study reveals that the material is quite effective towards decomposition of terephthalic acid. These results indicate that the material can play a dual role as pollutant cleanup for environmental interest. - Highlights: • Electrochemically FeS{sub 2} thin films are synthesized. • The material is effective to sense the H{sub 2}O{sub 2} and degrade terephthalic acid. • It plays a dual role as pollutant cleanup for environmental interest.

  7. Synthesis and Characterization of Nanosized Uranyl Coordination Polymers derived from Terephthalic acid and Azoles

    Maged S.Al-Fakeh

    2016-05-01

    Full Text Available The structure of the complexes [UO2(TPA(Azole(H2O].xH2O, TPA = 1,4-benzenedicarboxylic acid and azoles = 2-aminobenzothiazole, 2-aminothiazole, 2-amino-4-methylthiazole and 2-mercaptobenzothiazole has been prepared and characterized. The structure of the complexes has been assigned based on elemental analysis, IR, electronic spectral studies, magnetic measurement, molar conductance, Scanning electron microscope (S.E.M, X-ray powder diffraction techniques investigations and thermogravimetric analysis complete the characterization of the compound. Thermogravimetry(TG, derivative thermogravimetry (DTG and differential thermal analysis (DTA have been used to study the thermal decomposition of the complexes. The kinetic parameters have been calculated making use of the Coats-Redfern and Horowitz-Metzger. The scanning electron microscope SEM photographs and particle size calculations from the powder XRD data indicate the average size of the prepared UO2(II (28-56 nm supramolecular coordination polymers in the nanoscale range. The biological screening of the compounds was also tested.

  8. Synthesis of carboxylate complexes and evaluation of their catalytic activities for polyesterification of castor oil (Ricinum communis with terephthalic acid

    Eduardo Ulisses Xavier Peres

    2015-07-01

    Full Text Available The use of castor oil (Ricinus communis has been pointed out as an interesting alternative to produce several polymers obtained from step-growth polymerization and are suitable to be used as resins and coatings. The ricinoleate metal complexes Ni[C17H34(OHCOO]2, Sn[C17H34(OHCOO]2, Co[C17H34(OHCOO]2 and Fe[C17H34(OHCOO]2 have been prepared and used as catalyst precursors for polyesterification of castor oil and terephthalic acid (TFA. The observed catalytic activity decreased in the order: Fe[C17H34(OHCOO]2 > Co[C17H34(OHCOO]2 > Sn[C17H34(OHCOO]2 > Ni[C17H34(OHCOO]2. The new polymeric materials did not show homogeneity in their chains, as indicated by their high polydispersity. Indeed, the polydispersity index value varied from 5.49 for the polymer produced in the presence of the nickel complex to 12.42 for these prepared with the cobalt compound. On the other hand, the final material presented high molecular weight, being the lower value (Mw = 13400 Da observed for the polymer prepared with the nickel complex and the highest (Mw = 36400 Da verified for the one obtained with the cobalt compound. It was observed only a glass transition temperature for all the materials, suggesting an amorphous structure of polymeric chains.

  9. Purified terephthalic acid wastewater biodegradation and toxicity

    ZHANG Xu-xiang; LUO Xiang; GU Ji-dong; WAN Yu-qiu; CHENG Shu-pei; SUN Shi-lei; ZHU Cheng-jun; LI Wei-xin; ZHANG Xiao-chun; WANG Gui-lin; LU Jian-hua

    2005-01-01

    The biodegradation and toxicity of the purified terephthalic acid(PTA) processing wastewater was researched at NJYZ pilot with the fusant strain Fhhh in the carrier activated sludge process(CASP). Sludge loading rate(SLR) for Fhhh to COD of the wastewater was 1.09 d-1 and to PTA in the wastewater was 0.29 d-1. The results of bioassay at the pilot and calculation with software Ebis3 showed that the 48h-LC50 (median lethal concentration) to Daphnia magna for the PTA concentration in the wastewater was only 1/10 of that for the chemical PTA. There were 5 kinds of benzoate pollutants and their toxicities existing in the wastewater at least. The toxicity parameter value of the pure chemical PTA cannot be used to predicate the PTA wastewater toxicity. The toxicity of the NJYZ PTA wastewater will be discussed in detail in this paper.

  10. Data on synthesis of oligomeric and polymeric poly(butylene adipate-co-butylene terephthalate model substrates for the investigation of enzymatic hydrolysis

    Veronika Perz

    2016-06-01

    Full Text Available The aliphatic-aromatic copolyester poly(butylene adipate-co-butylene terephthalate (PBAT, also known as ecoflex, contains adipic acid, 1,4-butanediol and terephthalic acid and is proven to be compostable [1–3]. We describe here data for the synthesis and analysis of poly(butylene adipate-co-butylene terephthalate variants with different adipic acid:terephatalic acid ratios and 6 oligomeric PBAT model substrates. Data for the synthesis of the following oligomeric model substrates are described: mono(4-hydroxybutyl terephthalate (BTa, bis(4-(hexanoyloxybutyl terephthalate (HaBTaBHa, bis(4-(decanoyloxybutyl terephthalate (DaBTaBDa, bis(4-(tetradecanoyloxybutyl terephthalate (TdaBTaBTda, bis(4-hydroxyhexyl terephthalate (HTaH and bis(4-(benzoyloxybutyl terephthalate (BaBTaBBa. Polymeric PBAT variants were synthesized with adipic acid:terephatalic acid ratios of 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. These polymeric and oligomeric substances were used as ecoflex model substrates in enzymatic hydrolysis experiments in the article “Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates” [4].

  11. Synthesis and characterizations of degradable aliphatic-aromatic copolyesters from lactic acid, dimethyl terephthalate and diol: Effects of diol type and monomer feed ratio

    2010-07-01

    Full Text Available Lactic acid-based aliphatic/aromatic copolyesters are synthesized to incorporate the degradability of polylactic acid and good mechanical properties of aromatic species by using polycondensation of lactic acid (LA, dimethyl terephthalate (DMT, and various diols. Effects of diol lengths and comonomer feed ratios on structure and properties of the resulting copolymers are investigated. Three types of diols with different methylene lengths are employed, i.e., ethylene glycol (EG, 1,3-propanediol (PD and 1,4-butanediol (BD. LA/DMT/diol feed ratios of 2:1:2, 1:1:2, and 1:2:4 are used in each diol system. It is found that types of the diols play an important role in the properties of the copolyester, where an increase in diol length results in an increase in the copolymers molecular weight, and a decrease in Tg, Tm and crystallinity, when a constant monomer feed ratio is employed. Monomer feed ratio also has a significant effect on properties of the copolymers, where an increase in the aromatic content leads to formation of copolymers with higher molecular weight, longer aromatic block sequence and high aromatic to aliphatic ratio in the chain structure. These, in turn, lead to an increase in Tg, Tm, crystallinity and thermal stability of the copolymer samples, and a reduction in their solubility.

  12. Stannous oxalate as a novel catalyst for the synthesis of polytrimethylene terephthalate

    2007-01-01

    Stannous oxalate was prepared efficiently and characterized by XRD and FT-IR. It exhibited higher catalytic activity and had profitable effect than tetrabutyl titanate and stannous octoate for the synthesis of polytrimethylene terephthalate (PTT) via esterification-route. Over this catalyst, the degree of esterification of pure terephthalic acid was up to 94.4% at 260 ℃ after 1.5 h,while the intrinsic viscosity and content of terminal carboxyl groups of the corresponding PTT polyester, polymerized at 260 ℃,60 Pa for 2 h, was 0.8950 dL/g and 15 mol/t, respectively. Stannous oxalate was a promising catalyst for the synthesis of PTT polyester.(C) 2007 Yun Cheng Cui. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  13. PREPARATION AND PROPERTIES OF POLY (LACTIC ACID-CO-GLYCOL TEREPHTHALIC ACID) COPOLYESTER

    GAO Cuili; JI Quan; KONG Qingshan; XIA Yanzhi

    2006-01-01

    To obtain a kind of biodegradable polymer material with satisfactory properties, a new biodegradable copolyester poly(lactic acid-co-glycol terephthalate) (PETA), was synthesized from three monomers of lactic acid, glycol and terephthalic acid. The resulting copolyesters, PETA, were characterized by FT-IR, 1H-NMR, DSC, TGA and by the ways of weight loss rate to characterize their biodegradability. The findings in this work indicated that, the TmS and TdS of copolyesters PETA increased with increasing contents of the terephthalic acid units. From the biodegradation tests in natural soil, boiling water, acid buffer solution and alkali buffer solution, it was shown that the biodegradability of copolyesters PETA decreased with increasing contents of the terephthalic acid units.

  14. Transient Current Behaviour of Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid Crystal Polymers

    Yarramaneni, Sridharbabu; Sharma, Anu; Quamara, J. K.

    2011-07-01

    Transient current behaviour of pristine Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid crystal polymer which is a copolymer of poly ethylene terephthalate and poly p-hydroxybenzoic acid referred as PET/x.PHB polymer liquid crystals have been studied at different biasing electric fields ranging from 13 kV/cm to 104.3 kV/cm and at temperatures 120° C and 250° C for molar ratio x =0.8.

  15. New Titanium-Based Catalysts for the Synthesis of Poly(ethylene terephthalate)

    Yang, Youngkeun; Yoon, Seungwoong; Hwang, Yongtaek; Song, Bogeun [Honam Petrochemical Corporation, Daejeon (Korea, Republic of)

    2012-10-15

    Poly(ethylene terephthalate) (PET) is a polymer with relatively low cost and high performance, which is widely used in various applications such as bottles, textile fibers, films and engineering plastics for automobiles and electric industries. Commercial catalysts used for synthesis of PET are in general antimony (Sb) compounds. Antimony(III) oxide, antimony(III) acetate and antimony(III) glycolate are used as a catalyst in 95% of PET manufacturing industries worldwide. The few organoantimony compounds that have been identified in environmental and biological samples are all in the form of methylated Sb-species. The Sb trace element is extremely toxic to mammals, and interferes with embryonic and fetal development, also, carcinogenic to humans. In addition to being found in drinking water, food packaging and soft-drink bottles. According to the World Health Organization (WHO), Sb species concentration lower than 20 ppb are acceptable for drinking water. According to a recent study, in 14 brands of bottled water from Canada, Sb concentrations increased on average 19% during 6 months storage at room temperature, but 48 brands of water from 11 European countries increased on average 90% under identical conditions. Therefore, a very important challenge for polyester catalysis is to come-up with a new Sb-free catalysts with low environmental impact. Intensive efforts have been made to find other stable and more environmental friendly non-antimony catalysts, such as those based on titanium. Titanium-based catalysts have been known for many years and actually are used for polybutylene terephthalate (PBT) and polypropylene terephthalate (PPT) production, however, polycondensation (PC) of PET manufacture is not well studied in literature. To date, only few esterification processes have been applied for the synthesis of PET by titanium catalysts. Herein, we report an efficient synthesis characterization and polymerization of PET for a series of new nontoxic organotitanium

  16. SYNTHESIS OF POLY(ETHYLENE TEREPHTHALATE)-POLYCAPROLACTONE BLOCK COPOLYMER BY DIRECT COPOLYMERIZATION

    Shen-guo Wang; Kai Tang

    1999-01-01

    Poly(ethylene terephthalate)-polycaprolactone block copolymer (PCL-b-PET) is a polyester with improved biodegradability. In the present paper, a new direct copolymerization method of ε-caprolactone (ε-CL) and bishydroxyethylene terephthalate (BHET) in the presence of Ti(OBu)4 was proposed for the synthesis of PCL-b-PET. The PCL-b-PET copolymer was characterized by IR, GPC and 1H-NMR techniques, and the effects of synthesis conditions, such as temperature, reaction time and concentration of catalyst on the copolymerization were discussed.

  17. Induction of Bladder Lesion by Terephthalic Acid and Its Mechanism

    2005-01-01

    Objective To provide more information for rational evaluation of potential risks of terephthalic acid (TPA), we studied the effects of TPA on rats' bladders in 90 days after TPA exposure. Methods Sprague Dawley rats were subdivided into five groups, ingesting 0 %, 0.04 %, 0.2 %, 1 %, and 5 % TPA respectively for a sub-chronic feeding study lasting for 90 days. Urine, serum and samples of brain, liver, lung, kidney, bladder, etc. Were collected and analyzed. Results TPA ingesting decreased the value of urinary pH, and increased the contents of Ca2+, Zn2+, Mg2+, Na+, K+ in urine. The volume of 24 h urine was significantly increased in male rats in the 1 % and 5 % TPA groups. Urinary white sediment was found in both sexes, and its formation in male rats seemed more susceptible than that in female rats. Alpha 2u-globulin (AUG) in serum and urine of male rats was markedly increased in a dose-dependent manner. Fifteen cases of hyperplasia (simple or atypical) were determined in the 5 % TPA ingesting group, 14/52 in male rats and1/23 in female rats. Among them 3 male rats had no stone or calculus. Those with either bladder stones or hyperplasia were accompanied with urinary white sediments. Conclusion White sediment accompanied with elevated urine AUG is the basis of TPA induced urolith formation, and is also associated with TPA induced bladder epithelialcell proliferation. It can act as an early biomarker for the potential toxic effect of TPA.

  18. Synthesis,Characterization and Comparison of Biodegradation Poly(ethylene terephthalate)Modified with Acid and Glycol%酸和醇改性可降解PET的合成表征和对比

    姚雅文; 兰建武; 石坤; 黄夏; 贺雯

    2015-01-01

    Poly(ethylene adipate-co-ethylene terephthalate)(PEAT) and poly(hexanediol terephthalate-co-ethylene terephthalate) (PHET) was separately synthesized via melt polycondensation from dimethyl terephthalate(DMT),1,6-adipic acid(AA),1,6-hexylene glycol(HG),ethylene glycol(EG). Intrinsic viscosity,chemical structure and thermal properties were investigated by means of ubbelohde viscometer,FTIR,1H–NMR,DSC and TGA. The results show that PEAT and PHET are successfully synthesized,which are random copolyester. With the adding of AA and HG,melting point and decomposition point of the synthetic copolyesters shifted toward lower temperature,and the biodegradability can be greatly enhanced compared with PET. Compared with PEAT and PHET, it turns out that the thermal stability of PHET is a little bit better while the biodegradability is a little bit worse than PEAT.%采用熔融缩聚法,以对苯二甲酸二甲酯(DMT)、1,6–己二酸(AA)、1,6–己二醇(HG)和乙二醇(EG)为原料,将结构相近的AA和HG分别引入聚对苯二甲酸乙二酯(PET),合成了可降解聚对苯二甲酸乙二醇-co-己二酸乙二醇酯(PEAT)和聚对苯二甲酸乙二醇-co-对苯二甲酸己二醇酯(PHET),对比相似结构酸和醇对PET性能影响差别。采用乌式黏度计对PEAT和PHET的特性黏度进行了测试,通过傅立叶变换红外光谱(FTIR)、核磁共振氢谱(1H–NMR)、差示扫描量热分析(DSC)和热失重(TG)分析对其化学结构和热性能进行了研究和对比,通过酶降解,检测PEAT和PHET的可降解性能。结果表明,成功地合成了PEAT与PHET,且其为无规共聚物。AA和HG的加入,使聚酯的熔点和热分解温度有所降低,而且与PET相比,可降解性能明显提高。对比PEAT和PHET可知,PHET的热稳定性略优,可降解性略差。

  19. A New Esterase from Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET and Polylactic Acid (PLA

    Georg Steinkellner

    2012-02-01

    Full Text Available A new esterase from Thermobifida halotolerans (Thh_Est was cloned and expressed in E. coli and investigated for surface hydrolysis of polylactic acid (PLA and polyethylene terephthalate (PET. Thh_Est is a member of the serine hydrolases superfamily containing the -GxSxG- motif with 85–87% homology to an esterase from T. alba, to an acetylxylan esterase from T. fusca and to various Thermobifida cutinases. Thh_Est hydrolyzed the PET model substrate bis(benzoyloxyethylterephthalate and PET releasing terephthalic acid and mono-(2-hydroxyethyl terephthalate in comparable amounts (19.8 and 21.5 mmol/mol of enzyme while no higher oligomers like bis-(2-hydroxyethyl terephthalate were detected. Similarly, PLA was hydrolyzed as indicated by the release of lactic acid. Enzymatic surface hydrolysis of PET and PLA led to a strong hydrophilicity increase, as quantified with a WCA decrease from 90.8° and 75.5° to 50.4° and to a complete spread of the water drop on the surface, respectively.

  20. Polyesters production from the mixture of phthalic acid, terephthalic and glycerol

    Glycerin, a byproduct of biodiesel is currently an environmental and economic problem for producers of this renewable fuel in Brazil and in others parts of the world. In order to offer new proposals for recovery, it is used for the manufacture of polyesters used in applications in diverse areas such as construction and automobile industry. This work reports the production of polymer from the mixture of terephthalic and phthalic acid in three different proportions. The polyesters showed good thermal stability, analyzed by TGA and DSC, with an increase proportional to the terephthalic acid content. The X-ray diffraction patterns show that the samples are semi crystalline polymers. The micrographs indicated the presence of a smoother surface in the polyester that has a larger amount of phthalic acid, as reported in the literature. Therefore, the materials showed good thermal properties and morphological characteristics, so it consists in a new alternative to use glycerin. (author)

  1. 1-Phenyl-3-(quinolin-5-yl)urea as a host for distinction of phthalic acid and terephthalic ac

    Dipjyoti Kalita; Jubaraj B Baruah

    2013-03-01

    Co-crystals of 1-phenyl-3-(quinolin-5-yl)urea (1) with terephthalic acid, adipic acid; and salts of 1 with phthalic acid, -toluenesulphonic acids are prepared and structurally characterized. The reaction of phthalic acid and -toluenesulphonic acid resulted in protonation of the host 1, whereas the terephthalic acid and adipic acid interact with 1, led to cocrystals with the host 1 through hydrogen bond interactions. The hydrogen bonds that appears in the urea taps of the host molecules 1 are lost while formation of salts; in such cases anions interacts with the urea portion of the host, while in the co-crystals the hydrogen bonded urea taps are retained. The salts are yellow in colour while the co-crystals are colourless; thereby the positional isomer phthalic acid can be distinguished from the terephthalic acid.

  2. Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr).

    Lo, Sheng-Han; Senthil Raja, Duraisamy; Chen, Chia-Wei; Kang, Yu-Hao; Chen, Jiun-Jen; Lin, Chia-Her

    2016-06-21

    In our novel green approach, the waste polyethylene terephthalate (PET) bottle material has effectively been used as the starting precursor instead of terephthalic acid for the synthesis of five terephthalate based nanoporous trivalent metal-organic frameworks (MOFs) namely MIL-47, MIL-53(Cr), MIL-53(Al), MIL-53(Ga), and MIL-101(Cr). The optimum reaction parameters to achieve the green synthesis were studied. These MOFs were structurally identified by using powder X-ray diffraction (PXRD) measurements. Scanning electron microscopy (SEM) images confirm the particle nature and size of the synthesized MOFs. Nitrogen gas sorption measurements have been done for some of the MOFs to check their porous properties. All the characterization techniques strongly supported that the synthesized MOFs using PET are similar to their literature reports. The gas adsorption studies for the synthesized MIL-53(Cr) and MIL-101(Cr) showed their significant gas uptake capability towards CO2 and H2 gases. Further, the synthesized MIL-47 and MIL-101(Cr) have been tested for their catalytic ability in chemical fixation of CO2 gas through the conversion of CO2 and epoxides to the corresponding cyclic carbonates which shows promising results to use them as catalysts. PMID:27198203

  3. Ethylene glycol aluminum as a novel catalyst for the synthesis of poly(ethylene terephthalate)

    Bin Xiao; Li Ping Wang; Ren Hao Mei; Gong Ying Wang

    2011-01-01

    Ethylene glycol aluminum was prepared efficiently and characterized by FT-IR and NMR. It exhibited higher catalytic activity and had profitable effect than titanium glycolate and ethylene glycol antimony for the synthesis of poly(ethylene terephthalate) (PET). It was only used as polycondensation catalyst because it was sensitive to water. For this catalyst, the degree of esterification of the theoretical amount of water was produced up to 95% at 260 ℃, while the intrinsic viscosity and content of terminal carboxyl groups of the corresponding PET polyester, polymerized at 280℃, 70 Pa for 39 min, was 0.87 dL/g and 23.0 μmol/g, respectively. Ethylene glycol aluminum was a promising catalyst for the synthesis of PET polyester.

  4. The influence of Copolimers Acrylic Acid onto Poli(Etilene Terephthalate)woven fabric

    To improve suitability of wearing poli etilene terephthalate (PET) wovenfabric, it need to enhance the ability in absorbing of water vapour. For theabove reason acrylic acid (AA) has been grafted onto PET wovenfabric(PET-g-AA). Fourier Transform Infrared (FT-IR) data show that poly(acrylic acid) have grafted onto PET woven fabric. Thermal propertiesobtained from DSC (Differential Scanning Calorimeter) measurements of PET-g-AA show that the grafting does not affect bulk properties of PET. Thedecrease of the tensile strength had occurred to PET-g-MMA, however it ratherinfluenced by the reaction time than the initial concentration of acrylicacid. (author)

  5. Terephthalic acid wastewater treatment by using two-stage aerobic process

    1999-01-01

    Based on the tests between anoxic and aerobic process, the two-stage aerobic process with a biological selector was chosen to treat terephthalic acid wastewater (PTA). By adopting the two- stage aerobic process, the CODCr in PTA wastewater could be reduced from 4000-6000 mg/L to below 100 mg/L; the COD loading in the first aerobic tank could reach 7.0-8.0 kgCODCr/(m3.d) and that of the second stage was from 0.2 to 0.4 kgCODCr/(m3.d). Further researches on the kinetics of substrate degradation were carried out.

  6. Surface-mediated nucleation in the solid-state polymorph transformation of terephthalic acid.

    Beckham, Gregg T; Peters, Baron; Starbuck, Cindy; Variankaval, Narayan; Trout, Bernhardt L

    2007-04-18

    A molecular mechanism for nucleation for the solid-state polymorph transformation of terephthalic acid is presented. New methods recently developed in our group, aimless shooting and likelihood maximization, are employed to construct a model for the reaction coordinate for the two system sizes studied. The reaction coordinate approximation is validated using the committor probability analysis. The transformation proceeds via a localized, elongated nucleus along the crystal edge formed by fluctuations in the supramolecular synthons, suggesting a nucleation and growth mechanism in the macroscopic system. PMID:17385859

  7. Stannous oxalate: An efficient catalyst for poly(trimethylene terephthalate) synthesis

    JIA ShuYong; REN YuRong; ZHANG Dan; HU Jing; ZENG Yi; WANG GongYing

    2008-01-01

    A complete study on the catalytic activity of stannous oxalate for poly(trimethylene terephthalate) (PTT) synthesis via esterification method is carried out by comparison to the well known catalysts (tetrabutyl titanate (TBT), dibutyltin oxide (Bu2SnO), and stannous octoate (SOC)). Their catalytic activity in the esterification process is monitored by measuring the amount of water generated, while intrinsic vis-cosity (Ⅳ) and content of terminal carboxyl groups (CTCG) are used as the index in the polycondensa-tion process. Stannous oxalate shows higher activity than the other catalysts. Decrease in reaction time and improvements in PTT property are observed. The higher catalytic activity of stannous oxalate is attributed to its chelate molecular structure.

  8. Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA)

    Terephthalic acid (TPA) is widely applied as a raw material in making polyester fiber, polyethylene terephthalate (PET) bottles, polyester films, etc. TPA is toxic and is known to act as endocrine disruptor. TPA wastewater is traditionally treated by biological process and this study aims to evaluate the effectiveness of several advanced oxidation processes on TPA removal. The oxidation processes studied were: UV-TiO2, UV-H2O2, UV-H2O2-Fe, O3, O3/Fe, O3/TiO2, UV-O3-H2O2-Fe and UV-O3-H2O2-Fe-TiO2. The results indicate that the time required for the complete destruction of 50 ppm of TPA can be minimized from 10 h using UV-TiO2 system, to less than 10 min by UV-H2O2-Fe-O3 system. Some of the likely organic intermediates identified during TPA destruction include, benzoquinone, benzene, maleic acid and oxalic acid. Possible destruction pathway of TPA has been proposed. TPA degradation by various systems was also analyzed based on the reaction kinetics and operating costs

  9. THERMAL DEGRADATION OF THERMOTROPIC LIQUID CRYSTALLINE TERPOLYESTERS BASED ON VANILLIC ACID, p-HYDROXYBENZOIC ACID AND POLY(ETHYLENE TEREPHTHALATE)

    LI Xingui; HUANG Meirong; GUAN Guihe; SUN Tong

    1993-01-01

    Nine thermotropic liquid crystalline terpolyesters based on vanillic acid(V), p-hydroxybenzoic acid(H) and poly(ethylene terephthalate)(E) were investigated by thermogravimetry to ascertain their thermostability and the kinetic parameters for thermal degradation. Overall activation energy data of the degradation had been calculated over the range 5~70% weight loss. The temperatures and the activation energy of the degradation lie in the ranges of 384~394 ℃ at a heating rate of 1 ℃/min and 176~205 KJ/mol at the weight loss of 5%, respectively, which suggests that the terpolyesters have good thermostability.

  10. Metabolism of Terephthalic Acid and Its Effects on CYP4B1 Induction

    2006-01-01

    Objective To investgate the metabolism of terephthalic acid (TPA) in rats and its mechanism. Methods Metabolism was evaluated by incubating sodium terephthalate (NaTPA) with rat normal liver microsomes, or with microsomes pretreated by phenobarbital sodium, or with 3-methycholanthrene, or with diet control following a NADPH-generating system. The determination was performed by high performance liquid chromatography (HPLC), and the mutagenic activation was analyzed by umu tester strain Salmonella typhimurium NM2009. Expression of CYP4B 1 mRNA was detected by RT-PCR. Results The amount of NaTPA (12.5-200 μmol· L-1) detected by HPLC did not decrease in microsomes induced by NADPH-generating system. Incubation of TPA (0.025-0.1 mmol·L-1) with induced or noninduced liver microsomes in an NM2009 umu response system did not show any mutagenic activation. TPA exposure increased the expression of CYP4B 1 mRNA in rat liver, kidney, and bladder. Conclusion Lack of metabolism of TPA in liver and negative genotoxic data from NM2009 study are consistent with other previous short-term tests, suggesting that the carcinogenesis in TPA feeding animals is not directly interfered with TPA itself and/or its metabolites.

  11. Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene Terephthalate), Polycaprolactone, and Poly (L\\DL) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration.

    Hendrikson, Wilhelmus J; Zeng, Xiangqiong; Rouwkema, Jeroen; van Blitterswijk, Clemens A; van der Heide, Emile; Moroni, Lorenzo

    2016-01-21

    Additive manufactured scaffolds are fabricated from three commonly used biomaterials, polycaprolactone (PCL), poly (L\\DL) lactic acid (P(L\\DL)LA), and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT). Scaffolds are compared biologically and tribologically. Cell-seeded PEOT/PBT scaffolds cultured in osteogenic and chondrogenic differentiation media show statistical significantly higher alkaline phosphatase (ALP) activity/DNA and glycosaminoglycans (GAG)/DNA ratios, followed by PCL and P(L\\DL)LA scaffolds, respectively. The tribological performance is assessed by determining the friction coefficients of the scaffolds at different loads and sliding velocities. With increasing load or decreasing sliding velocity, the friction coefficient value decreases. PEOT/PBT show to have the lowest friction coefficient value, followed by PCL and P(L\\DL)LA. The influence of the scaffold architecture is further determined with PEOT/PBT. Reducing of the fiber spacing results in a lower friction coefficient value. The best and the worst performing scaffold architecture are chosen to investigate the effect of cell culture on the friction coefficient. Matrix deposition is low in the cell-seeded scaffolds and the effect is, therefore, undetermined. Taken together, our studies show that PEOT/PBT scaffolds support better skeletal differentiation of seeded stromal cells and lower friction coefficient compared to PCL and P(L/DL)A scaffolds. PMID:26775915

  12. Preparation and characterization of polymer blends based on recycled PET and polyester derived by terephthalic acid

    Environmentally friendly materials, made from industrial waste, are being increasingly used as a solution to the growing amount of waste generated by society, but also as a cheaper alternative to replace conventional materials for use in construction. In this work were investigated the properties of polymer blends based on recycled PET and a polyester derived from terephthalic acid and glycerin, a co-product of biodiesel. The samples were characterized by XRD, TGA, DSC, FTIR and SEM. The polyester synthesized showed a degradation event near 300 deg C. The blends with higher ratio of PET showed thermal behavior similar to pure PET. The X-ray diffraction showed that the polymer blends are semicrystalline materials. The micrographs presents the presence of a smooth surface, indicating the possibility of miscibility between the arrays. Therefore, the blending makes possible the fabrication of low-cost materials with applications in several areas. (author)

  13. Biodegradability of terephthalic acid in terylene artificial silk printing and dyeing wastewater

    2003-01-01

    As the characteristic pollutant, terephthalic acid(TA)was in charge of 40%-78% of the total COD of terylene artificial silk printing and dyeing wastewater(TPW-water). The studies on biodegradability of TA were conducted in a serial of activated sludge reactors with TPW-water. TA appeared to be readily biodegradable with removal efficiency over 96.5% under aerobic conditions, hardly biodegradable with removal efficiency below 10% under anoxic conditions and slowly biodegradable with a turnover between 31.4% and 56.0% under anaerobic conditions. TA also accounted for the majority of BOD in TPW-water. The process combined by anoxic, anaerobic and aerobic activated sludge reactor was suitable for TA degradation and TPW-water treatment. Further, the aerobic process was essentially much more effective than the anaerobic or anoxic one to degrade TA in TPW-water.

  14. Construction of hybrid cell with Phanerochaete chrysosporium todegrade terephthalic acid wastewater (I) phenotype evidence

    2000-01-01

    The fungi Phanerochaete chrysosporium (PC) and Saccharomyces cerevisiae Y99 and the native bacterium YZ1 were the three parental strains for construction of hybrid cells through protoplast fusion to degrade terephthalic acid (TPA) wastewater. The results showed that the native bacterium YZ1 protoplasm could integrate with that of PC to form the hybrid cell Fhh and the fungus Y99 protoplasm also could integrate with that of Fhh to form the hybrid cell Fhhh. The protoplasts of YZ1 and Y99 could change the morphology of PC spore and mycelinm for two times. The hybrid cell Fhhh got the best growth and degradation abilities in the wastewater. It suggested that the hybrid strains obtained from the inter-kingdom protoplast fusion of the three parental strains could create potential for the purification of TPA wastewater.

  15. Catalytic Synthesis Lactobionic Acid

    V.G. Borodina

    2014-07-01

    Full Text Available Gold nanoparticles are obtained, characterized and deposited on the carrier. Conducted catalytic synthesis of lactobionic acid from lactose. Received lactobionic acid identify on the IR spectrum.

  16. Ultrafiltration membranes from waste polyethylene terephthalate and additives: synthesis and characterization

    Smitha Rajesh

    2014-01-01

    Full Text Available The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET and polyvinylpyrrolidone (PVP is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP, molecular weight cut-off (MWCO, and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.

  17. Studies on the Simultaneous Synthesis of Dimethyl Carbonate and Poly(ethylene terephthalate):Ⅰ. Catalytic Activity of Metal Acetate in Transesterification of Ethylene Carbonate with Dimethyl Terephthalate

    Dan ZHANG; Shu Yong JIA; Yue WANG; Jie YAO; Yi ZENG; Gong Ying WANG

    2006-01-01

    A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.

  18. Chemical recycling of poly(ethylene terephthalate. Application to the synthesis of multiblock copolyesters

    F. Malek

    2014-08-01

    Full Text Available The chemical recycling of the poly(ethylene terephthalate, (PET, has been successfully carried out by glycolysis in the presence of bis (2-hydroxyethyl terephthalate (BHET resulting in the formation of hydroxytelechelic oligomers. These oligomers were then treated with carboxytelechelic poly(ε-caprolactone oligomers of Mn = 2300 and Mn = 730 g•mol–1 molecular weight, in the absence or presence of the titanium tetrabutyloxide (Ti(OBu4 as a catalyst to get multiblock copolyesters. The chemical structure of the synthesized copolyesters was investigated by size exclusion chromatography (SEC and proton Nuclear Magnetic Resonance (1H NMR spectroscopy. Moreover the differential scanning calorimetry (DSC was used to explore their thermal properties. The ester-ester interchange reaction was observed between the two oligopolyesters, was studied and discussed in detail.

  19. Synthesis and characterization of azo acrylates grafted onto polyethylene terephthalate by gamma irradiation

    Polyethylene terephthalate (PET) films were grafted with acryloyl chloride by gamma irradiation, and the grafted films were reacted with Disperse Red 1 or 4-phenylazophenol. The films where characterized by atomic force microscopy, differential scanning calorimetry, FTIR-ATR, light polarized microscopy, elemental analysis and UV spectroscopy. The surface of the films was homogeneous, and the dye underwent trans to cis photoreaction, whereby the red films became colorless by the irradiation of UV light at room temperature

  20. Adsorption analysis of thin films of terephthalic acid on Au and Al studied by MIES, UPS and XPS

    Highlights: • Adsorption study of terephthalic acid (TPA) with MIES. • Flat adsorption of the molecules on gold. • Upright adsorption of the TPA molecules on oxidized aluminum. - Abstract: The adsorption behavior of thin films of terephthalic acid (TPA) evaporated on a gold surface as well as on an aluminum foil was studied. The orientation of the molecules was characterized by metastable induced electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy (UPS). To make sure that the evaporation of TPA is nondestructive, additional X-ray photoelectron spectroscopy (XPS) was performed. These measurements also exclude any radiation damage. TPA on the gold surface shows a well-ordered layer growth up to 7.5 nm. Since the MIES spectra show both the acid structure and the phenyl group, a flat-laying orientation is assumed. In contrast, the phenylic carbon structure could not be observed while evaporating TPA on the oxidized aluminum foil. The MIES/UPS spectra only show the COOH group. To exclude a random arrangement of the molecules we also performed low temperature measurements. It can be concluded from these measurements, in addition to the fact that the work function increases during the evaporation, that TPA has a perpendicular arrangement on the aluminum foil

  1. An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation

    Vermoortele, Frederik; Ameloot, Rob; Vimont, Alexandre; Serre, Christian; De Vos, Dirk

    2011-01-01

    After controlled pretreatment, some Zr-terephthalate metal-organic frameworks are highly selective catalysts for the cross-aldol condensation between benzaldehyde and heptanal. The proximity of Lewis acid and base sites in the amino-functionalized UiO-66(NH(2)) material further raises the reaction yields.

  2. Construction of antibacterial poly(ethylene terephthalate) films via layer by layer assembly of chitosan and hyaluronic acid.

    Del Hoyo-Gallego, Sara; Pérez-Álvarez, Leyre; Gómez-Galván, Flor; Lizundia, Erlantz; Kuritka, Ivo; Sedlarik, Vladimir; Laza, Jose Manuel; Vila-Vilela, Jose Luis

    2016-06-01

    Polyelectrolytic multilayers (PEMs) with enhanced antibacterial properties were built up onto commercial poly(ethylene terephthalate) (PET) films based on the layer by layer assembling of bacterial contact killing chitosan and bacterial repelling highly hydrated hyaluronic acid. The optimization of the aminolysis modification reaction of PET was carried out by the study of the mechanical properties and the surface characterization of the modified polymers. The layer by layer assembly was successfully monitored by TEM microscopy, surface zeta-potential, contact angle measurements and, after labeling with fluorescein isothiocyanate (FTIC) by absorption spectroscopy and confocal fluorescent microscopy. Beside, the stability of the PEMs was studied at physiological conditions in absence and in the presence of lysozyme and hyaluronidase enzymes. Antibacterial properties of the obtained PEMs against Escherichia coli were compared with original commercial PET. PMID:27083341

  3. Morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate)/poly(ethylene-co-methacrylic acid) blends

    Huang, J.-W. [Department of Styling and Cosmetology, Tainan University of Technology, 529 Chung Cheng Rd., Yung Kang City 710, Taiwan (China)], E-mail: jw.huang@msa.hinet.net; Wen, Y.-L. [Department of Nursing, Meiho Institute of Technology, 23 Ping Kuang Rd., Neipu Hsiang, Pingtung 912, Taiwan (China); Department of Resources Engineering, National Cheng Kung University, No. 1, University Rd., Tainan City 701, Taiwan (China); Kang, C.-C. [R and D Center, Hi-End Polymer Film Co., Ltd. 15-1 Sin Jhong Rd., Sin Ying City 730, Taiwan (China); Yeh, M.-Y. [Department of Chemistry, National Cheng Kung University, No. 1, University Rd., Tainan City 701, Taiwan (China); Sustainable Environment Research Centre, National Cheng Kung University, Taiwan (China); Wen, S.-B. [Department of Nursing, Meiho Institute of Technology, 23 Ping Kuang Rd., Neipu Hsiang, Pingtung 912, Taiwan (China); Department of Resources Engineering, National Cheng Kung University, No. 1, University Rd., Tainan City 701, Taiwan (China)

    2007-12-15

    The morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate) (PBT) and poly(ethylene-co-methacrylic acid) (PEMA) blends were studied with scanning electron microscopy, X-ray diffraction and differential scanning calorimetry (DSC). PEMA forms immiscible, yet compatible, blends with PBT. Subsequent DSC scans on melt-crystallized samples exhibited two melting endotherms (T{sub mI} and T{sub mII}). The presence of PEMA would facilitate the recrystallization during heating scan and retard PBT molecular chains to form a perfect crystal in cooling crystallization. The dispersion phases of molten PEMA acts as nucleating agents to enhance the crystallization rate of PBT. The solidified PBT could act as nucleating agents to enhance the crystallization of PEMA, but also retard the molecular mobility to reduce crystallization rate. The U* and K{sub g} of Hoffman-Lauritzen theory were also determined by Vyazovkin's methods to support the interpretation.

  4. In situ synthesis of TiO2/polyethylene terephthalate hybrid nanocomposites at low temperature

    Peng, Xinyan; Ding, Enyong; Xue, Feng

    2012-06-01

    TiO2 nanoflowers were in situ grown on polyethylene terephthalate (PET) non-woven fabric by hydrolysis of TiCl4 in aqueous solution in the presence of nanocrystal cellulose grafted PET fabric (NCC-g-PET) at a low temperature of 70 °C. Nanocrystal cellulose (NCC) pre-grafted on PET fabric acted as hydrophilic substrate and morphology inducing agent to promote the nucleation and crystal growth of TiO2. Detailed information on the synthetic process was presented. The resulting samples were characterized using FE-SEM, EDS, ATR-IR, Raman microscopy, XRD and TG analysis. The photocatalytic activity of the samples was evaluated by the degradation of orange methyl under solar light. Characteristic results indicate that rutile TiO2 nanoflowers have grown abundantly on PET non-woven fabric, and the established hydrogen bonding strengthens the interfacial interaction between the inorganic particles and the polymeric substrates. The methyl orange decoloration test under natural solar light demonstrates that this TiO2/PET hybrid nanocomposites exhibit excellent self-cleaning performance which is expected to have a good potential for commercialization.

  5. Atmospheric pressure synthesis of photoluminescent hybrid materials by sequential organometallic vapor infiltration into polyethylene terephthalate fibers

    Akyildiz, Halil I. [Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Mousa, Moataz Bellah M. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Jur, Jesse S., E-mail: jsjur@ncsu.edu [Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-01-28

    Exposing a polymer to sequential organometallic vapor infiltration (SVI) under low pressure conditions can significantly modify the polymer's chemical, mechanical, and optical properties. We demonstrate that SVI of trimethylaluminum into polyethylene terephthalate (PET) can also proceed readily at atmospheric pressure, and at 60 °C the extent of reaction determined by mass uptake is independent of pressure between 2.5 Torr and 760 Torr. At 120 °C, however, the mass gain is 50% larger at 2.5 Torr relative to that at 760 Torr, indicating that the precursor diffusion in the chamber and fiber matrix decreases at higher source pressure. Mass gain decreases, in general, as the SVI process temperature increases both at 2.5 Torr and 760 Torr attributed to the faster reaction kinetics forming a barrier layer, which prevents further diffusion of the reactive species. The resulting PET/Al-O{sub x} product shows high photoluminescence compared to untreated fibers. A physical mask on the polymer during infiltration at 760 Torr is replicated in the underlying polymer, producing an image in the polymer that is visible under UV illumination. Because of the reduced precursor diffusivity during exposure at 760 Torr, the image shows improved resolution compared to SVI performed under typical 2.5 Torr conditions.

  6. Atmospheric pressure synthesis of photoluminescent hybrid materials by sequential organometallic vapor infiltration into polyethylene terephthalate fibers

    Exposing a polymer to sequential organometallic vapor infiltration (SVI) under low pressure conditions can significantly modify the polymer's chemical, mechanical, and optical properties. We demonstrate that SVI of trimethylaluminum into polyethylene terephthalate (PET) can also proceed readily at atmospheric pressure, and at 60 °C the extent of reaction determined by mass uptake is independent of pressure between 2.5 Torr and 760 Torr. At 120 °C, however, the mass gain is 50% larger at 2.5 Torr relative to that at 760 Torr, indicating that the precursor diffusion in the chamber and fiber matrix decreases at higher source pressure. Mass gain decreases, in general, as the SVI process temperature increases both at 2.5 Torr and 760 Torr attributed to the faster reaction kinetics forming a barrier layer, which prevents further diffusion of the reactive species. The resulting PET/Al-Ox product shows high photoluminescence compared to untreated fibers. A physical mask on the polymer during infiltration at 760 Torr is replicated in the underlying polymer, producing an image in the polymer that is visible under UV illumination. Because of the reduced precursor diffusivity during exposure at 760 Torr, the image shows improved resolution compared to SVI performed under typical 2.5 Torr conditions

  7. Kojic acid in organic synthesis

    ZIRAK, MARYAM; Eftekhari-Sis, Bagher

    2015-01-01

    The reactions of kojic acid in organic synthesis are reviewed. The aim of this review is to cover the literature up to the end of 2014, showing the distribution of publications involving kojic acid chemistry in the synthesis of various pyrone containing compounds, pyridine and pyridone heterocycles, and also other organic compounds. First, introductory text about the preparation, biological, and industrial applications, and the chemical properties of kojic acid is given. Then its uses in orga...

  8. Polyesters production from the mixture of phthalic acid, terephthalic and glycerol; Producao de poliesteres a partir da mistura de acido ftalico, tereftalico e glicerol

    Carvalho, A.L.S.; Oliveira, J.C.; Miranda, C.S.; Boaventura, J.S.; Jose, N.M., E-mail: adrianaequfba@gmail.co [Universidade Federal da Bahia (GECIM/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Grupo de Energia e Ciencias dos Materiais; Carvalho, R.F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Curso de Mestrado em Engenharia Ambiental Urbana

    2010-07-01

    Glycerin, a byproduct of biodiesel is currently an environmental and economic problem for producers of this renewable fuel in Brazil and in others parts of the world. In order to offer new proposals for recovery, it is used for the manufacture of polyesters used in applications in diverse areas such as construction and automobile industry. This work reports the production of polymer from the mixture of terephthalic and phthalic acid in three different proportions. The polyesters showed good thermal stability, analyzed by TGA and DSC, with an increase proportional to the terephthalic acid content. The X-ray diffraction patterns show that the samples are semi crystalline polymers. The micrographs indicated the presence of a smoother surface in the polyester that has a larger amount of phthalic acid, as reported in the literature. Therefore, the materials showed good thermal properties and morphological characteristics, so it consists in a new alternative to use glycerin. (author)

  9. Synthesis, Structures and Luminescence Properties of Metal-Organic Frameworks Based on Lithium-Lanthanide and Terephthalate

    Mohammed S. M. Abdelbaky

    2016-03-01

    Full Text Available Metal-organic frameworks assembled from Ln(III, Li(I and rigid dicarboxylate ligand, formulated as [LiLn(BDC2(H2O·2(H2O] (MS1-6,7a and [LiTb(BDC2] (MS7b (Ln = Tb, Dy, Ho, Er, Yb, Y0.96Eu0.04, Y0.93Tb0.07, and H2BDC = terephthalic acid, were obtained under hydrothermal conditions. The isostructural MS1-6 crystallize in monoclinic P21/c space group. While, in the case of Tb3+ a mixture of at least two phases was obtained, the former one (MS7a and a new monoclinic C2/c phase (MS7b. All compounds have been studied by single-crystal and powder X-ray diffraction, thermal analyses (TGA, vibrational spectroscopy (FTIR, and scanning electron microscopy (SEM-EDX. The structures of MS1-6 and MS7a are built up of inorganic-organic hybrid chains. These chains constructed from unusual four-membered rings, are formed by edge- and vertex-shared {LnO8} and {LiO4} polyhedra through oxygen atoms O3 (vertex and O6-O7 (edge. Each chain is cross-linked to six neighboring chains through six terephthalate bridges. While, the structure of MS7b is constructed from double inorganic chains, and each chain is, in turn, related symmetrically to the adjacent one through the c glide plane. These chains are formed by infinitely alternating {LiO4} and {TbO8} polyhedra through (O2-O3 edges to create Tb–O–Li connectivity along the c-axis. Both MS1-6,7a and MS7b structures possess a 3D framework with 1D trigonal channels running along the a and c axes, containing water molecules and anhydrous, respectively. Topological studies revealed that MS1-6 and MS7a have a new 2-nodal 3,10-c net, while MS7b generates a 3D net with unusual β-Sn topology. The photoluminescence properties Eu- and Tb-doped compounds (MS5-6 are also investigated, exhibiting strong red and green light emissions, respectively, which are attributed to the efficient energy transfer process from the BDC ligand to Eu3+ and Tb3+.

  10. Synthesis of PET and Its Copolymer with Rare Earth Catalysts

    张天骄; 武荣瑞

    2003-01-01

    A new catalyst system was used in the synthesis of polyethylene terephthalate(PET) and its copolymers, which involved a Ln3+ containing compound. The catalytic effects were studied, and it was found that the direct esterification reaction of terephthalate acid(TPA) with ethylene glycol(EG) can be accelerated by the addition of Ln3+ containing compound, which acts as a promoter of the catalyst Sb2O3 in polycondensation of bis hydroxyethyl terephthalate(BHET).

  11. A two-stage anaerobic system for biodegrading wastewater containing terephthalic acid and high strength easily degradable pollutants

    2002-01-01

    The high strength easily biodegradable pollutants(represented by CODE) are strong inhibitors of terephthalic acid(TA) anaerobic biodegradation. At the same time, TA can inhibiteasily biodegradable pollutants removal under anaerobic conditionsto a limited extent. This mutual inhibition could happen and causea low removal efficiency of both TA and CODE, when the effluentfrom TA workshops containing TA and easily biodegradable pollutantsare treated by a single anaerobic reactor system. Based upon thetreatment kinetics analysis of both TA degradation and CODEremoval, a two-stage up-flow anaerobic sludge blanket and up-flowfixed film reactor(UASB-UAFF) system for dealing with this kind ofwastewater was developed and run successfully at laboratory scale.An UASB reactor with the methanogenic consortium as the first stageremoves the easily biodegradable pollutants(CODE). An UAFF reactor as the second stage is mainly in charge of TA degradation. At aHRT 18.5h, the CODE and TA removal rate of the system reached 89.2% and 71.6%, respectively.

  12. Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation

    Highlights: • A durable super-hydrophilic PET fabric was prepared using dilute H2SO4 under microwave irradiation. • Dilute sulfuric acid was gradually concentrated enough to sulfonate PET fabric. • Microwave irradiation made PET fabric modification highly efficient. • The mechanical properties of modified PET fibers were kept well. • The method was novel, rapid, and eco-friendly. - Abstract: The hydrophilicity of a poly(ethylene terephthalate) (PET) fabric was greatly modified by using dilute sulfuric acid, which gradually became concentrated enough to sulfonate the fabric when microwave irradiation (MW) was applied. The modified PET fabric was super-hydrophilic. Modifying the fabric caused the water contact angle to decrease from 132.46 (for the unmodified fabric) to 0°, the water absorption rate to increase from 36.45 to 119.78%, and the capillary rise height to increase from 0.4 to 14.4 cm. The hydrophilicity of the modified PET fabric was not affected by washing it many times. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed that there were sulfonic acid groups on the modified fibers. Almost no difference between the surfaces of the unmodified and modified PET fibers was found using scanning electron microscopy. Analysis by differential scanning calorimetry showed that the unmodified and modified fabrics had similar thermostabilities. X-ray diffraction analysis of the crystalline structures of the unmodified and modified fibers showed that they were almost the same. The strength, elasticity, and rigidity of the unmodified fabric were retained by the modified fabric. The modified fabric had better dyeing properties than the unmodified fabric

  13. Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation

    Xu, Fang [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com.cn [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Fengxiu [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Yuansong [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China)

    2015-09-15

    Highlights: • A durable super-hydrophilic PET fabric was prepared using dilute H{sub 2}SO{sub 4} under microwave irradiation. • Dilute sulfuric acid was gradually concentrated enough to sulfonate PET fabric. • Microwave irradiation made PET fabric modification highly efficient. • The mechanical properties of modified PET fibers were kept well. • The method was novel, rapid, and eco-friendly. - Abstract: The hydrophilicity of a poly(ethylene terephthalate) (PET) fabric was greatly modified by using dilute sulfuric acid, which gradually became concentrated enough to sulfonate the fabric when microwave irradiation (MW) was applied. The modified PET fabric was super-hydrophilic. Modifying the fabric caused the water contact angle to decrease from 132.46 (for the unmodified fabric) to 0°, the water absorption rate to increase from 36.45 to 119.78%, and the capillary rise height to increase from 0.4 to 14.4 cm. The hydrophilicity of the modified PET fabric was not affected by washing it many times. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed that there were sulfonic acid groups on the modified fibers. Almost no difference between the surfaces of the unmodified and modified PET fibers was found using scanning electron microscopy. Analysis by differential scanning calorimetry showed that the unmodified and modified fabrics had similar thermostabilities. X-ray diffraction analysis of the crystalline structures of the unmodified and modified fibers showed that they were almost the same. The strength, elasticity, and rigidity of the unmodified fabric were retained by the modified fabric. The modified fabric had better dyeing properties than the unmodified fabric.

  14. Synthesis of aminoaldonic acids

    Jørgensen, Christel Thea

    With the aim of synthesising aminoaldonic acids, two 2-acetamido-2-deoxyaldonolactones with D-galacto (6) and D-arabino (11) configuration were prepared from acetylated sugar formazans in analogy with a known procedure. Empolying the same procedure to acetylated sugar phenylhydrazones gave mixtures...... of 2,5-anhydrides and not the expected 2-acetamido-2-deoxy aldose phenylhydrazones. The acetylated phenylhydrazones were found to eliminate acetic acid when heated in aqueous ethanol and 1-phenylazoalkenes could be isolated by crystallisation. By this method the 17, 20, 23 and 25 were prepared from...... aziridino amides 43 and 51 were reductively cleaved with hydrazine to give 3-amino-2,3-dideoxyhexonhydrazides 83 and 85, which were easily converted into the corresponding lactone 84 and acid 86. The aziridine ring of 43 and 51 was also opened with acetic acid to give the 3-amino-3-deoxyhexonic acids 79 and...

  15. Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials

    Chen, Changzhong [Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Linge [Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650 (China); Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom); Huang, Yong [Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650 (China); State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-11-15

    The ultrafine fibers based on the composites of polyethylene terephthalate (PET) and a series of fatty acids, lauric acid (LA), myristic acid (MA), palmitic acid (PA), and stearic acid (SA), were prepared successfully via electrospinning as form-stable phase change materials (PCMs). The morphology and thermal properties of the composite fibers were studied by field emission scanning electron microscopy (FE-SEM) and differential scanning calorimetry (DSC), respectively. It was found that the average fiber diameter increased generally with the content of fatty acid (LA) in the LA/PET composite fibers. The fibers with the low mass ratio maintained cylindrical shape with smooth surface while the quality became worse when the mass ratio is too high (more than 100/100). Moreover, the latent heat of the composite fibers increased with the increase of LA content and the phase transition temperature of the fibers have no obvious variations compared with LA. In contrast, both the latent heat and phase transition temperature of the fatty acid/PET composite fibers varied with the type of the fatty acids, and could be well maintained after 100 heating-cooling thermal cycles, which demonstrated that the composite fibers had good thermal stability and reliability. (author)

  16. A Novel and Highly Regioselective Synthesis of New Carbamoylcarboxylic Acids from Dianhydrides

    Adrián Ochoa-Terán

    2014-01-01

    Full Text Available A regioselective synthesis has been developed for the preparation of a series of N,N′-disubstituted 4,4′-carbonylbis(carbamoylbenzoic acids and N,N′-disubstituted bis(carbamoyl terephthalic acids by treatment of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (1 and 1,2,4,5-benzenetetracarboxylic dianhydride (2 with arylalkyl primary amines (A-N. The carbamoylcarboxylic acid derivatives were synthesized with good yield and high purity. The specific reaction conditions were established to obtain carbamoyl and carboxylic acid functionalities over the thermodynamically most favored imide group. Products derived from both anhydrides 1 and 2 were isolated as pure regioisomeric compounds under innovative experimental conditions. The chemo- and regioselectivity of products derived from dianhydrides were determined by NMR spectroscopy and confirmed by density functional theory (DFT. All products were characterized by NMR, FTIR, and MS.

  17. Toxicokinetics of terephthalic acid%对苯二甲酸的毒代动力学研究

    姚宏伟; 王心如; 王顶贤; 戴建国; 徐锡坤; 施爱民

    2001-01-01

    通过研究对苯二甲酸(TPA)在大鼠的毒代动力学,为制定生物接触限值(BEI)提供依据。选清洁级SD大鼠8只,一次性灌胃染毒100mg/kgBWTPA后,采用反相高效液相色谱法测定尿TPA浓度,用3P97计算毒代动力学参数。结果显示,TPA在体内的毒代动力学行为符合一级吸收二室模型,吸收速率常数ka为0.51/h,吸收相半衰期t1/2ka=0.488h,分布相半衰期t1/2d为2.446h,达峰时间tpeak为2.16h,消除速率常数Ku为0.143/h,消除相半衰期t1/2β为31.551h,TPA经尿排泄累积量为10.00mg,24h内约50%的TPA由尿排泄,48h内约52%,72h内约53%以上的TPA由尿排泄。结论:TPA在体内吸收快、消除快,主要以原形由尿排泄,提示职业人群的工后尿TPA可作为接触性生物标志物。%In order to study the toxicokinetics of terephthalic acid(TPA) inrats, and provide scientific basis for its biological exposed index(BEI), the concentrations of urine TPA in rats after single oral administration in dose of 100mg/kgBW were determined by high pressure liquid chromatography. The toxicokinetic parameters were computed by using 3P97 program. The results showed that the first-order kinetics and two-compartment model were noted on the elimination of TPA . The main toxicokinetic parameters were as follows: Ka=0.51/h, T1/2ka=0.488h, T1/2α=2.446h ,Tpeak =2.160h, Ku=0.143/h,T1/2β=31.551h, Xu(max)= 10.00mg. The excretion rates of TPA in urine were about 50%, 52% and 53% in 0~24h, 0~48h and 0~72 h respectively after administration. TPA is well absorbed when given orally and rapidly eliminated via urine. Urine TPA at the end of work shift should be considered as a biomarker of exposure for the occupational workers.

  18. Chemical recycling of post-consumer PET: structural characterization of terephthalic acid and the effect of Alkaline Hydrolysis at low temperature

    Due to the environmental impact caused by PET packaging disposal, this material recycling has been thoroughly discussed and evaluated. In particular, chemical recycling enables achievement of the monomers that are used in PET resin manufacture: ethylene glycol (EG) and terephthalic acid (PTA). Therefore, studies for this process optimization are important from environmental and economic points of view. The present study investigated certain parameters that influence the depolymerization reaction of PET post-consumer via alkaline hydrolysis in order to obtain PTA. Assays were performed at 70 °C by varying the concentration of sodium hydroxide and the reaction time. The best results were obtained at 10.82 mol L-1 NaOH and 9 h reaction time. Consequently, it was possible to prove this process viability, once analyses by infrared and nuclear magnetic resonance confirmed that PTA was obtained in all reactions performed. (author)

  19. 工业PTA氧化过程的多目标优化%Multi-objective Optimization of Industrial Purified Terephthalic Acid Oxidation Process

    牟盛静; 苏宏业; 古勇; 褚健

    2003-01-01

    Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process model that has been proved to describe industrial process quite well. The model is a semiempirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithm applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.

  20. Modification of Poly(Ethylene Terephthalate) Fiber by Grafting of Acrylic Acid/Acrylamide for Removal of Pb+2 from Aqueous Solutions

    A new fibrous adsorbent was prepared by grafting Acrylic Acid /Acryl Amide co-monomers onto Poly(Ethylene Terephthalate) fibers. The resulting sorbent has been characterized by Fourier Transform Infrared spectroscopy, Thermo Gravimetric Analysis, Scanning Electron Microscopy and elemental analysis and studied for the preconcentration and determination of trace Pb+2 ion from water sample. The effects of reaction conditions such as monomer mixture ratio, grafting yield, polymerization. The time and temperature on grafting were investigated. Batch adsorption method was used for the pre concentration studies. Recovery of Pb+2 was 100.2% at optimum conditions. The adsorption capacity of the adsorbent was found 44.1 mg/g for Pb+2.

  1. Hydroxamic acids in asymmetric synthesis.

    Li, Zhi; Yamamoto, Hisashi

    2013-02-19

    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst's center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Because of their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless asymmetric epoxidation, which uses the titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless asymmetric epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities. PMID:23157425

  2. Fatty acid synthesis by spinach chloroplasts, 3

    The modes of actions of photosynthetic inhibitors on photosynthesis and fatty acid synthesis were examined. DCMU, an electron transport inhibitor, inhibited fatty acid synthesis and photophosphorylation to the same extent, suggesting dependence of fatty acid synthesis on photosynthesis. The same was also the case with FCCP, a photophosphorylation uncoupler. In contrast, NH4Cl and phlorizin at concentrations completely suppressing ATP formation, only partially inhibited the fatty acid synthesis. These facts suggest that a certain level of high-energy intermediate (state) is responsible for the light enhancement of fatty acid synthesis. This idea is further supported by the fact that the partial inhibition of fatty acid synthesis by NH4Cl was relieved by addition of DCCD at low concentrations suppressing the ATP formation but not completely destroying the high energy intermediate. The lag period in the initial period of fatty acid synthesis was shortened by preillumination of chloroplasts, even in the absence of ADP. This indicates that the light dependent fatty acid synthesis is closely associated with the high-energy intermediate (state), but not directly with ATP formation by photophosphorylation. (author)

  3. 降低精对苯二甲酸溶剂系统醋酸消耗的研究%Research and Implementation of Decreasing the Acetic Acid Consumption in Purified Terephthalic Acid Solvent System

    徐圆; 朱群雄

    2008-01-01

    Decreasing the acetic acid consumption in purified terephthalic acid(PTA) solvent system has become a hot issue with common concern.In accordance with the technical features.the electrical conductivity is in direct proportion to the acetic acid content.General regression neural network(GRNN)is used to establish the model of electrical conductivity on the basis of mechanism analysis,and then particle swarm optimization (PSO)algorithm with the improvement of mertia weight and population diversity is proposed to regulate the operatmg conditions.Thus.the method of decreasing the acid lossS is derived and applied to PTA solvent system in a chemical plant.Cases studies show that the precision of modeling and optimization are higher.The results also provide the optimal operating conditions,which decrease the cost and improve the profit.

  4. Catalytic asymmetric synthesis of mycocerosic acid

    ter Horst, B.; Feringa, B.L.; J. Minnaard, A.

    2007-01-01

    The first catalytic asymmetric total synthesis of mycocerosic acid was achieved via the application of iterative enantioselective 1,4-addition reactions and allows for the efficient construction of 1,3-polymethyl arrays with full stereocontrol; further exemplified by the synthesis of tetramethyl-dec

  5. Biodegradation of poly(lactic acid), poly(hydroxybutyrate-co-hydroxyvalerate), poly(butylene succinate) and poly(butylene adipate-co-terephthalate) under anaerobic and oxygen limited thermophilic conditions

    Jutakan Boonmee; Charnwit Kositanont; Thanawadee Leejarkpai

    2016-01-01

    In order to study the biodegradation behavior of biodegradable plastics in landfill conditions, four types of biodegradable plastics including poly(lactic acid) (PLA), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), poly(butylene succinate) (PBS), and poly(butylene adipate-co-terephthalate) (PBAT) were tested by burying in sludge mixed soil medium under anaerobic and oxygen limited conditions. The experiments were operated at 52 ± 2ºC in dark conditions according to ISO15985. The degree of b...

  6. Synthesis of β-Amino Acid Derivatives

    Zhao Yonghua; Ma Zhihua; Jiang Nan; Wang Jianbo

    2004-01-01

    In recent years, β-amino acids and their derivatives have attracted considerable attention due to their occurrence in biologically active natural products, such as dolastatins,cyclohexylnorstatine and Taxol. β-Amino acids also find application in the synthesis of β-lactams,piperidines, indolizidines. Moreover, the peptides consisting of β-amino acids, the so-called β-peptides, have been extensively studied recently. Consequently, considerable efforts have been directed to the synthesis of β-amino acids and their derivatives1. In particular, stereoselective synthesis of β-amino acids has been a challenging project, and there are only limited methods available. In this presentation, we report our efforts in this area.

  7. SYNTHESIS OF MYCOPHENOLIC ACID (MPA)

    2008-01-01

    The present invention relates to novel tools for improving MPA production. In particular, the present invention relates tofungal enzymes that are specific for MPA synthesis.......The present invention relates to novel tools for improving MPA production. In particular, the present invention relates tofungal enzymes that are specific for MPA synthesis....

  8. Total Synthesis of (±)-Mitorubrinic Acid

    Marsini, Maurice A.; Gowin, Kristoffer M.; Pettus, Thomas R. R.

    2006-01-01

    (±)-Mitorubrinic acid, a member of the azaphilone family of natural products, has been constructed in 12 steps. Key aspects of the synthesis include elaboration and oxidative dearomatization of an isocoumarin intermediate to provide the azaphilone nucleus with a disubstituted, unsaturated carboxylic acid side chain.

  9. Mechanical properties and morphology of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends compatibilized by transesterification

    Highlights: ► Compatibility between PLA and PBAT is improved through transesterification. ► Elongation at break of PLA was up to almost 300%. ► Both toughness and stiffness of PLA/PBAT blends are improved significantly after the incorporation of TBT. -- Abstract: Biodegradable poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends with various tetrabutyl titanate (TBT) concentration were prepared through melt-extrusion. Mechanical properties and morphology were characterized in terms of tensile and impact testing, dynamical mechanical analysis and scanning electron micrograph (SEM). The results indicated that the overall mechanical properties (including tensile strength, elongation at break, toughness and stiffness) of PLA/PBAT blends can be improved significantly after the incorporation of TBT. The SEM micrographs demonstrated that the compatibility and strong interaction between PLA and PBAT was improved via transesterification during melt-extrusion. The interfacial debonding, pullout of PBAT, yielding deformation were the most important mechanisms to improve toughness.

  10. Synthesis of derivatives of tetronic acid and pulvinic acid. Total synthesis of norbadione A

    When vegetables like mushrooms are contaminated by radioactive caesium 137, this radioactive caesium is associated to norbadione A, a natural pigment present in two mushroom species and which can be used as a caesium decorporation agent or maybe as protection agent against ionizing radiations. Within this perspective, this research report describes the biosynthesis and the structure and properties of the norbadione A and of pulvinic acids (physicochemical properties, anti-oxidizing properties). Then, it presents the various tetronic acids (3-acyl-, 3-alkyl-, 3-alkoxy-, 3-aryl-tetronic acids and non 3-substituted tetronic acids), their synthesis path as they are described in the literature, and presents a new synthesis approach using a tandem reaction (with different esters or hydroxy esters) and the synthesis of tetronic acids. The author also proposes a new synthesis way for methyl pulvinates, and finally reports the work on the development of a total synthesis of the norbadione A

  11. Synthesis of stearic acid triethanolamine ester over solid acid catalysts

    Tao Geng; Qiu Xiao Li; Ya Jie Jiang; Wei Wang

    2010-01-01

    The synthesis of stearic acid triethanolamine ester over solid acid catalysts was investigated.The results showed that the catalytic activity and selectivity of zirconium sulfate supported on SBA-15(6)(pore diameter 6 nm)is better than that of commonly used hypophosphorous acid,zirconium sulfate supported on MCM-41 and zirconium sulfate supported on SBA-15(9)(pore diameter 9 nm).

  12. A new approach of synthesis and morphological control of poly(ethylene terephthalate)-g-polyacrylonitrile composite film with a porous surface

    Poly(ethylene terephthalate)-g-polyacrylonitrile (PET-g-PAN) composite film with a porous surface was fabricated via gamma-ray-radiation-induced graft polymerization on PET film in an aqueous solution system. The original PET film was first irradiated by gamma ray in the aqueous solution of acrylic acid. Next, the graft polymerization of acrylonitrile (AN) was induced by gamma ray on the surface of the above modified PET film in an aqueous solution of AN. The prepared PET-g-PAN composite film has a smaller static water contact angle than the original PET film. The SEM and AFM images show that the grafted PAN layer on the surface of PET-g-PAN composite film is composed of closely-arranged spherical PAN microspheres with an average diameter of 30 nm. The gaps between the PAN microspheres form fine pores (less than 30 nm) on the surface. The gas barrier property of the PET-g-PAN composite film is much better than that of the original PET film. This work provides a facile and green method to prepare PET-g-PAN composite film with a controllable porous surface morphology by taking advantage of the radiation-induced graft polymerization technique in an aqueous solution system. - Highlights: • PET-g-PAN composite film can be prepared by radiation-induced grafting polymerization. • The PAA grafted on PET film will facilitate the following graft polymerization of AN. • The grafted PAN forms spherical microspheres with an average diameter of 30 nm. • The gaps between the PAN microspheres form a porous topology on the surface. • The gas barrier property of PET film was greatly improved by the grafting of PAN

  13. Preparation, morphology and thermal properties of electrospun fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage

    Highlights: ► Electrospun binary fatty acid eutectics/PET ultrafine composite fibers were prepared. ► Fatty acid eutectics had appropriate phase transition temperature and heat enthalpy. ► Their morphological structures and thermal properties were different from each other. ► Composite fibers could be innovative form-stable PCMs for thermal energy storage. - Abstract: The ultrafine composite fibers based on the composites of binary fatty acid eutectics and polyethylene terephthalate (PET) with varied fatty acid eutectics/PET mass ratios (50/100, 70/100, 100/100 and 120/100) were fabricated using the technique of electrospinning as form-stable phase change materials (PCMs). The five binary fatty acid eutectics including LA–MA, LA–PA, MA–PA, MA–SA and PA–SA were prepared according to Schrader equation, and then were selected as an innovative type of solid–liquid PCMs. The results characterized by differential scanning calorimeter (DSC) indicated that the prepared binary fatty acid eutectics with low phase transition temperatures and high heat enthalpies for climatic requirements were more suitable for applications in building energy storage. The structural morphologies, thermal energy storage and thermal stability properties of the ultrafine composite fibers were investigated by scanning electron microscope (SEM), DSC and thermogravimetric analysis (TGA), respectively. SEM images revealed that the electrospun binary fatty acid eutectics/PET ultrafine composite fibers possessed the wrinkled surfaces morphologies compared with the neat PET fibers with cylindrical shape and smooth surfaces; the grooves or ridges on the corrugated surface of the ultrafine composite fibers became more and more prominent with increasing fatty acid eutectics amount in the composite fibers. The fibers with the low mass ratio maintained good structural morphologies while the quality became worse when the mass ratio is too high (more than 100/100). DSC measurements

  14. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis. PMID:27349116

  15. [Total synthesis of nordihydroguaiaretic acid].

    Wu, A X; Zhao, Y R; Chen, N; Pan, X F

    1997-04-01

    beta-Keto ester(5) was obtained from vanilin through etherification, oxidation and condensation with acetoacetic ester, (5) on oxidative coupling reaction by NaOEt/I2 produced dimer (6) in high yield. Acid catalyzed cyclodehydration of (6) gave the furan derivative(7), and by a series of selective hydrogenation nordihydroguaiaretic acid, furoguaiacin dimethyl ether and dihydroguaiaretic acid dimethyl ether were synthesized. PMID:11499030

  16. Synthesis of nucleic acid methylphosphonothioates.

    Roelen, H C; de Vroom, E; G. A. van der Marel; Boom, J.H. van

    1988-01-01

    The reagent obtained in situ by treating methylphosphonothioic dichloride with 1-hydroxy-6-trifluoromethylbenzotriazole could be used for the introduction of methylphosphonothioate linkages. The individual diastereomers of the protected dimer d-Tp(S,Me)A were applied in the synthesis of the chiral pure (R or S) hexamers d-[CpCpTp(S,Me)ApGpG]. The reagent showed also to be very effective for the preparation of the 3',5'-cyclic methylphosphonothioate of uridine.

  17. Synthesis of nucleic acid methylphosphonothioates.

    Roelen, H C; de Vroom, E; van der Marel, G A; van Boom, J H

    1988-01-01

    The reagent obtained in situ by treating methylphosphonothioic dichloride with 1-hydroxy-6-trifluoromethylbenzotriazole could be used for the introduction of methylphosphonothioate linkages. The individual diastereomers of the protected dimer d-Tp(S,Me)A were applied in the synthesis of the chiral pure (R or S) hexamers d-[CpCpTp(S,Me)ApGpG]. The reagent showed also to be very effective for the preparation of the 3',5'-cyclic methylphosphonothioate of uridine. PMID:3412896

  18. Enantioselective Total Synthesis of Plectosphaeroic Acid B

    Jabri, Salman Y.; Overman, Larry E.

    2013-01-01

    The first total synthesis of a member of the plectosphaeroic acid family of fungal natural products is reported. Key steps include the late-stage formation of the hindered N6–C9″ bond and stereoselective introduction of the two methylthio substituents.

  19. SYNTHESIS AND CHARACTERIZATION OF LIQUID CRYSTALLINE MULTI-BLOCK COPOLYMERS,POLY[1,6-BIS(4-OXYBENZOYL-OXY)HEXANE TEREPHTHALATE]-b-BISPHENOL A POLYCARBONATE

    Hui-qing Zhang; Xiong-yan Zhao; De-shan Liu; Qi-xiang Zhou

    1999-01-01

    A series of liquid crystalline multi-block copolymers poly[1,6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segment lengths were synthesized in tetrachloroethane by solution polycondensation in which hydroxyl terminated PC and acyl chloride terminated PHTH-6 were used. It is found that block copolymers with high molecular weight and welldefined structures were obtained. All the block copolymers exhibit a nematic liquid crystalline texture.

  20. Synthesis of carbon-13-labeled tetradecanoic acids.

    Sparrow, J T; Patel, K M; Morrisett, J D

    1983-07-01

    The synthesis of tetradecanoic acid enriched with 13C at carbons 1, 3, or 6 is described. The label at the carbonyl carbon was introduced by treating 1-bromotridecane with K13CN (90% enriched) to form the 13C-labeled nitrile, which upon hydrolysis yielded the desired acid. The [3-13C]tetradecanoic acid was synthesized by alkylation of diethyl sodio-malonate with [1-13C]1-bromododecane; the acid was obtained upon saponification and decarboxylation. The label at the 6 position was introduced by coupling the appropriately labeled alkylcadmium chloride with the half acid chloride methyl ester of the appropriate dioic acid, giving the corresponding oxo fatty acid ester. Formation of the tosylhydrazone of the oxo-ester followed by reduction with sodium cyanoborohydride gave the labeled methyl tetradecanoate which, upon hydrolysis, yielded the desired tetradecanoic acid. All tetradecanoic acids were identical to unlabeled analogs as evaluated by gas-liquid chromatography and infrared or NMR spectroscopy. These labeled fatty acids were used subsequently to prepare the correspondingly labeled diacyl phosphatidylcholines. PMID:6631228

  1. Lipase catalyzed synthesis of epoxy-fatty acids

    CHEN, Qian; LI, Zu-Yi

    2000-01-01

    Lipase catalyzed synthesis of epoxy-fatty acidas from unsaturated carboxylic acids was investigated.Under mild conditions unsaturated arboxylic acids were convcveed to peroxide,then the unsaturated peroxycarboxylic acids epoxidised the C=C bond of themselves

  2. Photo destruction of polyethylene terephthalate

    Present article is devoted to photo destruction of polyethylene terephthalate. The photo destruction of polyethylene terephthalate was studied by means of different methods under the conditions of irradiation of fibers in the open air and in the vacuum by wide ultraviolet spectre and monochromatic radiation.

  3. Amide-modified poly(butylene terephthalate): polycondensation

    Bennekom, van A.C.M.; Gaymans, R.J.

    1996-01-01

    The synthesis of poly(ester amide) copolymers (PBTA) based on poly(butylene terephthalate) (PBT) and nylon-4,T with the diamide of butanediamine and dimethyl terephthelate (N,N′-bis(p-carbomethoxybenzoyl)butanediamine) has been carried out. Different melt and solid state condensation reactors were u

  4. Synthesis of 3C–SiC nanowires by reaction of poly(ethylene terephthalate) waste with SiO{sub 2} microspheres

    Gao, Lei; Zhong, Hao; Chen, Qianwang, E-mail: cqw@ustc.edu.cn

    2013-07-25

    Highlights: •The 3C–SiC nanowires have been synthesized by reaction of poly(ethylene terephthalate) (PET) waste and SiO{sub 2} microspheres as primary reactant. •The recycling of PET wastes are fulfilled, and it is beneficial to the environment protection. •Increasing information will decrease quality if hospital costs are very different. •The prepared 3C–SiC nanowires have a good morphology. •Other polymer wastes, such as PE, PP, PVC, and PS, can also be managed with this method. -- Abstract: 3C–SiC nanowires have been synthesized by reaction of poly(ethylene terephthalate) (PET) waste with SiO{sub 2} microspheres in supercritical carbon dioxide system at 650 °C for 3 h, followed by vacuum annealing at 1500 °C for 4 h. The product was characterized by X-ray diffraction, Raman spectroscopic, Field Emission Scanning Electron Microscopy, and High-resolution Electron Microscopy. The 3C–SiC nanowires are tens of microns in length and 30–150 nm in diameter. It is found that the reaction forming 3C–SiC nanowires take place in the inner of the carbon microspheres generated from PET. The formation mechanism of the 3C–SiC nanowires was discussed.

  5. Microwave irradiated synthesis and characterization of 1, 4-phenylene bis-oxazoline form bis-(2-hydroxyethyl terephthalamide obtained by depolymerization of poly (ethylene terephthalate (PET bottle wastes

    Yogesh S. Parab

    2012-04-01

    Full Text Available The aminolytic depolymerization of PET bottle waste with ethanolamine by conventional heating and microwave irradiation heating method was attempted with heterogeneous, recyclable acid catalysts such as beta zeolite (SiO2/ AlO2= 15 Na- form and montmorillonite KSF. The pure product bis-(2-hydroxyethyl terephthalamide (BHETA of aminolysis was obtained in good yield (85- 88%. The BHETA, thus obtained, was subjected to cyclization reaction by heating with polyphosphoric acid as well as by chlorination (using phosphoryl chloride, bromination (using red phosphorous and liquid bromine and nitration (conc. HNO3 + conc. H2SO4 followed by conventional and microwave irradiation heating in N,N- dimethyl formamide/ potassium carbonate solution. The product so obtained was 2, 2’-(1,4-phenylene–bis-(2-oxazoline (PBO, which has applications in polymer synthesis as a chain extender/ chain coupling agent or a cross linker. The productswere analyzed by FTIR, DSC, Mass and NMR (1H and 13C NMR.

  6. Synthesis of Two Natural Oleanolic Acid Saponins

    LI, Chun-Xia; ZANG, Jing; WANG, Peng; ZHANG, Xiu-Li; GUAN, Hua-Shi; LI, Ying-Xia

    2006-01-01

    Ocean University of China, Qingdao, Shandong 266003, China3-O-[β-D-Glucopyranosyl-(1→3)-α-L-arabinopyranosyl]-oleanolic acid-28-O-[β-D-glucopyranosyl] ester 1 was synthesized concisely by a convergent strategy. Using stepwise fashion for the synthesis of saponin 2,3-O-{ [β-D-glucopyranosyl-( 1→ 2 ) ]-[ α-L-arabinopyranosyl-( 1→ 3 ) ]-α-L-arabinopyranosyl }-oleanolic acid-28-O-(β-D-glucopyranosyl) ester, an abnormal phenomenon, that the terminal arabinosyl residue took the 1C4 conformation instead of typical 4C1 form, was observed. Deprotection or heating could not resume the normal conformation,which resulted in the product of 2' not 2.

  7. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  8. Synthesis and NMR characterization of aliphatic-aromatic copolyesters by reaction of poly(ethylene terephthalate post-consumer and poly(ethylene adipate

    Alessandra F. Baldissera

    2005-03-01

    Full Text Available An aliphatic-aromatic copolyester of poly(ethylene terephthalate, PET, and poly(ethylene adipate, PEA, PET-co-PEA, was synthesized by the high temperature melt reaction of post-consumer PET and PEA. As observed by NMR spectroscopy, the reaction yielded random copolyesters in a few minutes through ester-interchange reactions, even without added catalyst. The copolyesters obtained in the presence of a catalyst presented higher intrinsic viscosity than that obtained without the addition of catalyst, due to simultaneous polycondensation and ester-interchange reactions. The structure of the aliphatic-aromatic copolyesters obtained in different PET/PEA ratio is random as observed by NMR analysis.

  9. 工业PTA氧化过程中4-CBA浓度的模糊神经网络模型%Fuzzy Neural Network Model of 4-CBA Concentration for Industrial Purified Terephthalic Acid Oxidation Process

    刘瑞兰; 苏宏业; 牟盛静; 贾涛; 陈渭泉; 褚健

    2004-01-01

    A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeling.First, a set of preliminary input variables is selected according to prior knowledge and experience. Secondly, a method based on the maximum correlation coefficient is proposed to detect the dead time between the process variables and response variables. Finally, the fuzzy curve method is used to reduce the unimportant input variables. The simulation results based on industrial data show that the relative error range of the FNN model is narrower than that of the American Oil Company (AMOCO) model. Furthermore, the FNN model can predict the trend of the 4-CBA concentration more accurately.

  10. Preparation and characterization of polymer blends based on recycled PET and polyester derived by terephthalic acid; Preparacao e caracterizacao de blendas polimericas a base de PET reciclado e poliester derivado do acido tereftalico

    Ohara, L.; Miranda, C.S.; Fiuza, R.P.; Luporini, S.; Carvalho, R.F.; Jose, N.M., E-mail: leandro.ohara@gmail.co [Universidade Federal da Bahia (GECIM/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Grupo de Energia e Ciencias dos Materiais

    2010-07-01

    Environmentally friendly materials, made from industrial waste, are being increasingly used as a solution to the growing amount of waste generated by society, but also as a cheaper alternative to replace conventional materials for use in construction. In this work were investigated the properties of polymer blends based on recycled PET and a polyester derived from terephthalic acid and glycerin, a co-product of biodiesel. The samples were characterized by XRD, TGA, DSC, FTIR and SEM. The polyester synthesized showed a degradation event near 300 deg C. The blends with higher ratio of PET showed thermal behavior similar to pure PET. The X-ray diffraction showed that the polymer blends are semicrystalline materials. The micrographs presents the presence of a smooth surface, indicating the possibility of miscibility between the arrays. Therefore, the blending makes possible the fabrication of low-cost materials with applications in several areas. (author)

  11. First total synthesis of prasinic acid and its anticancer activity.

    Chakor, Narayan; Patil, Ganesh; Writer, Diana; Periyasamy, Giridharan; Sharma, Rajiv; Roychowdhury, Abhijit; Mishra, Prabhu Dutt

    2012-11-01

    The first total synthesis of prasinic acid is being reported along with its biological evaluation. The ten step synthesis involved readily available and cheap starting materials and can easily be transposed to large scale manufacturing. The crucial steps of the synthesis included the formation of two different aromatic units (7 and 9) and their coupling reaction. The synthetic prasinic acid exhibited moderate antitumor activity (IC(50) 4.3-9.1 μM) in different lines of cancer cells. PMID:23031589

  12. The Synthesis Technique of Polyacrylic Acid Superplasticizer

    ZHANG Rongguo; LI Qiong; ZHANG Anfu; LIU Yong; LEI Jiaheng

    2008-01-01

    Using water separation technique,acrylic acid (AA) and polyethylene glycol (PEG) 1000,of which the ratio was 1.5,were esterified and the optimum esterification ratio of 90% could be reached under the condition of 110 ℃×3 h.Using polyoxyethylene acrylate macromonomer (PA) prepared in the esterification,AA and sodium methylacryl sulfonate (MAS) as monomers,a copolymer which could be used as superplasticizer was prepared by free radical copolymerization in n(PA);n(AA) :n(MAS) of 1 ;7 :3.When the synthesis condition was 80 ℃×5 h,the optimal dosage of initiator was 3.0%-4.0%,the fluidity of cement paste with the samples could reach 270 mm.By analyzing the effect of the content of residual small molecule sulfonic monomer on the properties of sample,n(MAS)/n(PA) was controlled in a range of 2.5-3.8.

  13. Photo destruction of mechanically stressed polyethylene terephthalate

    Present article is devoted to photo destruction of mechanically stressed polyethylene terephthalate. The influence of tensile load on photo processes which pass in polyethylene terephthalate was studied by means of spectroscopy method.

  14. Methane Sulphonic Acid is Green Catalyst in Organic Synthesis

    Pramod Kulkarni

    2015-01-01

    Methane sulphonic acid is an alkanesulphonic acid and its chemical formula is CH3SO3H. MSA is a strong acid having pKa= 1.9 and completely ionized in 0.1 M in an aqueous solution and has small affinity to oxidize organic compounds, less corrosive and toxic than other mineral acids. MSA is also biodegradable and not evolve toxic gases. Therefore MSA is considered as green acid. Therefore its use in organic synthesis attracts many chemists to use in organic synthesis. In this review we describe...

  15. Automated solid-phase synthesis of oligosaccharides containing sialic acids

    Chian-Hui Lai

    2015-05-01

    Full Text Available A sialic acid glycosyl phosphate building block was designed and synthesized. This building block was used to prepare α-sialylated oligosaccharides by automated solid-phase synthesis selectively.

  16. Genetics Home Reference: congenital bile acid synthesis defect type 2

    ... DEFECT, CONGENITAL, 2 Sources for This Page Clayton PT. Disorders of bile acid synthesis. J Inherit Metab ... J, Duran M, Overmars H, Scambler PJ, Clayton PT. Mutations in SRD5B1 (AKR1D1), the gene encoding delta( ...

  17. 对苯二甲酸催化加氢的Ru-Sn-B/丝光沸石催化性能%Catalytic performance of Ru-Sn-B/mordenite for terephthalic acid catalytic hydrogenation

    赵葛新; 靳海波; 何广湘; 郭志武; 杨索和

    2012-01-01

    采用分步浸渍和化学还原的方法制备以丝光沸石分子筛为载体的Ru-Sn-B催化剂,研究了在负载型催化剂Ru-Sn-B/丝光沸石上对苯二甲酸催化加氢制备1,4-环己烷二甲醇的加氢催化性能,并利用XRD和BET等分析手段对Ru-Sn-B/丝光沸石催化剂进行表征.结果 表明,RuB和Sn在丝光沸石上具有较好的分散性,Ru-Sn-B/丝光沸石催化剂具有较高的催化活性和选择性;催化加氢过程中采用两段升温升压的方法,对苯二甲酸转化率约100%,产物1,4-环己烷二甲醇的收率为73.5%,反式与顺式之比为2.42.%Ru-Sn-B/mordenite catalysts were prepared by sequential impregnation and chemical reduction methods and using mordenite zeolite as the carrier. The catalytic performance of Ru-Sn-B/mordenite catalysts for terephthalic acid hydrogenation to 1,4-cyclohexanedimethanol was investigated. The as-prepared catalysts were characterized by XRD, BET, EDS and ICP. The results showed that RuB and Sn had better dispersion on the mordenite, and Ru-Sn-B/mordenite catalyst possessed high catalytic activity and selectivity. The catalytic hydrogenation process used two stage enhancement method of temperature and pressure. Terephthalic acid conversion rate of about 100% ,the yield of the product 1,4-cyclohexanedimethanol of 73.5% ,and the ratio of trans and cis of the product of 2.42 were attained,respectively.

  18. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order to...... undergo initial diazotization and successive hydroxylation, since neither β-amino acids nor acid derivatives such as esters and amides undergo hydroxylations. The method is successfully applied for the synthesis of 18 proteinogenic amino acids. © 2014 Elsevier Ltd. All rights reserved....

  19. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  20. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-01-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA a...

  1. Layer-by-layer hyaluronic acid-chitosan coating promoted new collagen ingrowth into a poly(ethylene terephthalate) artificial ligament in a rabbit medical collateral ligament (MCL) reconstruction model.

    Li, Hong; Jiang, Jia; Ge, Yunsheng; Xu, Jialing; Zhang, Pengyun; Zhong, Wei; Chen, Shiyi

    2013-01-01

    The ideal artificial ligament graft should have favorable biocompatibility to facilitate cell adhesion, proliferation, and collagen regeneration. In this present study, surface modification was performed on a poly(ethylene terephthalate) (PET) artificial ligament graft by layer-by-layer (LBL) self-assembly coating of hyaluronic acid (HA) and chitosan (CS). The surface characterization of the ligament was examined using scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray spectroscopy. The results of in vitro culturing of human foreskin fibroblast cells supported the hypothesis that the LBL coating of CS-HA could promote the cell proliferation and adhesion on the sheets. A rabbit medical collateral ligament reconstruction model was used to evaluate the effect of this LBL coating in vivo. The final results proved that this LBL coating could significantly promote and enhance new collagen formation among the graft fibers. On the basis of these results, we conclude that such CS-HA assembly coating could enhance PET graft biocompatibility in vitro and in vivo, and a CS-HA-coated PET graft has considerable potential as a desirable substitute for ligament reconstruction. PMID:23565685

  2. Biodegradation of poly(lactic acid, poly(hydroxybutyrate-co-hydroxyvalerate, poly(butylene succinate and poly(butylene adipate-co-terephthalate under anaerobic and oxygen limited thermophilic conditions

    Jutakan Boonmee

    2016-01-01

    Full Text Available In order to study the biodegradation behavior of biodegradable plastics in landfill conditions, four types of biodegradable plastics including poly(lactic acid (PLA, poly(hydroxybutyrate-co-hydroxyvalerate (PHBV, poly(butylene succinate (PBS, and poly(butylene adipate-co-terephthalate (PBAT were tested by burying in sludge mixed soil medium under anaerobic and oxygen limited conditions. The experiments were operated at 52 ± 2ºC in dark conditions according to ISO15985. The degree of biodegradation after 75 days was investigated by weight loss determination, visual examination, and surface appearance by scanning electronic microscopy (SEM. Under both anaerobic and oxygen limited conditions, the complete degradation (100% weight loss was found only in PHBV after 75 days. The plastic degradations were ranked in the order of PHBV> PLA> PBS> PBAT. The percentage of weight losses were significantly different at p ≤ 0.05. However, for all studied plastics, the degradation under anaerobic and oxygen limited conditions did not significantly different at 95% confidence.

  3. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele;

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  4. Aminolysis of polyethylene terephthalate surface along with in situ synthesis and stabilizing ZnO nanoparticles using triethanolamine optimized with response surface methodology.

    Poortavasoly, Hajar; Montazer, Majid; Harifi, Tina

    2016-01-01

    This research concerned the simultaneous polyester surface modification and synthesis of zinc oxide nano-reactors to develop durable photo-bio-active fabric with variable hydrophobicity/hydrophilicity under sunlight. For this purpose, triethanolamine (TEA) was applied as a stabilizer and pH adjusting chemical for the aminolysis of polyester surface and enhancing the surface reactivity along with synthesis and deposition of ZnO nanoparticles on the fabric. Therefore, TEA played a crucial role in providing the alkaline condition for the preparation of zinc oxide nanoparticles and acting as stabilizer controlling the size of the prepared nanoparticles. The stain-photodegradability regarded as self-cleaning efficiency, wettability and weight change under the process was optimized based on zinc acetate and TEA concentrations, using central composite design (CCD). Findings also suggested the potential of the prepared fabric in inhibiting Staphylococcus aureus and Escherichia coli bacteria growth with greater than 99.99% antibacterial efficiency. Besides, the proposed treatment had no detrimental effect on tensile strength and hand feeling of the polyester fabric. PMID:26478337

  5. Study of Synthesis of Copoly (lactic acid/glycolic acid) by Direct Melt Polycondensation

    LAN Ping; GAO Qin-wei; SHAO Hui-li; HU Xue-chao

    2005-01-01

    A two steps direct copolymerisation process was developed. The first step is to produce oligomer and then the oligomer of lactic acid/glycolic acid (90/10) is polymerized with binary catalyst tin chloride dihydrate/ptoluenesulfonic acid. In this way, the direct synthesis of copoly (lactic acid/glycolic acid) without any organic solvent was investigated. The properties and structures of products were characterized by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), X-ray diffraction and so on. The results show that comparatively high molecular weight copolymer of lactic acid and glycolic acid can be prepared by direct processing under appropriate technological conditions.

  6. Synthesis of heteropoly acids and their salts using mechanochemical activation

    A method of heteropolyacid synthesis from oxides of molybdenum, tungsten and vanadium based on increase in the oxides reactivity via mechanochemical activation is suggested. Scientific grounds for the method of synthesis of heteropolyacids with different ligand atoms and heteroatoms were developed. A high reactive ability of new compounds i.e. V2O5 · nMoO3, during interaction with phosphoric acid was detected, stemming from the lack of coordination saturation of vanadium cations and defective compounds. The applications of the method of heteropolyacid were defined. It has the most promising application for the synthesis of phosphorus-molybdenum-vanadium and phosphorus-molybdenum heteropolyacids

  7. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  8. Differential diagnosis in patients with suspected bile acid synthesis defects

    Dorothea Haas; Hongying Gan-Schreier; Claus-Dieter Langhans; Tilman Rohrer; Guido Engelmann; Maura Heverin; David W Russell

    2012-01-01

    AIM:To investigate the clinical presentations associated with bile acid synthesis defects and to describe identification of individual disorders and diagnostic pitfalls.METHODS:Authors describe semiquantitative determination of 16 urinary bile acid metabolites by electrospray ionization-tandem mass spectrometry.Sample preparation was performed by solid-phase extraction.The total analysis time was 2 min per sample.Authors determined bile acid metabolites in 363 patients with suspected defects in bile acid metabolism.RESULTS:Abnormal bile acid metabolites were found in 36 patients.Two patients had bile acid synthesis defects but presented with atypical presentations.In 2 other patients who were later shown to be affected by biliary atresia and cystic fibrosis the profile of bile acid metabolites was initially suggestive of a bile acid synthesis defect.Three adult patients suffered from cerebrotendinous xanthomatosis.Nineteen patients had peroxisomal disorders,and 10 patients had cholestatic hepatopathy of other cause.CONCLUSION:Screening for urinary cholanoids should be done in every infant with cholestatic hepatopathy as well as in children with progressive neurological disease to provide specific therapy.

  9. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %. PMID:17898456

  10. Effect of Hydroxyapatite Nanoparticles on the Degradability of Random Poly(butylene terephthalate-co-aliphatic dicarboxylates Having a High Content of Terephthalic Units

    Nina Heidarzadeh

    2016-07-01

    Full Text Available Copolyesters derived from 1,4-butanediol and constituted also of aliphatic and aromatic dicarboxylate units in a molar ratio of 3:7 were synthesized by a two-step polycondensation procedure. Succinic, adipic, and sebacic acids were specifically selected as the aliphatic component whereas terephthalic acid was chosen as the aromatic moiety. The second synthesis step was a thermal transesterification between the corresponding homopolymers, always attaining a random distribution as verified by NMR spectroscopy. Hybrid polymer composites containing 2.5 wt % of hydroxyapatite (HAp were also prepared by in situ polymerization. Hydroxyl groups on the nanoparticle surface allowed the grafting of polymer chains in such a way that composites were mostly insoluble in the typical solvents of the parent copolyesters. HAp had some influence on crystallization from the melt, thermal stability, and mechanical properties. HAp also improved the biocompatibility of samples due to the presence of Ca2+ cations and the damping effect of phosphate groups. Interestingly, HAp resulted in a significant increase in the hydrophilicity of samples, which considerably affected both enzymatic and hydrolytic degradability. Slight differences were also found in the function of the dicarboxylic component, as the lowest degradation rates was found for the sample constituted of the most hydrophobic sebacic acid units.

  11. Acetylsalicylic acid: Incoming 150 years of the first synthesis

    Mijin Dušan Ž.

    2002-01-01

    Full Text Available Acetylsalicylic acid is one of the most fascinating and versatile drugs known to medicine, as well as one of the oldest. Acetylsalicylic acid is a drug which is safe, with analgetic, antirheumatic, anti-inflammatory antiplatelet and antithrombotic action. It may be applied not only in clinical practice, but also as prevention. The first known use of an acetylsalicylic acid-like preparation can be traced to ancient Greece. In 1853 Charles Gerhardt published the first synthesis of acetylsalicylic acid. Felix Hoffmann, a chemist for Friedrich Bayer, a German dye company obtained a patent on acetylsalicylic acid some 40 years later. Bayer coined the name Aspirin for the new product. The 20 in century was the century in which many researchers in many companies tried to improve the synthesis of acetylsalicylic acid not only in terms of yield but also purity. This paper describes the history, use, mechanism of action, synthesis and production as well as the purification and stability of acetylsalicylic acid.

  12. Synthesis of enantiostructured triacylglycerol possessing caprylic acid, DHA and naproxen

    Lena Rós Jónsdóttir 1993

    2016-01-01

    The project was composed of a six step synthesis of enantiostructured triacylglycerols possessing a medium chain saturated fatty acid (8 carbon caprylic acid), an n-3 polyunsaturated fatty acid (docosahexaenoic acid, DHA) and an active drug. The main original part of the project was the coupling of an active drug on triglyceride and three drugs tested were: Aspirin, (±)-Ibuprofen and (S)-Naproxen. The coupling with Aspirin didn't work because there were two active sites on the compound that t...

  13. Synthesis of [14CO]ellagic acid

    [14CO]Ellagic acid with a chemical purity of 98.9% and radiochemical purity of 99.9% was synthesized with an overall yield of 16% (both chemically and radiochemically). Reaction of 14CO2 with lithiated 3,4,5-trimethoxybenzene and demethylation of the resulting 3,4,5-trimethoxybenzoic acid was followed by esterification and coupling of methyl gallate into ellagic acid. Two efficient coupling methods were employed: direct aeration and aeration of methyl gallate in the presence of the phenolic oxidase, tyrosinase. The latter method produced the highest yield and purity. This preparation produced [14CO]ellagic acid with a specific activity of 20 mCi/mmol. The yields of labeled 3,4,5-trimethoxybenzoic acid and ellagic acid based on Ba14CO3 were 65% and 16%, respectively. (author)

  14. Synthesis of itaconic acid from the irradiation of aconitic acid-clay suspensions

    The radiolysis of aconitic acid in aqueous solution and in water-clay suspensions was studied. Among the radiolytic products, itaconic acid (HO2C-C(=CH2)-CH2CO2H) was formed. Itaconic acid is a valuable monomer in the formulation of polymers. The synthesis of itaconic acid can be achieved in one step using aqueous solutions of aconitic acid and in water-clay suspensions exposed to ionizing radiation. The yield of formation does not compete with fermentation procedures for the synthesis of itaconic acid, but for laboratory purposes is a very simple method to prepare it. Other products of the radiolysis were carbon dioxide, tricarballylic and citric/isocitric acids. (Author)

  15. Synthesis and characterization of polyamide and polyester, from glycerol and dicarboxylic acids, polymeric blends

    In this work were prepared and characterized polyamide and polyester blends. The polyester, called PAT, was produced in a becker equipped with high-torque mechanical stirrer, thermometer and condenser Claisen, by adding of glycerol, adipic acid, terephthalic acid and catalyst. The blends films were prepared by physical mixture followed by thermal compression. The polymeric blends and the pure materials were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the blends are semi-crystalline and have good thermal behavior, besides, it evidences that the PAT and polyamide phases are immiscible. (author)

  16. Study on Cell Cycle Regulatory Mechanism in Rat Bladder Carcinogenesis Promoted by Terephthalic Acid%对苯二甲酸促进大鼠膀胱癌发生的细胞周期调节机制研究

    石远; 唐建梅

    2011-01-01

    [ Objective ] To study the cell cycle regulatory mechanism in rat bladder carcinogenesis promoted by terephthalic acid (TPA). [ Methods ] A total of 50 male Wister rats were divided into test group (30 rats) and control group (20 rats), respectively intraperitoneally injected with N-methyl-N-nitrosourea (MNU) and citrate buffer twice a week for 4 weeks, and then basal diet containing 5%TPA were given to the test group and basal diet to the control group separately for the next 22 weeks. Major regulatory proteins in Gl cell cycle checkpoint including pl6INK4a, cyclin-dependent kinase 4 (Cdk4), cyclin Dl, and retinoblastoma protein (pRb) were determined during various stages of urinary bladder carcinogenesis by immunohistochemistry. [ Results ] In MNU-5% TPA treated group, the incidences of overexpression of Cdk4, cyclin Dl and pRb in papilloma were significantly higher than those in epithelial simple hyperplasia (P=0.023, .P<0.001 and P< 0.001, respectively) and in papillary or nodular (PN) hyperplasia (P=0.042, ^=0.012 and P=0.002, respectively). The incidence of absent expression of pl61NK4 in papilloma was much higher than that in epithelial simple hyperplasia {P=0.004) and in PN hyperplasia (P=0.02). [ Conclusion ] Our results clearly reveal that the disorder of pl6INK4-cyclin Dl/Cdk4-pRb pathway is associated with bladder carcinogenesis promoted by TPA-stone.%[目的]研究对苯二甲酸(terephthalic acid,TPA)促进膀胱癌发生的细胞周期调节机制.[方法]50只blister大鼠分为实验组(30只)及对照组(20只),每周两次分别腹腔注射甲基亚硝墓脲(MNU)和冰柠檬酸盐缓冲液,持续4周.在随后的22周,分别给大鼠饲以含5%TPA和0%TPA的饲料.利用免疫组织化学方法检查G1细胞周期关卡的主要调节蛋白包括抑癌基因p16(INK4a)蛋白(pl6(INK4a))、周期素依赖性蛋白激酶4(Cdk4)、细胞周期蛋白D1(cyclin Dl)和成视网膜细胞瘤蛋白(pRb)在大鼠膀胱癌发生各

  17. Design and Synthesis of Novel Peptide Nucleic Acid Monomers

    白金泉; 李英; 刘克良

    2001-01-01

    All of the four nucleobases in DNA have replaced the 4-hydroxy group of N-[2-(tert-butoxycarbonylaminomethyl)-trams-4-hydroxy]tetrahydropyrrole acetic acid methyl ester with cis-stereochemistry. An efficient route for the synthesis of N-[2-(tert-butoxycarbonylaminomethyl)-trans-4-hydroxy]-tetrahydropyrrole acetic acid methyl ester has been developed.Starting with this intermediate, the protected monmers were synthesized by the Mitsunobu reaction or via its tosylate.

  18. Biotin Synthesis Begins by Hijacking the Fatty Acid Synthetic Pathway

    Lin, Steven; Hanson, Ryan E.; Cronan, John E.

    2010-01-01

    Although biotin is an essential enzyme cofactor found in all three domains of life, our knowledge of its biosynthesis remains fragmentary. Most of the carbon atoms of biotin are derived from pimelic acid, a seven carbon dicarboxylic acid, but the mechanism whereby Escherichia coli assembles this intermediate remains unknown. Genetic analysis identified only two genes of unknown function required for pimelate synthesis, bioC and bioH. We report in vivo and in vitro evidence that the pimeloyl m...

  19. Inhibitory effect of novobiocin on ribonucleic acid synthesis during germination of Bacillus subtilis spores.

    Matsuda, M; Kameyama, T

    1980-01-01

    Novobiocin inhibited ribonculeic acid synthesis during germination of Bacillus subtilis spores. Transcription of certain kinds of genes probably required a preceding conformational change in deoxyribonucleic acid.

  20. One-Pot Synthesis of N-Phosphoryl Amino Acids

    GUO Xin; FU Hua; LIN Chang-Xue; ZHAO Yu-Fen

    2003-01-01

    @@ Phosphoramidates have been considered as an important class of rationally designed therapeutics especially asoligonucleotide analogs employed as antisene and antigene agents. [1] N-Phosphoryl amino acids are of biological andpharmaceutical interest, [2] and can be used as the building blocks in synthesis of polypeptides. [3

  1. Genetics Home Reference: congenital bile acid synthesis defect type 1

    ... 88(4):1833-41. Citation on PubMed Clayton PT. Disorders of bile acid synthesis. J Inherit Metab ... 13. Review. Citation on PubMed Subramaniam P, Clayton PT, Portmann BC, Mieli-Vergani G, Hadzić N. Variable ...

  2. Stereoselective synthesis of stable-isotope-labeled amino acids

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  3. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    Akiyoshi Hoshino

    2009-06-01

    Full Text Available Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1 system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source and keto acids (oxylic acid sources. In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin.

  4. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues. PMID:26572799

  5. Lactide Synthesis and Chirality Control for Polylactic acid Production.

    Van Wouwe, Pieter; Dusselier, Michiel; Vanleeuw, Evelien; Sels, Bert

    2016-05-10

    Polylactic acid (PLA) is a very promising biodegradable, renewable, and biocompatible polymer. Aside from its production, its application field is also increasing, with use not only in commodity applications but also as durables and in biomedicine. In the current PLA production scheme, the most expensive part is not the polymerization itself but obtaining the building blocks lactic acid (LA) and lactide, the actual cyclic monomer for polymerization. Although the synthesis of LA and the polymerization have been studied systematically, reports of lactide synthesis are scarce. Most lactide synthesis methods are described in patent literature, and current energy-intensive, aselective industrial processes are based on archaic scientific literature. This Review, therefore, highlights new methods with a technical comparison and description of the different approaches. Water-removal methodologies are compared, as this is a crucial factor in PLA production. Apart from the synthesis of lactide, this Review also emphasizes the use of chemically produced racemic lactic acid (esters) as a starting point in the PLA production scheme. Stereochemically tailored PLA can be produced according to such a strategy, giving access to various polymer properties. PMID:27071863

  6. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass.

    Zhang, Junhua; Li, Junke; Tang, Yanjun; Lin, Lu; Long, Minnan

    2015-10-01

    Recently, the production and utilization of 2,5-furandicarboxylic acid (FDCA) have become a hot research topic in catalyst field and polyester industry for its special chemical structure and a wide range of raw material source. FDCA is a potential replacement for the terephthalic acid monomer used in the production of poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), which opens up a new pathway for obtaining biomass-based polyester to replace or partially replace petroleum based polyester. Here, we mainly reviewed the catalytic pathway for the synthesis of FDCA derived from lignocellulosic biomass or from the related downstream products, such as glucose, 5-hydroxymethylfurfural (HMF). Moreover, the utilization of oxidation catalysts, the reaction mechanism, the existing limitations and unsolved challenges were also elaborated in detail. Therefore, we hope this mini review provides a helpful overview and insight to readers in this exciting research area. PMID:26076643

  7. The optimisation study of tbp synthesis process by phosphoric acid

    The present work deals with the optimisation study of TBP synthesis process by phosphoric acid. This way of synthesis is more advantageous than POCL3 or P2O5 as phosphatant agents. these latters are toxic and dangerous for the environnement. The optimisation study is based on a series of 16 experiences taking into account the range of variation of the following parameters : temperature, pressure, reagents mole ratio, promoter content. the yield calculation is based on the randomisation of an equation including all parameters. the resolution of this equation gave a 30% TBP molar ratio. this value is in agreement with that of experimental data

  8. Synthesis of isothiocyanate-derived mercapturic acids

    Vermeulen, M.; Zwanenburg, B.; Chittenden, G.J.F.; Verhagen, H.

    2003-01-01

    Twelve mercapturic acids derived from saturated and unsaturated aliphatic and aromatic isothiocyanates were synthesised, by adding isothiocyanate to a solution of N-acetyl-L-cysteine and sodium bicarbonate, in a typical yield of 77%. Isothiocyanates were synthesised first by adding the corresponding

  9. Transesterification of Ethylene Carbonate with Dimethyl Terephthalate over Various Metal Acetate Catalysts

    2007-01-01

    The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly( ethylene terephthalate). This reaction is an excellent chemical process that is environmentally friendly and produces no poisonous substance. The metal acetate catalysts used for this reaction are discussed in detail. Lithium acetate dihydrate was found to be a novel and efficient catalyst for this reaction. Compared with other metal acetates, lithium acetate dihydrate can attain a maximum catalytic activity at a lower concentration.When the reaction was carried out under the following conditions: the reaction temperature from 230 to 250 ℃, molar ratio of ethylene carbonate(EC) to dimethyl terephthalate(DMT) 3: 1, reaction time 3 h, and a catalyst amount of 0. 4% (molar fraction to DMT), the yield of dimethyl carbonate(DMC) was 79. 1%.

  10. Biotin synthesis begins by hijacking the fatty acid synthetic pathway.

    Lin, Steven; Hanson, Ryan E; Cronan, John E

    2010-09-01

    Although biotin is an essential enzyme cofactor found in all three domains of life, our knowledge of its biosynthesis remains fragmentary. Most of the carbon atoms of biotin are derived from pimelic acid, a seven-carbon dicarboxylic acid, but the mechanism whereby this intermediate is assembled remains unknown. Genetic analysis in Escherichia coli identified only two genes of unknown function required for pimelate synthesis, bioC and bioH. We report in vivo and in vitro evidence that the pimeloyl moiety is synthesized by a modified fatty acid synthetic pathway in which the omega-carboxyl group of a malonyl-thioester is methylated by BioC, which allows recognition of this atypical substrate by the fatty acid synthetic enzymes. The malonyl-thioester methyl ester enters fatty acid synthesis as the primer and undergoes two reiterations of the fatty acid elongation cycle to give pimeloyl-acyl carrier protein (ACP) methyl ester, which is hydrolyzed to pimeloyl-ACP and methanol by BioH. PMID:20693992

  11. Synthesis of Chiral Amino Cyclic Phosphoric Acids

    2000-01-01

    Chirai amino cyclic phosphoric acids, 5-amino-2-hydroxy-4- (4-nitrophenyl)-l, 3,2-dioxaphospho- rinane 2-oxide and 2-hydroxy-4- (4-methylsulfonylphenyl)-5-phthalimido-1,3,2-dioxaphos phorinane 2-oxide are synthesized in good over yields (64. 2% and 72. 8% respectively) from 2-amino-l-aryl-l,3-propanediols. The different reaction conditions are necessary in hydrolysis reactions of amino cyclic phosphonyl chlorides.

  12. Fatty acid effects on fibroblast cholesterol synthesis

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 μmol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 μCi [14C]acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest [14C]acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total 14C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1

  13. Fatty acid effects on fibroblast cholesterol synthesis

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-05-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 ..mu..mol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 ..mu..Ci (/sup 14/C)acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest (/sup 14/C)acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total /sup 14/C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1(BSA).

  14. Gluconic Acid Synthesis in an Electroenzymatic Reactor

    Highlights: • Novel membrane-less electroenzymatic reactor for gluconic acid production was developed. • Co-generation mode of operation, energy + material production. • The space time yield of reactor at glucose conversion of 47 % was 18.2 g h−1 cm−2. - Abstract: Glucose was selectively oxidized to gluconic acid in a membraneless, flow-through electroenzymatic reactor operated in the mode of co-generating chemicals and electrical energy. At the anode the enzyme glucose oxidase (GOx) in combination with the redox mediator tetrathiafulvalene (TTF) was used as catalyst, while the cathode was equipped with an enzyme cascade consisting of GOx and horseradish peroxidase (HRP). The influence of the electrode preparation procedure, the structural and the operating parameters on the reactor performance was investigated in detail. Under optimized conditions, an open circuit potential of 0.75 V, a current density of 0.6 mA cm−2 and a power density of 100 μA cm−2 were measured. The space time yield of gluconic acid achieved at a glucose conversion of 47% was 18.2 g h−1 cm−2

  15. Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites

    G S Deshmukh; S U Pathak; D R Peshwe; J D Ekhe

    2010-06-01

    PBT/CaCO3 composites were prepared in a single screw extruder with particle content varying from 0–30% by weight. The influence of surface treatment of the particles, with and without stearic acid (SA), on the mechanical, thermal and structural properties was studied. The experiments included tensile tests, impact tests, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy. The composite systems containing SA coated CaCO3 were found to exhibit better mechanical properties as compared to composite systems containing uncoated CaCO3, with the S3 system (20% of SA coated CaCO3) exhibiting best combination of mechanical properties. Thermal study revealed that particle type and content had no influence on the melting temperature but the crystallization temperature, % crystallinity and thermal stability increased on increasing the CaCO3 content in PBT matrix. Morphological observation indicated that in PBT composites containing SA coated CaCO3, the coupling agent favours a better polymer filler interaction rendering inorganic polymer interface compatible, which is also evident from better mechanical and thermal properties.

  16. A New Process for Acrylic Acid Synthesis by Fermentative Process

    Lunelli, B. H.; Duarte, E. R.; de Toledo, E. C. Vasco; Wolf Maciel, M. R.; Maciel Filho, R.

    With the synthesis of chemical products through biotechnological processes, it is possible to discover and to explore innumerable routes that can be used to obtain products of high addes value. Each route may have particular advantages in obtaining a desired product, compared with others, especially in terms of yield, productivity, easiness to separate the product, economy, and environmental impact. The purpose of this work is the development of a deterministic model for the biochemical synthesis of acrylic acid in order to explore an alternative process. The model is built-up with the tubular reactor equations together with the kinetic representation based on the structured model. The proposed process makes possible to obtain acrylic acid continuously from the sugar cane fermentation.

  17. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.

    Kim, Tae Yoon; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-04-01

    The search for novel antibacterial agents is necessary to combat microbial resistance to current antibiotics. Silver nanoparticles (AgNPs) have been reported to be effective antibacterial agents. Tannic acid is a polyphenol compound from plants with antioxidant and antibacterial activities. In this report, AgNPs were prepared from silver ions by tannic acid-mediated green synthesis (TA-AgNPs). The reaction process was facile and involved mixing both silver ions and tannic acid. The absorbance at 423 nm in the UV-Visible spectra demonstrated that tannic acid underwent a reduction reaction to produce TA-AgNPs from silver ions. The synthetic yield of TA-AgNPs was 90.5 % based on inductively coupled plasma mass spectrometry analysis. High-resolution transmission electron microscopy and atomic force microscopy images indicated that spherical-shaped TA-AgNPs with a mean particle size of 27.7-46.7 nm were obtained. Powder high-resolution X-ray diffraction analysis indicated that the TA-AgNP structure was face-centered cubic with a zeta potential of -27.56 mV. The hydroxyl functional groups of tannic acid contributed to the synthesis of TA-AgNPs, which was confirmed by Fourier transform infrared spectroscopy. The in vitro antibacterial activity was measured using the minimum inhibitory concentration (MIC) method. The TA-AgNPs were more effective against Gram-negative bacteria than Gram-positive bacteria. The MIC for the TA-AgNPs in all of the tested strains was in a silver concentration range of 6.74-13.48 μg/mL. The tannic acid-mediated synthesis of AgNPs afforded biocompatible nanocomposites for antibacterial applications. PMID:26895244

  18. Is acetylcarnitine a substrate for fatty acid synthesis in plants

    Roughan, G. (Horticulture Research Inst., Auckland (New Zealand)); Post-Beittenmiller, D.; Ohlrogge, J. (Michigan State Univ., East Lansing (United States)); Browse, J. (Washington State Univ., Pullman (United States))

    1993-04-01

    Long-chain fatty acid synthesis from [1-[sup 14]C]acetylcarnitine by chloroplasts isolated from spinach (Spinacia oleracea), pea (Pisum sativum), amaranthus (Amaranthus lividus), or maize (Zea mays) occurred at less than 2% of the rate of fatty acid synthesis from [1-[sup 14]C]acetate irrespective of the maturity of the leaves or whether the plastids were purified using sucrose or Percoll medium. [1-[sup 14]C]Acetylcarnitine was not significantly utilized by highly active chloroplasts rapidly prepared from pea and spinach using methods not involving density gradient centrifugation. [1-[sup 14]C]Acetylcarnitine was recovered quantitatively from chloroplast incubations following 10 min in the light. Unlabeled acetyl-L-carnitine (0.4 mM) did not compete with [1-[sup 14]C]acetate (0.2 mM) as a substrate for fatty acid synthesis by any of the more than 70 chloroplast preparations tested in this study. Carnitine acetyltransferase activity was not detected in any chloroplast preparation and was present in whole leaf homogenates at about 0.1% of the level of acetyl-coenzyme A synthetase activity. When supplied to detached pea shoots and detached spinach, amaranthus, and maize leaves via the transpiration stream, 1 to 4% of the [1-[sup 14]C]acetylcarnitine and 47 to 57% of the [1-[sup 14]C]acetate taken up was incorporated into lipids. Most (78--82%) of the [1-[sup 14]C]acetylcarnitine taken up was recovered intact. It is concluded that acetylcarnitine is not a major precursor for fatty acid synthesis in plants. 29 refs., 5 tabs.

  19. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    Rihui Lin; He Li; Han Long; Jiating Su; Wenqin Huang

    2014-01-01

    Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from e...

  20. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    Rihui Lin

    2014-01-01

    Full Text Available Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435 under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch.

  1. In Vitro Fatty Acid Synthesis and Complex Lipid Metabolism in the Cyanobacterium Anabaena variabilis: I. Some Characteristics of Fatty Acid Synthesis.

    Lem, N W; Stumpf, P K

    1984-01-01

    In vitro fatty acid synthesis was examined in crude cell extracts, soluble fractions, and 80% (NH(4))(2)SO(4) fractions from Anabaena variabilis M3. Fatty acid synthesis was absolutely dependent upon acyl carrier protein and required NADPH and NADH. Moreover, fatty acid synthesis and elongation occurred in the cytoplasm of the cell. The major fatty acid products were palmitic acid (16:0) and stearic acid (18:0). Of considerable interest, both stearoyl-acyl carrier protein and stearoyl-coenzyme A desaturases were not detected in any of the fractions from A. variabilis. The similarities and differences in fatty acid synthesis between A. variabilis and higher plant tissues are discussed with respect to the endosymbiotic theory of chloroplast evolution. PMID:16663367

  2. Synthesis of a tetrasaccharide fragment of hyaluronic acid having a glucuronic acid at the reducing end

    Vliegenthart, J.F.G.; Slaghek, T.M.; Hyppönen, T.K.; Ogawa, T.; Kamerling, J.P.

    1993-01-01

    A stereocontrolled synthesis of a tetrasaccharide fragment of hyaluronic acid, beta-p-methoxyphenyl glycoside of beta-D-GlcNAc-(1¨4)-beta-D-GlcNAc-(1¨3)-beta-D-GlcNAc-(1¨4)-D-GlcA, is presented.

  3. Catalytic asymmetric synthesis of phthioceranic acid, a heptamethyl-branched acid from Mycobacterium tuberculosis

    ter Horst, B.; Feringa, B.L.; J. Minnaard, A.

    2007-01-01

    The first total synthesis of phthioceranic acid (1) has been achieved by an iterative catalytic asymmetric 1,4-addition protocol. This method provides a robust and high-yielding route for the preparation of 1,3-oligomethyl (deoxypropionate) arrays. After the desired number of methyl groups has been

  4. Potency of Individual Bile Acids to Regulate Bile Acid Synthesis and Transport Genes in Primary Human Hepatocyte Cultures

    Liu, Jie; LU, Hong; Lu, Yuan-Fu; Lei, Xiaohong; Cui, Julia Yue; Ellis, Ewa; Strom, Stephen C.; Klaassen, Curtis D.

    2014-01-01

    Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100μM for 48 h, and RNA was extracted for real-time PCR analysis. ...

  5. Design and Synthesis of a Dual Linker for Solid Phase Synthesis of Oleanolic Acid Derivatives

    Shaorong Wang

    2011-06-01

    Full Text Available A hydrophilic amino-terminated poly(ethylene glycol-type dual linker for solid phase synthesis of oleanolic acid derivatives using trityl chloride resin was designed and synthesized for the first time. Model reactions in both liquid and solid phase were performed to show the feasibility of its selective cleavage at two different sites. The biological assay results indicated that the long and flexible alkyl ether functionality in the linker is less likely to be critical for the binding event. Following the successful solid-phase synthesis of model compounds, the potential of this dual linker in reaction monitoring and target identification is deemed worthy of further study.

  6. Synthesis of derivatives of tetronic acid and pulvinic acid. Total synthesis of norbadione A; Synthese de derives de l'acide tetronique et de l'acide pulvinique. Synthese totale de la norbadione A

    Mallinger, A

    2008-11-15

    When vegetables like mushrooms are contaminated by radioactive caesium 137, this radioactive caesium is associated to norbadione A, a natural pigment present in two mushroom species and which can be used as a caesium decorporation agent or maybe as protection agent against ionizing radiations. Within this perspective, this research report describes the biosynthesis and the structure and properties of the norbadione A and of pulvinic acids (physicochemical properties, anti-oxidizing properties). Then, it presents the various tetronic acids (3-acyl-, 3-alkyl-, 3-alkoxy-, 3-aryl-tetronic acids and non 3-substituted tetronic acids), their synthesis path as they are described in the literature, and presents a new synthesis approach using a tandem reaction (with different esters or hydroxy esters) and the synthesis of tetronic acids. The author also proposes a new synthesis way for methyl pulvinates, and finally reports the work on the development of a total synthesis of the norbadione A.

  7. Crystallization of poly(ethylene terephthalate) and poly (butylene terephthalate) modified by diamides

    Bouma, Krista; Gaymans, Reinoud J.

    2001-01-01

    Poly(ethylene terephthalate) (PET) and poly (butylene terephthalate) have been modified by diamide units (0.1-1 mol%) in an extrusion process and the crystallization behavior studied. The diamides used were: for PET, T2T-dimethyl (N, N-bis(p-carbomethoxybenzoyl)ethanediamine) and for PBT, T4T-dimeth

  8. Cyclic Comonomers for the Synthesis of Carboxylic Acid and Amine Functionalized Poly(l-Lactic Acid

    Markus Heiny

    2015-03-01

    Full Text Available Degradable aliphatic polyesters such as poly(lactic acid are widely used in biomedical applications, however, they lack functional moieties along the polymer backbone that are amenable for functionalization reactions or could be the basis for interactions with biological systems. Here we present a straightforward route for the synthesis of functional α-ω epoxyesters as comonomers for lactide polymerization. Salient features of these highly functionalized epoxides are versatility in functionality and a short synthetic route of less than four steps. The α-ω epoxyesters presented serve as a means to introduce carboxylic acid and amine functional groups into poly(lactic acid polymers via ring-opening copolymerization.

  9. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe3O4). The relaxivities r2 and r2* values were determined from the transverse relaxation times T2 and T2* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization

  10. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    Mamani, J.B., E-mail: javierbm@einstein.br [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil); Costa-Filho, A.J. [Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (Brazil); Cornejo, D.R. [Instituto de Física Universidade de São Paulo, USP, São Paulo (Brazil); Vieira, E.D. [Instituto de Física, Universidade Federal de Goiás, Goiânia (Brazil); Gamarra, L.F. [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil)

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  11. A Novel Approach in Cinnamic Acid Synthesis: Direct Synthesis of Cinnamic Acids from Aromatic Aldehydes and Aliphatic Carboxylic Acids in the Presence of Boron Tribromide

    M. Onciu

    2005-02-01

    Full Text Available Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP and pyridine (Py as bases and N-methyl-2-pyrolidinone (NMP as solvent, at reflux (180-190°C for 8-12 hours.

  12. [Polyethylene terephthalate (PET)--health aspects and food packaging application].

    Cwiek-Ludwicka, Kazimiera

    2003-01-01

    Polyethylene terephthalate (PET) due to its physicochemical properties, especially regidity and glass-like transparency is widely used as food packaging material. The relevant legislation states that substances may not migrate from food contacting materials in quantities that may cause undesirable changes in organoleptic properties of food coming into contact with such material. The lists of substances authorized for food contact plastic materials and requirements for the final product were established. The requirements concern global migration limits (60 mg/kg or 10 mg/dm2) and specific migration limits (SML) set for substances which, when migrate into food in grater quantities may cause risk for human health. For the products manufactured from PET the specific migration limits were set for terephthalic acid (7.5 mg/kg), for isophthalic acid (5 mg/kg), for isophthalic acid dimethyl ester (0.05 mg/kg) and for ethylene and diethylene glycol (30 mg/kg). PET may undergo thermal degradation resulting in formation of acetaldehyde, which may influence organoleptic characteristics of packaged foods changing taste and smell. PMID:14531083

  13. Stereoselective synthesis of uridine-derived nucleosyl amino acids.

    Spork, Anatol P; Wiegmann, Daniel; Granitzka, Markus; Stalke, Dietmar; Ducho, Christian

    2011-12-16

    Novel hybrid structures of 5'-deoxyuridine and glycine were conceived and synthesized. Such nucleosyl amino acids (NAAs) represent simplified analogues of the core structure of muraymycin nucleoside antibiotics, making them useful synthetic building blocks for structure-activity relationship (SAR) studies. The key step of the developed synthetic route was the efficient and highly diastereoselective asymmetric hydrogenation of didehydro amino acid precursors toward protected NAAs. It was anticipated that the synthesis of unprotected muraymycin derivatives via this route would require a suitable intermediate protecting group at the N-3 of the uracil base. After initial attempts using PMB- and BOM-N-3 protection, both of which resulted in problematic deprotection steps, an N-3 protecting group-free route was envisaged. In spite of the pronounced acidity of the uracil-3-NH, this route worked equally efficient and with identical stereoselectivities as the initial strategies involving N-3 protection. The obtained NAA building blocks were employed for the synthesis of truncated 5'-deoxymuraymycin analogues. PMID:22059552

  14. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  15. Synthesis of a C-linked hyaluronic acid disaccharide mimetic

    Ren, Zhong-Xu; Yang, Qiang; Price, Kenneth N.; Chen, Tianniu; Nygren, Cara; Turner, John. F. C.; Baker, David C.

    2007-01-01

    The synthesis of a C-disaccharide that is designed as a mimetic for the repeating unit disaccharide of hyaluronic acid is described. The target compound was obtained via the SmI2-promoted coupling reaction of the sulfone, 2-acetamido-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-1,2-dideoxy-1-pyridinylsulfonyl-β-D-glucopyranose (6), and the aldehyde, p-methoxyphenyl 2,3-di-O-benzyl-4-deoxy-4-C-formyl-6-O-p-methoxybenzyl-β-D-glucopyranoside (14).

  16. Optimization of Butylphosphate synthesis from O-Phosphoric Acid

    This work was carried out in order to confirm results of previous work and to enhance the yield of TBP synthesis. This, many reactions have been realised under differents experimental condition (temperature, acid/ alcool molar ratio, pressure and the quantity of promoter agent 'POCL3'). the TBP yield variations as function the experimental parameters, has been expressed, using the 2n factorial plan mathematical model. The experimental results were compared to those given by the theoritical model, and the optimal conditions were then drawn out

  17. Synthesis of a Nitro Analogue of Plakoric Acid

    ZHANG,Qi; JIN,Hong-Xia; LIU,He-Hua; WU,Yi-Kang

    2006-01-01

    Synthesis of a nitro analogue of plakoric acid is presented. The peroxy bond was incorporated into the substrate structure through a boron trifluoride etherate catalyzed methoxy-hydroperoxy group partial exchange reaction in djethyl ether with urea-hydrogen peroxide complex (UHP, a commercially available solid reagent) as the source of the hydrogen peroxide. Under the given conditions, only one of the two methoxyl groups underwent the MeO-OOH exchange and the resulting hydroperoxy hemiketal proceeded directly to the end product through an intramolecular Michael addition of the hydroperoxyl group to the nitro group activated carbon-carbon double bond.

  18. Effect of mitochondrial ascorbic acid synthesis on photosynthesis.

    Senn, M E; Gergoff Grozeff, G E; Alegre, M L; Barrile, F; De Tullio, M C; Bartoli, C G

    2016-07-01

    Ascorbic acid (AA) is synthesized in plant mitochondria through the oxidation of l-galactono-1,4-lactone (l-GalL) and then distributed to different cell compartments. AA-deficient Arabidopsis thaliana mutants (vtc2) and exogenous applications of l-GalL were used to generate plants with different AA content in their leaves. This experimental approach allows determining specific AA-dependent effects on carbon metabolism. No differences in O2 uptake, malic and citric acid and NADH content suggest that AA synthesis or accumulation did not affect mitochondrial activity; however, l-GalL treatment increased CO2 assimilation and photosynthetic electron transport rate in vtc2 (but not wt) leaves demonstrating a stimulation of photosynthesis after l-GalL treatment. Increased CO2 assimilation correlated with increased leaf stomatal conductance observed in l-GalL-treated vtc2 plants. PMID:27010742

  19. Synthesis and characterization of acidic mesoporous borosilicate thin films.

    Xiu, Tongping; Liu, Qian; Wang, Jiacheng

    2009-02-01

    Work on the synthesis and characterization of acidic wormhole-like ordered mesoporous borosilicate thin films (MBSTFs) on silicon wafers is described in this paper. The MBSTFs coated by the dip-coating method were prepared through an evaporation-induced self-assembly (EISA) process using nonionic block copolymers as structure-directing agents. Fourier transform infrared (FT-IR) spectroscopy confirmed the formation of borosiloxane bonds (Si-O-B). High-resolution transmission electron microscopy (HRTEM) and N2 sorption evidenced a wormhole-like mesoporous structure in the MBSTFs obtained. Scanning electron microscopy (SEM) images of the cross sections and surfaces of the samples showed that MBSTFs on silicon wafers were continuous, homogeneous and did not crack. The acidic properties of the MBSTFs were characterized by FT-IR spectra of chemisorbed pyridine. The MBSTFs thus prepared may find their future applications in many fields including chemical sensors, catalysis, optical coating, molecule separation, etc. PMID:19441565

  20. Lewis Acidic Ionic Liquids As New Addition Catalyst For Oleic Acid To Monoestolide Synthesis

    Nadia Farhana Adnan

    2011-09-01

    Full Text Available Estolide compound has a large potential in many industrial applications such as biodegradable lubricants and in cosmetic formulation. In this study, monoestolide can be prepared by addition reaction of oleic acid under vacuum-reflux and solvent free condition for 10 hours at 85 °C in the presence of solid zinc chloride anhydrous (ZnCl2, choline chloride (ChCl and ionic liquids (IL ChCl-ZnCl2, ChCl-FeCl3, ChCl-SnCl2, ChCl-CuCl2 as homogenous acid catalysts. These reactions were compared with common homogenous catalyst namely sulfuric acid (H2SO4. The FTIR analysis show that addition reaction using the above catalysts showed the presence of three new peaks at 1732 cm-1 for C=O ester, 967.0 cm-1 for trans-CH=CH and 1176 cm-1 for C-O-C which confirmed the existence of monoestolide. The LC-MS results showed peak for the present of new monoestolides at retention time (tR 12.3 min corresponding to m/z 563.48. Among the IL, ChCl-ZnCl2 surprisingly exhibited higher activity which is 98 % acid oleic conversion and 80 % selective for the synthesis of monoestolides. As a result, this IL gave two potential functions as a solvent as well as a green catalyst for monoestolide synthesis from oleic acid.

  1. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens

    The occurrence of the novel regulatory nucleotide bis(3',5')-cyclic diguanylic acid (c-di-GMP) and its relation to cellulose biogenesis in the plant pathogen Agrobacterium tumefaciens was studied. c-di-GMP was detected in acid extracts of 32P-labeled cells grown in various media, and an enzyme responsible for its formation from GTP was found to be present in cell-free preparations. Cellulose synthesis in vivo was quantitatively assessed with [14C]glucose as a tracer. The organism produced cellulose during growth in the absence of plant cells, and this capacity was retained in resting cells. Synthesis of a cellulosic product from UDP-glucose in vitro with membrane preparations was markedly stimulated by c-di-GMP and its precursor GTP and was further enhanced by Ca2+. The calcium effect was attributed to inhibition of a c-di-GMP-degrading enzyme shown to be present in the cellulose synthase-containing membranes

  2. AMINO ACIDS AUGMENT MUSCLE PROTEIN SYNTHESIS IN NEONATAL PIGS DURING ENDOTOXEMIA BY MODULATING TRANSLATION INITIATION

    In adults, sepsis reduces protein synthesis in skeletal muscle by restraining translation. The effect of sepsis on amino acid-stimulated muscle protein synthesis has not been determined in neonates, a population who is highly anabolic and whose muscle protein synthesis rates are uniquely sensitive ...

  3. Regulation of bile acid synthesis in rat hepatocyte monolayer cultures

    Primary hepatocyte monolayer cultures (PHC) were prepared and incubated in serum free media. Cells from a cholestyramine fed rat converted exogenous [14C]-cholesterol into [14C]-bile acids at a 3-fold greater rate than rats fed a normal diet. PHC synthesize bile acids (BA) at a rate of approximately 0.06 μg/mg protein/h. The major bile acid composition, as determined by GLC, was β-muricholic acid (BMC) and cholic acid (CA) in a 3:1 ratio, respectively. PHC rapidly converted free BA and BA intermediates into taurine conjugated trihydroxy-BA up to 87h after plating. 3-Hydroxy-3-methylglutaryl-coenzyme A-reductase activity assayed in microsomes prepared from PHC, decreased during the initial 48h, then remained constant. Cholesterol 7α-hydroxylase activity decreased during the initial 48h, then increased during the next 48h. This occurred while whole cells produced BA at a linear rate. The effect of individual BA on bile acid synthesis (BAS) was also studied. Relative rates of BAS were measured as the conversion of [14C]-cholesterol into [14C]-BA. BA combinations were tested in order to simulate the composition of the enterohepatic circulation. The addition of TCA (525 μM) plus TCDCA (80μM), in concentrations which greatly exceed the concentration of BA (60μM) in rate portal blood, failed to inhibit BAS. BA plus phospholipid and/or cholesterol also did not inhibit BAS. Surprisingly, crude rat bile with a final concentration comparable to those in the synthetic mix inhibited [14C]-cholesterol conversion into [14C]-BA

  4. recA gene product is responsible for inhibition of deoxyribonucleic acid synthesis after ultraviolet irradiation.

    Trgovcević, Z; Petranović, D; Petranović, M; Salaj-Smic, E

    1980-01-01

    Deoxyribonucleic acid synthesis after ultraviolet irradiation was studied in wild-type, uvrA, recB, recA recB, and recA Escherichia coli strains. Inhibition of deoxyribonucleic acid synthesis, which occurs almost immediately after exposing the cells to ultraviolet radiation, depends on the functional gene recA.

  5. recA gene product is responsible for inhibition of deoxyribonucleic acid synthesis after ultraviolet irradiation

    Deoxyribonucleic acid synthesis after ultraviolet irradiation was studied in wild-type, uvrA, recB, recA, recB, and recA Escherichia coli strains. Inhibition of deoxyribonucleic acid synthesis, which occurs almost immediately after exposing the cells to ultraviolet radiation, depends on the functional gene recA

  6. Chemical recycling of post-consumer PET: structural characterization of terephthalic acid and the effect of Alkaline Hydrolysis at low temperature; Reciclagem quimica do PET pos-consumo: caracterizacao estrutural do acido tereftalico e efeito da hidrolise alcalina em baixa temperatura

    Fonseca, Talitha Granja; Almeida, Yeda Medeiros Bastos de; Vinhas, Gloria Maria, E-mail: gmvinhas@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica

    2014-09-15

    Due to the environmental impact caused by PET packaging disposal, this material recycling has been thoroughly discussed and evaluated. In particular, chemical recycling enables achievement of the monomers that are used in PET resin manufacture: ethylene glycol (EG) and terephthalic acid (PTA). Therefore, studies for this process optimization are important from environmental and economic points of view. The present study investigated certain parameters that influence the depolymerization reaction of PET post-consumer via alkaline hydrolysis in order to obtain PTA. Assays were performed at 70 °C by varying the concentration of sodium hydroxide and the reaction time. The best results were obtained at 10.82 mol L{sup -1} NaOH and 9 h reaction time. Consequently, it was possible to prove this process viability, once analyses by infrared and nuclear magnetic resonance confirmed that PTA was obtained in all reactions performed. (author)

  7. Role for deoxyribonucleic acid ligase in deoxyribonucleic acid polymerase I-dependent repair synthesis in toluene-treated Escherichia coli

    In a toluene-treated mutant of Escherichia coli K-12 having a temperature-sensitive, conditionally lethal mutation in the structural gene for deoxyribonucleic acid (DNA) ligase, an extensive DNA repair synthesis occurred in x-irradiated cells at the nonpermissive temperature, 420C. At the permissive temperature, 300C, nearly normal semiconservative synthesis and limited repair synthesis were observed when DNA ligase was activated by the addition of nicotinamide adenine dinucleotide. (auth)

  8. Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid

    Saikat Mandal; P R Selvakannan; Sumant Phadtare; Renu Pasricha; Murali Sastry

    2002-10-01

    Development of reliable protocols for the synthesis of nanoparticles of well-defined sizes and good monodispersity is an important aspect of nanotechnology. In this paper, we present details of the synthesis of gold nanoparticles of good monodispersity by the reduction of aqueous chloroaurate ions by the amino acid, aspartic acid. The colloidal gold solution thus formed is extremely stable in time, indicating electrostatic stabilization via nanoparticle surface-bound amino acid molecules. This observation has been used to modulate the size of the gold nanoparticles in solution by varying the molar ratio of chloroaurate ions to aspartic acid in the reaction medium. Characterization of the aspartic acid-reduced gold nanoparticles was carried out by UV-visible spectroscopy, thermogravimetric analysis and transmission electron microscopy. The use of amino acids in the synthesis and stabilization of gold nanoparticle in water has important implications in the development of new protocols for generation of bioconjugate materials.

  9. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors

    Lei Anping

    2012-03-01

    Full Text Available Abstract Background Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. Results We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP, 3-ketoacyl-ACP-synthase (KAS, and acyl-ACP thioesterase (FATA gene expression had significant correlations with monounsaturated FA (MUFA synthesis and polyunsaturated FA (PUFA synthesis. Conclusions We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production.

  10. Route to Renewable PET: Reaction Pathways and Energetics of Diels–Alder and Dehydrative Aromatization Reactions Between Ethylene and Biomass-Derived Furans Catalyzed by Lewis Acid Molecular Sieves

    Pacheco, Joshua J.; Labinger, Jay A.; Alex L Sessions; Davis, Mark E.

    2015-01-01

    Silica molecular sieves that have the zeolite beta topology and contain framework Lewis acid centers (e.g., Zr-β, Sn-β) are useful catalysts in the Diels–Alder and dehydrative aromatization reactions between ethylene and various renewable furans for the production of biobased terephthalic acid precursors. Here, the main side products in the synthesis of methyl 4-(methoxymethyl)benzene carboxylate that are obtained by reacting ethylene with methyl 5-(methoxymethyl)-furan-2-carboxylate are iden...

  11. Reaction kinetics of polybutylene terephthalate polycondensation reaction

    Darda, P. J.; Hogendoorn, J. A.; Versteeg, G. F.; Souren, F.

    2005-01-01

    The kinetics of the forward polycondensation reaction of polybutylene terephthalate (PBT) has been investigated using thermogravimetric analysis (TGA). PBT - prepolymer with an initial degree of polymerization of 5.5 was used as starting material. The PBT prepolymer was prepared from dimethyl tereph

  12. Synthesis of E. faecium wall teichoic acid fragments.

    van der Es, Daan; Groenia, Nadia A; Laverde, Diana; Overkleeft, Herman S; Huebner, Johannes; van der Marel, Gijsbert A; Codée, Jeroen D C

    2016-09-01

    The first synthesis of different Enterococcus faecium wall teichoic acid (WTA) fragments is presented. The structure of these major cell wall components was elucidated recently and it was shown that these glycerolphosphate (GroP) based polymers are built up from -6-(GalNAc-α(1-3)-GalNAc-β(1-2)-GroP)- repeating units. We assembled WTA fragments up to three repeating units in length, in two series that differ in the stereochemistry of the glycerolphosphate moiety. The key GalNAc-GalNAc-GroP synthons, required for the synthesis, were generated from galactosazide building blocks that were employed in highly stereoselective glycosylation reactions to furnish both the α- and β-configured linkages. By comparing the NMR spectra of the synthesized fragments with the isolated material it appears that the hereto undefined stereochemistry of the glycerol phosphate moiety is sn-glycerol-3-phosphate. The generated fragments will be valuable tools to study their immunological activity at the molecular level. PMID:26993744

  13. Enzymatic synthesis and application of fatty acid ascorbyl esters

    Stojanović Marija M.

    2013-01-01

    Full Text Available Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully used as a reaction medium, since commonly used solvents with high Log P values are inapplicable due to ascorbic acid high polarity. Acylation of vitamin C using fatty acids, their methyl-, ethyl-, and vinyl esters, as well as triglycerides has been performed, whereas application of the activated acyl donors enabled higher molar conversions. In each case, majority of authors reported that using excessive amount of the acyl donor had positive effect on yield of product. Furthermore, several strategies have been employed for shifting the equilibrium towards the product by water content control. These include adjusting the initial water activity by pre-equilibration of reaction mixture, enzyme preparation with water vapor of saturated salt solutions, and the removal of formed water by the addition of molecular sieves or salt hydrate pairs. The aim of this article is to provide a brief overview of the procedures described so far for the lipase-catalyzed synthesis of fatty acid ascorbyl esters with emphasis on the potential application in food, cosmetics, and pharmaceutics. Furthermore, it has been pointed out that the main obstacles for process commercialization are long reaction times, lack of adequate purification methods, and high costs of lipases. Thus, future challenges in this area are testing new catalysts, developing continuous processes for esters production, finding cheaper acyl donors and reaction mediums, as well as identifying standard procedures for

  14. Improved synthesis of amino acid and dipeptide chloromethyl esters using bromochloromethane

    Gomes, P; Santos, MI; Trigo, MJ; Castanheiro, R.; Moreira, R.

    2003-01-01

    Peptide chloromethyl esters are important compounds in prodrug synthesis. A simple, mild and efficient method for the synthesis of chloromethyl esters of N-blocked amino acids and dipeptides using exclusively bromochloromethane is reported. These N-blocked amino acid and dipeptide chloromethyl esters react readily with the carboxylic acid group of aspirin and with the sulfonamido group of the antimalarial sulfamethazine, to give the corresponding prodrugs.

  15. Highly Efficient Procedure for the Synthesis of Fructone Fragrance Using a Novel Carbon based Acid

    Xuezheng Liang; Shao-Qin Lv; Lin-Mei Rong; Sheng-Xian Zhao; Chunqing Li; Baowei Hu; Chenze Qi

    2010-01-01

    The novel carbon based acid has been synthesized via one-step hydrothermal carbonization of furaldehyde and hydroxyethylsulfonic acid. A highly efficient procedure for the synthesis of fructone has been developed using the novel carbon based acid. The results showed that the catalyst possessed high activity for the reaction, giving a yield of over 95%. The advantages of high activity, stability, reusability and low cost for a simple synthesis procedure and wide applicability to various diols ...

  16. Templated Synthesis of Peptide Nucleic Acids via Sequence-Selective Base-Filling Reactions

    Heemstra, Jennifer M.; Liu, David Ruchien

    2009-01-01

    The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either re...

  17. Synthesis and properties of scandium carboxylate metal-organic frameworks

    Gonzalez-Santiago, Berenice

    2015-01-01

    This work investigated the synthesis, characterisation and properties of known and novel scandium carboxylate Metal-organic Frameworks (MOFs). The first part reports the performance of these Sc-MOFs as Lewis acid catalysts. The porous MOF scandium trimesate MIL-100(Sc) and the scandium terephthalates such as MIL-101(Sc), MIL-88B(Sc) and MIL-68(Sc) (prepared as the Sc-analogue for the first time), and scandium biphenyldicarboxylate MIL-88D(Sc) were prepared and tested as Lewis acid catalysts. ...

  18. Soluble Polymer-Supported Synthesis of α-Amino Acid Derivatives

    XIE Cheng; HU Chun-Ling; ZHANG Gang-Shen; CHEN Zu-Xing

    2003-01-01

    @@ Due to the central role played by α-amino acid in chemistry and biology, the development of versatile and new methodology for the synthesis of natural and unnatural α-amino acid has emerged as an important and challenging synthetic endeavour for organic chemists.[1] Among the various methodologies reported for α-amino acid synthesis, [2,3] the solid-phase organic synthesis (SPOS) has served as an important approach. [4] However, inherent prob lems on solid supports are reactive site accessibility, site-site interaction and monitoring of the reaction.

  19. Rational design, synthesis, and pharmacological evaluation of 2-azanorbornane-3-exo,5-endo-dicarboxylic acid

    Bunch, Lennart; Liljefors, Tommy; Greenwood, Jeremy R;

    2003-01-01

    The design and synthesis of conformationally restricted analogues of alpha-amino acids is an often used strategy in medicinal chemistry research. Here we present the rational design, synthesis, and pharmacological evaluation of 2-azanorbornane-3-exo,5-endo-dicarboxylic acid (1), a novel...... conformationally restricted (S)-glutamic acid (Glu) analogue intended as a mimic of the folded Glu conformation. The synthesis of 1 was completed in its racemic form in eight steps from commercially available starting materials. As a key step, the first facially selective hydroboration of a 5-methylidene[2...

  20. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    Torella, JP; Ford, TJ; Kim, SN; Chen, AM; Way, JC; Silver, PA

    2013-07-09

    Medium-chain fatty acids (MCFAs, 4-12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even-and odd-chain-length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired.

  1. Isolation, structure, and synthesis of viridic acid, a new tetrapeptide mycotoxin of Penicillium viridicatum Westling

    The isolation of a new toxic metabolite, viridic acid, from Penicillium viridicatum Westling is described. The chemical and spectroscopic properties of the compound are interpreted in terms of the tetrapeptide structure (N,N-dimethyl-o-aminobenzoyl)-glycyl-(N'-methyl-L-valyl)-o-aminobenzoic acid. The structure and chirality of viridic acid were confirmed by total synthesis

  2. Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis.

    Dacquin, J P; Lee, A F; Pirez, C; Wilson, K

    2012-01-01

    Here we present the first application of pore-expanded SBA-15 in heterogeneous catalysis. Pore expansion over the range 6-14 nm confers a striking activity enhancement towards fatty acid methyl ester (FAME) synthesis from triglycerides (TAG), and free fatty acid (FFA), attributed to improved mass transport and acid site accessibility. PMID:22089025

  3. Synthesis of new polyphosphonic acids, uranium extracting agents in a phosphoric medium

    Synthesis of organic phosphorus compounds for liquid-liquid extraction of traces of uranium in concentrated phosphoric acid is studied in view of industrial applications. Diphosphonic acids and monoesters and also triphosphonic acids and related compounds are synthetized. Extraction tests show a better efficiency than OPPA

  4. Synthesis of L-ascorbic acid in the phloem

    Haupt Sophie

    2003-11-01

    Full Text Available Abstract Background Although plants are the main source of vitamin C in the human diet, we still have a limited understanding of how plants synthesise L-ascorbic acid (AsA and what regulates its concentration in different plant tissues. In particular, the enormous variability in the vitamin C content of storage organs from different plants remains unexplained. Possible sources of AsA in plant storage organs include in situ synthesis and long-distance transport of AsA synthesised in other tissues via the phloem. In this paper we examine a third possibility, that of synthesis within the phloem. Results We provide evidence for the presence of AsA in the phloem sap of a wide range of crop species using aphid stylectomy and histochemical approaches. The activity of almost all the enzymes of the primary AsA biosynthetic pathway were detected in phloem-rich vascular exudates from Cucurbita pepo fruits and AsA biosynthesis was demonstrated in isolated phloem strands from Apium graveolens petioles incubated with a range of precursors (D-glucose, D-mannose, L-galactose and L-galactono-1,4-lactone. Phloem uptake of D-[U-14C]mannose and L-[1-14C]galactose (intermediates of the AsA biosynthetic pathway as well as L-[1-14C]AsA and L-[1-14C]DHA, was observed in Nicotiana benthamiana leaf discs. Conclusions We present the novel finding that active AsA biosynthesis occurs in the phloem. This process must now be considered in the context of mechanisms implicated in whole plant AsA distribution. This work should provoke studies aimed at elucidation of the in vivo substrates for phloem AsA biosynthesis and its contribution to AsA accumulation in plant storage organs.

  5. Synthesis of acid-functionalized composite via surface deposition of acid-containing amorphous carbon

    Du, Bin; Zhang, Xuan; Lou, Lan-Lan; Dong, Yanling; Liu, Gaixia; Liu, Shuangxi

    2012-07-01

    A synthetic procedure, including two steps: a hydrothermal treatment using H2SO4 solution and a thermal treatment with concentrated H2SO4 in Teflon-lined stainless autoclaves was developed to synthesize acid-functionalized composite. In this process, the carbonization of glucose which contributed to the formation of carbon species with acid functional groups occurred on the silica surface. The resultant composite, investigated by powder XRD, low temperature N2 sorption and TEM, possessed well-defined mesostructure. And it was determined by XPS that amorphous carbon was deposited at the silica surface of SBA-15. The presence of multi-functional groups in the composite was confirmed by FT-IR results. Furthermore, carboxylic and sulfonic groups could be incorporated into the composite material via the covalent bond. The composite was employed as the catalyst for the acetalization of carbonyl compounds. It was suggested that acid sites were well dispersed, which was responsible for the good performance in the catalytic test. According to these facts, a synthesis route for mesostructured composite with acid functional groups has been proposed.

  6. The Role of Benzoate in Anaerobic Degradation of Terephthalate

    Kleerebezem, Robbert; Pol, Look W. Hulshoff; Lettinga, Gatze

    1999-01-01

    The effects of acetate, benzoate, and periods without substrate on the anaerobic degradation of terephthalate (1,4-benzene-dicarboxylate) by a syntrophic methanogenic culture were studied. The culture had been enriched on terephthalate and was capable of benzoate degradation without a lag phase. When incubated with a mixture of benzoate and terephthalate, subsequent degradation with preference for benzoate was observed. Both benzoate and acetate inhibited the anaerobic degradation of terephth...

  7. Fibre Labelling. Polytrimethylene terephthalate - PTT- DuPont. Intermediate Report

    PICCININI Paola; SENALDI Chiara; ALBERTO LOPES JOÃO FILIPE

    2013-01-01

    In November 2011, the European Commission’s Joint Research Centre (JRC) was entrusted by DG Enterprise to verify the validity and applicability of the testing methods, proposed by DuPont, for the identification and quantification of their new fibre polytrimethylene terephthalate (PTT). The fibre is a type of polyester that differs from the common one polyethylene terephthalate (PET) as it contains one more methylene group in the aliphatic chain that links the terephthalic moiet...

  8. Polyethylene Terephthalate May Yield Endocrine Disruptors

    Sax, Leonard

    2009-01-01

    Background Recent reports suggest that endocrine disruptors may leach into the contents of bottles made from polyethylene terephthalate (PET). PET is the main ingredient in most clear plastic containers used for beverages and condiments worldwide and has previously been generally assumed not to be a source of endocrine disruptors. Objective I begin by considering evidence that bottles made from PET may leach various phthalates that have been putatively identified as endocrine disruptors. I al...

  9. Immobilization of silver nanoparticles on polyethylene terephthalate

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Svorcik, Vaclav

    2014-01-01

    Two different procedures of grafting with silver nanoparticles (AgNP) of polyethylene terephthalate (PET), activated by plasma treatment, are studied. In the first procedure, the PET foil was grafted with biphenyl-4,4′-dithiol and subsequently with silver nanoparticles. In the second one, the PET foil was grafted with silver nanoparticles previously coated with the same dithiol. X-ray photoelectron spectroscopy and electrokinetic analysis were used for characterization of the polymer surface ...

  10. Effect of fatty acids on the synthesis and secretion of apolipoprotein B by rat hepatocytes

    The modulation of apolipoprotein B synthesis and secretion by fatty acids in rat hepatocytes was studied. Maximum apolipoprotein B production was obtained in the case of oleic acid followed by linoleic, stearic and palmitic/linolenic acid when compared to control which was not supplemented with any fatty acids. Oleic acid was found to exert a concentration dependent increase in the secretion of [3H] apolipoprotein B into the medium while that associated with the cell layer was not affected. Pulse chase experiments in the presence of oleic acid showed that it caused an increase in the secretion of apolipoprotein B into the medium. 14C-acetate incorporation into cholesterol and cholesteryl ester associated with the cell layer and secreted very low density lipoproteins also showed an increase in the presence of oleic acid indicating an increase in cholesterogenesis. The effect of oleic acid on [3H] apolipoprotein B and very low density lipoprotein secretion appeared to be mediated through cholesterol as (i)ketoconazole, an inhibitor of cholesterol synthesis caused significant reduction in the stimulatory effect of oleic acid on apolipoprotein secretion and (ii) mevinolin, another inhibitor of cholesterol synthesis also reversed the stimulatory effect of oleic acid on apolipoprotein B secretion. These results indicated that oleic acid may influence apolipoprotein B synthesis and secretion in hepatocytes probably by affecting cholesterol/cholesteryl ester formation which may be a critical component in the secretion of apolipoprotein B as lipoproteins. (author). 21 refs., 4 figs., 2 tabs

  11. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing

    Sun, Jian; Yang, Fan; Yang, Xiurong

    2015-10-01

    A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au+ complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe3+ with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe3+, and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by

  12. Cyclic derivatives of D-glucose and tartaric acid as building blocks for renewable polyesters

    Japu, Cristina

    2014-01-01

    Three series of aromatic copolyesters derived from poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT) and poly(hexamethylene terephthalate) (PHT) have been synthesized by melt polycondensation in which the terephthalate and oxyalkylene units have been partially or totally replaced by monocyclic and bicyclic diacids and diols obtained by derivatization of renewable monomers such as tartaric acid and D-glucose respectively. Another series of aliphatic copolyesters derived f...

  13. Cetalox and analogues: synthesis via acid-mediated polyene cyclizations.

    Snowden, Roger L

    2008-06-01

    Using a novel, acid-mediated cyclization methodology, a direct access to Cetalox ((+/-)-1; a commercially important ambergris-type odorant) and various structurally related didehydro (i.e., 19, 26, and 30) and tetradehydro (i.e., 28 and 37/38) analogues is described. Treatment of either (E,E)-14 or (E)-15 with an excess of FSO(3)H in 2-nitropropane at -90 degrees stereospecifically afforded (+/-)-1 in 40 and 42% yield, respectively. Under similar conditions, cyclization of (E)-18 or 20 furnished 19 in 60 and 64% yield, respectively. Analogously, using an excess of ClSO(3)H in CH(2)Cl(2) at -80 degrees, 26 is formed with high stereoselectivity by cyclization of either (E)-24 or (Z)-25 (52 and 31% yield, resp.); in the same manner, 28 was prepared from 27 (22% yield). The same principle was applied to the synthesis of racemic Superambrox (30), via cyclization of 35, but only with poor selectivity (22%) and low yield (7%). Another approach via cyclization of (E)-40 under solvolysis conditions (excess TFA in CH(2)Cl(2) at -10 degrees) gave a higher yield (15%) with improved selectivity (43%). Finally, cyclization of 34 (1:1 diastereoisomer mixture) afforded 37/38 (10:1) in 27% yield. The qualitative organoleptic properties of 19, 26, 28, 30, and 37/38 (10:1) are briefly discussed. PMID:18618391

  14. Synthesis of an Ursolic Acid Saponin with N-Acetylglucosamine-containing Trisaccharide Residue

    WANG Peng; LI Chun-Xia; WANG Guang-Fa; LI Ying-Xia

    2006-01-01

    The focus of this work is the synthesis of an ursolic acid saponin with an N-acetylglucosamine-containing trisaccharide residue. Therefore, ursolic acid 3-yl α-L-arabinopyranosyl-(1→2)-α-L-arabinopyranosyl-(1→6)-2-acetamido-2-deoxy-β-D-glucopyranoside (1) was concisely synthesized in convergent synthesis with 48.0% overall yield. The structure of saponin 1 was confirmed by 1H NMR, 13C NMR and mass spectra.

  15. WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds.

    Adhikari, Neil D; Bates, Philip D; Browse, John

    2016-05-01

    Previous attempts at engineering Arabidopsis (Arabidopsis thaliana) to produce seed oils containing hydroxy fatty acids (HFA) have resulted in low yields of HFA compared with the native castor (Ricinus communis) plant and caused undesirable effects, including reduced total oil content. Recent studies have led to an understanding of problems involved in the accumulation of HFA in oils of transgenic plants, which include metabolic bottlenecks and a decrease in the rate of fatty acid synthesis. Focusing on engineering the triacylglycerol assembly mechanisms led to modest increases in the HFA content of seed oil, but much room for improvement still remains. We hypothesized that engineering fatty acid synthesis in the plastids to increase flux would facilitate enhanced total incorporation of fatty acids, including HFA, into seed oil. The transcription factor WRINKLED1 (WRI1) positively regulates the expression of genes involved in fatty acid synthesis and controls seed oil levels. We overexpressed Arabidopsis WRI1 in seeds of a transgenic line expressing the castor fatty acid hydroxylase. The proportion of HFA in the oil, the total HFA per seed, and the total oil content of seeds increased to an average of 20.9%, 1.26 µg, and 32.2%, respectively, across five independent lines, compared with 17.6%, 0.83 µg, and 27.9%, respectively, for isogenic segregants. WRI1 and WRI1-regulated genes involved in fatty acid synthesis were up-regulated, providing for a corresponding increase in the rate of fatty acid synthesis. PMID:27208047

  16. WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds1[OPEN

    Browse, John

    2016-01-01

    Previous attempts at engineering Arabidopsis (Arabidopsis thaliana) to produce seed oils containing hydroxy fatty acids (HFA) have resulted in low yields of HFA compared with the native castor (Ricinus communis) plant and caused undesirable effects, including reduced total oil content. Recent studies have led to an understanding of problems involved in the accumulation of HFA in oils of transgenic plants, which include metabolic bottlenecks and a decrease in the rate of fatty acid synthesis. Focusing on engineering the triacylglycerol assembly mechanisms led to modest increases in the HFA content of seed oil, but much room for improvement still remains. We hypothesized that engineering fatty acid synthesis in the plastids to increase flux would facilitate enhanced total incorporation of fatty acids, including HFA, into seed oil. The transcription factor WRINKLED1 (WRI1) positively regulates the expression of genes involved in fatty acid synthesis and controls seed oil levels. We overexpressed Arabidopsis WRI1 in seeds of a transgenic line expressing the castor fatty acid hydroxylase. The proportion of HFA in the oil, the total HFA per seed, and the total oil content of seeds increased to an average of 20.9%, 1.26 µg, and 32.2%, respectively, across five independent lines, compared with 17.6%, 0.83 µg, and 27.9%, respectively, for isogenic segregants. WRI1 and WRI1-regulated genes involved in fatty acid synthesis were up-regulated, providing for a corresponding increase in the rate of fatty acid synthesis. PMID:27208047

  17. Highly Efficient Procedure for the Synthesis of Fructone Fragrance Using a Novel Carbon based Acid

    Xuezheng Liang

    2010-08-01

    Full Text Available The novel carbon based acid has been synthesized via one-step hydrothermal carbonization of furaldehyde and hydroxyethylsulfonic acid. A highly efficient procedure for the synthesis of fructone has been developed using the novel carbon based acid. The results showed that the catalyst possessed high activity for the reaction, giving a yield of over 95%. The advantages of high activity, stability, reusability and low cost for a simple synthesis procedure and wide applicability to various diols and β-keto esters make this novel carbon based acid one of the best choices for the reaction.

  18. Synthesis and Characterization of Fatty Acid/Amino Acid Self-Assemblies

    Joanna Gajowy

    2014-10-01

    Full Text Available In this paper, we discuss the synthesis and self-assembling behavior of new copolymers derived from fatty acid/amino acid components, namely dimers of linoleic acid (DLA and tyrosine derived diphenols containing alkyl ester pendent chains, designated as “R” (DTR. Specific pendent chains were ethyl (E and hexyl (H. These poly(aliphatic/aromatic-ester-amides were further reacted with poly(ethylene glycol (PEG and poly(ethylene glycol methyl ether of different molecular masses, thus resulting in ABA type (hydrophilic-hydrophobic-hydrophilic triblock copolymers. We used Fourier transform infrared (FTIR and nuclear magnetic resonance (NMR spectroscopies to evaluate the chemical structure of the final materials. The molecular masses were estimated by gel permeation chromatography (GPC measurements. The self-organization of these new polymeric systems into micellar/nanospheric structures in aqueous environment was evaluated using ultraviolet/visible (UV-VIS spectroscopy, dynamic light scattering (DLS and transmission electron microscopy (TEM. The polymers were found to spontaneously self-assemble into nanoparticles with sizes in the range 196–239 nm and critical micelle concentration (CMC of 0.125–0.250 mg/mL. The results are quite promising and these materials are capable of self-organizing into well-defined micelles/nanospheres encapsulating bioactive molecules, e.g., vitamins or antibacterial peptides for antibacterial coatings on medical devices.

  19. Synthesis of Tetrahydrofuran and Tetrahydropyran Derivatives Catalyzed by Tungstophosphoric Acid in Ionic Liquid

    2005-01-01

    Synthesis of tetrahydrofuran and tetrahydropyran derivatives catalyzed by tungstophosphoric acid (H3PW12O4o) were conveniently performed with high yield from the corresponding unsaturated alcohols in ionic liquid. Sufuric acid (H2SO4), trifluoromathanesulfonic acid (TfOH)and p-toluenesulfonic acid (TsOH) were also explored for preparing these products in ionic liquid.The catalysts and ionic liquid can be easily recovered and reused.

  20. A Facile Method for Asymmetric Synthesis of β-Hydroxy-α-amino Acids

    LI,Shuo; LI,Lei; ZHANG,Zhi-Hui; XU,Peng-Fei

    2004-01-01

    @@ β-Hydroxy-a-amino acids are an important class of amino acids due to their inherent biological investigations[1] and as structural components of more complex biomolecules.[2] β-Hydroxy-a-amino acids have been used as intermediates in the asymmetric synthesis of other compounds.[3] An efficient and convenient concise method for the preparation of optically pure enantiomers of β-hydroxy-α-amino acids would be of general interest.

  1. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    Hugenberg, S.T.; Myers, S.L.; Brandt, K.D.

    1989-04-01

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis.

  2. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis

  3. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code

    Higgs, Paul G

    2009-01-01

    Of the twenty amino acids used in proteins, ten were formed in Miller's atmospheric discharge experiments. The two other major proposed sources of prebiotic amino acid synthesis include formation in hydrothermal vents and delivery to Earth via meteorites. We combine observational and experimental data of amino acid frequencies formed by these diverse mechanisms and show that, regardless of the source, these ten early amino acids can be ranked in order of decreasing abundance in prebiotic contexts. This order can be predicted by thermodynamics. The relative abundances of the early amino acids were most likely reflected in the composition of the first proteins at the time the genetic code originated. The remaining amino acids were incorporated into proteins after pathways for their biochemical synthesis evolved. This is consistent with theories of the evolution of the genetic code by stepwise addition of new amino acids. These are hints that key aspects of early biochemistry may be universal.

  4. Synthesis and Characterization of Esters Derived from Ricinoleic Acid and Evaluation of their Low Temperature Property

    A series of ester compounds derived from ricinoleic acid to be used as bio lubricants base stock have been synthesized. The resulting products were confirmed by FTIR and NMR analyses. The synthesis was carried out in three stages: epoxidation of ricinoleic acid; synthesis of 10,12-dihydroxy-9-acyloxy stearic acid from epoxidized ricinoleic acid with various fatty acids and esterification of the acyloxy stearic acid products with octanol to yield octyl-10,12-dihydroxy-9-acyloxy stearate. The viscosities, flash points and pour points (PP) behavior of the products were measured. The resulting esters had an increased in molar weight and viscosity and decreased in pour points as compared to ricinoleic acid. (author)

  5. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  6. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    Hiroyuki Kato

    2016-06-01

    Full Text Available Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise.

  7. The Prebiotic Synthesis of Ethylenediamine Monoacetic Acid, The Repeating Unit of Peptide Nucleic Acids

    Nelson, Kevin E.; Miller, Stanley L.

    1992-01-01

    The polymerization of ribonucleic acids or their precursors constitutes an important event in prebiotic chemistry. The various problems using ribonucleotides to make RNA suggest that there may have been a precursor. An attractive possibility are the peptide nucleic acids (PNA). PNAs are nucleotide analogs that make use of a polymer of ethylenediamine monoacetic acid (EDMA or 2-amninoethyl glycine) with the bases attached by an acetic acid. EDMA is an especially attractive alternative to the ribose phosphate or deoxyribose phosphate backbone because it contains no chiral centers and is potentially prebiotic, but there is no reported prebiotic synthesis. We have synthesized both EDMA and ethylenediamine diacetic acid (EDDA) from the prebiotic compounds ethylenediamine, formaldehyde, and hydrogen cyanide. The yields of EDMA range from 11 to 79% along with some sEDDA and uEDDA. These reactions work with concentrations of 10(exp -1)M and as low as 10(exp -4)M, and the reaction is likely to be effective at even lower concentrations. Ethylenediamine is a likely prebiotic compound, but it has not yet been demonstrated, although compounds such as ethanolamine and cysteamine have been proven to be prebiotic. Under neutral pH and heating at l00 C, EDMA is converted to the lactam, monoketopiperazine (MKP). The cyclization occurs and has an approximate ratio of MKP/EDMA = 3 at equilibrium. We have measured the solubilities of EDMA center dot H20 as 6.4 m, EDMA center dot HCl center dot H20 as 13.7 m, and EDMA center dot 2HCl center dot H20 as 3.4 m. These syntheses together with the high solubility of EDMA suggest that EDMA would concentrate in drying lagoons and might efficiently form polymers. Given the instability of ribose and the poor polymerizability of nucleotides, the prebiotic presence of EDMA and the possibility of its polymerization raises the possibility that PNAs are the progenitors of present day nucleic acids. A pre-RNA world may have existed in which PNAs or

  8. Poli(tereftalato de etileno, PET: uma revisão sobre os processos de síntese, mecanismos de degradação e sua reciclagem Poly(ethylene terephthalate, PET: a review on the synthesis processes, degradation mechanisms and its recycling

    Wanderson Romão

    2009-06-01

    Full Text Available Apresentamos uma revisão sobre o poli(tereftalato de etileno enfatizando os processos de síntese e os mecanismos de degradação. Atualmente o Brasil apresenta um dos maiores índices mundiais de reciclagem mecânica deste polímero, correspondendo a um percentual de 53%. O sucesso desse termoplástico na indústria de reciclagem deve-se à sua ampla diversidade de aplicações, desde a indústria têxtil (multifilamento até as indústrias de alimentos, onde as embalagens recicladas grau alimentício poderão ser misturadas com a resina virgem em diversas proporções e reprocessadas para o uso. Uma abordagem sobre a atual legislação do uso de PET reciclado em contato com alimentos também é mostrada neste trabalho. No processo de síntese do PET realizado em duas ou três etapas, são usados comonômeros e aditivos para otimizar as condições de processamento do material. Entretanto, tanto durante a síntese como no processo de reciclagem, ocorrem reações de degradação (termomecânica e termo-oxidativa e reações secundárias, formando acetaldeído, oligômeros, e o dietileno glicol. A presença desses "contaminantes" acelera o processo de degradação do polímero, afetando a qualidade do produto final.We present a review on poly(ethylene terephthalate, emphasizing the synthesis processes and the degradation mechanisms. Brazil is currently among the countries that most recycle PET, with 53% of this polymer being mechanically recycled. The success of this thermoplastic in the recycling industry is due to its large diversity of applications, from the textile industry to food packaging, where the food grade recycled packages will be mixed with the pristine resin for reprocessing and use. We also discuss the present legal aspects concerning PET recycling and its use in contact with food. In the synthesis of PET, usually done in two or three steps, several co-monomers and additives are used to optimize the final properties and

  9. Stereoselective synthesis of a-hydroxy-b-amino acids: the chiral pool approach

    RADOMIR N. SAICIC

    2004-11-01

    Full Text Available A method for the stereoselective homologation of a-amino acids into syn-a-hydroxy-b-amino acids is described, based on the conversion of stereoisomeric cyanohydrins into trans-oxazolines. The synthetic potential of the method is illustrated in the enantioselective formal synthesis of Bestatin.

  10. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  11. Synthesis of β3-Amino Acids via Catalyst- and Solvent-Free Aza-Michael Reaction

    2008-01-01

    A safe, environmentally friendly and cost-effective method for the synthesis of β-amino acid derivatives has been developed. Treatment of α,β-unsaturated compounds with aliphatic amines furnishes β-amino acid derivatives in good to excellent yields via a catalyst- and solvent-free aza-Michael addition.

  12. Synthesis of 6-phosphofructose aspartic acid and some related Amadori compounds.

    Hansen, Alexandar L; Behrman, Edward J

    2016-08-01

    We describe the synthesis and characterization of 6-phosphofructose-aspartic acid, an intermediate in the metabolism of fructose-asparagine by Salmonella. We also report improved syntheses of fructose-asparagine itself and of fructose-aspartic acid. PMID:27258673

  13. Design and Synthesis of Chiral Molecular Tweezers Based on Deoxycholic Acid

    2001-01-01

    A series of new chiral molecular tweezers have been designed and synthesized by using deoxycholic acid as spacer and aromatic amines as arms.Instead of using toxic phosgene,the triphosgene was employed in synthesis of the molecular tweezers receptors.These chiral molecular tweezers showed good enantioselectivity for D-amino acid methyl esters.

  14. Microwave-assisted base-free synthesis of trans-cinnamic acids using hypervalent iodonium salts

    Min Zhu; Chao Shentu; Zhong Shi Zhou

    2007-01-01

    A fast and convenient base-free Heck reaction of acrylic acid with hypervalent iodonium salts was achieved under microwave irradiation in water, providing a simple method for the synthesis of trans-cinnamic acids in good yields in short time.

  15. Fish oil increases bile acid synthesis in male patients with hypertriglyceridemia

    Jonkers, IJAM; Smelt, AHM; Princen, HMG; Kuipers, F; Romijn, JA; Boverhof, R; Masclee, AAM; Stellaard, F

    2006-01-01

    Fibrates are drugs of choice in patients with hypertriglyceridemia (HTG), but may increase the risk for gallstones by decreasing bile acid synthesis. Fish oil might be a therapeutic alternative, but its effect on bile acid metabolism in humans is unknown. We compared the effects of triglyceride-lowe

  16. Synthesis of novel trivalent amino acid glycoconjugates based on the cyclotriveratrylene ('CTV') scaffold.

    van Ameijde, Jeroen; Liskamp, Rob M J

    2003-08-01

    The convenient synthesis of novel trivalent amino acid glycoconjugates based on cyclotriveratrylene ('CTV') is described. These constructs consist of the CTV scaffold, three oligoethylene glycol spacers of variable length connected to a glyco amino acid residue which can also be varied. The resulting library of trivalent glycoconjugates can be used for studying multivalent interactions. PMID:12948190

  17. The effect of nalidixic acid, rifampicin and chloramphenicol on the synthesis of phospholipase C in Bacillus cereus

    The effect of nalidixic acid, rifampicin and chloramphenicol on the synthesis of phospholipase C (EC 3.1.4.3) has been studied in washed Bacillus cereus cells resuspended in nutrient broth. In the absence of inhibitors, the synthesis showed a biphasic pattern. No synthesis or release of enzyme was found in the presence of chloramphenicol. When rifampicin was added, phospholipase C synthesis for 10-15 min. Nalidixic acid, at concentrations which inhibited DNA synthesis completely, permitted the synthesis of phospholipase C at the same rate and for a similar length of time as rifampicin. (author)

  18. Potency of Individual Bile Acids to Regulate Bile Acid Synthesis and Transport Genes in Primary Human Hepatocyte Cultures

    Liu, Jie; Lu, Hong; Lu, Yuan-Fu; Lei, Xiaohong; Cui, Julia Yue; Ellis, Ewa; Strom, Stephen C.; Klaassen, Curtis D.

    2014-01-01

    Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100μM for 48 h, and RNA was extracted for real-time PCR analysis. For the classic pathway of BA synthesis, BAs except for UDCA markedly suppressed CYP7A1 (70–95%), the rate-limiting enzyme of bile acid synthesis, but only moderately (35%) down-regulated CYP8B1 at a high concentration of 100μM. BAs had minimal effects on mRNA of two enzymes of the alternative pathway of BA synthesis, namely CYP27A1 and CYP7B1. BAs increased the two major target genes of the farnesoid X receptor (FXR), namely the small heterodimer partner (SHP) by fourfold, and markedly induced fibroblast growth factor 19 (FGF19) over 100-fold. The BA uptake transporter Na+-taurocholate co-transporting polypeptide was unaffected, whereas the efflux transporter bile salt export pump was increased 15-fold and OSTα/β were increased 10–100-fold by BAs. The expression of the organic anion transporting polypeptide 1B3 (OATP1B3; sixfold), ATP-binding cassette (ABC) transporter G5 (ABCG5; sixfold), multidrug associated protein-2 (MRP2; twofold), and MRP3 (threefold) were also increased, albeit to lesser degrees. In general, CDCA was the most potent and effective BA in regulating these genes important for BA homeostasis, whereas DCA and CA were intermediate, LCA the least, and UDCA ineffective. PMID:25055961

  19. Synthesis of deuterium-labelled methylphenidate, p-hydroxy-methylphenidate, ritalinic acid and p-hydroxyritalinic acid

    The synthesis of threo-dl-methylphenidate (Ritalin 1), threo-dl-p-hydroxy-methylphenidate (3), threo-dl-ritalinic acid (2), and threo-dl-p-hydroxyritalinic acid (4) with deuterium incorporated in the piperidine ring is described. These compounds were synthesized for use as internal standards for mass fragmentographic assays of methylphenidate and its metabolites. The synthetic scheme described resulted in less than 0.05% 2H0 in the piperidine ring in any of the preparations. (author)

  20. Inhibition of deoxyribonucleic acid gyrase: effects on nucleic acid synthesis and cell division in Escherichia coli K-12.

    Fairweather, N F; Orr, E; Holland, I B

    1980-01-01

    Mutants of Escherichia coli resistant to the antibiotic clorobiocin are also coumermycin resistant, and the mutation to resistance in at least one mutant was mapped near gyrB. We conclude, therefore, that clorobiocin inhibits deoxyribonucleic acid gyrase, and the drug was used to probe the role of this enzyme in vivo. Deozyribonucleic acid synthesis was preferentially inhibited but not completely blocked by the antibiotic. Transcription and cell division were also markedly affected. However, ...

  1. Synthesis of deuterium-labelled methylphenidate, p-hydroxy-methylphenidate, ritalinic acid and p-hydroxyritalinic acid

    Patrick, K.; Kilts, C.; Breese, G. (North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1982-04-01

    The synthesis of threo-dl-methylphenidate (Ritalin 1), threo-dl-p-hydroxy-methylphenidate (3), threo-dl-ritalinic acid (2), and threo-dl-p-hydroxyritalinic acid (4) with deuterium incorporated in the piperidine ring is described. These compounds were synthesized for use as internal standards for mass fragmentographic assays of methylphenidate and its metabolites. The synthetic scheme described resulted in less than 0.05% /sup 2/H/sub 0/ in the piperidine ring in any of the preparations.

  2. Computer-assisted automated synthesis. III. Synthesis of substituted N-(carboxyalkyl) amino-acid tert-butyl ester derivatives.

    Hayashi, N; Sugawara, T; Kato, S

    1991-01-01

    A versatile automated synthesis apparatus, equipped with a chemical artificial intelligence, was developed to prepare and isolate a wide variety of compounds. The apparatus was to the synthesis of substituted N-(carboxyalkyl)amino-acids. The apparatus [1,2] is composed of units for performing various tasks,for example reagent supply, reaction, purification and separation, each linked to a control system. All synthetic processes, including washing and drying of the apparatus after each synthetic run, were automatically performed from the mixing of the reactants to the isolation of the products as powders or crystals. The reaction of an amino-acid tertbutyl ester acetic acid salt with a 2-keto acid sodium salt produces an unstable intermediate, Schiff base, which is reduced with sodum cyanoborohydride to give a substituted N-(carboxyalkyl)aminoacid tert-butyl ester sodium salt. The equilibrium and the consecutive reactions were controlled by adding sodium cyanoborohydride using the artificial intelligence software, which contained novel kinetic equations [3] and substituent effects [4].Substitued N-(carboxyalkyl)amino-acid tert-butyl esters, 90 derivatives, were automatically synthesized using the computerassisted automated synthesis apparatus. The syntheses were performed unattended 24 hours a day, except for supplying the raw materials, reagents and solvents. The apparatus is extremely valuable for synthesizing many derivatives of a particular compound. The configurations of the products were determined by circular dichroism measurements. PMID:18924904

  3. Chemical Synthesis of Uncommon Natural Bile Acids: The 9α-Hydroxy Derivatives of Chenodeoxycholic and Lithocholic Acids.

    Iida, Takashi; Namegawa, Kazunari; Nakane, Naoya; Iida, Kyoko; Hofmann, Alan Frederick; Omura, Kaoru

    2016-09-01

    The chemical synthesis of the 9α-hydroxy derivatives of chenodeoxycholic and lithocholic acids is reported. For initiating the synthesis of the 9α-hydroxy derivative of chenodeoxycholic acid, cholic acid was used; for the synthesis of the 9α-hydroxy derivative of lithocholic acid, deoxycholic acid was used. The principal reactions involved were (1) decarbonylation of conjugated 12-oxo-Δ(9(11))-derivatives using in situ generated monochloroalane (AlH2Cl) prepared from LiAlH4 and AlCl3, (2) epoxidation of the deoxygenated Δ(9(11))-enes using m-chloroperbenzoic acid catalyzed by 4,4'-thiobis-(6-tert-butyl-3-methylphenol), (3) subsequent Markovnikov 9α-hydroxylation of the Δ(9(11))-enes with AlH2Cl, and (4) selective oxidation of the primary hydroxyl group at C-24 in the resulting 3α,9α,24-triol and 3α,7α,9α,24-tetrol to the corresponding C-24 carboxylic acids using sodium chlorite (NaClO2) in the presence of a catalytic amount of 2,2,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPO) and sodium hypochlorite (NaOCl). The (1)H- and (13)C-NMR spectra are reported. The 3α,7α,9α-trihydroxy-5β-cholan-24-oic acid has been reported to be present in the bile of the Asian bear, and its 7-deoxy derivative is likely to be a bacterial metabolite. These bile acids are now available as authentic reference standards, permitting their identification in vertebrate bile acids. PMID:27319285

  4. A review on synthesis and characterization of solid acid materials for fuel cell applications

    Mohammad, Norsyahida; Mohamad, Abu Bakar; Kadhum, Abdul Amir H.; Loh, Kee Shyuan

    2016-08-01

    Solid acids emerged as an electrolyte material for application in fuel cells due to their high protonic conductivity and stability at high temperatures between 100 °C and 250 °C. This paper gives an overview of the different solid acid materials and their properties, such as high protonic conductivity and thermal stability, in relation to phase transitions and mechanisms of proton transport. Various solid acid synthesis methods including aqueous and dry mixing, electrospinning, sol-gel, impregnation and thin-film casting will be discussed, and the impact of synthesis methods on the properties of solid acids will be highlighted. The properties of solid acids synthesized as either single crystals and or polycrystalline powders were identified via X-ray diffraction, nuclear magnetic resonance, thermal analyses, optical microscopy and infrared spectroscopy. A selection of electrolyte-electrode assembly methods and the performance of solid acid fuel cell prototypes are also reviewed.

  5. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    Lake, April D. [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States); Novak, Petr [Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice 37001 (Czech Republic); Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Lu, Zhenqiang [The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lehman-McKeeman, Lois D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Cherrington, Nathan J., E-mail: cherrington@pharmacy.arizona.edu [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States)

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  6. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  7. Synthesis and Characterization of Dual Acidic Ionic Liquids

    Xiao Hua WANG; Guo Hong TAO; Zi Yan ZHANG; Yuan KOU

    2005-01-01

    Novel ionic liquids with dual acidity, of which the cation contains Bronsted acidity and anions contain Lewis acidity were synthesized. These ionic liquids obtained were identified by NMR,FT-IR, SDT and FAB-MS. Their acidities were determined by pyridine probe on IR spectrography.

  8. Synthesis and characterization of humic acids with distinct redox capacities

    Sachs, S.; Heise, K.H.; Bernhard, G.

    2002-05-01

    Various humic acids with distinct redox capacities were synthesized, based on the oxidation of hydroquinone in alkaline solution in the presence or absence of amino acids. The synthesized humic acids show Fe(III) redox capacities which are up to 10 times higher than that of natural humic acid from Aldrich. (orig.)

  9. Synthesis of novel (1-alkanoyloxy-4-alkanoylaminobutylidene)-1,1-bisphosphonic acid derivatives

    Vepsäläinen Jouko J; Turhanen Petri A

    2006-01-01

    Abstract A novel strategy for the synthesis of (1-alkanoyloxy-4-alkanoylaminobutylidene)-1,1-bisphosphonic acid derivatives (1a-d) via (1-hydroxy-4-alkanoylaminobutylidene)-1,1-bisphosphonic acid derivatives (2a-d), starting from alendronate has been developed with reasonable 51–77% overall yields. Intermediate products, (1-hydroxy-4-alkanoylaminobutylidene)-1,1-bisphosphonic acid derivatives (2a-d), were prepared in water with reasonable to high yields (52–94%).

  10. Synthesis of novel (1-alkanoyloxy-4-alkanoylaminobutylidene-1,1-bisphosphonic acid derivatives

    Vepsäläinen Jouko J

    2006-02-01

    Full Text Available Abstract A novel strategy for the synthesis of (1-alkanoyloxy-4-alkanoylaminobutylidene-1,1-bisphosphonic acid derivatives (1a-d via (1-hydroxy-4-alkanoylaminobutylidene-1,1-bisphosphonic acid derivatives (2a-d, starting from alendronate has been developed with reasonable 51–77% overall yields. Intermediate products, (1-hydroxy-4-alkanoylaminobutylidene-1,1-bisphosphonic acid derivatives (2a-d, were prepared in water with reasonable to high yields (52–94%.

  11. Green Synthesis and Urease Inhibitory Activity of Spiro-Pyrimidinethiones/Spiro-Pyrimidinones-Barbituric Acid Derivatives

    Mohammadi Ziarani, Ghodsi; Asadi, Shima; Faramarzi, Sakineh; Amanlou, Massoud

    2015-01-01

    Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H) with pore size 6 nm as an efficient heterogeneous nanoporous solid acid catalyst exhibited good catalytic activity in the Biginelli-like reaction in the synthesis of spiroheterobicyclic rings with good yield and good recyclability. Spiro-pyrimidinethiones/spiro-pyrimidinones-barbituric acid derivatives were synthesized in a simple and efficient method using the one-pot three-component reaction of a cyclic 1,3- dicarbonyl compounds (barbituric ...

  12. Duodenal prostaglandin synthesis and acid load in health and in duodenal ulcer disease

    We sought to test the hypothesis that duodenal ulcer disease results from an imbalance between duodenal acid load, an injurious force, and mucosal prostaglandin generation, a protective factor. Ten patients with duodenal ulcer and 8 healthy controls were studied. The duodenal acid load after an amino acid soup was quantified by a double-marker technique. Mucosal biopsy specimens were taken endoscopically from the duodenal bulb before and after the test meal. Prostaglandin synthesis activity was measured by incubating biopsy homogenates in excess [14C]arachidonic acid. Although mean duodenal acid load was higher in duodenal ulcer, ranges overlapped. Neither the qualitative nor quantitative profile of mucosal prostaglandin synthesis activities differed significantly between test groups. Prostaglandin synthesis activities, however, tended to increase post cibum in controls, but change little or decrease in duodenal ulcer. Only by comparing the responses with a meal of both parameters together (duodenal acid load and the change in prostaglandin synthesis activities) was there complete or nearly complete separation of duodenal ulcer from controls. Greatest discrimination was observed with prostacyclin (6-keto-PGF1 alpha). We conclude that in health, mucosal prostaglandin generation in the duodenum is induced post cibum in relation to duodenal acid load; this may be a physiologic example of adaptive cytoprotection. In duodenal ulcer there may be a defect in such a mechanism

  13. Synthesis and structural analysis of 13C-fatty acids

    2000-01-01

    The 13C-labeled fatty acids octanoic-1-13C acid and palmitic-l-13C acid were synthetically prepared from Ba 13CO3. The yield of the former was more than 90% and that of the latter was above 85%. MS, IR, 1H-NMR and 13NMR were performed to analyze the structures of the two 13C-fatty acids, compared with their unlabeled fatty acids.

  14. Synthesis of 18F-FDG using improved single-pot acid hydrolysis process

    In order to explore an optimum condition to increase the synthesis yield of 2-18F-2-deoxy-β-D-glucose (18F-FDG) by using improved single-pot acid hydrolysis Chemistry Process Control Unit (CPCU), various production conditions such as the reaction temperature, the time of acid hydrolysis and others were tested. The results showed that the determinant factor which affects the synthesis yield was the quantities of water present in reaction media. The total 18F-FDG synthesis time could be minimized by effective dehydration step and regulating the amount of hydrogen chloride. The synthesis yield could be increased by improving the production conditions of 18F-FDG. (authors)

  15. Synthesis of novel fullerene α-amino acid conjugates

    Jing Zhang; Yan Xia Wang; Feng Kang; Ying Ya Shao; Zong Jie Li; Xin Lin Yang

    2008-01-01

    Aspartie acid and glutamic acid with protected α-amino and α-carboxyl groups had been used to react with the activated hydroxyl group of N-substituted 3,4-fuUero pyrrolidine.The products were deprotected,affording two monofullerene α-amino acids,monofullerene aspartic acid(mFas)and monofullerene glutamic acid(mFgu).Then a bifullerene glutamic acid conjugate (bFguC)was synthesized by reaction of mFgu containing protected amino group with N-subsfimted 3,4-fullero pyrrolidine.

  16. Tethered Aminohydroxylation: Synthesis of the β-Amino Acid of Microsclerodermins A and B

    Pullin, Robert D. C.; Rathi, Akshat H.; Melikhova, Ekaterina Y.; Winter, Christian; Thompson, Amber L.; Donohoe, Timothy J.

    2013-01-01

    The utility of the tethered aminohydroxylation (TA) has been demonstrated by synthesis of the complex β-amino acid residue of microsclerodermins A and B. The TA provided a regio- and stereoselective functionalization of a complex homoallylic alcohol. The route includes late-stage introduction of the aliphatic side chain via a cuprate addition and cross metathesis, a tactic designed to render the synthesis applicable to other microsclerodermins.

  17. Regulation of Polyglutamic Acid Synthesis by Glutamate in Bacillus licheniformis and Bacillus subtilis

    Kambourova, Margarita; Tangney, Martin; Priest, Fergus G.

    2001-01-01

    The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular γ-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreo...

  18. Copper-mediated arylation with arylboronic acids: Facile and modular synthesis of triarylmethanes

    Rao, A Veera Bhadra

    2016-01-01

    Summary A facile and modular synthesis of triarylmethanes was achieved in good yield via a two-step sequence in which the final step is the copper(II)-catalyzed arylation of diarylmethanols with arylboronic acids. By using this protocol a variety of symmetrical and unsymmetrical triarylmethanes were synthesized. As an application of the newly developed methodology, we demonstrate a high-yielding synthesis of the triarylmethane intermediate towards an anti-breast-cancer drug candidate. PMID:27340442

  19. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda, E-mail: pal.magda@agrar.mta.hu

    2014-09-15

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  20. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress

  1. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    Junker, L.H.; Davis, R.A. (Univ. of Colorado Health Sciences Center, Denver (USA))

    1989-12-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of (14C)cholesterol from (2-14C)acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of (14C)cholesterol from (2-14C)acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.

  2. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis

  3. Synthesis and identification of dinitro- and diaminoterephthalic acid

    M. Ghaemy; H. Mighani

    2009-01-01

    Dinitroterephthalic acid (DNTPA) and diaminoterephthalic acid (DATPA) were prepared in 85% and 75% yields, respectively. These compounds were characterized by using FTIR and IHNMR. DATPA can be used as a monomer for the preparation of polyesters and polyamides.

  4. Retinoic Acid Synthesis and Signaling during Early Organogenesis

    Duester, Gregg

    2008-01-01

    Retinoic acid, a derivative of vitamin A, is an essential component of cell-cell signaling during vertebrate organogenesis. In early development retinoic acid functions as a trunk organizer by providing an instructive signal for posterior neuroectoderm and foregut endoderm and a permissive signal for trunk mesoderm differentiation. At later stages, retinoic acid contributes to the development of the eye and other organs. Recent efforts suggest that retinoic acid acts primarily in a paracrine ...

  5. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition.

    Wei, Ren; Oeser, Thorsten; Schmidt, Juliane; Meier, René; Barth, Markus; Then, Johannes; Zimmermann, Wolfgang

    2016-08-01

    Recent studies on the enzymatic degradation of synthetic polyesters have shown the potential of polyester hydrolases from thermophilic actinomycetes for modifying or degrading polyethylene terephthalate (PET). TfCut2 from Thermobifida fusca KW3 and LC-cutinase (LCC) isolated from a compost metagenome are remarkably active polyester hydrolases with high sequence and structural similarity. Both enzymes exhibit an exposed active site in a substrate binding groove located at the protein surface. By exchanging selected amino acid residues of TfCut2 involved in substrate binding with those present in LCC, enzyme variants with increased PET hydrolytic activity at 65°C were obtained. The highest activity in hydrolyzing PET films and fibers were detected with the single variant G62A and the double variant G62A/I213S. Both variants caused a weight loss of PET films of more than 42% after 50 h of hydrolysis, corresponding to a 2.7-fold increase compared to the wild type enzyme. Kinetic analysis based on the released PET hydrolysis products confirmed the superior hydrolytic activity of G62A with a fourfold higher hydrolysis rate constant and a 1.5-fold lower substrate binding constant than those of the wild type enzyme. Mono-(2-hydroxyethyl) terephthalate is a strong inhibitor of TfCut2. A determination of the Rosetta binding energy suggested a reduced interaction of G62A with 2PET, a dimer of the PET monomer ethylene terephthalate. Indeed, G62A revealed a 5.5-fold lower binding constant to the inhibitor than the wild type enzyme indicating that its increased PET hydrolysis activity is the result of a relieved product inhibition by mono-(2-hydroxyethyl) terephthalate. Biotechnol. Bioeng. 2016;113: 1658-1665. © 2016 Wiley Periodicals, Inc. PMID:26804057

  6. Synthesis of alpha-hydroxyphosphonic acids from Lesquerella oil

    Lesquerella oil has been a substance of growing chemical interest, due to the ease with which it is produced and its similarity in structure to castor oil. The primary fatty acid in Lesquerella oil, lesquerolic acid, is very similar to the principal component of castor oil, ricinoleic acid, and may ...

  7. A Convenient Synthesis of Amino Acid Methyl Esters

    Yaowu Sha

    2008-05-01

    Full Text Available A series of amino acid methyl ester hydrochlorides were prepared in good toexcellent yields by the room temperature reaction of amino acids with methanol in thepresence of trimethylchlorosilane. This method is not only compatible with natural aminoacids, but also with other aromatic and aliphatic amino acids.

  8. Synthesis and spectroscopic characterization of fluorescent solid rare earth complexes with hydroxamic acids

    2002-01-01

    The complexes RE2(DHYA)3 .nH2O in the title bar were synthesized through some reactions oftrivalent rareearth ions. In the process of synthesis, dihydroxamic acids were taken as ligands while the alcohol was taken as a solvent.The ligands included adipylhydroxamic acid (ADHA), p-phthalichydroxamic acid (PPHA), oxalohydroxamic acid (OXHA), butadihydroxamic acid (BDHA), o-phthalichydroxamic acid (OPHA), benzoylhydroxamic acid (BHA), etc.Measured at 25 ℃, the molar conductances in various modes are 13.00-21.05 S. cm2. mol-1, which shows that rare-earth complexes are nonelectrolytes and the hydroxamino groups of the complexes have taken part in bonding. Infrared spectra, ultraviolet spectra, nuclear magnetic resonance (1HNMR) spectra, and fluorescence spectra were used to investigate the complexes. Experiments have proved that the complexes of Eu3+ and Tb3+ with aromatic hydroxamic acids have good fluorescent characteristics.

  9. Synthesis and pharmacology of 3-isoxazolol amino acids as selective antagonists at group I metabotropic glutamic acid receptors

    Madsen, U; Bräuner-Osborne, H; Frydenvang, Karla Andrea; Hvene, L; Johansen, T N; Nielsen, B; Sánchez, C; Stensbøl, T B; Bischoff, F; Krogsgaard-Larsen, P

    2001-01-01

    Using ibotenic acid (2) as a lead, two series of 3-isoxazolol amino acid ligands for (S)-glutamic acid (Glu, 1) receptors have been developed. Whereas analogues of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [AMPA, (RS)-3] interact selectively with ionotropic Glu receptors (i......GluRs), the few analogues of (RS)-2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid [HIBO, (RS)-4] so far known typically interact with iGluRs as well as metabotropic Glu receptors (mGluRs). We here report the synthesis and pharmacology of a series of 4-substituted analogues of HIBO. The hexyl analogue 9 was...

  10. Synthesis and mesomorphic behaviour of lithocholic acid derivatives

    V A E Shaikh; N N Maldar; S V Lonikar

    2003-08-01

    A series of liquid crystalline derivatives of lithocholic acid were prepared using simple chemical reactions involving the terminal functional group—hydroxyl at C-3 and/or carboxyl at C-24. Thus methyl -3-(3-carboxy propionyl) lithocholate (I), 3-(3-carboxy propionyl) lithocholic acid (II), 3-acetyl lithocholic acid (III), 3-propionyl lithocholic acid (IV), 3-benzoyl lithocholic acid (V), 3-(4-nitrobenzoyl) lithocholic acid (VI), 3-cinnamoyl lithocholic acid (VII), methyl-3-(4-nitrobenzoyl) lithocholate (VIII) and 1,4-bis [cholan-24-methoxy carbonyl-3-oxycarbonyl] butane (IX) were prepared in good yields and characterized by IR, NMR and polarizing optical microscopy. Compounds (I) and (IX) exhibited monotropic behaviour while the others were enantiotropic. Some of the compounds also showed a high tendency of super cooling. Compounds (V), (VI) and (IX) formed cholesteric phase while the remaining compounds displayed smectic phase.