WorldWideScience

Sample records for temperature programmed desorption

  1. Equilibrium adsorption data from temperature-programmed desorption measurements

    NARCIS (Netherlands)

    Foeth, F.; Mugge, J.M.; van der Vaart, R.; van der Vaart, Rick; Bosch, H.; Reith, T.

    1996-01-01

    This work describes a novel method that enables the calculation of a series of adsorption isotherms basically from a single Temperature-Programmed Desorption (TPD) experiment. The basic idea is to saturate an adsorbent packed in a fixed bed at a certain feed concentration and temperature and to

  2. Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported Platinum Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Modica, F.S.; Lane, G.S.; Vaarkamp, M.

    1993-01-01

    Hydrogen temperature-programmed desorption (TPD) of supported platinum catalysts, Pt/KLTL, Pt/H-LTL, Pt/K-MAZ, Pt/H-MAZ, Pt/-Al2O3, and Pt/SiO2, was performed after hydrogen reduction at 300, 450, or 650°C. For all catalysts, reversible desorption of chemisorbed hydrogen occurred at approximately

  3. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... to diffuse through the membrane into the mass spectrometer in a few seconds. In this fashion we could completely separate many similar volatile compounds, for example toluene from xylene and trichloroethene from tetrachloroethene. Typical detection limits were at low or sub-nanogram levels, the dynamic range...

  4. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    Science.gov (United States)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  5. Nano-nitride cathode catalysts of Ti, Ta, and Nb for polymer electrolyte fuel cells: Temperature-programmed desorption investigation of molecularly adsorbed oxygen at low temperature

    KAUST Repository

    Ohnishi, Ryohji; Takanabe, Kazuhiro; Katayama, Masao; Kubota, Jun; Domen, Kazunari

    2013-01-01

    -programmed desorption (TPD) of molecularly adsorbed O2 at 120-170 K from these nanoparticles was examined, and the resulting amount and temperature of desorption were key factors determining the ORR activity. The size-dependent TiN nanoparticles (5-8 and 100 nm) were

  6. Improving of understanding of beta-hexachlorocyclohexane (HCH) adsorption on activated carbons by temperature-programmed desorption studies.

    Science.gov (United States)

    Passé-Coutrin, Nady; Maisonneuve, Laetitia; Durimel, Axelle; Dentzer, Joseph; Gadiou, Roger; Gaspard, Sarra

    2016-01-01

    In order to understand the interactions between beta-hexachlorocyclohexane (HCH) and chemical groups at activated carbon (AC) surface, the solid samples were hydrogenated aiming to decrease the amounts of oxygenated groups. Two AC samples designated by BagH2O and BagP1.5 were prepared by water vapor activation and phosphoric acid activation, respectively, of sugarcane bagasse used as an AC precursor. A more simple molecule 1,2,3-trichloropropane (TCP) is used as a model of chlorinated compound. The AC were characterized by infrared, X-ray photoelectron spectroscopy (XPS), Raman resonance spectroscopies, as well as temperature-programmed desorption coupled with mass spectrometry (TPD-MS). BagP1.5 and BagH2O AC surface contained oxygenated groups. Upon hydrogenation, a decrease of most of these group amxounts was observed for both samples, while hydroxyl groups increased. On the basis of temperature-programmed desorption data obtained for AC samples contaminated with TCP or HCH, it was possible to determine the type of hydrogen bond formed between each AC and HCH.

  7. Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.R.; Foger, K.; Breakspere, R.J.

    1979-05-01

    Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts was studied with 0.9-3Vertical Bar3< platinum on silica gel, aerosil, sodium and lanthanum Y zeolites, and ..gamma..-alumina, and on aerosil-supported gold-platinum alloys containing 2, 10, 24, 33, and 85Vertical Bar3< gold. Surface enrichment with gold in the alloy systems, as derived from hydrogen adsorption data and predicted from surface enrichment theory and electron microscopic measurements of particle size, were in good agreement, which indicated that equilibrium was achieved by the thermal treatment (oxygen at 573/sup 0/K, hydrogen at 620/sup 0/K, repeated cycles) used. Hydrogen spillover to gold was observed at the higher hydrogen pressures tested on the alloys with high gold content, and to the zeolite supports. The temperature-programed desorption profiles were independent of gold content, which indicated that gold acts only as diluent, and that isolated surface platinum atoms become populated with hydrogen atoms either by hydrogen atom spillover from platinum ensembles to gold and from the gold to the isolated platinum, and/or by adsorption of a molecule directly on the isolated platinum and chemisorption of one H atom at an adjacent gold atom. The distribution of surface platinum ensembles was evaluated by a computer simulation method.

  8. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1×1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Boseong; Dohnalek, Zdenek; Szanyi, Janos; Kay, Bruce D.; Kim, Yu Kwon

    2016-10-01

    Systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1×1 surface reveal several distinct reaction channels in a temperature range of 50 – 500 K. NO readily reacts on TiO2(110) to form N2O which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a byproduct of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO2(110) surface above 500 K or higher, while the surface may be populated with Oa’s and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.

  9. Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.

    Science.gov (United States)

    Amiaud, L; Fillion, J H; Baouche, S; Dulieu, F; Momeni, A; Lemaire, J L

    2006-03-07

    The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10 K by slow vapor deposition has been studied by temperature-programmed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30 K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.

  10. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    Science.gov (United States)

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  11. Nano-nitride cathode catalysts of Ti, Ta, and Nb for polymer electrolyte fuel cells: Temperature-programmed desorption investigation of molecularly adsorbed oxygen at low temperature

    KAUST Repository

    Ohnishi, Ryohji

    2013-01-10

    TiN, NbN, TaN, and Ta3N5 nanoparticles synthesized using mesoporous graphitic (mpg)-C3N4 templates were investigated for the oxygen reduction reaction (ORR) as cathode catalysts for polymer electrolyte fuel cells. The temperature-programmed desorption (TPD) of molecularly adsorbed O2 at 120-170 K from these nanoparticles was examined, and the resulting amount and temperature of desorption were key factors determining the ORR activity. The size-dependent TiN nanoparticles (5-8 and 100 nm) were then examined. With decreasing particle size, the density of molecularly adsorbed O2 per unit of surface area increased, indicating that a decrease in particle size increases the number of active sites. It is hard to determine the electrochemical active surface area for nonmetal electrocatalysts (such as oxides or nitrides), because of the absence of proton adsorption/desorption peaks in the voltammograms. In this study, O2-TPD for molecularly adsorbed O2 at low temperature demonstrated that the amount and strength of adsorbed O2 were key factors determining the ORR activity. The properties of molecularly adsorbed O2 on cathode catalysts are discussed against the ORR activity. © 2012 American Chemical Society.

  12. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a review.

    Science.gov (United States)

    Niwa, Miki; Katada, Naonobu

    2013-10-01

    In this review, a method for the temperature-programmed desorption (TPD) of ammonia experiment for the characterization of zeolite acidity and its improvement by simultaneous IR measurement and DFT calculation are described. First, various methods of ammonia TPD are explained, since the measurements have been conducted under the concepts of kinetics, equilibrium, or diffusion control. It is however emphasized that the ubiquitous TPD experiment is governed by the equilibrium between ammonia molecules in the gas phase and on the surface. Therefore, a method to measure quantitatively the strength of the acid site (∆H upon ammonia desorption) under equilibrium-controlled conditions is elucidated. Then, a quantitative relationship between ∆H and H0 function is proposed, based on which the acid strength ∆H can be converted into the H0 function. The identification of the desorption peaks and the quantitative measurement of the number of acid sites are then explained. In order to overcome a serious disadvantage of the method (i.e., no information is provided about the structure of acid sites), the simultaneous measurement of IR spectroscopy with ammonia TPD, named IRMS-TPD (infrared spectroscopy/mass spectrometry-temperature-programmed desorption), is proposed. Based on this improved measurement, Brønsted and Lewis acid sites were differentiated and the distribution of Brønsted OH was revealed. The acidity characterized by IRMS-TPD was further supported by the theoretical DFT calculation. Thus, the advanced study of zeolite acidity at the molecular level was made possible. Advantages and disadvantages of the ammonia TPD experiment are discussed, and understanding of the catalytic cracking activity based on the derived acidic profile is explained. Copyright © 2013 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Study of the chemisorption and hydrogenation of propylene on platinum by temperature-programed desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, S.; Nakamura, M.; Yoshioka, N.

    1978-01-01

    Temperature-programed desorption (TPD) chromotograms of propylene adsorbed on platinum black in the absence or presence of hydrogen preadsorbed, admitted simultaneously, or admitted later, all showed four peaks at about 260/sup 0/ (A), 380/sup 0/ (B), 570/sup 0/ (C), and higher than 720/sup 0/K (D). Peaks A and B were identified as mixtures of propylene and propane, and peaks C and D were methane formed by thermal decomposition of the chemisorbed propylene during desorption. When nitrogen rather than helium was used as the carrier gas for the TPD, only delta-hydrogen was observed; this suggested that propylene was more strongly adsorbed on the platinum than hydrogen. Studies of the reactivities with propylene of the various types of chemisorbed hydrogen previously detected by TPD showed that propylene reacted with ..gamma..-hydrogen present on the surface in the form of hydrogen atoms chemisorbed on top of platinum atoms and with ..beta..-hydrogen, molecular hydrogen chemisorbed in a bridged form, but did not react with delta-hydrogen. Tables and graph.

  14. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, James P., E-mail: james.tonks@awe.co.uk [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk; King, Martin O. [AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Kerherve, Gwilherm [VACGEN Ltd, St. Leonards-On-Sea, East Sussex TN38 9NN (United Kingdom); Watts, John F. [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2016-08-15

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques.

  15. Adsorption site of ammonia on copper-exchanged Y-type zeolite under coexisting water vapor. Temperature-programed desorption and infrared adsorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kasaoka, S.; Sasaoka, E.; Shiraga, T.; Ono, Y.

    1978-03-01

    Sodium Y zeolites were copper-exchanged with cupric nitrate in water, in aqueous ammonia, and in aqueous ammonia/ammonium chloride, and calcined at 500/sup 0/C. Temperature-programed desorption and IR spectroscopy showed three types of adsorption sites for 0.1-1.0% ammonia gas from nitrogen containing 0-12% water vapor: physisorption, adsorption as tetraamminocopper(II) on copper(II) sites (type 2 site), and adsorption as ammonium ion on hydroxyl sites (type 3 site). Adsorption on type 2 sites occurred only at high ammonia concentration; desorption occurred around 175/sup 0/C. Type 3 sites consisted of Cu(OH)/sup +/ and Al(OH)/sup +/, adsorbed ammonia from low concentrations, and at temperatures above 200/sup 0/C, were probably the active sites for the reduction of nitric oxide by ammonia.

  16. Optical detection of CO and CO2 temperature dependent desorption from carbon nanotube clusters

    International Nuclear Information System (INIS)

    Chistiakova, M V; Armani, A M

    2014-01-01

    The development of new materials relies on high precision methods to quantify adsorption/desorption of gases from surfaces. One commonly used approach is temperature programmed desorption spectroscopy. While this approach is very accurate, it requires complex instrumentation, and it is limited to performing experiments under high vacuum, thus restricting experimental scope. An alternative approach is to integrate the surface of interest directly onto a detector face, creating an active substrate. One surface that has applications in numerous areas is the carbon nanotube (CNT). As such, an active substrate that integrates a CNT surface on a sensor and is able to perform measurements in ambient environments will have significant impact. In the present work, we have developed an active substrate that combines an optical sensor with a CNT cluster substrate. The optical sensor is able to accurately probe the temperature dependent desorption of carbon monoxide and carbon dioxide gases from the CNT cluster surface. This active substrate will enable a wide range of temperature dependent desorption measurements to be performed from a scientifically interesting material system. (paper)

  17. Laser-Induced Fluorescence Decay of 2-Methyl-, 2-Methoxy-, and 2-Ethylnaphthlene on α-Alumina during Temperature Programmed Desorption

    Directory of Open Access Journals (Sweden)

    Bradly B. Baer

    2013-01-01

    Full Text Available The decay of electronically excited molecular films of 2-methylnaphthalene (2-MN, 2-methoxynaphthalene (2-MeON, and 2-ethylnaphthalene (2-EN on a crystal of α-alumina was monitored as a function of temperature with temperature programmed desorption (TPD experiments. By assuming an exponential decay, the rate constants of the relaxation to the ground state were observed to have two components (±20% by laser induced fluorescence (LIF. For the 2-MeON, 2-MN, and 2-EN excimer, the longer components were 35, 25, and 23 × 106 s−1, respectively. Rate constants for the trap fluorescence for 2-MeON, 2-MN, and 2-EN were 100, 44, and 23×106 s−1, respectively. In separate experiments, the effect of a molecule that does not fluoresce and has a lower desorption temperature than the fluorophores was studied by deposition of a bilayer. 1-Chlorohexane (1-CH was chosen as the second layer to the fluorophore and the results gave clues to the complexity of the surface dynamics that occur as the surface is heated. For these bilayer systems, a second excimer formed during the TPD subsequent to the desorption of 1-CH, and their rates are given in parenthesis: for 2-MeON, 2-MN, and 2-EN, the long components were 30 (36, 25 (45, and 23 (42 × 106 s−1, respectively.

  18. Qualitative and quantitative analysis of complex temperature-programmed desorption data by multivariate curve resolution

    Science.gov (United States)

    Rodríguez-Reyes, Juan Carlos F.; Teplyakov, Andrew V.; Brown, Steven D.

    2010-10-01

    The substantial amount of information carried in temperature-programmed desorption (TPD) experiments is often difficult to mine due to the occurrence of competing reaction pathways that produce compounds with similar mass spectrometric features. Multivariate curve resolution (MCR) is introduced as a tool capable of overcoming this problem by mathematically detecting spectral variations and correlations between several m/z traces, which is later translated into the extraction of the cracking pattern and the desorption profile for each desorbate. Different from the elegant (though complex) methods currently available to analyze TPD data, MCR analysis is applicable even when no information regarding the specific surface reaction/desorption process or the nature of the desorbing species is available. However, when available, any information can be used as constraints that guide the outcome, increasing the accuracy of the resolution. This approach is especially valuable when the compounds desorbing are different from what would be expected based on a chemical intuition, when the cracking pattern of the model test compound is difficult or impossible to obtain (because it could be unstable or very rare), and when knowing major components desorbing from the surface could in more traditional methods actually bias the quantification of minor components. The enhanced level of understanding of thermal processes achieved through MCR analysis is demonstrated by analyzing three phenomena: i) the cryogenic desorption of vinyltrimethylsilane from silicon, an introductory system where the known multilayer and monolayer components are resolved; ii) acrolein hydrogenation on a bimetallic Pt-Ni-Pt catalyst, where a rapid identification of hydrogenated products as well as other desorbing species is achieved, and iii) the thermal reaction of Ti[N(CH 3) 2] 4 on Si(100), where the products of surface decomposition are identified and an estimation of the surface composition after the

  19. Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO2(111)

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jonathan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steven H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Beste, Ariana [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-24

    Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on the surface and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.

  20. On the nature of acidic centers in the deep oxidation of olefins over CdMoO/sub 4/: temperature-programmed desorption/Mass spectrometer investigation

    Energy Technology Data Exchange (ETDEWEB)

    Forzatti, P. (Politec. Milano); Kotzev, N.; Gencheva, L.; Pasquon, I.; Shopov, D.; Villa, P.L.

    1980-10-01

    Propylene and 1-butene were adsorbed at room temperature on cadmium molybdate, a poorly selective catalyst for olefin oxidation Temperature-programed desorption occurred at low temperature (145/sup 0/C for propylene, 100/sup 0/C for butene) from a reversibly adsorbed species on A sites, and at high temperature (400/sup 0/C for both olefins) from B sites in dissociated form. The A-sites were apparently vacancies or surface defects, which were destroyed when the cata

  1. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...

  2. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  3. Temperature dependence of CO desorption kinetics at a novel Pt-on-Au/C PEM fuel cell anode

    DEFF Research Database (Denmark)

    Pitois, A.; Pilenga, A.; Pfrang, A.

    2010-01-01

    techniques. The temperature dependence of the CO desorption process on this system has been investigated using isotopic exchange experiments. The CO desorption kinetics have been studied as a function of temperature and flow rate. Desorption rate constants have been measured for a temperature range between...... degrees C. The dependence in temperature of the desorption rate constants for the novel Pt-on-Au/C system is however much lower than that observed for the Pt/C system. This suggests that the nature of the substrate has a significant influence on the catalyst surface properties. It shows that, in surface...... 25 and 150 degrees C. These desorption rate constants have been compared with the benchmarking desorption rate data obtained for the commercial Pt/C catalyst under similar experimental conditions. A comparable desorption rate constant for the Pt-on-Au/C and Pt/C systems has been obtained at 25...

  4. Anomalous low-temperature desorption from preirradiated rare gas solids

    International Nuclear Information System (INIS)

    Savchenko, E.V.; Gumenchuk, G.B.; Yurtaeva, E.M.; Belov, A.G.; Khyzhniy, I.V.; Frankowski, M.; Beyer, M.K.; Smith-Gicklhorn, A.M.; Ponomaryov, A.N.; Bondybey, V.E.

    2005-01-01

    The role for the exciton-induced defects in the stimulation of anomalous low-temperature desorption of the own lattice atoms from solid Ar and Ne preirradiated by an electron beam is studied. The free electrons from shallow traps-structural defects-was monitored by the measurements of a yield of the thermally induced exoelectron emission (TSEE). The reaction of recombination of self-trapped holes with electrons is considered as a source of energy needed for the desorption of atoms from the surface of preirradiated solids. A key part of the exciton-induced defects in the phenomenon observed is demonstrated

  5. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2013-04-01

    Full Text Available An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT for NOx storage catalysts (NSC enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD. The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1 time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2 during the short-term thermal NOx release.

  6. Stabilization of mercury over Mn-based oxides: Speciation and reactivity by temperature programmed desorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haomiao [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ma, Yongpeng [Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Huang, Wenjun; Mei, Jian; Zhao, Songjian; Qu, Zan [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yan, Naiqiang, E-mail: nqyan@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-01-05

    Highlights: • Hg-TPD method was used for speciation of mercury species. • Different elements modified MnO{sub x} have different mercury binding state. • Understanding mercury existed state was beneficial for designing novel materials. - Abstract: Mercury temperature-programmed desorption (Hg-TPD) method was employed to clarify mercury species over Mn-based oxides. The elemental mercury (Hg{sup 0}) removal mechanism over MnO{sub x} was ascribed to chemical-adsorption. HgO was the primary mercury chemical compound adsorbed on the surface of MnO{sub x}. Rare earth element (Ce), main group element (Sn) and transition metal elements (Zr and Fe) were chosen for the modification of MnO{sub x}. Hg-TPD results indicated that the binding strength of mercury on these binary oxides followed the order of Sn-MnO{sub x} < Ce-MnO{sub x} ∼ MnO{sub x} < Fe-MnO{sub x} < Zr-MnO{sub x}. The activation energies for desorption were calculated and they were 64.34, 101.85, 46.32, 117.14, and 106.92 eV corresponding to MnO{sub x}, Ce-MnO{sub x}, Sn-MnO{sub x}, Zr-MnO{sub x} and Fe-MnO{sub x}, respectively. Sn-MnO{sub x} had a weak bond of mercury (Hg-O), while Zr-MnO{sub x} had a strong bond (Hg≡O). Ce-MnO{sub x} and Fe-MnO{sub x} had similar bonds compared with pure MnO{sub x}. Moreover, the effects of SO{sub 2} and NO were investigated based on Hg-TPD analysis. SO{sub 2} had a poison effect on Hg{sup 0} removal, and the weak bond of mercury can be easily destroyed by SO{sub 2}. NO was favorable for Hg{sup 0} removal, and the bond strength of mercury was enhanced.

  7. Desorption of Benzene, 1,3,5-Trifluorobenzene, and Hexafluorobenzene from a Graphene Surface: The Effect of Lateral Interactions on the Desorption Kinetics.

    Science.gov (United States)

    Smith, R Scott; Kay, Bruce D

    2018-05-03

    The desorption of benzene, 1,3,5-trifluorobenzene (TFB), and hexafluorobenzene (HFB) from a graphene covered Pt(111) substrate was investigated using temperature programmed desorption (TPD). All three species have well resolved monolayer and second layer desorption peaks. The desorption spectra for submonolayer coverages of benzene and hexafluorobenzene are consistent with first order desorption kinetics. In contrast, the submonolayer TPD spectra for 1,3,5-trifluorobenzene align on a common leading-edge which is indicative of zero order desorption kinetics. The desorption behavior of the three molecules can be correlated with the strength of the quadrupole moments. Calculations (second-order Møller-Plesset perturbation and density functional theory) show that the potential minimum for coplanar TFB dimers is more than a factor of two greater than that for either benzene or HFB dimers. The calculations support the interpretation that benzene and HFB are less likely to form the two dimensional islands that are needed for submonolayer zero order desorption kinetics.

  8. Kinetics of Hydrogen Absorption and Desorption in Titanium

    Directory of Open Access Journals (Sweden)

    Suwarno Suwarno

    2017-10-01

    Full Text Available Titanium is reactive toward hydrogen forming metal hydride which has a potential application in      energy storage and conversion. Titanium hydride has been widely studied for hydrogen storage, thermal storage, and battery electrodes applications. A special interest is using titanium for hydrogen production in a hydrogen sorption-enhanced steam reforming of natural gas. In the present work, non-isothermal dehydrogenation kinetics of titanium hydride and kinetics of hydrogenation in gaseous flow at isothermal conditions were investigated. The hydrogen desorption was studied using temperature desorption spectroscopy (TDS while the hydrogen absorption and desorption in gaseous flow were studied by temperature programmed desorption (TPD. The present work showed that the path of dehydrogenation of the TiH2 is d®b®a hydride phase with possible overlapping steps occurred. The fast hydrogen desorption rate observed at the TDS main peak temperature were correlated with the fast transformation of the d-TiH1.41 to b-TiH0.59. In the gaseous flow, hydrogen absorption and desorption were related to the transformation of b-TiH0.59 Û d-TiH1.41 with 2 wt.% hydrogen reversible content. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 20th March 2017; Accepted: 9th April 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Suwarno, S., Yartys, V.A. (2017. Kinetics of Hydrogen Absorption and Desorption in Titanium. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 312-317  (doi:10.9767/bcrec.12.3.810.312-317

  9. Scattering, Adsorption, and Langmuir-Hinshelwood Desorption Models for Physisorptive and Chemisorptive Gas-Surface Systems

    Science.gov (United States)

    2013-09-01

    quantum effects by incorporating Zero- Point Energy ( ZPE ) in the initial conditions [19; 108]. Desorption calculations, in order to be incorporated...TST Transition State Theory TTPD Threshold Temperature-Programmed Desorption UHV Ultra-High Vacuum XHV Extreme-High Vacuum ZPE Zero-Point Energy 141

  10. Low-temperature thermal reduction of graphene oxide: In situ correlative structural, thermal desorption, and electrical transport measurements

    Science.gov (United States)

    Lipatov, Alexey; Guinel, Maxime J.-F.; Muratov, Dmitry S.; Vanyushin, Vladislav O.; Wilson, Peter M.; Kolmakov, Andrei; Sinitskii, Alexander

    2018-01-01

    Elucidation of the structural transformations in graphene oxide (GO) upon reduction remains an active and important area of research. We report the results of in situ heating experiments, during which electrical, mass spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) measurements were carried out correlatively. The simultaneous electrical and temperature programmed desorption measurements allowed us to correlate the onset of the increase in the electrical conductivity of GO by five orders of magnitude at about 150 °C with the maxima of the rates of desorption of H2O, CO, and CO2. Interestingly, this large conductivity change happens at an intermediate level of the reduction of GO, which likely corresponds to the point when the graphitic domains become large enough to enable percolative electronic transport. We demonstrate that the gas desorption is intimately related to (i) the changes in the chemical structure of GO detected by XPS and Raman spectroscopy and (ii) the formation of nanoscopic holes in GO sheets revealed by TEM. These in situ observations provide a better understanding of the mechanism of the GO thermal reduction.

  11. Hydrogen desorption from mechanically milled carbon micro coils hydrogenated at high temperature

    International Nuclear Information System (INIS)

    Yoshio Furuya; Shuichi Izumi; Seiji Motojima; Yukio Hishikawa

    2005-01-01

    Carbon micro coils (CMC) have been prepared by the catalytic pyrolysis of acetylene at 750-800 C. The as grown coils have an almost amorphous structure and contain about 1 mass% hydrogen. They have 0.1 - 10 mm coil length, 1-5 μm coil diameter, 0.1-0.5 μm coil pitch and about 100 m 2 /g specific surface area. They were graphitized, as maintaining the morphology of the coils, by heat-treating at a higher temperature than 2500 C in Ar atmosphere. The layer space (d) of graphitized CMC was determined to be 0.341 nm, forming a 'herringbone' structure with an inclination of 10-40 degree versus the coiled fiber axis, having a specific surface area of about 8 m 2 /g. The hydrogen absorption behaviors of CMC were investigated from RT to 1200 C by a thermal desorption spectrometry (TDS) using a quadrupole mass analyzer. In TDS measurements, pre-existing hydrogen, which was due to the residual acetylene incorporated into CMC on its growing, desorbed from 700 C and peaked at about 900 C. The increment in the main peak of desorbed hydrogen in the as-grown CMC heat-treated at 500 C for 1 h under high pressure of hydrogen gas (1.9 or 8.9 MPa) was not remarkable as is shown in Fig.1. While, in the CMC samples milled mechanically for 1 h at RT using a planetary ball mill, the increase of desorbed hydrogen became to be great with the hydrogen pressure (up to 8.9 MPa) on heat-treating at 500 C, as is shown in Fig.2. In these CMC samples, the building up temperature of the hydrogen desorption was shifted to a lower one and the temperature range of desorption became to be wider than those in the as-grown CMC because of the appearance of another desorption peak at about 600 C in addition to the peak ranging from 850 C to 900 C. The same kind of peak was also slightly observed in as-grown CMC (Fig.1). It is clear that this desorption at about 600 C has contributed to the remarkable increase of desorbed hydrogen in the milled CMC. In this work, values of more than 2 mass% were obtained

  12. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    International Nuclear Information System (INIS)

    Bartram, Michael E.; Creighton, J. Randall

    1999-01-01

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N 15 H 3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N 2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia

  13. Desorption of Reactive Red 198 from activated carbon prepared from walnut shells: effects of temperature, sodium carbonate concentration and organic solvent dose

    Directory of Open Access Journals (Sweden)

    Zohreh Alimohamadi

    2017-04-01

    Full Text Available This study investigated the effect of temperature, different concentrations of sodium carbonate,and the dose of organic solvent on the desorption of Reactive Red 198 dye from dye-saturated activated carbon using batch and continuous systems. The results of the batch desorption test showed 60% acetone in water as the optimum amount. However, when the concentration of sodium carbonate was raised, the dye desorption percentage increased from 26% to 42% due to economic considerations; 15 mg/L of sodium carbonate was selected to continue the processof desorption. Increasing the desorption temperature can improve the dye desorption efficiency.According to the column test results, dye desorption concentration decreased gradually with the passing of time. The column test results showed that desorption efficiency and the percentage of dye adsorbed decreased; however, it seemed to stabilize after three repeated adsorption/desorption cycles. The repeated adsorption–desorption column tests (3 cycles showed that the activated carbon which was prepared from walnut shell was a suitable and economical adsorbent for dye removal.

  14. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  15. Analyses of desorbed H2O with temperature programmed desorption technique in sol-gel derived HfO2 thin films

    International Nuclear Information System (INIS)

    Shimizu, H.; Nemoto, D.; Ikeda, M.; Nishide, T.

    2009-01-01

    Hafnium oxide (HfO 2 ) is a promising material for the gate insulator in highly miniaturized silicon (Si) ultra-large-scale-integration (ULSI) devices (32 nm and beyond). In the field chemistry, a sol-gel processing has been used to fabricate HfO 2 thin film with the advantages of low cost, relative simplicity, and easy control of the composition of the layers formed. Temperature-programmed desorption (TPD) has been used not only for analyzing adsorbed gases on the surfaces of bulk sol-gel-derived HfO 2 of sol-gel-derived HfO 2 thin film fired at 350, 450, 550 and 700 deg C in sol-gel derived HfO 2 films in air is investigated using TPD, and also the material characterization of HfO 2 thin films is evaluated by X-ray diffraction (XRD) method. The dielectric constant of the films was also estimated using the capacitance-voltage (C-V) method. TPD is essentially a method of analyzing desorped gases from samples heated by infra-red light as a function of temperature under vacuum conditions using a detector of quadruple mass spectroscopy (QMS). Sol-gel-derived HfO 2 films were fabricated on 76-mm-diameter Si(100) wafers as follows. Hafnia sol solutions were prepared by dissolving HfCl 4 in NH 4 OH solution, followed by the of HCOOH. (author)

  16. Hydrogen Temperature-Programmed Desorption in Platinum Catalysts: Decomposition and Isotopic Exchange by Spillover Hydrogen of Chemisorbed Ammonia.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Barr, M.K.; Modica, F.S.

    1996-01-01

    H{2}-TPD of Pt/alumina catalysts display multiple hydrogendesorptions. In addition to chemisorbed hydrogen (Peak I) atapproximately 175}o{C, there is a small hydrogen desorption (PeakII) at about 250}o{C and a large, irreversible hydrogen desorption(Peak III) at 450}o{C. The quantity of hydrogen

  17. Data compilation for particle impact desorption

    International Nuclear Information System (INIS)

    Oshiyama, Takashi; Nagai, Siro; Ozawa, Kunio; Takeuchi, Fujio.

    1984-05-01

    The desorption of gases from solid surfaces by incident electrons, ions and photons is one of the important processes of hydrogen recycling in the controlled thermonuclear reactors. We have surveyed the literature concerning the particle impact desorption published through 1983 and compiled the data on the desorption cross sections and desorption yields with the aid of a computer. This report presents the results obtained for electron stimulated desorption, the desorption cross sections and yields being given in graphs and tables as functions of incident electron energy, surface temperature and gas exposure. (author)

  18. Desorption of Water from Distinct Step Types on a Curved Silver Crystal

    Directory of Open Access Journals (Sweden)

    Jakrapan Janlamool

    2014-07-01

    Full Text Available We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111 × (100] via (111 to [5(111 × (110]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a “two state” desorption model.

  19. Effect Of The Desorption-Recombination Temperature On The Microstructure And Magnetic Properties Of HDDR Processed Nd-Fe-B Powders

    Directory of Open Access Journals (Sweden)

    Lee J.-G.

    2015-06-01

    Full Text Available The effect of the desorption-recombination temperature on the microstructure and magnetic properties of hydrogenation-disproportionation-desorption-recombination (HDDR processed Nd-Fe-B powders was studied. The NdxB6.4Ga0.3Nb0.2Febal (x=12.5-13.5, at.% casting alloys were pulverized after homogenizing annealing, and then subjected to HDDR treatment. During the HDDR process, desorption-recombination (DR reaction was induced at two different temperature, 810°C and 820°C. The higher Nd content resulted in enhanced coercivity of the HDDR powder, and which was attributed to the thicker and more uniform Nd-rich phase along grain boundaries. But this uniform Nd-rich phase induced faster grain growth. The remanence of the powder DR-treated at 820°C is higher than that DR-treated at 810°C. In addition, it was also confirmed that higher DR temperature is much more effective to improve squareness.

  20. Chemistry of CCl 4 on Fe 3O 4(1 1 1)-(2 × 2) surfaces in the presence of adsorbed D 2O studied by temperature programmed desorption

    Science.gov (United States)

    Adib, K.; Totir, G. G.; Fitts, J. P.; Rim, K. T.; Mueller, T.; Flynn, G. W.; Joyce, S. A.; Osgood, R. M.

    2003-07-01

    Temperature programmed desorption (TPD) was used to study surface reactions of Fe 3O 4(1 1 1)-(2 × 2) sequentially exposed, at ˜100 K, to vapor-phase D 2O and CCl 4. Previous TPD and XPS results have indicated that in the absence of D 2O, CCl 4 dissociatively adsorbs on Fe 3O 4(1 1 1) producing chemisorbed Cl and CCl 2. Subsequent heating of the surface results in abstraction of lattice iron and oxygen atoms and causes them to desorb as FeCl 2 and OCCl 2, respectively. This study shows that when this Fe 3O 4 surface is exposed only to D 2O, TPD measures a rich surface chemistry with multiple desorption events extending as high as ˜800 K, indicating dissociative adsorption of D 2O on the Fe 3O 4(1 1 1) surface. After sequential exposure to D 2O and then CCl 4, the production of FeCl 2 and OCCl 2 from adsorbed CCl 4 is suppressed, indicating that D 2O fragments block the surface reactive sites.

  1. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig Richmond [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl4 and a Al(Et)3 co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl2 and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl4 in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl2 by TiCl4 resulting in a thin film of MgCl2/TiClx, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl2/TiClx on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to ~1 Torr of Al(Et)3.

  2. Adsorption-Desorption of Hexaconazole in Soils with Respect to Soil Properties, Temperature, and pH

    Directory of Open Access Journals (Sweden)

    Maznah Zainol

    2016-06-01

    Full Text Available The effect of temperature and pH on adsorption-desorption of fungicide hexaconazole was studied in two Malaysian soil types; namely clay loam and sandy loam. The adsorption-desorption experiment was conducted using the batch equilibration technique and the residues of hexaconazole were analysed using the GC-ECD. The results showed that the adsorption-desorption isotherms of hexaconazole can be described with Freundlich equation. The Freundlich sorption coefficient (Kd values were positively correlated to the clay and organic matter content in the soils. Hexaconazole attained the equilibrium phase within 24 h in both soil types studied. The adsorption coefficient (Kd values obtained for clay loam soil and sandy loam soil were 2.54 mL/g and 2.27 mL/g, respectively, indicating that hexaconazole was weakly sorbed onto the soils due to the low organic content of the soils. Regarding thermodynamic parameters, the Gibb’s free energy change (ΔG analysis showed that hexaconazole adsorption onto soil was spontaneous and exothermic, plus it exhibited positive hysteresis. A strong correlation was observed between the adsorption of hexaconazole and pH of the soil solution. However, temperature was found to have no effect on the adsorption of hexaconazole onto the soils; for the range tested.

  3. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    Science.gov (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Thermal desorption and surface modification of He+ implanted into tungsten

    International Nuclear Information System (INIS)

    Fu Zhang; Yoshida, N.; Iwakiri, H.; Xu Zengyu

    2004-01-01

    Tungsten divertor plates in fusion reactors will be subject to helium bombardment. Helium retention and thermal desorption is a concerned issue in controlling helium ash. In the present study, fluence dependence of thermal desorption behavior of helium in tungsten was studied at different irradiation temperatures and ion energies. Results showed that helium desorption could start at ∼400 K with increasing fluence, while no noticeable peaks were detected at low fluence. Total helium desorption reached a saturation value at high fluence range, which was not sensitive to irradiation temperature or ion energy for the conditions evaluated. Surface modifications caused by either ion irradiation or thermal desorption were observed by SEM. The relationship of surface modifications and helium desorption behavior was discussed. Some special features of elevated irradiation temperature and lower ion energy were also indicated

  5. Oxygen Sorption and Desorption Properties of Selected Lanthanum Manganites and Lanthanum Ferrite Manganites

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Skou, Eivind M.; Jacobsen, Torben

    2015-01-01

    Temperature‐programmed desorption (TPD) with a carrier gas was used to study the oxygen sorption and desorption properties of oxidation catalysts and solid‐oxide fuel cell (SOFC) cathode materials (La0.85Sr0.15)0.95MnO3+δ (LSM) and La0.60Sr0.40Fe0.80Mn0.20O3‐δ (LSFM). The powders were characterized...... by X‐ray diffractometry, atomic force microscopy (AFM), and BET surface adsorption. Sorbed oxygen could be distinguished from oxygen originating from stoichiometry changes. The results indicated that there is one main site for oxygen sorption/desorption. The amount of sorbed oxygen was monitored over...... time at different temperatures. Furthermore, through data analysis it was shown that the desorption peak associated with oxygen sorption is described well by second‐order desorption kinetics. This indicates that oxygen molecules dissociate upon adsorption and that the rate‐determining step...

  6. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials; Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Markus

    2008-02-22

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  7. Distribution and removal of organochlorine pesticides in waste clay bricks from an abandoned manufacturing plant using low-temperature thermal desorption technology.

    Science.gov (United States)

    Cong, Xin; Li, Fasheng; Kelly, Ryan M; Xue, Nandong

    2018-04-01

    The distribution of pollutants in waste clay bricks from an organochlorine pesticide-contaminated site was investigated, and removal of the pollutants using a thermal desorption technology was studied. The results showed that the contents of HCHs in both the surface and the inner layer of the bricks were slightly higher than those of DDTs. The total pore volume of the bricks was 37.7 to 41.6% with an increase from external to internal surfaces. The removal efficiency by thermal treatment was within 62 to 83% for HCHs and DDTs in bricks when the temperature was raised from 200 to 250 °C after 1 h. HCHs were more easily removed than DDTs with a higher temperature. Either intraparticle or surface diffusion controls the desorption processes of pollutants in bricks. It was feasible to use the polluted bricks after removal of the pollutants by low-temperature thermal desorption technology.

  8. Experimental study on desorption characteristics of SAPO-34 and ZSM-5 zeolite

    Science.gov (United States)

    Yuan, Z. X.; Zhang, X.; Wang, W. C.; Du, C. X.; Liu, Z. B.; Chen, Y. C.

    2018-03-01

    The dynamic characteristics of SAPO-34 and ZSM-5 zeolite in the desorption process have been experimentally studied with the gravimetric method. The weight change of the test sample was recorded continually for different conditions of temperature and pressure. The curve of the desorption degree with the temperature and the pressure was obtained and discussed. With the intrinsic different micro-structure, the two zeolites showed distinguished characteristics of the desorption. In contrast to an S-shaped desorption curve of the SAPO-34, the ZSM-5 showed an exponential desorption curve. In comparison, the desorption characteristics of the ZSM-5 were better than that of the SAPO-34 in the temperature range of 40 °C 90 °C. Nevertheless, the effect of the pressure on the desorption degree was stronger for the SAPO-34 than for the ZSM-5. Further analysis revealed that the desorption speed was affected more strongly by the temperature than by the pressure.

  9. Data compilation for particle-impact desorption, 2

    International Nuclear Information System (INIS)

    Oshiyama, Takashi; Nagai, Siro; Ozawa, Kunio; Takeutchi, Fujio.

    1985-07-01

    The particle impact desorption is one of the elementary processes of hydrogen recycling in controlled thermonuclear fusion reactors. We have surveyed the literature concerning the ion impact desorption and photon stimulated desorption published through the end of 1984 and compiled the data on the desorption cross sections and yields with the aid of a computer. This report presents the results of the compilation in graphs and tables as functions of incident energy, surface temperature and surface coverage. (author)

  10. An infrared measurement of chemical desorption from interstellar ice analogues

    Science.gov (United States)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.

    2018-03-01

    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  11. Temperature-Induced Desorption of Methyl tert-Butyl Ether Confined on ZSM-5: An In Situ Synchrotron XRD Powder Diffraction Study

    Directory of Open Access Journals (Sweden)

    Elisa Rodeghero

    2017-02-01

    Full Text Available The temperature-induced desorption of methyl tert-butyl ether (MTBE from aqueous solutions onto hydrophobic ZSM-5 was studied by in situ synchrotron powder diffraction and chromatographic techniques. This kind of information is crucial for designing and optimizing the regeneration treatment of such zeolite. The evolution of the structural features monitored by full profile Rietveld refinements revealed that a monoclinic (P21/n to orthorhombic (Pnma phase transition occurred at about 100 °C. The MTBE desorption process caused a remarkable change in the unit-cell parameters. Complete MTBE desorption was achieved upon heating at about 250 °C. Rietveld analysis demonstrated that the desorption process occurred without any significant zeolite crystallinity loss, but with slight deformations in the channel apertures.

  12. Distribution law of temperature changes during methane adsorption and desorption in coal using infrared thermography technology

    Science.gov (United States)

    Zhao, Dong; Chen, Hao; An, Jiangfei; Zhou, Dong; Feng, Zengchao

    2018-05-01

    Gas adsorption and desorption is a thermodynamic process that takes place within coal as temperature changes and that is related to methane (CH4) storage. As infrared thermographic technology has been applied in this context to measure surface temperature changes, the aim of this research was to further elucidate the distribution law underlying this process as well as the thermal effects induced by heat adsorption and desorption in coal. Specimens of two different coal ranks were used in this study, and the surface temperature changes seen in the latter were detected. A contour line map was then drawn on the basis of initial results enabling a distribution law of temperature changes for samples. The results show that different regions of coal sample surfaces exhibit different heating rates during the adsorption process, but they all depends on gas storage capacity to a certain extent. It proposes a correlation coefficient that expresses the relationship between temperature change and gas adsorption capacity that could also be used to evaluate the feasibility of coalbed CH4 extraction in the field. And finally, this study is deduced a method to reveal the actual adsorption capacity of coal or CH4 reservoirs in in situ coal seams.

  13. Temperature dependences in electron-stimulated desorption of neutral europium

    CERN Document Server

    Ageev, V N; Madey, T E

    2003-01-01

    The electron-stimulated desorption (ESD) yield for neutral europium (Eu) atoms from Eu layers adsorbed on oxygen-covered tungsten surfaces has been measured as a function of electron energy, europium coverage and degree of oxidation of tungsten, with an emphasis on effects of substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector. We expand on an earlier report, and compare ESD of multivalent Eu with ESD of monovalent alkali atoms, studied previously. The Eu atom ESD is a complicated function of Eu coverage, electron energy and substrate temperature. In the coverage range 0.05-0.35 monolayer (ML), overlapping resonant-like Eu atom yield peaks are observed at electron energies E sub e of 36 and 41 eV that might be associated with Eu or W shallow core level excitations. Additional resonant-like peaks are seen at E sub e of 54 and 84 eV that are associated with W 5p and 5s level excitations. The Eu atom yield peaks at 36 and 41 eV are seen only...

  14. The desorption of caesium from Peach Bottom HTGR steam generator materials

    International Nuclear Information System (INIS)

    Clark, M.J.

    1979-03-01

    The work at Harwell on the Peach Bottom End-of-Life Program in co-operation with the General Atomic Company (U.S.A.) is described. Materials taken from the Economiser, Evaporator and Superheater Sections of the Peach Bottom Unit No. 1. High Temperature Gas Cooled Reactor (HTGR) Heat Exchanger were placed in a reducing atmosphere comparable to the composition of an HTGR helium coolant gas, and the desorption of caesium isotopes measured under known conditions of flow, temperature and oxygen pressure. (author)

  15. Adsorption and desorption properties of TiZrV getter film at different temperatures in the presence of synchrotron radiation

    CERN Document Server

    Anashin, V V; Krasnov, A A; Ruzinov, V L

    2008-01-01

    The coating of vacuum chambers with TiZrV non-evaporable getter (NEG) developed at CERN is an attractive pumping technology for vacuum systems. Once activated the NEG coating is a material since apart from providing distributed pumping, it may inhibit the gas desorption from the vast reservoir of the industrially prepared substrate material. The present work includes an advanced study of NEG properties under Synchrotron Radiation (SR) at temperatures in the range from 300K to 90K. The work was performed at BINP using SR from the VEPP-3 storage ring. The main result is that dynamic pressure and desorption of H2 inside NEG coated chamber at 90K are significantly less than those at room temperature.

  16. Oxygen isotopic fractionation of O₂ during adsorption and desorption processes using molecular sieve at low temperatures.

    Science.gov (United States)

    Ahn, Insu; Kusakabe, Minoru; Lee, Jong Ik

    2014-06-15

    Cryogenic trapping using molecular sieves is commonly used to collect O2 extracted from silicates for (17)O/(16)O and (18)O/(16)O analyses. However, gases which interfere with (17)O/(16)O analysis, notably NF3, are also trapped and their removal is essential for accurate direct measurement of the (17)O/(16)O ratio. It is also necessary to identify and quantify any isotopic fractionation associated with the use of cryogenic trapping using molecular sieves. The oxygen isotopic compositions of O2 before and after desorption from, and adsorption onto, 13X and 5A molecular sieves (MS13X and MS5A) at 0°C, -78°C, -114°C, and -130°C were measured in order to determine the oxygen isotopic fractionation at these temperatures. We also investigated whether isotopic fractionation occurred when O2 gas was transferred sequentially into a second cold finger, also containing molecular sieve. It was confirmed that significant oxygen isotopic fractionation occurs between the gaseous O2 and that adsorbed onto molecular sieve, if desorption and adsorption are incomplete. As the fraction of released or untrapped O2 becomes smaller with decreasing trapping temperature (from 0 to -130°C), the isotopic fractionation becomes larger. Approximately half of the total adsorbed O2 is released from the molecular sieve during desorption at -114°C, which is the temperature recommended for separation from NF3 (retained on the molecular sieve), and this will interfere with (17)O/(16)O measurements. The use of a single cold finger should be avoided, because partial desorption is accompanied by oxygen isotopic fractionation, thereby resulting in inaccurate isotopic data. The use of a dual cold finger arrangement is recommended because, as we have confirmed, the transfer of O2 from the first trap to the second is almost 100%. However, even under these conditions, a small isotopic fractionation (0.18 ± 0.05‰ in δ(17)O values and 0.26 ± 0.06‰ in δ(18)O values) occurred, with O2 in

  17. Microsystem with integrated capillary leak to mass spectrometer for high sensitivity temperature programmed desorption

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Jensen, Søren; Hansen, Ole

    2004-01-01

    leak minimizes dead volumes in the system, resulting in increased sensitivity and reduced response time. These properties make the system ideal for TPD experiments in a carrier gas. With CO desorbing from platinum as model system, it is shown that CO desorbing in 105 Pa of argon from as little as 0.......5 cm2 of platinum foil gives a clear desorption peak. By using the microfabricated flow system, TPD experiments can be performed in a carrier gas with a sensitivity approaching that of TPD experiments in vacuum. ©2004 American Institute of Physics...

  18. Desorption Kinetics and Mechanisms of CO2 on Amine-Based Mesoporous Silica Materials

    Directory of Open Access Journals (Sweden)

    Yang Teng

    2017-01-01

    Full Text Available Tetraethylenepentamine (TEPA-based mesoporous MCM-41 is used as the adsorbent to determine the CO2 desorption kinetics of amine-modified materials after adsorption. The experimental data of CO2 desorption as a function of time are derived by zero-length column at different temperatures (35, 50, and 70 °C and analyzed by Avrami’s fractional-order kinetic model. A new method is used to distinguish the physical desorption and chemical desorption performance of surface-modified mesoporous MCM-41. The activation energy Ea of CO2 physical desorption and chemical desorption calculated from Arrhenius equation are 15.86 kJ/mol and 57.15 kJ/mol, respectively. Furthermore, intraparticle diffusion and Boyd’s film models are selected to investigate the mechanism of CO2 desorption from MCM-41 and surface-modified MCM-41. For MCM-41, there are three rate-limiting steps during the desorption process. Film diffusion is more prominent for the CO2 desorption rates at low temperatures, and pore diffusion mainly governs the rate-limiting process under higher temperatures. Besides the surface reaction, the desorption process contains four rate-limiting steps on surface-modified MCM-41.

  19. Evaluation of contaminated soil remediation by low temperature thermal desorption

    International Nuclear Information System (INIS)

    Gibbs, L.; Punt, M.

    1993-01-01

    Soil contaminated with diesel and aviation fuels has been excavated and stored at a Canadian Forces Base in Ontario. Because of the volatile nature of this contamination, it was determined that low temperature thermal desorption (LTTD) would be an effective method of remediating this soil. A full scale evaluation of LTTD technology was conducted at the base to determine its acceptability for other sites. In the LTTD process, soil enters a primary treatment unit and is heated to a sufficiently high temperature to volatilize the hydrocarbon contaminants. Offgases are treated in a secondary combustion chamber. Primary treatment kiln temperature was maintained at 260 degree C for each test during the evaluation. The LTTD unit was evaluated for two sets of operating conditions: two levels of inlet soil total petroleum hydrocarbon concentrations and two feed rates (16,000 and 22,000 kg/h). Emissions from the LTTD unit were monitored continuously for volatile organics, moisture, and gas velocity. Results of the tests and emissions analyses are presented. Outlet soil hydrocarbon concentration requirements of 100 ppM were not exceeded during the evaluation. Air hydrocarbon emissions only exceeded 100-ppM limits under upset conditions, otherwise virturally no total hydrocarbon content was observed in the stack gas. 5 refs., 6 figs., 9 tabs

  20. Rapid screening of pharmaceutical drugs using thermal desorption – SALDI mass spectrometry

    International Nuclear Information System (INIS)

    Grechnikov, A A; Kubasov, A E; Borodkov, A S; Georgieva, V B; Nikiforov, S M; Simanovsky, Ya O; Alimpiev, S S

    2012-01-01

    A novel approach to the rapid screening of pharmaceutical drugs by surface assisted laser desorption-ionization (SALDI) mass spectrometry with the rotating ball interface coupled with temperature programmed thermal desorption has been developed. Analytes were thermally desorbed and deposited onto the surface of amorphous silicon substrate attached to the rotating ball. The ball was rotated and the deposited analytes were analyzed using SALDI. The effectiveness of coupling SALDI mass spectrometry with thermal desorption was evaluated by the direct and rapid analysis of tablets containing lidocaine, diphenhydramine and propranolol without any sample pretreatment. The overall duration of the screening procedure was 30÷40 sec. Real urine samples were studied for drug analysis. It is shown that with simple preparation steps, urine samples can be quantitatively analyzed using the proposed technique with the detection limits in the range of 0.2÷0.5 ng/ml.

  1. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  2. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows the

  3. Thermal desorption of formamide and methylamine from graphite and amorphous water ice surfaces

    Science.gov (United States)

    Chaabouni, H.; Diana, S.; Nguyen, T.; Dulieu, F.

    2018-04-01

    Context. Formamide (NH2CHO) and methylamine (CH3NH2) are known to be the most abundant amine-containing molecules in many astrophysical environments. The presence of these molecules in the gas phase may result from thermal desorption of interstellar ices. Aims: The aim of this work is to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces and to understand their interaction with water ice. Methods: Temperature programmed desorption (TPD) experiments of formamide and methylamine ices were performed in the sub-monolayer and monolayer regimes on graphite (HOPG) and non-porous amorphous solid water (np-ASW) ice surfaces at temperatures 40-240 K. The desorption energy distributions of these two molecules were calculated from TPD measurements using a set of independent Polanyi-Wigner equations. Results: The maximum of the desorption of formamide from both graphite and ASW ice surfaces occurs at 176 K after the desorption of H2O molecules, whereas the desorption profile of methylamine depends strongly on the substrate. Solid methylamine starts to desorb below 100 K from the graphite surface. Its desorption from the water ice surface occurs after 120 K and stops during the water ice sublimation around 150 K. It continues to desorb from the graphite surface at temperatures higher than160 K. Conclusions: More than 95% of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate and is released into the gas phase with a desorption energy distribution Edes = 7460-9380 K, which is measured with the best-fit pre-exponential factor A = 1018 s-1. However, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes = 3850-8420 K) is measured with the best-fit pre-exponential factor A = 1012 s-1. A fraction of solid methylamine monolayer of roughly 0.15 diffuses through the water ice surface towards the HOPG substrate. This small amount of methylamine

  4. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuru; Haga, Tetsuya; Kawai, Yasuaki; Kojima, Yoshitsugu

    2007-01-01

    The dehydrogenation reactions of the mixtures of lithium amide (LiNH 2 ) and lithium hydride (LiH) were studied under an Ar atmosphere by means of temperature programmed desorption (TPD) technique. The dehydrogenation reaction of the LiNH 2 /LiH mixture was accelerated by addition of 1 mol% Ti(III) species (k = 3.1 x 10 -4 s -1 at 493 K), and prolonged ball-milling time (16 h) further enhanced reaction rate (k = 1.1 x 10 -3 s -1 at 493 K). For the hydrogen desorption reaction of Ti(III) doped samples, the activation energies estimated by Kissinger plot (95 kJ mol -1 ) and Arrhenius plot (110 kJ mol -1 ) were in reasonable agreement. The LiNH 2 /LiH mixture without Ti(III) species, exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of the LiNH 2 /LiH mixture

  5. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, 1

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Fujii, Ayako; Sakane, Kohji; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1984-01-01

    An investigation was carried out on the desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent by the batch process. The rate of desorption of uranium with acidic eluent depended on temperature, showing an increase as the temperature was raised. But the rate of desorption with acidic eluent was less dependent on temperature than that obtained when mixed eluent of sodium carbonate-sodium hydrogencarbonate was used. The rate of desorption of uranium did not vary in the range of concentration from 0.3 to 0.5 N, and the rate of desorption with sulfuric acid was slightly higher than that obtained when hydrochloric acid was used. The amount of dissolved titanium decreased as the ratio of adsorbent to eluent (RAE) was increased. At RAE of 10 %, the percentage of dissolved titanium (DTI) was below 0.38 % with sulfuric acid, below 0.7 % with hydrochloric acid. These values were found to be higher than the ones with the carbonate eluent. The elements except uranium, which were adsorbed on the adsorbent, were eluted simultaneously with acidic eluent. The regeneration of the adsorbent after desorption, therefore, was found to be unnecessary. In a repeated test of adsorption-desorption treatment up to five times, the percentage of uranium adsorbed from natural sea water was approximately constant of 85 %. From these results, the application of column process to the desorption of uranium with acidic eluent at room temperature was proposed to be feasible. (author)

  6. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, (1)

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Fujii, Ayako; Sakane, Kohji; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1983-01-01

    An investigation was carried out on the desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent by the batch process. The rate of desorption of uranium with acidic eluent depended on temperature, showing an increase as the temperature was raised. But the rate of desorption with acidic eluent was less dependent on temperature than that obtained when mixed eluent of sodium carbonate-sodium hydrogencarbonate was used. The difference of the rate of desorption of uranium in the range of concentration from 0.3 to 0.5N was not found, and the rate of desorption with sulfuric acid was slightly higher than that obtained when hydrochloric acid was used. The amount of dissolved titanium decreased as the ratio of adsorbent to eluent (RAE) was increased. At RAE of 10%, the percentage of dissolved titanium (DTI) was below 0.38% with sulfuric acid, below 0.7% with hydrochloric acid. These values were found to be higher than the ones with the carbonate eluent. The elements except uranium, which were adsorbed on the adsorbent, were eluted simultaneously with acidic eluent. The regeneration of the adsorbent after desorption, therefore, was found to be unnecessary. In a repeated test of adsorption-desorption treatment up to five times, the percentage of uranium adsorbed from natural sea water was approximately constant of 85%. From these results, the application of column process to the desorption of uranium with acidic eluent at room temperature was proposed to be feasible. (author)

  7. Mechanism and Thermochemistry of Coal Char Oxidation and Desorption of Surface Oxides

    DEFF Research Database (Denmark)

    Levi, Gianluca; Causà, Mauro; Lacovig, Paolo

    2017-01-01

    The present study investigates the coal char combustion by a combination of thermochemical and X-ray photoemission spectroscopy (XPS) analyses. Thermoanalytical methods (differential thermogravimetry, differential scanning calorimetry, and temperature-programmed desorption) are used to identify...... the key reactive steps that occur upon oxidation and heating of coal char (chemisorption, structural rearrangement and switchover of surface oxides, and desorption) and their energetics. XPS is used to reveal the chemical nature of the surface oxides that populate the char surface and to monitor...... functionalities prevail. The rearrangement of epoxy during preoxidation goes together with activation of the more stable and less reactive carbon sites. Results are in good agreement with semi-lumped kinetic models of carbon oxidation, which include (1) formation of "metastable" surface oxides, (2) complex...

  8. Bacterial desorption from food container and food processing surfaces.

    Science.gov (United States)

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  9. Reducibility of ceria-lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions

    International Nuclear Information System (INIS)

    Bernal, S.; Blanco, G.; Cifredo, G.; Perez-Omil, J.A.; Pintado, J.M.; Rodriguez-Izquierdo, J.M.

    1997-01-01

    The present paper deals with the preparation and characterization of La/Ce mixed oxides, with La molar contents of 20, 36 and 57%. We carry out the study of the structural, textural and redox properties of the mixed oxides, comparing our results with those for pure ceria. For this aim we use temperature programmed reduction (TPR), temperature programmed desorption (TPD), nitrogen physisorption at 77 K, X-ray diffraction and high resolution electron microscopy. The mixed oxides are more easy to reduce in a flow of hydrogen than ceria. Moreover, in an inert gas flow they release oxygen in higher amounts and at lower temperatures than pure CeO 2 . The textural stability of the mixed oxides is also improved by incorporation of lanthana. All these properties make the ceria-lanthana mixed oxides interesting alternative candidates to substitute ceria in three-way catalyst formulations. (orig.)

  10. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials

    International Nuclear Information System (INIS)

    Bender, Markus

    2008-01-01

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  11. TPD IR studies of CO desorption from zeolites CuY and CuX

    Science.gov (United States)

    Datka, Jerzy; Kozyra, Paweł

    2005-06-01

    The desorption of CO from zeolites CuY and CuX was followed by TPD-IR method. This is a combination of temperature programmed desorption and IR spectroscopy. In this method, the status of activated zeolite (before adsorption), the process of adsorption, and the status of adsorbed molecules can be followed by IR spectroscopy, and the process of desorption (with linear temperature increase) can be followed both by IR spectroscopy and by mass spectrometry. IR spectra have shown two kinds of Cu + sites in both CuY and CuX. Low frequency (l.f.) band (2140 cm -1 in CuY and 2130 cm -1 in CuX) of adsorbed CO represents Cu + sites for which π back donation is stronger and σ donation is weaker whereas high frequency h.f. band (2160 cm -1 in CuY and 2155 cm -1 in CuX) represent Cu + sites for which π back donation is weaker and σ donation is stronger. The TPD-IR experiments evidenced that the Cu + sites represented by l.f. band bond CO more weakly than those represented by h.f. one, indicating that σ donation has more important impact to the strength of Cu +-CO bonding. On the contrary, π back donation has bigger contribution to the activation of adsorbed molecules.

  12. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    Science.gov (United States)

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The feasibility of desorption on Zeolite-water pair using dry gas

    Science.gov (United States)

    Oktariani, E.; Nakashima, K.; Noda, A.; Xue, B.; Tahara, K.; Nakaso, K.; Fukai, J.

    2018-04-01

    The increase in temperature, reduction in partial pressure, reduction in concentration, purging with an inert fluid, and displacement with a more strongly adsorbing species are the basic things that occur in the practical method of desorption. In this study, dry gas at constant temperature and pressure was employed as the aid to reduce the partial pressure in the water desorption on the zeolite 13X. The objective of this study is to confirm the feasibility of desorption using dry gas experimentally and numerically. The implication of heat and mass transfers were numerically investigated to find the most influential. The results of numerical simulation agree with the experimental ones for the distribution of local temperature and average water adsorbed in the packed bed.

  14. Impact of neutron irradiation on thermal helium desorption from iron

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: hux1@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Field, Kevin G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Taller, Stephen [University of Michigan, Ann Arbor, MI 48109 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, Brian D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 10{sup 18} He/m{sup 2}. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  15. Desorption dynamics of deuterium in CuCrZr alloy

    Science.gov (United States)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  16. Universal scaling for biomolecule desorption induced by swift heavy ions

    International Nuclear Information System (INIS)

    Szenes, G.

    2005-01-01

    A thermal activation mechanism is proposed for the desorption of biomolecules. Good agreement is found with the experiments in a broad range of the electronic stopping power. The activation energies of desorption U are 0.33, 1.57 and 5.35 eV for positive, negative and neutral leucine molecules, respectively, and 2.05 eV for positive ergosterol molecules. The desorption of valine clusters is analyzed. The magnitude of the specific heat shows that the internal degrees of freedom are not excited up to the moment of desorption. The effect of irradiation temperature and of ion velocity on the desorption yield is discussed on the basis of the author's model. The scaling function derived in the model for the desorption of biomolecules is applied also to the sputtering of SiO 2 and U = 0.42 eV is obtained

  17. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    Science.gov (United States)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  18. Treating high-mercury-containing lamps using full-scale thermal desorption technology.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C

    2009-03-15

    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  19. Desorption process of hydrogen starting from the Mg2NiH4 and Mg2NiH0.3

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Basurto S, R.; Lopez M, B.E.

    2002-01-01

    In this work the desorption velocity of H 2 was determined starting from the magnesium nickel hydride once the reaction between the intermetallic and the hydrogen was realized, the compound were analysed by means of a thermogravimetric equipment, the conditions for carrying out the analysis were: 10 C by minute in nitrogen atmosphere at a volume of 50 ml by minute, subsequently the isotherms at different times were programmed and the desorption velocity of hydrogen was determined. The results show that the desorption velocity of hydrogen depends of the temperature, using only the nitrogen flux which acts as a carrier gas. Observing that the hydrogen liberation is carried out by means of two mechanisms according to the isotherms obtained. (Author)

  20. Reduction of hydrogen desorption temperature of ball-milled MgH2 by NbF5 addition

    International Nuclear Information System (INIS)

    Recham, N.; Bhat, V.V.; Kandavel, M.; Aymard, L.; Tarascon, J.-M.; Rougier, A.

    2008-01-01

    Enhanced sorption properties of ball-milled MgH 2 are reported by adding NbF 5 . Among various catalyst amounts, 2 mol% of NbF 5 reveals to be the optimum concentration leading to significant reduction of the desorption temperature as well as faster kinetics of ball-milled MgH 2 . At 200 deg. C, temperature at which MgH 2 does not show any activity, MgH 2NbF 5 /2mol% composite desorbs 3.2 wt.% of H 2 in 50 mins. Interestingly, the addition of NbF 5 is also associated with an increase in the desorption pressure. At 300 deg. C, MgH 2NbF 5 /2mol% composite starts to desorb hydrogen at 600 mbar in comparison with 1 mbar for MgH 2 . Further improvements were successfully achieved by pre-grinding NbF 5 prior to ball-milling the catalyst with MgH 2 . Such pre-ground NbF 5 catalyzed MgH 2 composite desorbs 3 wt.% of H 2 at 150 deg. C. Improved properties are associated with smaller activation energies down to values close to the enthalpy of formation of MgH 2 . Finally, the mechanism at the origin of the enhancement is discussed in terms of catalyst stability, MgF 2 formation and electronic density localization

  1. Low energy electron stimulated desorption from DNA films dosed with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Mirsaleh-Kohan, Nasrin; Bass, Andrew D.; Cloutier, Pierre; Massey, Sylvain; Sanche, Leon [Groupe en sciences des radiations, Faculte de medecine et des sciences de la sante, Universite de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2012-06-21

    Desorption of anions stimulated by 1-18 eV electron impact on self-assembled monolayer (SAM) films of single DNA strands is measured as a function of film temperature (50-250 K). The SAMs, composed of 10 nucleotides, are dosed with O{sub 2}. The OH{sup -} desorption yields increase markedly with exposure to O{sub 2} at 50 K and are further enhanced upon heating. In contrast, the desorption yields of O{sup -}, attributable to dissociative electron attachment to trapped O{sub 2} molecules decrease with heating. Irradiation of the DNA films prior to the deposition of O{sub 2} shows that this surprising increase in OH{sup -} desorption, at elevated temperatures, arises from the reaction of O{sub 2} with damaged DNA sites. These results thus appear to be a manifestation of the so-called 'oxygen fixation' effect, well known in radiobiology.

  2. Study of adsorption and desorption of water on Li4SiO4

    International Nuclear Information System (INIS)

    Schauer, V.; Schumacher, G.; Kernforschungszentrum Karlsruhe GmbH

    1989-01-01

    Lithium orthosilicate is one of the candidate materials for tritium breeding in a fusion reactor blanket. The release of tritium from this material depens on diffusion in the bulk and on desorption from the surface of the material which is usually covered by adsorbed water. Adsorption and desorption of water was examined to gain an insight into the release of tritium from the surface. Temperature controlled desorption experiments with lithium orthosilicate powder show desorption peaks which are assigned to the desorption of physisorbed water. At temperatures above 390 K and partial pressures up to 1.6 mbar water is absorbed in the first layer on the surface only. Immersion experiments gave much too high values of the heat of immersion for spray dried powder but reasonable 82 kJ/mol of water for spheres of 0.5 mm diameter produced from molten orthosilicate. (orig.)

  3. Investigations on ion-beam induced desorption from cryogenic surfaces; Untersuchungen zu ionenstrahlinduzierter Desorption von kryogenen Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Christoph

    2017-07-03

    A central component of FAIR, the Facility for Antiproton and Ion Research, will be the superconducting heavy ion synchrotron SIS100, which is supposed to provide reliable, high intensity beams for various applications. Its beam intensity is governed by the space charge limit, while the maximum energy is determined by the machine's magnetic rigidity. That means, ions with higher charge state can be accelerated to a higher energy, but with less intensity. For highest intensity beams, intermediate charge states have to be used instead of high charge state ions. This alleviates the issue of space charge but gives rise to dynamic vacuum effects, which also limit beam intensity: beam particles collide with residual gas particles, which leads to charge exchange and their subsequent loss. Impacting on the chamber wall, these ions release adsorbed gas particles. This process is called desorption and leads to a localized increase in pressure, which in turn causes more charge exchange. After a few rounds of self amplification, this can lead to total beam loss. This ''runaway-desorption'' is typically the main beam intensity limiting process for intermediate charge state (heavy) ion beams. The extent of this phenomenon is governed by two factors: the initial beam intensity and the desorption yield. The latter is examined within the scope of this thesis. Special emphasis is placed on the influence of the target's temperature, since the SIS100 will be a superconducting machine with cryogenic vacuum chamber walls. In order to investigate this topic, an experimental setup has been devised, built at the SIS18 and taken into commission. Based on the experience gained during operation, it has been continuously improved and extended. Another central innovation presented in this thesis is the use of gas dynamics simulations for an improved method of data analysis. Using this technique, environmental conditions like the chamber geometry and the connected

  4. Growth of an Ultrathin Zirconia Film on Pt3Zr Examined by High-Resolution X-ray Photoelectron Spectroscopy, Temperature-Programmed Desorption, Scanning Tunneling Microscopy, and Density Functional Theory.

    Science.gov (United States)

    Li, Hao; Choi, Joong-Il Jake; Mayr-Schmölzer, Wernfried; Weilach, Christian; Rameshan, Christoph; Mittendorfer, Florian; Redinger, Josef; Schmid, Michael; Rupprechter, Günther

    2015-02-05

    Ultrathin (∼3 Å) zirconium oxide films were grown on a single-crystalline Pt 3 Zr(0001) substrate by oxidation in 1 × 10 -7 mbar of O 2 at 673 K, followed by annealing at temperatures up to 1023 K. The ZrO 2 films are intended to serve as model supports for reforming catalysts and fuel cell anodes. The atomic and electronic structure and composition of the ZrO 2 films were determined by synchrotron-based high-resolution X-ray photoelectron spectroscopy (HR-XPS) (including depth profiling), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. Oxidation mainly leads to ultrathin trilayer (O-Zr-O) films on the alloy; only a small area fraction (10-15%) is covered by ZrO 2 clusters (thickness ∼0.5-10 nm). The amount of clusters decreases with increasing annealing temperature. Temperature-programmed desorption (TPD) of CO was utilized to confirm complete coverage of the Pt 3 Zr substrate by ZrO 2 , that is, formation of a closed oxide overlayer. Experiments and DFT calculations show that the core level shifts of Zr in the trilayer ZrO 2 films are between those of metallic Zr and thick (bulklike) ZrO 2 . Therefore, the assignment of such XPS core level shifts to substoichiometric ZrO x is not necessarily correct, because these XPS signals may equally well arise from ultrathin ZrO 2 films or metal/ZrO 2 interfaces. Furthermore, our results indicate that the common approach of calculating core level shifts by DFT including final-state effects should be taken with care for thicker insulating films, clusters, and bulk insulators.

  5. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-01-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb 14 C-DDT, 14 C-phenanthrene (Phe), 14 C-perfluorooctanoic acid (PFOA) and 14 C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Highlights: • PVC and PE (200–250 μm) were able to sorb phenanthrene, DDT, PFOA and DEHP. • Desorption rates were faster using a gut surfactant compared to seawater alone. • Desorption rates were further enhanced at lower pH and higher temperature. • Plastic-POPs were ranked according to their potential to cause “harm”. -- Desorption rates of sorbed POPs from plastics were substantially enhanced under gut conditions specific of warm blooded organisms, suggesting potential transfer following ingestion

  6. Treatment of Y-12 storm sewer sediments and DARA soils by thermal desorption

    International Nuclear Information System (INIS)

    Morris, M.I.; Shealy, S.E.

    1995-01-01

    The 1992 Oak Ridge Reservation Federal Facilities Compliance Agreement (FFCA) listed a number of mixed wastes, subject to land disposal restrictions (LDR), for which no treatment method had been identified, and required DOE to develop strategies for treatment and ultimate disposal of those wastes. This paper presents the results of a program to demonstrate that thermal desorption can remove both organics and mercury from two mixed wastes from the DOE Y-12 facility in Oak Ridge, Tennessee. The first waste, the Y-12 Storm Sewer Sediments (SSSs) was a sediment generated from upgrades to the plant storm sewer system. This material contained over 4 percent mercury, 2 percent uranium and 350 mg/kg polychlorinated biphenyls (PCBs). Leachable mercury exceeded toxicity characteristic leaching procedure (TCLP) and LDR criteria. The second waste, the Disposal Area Remedial Action (DARA) Soils, are contaminated with uranium, mercury and PCBs. This treatability study included bench-scale testing of a thermal desorption process. Results of the testing showed that, for the SSSs, total mercury could be reduced to 120 mg/kg by treatment at 600 degrees C, which is at the high end of the temperature range for typical thermal desorption systems. Leachable TCLP mercury was less than 50 μg/L and PCBs were below 2 mg/kg. Treatment of the DARA Soils at 450 degrees C for 10 minutes resulted in residual PCBs of 0.6 to 3.0 mg/kg. This is too high (goal < 2mg/kg) and higher treatment temperatures are needed. The testing also provided information on the characteristics and quantities of residuals from the thermal desorption process

  7. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  8. Interactions on External MOF Surfaces: Desorption of Water and Ethanol from CuBDC Nanosheets.

    Science.gov (United States)

    Elder, Alexander C; Aleksandrov, Alexandr B; Nair, Sankar; Orlando, Thomas M

    2017-10-03

    The external surfaces of metal-organic framework (MOF) materials are difficult to experimentally isolate due to the high porosities of these materials. MOF surface surrogates in the form of copper benzenedicarboxylate (CuBDC) nanosheets were synthesized using a bottom-up approach, and the surface interactions of water and ethanol were investigated by temperature-programmed desorption (TPD). A method of analysis of diffusion-influenced TPD was developed to measure the desorption properties of these porous materials. This approach also allows the extraction of diffusion coefficients from TPD data. The transmission Fourier transform infrared spectra, powder X-ray diffraction patterns, and TPD data indicate that water desorbs from CuBDC nanosheets with activation energies of 44 ± 2 kJ/mol at edge sites and 58 ± 1 kJ/mol at external surface and internal and pore sites. Ethanol desorbs with activation energies of 58 ± 1 kJ/mol at internal pore sites and 66 ± 0.4 kJ/mol at external surface sites. Co-adsorption of water and ethanol was also investigated. The presence of ethanol was found to inhibit the desorption of water, resulting in a water desorption process with an activation energy of 68 ± 0.7 kJ/mol.

  9. Study of heterogeneous catalytic processes over cobalt, molybdenum and cobalt-molybdenum catalysts supported on alumina by temperature-programmed desorption and temperature-programmed reaction. 1. Adsorption of hydrozen

    International Nuclear Information System (INIS)

    Rozanov, V.V.; Tsao Yamin; Krylov, O.V.

    1996-01-01

    Hydrogen adsorption on reduced, sulphidized and reoxidized specimens of molybdenum-and cobalt-molybdenum-containing catalysts applied on aluminium oxide has been studied by the method of thermal desorption (TD). Comparison of TD spectra of hydrogen and data of X-ray phase analysis of the specimens and mass-spectrometric analysis of the products desorbed from the surface of catalysts after their successive reduction sulphidizing, carbonizing and reoxidation permitted a correlation between various forms of hydrogen adsorption and certain centres on the surface of the catalysts. 12 refs., 2 figs

  10. Desorption by Femtosecond Laser Pulses : An Electron-Hole Effect?

    OpenAIRE

    D. M., NEWNS; T. F., HEINZ; J. A., MISEWICH; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center

    1992-01-01

    Desorption of molecules from metal surfaces induced by femtosecond visible laser pulses has been reported. Since the lattice temperature rise is insufficient to explain desorption, an electronic mechanism is clearly responsible. It is shown that a theory based on direct coupling between the center-of-mass degree of freedom of the adsorbate and the electron-hole excitations of the substrate provides a satisfactory explanation of the various experimental findings.

  11. Desorption isotherms and isosteric heat of 'cajuzinho-do-cerrado' achenes

    Directory of Open Access Journals (Sweden)

    Karine F. Barbosa

    2016-05-01

    Full Text Available ABSTRACT The objective of this study was to determine the desorption isotherms of 'cajuzinho-do-cerrado' achenes (Anacardium humile St. Hil. in various conditions of temperature and water activity, as well as to select the one that best represents the phenomenon and to determine the isosteric heat of desorption. The fruits were collected at the Emas National Park, in the municipality of Mineiros-GO, Brazil, pulped and then subjected to drying in silica gel at temperature of 25 ± 2 °C until the moisture contents of 17.6, 13.6, 11.1, 8.7 and 5.3 (d.b.%. After drying, the desorption isotherms were determined by the indirect static method. The water activity (Aw was determined at different temperatures, and the achenes were placed in a B.O.D. chamber, regulated at 10, 20, 30 and 40 °C. Data of hygroscopic equilibrium moisture content were fitted to different mathematical models through non-linear regression analysis, using the Gauss-Newton method. The Copace model was the one that best represented the hygroscopicity of 'cajuzinho-do-cerrado' achenes, while the integral isosteric heat of desorption of 'cajuzinho-do-cerrado' achenes for the moisture content range of 4.51 to 13.40 (% d.b. varied from 2,734.82 to 2,548.49 kJ kg-1.

  12. Thermal desorption of toluene from Vanadium-containing catalysts coated onto various carriers

    Directory of Open Access Journals (Sweden)

    Z. Zheksenbaeva

    2012-12-01

    Full Text Available The method temperature-programmed desorption has been studied the state of toluene on the surface-modified vanadium catalysts on different carriers. Among the investigated carriers the most active in the reaction of partial oxidation of toluene is anatase structural titanium dioxide. For the partial oxidation of toluene on modified vanadium-containing catalysts deposited on TiO2 was tested. It was found that on the catalyst 20%V2O5-5%MoO3-2%Sb2O3/TiO2 at a temperature of 673K, volume rate of 15 thousand hours-1 oxidation of toluene is 80% c yield of benzoic acid with a selectivity of  70% of 87.5%.

  13. Study on hydrogen absorption/desorption properties of uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen absorption/desorption properties of two U-Mn intermetallic compounds, U{sub 6}Mn and UMn{sub 2}, were investigated. U{sub 6}Mn absorbed hydrogen and the hydrogen desorption pressure of U{sub 6}Mn obtained from this experiment was higher than that of U, which was considered to be the effect of alloying, whereas UMn{sub 2} was not observed to absorb hydrogen up to 50 atm at room temperature. (author)

  14. Segregation of O2 and CO on the surface of dust grains determines the desorption energy of O2

    Science.gov (United States)

    Noble, J. A.; Diana, S.; Dulieu, F.

    2015-12-01

    Selective depletion towards pre-stellar cores is still not understood. The exchange between the solid and gas phases is central to this mystery. The aim of this paper is to show that the thermal desorption of O2 and CO from a submonolayer mixture is greatly affected by the composition of the initial surface population. We have performed thermally programmed desorption (TPD) experiments on various submonolayer mixtures of O2 and CO. Pure O2 and CO exhibit almost the same desorption behaviour, but their desorption differs strongly when mixed. Pure O2 is slightly less volatile than CO, while in mixtures, O2 desorbs earlier than CO. We analyse our data using a desorption law linking competition for binding sites with desorption, based on the assumption that the binding energy distribution of both molecules is the same. We apply Fermi-Dirac statistics in order to calculate the adsorption site population distribution, and derive the desorbing fluxes. Despite its simplicity, the model reproduces the observed desorption profiles, indicating that competition for adsorption sites is the reason for lower temperature O2 desorption. CO molecules push-out or `dislodge' O2 molecules from the most favourable binding sites, ultimately forcing their early desorption. It is crucial to consider the surface coverage of dust grains in any description of desorption. Competition for access to binding sites results in some important discrepancies between similar kinds of molecules, such as CO and O2. This is an important phenomenon to be investigated in order to develop a better understanding of the apparently selective depletion observed in dark molecular clouds.

  15. Heavy-ion induced desorption yields of cryogenic surfaces bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Evans, L; Kollmus, H; Küchler, D; Scrivens, R; Severin, D; Wengenroth, M; CERN. Geneva. ATS Department

    2011-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to study the dynamic outgassing of cryogenic surfaces. Two different targets, bare and goldcoated copper, were bombarded under perpendicular impact with 4.2 MeV/u Pb54+ ions. Partial pressure rises of H2, CH4, CO, and CO2 and effective desorption yields were measured at 300, 77, and 6.3 K using single shot and continuous ion bombardment techniques. We find that the heavy-ion-induced desorption yield is temperature dependent and investigate the influence of CO gas cryosorbed at 6.3 K. The gain in desorption yield reduction at cryogenic temperature vanishes after several monolayers of CO are cryosorbed on both targets. In this paper we describe the new cryogenic target assembly, the temperature-dependent pressure rise, desorption yield, and gas adsorption measurements.

  16. Thermal desorption of deuterium implanted into beryllium

    International Nuclear Information System (INIS)

    Markin, A.V.; Chernikov, V.N.; Zakharov, A.P.

    1995-01-01

    By means of TDS measurements it is shown that the desorption of deuterium from Be implanted with 5 keV D ions to fluences, Φ, from 1x10 20 D/m 2 to 1x10 21 D/m 2 proceeds in one high temperature stage B, while at Φ ≥ 1.2x10 21 D/m 2 one more stage A is added. The desorption maximum A is narrow and consists of two peaks A 1 and A 2 at about 460 K and 490 K, respectively. Peak A 1 is attributed to the desorption of deuterium from the walls of opened channels formed under D ion implantation. Peak A 2 is a consequence of the opening of a part of closed bubbles/channels to the outer surface. The position of maximum B shifts noticeably and nonsteadily on the fluence in a range from 850 to 1050 K. The origin of this maximum is the liberation of D atoms bound at vacancy complexes discussed previously by Wampler. The dependence of Tm(B) on the fluence is governed by the interaction of freely migrating D atoms with partly opened or fully closed gas cavity arrangements which are created under temperature ramping, but differently in specimens implanted with D ions to different fluences

  17. Predicting soil-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls by desorption with methanol-water mixtures at different temperatures.

    Science.gov (United States)

    Krauss, M; Wilcke, W

    2001-06-01

    We evaluated a method to determine organic carbon-normalized soil-water partition coefficients (Koc) of 20 PAHs and 12 PCBs by desorption in the presence of a cosolvent (methanol fractions of 0.1-0.9) and at different temperatures (20-80 degrees C). The Koc values, the deviation factor from ideal sorption alpha, and the desorption enthalpies delta Hdes were estimated by nonlinear regression of log Koc on the methanol fractions and on T. The Koc values of individual compounds varied up to a factor of 100 among the studied 11 urban soils. The calculated alpha and delta Hdes of individual compounds varied considerably among the soils (coefficients of variation 5-20% and 20-30%, respectively), alpha increased with increasing hydrophobicity of the compounds. A sequential extraction with four temperature/methanol fraction combinations followed by a nonlinear regression allowed for the direct determination of the Koc, alpha, and delta Hdes. The use of less temperature/methanol fraction combinations requires a suitable estimation of alpha and delta Hdes, as their choice may change the obtained Koc values by up to a factor of 10. The proposed method is suitable for a routine determination of Koc values of PAHs and PCBs for small soil samples (2-6 g) and low concentrations (down to 0.3 mg kg-1 of sigma 20 PAHs and 1.2 micrograms kg-1 of sigma 12 PCBs).

  18. Electron Stimulated Desorption of Condensed Gases on Cryogenic Surfaces

    CERN Document Server

    Tratnik, H; Hilleret, Noël

    2005-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption from surface adsorbates are usually the factors which in°uence pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchro- tron radiation and bombardment by energetic ions and electrons, properties like the molecular desorption yield or secondary electron yield can strongly in°uence the performance of the accelerator. In high-energy particle accelerators operating at liquid helium temperature, cold surfaces are exposed to the bombardment of energetic photons, electrons and ions. The gases released by the subsequent desorption are re-condensed on the cold surfaces and can be re-desorbed by the impinging electrons and ions. The equilibrium coverage reached on the surfaces exposed to the impact of energetic particles depends on the desorption yield of the condensed gases and can a®ect the operation of the accelerator by modifying th...

  19. Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils.

    Science.gov (United States)

    Liu, Yihua; Xu, Zhenzhen; Wu, Xiaoguang; Gui, Wenjun; Zhu, Guonian

    2010-06-15

    The adsorption-desorption behaviors of diuron were investigated in six cultivated soils of China. The effect of system pH and temperature were also studied. The data fitted the Freundlich equation very well. The adsorption K(F) values indicated the adsorption of diuron in the six soils was in the sequence of black soil (D)>yellow earth (F)>paddy soil (B)>yellow-brown soil (C)>yellow-cinnamon soil (A)>lateritic red earth (E). The adsorption K(F) and Freundlich exponents n were decreased when temperature was increased from 298 K to 318 K. However, the Gibb's free energy values were found less negative with the increasing temperature. Meanwhile, the extent of diuron adsorption on soil was at rather high level under low pH value conditions and decreased with increasing pH value. In addition, the desorption behavior of diuron in the six soils was in the sequence of lateritic red earth (E)>yellow-cinnamon soil (A)>paddy soil (B)>yellow earth (F)>yellow-brown soil (C)>black soil (D). At the same time, desorption hysteresis of diuron were observed in all of the tested soils. And the soil organic matter content may play an important role in the adsorption-desorption behavior. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Surface desorption and bulk diffusion models of tritium release from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.E., E-mail: ravila@cchen.c [Departamento de Materiales Nucleares, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile); Pena, L.A.; Jimenez, J.C. [Departamento de Produccion y Servicios, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile)

    2010-10-30

    The release of tritium from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles, in batch experiments, is studied by means of temperature programmed desorption. Data reduction focuses on the analysis of the non-oxidized and oxidized tritium components in terms of release limited by diffusion from the bulk of ceramic grains, or by first or second order surface desorption. By analytical and numerical methods the in-furnace tritium release is deconvoluted from the ionization chamber transfer functions, for which a semi-empirical form is established. The release from Li{sub 2}TiO{sub 3} follows second order desorption kinetics, requiring a temperature for a residence time of 1 day (T{sub 1dRes}) of 620 K, and 603 K, of the non-oxidized, and the oxidized components, respectively. The release from Li{sub 2}ZrO{sub 3} appears as limited by either diffusion from the bulk of the ceramic grains, or by first order surface desorption, the first possibility being the more probable. The respective values of T{sub 1dRes} for the non-oxidized component are 661 K, according to the first order surface desorption model, and 735 K within the bulk diffusion limited model.

  1. Manipulation of polyatomic molecules with the scanning tunnelling microscope at room temperature: chlorobenzene adsorption and desorption from Si(111)-(7 x 7)

    International Nuclear Information System (INIS)

    Sloan, P A; Palmer, R E

    2006-01-01

    We report the imaging of chlorobenzene molecules chemisorbed on the Si(111)-(7 x 7) surface at room temperature with the scanning tunnelling microscope, and the desorption of the molecules by the tunnelling current. Detailed voltage-dependent imaging (at positive bias) allows the elucidation of the number and orientation of all the adsorbate configurations in the 7 x 7 unit cell. At negative bias the adsorbate was observed to affect the imaging properties of neighbouring half unit cells. The threshold voltage required for desorption of the chlorobenzene molecules was invariant to small changes in the tip-state, the adsorption site (corner adatom, middle adatom, faulted or unfaulted half of the unit cell) and the kind of doping of the substrate (n or p type)

  2. Studies of iodine adsorption and desorption on HTGR coolant circuit materials

    International Nuclear Information System (INIS)

    Osborne, M.F.; Compere, E.L.; de Nordwall, H.J.

    1976-04-01

    Safety studies of the HTGR system indicate that radioactive iodine, released from the fuel to the helium coolant, may pose a problem of concern if no attenuation of the amount of iodine released occurs in the coolant circuit. Since information on iodine behavior in this system was incomplete, iodine adsorption on HTGR materials was studied in vacuum as a function of iodine pressure and of adsorber temperature. Iodine coverages on Fe 3 O 4 and Cr 2 O 3 approached maxima of about 2 x 10 14 and 1 x 10 14 atoms/cm 2 , respectively, whereas the iodine coverage on graphite under similar conditions was found to be less by a factor of about 100. Iodine desorption from the same materials into vacuum or flowing helium was investigated, on a limited basis, as a function of iodine coverage, of adsorber temperature, and of dry vs wet helium. The rate of vacuum desorption from Fe 3 O 4 was related to the spectrum of energies of the adsorption sites. A small amount of water vapor in the helium enhanced desorption from iron powder but appeared to have less effect on desorption from the metal oxides

  3. Adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Etherton, B.P.

    1980-01-01

    The adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts which were examined by a scanning transmission electron microscope (STEM). The metal particle size and number of particles per area of catalyst increased with increasing metal loading. The particles were approx. 10 A. in diameter, cubo-octahedral shaped, and approx. 80-90% disperse. The STEM electron beam caused negligible damage to the samples. Hydrogen adsorption measurements showed that the hydrogen-iridium atom ratio was 1.2:1-1.3:1 and increased with decreasing metal loading. Temperature-programed desorption showed four types of adsorbed hydrogen desorbing at -90/sup 0/C (I), 15/sup 0/C (IV), 115/sup 0/C (II), and 245/sup 0/C (III). Types II and IV desorb from single atom sites and Types I and III from multiple atom sites. Type I is in rapid equilibrium with the gas phase. All desorption processes appear to be first order. Carbon monoxide adsorbed nondissociatively at 25/sup 0/C with approx. 0.7:1 CO/Ir atom ratio. It adsorbed primarily in linear forms at low coverage, but a bridged form appeared at high coverage.

  4. Thermal desorption spectroscopy of pyrolytic graphite cleavage faces after keV deuterium irradiation at 330-1000 K

    International Nuclear Information System (INIS)

    Gotoh, Y.; Yamaki, T.; Tokiguchi, K.

    1992-01-01

    Thermal desorption spectroscopy (TDS) measurements were made on D 2 and CD 4 from surface layers of pyrolytic graphite cleavage faces after 3 keV D + 3 irradiation to 1.5 x 10 18 D/cm 2 at irradiation temperatures from 330 to 1000 K. Thermal desorption of both D 2 and CD 4 was observed to rise simultaneously at around 700 K. The D 2 peak was found at T m = 900-1000 K, while the CD 4 peak appeared at a lower temperature, 800-840 K. The T m for the D 2 TDS increased, while that for the CD 4 decreased with increasing irradiation temperature. These results obviously indicate that the D 2 desorption is detrapping/recombination limited, while the CD 4 desorption is most likely to be diffusion limited. The amount of thermally desorbed D 2 after the D + irradiation was observed to monotonously decrease as the irradiation temperature was increased from 330 to 1000 K. These tendencies agreed with previous results for the irradiation temperature dependencies of both C1s chemical shift (XPS) and the interlayer spacing, d 002 (HRTEM), on the graphite basal face. (orig.)

  5. Rate Parameter Distributions for Isobutane Dehydrogenation and Isobutene Dimerization and Desorption over HZSM-5

    Directory of Open Access Journals (Sweden)

    Trevor C. Brown

    2013-11-01

    Full Text Available Deconvolution of the evolved isobutene data obtained from temperature-programmed, low-pressure steady-state conversion of isobutane over HZSM-5 has yielded apparent activation energies for isobutane dehydrogenation, isobutene dimerization and desorption. Intrinsic activation energies and associated isobutane collision frequencies are also estimated. A combination of wavelet shrinkage denoising, followed by time-varying flexible least squares of the evolved mass-spectral abundance data over the temperature range 150 to 450 °C, provides accurate, temperature-dependent, apparent rate parameters. Intrinsic activation energies for isobutane dehydrogenation range from 86 to 235.2 kJ mol−1 (average = 150 ± 42 kJ mol−1 for isobutene dimerization from 48.3 to 267 kJ mol−1 (average = 112 ± 74 kJ mol−1 and for isobutene desorption from 64.4 to 97.8 kJ mol−1 (average = 77 ± 12 kJ mol−1. These wide ranges reflect the heterogeneity and acidity of the zeolite surface and structure. Seven distinct locations and sites, including Lewis and Brønsted acid sites can be identified in the profiles. Isobutane collision frequencies range from 10−0.4 to 1022.2 s−1 and are proportional to the accessibility of active sites, within the HZSM-5 micropores or on the external surface.

  6. Separation of parent homopolymers from diblock copolymers by liquid chromatography under limiting conditions of desorption 4. Role of eluent and temperature.

    Science.gov (United States)

    Berek, Dušan

    2010-11-01

    Liquid chromatography under limiting conditions of desorption (LC LCD) enables fast, base-line discrimination of both parent homopolymers from various diblock copolymers in one single step. The low molecular admixtures are fully separated, as well. General rules are discussed in detail for selection of mobile phases and temperature applied in LC LCD of block copolymers. Typical practical separation examples are presented. It is shown that both the composition of the well-selected LC LCD mobile phase and the temperature of experiment may vary in a broad range without affecting the basics of method. This implies that the method is robust and user friendly.

  7. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite

    Science.gov (United States)

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni

  8. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiangbiao, E-mail: yin.x.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2017-03-15

    Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.

  9. Reprint of: Effects of cold deformation, electron irradiation and extrusion on deuterium desorption behavior in Zr-1%Nb alloy

    Science.gov (United States)

    Morozov, O.; Mats, O.; Mats, V.; Zhurba, V.; Khaimovich, P.

    2018-01-01

    The present article introduces the data of analysis of ranges of ion-implanted deuterium desorption from Zr-1% Nb alloy. The samples studied underwent plastic deformation, low temperature extrusion and electron irradiation. Plastic rolling of the samples at temperature ∼300 K resulted in plastic deformation with the degree of ε = 3.9 and the formation of nanostructural state with the average grain size of d = 61 nm. The high degree of defectiveness is shown in thermodesorption spectrum as an additional area of the deuterium desorption in the temperature ranges 650-850 K. The further processing of the sample (that had undergone plastic deformation by plastic rolling) with electron irradiation resulted in the reduction of the average grain size (58 nm) and an increase in borders concentration. As a result the amount of deuterium desorpted increased in the temperature ranges 650-900 K. In case of Zr-1% Nb samples deformed by extrusion the extension of desorption area is observed towards the temperature reduction down to 420 K. The formation of the phase state of deuterium solid solution in zirconium was not observed. The structural state behavior is a control factor in the process of deuterium thermodesorption spectrum structure formation with a fixed implanted deuterium dose (hydrogen diagnostics). It appears as additional temperature ranges of deuterium desorption depending on the type, character and defect content.

  10. WATER ADSORPTION AND DESORPTION ISOTHERMS ON MILK POWDER: II. WHOLE MILK

    Directory of Open Access Journals (Sweden)

    Edgar M. Soteras

    2014-03-01

    Full Text Available The aim of this research was the determination of adsorption and desorption isotherms of cow whole milk powder. The experiments have been carried out at 15, 25 and 40 ºC, in ranges of moisture and water activity characteristic of normal conditions in which the processes of drying, packaging and storage are developed. By studying the influence of the temperature on the experimental plots, the isosteric adsorption heat was determined. Experimental data were correlated to the referential model of Guggenheim, Anderson and Boer (GAB. For both, adsorption and desorption, a good model fit was observed. The isotherms showed very similar shapes between them and, by comparing adsorption and desorption isotherms, the phenomenon of hysteresis was confirmed.

  11. Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle.

    Science.gov (United States)

    Wurzbacher, Jan Andre; Gebald, Christoph; Piatkowski, Nicolas; Steinfeld, Aldo

    2012-08-21

    A temperature-vacuum swing (TVS) cyclic process is applied to an amine-functionalized nanofibrilated cellulose sorbent to concurrently extract CO(2) and water vapor from ambient air. The promoting effect of the relative humidity on the CO(2) capture capacity and on the amount of coadsorbed water is quantified. The measured specific CO(2) capacities range from 0.32 to 0.65 mmol/g, and the corresponding specific H(2)O capacities range from 0.87 to 4.76 mmol/g for adsorption temperatures varying between 10 and 30 °C and relative humidities varying between 20 and 80%. Desorption of CO(2) is achieved at 95 °C and 50 mbar(abs) without dilution by a purge gas, yielding a purity exceeding 94.4%. Sorbent stability and a closed mass balance for both H(2)O and CO(2) are demonstrated for ten consecutive adsorption-desorption cycles. The specific energy requirements of the TVS process based on the measured H(2)O and CO(2) capacities are estimated to be 12.5 kJ/mol(CO2) of mechanical (pumping) work and between 493 and 640 kJ/mol(CO2) of heat at below 100 °C, depending on the air relative humidity. For a targeted CO(2) capacity of 2 mmol/g, the heat requirement would be reduced to between 272 and 530 kJ/mol(CO2), depending strongly on the amount of coadsorbed water.

  12. Real-time observation of the dehydrogenation processes of methanol on clean Ru(001) and Ru(001)-p(2×2) O surfaces by a temperature-programmed electron-stimulated desorption ion angular distribution/time-of-flight system

    Science.gov (United States)

    Sasaki, Takehiko; Itai, Yuichiro; Iwasawa, Yasuhiro

    1999-12-01

    Decomposition processes of methanol on clean and oxygen-precovered Ru(001) surfaces have been visualized in real time with a temperature-programmed (TP) electron-stimulated desorption ion angular distribution (ESDIAD)/time-of-flight (TOF) system. The mass of desorbed ions during temperature-programmed surface processes was identified by TOF measurements. In the case of methanol (CH 3OD) adsorption on Ru(001)-p(2×2)-O, a halo pattern of H + from the methyl group of methoxy species was observed at 100-200 K, followed by a broad pattern from the methyl group at 230-250 K and by a near-center pattern from O + ions originating from adsorbed CO above 300 K. The halo pattern is attributed to a perpendicular conformation of the CO bond axis of the methoxy species, leading to off-normal CH bond scission. On the other hand, methanol adsorbed on clean Ru(001) did not give any halo pattern but a broad pattern was observed along the surface normal, indicating that the conformation of the methoxy species is not ordered on the clean surface. Comparison between the ESDIAD images of the oxygen-precovered surface and the clean surface suggests that the precovered oxygen adatoms induce ordering of the methoxy species. Real-time ESDIAD measurements revealed that the oxygen atoms at the Ru(001)-p(2×2)-O surface have a positive effect on selective dehydrogenation of the methoxy species to CO+H 2 and a blocking effect on CO bond breaking of the methoxy species.

  13. Programmed temperature vaporizing injector to filter off disturbing high boiling and involatile material for on-line high performance liquid chromatography gas chromatography with on-column transfer.

    Science.gov (United States)

    Biedermann, Maurus; Grob, Koni

    2013-03-15

    Insertion of a programmed temperature vaporizing (PTV) injector under conditions of concurrent solvent recondensation (CSR) into the on-line HPLC-GC interface for on-column transfer (such as the retention gap technique with partially concurrent eluent evaporation) enables filtering off high boiling or involatile sample constituents by a desorption temperature adjusted to the required cut-off. Details of this technique were investigated and optimized. Memory effects, observed when transferred liquid was sucked backwards between the transfer line and the wall of the injector liner, can be kept low by a small purge flow rate through the transfer line at the end of the transfer and the release of the liquid through a narrow bore capillary kept away from the liner wall. The column entrance should be within the well heated zone of the injector to prevent losses of solute material retained on the liner wall during the splitless period. The desorption temperature must be maintained until an elevated oven temperature is reached to prevent peak broadening resulting of a cool inlet section in the bottom part of the injector. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.

    Science.gov (United States)

    Hall, Kathleen E; Spokas, Kurt A; Gamiz, Beatriz; Cox, Lucia; Papiernik, Sharon K; Koskinen, William C

    2018-05-01

    Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350 to 900 °C to elucidate fundamental mechanisms. Glyphosate (1 mg L -1 ) sorption on biochars increased with pyrolysis temperature and was highest on 900 °C biochars; however, total sorption was low on a mass basis (glyphosate in soils, did not alter biochar sorption capacities. Glyphosate did not desorb from biochar with CaCl 2 solution; however, up to 86% of the bound glyphosate was released with a K 2 HPO 4 solution. Results from this study suggest a combined impact of surface chemistry and physical constraints on glyphosate sorption/desorption on biochar. Based on the observed phosphate-induced desorption of glyphosate, the addition of P-fertilizer to biochar-amended soils can remobilize the herbicide and damage non-target plants; therefore, improved understanding of this risk is necessary. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Coverage-dependent adsorption and desorption of oxygen on Pd(100)

    Energy Technology Data Exchange (ETDEWEB)

    Dunnen, Angela den; Jacobse, Leon; Wiegman, Sandra; Juurlink, Ludo B. F., E-mail: l.juurlink@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden (Netherlands); Berg, Otto T. [Department of Chemistry, California State University Fresno, 2555 E. San Ramon Ave., Fresno, California 93740 (United States)

    2016-06-28

    We have studied the adsorption and desorption of O{sub 2} on Pd(100) by supersonic molecular beam techniques and thermal desorption spectroscopy. Adsorption measurements on the bare surface confirm that O{sub 2} initially dissociates for all kinetic energies between 56 and 380 meV and surface temperatures between 100 and 600 K via a direct mechanism. At and below 150 K, continued adsorption leads to a combined O/O{sub 2} overlayer. Dissociation of molecularly bound O{sub 2} during a subsequent temperature ramp leads to unexpected high atomic oxygen coverages, which are also obtained at high incident energy and high surface temperature. At intermediate temperatures and energies, these high final coverages are not obtained. Our results show that kinetic energy of the gas phase reactant and reaction energy dissipated during O{sub 2} dissociation on the cold surface both enable activated nucleation of high-coverage surface structures. We suggest that excitation of local substrate phonons may play a crucial role in oxygen dissociation at any coverage.

  16. Sorption and desorption of tritiated water vapor on piping materials of nuclear fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru; Ohmori, Rumi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Sorption and desorption of D{sub 2}O on Cr{sub 2}O{sub 3}, NiO, SS316 powders were studied at ambient temperature. When D{sub 2}O were contacted with samples after drying at 303K, broad peak was observed at 2100-2700cm{sup -1} on Cr{sub 2}O{sub 3} and NiO. Sorption and desorption rate depended on wave numbers. Isotope exchange rate with H{sub 2}O vapor was faster than dry desorption rate. By heating pretreatment, sorption amount and desorption rate for Cr{sub 2}O{sub 3} and NiO decreased. For SS316, broad peak was observed only after heating pretreatment at 673K. (author)

  17. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    Science.gov (United States)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  18. Electron Stimulated Molecular Desorption of a NEG St 707 at Room Temperature

    CERN Document Server

    Le Pimpec, F; Laurent, Jean Michel

    2001-01-01

    Electron stimulated molecular desorption (ESD) from a NEG St 707 (SAES GettersTM) sample after conditioning and after saturation with isotopic carbon monoxide2,13C18O, has been studied on a laboratory setup. Measurements were performed using an electron beam of 300 eV kinetic energy, with an average electron intensity of 1.6 1015 electrons s-1. The electrons were impinging on the 15 cm2 target surface at perpendicular incidence. It is found that the desorption yields h (molecules/electron) of the characteristic gases in an UHV system (hydrogen, methane, water, carbon monoxide, carbon dioxide) for a fully activated NEG as well as for a NEG fully saturated with 13C18O are lower than for OFHC copper baked at 120oC. A small fraction only of the gas which is required to saturate the getter surface can be re-desorbed and thus appears to be accessible to ESD.

  19. Investigations on ion-beam induced desorption from cryogenic surfaces

    International Nuclear Information System (INIS)

    Maurer, Christoph

    2017-01-01

    A central component of FAIR, the Facility for Antiproton and Ion Research, will be the superconducting heavy ion synchrotron SIS100, which is supposed to provide reliable, high intensity beams for various applications. Its beam intensity is governed by the space charge limit, while the maximum energy is determined by the machine's magnetic rigidity. That means, ions with higher charge state can be accelerated to a higher energy, but with less intensity. For highest intensity beams, intermediate charge states have to be used instead of high charge state ions. This alleviates the issue of space charge but gives rise to dynamic vacuum effects, which also limit beam intensity: beam particles collide with residual gas particles, which leads to charge exchange and their subsequent loss. Impacting on the chamber wall, these ions release adsorbed gas particles. This process is called desorption and leads to a localized increase in pressure, which in turn causes more charge exchange. After a few rounds of self amplification, this can lead to total beam loss. This ''runaway-desorption'' is typically the main beam intensity limiting process for intermediate charge state (heavy) ion beams. The extent of this phenomenon is governed by two factors: the initial beam intensity and the desorption yield. The latter is examined within the scope of this thesis. Special emphasis is placed on the influence of the target's temperature, since the SIS100 will be a superconducting machine with cryogenic vacuum chamber walls. In order to investigate this topic, an experimental setup has been devised, built at the SIS18 and taken into commission. Based on the experience gained during operation, it has been continuously improved and extended. Another central innovation presented in this thesis is the use of gas dynamics simulations for an improved method of data analysis. Using this technique, environmental conditions like the chamber geometry and the connected

  20. H2S absorption and desorption system for a heavy water production plant (Gird ler-Sulphide method)

    International Nuclear Information System (INIS)

    Diaz, F.; Duran, O.

    1987-01-01

    A computational design for the principal equipment involved in the absorption and desorption sections of a heavy water production plant (Girdler-sulphide method) is described. the programs were developed in FORTRAN. A detailled description of transport equations for the desorption tower, which are applicable for the absorption one is included. The optimization criteria used for the equipment design were mainly economic; the results were obtained under the optimal conditions for the towers. The programs may be used in the long term, for the simulation of the absorption and desorption sections together with the isotopic exchange sectionts (author)

  1. Carbon tetrachloride desorption from activated carbon

    International Nuclear Information System (INIS)

    Jonas, L.A.; Sansone, E.B.

    1981-01-01

    Carbon tetrachloride was desorbed from a granular activated carbon subsequent to its adsorption under various vapor exposure periods. The varied conditions of exposure resulted in a range of partially saturated carbon beds which, when followed by a constant flow rate for desorption, generated different forms of the desorbing concentration versus time curve. A method of analyzing the desorption curves is presented which permits extraction of the various desorbing rates from the different desorption and to relate this to the time required for such regeneration. The Wheeler desorption kinetic equation was used to calculate the pseudo first order desorption rate constant for the carbon. The desorption rate constant was found to increase monotonically with increasing saturation of the bed, permitting the calculation of the maximum desorption rate constant for the carbon at 100% saturation. The Retentivity Index of the carbon, defined as the dimensionless ratio of the adsorption to the desorption rate constant, was found to be 681

  2. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  3. Desorption isotherms of heavy (AZOBE, EBONY) and light heavyweight tropical woods (IROKO, SAPELLI) of Cameroon

    Science.gov (United States)

    Nsouandélé, J. L.; Tamba, J. G.; Bonoma, B.

    2018-04-01

    This work is centered on the study of the desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods, which contribute in the determination of drying and storage of tropical plank woods. Desorption isotherms of tropical woods were experimentally determined under different temperatures in this study using the gravimetric method. The determination of Henderson's model isotherms parameters of desorption were obtained for temperatures of 20 °C, 30 °C, 40 °C, and 50 °C. The mean relative deviation between theoretical and experimental moisture contents was calculated and fitted well with the desorption models of tropical woods. We noticed that Henderson models fitted much better with experimental ones for 95% of relative humidity. The sigmoid shapes of results are satisfactory. Hysteresis phenomenon was observed for desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods. Results showed the difference between the stability and use of heavy and heavyweight tropical wood. These results help in the estimation of water content at equilibrium of tropical woods in relative humidity from experimented ones. Hygroscopic equilibrium humidity of heavy tropical woods varied between 0% and 50% while those of heavyweight varied between 0% and 25%. Therefore, these woods can be used in an opened environment; woodwork and decoration.

  4. Investigation of Catalytic Effects and Compositional Variations in Desorption Characteristics of LiNH2-nanoMgH2

    Directory of Open Access Journals (Sweden)

    Sesha S. Srinivasan

    2017-07-01

    Full Text Available LiNH2 and a pre-processed nanoMgH2 with 1:1 and 2:1 molar ratios were mechano-chemically milled in a high-energy planetary ball mill under inert atmosphere, and at room temperature and atmospheric pressure. Based on the thermogravimetric analysis (TGA experiments, 2LiNH2-nanoMgH2 demonstrated superior desorption characteristics when compared to the LiNH2-nanoMgH2. The TGA studies also revealed that doping 2LiNH2-nanoMgH2 base material with 2 wt. % nanoNi catalyst enhances the sorption kinetics at lower temperatures. Additional investigation of different catalysts showed improved reaction kinetics (weight percentage of H2 released per minute of the order TiF3 > nanoNi > nanoTi > nanoCo > nanoFe > multiwall carbon nanotube (MWCNT, and reduction in the on-set decomposition temperatures of the order nanoCo > TiF3 > nanoTi > nanoFe > nanoNi > MWCNT for the base material 2LiNH2-nanoMgH2. Pristine and catalyst-doped 2LiNH2-nanoMgH2 samples were further probed by X-ray diffraction, Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, thermal programmed desorption and pressure-composition-temperature measurements to better understand the improved performance of the catalyst-doped samples, and the results are discussed.

  5. Thermal desorption (TD) study of heterogeneous catalytic reactions--4. Nonuniformity of Pt/. gamma. -Al/sub 2/O/sub 3/ catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V V [Inst. Chem. Phys. Acad. Sci. U.S.S.R.; Sklyarov, A V; Gland, J

    1979-10-01

    Programed TD of n-heptane adsorbed on 0.6-3% by wt Pt/..gamma..-Al/sub 2/O/sub 3/ laboratory catalysts with different dispersities of the metallic phase showed the formation of toluene at 160/sup 0/-260/sup 0/C with spectral maxima at about 200/sup 0/ and 230/sup 0/C and a benzene desorption maxima at 300/sup 0/C. The desorption of both benzene and the high-temperature form of toluene decreased with decreased dispersity of the catalyst and was not observed with the catalyst characterized by an average Pt particle size of 1000 A. Toluene adsorbed on the same catalysts showed a TD peak of benzene at 300/sup 0/C. With commercial Pt/Al/sub 2/O/sub 3/ reforming catalysts, up to five toluene desorption peaks were observed at 200/sup 0/-360/sup 0/C, suggesting the presence of active sites with different activities and concentrations on the catalyst surface. Experiments on TD of deuterated n-heptane suggested different reaction mechanisms associated with different types of active sites and the formation of low- and high-temperature forms of toluene. Only the latter had a maximum coinciding with a TD peak of D/sub 2/ (240/sup 0/C), probably formed by dehydrogenation of adsorbed diene or olefin intermediates.

  6. Thermal desorption spectroscopy of boron/carbon films after keV deuterium irradiation

    International Nuclear Information System (INIS)

    Yamaki, T.; Gotoh, Y.; Ando, T.; Jimbou, R.; Ogiwara, N.; Saidoh, M.

    1994-01-01

    Thermal desorption spectroscopy (TDS) of D 2 and CD 4 was done on boron/carbon films (B/(B+C)=0-74%), after 3 keV D 3 + irradiation to 4.5x10 17 D/cm 2 at 473 K. The D 2 desorption peaks were observed at 1050, 850 and 650 K. For a sputter B/C film (0%), only the 1050 K peak was observed. With increasing boron concentration to 3%, a sharp peak appeared at 850 K, the intensity of which was found to increase with increasing boron concentration to 23%, and then to decrease at 74%. The 650 K shoulder, which was observed for high boron concentration specimens, was speculated to be deuterium trapped by boron atoms in the boron clusters. The relative amount of CD 4 desorption was found to decrease with increasing boron concentration, which was attributed to the decrease in the trapped deuterium concentration in the implantation layer at temperatures at which CD 4 desorption proceeds. ((orig.))

  7. Kinetics Study of Gas Pollutant Adsorption and Thermal Desorption on Silica Gel

    Directory of Open Access Journals (Sweden)

    Rong A

    2017-06-01

    Full Text Available Silica gel is a typical porous desiccant material. Its adsorption performance for gaseous air pollutants was investigated to determine its potential contribution to reducing such pollutants. Three gaseous air pollutants, toluene, carbon dioxide, and methane, were investigated in this paper. A thermogravimetric analyzer was used to obtain the equilibrium adsorption capacity of gases on single silica gel particles. The silica gel adsorption capacity for toluene is much higher than that for carbon dioxide and methane. To understand gas pollutant thermal desorption from silica gel, the thermogravimetric analysis of toluene desorption was conducted with 609 ppm toluene vapor at 313 K, 323 K, and 333 K. The overall regeneration rate of silica gel was strongly dependent on temperature and the enthalpy of desorption. The gas pollutant adsorption performance and thermal desorption on silica gel material may be used to estimate the operating and design parameters for gas pollutant adsorption by desiccant wheels.

  8. Annealing effect reversal by water sorption-desorption and heating above the glass transition temperature-comparison of properties.

    Science.gov (United States)

    Saxena, A; Jean, Y C; Suryanarayanan, R

    2013-08-05

    Our objective is to compare the physical properties of materials obtained from two different methods of annealing reversal, that is, water sorption-desorption (WSD) and heating above glass transition temperature (HAT). Trehalose was annealed by storing at 100 °C for 120 h. The annealing effect was reversed either by WSD or HAT, and the resulting materials were characterized by differential scanning calorimetry (DSC), water sorption studies, and positron annihilation spectroscopy (PAS). While the products obtained by the two methods of annealing reversal appeared to be identical by conventional characterization methods, they exhibited pronounced differences in their water sorption behavior. Positron annihilation spectroscopy (PAS), by measuring the fractional free volume changes in the processed samples, provided a mechanistic explanation for the differences in the observed behavior.

  9. Adsorption and Desorption of Na+ and NO3− Ions on Thermosensitive NIPAM-co-DMAAPS Gel in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Eva Oktavia Ningrum

    2017-11-01

    Full Text Available Adsorbent gel with the ability to absorb and to desorb Na+ and NO3− ions simultaneously with temperature swing was synthesized by free radical copolymerization reaction of N-isopropylacrylamide (NIPAM and N,N-dimethyl-(acrylamidopropylammonium propane sulfonate (DMAAPS. In this study, NIPAM acts as a thermosensitive agent and DMAAPS as an adsorbent agent. The purpose of this research is to investigate the effect of temperature and solution concentration on the swelling, adsorption, and desorption behaviors of NIPAM-co-DMAAPS gel. The relationship between adsorption and desorption behaviors of the gel was also elucidated. NaNO3 solution was selected as the target solution in swelling, adsorption, and desorption test. It was observed that the swelling degree of the gel increased as temperature and solution concentration raised. The adsorption amount of ions decreased with the increase of temperature. In contrast, the amount of ions desorbed from the gel increased linearly with temperature.

  10. Gas desorption during friction of amorphous carbon films

    International Nuclear Information System (INIS)

    Rusanov, A; Fontaine, J; Martin, J-M; Mogne, T L; Nevshupa, R

    2008-01-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H 2 and CH 4 . During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it

  11. Effects of H2O and H2O2 on thermal desorption of tritium from stainless steel

    International Nuclear Information System (INIS)

    Quinlan, M. J.; Shmayda, W. T.; Lim, S.; Salnikov, S.; Chambers, Z.; Pollock, E.; Schroeder, W. U.

    2008-01-01

    Tritiated stainless steel was subjected to thermal desorption at various temperatures, different temperature profiles, and in the presence of different helium carrier gas additives. In all cases the identities of the desorbing tritiated species were characterized as either water-soluble or insoluble. The samples were found to contain 1.1 mCi±0.4 mCi. Approximately ninety-five percent of this activity was released in molecular water-soluble form. Additives of H 2 O or H 2 O 2 to dry helium carrier gas increase the desorption rate and lower the maximum temperature to which the sample must be heated, in order to remove the bulk of the tritium. The measurements validate a method of decontamination of tritiated steel and suggest a technique that can be used to further explore the mechanisms of desorption from tritiated metals. (authors)

  12. Effects of an electron beam on adsorption and desorption of ammonia on ruthenium (0001)

    International Nuclear Information System (INIS)

    Danielson, L.R.; Dresser, M.J.; Donaldson, E.E.; Sandstrom, D.R.

    1978-01-01

    The effects of an electron beam on ammonia adsorption and desorption on Ru(0001) have been investigated by Auger electron spectroscopy, low-energy electron diffraction, and thermal flash desorption. Appreciable adsorption at room temperature occurred only on the area of the Ru crystal which had been bombarded by an electron beam during dosing. The adsorption rate was a function of beam current density and ammonia pressure, and an apparent (2x2) diffraction pattern appeared in the area bombarded by the electron beam. Electron bombardment of the molecular γ states of ammonia followed by flash desorption showed that less ammonia and more hydrogen and nitrogen were desorbed as the bombardment time increased. An analysis of this process based on electron-induced dissociation of the ammonia molecule yielded an effective initial dissociation cross section of 3x10 -6 cm 2 . Hydrogen flash desorption spectra after bombardment of the γ states obeying first order kinetics with desorption energies of 0.78 and 1.0 eV. Electron bombardment of the γ states for short times produced the same effects on the ammonia flash desorption spectra as preadsorption of hydrogen. (Auth.)

  13. Waste/Rock Interactions Technology Program: the status of radionuclide sorption-desorption studies performed by the WRIT program

    International Nuclear Information System (INIS)

    Serne, R.J.; Relyea, J.F.

    1982-04-01

    The most credible means for radionuclides disposed as solid wastes in deep-geologic repositories to reach the biosphere is through dissolution of the solid waste and subsequent radionuclide transport by circulating ground water. Thus safety assessment activities must consider the physicochemical interactions between radionculides present in ground water with package components, rocks and sediments since these processes can significantly delay or constrain the mass transport of radionuclides in comparison to ground-water movement. This paper focuses on interactions between dissolved radiouclides in ground water and rocks and sediments away from the near-field repository. The primary mechanism discussed is adsorption-desorption, which has been studied using two approaches. Empirical studies of adsorption-desorption rely on distribution coefficient measurements while mechanism studies strive to identify, differentiate and quantify the processes that control nuclide retardation

  14. Experimental Study on Methane Desorption from Lumpy Coal under the Action of Hydraulic and Thermal

    Directory of Open Access Journals (Sweden)

    Dong Zhao

    2018-01-01

    Full Text Available Moisture and thermal are the key factors for influencing methane desorption during CBM exploitation. Using high-pressure water injection technology into coalbed, new fractures and pathways are formed to transport methane. A phenomenon of water-inhibiting gas flow existed. This study is focused on various water pressures impacted on gas-adsorbed coal samples, and then the desorption capacity could be revealed under different conditions. And the results are shown that methane desorption capacity was decreased with the increase in water pressure at room temperature and the downtrend would be steady until water pressure was large enough. Heating could promote gas desorption capacity effectively, with the increasing of water injection pressures, and the promotion of thermal on desorption became more obvious. These results are expected to provide a clearer understanding of theoretical efficiency of heat water or steam injection into coalbed, and they can provide some theoretical and experimental guidance on CBM production and methane control.

  15. Beneficial effect of carbon on hydrogen desorption kinetics from Mg–Ni–In alloy

    International Nuclear Information System (INIS)

    Cermak, J.; Kral, L.

    2013-01-01

    Highlights: ► Beneficial effect of graphitic carbon was observed. ► The effect is optimal up to c opt . ► Above c opt , phase decomposition occurs. ► Indium in studied Mg–Ni-based alloys prevents oxidation. - Abstract: In the present paper, hydrogen desorption kinetics from hydrided Mg–Ni–In–C alloys was investigated. A chemical composition that substantially accelerates hydrogen desorption was found. It was observed that carbon improves the hydrogen desorption kinetics significantly. Its beneficial effect was found to be optimum close to the carbon concentration of about c C ≅ 5 wt.%. With this composition, stored hydrogen can be desorbed readily at temperatures down to about 485 K, immediately after hydrogen charging. This can substantially shorten the hydrogen charging/discharging cycle of storage tanks using Mg–Ni-based alloys as hydrogen storage medium. For higher carbon concentrations, unwanted phases precipitated, likely resulting in deceleration of hydrogen desorption and lower hydrogen storage capacity.

  16. Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores

    Science.gov (United States)

    Chen, Jie; Wang, FengChao; Liu, He; Wu, HengAn

    2017-01-01

    Understanding the adsorption and desorption behavior of methane has received considerable attention since it is one of the crucial aspects of the exploitation of shale gas. Unexpectedly, obvious hysteresis is observed from the ideally reversible physical sorption of methane in some experiments. However, the underlying mechanism still remains an open problem. In this study, Monte Carlo (MC) and molecular dynamics (MD) simulations are carried out to explore the molecular mechanisms of adsorption/desorption hysteresis. First, a detailed analysis about the capillary condensation of methane in micropores is presented. The influence of pore width, surface strength, and temperature on the hysteresis loop is further investigated. It is found that a disappearance of hysteresis occurs above a temperature threshold. Combined with the phase diagram of methane, we explicitly point out that capillary condensation is inapplicable for the hysteresis of shale gas under normal temperature conditions. Second, a new mechanism, variation of pore throat size, is proposed and studied. For methane to pass through the throat, a certain energy is required due to the repulsive interaction. The required energy increases with shrinkage of the throat, such that the originally adsorbed methane cannot escape through the narrowed throat. These trapped methane molecules account for the hysteresis. Furthermore, the hysteresis loop is found to increase with the increasing pressure and decreasing temperature. We suggest that the variation of pore throat size can explain the adsorption/desorption hysteresis of shale gas. Our conclusions and findings are of great significance for guiding the efficient exploitation of shale gas.

  17. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    Science.gov (United States)

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments.

  18. Film growth, adsorption and desorption kinetics of indigo on SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Scherwitzl, Boris, E-mail: b.scherwitzl@tugraz.at; Resel, Roland; Winkler, Adolf [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2014-05-14

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  19. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance.

    Science.gov (United States)

    Ghafari, Mohsen; Atkinson, John D

    2018-06-05

    A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0  = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Thermal desorption of deuterium from polycrystalline nickel pre-implanted with helium

    International Nuclear Information System (INIS)

    Shi, S.Q.; Abramov, E.; Thompson, D.A.

    1990-01-01

    The thermal desorption technique has been used to study the trapping of deuterium atoms in high-purity polycrystalline nickel pre-implanted with helium for 1 x 10 19 to 5 x 10 20 ions/m 2 . The effect of post-implantation annealing at 703 K and 923 K on the desorption behavior was investigated. Measured values of the total amount of detrapped deuterium (Q T ) and helium concentration were used in a computer simulation of the desorption curve. It was found that the simulation using one or two discrete trap energies resulted in an inadequate fit between the simulated and the measured data. Both experimental and simulation results are explained using a stress-field trapping model. The effective binding energy, E b eff , was estimated to be in the range of 0.4-0.6 eV. Deuterium charging was found to stimulate a release of helium at a relatively low temperature

  1. Characterization of olive oil volatiles by multi-step direct thermal desorption-comprehensive gas chromatography-time-of-flight mass spectrometry using a programmed temperature vaporizing injector

    NARCIS (Netherlands)

    de Koning, S.; Kaal, E.; Janssen, H.-G.; van Platerink, C.; Brinkman, U.A.Th.

    2008-01-01

    The feasibility of a versatile system for multi-step direct thermal desorption (DTD) coupled to comprehensive gas chromatography (GC × GC) with time-of-flight mass spectrometric (TOF-MS) detection is studied. As an application the system is used for the characterization of fresh versus aged olive

  2. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble

    2005-01-01

    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  3. Hydrogen absorption-desorption properties of UZr0.29 alloy

    International Nuclear Information System (INIS)

    Shuai Maobing; Su Yongjun; Wang Zhenhong; Zhang Yitao

    2001-01-01

    Hydrogen absorption-desorption properties of UZr 0.29 alloy are investigated in detail at hydrogen pressures up to 0.4 MPa and over the temperature range of 300 to 723 K. It absorbs hydrogen up to 2.3 H atoms per F.U. (formula unit) by only one-step reaction and hence each desorption isotherm has a single plateau over nearly the whole hydrogen composition range. The enthalpy and entropy changes of the dissociation reaction are of -78.9 kJ·mol -1 H 2 and 205.3 J·(K·mol H 2 ) -1 , respectively. The alloy shows high durability against powdering upon hydrogenation and may have good heat conductivity. It is predicted that UZr 0.29 alloy may be a suitable material for tritium treatment and storage

  4. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  5. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    International Nuclear Information System (INIS)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun; Park, Joon B.; Ito, Eisuke; Hara, Masahiko

    2011-01-01

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41".deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C_5H_9 "+, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C_5H_9SH"+, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs

  6. H_{2} adsorption on multiwalled carbon nanotubes at low temperatures and low pressures

    Directory of Open Access Journals (Sweden)

    F. Xu

    2008-11-01

    Full Text Available We present an experimental study on H_{2} adsorption on multiwalled carbon nanotubes (MWCNTs at low temperatures (12–30 K and low pressures (2×10^{-5}  Torr using the temperature programmed desorption technique. Our results show that the molecular hydrogen uptake increases nearly exponentially from 6×10^{-9}  wt. % at 24.5 K to 2×10^{-7}  wt. % at 12.5 K and that the desorption kinetics is of the first order. Comparative measurements indicate that MWCNTs have an adsorption capacity about two orders higher than that of activated carbon (charcoal making them a possible candidate as hydrogen cryosorber for eventual applications in accelerators and synchrotrons.

  7. Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    Science.gov (United States)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2018-02-01

    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.

  8. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  9. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  10. STM-Induced Hydrogen Desorption via a Hole Resonance

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Thirstrup, C.; Sakurai, M.

    1998-01-01

    We report STM-induced desorption of H from Si(100)-H(2 X 1) at negative sample bias. The desorption rate exhibits a power-law dependence on current and a maximum desorption rate at -7 V. The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes...... with the Si-H 5 sigma hole resonance. The dependence of desorption rate on current and bias is analyzed using a novel approach for calculating inelastic scattering, which includes the effect of the electric field between tip and sample. We show that the maximum desorption rate at -7 V is due to a maximum...

  11. Glyphosate sorption/desorption on biochars – Interactions of physical and chemical processes

    Science.gov (United States)

    BACKGROUND: Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350°C t...

  12. Desorption of acetone from alkaline-earth exchanged Y zeolite after propane selective oxidation

    NARCIS (Netherlands)

    Xu, J.; Mojet, Barbara; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    The desorption of products from a series of alkaline-earth exchanged Y zeolites after room-temperature propane selective oxidation was investigated by in situ infrared and mass spectroscopy. The intermediate product, isopropylhydroperoxide (IHP), did not desorb during

  13. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  14. Hydrogen absorption-desorption properties of U2Ti

    International Nuclear Information System (INIS)

    Yamamoto, Takuya; Tanaka, Satoru; Yamawaki, Michio

    1990-01-01

    Hydrogen absorption-desorption properties of U 2 Ti intermetallic compound was examined over the temperature range of 298 to 973 K and at hydrogen pressures below 10 5 Pa. It absorbs hydrogen up to 7.6 atoms per F.U. (formula unit) by two step reactions and hence each desorption isotherm is separated into two plateau regions. In the first plateau, a newly-found ternary hydride is formed, where the hydrogen concentration, c H , reaches 2.4 H atoms/F.U. In the second plateau, UH 3 is formed and c H reaches 7.6 H atoms/F.U. The specimen is disintegrated into fine powder in the second plateau, while in the first plateau the ternary hydride which was identified to be UTi 2 H x (x=4.8 to 6.2) showed high durability against powdering. It is predicted that UTi 2 can be suitable material for tritium storage. (orig.)

  15. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun [Hanyang University, Seoul (Korea, Republic of); Park, Joon B. [Chonbuk National University, Jeonju (Korea, Republic of); Ito, Eisuke; Hara, Masahiko [RIKEN-HYU Collaboration Center, Saitama (Japan)

    2011-04-15

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41{sup .}deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C{sub 5}H{sub 9} {sup +}, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C{sub 5}H{sub 9}SH{sup +}, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

  16. Adsorption and reduction of NO2 over activated carbon at low temperature

    International Nuclear Information System (INIS)

    Gao, Xiang; Liu, Shaojun; Zhang, Yang; Luo, Zhongyang; Ni, Mingjiang; Cen, Kefa

    2011-01-01

    The reactive adsorption of NO 2 over activated carbon (AC) was investigated at 50 C. Both the NO 2 adsorption and its reduction to NO were observed during the exposure of AC to NO 2 . Temperature programmed desorption (TPD) was then performed to evaluate the nature and thermal stability of the adsorbed species. Adsorption and desorption processes have been proposed based on the nitrogen and oxygen balance data. The micropores in AC act as a nano-reactor for the formation of -C(ONO 2 ) complexes, which is composed by NO 2 adsorption on existing -C(O) complexes and the disproportionation of adsorbed NO 2 . The generated -C(ONO 2 ) complexes are decomposed to NO and NO 2 in the desorption step. The remaining oxygen complexes can be desorbed as CO and CO 2 to recover the adsorptive and reductive capacity of AC. (author)

  17. Investigation of hydrogen-deformation interactions in β-21S titanium alloy using thermal desorption spectroscopy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Boellinghaus, Th.

    2007-01-01

    The focus of this paper is the investigation of the combined influence of hydrogen and pre-plastic deformation on hydrogen's absorption/desorption behavior, the microstructure and microhardness of a single-phased β-21S alloy. In this study, thermal desorption analyses (TDS) evaluation of various desorption and trapping parameters provide further insight on the relationships between hydrogen absorption/desorption processes and deformation, and their mutual influence on the microstructure and the microhardness of β-21S alloy. TDS spectra were supported by other experimental techniques, such as X-ray diffraction, scanning and transmission electron microscopy, hydrogen quantity analyses and microhardness tests. Pre-plastic deformation, performed before the electrochemical hydrogenation of the alloy, increased significantly the hydrogen absorption capacity. Its influence was also evident on the notably expanded lattice parameter of β-21S alloy after hydrogenation. However, no hydride precipitation was observed. An interesting softening effect of the pre-deformed hydrogenated alloy was revealed by microhardness tests. TDS demonstrated the significant effect of pre-plastic deformation on the hydrogen evolution process. Hydrogen desorption temperature and the activation energy for hydrogen release increased, additional trap states were observed and the amount of desorbed hydrogen decreased

  18. Spreading of lithium on a stainless steel surface at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Capece, A.M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Roszell, J.P.; Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, NJ 08540 (United States)

    2016-01-15

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E{sub des} = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E{sub des} = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium–lithium bonding.

  19. Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves

    Science.gov (United States)

    Ghnimi, Thouraya; Hassini, Lamine; Bagane, Mohamed

    2016-12-01

    The aim of this work is to determine the desorption isotherms and the drying kinetics of bay laurel leaves ( Laurus Nobilis L.). The desorption isotherms were performed at three temperature levels: 50, 60 and 70 °C and at water activity ranging from 0.057 to 0.88 using the statistic gravimetric method. Five sorption models were used to fit desorption experimental isotherm data. It was found that Kuhn model offers the best fitting of experimental moisture isotherms in the mentioned investigated ranges of temperature and water activity. The Net isosteric heat of water desorption was evaluated using The Clausius-Clapeyron equation and was then best correlated to equilibrium moisture content by the empirical Tsami's equation. Thin layer convective drying curves of bay laurel leaves were obtained for temperatures of 45, 50, 60 and 70 °C, relative humidity of 5, 15, 30 and 45 % and air velocities of 1, 1.5 and 2 m/s. A non linear regression procedure of Levenberg-Marquardt was used to fit drying curves with five semi empirical mathematical models available in the literature, The R2 and χ2 were used to evaluate the goodness of fit of models to data. Based on the experimental drying curves the drying characteristic curve (DCC) has been established and fitted with a third degree polynomial function. It was found that the Midilli Kucuk model was the best semi-empirical model describing thin layer drying kinetics of bay laurel leaves. The bay laurel leaves effective moisture diffusivity and activation energy were also identified.

  20. Moisture sorption–desorption characteristics and the corresponding thermodynamic properties of carvedilol phosphate

    Directory of Open Access Journals (Sweden)

    Ravikiran Allada

    2017-01-01

    Full Text Available Aims: Carvedilol phosphate (CDP is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption–desorption characteristics and thermodynamic properties of CDP have been investigated. Materials and Methods: The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%–90% relative humidity and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C. The experimental sorption data determined were fitted to various models, namely, Brunauer–Emmett–Teller; Guggenheim-Anderson-De Boer (GAB; Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. Statistical Analysis Used: The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P, correlation (Correl, root mean square error, and model efficiency were considered as the criteria to select the best fit model. Results: The sorption–desorption isotherms have sigmoidal shape – confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. Conclusions: The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption–desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations.

  1. A Study on Thermal Desorption of Deuterium in D-loaded SS316LN for ITER Tritium Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myungchul; Kim, Heemoon; Ahn, Sangbok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jaeyong; Lee, Sanghwa; LanAhn, Nguyen Thi [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Because Type B radwaste includes tritium on its inside, especially at vicinity of surface, tritium removal from the radwaste is a matter of concern in terms of the radwaste processes. Tritium behavior in materials is related with temperature. Considering a diffusion process, it is expected that tritium removal efficiency is enhanced with increasing baking temperature. However, there is a limitation about temperature due to facility capacity and economic aspect. Therefore, it is necessary to investigate the effect of temperature on the desorption behavior of Tritium in ITER materials. TDS analysis was performed in SS316LN loaded at 120, 240 and 350 °C. D2 concentration and the desorption peak temperature increased with increasing loading temperature. Using peak shift method with three ramp rates of 0.166, 0.332, and 0.5 °C/sec, trap activation energy of D in SS316LN loaded at 350 °C was 56 kJ/mol.

  2. Modelling of discrete TDS-spectrum of hydrogen desorption

    Science.gov (United States)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  3. Modelling of discrete TDS-spectrum of hydrogen desorption

    International Nuclear Information System (INIS)

    Rodchenkova, Natalia I; Zaika, Yury V

    2015-01-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition. (paper)

  4. Trace level detection of explosives in solution using leidenfrost phenomenon assisted thermal desorption ambient mass spectrometry.

    Science.gov (United States)

    Saha, Subhrakanti; Mandal, Mridul Kanti; Chen, Lee Chuin; Ninomiya, Satoshi; Shida, Yasuo; Hiraoka, Kenzo

    2013-01-01

    The present paper demonstrates the detection of explosives in solution using thermal desorption technique at a temperature higher than Leidenfrost temperature of the solvent in combination with low temperature plasma (LTP) ionization. Leidenfrost temperature of a solvent is the temperature above which the solvent droplet starts levitation instead of splashing when placed on a hot metallic surface. During this desorption process, slow and gentle solvent evaporation takes place, which leads to the pre-concentration of less-volatile explosive molecules in the droplet and the explosive molecules are released at the last moment of droplet evaporation. The limits of detection for explosives studied by using this thermal desorption LTP ionization method varied in a range of 1 to 10 parts per billion (ppb) using a droplet volume of 20 μL (absolute sample amount 90-630 fmol). As LTP ionization method was applied and ion-molecule reactions took place in ambient atmosphere, various ion-molecule adduct species like [M+NO2](-), [M+NO3](-), [M+HCO3](-), [M+HCO4](-) were generated together with [M-H](-) peak. Each peak was unambiguously identified using 'Exactive Orbitrap' mass spectrometer in negative ionization mode within 3 ppm deviation compared to its exact mass. This newly developed technique was successfully applied to detect four explosives contained in the pond water and soil sample with minor sample pre-treatment and the explosives were detected with ppb levels. The present method is simple, rapid and can detect trace levels of explosives with high specificity from solutions.

  5. Coverage dependent desorption dynamics of deuterium on Si(100) surfaces: interpretation with a diffusion-promoted desorption model.

    Science.gov (United States)

    Matsuno, T; Niida, T; Tsurumaki, H; Namiki, A

    2005-01-08

    We studied coverage dependence of time-of-flight (TOF) spectra of D2 molecules thermally desorbed from the D/Si(100) surface. The mean translational energies Et of desorbed D2 molecules were found to increase from 0.20+/-0.05 eV to 0.40+/-0.04 eV as the desorption coverage window was decreased from 1.0 ML> or =thetaD> or =0.9 ML to 0.2 ML> or =thetaD> or =0 ML, being consistent with the kinetics switch predicted in the interdimer mechanism. The measured TOF spectra were deconvoluted into 2H, 3H, and 4H components by a curve fitting method along the principle of detailed balance. As a result, it turned out that the desorption kinetics changes from the 4H to the 3H situation at high coverage above thetaD=0.9 ML, while the 2H desorption is dominant for a quite wide coverage region up to thetaD=0.8 ML. A dynamic desorption mechanism by which the desorption is promoted by D-atom diffusion to dangling bonds was proposed. 2005 American Institute of Physics.

  6. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    Science.gov (United States)

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  7. Initial screening of thermal desorption for soil remediation

    International Nuclear Information System (INIS)

    Yezzi, J.J. Jr.; Tafuri, A.N.; Rosenthal, S.; Troxler, W.L.

    1994-01-01

    Petroleum-contaminated soils--caused by spills, leaks, and accidental discharges--exist at many sites throughout the United States. Thermal desorption technologies which are increasingly being employed to treat these soils, have met soil cleanup criteria for a variety of petroleum products. Currently the United States Environmental Protection Agency is finalizing a technical report entitled Use of Thermal Desorption for Treating Petroleum-Contaminated Soils to assist remedial project managers, site owners, remediation contractors, and equipment vendors in evaluating the use of thermal desorption technologies for petroleum-contaminated soil applications. The report will present a three-level screening method to help a reader predict the success of applying thermal desorption at a specific site. The objective of screening level one is to determine the likelihood of success in a specific application of thermal desorption. It will take into account procedures for collecting and evaluating data on site characteristics, contaminant characteristics, soil characteristics, and regulatory requirements. This level will establish whether or not thermal desorption should be evaluated further for site remediation, whether treatment should occur on-site or off-site, and if on-site is a viable option, what system size will be most cost-effective. The scope of this paper addresses only screening level one which provides a preliminary assessment of the applicability of thermal desorption to a particular site. This topic encompasses worksheets that are an integral part of the ''user friendly'' screening process. Level one screening provides a foundation for the subsequent two levels which follow a similar ''user friendly'' worksheet approach to evaluating thermal desorption technologies and establishing costs for thermal desorption in an overall remediation project

  8. Modelling deuterium release during thermal desorption of D{sup +}-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada); Haasz, A.A. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada)], E-mail: tonyhaasz@utias.utoronto.ca; Davis, J.W. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada)

    2008-03-15

    Thermal desorption profiles were modelled based on SIMS measurements of implantation profiles and using the multi-trap diffusion code TMAP7 [G.R. Longhurst, TMAP7: Tritium Migration Analysis Program, User Manual, Idaho National Laboratory, INEEL/EXT-04-02352 (2004)]. The thermal desorption profiles were the result of 500 eV/D{sup +} irradiations on single crystal tungsten at 300 and 500 K to fluences of 10{sup 22}-10{sup 24} D{sup +}/m{sup 2}. SIMS depth profiling was performed after irradiation to obtain the distribution of trapped D within the top 60 nm of the surface. Thermal desorption spectroscopy (TDS) was performed subsequently to obtain desorption profiles and to extract the total trapped D inventory. The SIMS profiles were calibrated to give D concentrations. To account for the total trapped D inventory measured by TDS, SIMS depth distributions were used in the near-surface (surface to 30 nm), NRA measurements [V.Kh. Alimov, J. Roth, M. Mayer, J. Nucl. Mater. 337-339 (2005) 619] were used in the range 1-7 {mu}m, and a linear drop in the D distribution was assumed in the intermediate sub-surface region ({approx}30 nm to 1 {mu}m). Traps were assumed to be saturated so that the D distribution also represented the trap distribution. Three trap energies, 1.07 {+-} 0.03, 1.34 {+-} 0.03 and 2.1 {+-} 0.05 eV were required to model the 520, 640 and 900 K desorption peaks, respectively. The 1.34 and 1.07 eV traps correspond to trapping of a first and second D atom at a vacancy, respectively, while the 2.1 eV trap corresponds to atomic D trapping at a void. A fourth trap energy of 0.65 eV was used to fit the 400 K desorption peak observed by Quastel et al. [A.D. Quastel, J.W. Davis, A.A. Haasz, R.G. Macaulay-Newcombe, J. Nucl. Mater. 359 (2006) 8].

  9. A temperature-programmed X-ray photoelectron spectroscopy (TPXPS) study of chlorine adsorption and diffusion on Ag(1 1 1)

    Science.gov (United States)

    Piao, H.; Adib, K.; Barteau, Mark A.

    2004-05-01

    Synchrotron-based temperature programmed X-ray photoelectron spectroscopy (TPXPS) has been used to investigate the surface chloridation of Ag(1 1 1) to monolayer coverages. At 100 K both atomic and molecular chlorine species are present on the surface; adsorption at 300 K or annealing the adlayer at 100 K to this temperature generates adsorbed Cl atoms. As the surface is heated from 300 to 600 K, chlorine atoms diffuse below the surface, as demonstrated by attenuation of the Cl2p signals in TPXPS experiments. Quantitative analysis of the extent of attenuation is consistent with chlorine diffusion below the topmost silver layer. For coverages in the monolayer and sub-monolayer regime, chlorine diffusion to and from the bulk appears not to be significant, in contrast to previous results obtained at higher chlorine loadings. Chlorine is removed from the surface at 650-780 K by desorption as AgCl. These results demonstrate that chlorine diffusion beneath the surface does occur at coverages and temperatures relevant to olefin epoxidation processes carried out on silver catalysts with chlorine promoters. The surface sensitivity advantages of synchrotron-based XPS experiments were critical to observing Cl diffusion to the sub-surface at low coverages.

  10. Decomposition of thin titanium deuteride films: thermal desorption kinetics studies combined with microstructure analysis

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; Kaszkur, Zbigniew; Smithers, M.A.; Smithers, Mark A.

    2008-01-01

    The thermal evolution of deuterium from thin titanium films, prepared under UHV conditions and deuterated in situ at room temperature, has been studied by means of thermal desorption mass spectrometry (TDMS) and a combination of scanning electron microscopy (SEM), transmission electron microscopy

  11. Adsorption/desorption kinetics of Na atoms on reconstructed Si (111)-7 x 7 surface

    International Nuclear Information System (INIS)

    Chauhan, Amit Kumar Singh; Govind; Shivaprasad, S.M.

    2010-01-01

    Self-assembled nanostructures on a periodic template are fundamentally and technologically important as they put forward the possibility to fabricate and pattern micro/nano-electronics for sensors, ultra high-density memories and nanocatalysts. Alkali-metal (AM) nanostructure grown on a semiconductor surface has received considerable attention because of their simple hydrogen like electronic structure. However, little efforts have been made to understand the fundamental aspects of the growth mechanism of self-assembled nanostructures of AM on semiconductor surfaces. In this paper, we report organized investigation of kinetically controlled room-temperature (RT) adsorption/desorption of sodium (Na) metal atoms on clean reconstructed Si (111)-7 x 7 surface, by X-ray photoelectron spectroscopy (XPS). The RT uptake curve shows a layer-by-layer growth (Frank-vander Merve growth) mode of Na on Si (111)-7 x 7 surfaces and a shift is observed in the binding energy position of Na (1s) spectra. The thermal stability of the Na/Si (111) system was inspected by annealing the system to higher substrate temperatures. Within a temperature range from RT to 350 o C, the temperature induced mobility to the excess Na atoms sitting on top of the bilayer, allowing to arrange themselves. Na atoms desorbed over a wide temperature range of 370 o C, before depleting the Si (111) surface at temperature 720 o C. The acquired valence-band (VB) spectra during Na growth revealed the development of new electronic-states near the Fermi level and desorption leads the termination of these. For Na adsorption up to 2 monolayers, decrease in work function (-1.35 eV) was observed, whereas work function of the system monotonically increases with Na desorption from the Si surface as observed by other studies also. This kinetic and thermodynamic study of Na adsorbed Si (111)-7 x 7 system can be utilized in fabrication of sensors used in night vision devices.

  12. Statistical physics modeling of hydrogen desorption from LaNi{sub 4.75}Fe{sub 0.25}: Stereographic and energetic interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Wjihi, Sarra [Unité de Recherche de Physique Quantique, 11 ES 54, Faculté des Science de Monastir (Tunisia); Dhaou, Houcine [Laboratoire des Etudes des Systèmes Thermiques et Energétiques (LESTE), ENIM, Route de Kairouan, 5019 Monastir (Tunisia); Yahia, Manel Ben; Knani, Salah [Unité de Recherche de Physique Quantique, 11 ES 54, Faculté des Science de Monastir (Tunisia); Jemni, Abdelmajid [Laboratoire des Etudes des Systèmes Thermiques et Energétiques (LESTE), ENIM, Route de Kairouan, 5019 Monastir (Tunisia); Lamine, Abdelmottaleb Ben, E-mail: abdelmottaleb.benlamine@gmail.com [Unité de Recherche de Physique Quantique, 11 ES 54, Faculté des Science de Monastir (Tunisia)

    2015-12-15

    Statistical physics treatment is used to study the desorption of hydrogen on LaNi{sub 4.75}Fe{sub 0.25}, in order to obtain new physicochemical interpretations at the molecular level. Experimental desorption isotherms of hydrogen on LaNi{sub 4.75}Fe{sub 0.25} are fitted at three temperatures (293 K, 303 K and 313 K), using a monolayer desorption model. Six parameters of the model are fitted, namely the number of molecules per site n{sub α} and n{sub β}, the receptor site densities N{sub αM} and N{sub βM}, and the energetic parameters P{sub α} and P{sub β}. The behaviors of these parameters are discussed in relationship with desorption process. A dynamic study of the α and β phases in the desorption process was then carried out. Finally, the different thermodynamical potential functions are derived by statistical physics calculations from our adopted model.

  13. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  14. Structure, tritium depth profile and desorption from ‘plasma-facing’ beryllium materials of ITER-Like-Wall at JET

    Directory of Open Access Journals (Sweden)

    E. Pajuste

    2017-08-01

    Experimental results revealed that > 95% of the tritium was localized in the top 30 – 45µm of the ‘plasma-facing’ surface, however, possible tritium presence up to 100µm cannot be excluded. During temperature programmed desorption at 4.8K/min in the flow of purge gas He+ 0.1% H2 the tritium release started below 475K, the most intense release occurred at 725 – 915K and the degree of detritiation of > 91% can be obtained upon reaching 1075K. The total tritium activity in the samples was in range of 2 – 32kilo Becquerel per square centimetre of the plasma-facing surface area.

  15. Molecular dynamics study of the coverage dependence of Xe desorption from Pt(111)

    NARCIS (Netherlands)

    Jansen, A.P.J.

    1992-01-01

    Mol. dynamics simulations with periodic boundary conditions are used to calc. temp.-programmed desorption spectra of Xe/Pt(111). The activation barrier is overcome by using the compensating Hamiltonian method. Monte Carlo simulations are used to correct for the finite size of the simulated system. A

  16. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  17. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  18. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  19. Thermal desorption study of physical forces at the PTFE surface

    Science.gov (United States)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  20. Zero-Headspace Coal-Core Gas Desorption Canister, Revised Desorption Data Analysis Spreadsheets and a Dry Canister Heating System

    Science.gov (United States)

    Barker, Charles E.; Dallegge, Todd A.

    2005-01-01

    Coal desorption techniques typically use the U.S. Bureau of Mines (USBM) canister-desorption method as described by Diamond and Levine (1981), Close and Erwin (1989), Ryan and Dawson (1993), McLennan and others (1994), Mavor and Nelson (1997) and Diamond and Schatzel (1998). However, the coal desorption canister designs historically used with this method have an inherent flaw that allows a significant gas-filled headspace bubble to remain in the canister that later has to be compensated for by correcting the measured desorbed gas volume with a mathematical headspace volume correction (McLennan and others, 1994; Mavor and Nelson, 1997).

  1. The role of electron-stimulated desorption in focused electron beam induced deposition

    DEFF Research Database (Denmark)

    van Dorp, Willem F.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2013-01-01

    We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)6 is used as a precursor it is observed that the growt......, the majority desorbs from the surface rather than dissociates to contribute to the deposit. It is important to take this into account during FEBIP experiments, for instance when determining fundamental process parameters such as the activation energy for desorption....... experiments compared to literature values is consistent with earlier findings by other authors. The discrepancy is attributed to electron-stimulated desorption, which is known to occur during electron irradiation. The data suggest that, of the W(CO)6 molecules that are affected by the electron irradiation...

  2. Desorption process of hydrogen starting from the Mg{sub 2}NiH{sub 4} and Mg{sub 2}NiH{sub 0.3}; Proceso de desorcion de hidrogeno a partir del hidruro intermetalico Mg{sub 2}NiH{sub 4} y Mg{sub 2}NiH{sub 0.3}

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J.L.; Basurto S, R.; Lopez M, B.E. [Departamento de Quimica, ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work the desorption velocity of H{sub 2} was determined starting from the magnesium nickel hydride once the reaction between the intermetallic and the hydrogen was realized, the compound were analysed by means of a thermogravimetric equipment, the conditions for carrying out the analysis were: 10 C by minute in nitrogen atmosphere at a volume of 50 ml by minute, subsequently the isotherms at different times were programmed and the desorption velocity of hydrogen was determined. The results show that the desorption velocity of hydrogen depends of the temperature, using only the nitrogen flux which acts as a carrier gas. Observing that the hydrogen liberation is carried out by means of two mechanisms according to the isotherms obtained. (Author)

  3. Sorption/Desorption Behavior and Mechanism of NH4(+) by Biochar as a Nitrogen Fertilizer Sustained-Release Material.

    Science.gov (United States)

    Cai, Yanxue; Qi, Hejinyan; Liu, Yujia; He, Xiaowei

    2016-06-22

    Biochar, the pyrolysis product of biomass material with limited oxygen, has the potential to increase crop production and sustained-release fertilizer, but the understanding of the reason for improving soil fertility is insufficient, especially the behavior and mechanism of ammonium sulfate. In this study, the sorption/desorption effect of NH4(+) by biochar deriving from common agricultural wastes under different preparation temperatures from 200 to 500 °C was studied and its mechanism was discussed. The results showed that biochar displayed excellent retention ability in holding NH4(+) above 90% after 21 days under 200 °C preparation temperature, and it can be deduced that the oxygen functional groups, such as carboxyl and keto group, played the primary role in adsorbing NH4(+) due to hydrogen bonding and electrostatic interaction. The sorption/desorption effect and mechanism were studied for providing an optional way to dispose of agricultural residues into biochar as a nitrogen fertilizer sustained-release material under suitable preparation temperature.

  4. Secondary ion shadow-cone enhanced desorption

    Energy Technology Data Exchange (ETDEWEB)

    Chechen Chang (Hawaii Univ., Honolulu (USA). Dept. of Chemistry)

    1990-02-01

    The incident angle dependence of the secondary particle emission process under keV ion bombardment has been investigated. The results from the full molecular dynamics calculations indicate that the flux anisotropy of the incident beam, resulting from the non-uniform impact parameters for the surface atom of a single crystal, affects the particle desorption in a systematic fashion. The enhanced desorption at certain angles of incidence corresponds to the intensive focusing of the incident beam to the near-surface atom and the extended dissipation of momentum by large-angle scattering. This observation has let us to develop a new theoretical model in which the enhanced desorption is described by the distance of closest encounter along the trajectory of the incident particle to the surface atom. The computer time for the simulation of the incident-angle-dependent emission process is significantly reduced. The results from the calculation based on this model are in good agreement both with the results from the full dynamics calculation and with the experimental results. The new model also allows a complementary evaluation of the microscopic dynamics involved in the shadow-cone enhanced desorption. (author).

  5. Thermal desorption of deuterium from Be, and Be with helium bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V.; Van Veen, A.; Busker, G.J. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    1998-01-01

    Deuterium desorption measurements carried out on a single-crystalline beryllium sample are presented. Deuterium ions were implanted at room temperature at the energy of 0.7 and 1.2 keV up to doses ranging from 10{sup 19} to 3.6 x 10{sup 21} m{sup -2}. In order to eliminate the influence of the beryllium-oxide surface layer, before the implantation the surface of the sample was cleaned by argon sputtering. After the implantation the sample was annealed up to 1200 K at a constant rate of 10 K/s. Deuterium released from the sample was monitored by a calibrated quadrupole mass-spectrometer. The desorption spectra revealed two different contributions. One is a well defined and very narrow peak centered around 450 K. This peak is observed only at high implantation doses > 7.8 x 10{sup 20} m{sup -2}, which is close to the deuterium saturation limit of 0.3 D/Be and is related to deuterium release from blisters or interconnected bubbles. The activation energy of 1.1 eV and the threshold implantation dose are consistent with the values reported in literature. The second contribution in the release spectra is found in the temperature range from 600 to 900 K and is present throughout the whole range of the implantation doses. The activation energies corresponding to this release lie in the range between 1.8 and 2.5 eV and are ascribed to the release from deuterium-vacancy type of defects. In a number of experiments the deuterium implantation was preceded by helium implantation followed by partial annealing to create helium bubbles. The resulting deuterium desorption spectra indicate that deuterium detrapping from helium bubbles is characterized by an activation energy of 2.7 eV. (author)

  6. Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges

    CERN Document Server

    Baba, Y H

    2003-01-01

    This article reviews our recent works on the ion desorption from adsorbed and condensed molecules at low temperature following the core-level photoexcitations using synchrotron soft x-rays. The systems investigated here are adsorbed molecules with relatively heavy molecular weight containing third-row elements such as Si, P, S, and Cl. Compared with molecules composed of second-row elements, the highly element-specific and site-specific fragment-ion desorption were observed when we tune the photon energy at the dipole-allowed 1s -> sigma sup * (3p sup *) resonance. On the basis of the resonance Auger decay spectra around the 1s ionization thresholds, the observed highly specific ion desorption is interpreted by the localization of the excited electrons (here we call as 'spectator electrons') in the antibonding sigma sup * orbital. In order to separate the direct photo-induced process from the indirect processes triggered by the secondary electrons, the photon-stimulated ion desorption was also investigated in...

  7. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    International Nuclear Information System (INIS)

    Parks, C.C.

    1983-11-01

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na + and F + desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H + , Li + , and F + are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N 2 -O 2 multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF 2 and a series of alkali halides are discussed in terms of desorption mechanisms

  8. Electron stimulated molecular desorption of a non-evaporable Zr-V-Fe alloy getter at room temperature

    CERN Document Server

    Le Pimpec, Frederic; Laurent, Jean Michel

    2002-01-01

    Electron stimulated molecular desorption (ESD) from a non-evaporable getters (NEG) St 707 registered trademark (SAES Getters trademark ) sample after conditioning and after saturation with isotopic carbon monoxide (cf. nomenclature in Handbook of Chemistry and Physics, CRC Press, 1994), **1**3C**1**8O, has been studied on a laboratory setup. Measurements were performed using an electron beam of 300 eV kinetic energy, with an average electron intensity of 1.6 multiplied by 10**1**5 electrons s**-**1. The electrons were impinging on the 15 cm **2 target surface at perpendicular incidence. It is found that the desorption yields eta (molecules/electron) of the characteristic gases in an UHV system (hydrogen, methane, water, carbon monoxide, carbon dioxide) for a fully activated NEG as well as for a NEG fully saturated with **1**3C**1**8O are lower than for OFHC copper baked at 120 degree C. A small fraction only of the gas which is required to saturate the getter surface can be re-desorbed and thus appears to be ...

  9. Moisture Absorption/Desorption Effects on Flexural Property of Glass-Fiber-Reinforced Polyester Laminates: Three-Point Bending Test and Coupled Hygro-Mechanical Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-08-01

    Full Text Available Influence of moisture absorption/desorption on the flexural properties of Glass-fibre-reinforced polymer (GFRP laminates was experimentally investigated under hot/wet aging environments. To characterize mechanical degradation, three-point bending tests were performed following the ASTM test standard (ASTM D790-10A. The flexural properties of dry (0% Mt/M∞, moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞ and moisture saturated (100% Mt/M∞ specimens at both 20 and 40 °C test temperatures were compared. One cycle of moisture absorption-desorption process was considered in this study to investigate the mechanical degradation scale and the permanent damage of GFRP laminates induced by moisture diffusion. Experimental results confirm that the combination of moisture and temperature effects sincerely deteriorates the flexural properties of GFRP laminates, on both strength and stiffness. Furthermore, the reducing percentage of flexural strength is found much larger than that of E-modulus. Unrecoverable losses of E-modulus (15.0% and flexural strength (16.4% for the GFRP laminates experiencing one cycle of moisture absorption/desorption process are evident at the test temperature of 40 °C, but not for the case of 20 °C test temperature. Moreover, a coupled hygro-mechanical Finite Element (FE model was developed to characterize the mechanical behaviors of GFRP laminates at different moisture absorption/desorption stages, and the modeling method was subsequently validated with flexural test results.

  10. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: vinodfcy@iitr.ernet.in; Rastogi, A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2008-06-15

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 {sup o}C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO{sub 3} and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater.

  11. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    International Nuclear Information System (INIS)

    Gupta, V.K.; Rastogi, A.

    2008-01-01

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 o C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO 3 and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater

  12. Sorption and desorption behaviors of diuron in soils amended with charcoal.

    Science.gov (United States)

    Yu, Xiang-Yang; Ying, Guang-Guo; Kookana, Rai S

    2006-11-01

    Charcoal derived from the partial combustion of vegetation is ubiquitous in soils and sediments and can potentially sequester organic contaminants. To examine the role of charcoal in the sorption and desorption behaviors of diuron pesticide in soil, synthetic charcoals were produced through carbonization of red gum (Eucalyptus spp.) wood chips at 450 and 850 degrees C (referred to as charcoals BC450 and BC850, respectively, in this paper). Pore size distribution analyses revealed that BC850 contained mainly micropores (pores approximately 0.49 nm mean width), whereas BC450 was essentially not a microporous material. Short-term equilibration (diuron in a soil amended with various amounts of charcoals of both types. The sorption coefficients, isotherm nonlinearity, and apparent sorption-desorption hysteresis markedly increased with increasing content of charcoal in the soil, more prominently in the case of BC850, presumably due to the presence of micropores and its relatively higher specific surface area. The degree of apparent sorption-desorption hystersis (hysteresis index) showed a good correlation with the micropore volume of the charcoal-amended soils. This study indicates that the presence of small amounts of charcoal produced at high temperatures (e.g., interior of wood logs during a fire) in soil can have a marked effect on the release behavior of organic compounds. Mechanisms of this apparent hysteretic behavior need to be further investigated.

  13. Temperature-programmed desorption of water and ammonia on ...

    Indian Academy of Sciences (India)

    Unknown

    observed.4–8 Owing to the decomposition of the acid probe, TPD data are too complex to interpret for ... reaction with sulphated zirconia-type catalysts. Water has both ... rate of 20°C min–1 in a flow of moisture-free helium (40 ml min–1).

  14. Dynamic fuel retention in tokamak wall materials: An in situ laboratory study of deuterium release from polycrystalline tungsten at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bisson, R., E-mail: regis.bisson@univ-amu.fr [Aix Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille (France); Markelj, S. [Aix Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille (France); Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Mourey, O.; Ghiorghiu, F. [Aix Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille (France); Achkasov, K. [Aix Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille (France); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Layet, J.-M.; Roubin, P.; Cartry, G. [Aix Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille (France); Grisolia, C. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Angot, T. [Aix Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille (France)

    2015-12-15

    Retention of deuterium ion implanted in polycrystalline tungsten samples is studied in situ in an ultra-high vacuum apparatus equipped with a low-flux ion source and a high sensitivity thermo-desorption setup. Retention as a function of ion fluence was measured in the 10{sup 17}–10{sup 21} D{sup +}·m{sup −2} range. By combining this new fluence range with the literature in situ experimental data, we evidence the existence of a retention ∝ fluence{sup 0.645±0.025} relationship which describes deuterium retention behavior on polycrystalline tungsten on 8 orders of magnitude of fluence. Evolution of deuterium retention as a function of the sample storage time in vacuum at room temperature was followed. A loss of 50% of the retained deuterium is observed when the storage time is increased from 2 h to 135 h. The role of the surface and of natural bulk defects on the deuterium retention/release in polycrystalline tungsten is discussed in light of the behavior of the single desorption peak obtained with Temperature Programmed Desorption.

  15. Contribution to the study of the desorption of fission gases formed in irradiated uranium oxide; Contribution a l'etude de la desorption des gaz de fission formes dans l'oxyde d'uranium irradie

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J -L; Darras, R; Roger, B [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-09-01

    The release of {sup 133}Xe from irradiated UO{sub 2} has been studied in the temperature range 1300 to 1900 deg C, using various monocrystalline or sintered samples. Up to 1600 deg C, this release is proportional to the square root of the time and thus occurs essentially by diffusion. The apparent diffusion constant D' decreases and the activation energy of the corresponding process increases as the integrated neutron flux received by the fuel increases. As the density of the sintered samples decreases however, the activation energy of the release also decreases, so that the difference between D' values for sintered samples of different densities decreases as the temperature rises. Finally, above 1600 deg C, the fission gas release phenomenon is governed by UO{sub 2} evaporation, and all the different types of oxide studied have similar behaviors, characterized by poor retention of these gases. (authors) [French] La desorption du xenon 133 forme dans le bioxyde d'uranium irradie a ete etudiee dans l'intervalle de 1300 a 1900 C, a l'aide de differents echantillons monocristallins ou frittes. Jusqu'a 1600 C, elle s'effectue proportionnellement a la racine carree du temps, donc essentiellement par diffusion. La pseudo-constante de desorption D' decroit et l'energie d'activation du processus correspondant croit lorsque le flux de neutrons integre recu par le combustible augmente. Cependant, lorsque la densite des frittes diminue, l'energie d'activation de desorption diminue egalement, de sorte que l'ecart entre les valeurs de D' relatives a des frittes de densites differentes se restreint lorsque, la temperature s'eleve. Finalement, au-dessus de 1600 C, l'evaporation de l'UO{sub 2} regit le phenomene de liberation des gaz de fission, et toutes les qualites d'oxyde etudiees presentent alors des comportements voisins a cet egard, caracterises par une mediocre retention de ces gaz. (auteurs)

  16. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    Science.gov (United States)

    Garrod, R. T.; Wakelam, V.; Herbst, E.

    2007-06-01

    Aims:The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely constrained by theoretical work. Results: Our results show that the chemistry of dark clouds is altered slightly at times up to 106 yr, mainly by the enhancement in the gas-phase abundances of hydrogen-rich species such as methanol that are formed on grain surfaces. At later times, however, there is a rather strong change. Instead of the continuing accretion of most gas-phase species onto dust particles, a steady-state is reached for both gas-phase and grain-surface species, with significant abundances for the former. Nevertheless, most of the carbon is contained in an undetermined assortment of heavy surface hydrocarbons. Conclusions: The desorption mechanism discussed here will be better constrained by observational data on pre-stellar cores, where a significant accretion of species such as CO has already occurred.

  17. WATER ADSORPTION AND DESORPTION ISOTHERMS ON MILK POWDER: II. WHOLE MILK

    OpenAIRE

    Edgar M. Soteras; Julio Gil; Paola Yacanto; Silvana Muratona; Clidia Abaca; María G. Sustersic

    2014-01-01

    The aim of this research was the determination of adsorption and desorption isotherms of cow whole milk powder. The experiments have been carried out at 15, 25 and 40 ºC, in ranges of moisture and water activity characteristic of normal conditions in which the processes of drying, packaging and storage are developed. By studying the influence of the temperature on the experimental plots, the isosteric adsorption heat was determined. Experimental data were correlated to the referential model ...

  18. Cs-137 sorption and desorption in relation to properties of 17 soils

    International Nuclear Information System (INIS)

    Kerpen, W.

    1988-01-01

    For Cs-137 sorption and desorption studies material of Ap and Ah horizons from 17 soils with wide varying soil properties was selected. The soils were: Podsol, Luvisol, Chernozem, Cambisol, Phaeozem, Arenosol, Gleysol and other soils. The Cs-137 sorption and desorption experiments were carried out in aqueous solution (20 g of soil) under standardized conditions for two reasons: (1) to determine the amounts of Cs-137 sorption, desorption and remains as a function of different soils and (2) to evaluate the soil parameters which govern the sorption, desorption processes. Concerning the second point the sorption values, the amount of 137 Cs desorbed within four desorption cycles and the 137 Cs remains after four desorption cycles were correlated with pH, grain size, sorption capacity (CEC), and other soil properties. It will be shown that generally Cs-137 sorption, desorption and remains depend primarily on the pH of the soil. The middle sand proved to be an indicator for the strenght of sorption, and desorption processes. Sorption and desorption studies lead to the same results as found in biotest experiments

  19. A possible answer to the mysterious non-detection of hydroxylamine in space: the thermal desorption mechanism

    Science.gov (United States)

    Jonusas, Mindaugas; Krim, Lahouari

    2016-06-01

    The presence of NH2OH, one of the main precursors in the formation of amino-acids, on dust grain mantles, may be the most obvious elucidation for the creation of large pre-biotic molecules in the interstellar medium. However, while many laboratory experimental studies, to simulate the icy grain chemistry in space, found that NH2OH molecules may be easily formed in solid phase with high abundances and then they should desorb, through a temperature-induced desorption into the gas phase, with the same high abundances; all the spatial observations conclude that NH2OH is not detected in gas phase within any of the explored astronomical sources. Such inconsistencies between laboratory experiment simulations and spatial observations lead our investigations towards this experimental study to see if there is any chemical transformation of NH2OH, occurring in the solid phase before the desorption processes of NH2OH from the mantle of interstellar icy grains. Our experimental results show that the heating of NH2OH-H2O ices lead to a decomposition of NH2OH into HNO, NH3 and O2, even before reaching its desorption temperature. We show through this work that the NH2OH non-detection from previous examined astronomical sources could mainly due to its high reactivity in solid phase on the icy interstellar grains.

  20. Molecular desorption of stainless steel vacuum chambers irradiated with 42 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating) are reported in terms of the molecular desorption yields for H/sub 2 /, CH/sub 4/, CO, Ar, and CO/sub 2/. (16 refs).

  1. Long-term desorption of trichloroethylene from flint clay using multiplexed optical detection

    International Nuclear Information System (INIS)

    Stager, M.P.; Perram, G.P.

    1999-01-01

    The long-term desorption of trichloroethylene (TCE) from powdered flint clay was examined using a multiplexed, phase sensitive infrared technique which provided a gas phase detection limit of 0.0045 torr for continuous monitoring of the desorption process for at least 3 days. The vapor phase TCE concentrations as a function of desorption time exhibit a significant deviation from Langmuir kinetics. The desorption process is adequately described by bonding sites with a gamma distribution for the desorption rate coefficients. The mean desorption rate for powdered flint clay at 25°C is k d = 0.50 ± 0.02 h −1 . (author)

  2. Study on Energetic Ions Behavior in Plasma Facing Materials at Lower Temperature

    International Nuclear Information System (INIS)

    Morimoto, Y.; Sugiyama, T.; Akahori, S.; Kodama, H.; Tega, E.; Sasaki, M.; Oyaidu, M.; Kimura, H.; Okuno, K.

    2003-01-01

    An apparatus equipped with X-ray Photoelectron Spectroscopy (XPS) and Thermal Desorption Spectroscopy (TDS) was constructed to study interactions of energetic hydrogen isotopes with plasma facing materials. It is a remarkable feature of the apparatus that energetic ion implantation is carried out at around 150K to study reactions of energetic ions with matrix by suppressing the reactions of thermalized ions. Using this apparatus, TDS experiments for pyrolytic graphite implanted with energetic D 2 ions at 173 and 373K were carried out. The experimental results suggest that the deuterium implanted was released through a four-step release processes, involving three D 2 and one CD x (x = 2, 3 and 4) desorption processes. Two deuterium and CD x desorption processes were observed in the temperature range from 700 to 1200 K. In addition, a new deuterium desorption process was observed for the deuterium-implanted sample at 173 K. This has never been observed for deuterium-implanted graphite implanted at temperatures higher than room temperature

  3. Nano-Scale Au Supported on Carbon Materials for the Low Temperature Water Gas Shift (WGS Reaction

    Directory of Open Access Journals (Sweden)

    Paula Sánchez

    2011-12-01

    Full Text Available Au-based catalysts supported on carbon materials with different structures such as graphite (G and fishbone type carbon nanofibers (CNF-F were prepared using two different methods (impregnation and gold-sol to be tested in the water gas shift (WGS reaction. Atomic absorption spectrometry, transmission electron microscopy (TEM, temperature-programmed oxidation (TPO, X-ray diffraction (XRD, Raman spectroscopy, elemental analyses (CNH, N2 adsorption-desorption analysis, temperature-programmed reduction (TPR and temperature-programmed decomposition were employed to characterize both the supports and catalysts. Both the crystalline nature of the carbon supports and the method of gold incorporation had a strong influence on the way in which Au particles were deposited on the carbon surface. The higher crystallinity and the smaller and well dispersed Au particle size were, the higher activity of the catalysts in the WGS reaction was noted. Finally, catalytic activity showed an important dependence on the reaction temperature and steam-to-CO molar ratio.

  4. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    Science.gov (United States)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  5. Adsorption, desorption, and film formation of quinacridone and its thermal cracking product indigo on clean and carbon-covered silicon dioxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Scherwitzl, Boris; Lassnig, Roman; Truger, Magdalena; Resel, Roland; Leising, Günther; Winkler, Adolf, E-mail: a.winkler@tugraz.at [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2016-09-07

    The evaporation of quinacridone from a stainless steel Knudsen cell leads to the partial decomposition of this molecule in the cell, due to its comparably high sublimation temperature. At least one additional type of molecules, namely indigo, could be detected in the effusion flux. Thermal desorption spectroscopy and atomic force microscopy have been used to study the co-deposition of these molecules on sputter-cleaned and carbon-covered silicon dioxide surfaces. Desorption of indigo appears at temperatures of about 400 K, while quinacridone desorbs at around 510 K. For quinacridone, a desorption energy of 2.1 eV and a frequency factor for desorption of 1 × 10{sup 19} s{sup −1} were calculated, which in this magnitude is typical for large organic molecules. A fraction of the adsorbed quinacridone molecules (∼5%) decomposes during heating, nearly independent of the adsorbed amount, resulting in a surface composed of small carbon islands. The sticking coefficients of indigo and quinacridone were found to be close to unity on a carbon covered SiO{sub 2} surface but significantly smaller on a sputter-cleaned substrate. The reason for the latter can be attributed to insufficient energy dissipation for unfavorably oriented impinging molecules. However, due to adsorption via a hot-precursor state, the sticking probability is increased on the surface covered with carbon islands, which act as accommodation centers.

  6. D2 dissociative adsorption on and associative desorption from Si(100): Dynamic consequences of an ab initio potential energy surface

    DEFF Research Database (Denmark)

    Luntz, A. C.; Kratzer, Peter

    1996-01-01

    favors the symmetric one. Under the conditions of many experiments, either could dominate. The calculations show quite weak dynamic coupling to the Si lattice for both paths, i.e., weak surface temperature dependences to dissociation and small energy loss to the lattice upon desorption......Dynamical calculations are reported for D-2 dissociative chemisorption on and associative desorption from a Si(100) surface. These calculations use the dynamically relevant effective potential which is based on an ab initio potential energy surface for the ''pre-paired'' species. Three coordinates...

  7. Hydrogen storage study on Ti2CrV and ZrFe1.8V0.2 composite system

    International Nuclear Information System (INIS)

    Banerjee, S.; Kumar, A.; Pillai, C.G.S.; Sudarsan, V.

    2012-01-01

    Ti 2 CrV is reported to have one of the highest hydrogen storage capacities (more than 4 wt. %) among the bcc phase transition metal alloys. It has been found from the earlier study that Ti 2 CrV alloy shows quite good hydrogen absorption property but the desorption temperature is on the higher side. The in-situ temperature programmed desorption profile shows that the hydrogen desorption starts from 120℃ and the desorption peak comes at 180℃, which is slightly high for the vehicular application. On the other hand ZrFe 1.8 V 0.2 Laves phase alloy has low hydrogen absorption capacity, but at the room temperature it can desorp all its hydrogen. The pressure composition isotherm of ZrFe 1.8 V 0.2 alloy generated during the experiment shows the typical characteristics of the room temperature reversible hydride. The in-situ temperature programmed desorption shows that the hydride can desorb all the hydrogen below room temperature

  8. Desorption kinetics of ciprofloxacin in municipal biosolids determined by diffusion gradient in thin films.

    Science.gov (United States)

    D'Angelo, E; Starnes, D

    2016-12-01

    Ciprofloxacin (CIP) is a commonly-prescribed antibiotic that is largely excreted by the body, and is often found at elevated concentrations in treated sewage sludge (biosolids) at municipal wastewater treatment plants. When biosolids are applied to soils, they could release CIP to surface runoff, which could adversely affect growth of aquatic organisms that inhabit receiving water bodies. The hazard risk largely depends on the amount of antibiotic in the solid phase that can be released to solution (labile CIP), its diffusion coefficient, and sorption/desorption exchange rates in biosolids particles. In this study, these processes were evaluated in a Class A Exceptional Quality Biosolids using a diffusion gradient in thin films (DGT) sampler that continuously removed CIP from solution, which induced desorption and diffusion in biosolids. Mass accumulation of antibiotic in the sampler over time was fit by a diffusion transport and exchange model available in the software tool 2D-DIFS to derive the distribution coefficient of labile CIP (K dl ) and sorption/desorption rate constants in the biosolids. The K dl was 13 mL g -1 , which equated to 16% of total CIP in the labile pool. Although the proportion of labile CIP was considerable, release rates to solution were constrained by slow desorption kinetics (desorption rate constant = 4 × 10 -6 s -1 ) and diffusion rate (effective diffusion coefficient = 6 × 10 -9  cm 2  s -1 . Studies are needed to investigate how changes in temperature, water content, pH and other physical and chemical characteristics can influence antibiotic release kinetics and availability and mobility in biosolid-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Determination and modeling of desorption isotherms of Maria biscuits from different brands

    OpenAIRE

    Pereira, DFC; Correia, PMR; Guiné, Raquel

    2012-01-01

    Biscuits (sweet, strongly sweet, semi-sweet biscuits, crackers, wafers) are characterized by a low moisture content in the final product and high levels of fat and sugar [1]. Dehydrated foods, such as biscuits, are very sensitive to gain moisture from the surrounding atmosphere, resulting in a consequent deterioration. When, at constant temperature, the product's moisture increases from the atmosphere, is obtained the adsorption isotherm and when it loses moisture is obtained the desorption i...

  10. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, Ming; Kang, Zhan; Huang, Xiaobo

    2015-01-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials

  11. Physicochemical and thermodynamic investigation of hydrogen absorption and desorption in LaNi3.8Al1.0Mn0.2 using the statistical physics modeling

    Science.gov (United States)

    Bouaziz, Nadia; Ben Manaa, Marwa; Ben Lamine, Abdelmottaleb

    2018-06-01

    In the present work, experimental absorption and desorption isotherms of hydrogen in LaNi3.8Al1.0Mn0.2 metal at two temperatures (T = 433 K, 453 K) have been fitted using a monolayer model with two energies treated by statistical physics formalism by means of the grand canonical ensemble. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site nα and nβ, the receptor site densities Nmα and Nmβ, and the energetic parameters Pα and Pβ. The behaviors of these parameters are discussed in relationship with temperature of absorption/desorption process. Then, a dynamic investigation of the simultaneous evolution with pressure of the two α and β phases in the absorption and desorption phenomena using the adjustment parameters. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 276.107 and 310.711 kJ/mol for absorption process and between 277.01 and 310.9 kJ/mol for desorption process comparable to usual chemical bond energies. The calculated thermodynamic parameters such as entropy, Gibbs free energy and internal energy from experimental data showed that the absorption/desorption of hydrogen in LaNi3.8Al1.0Mn0.2 alloy was feasible, spontaneous and exothermic in nature.

  12. The Plutonium Temperature Effect Experimental Program

    Energy Technology Data Exchange (ETDEWEB)

    Haeck, Wim; Leclaire, Nicolas; Letang, Eric [IRSN, Fontenay-aux-Roses (France); Girault, Emmanuel; Fouillaud, Patrick [CEA, VALDUC (France)

    2008-07-01

    Various theoretical studies have shown that highly diluted plutonium solutions could have a positive temperature effect but (up to now) no experimental program has confirmed this effect. The main goal of the French Plutonium Temperature Effect Experimental Program (or PU+ in short) is to effectively show that such a positive temperature effect exists for diluted plutonium solutions. The experiments were conducted in the 'Apparatus B' facility at the CEA Valduc research centre in France and involved several sub-critical approach type of experiments using plutonium nitrate solutions with concentrations of 14.3, 15 and 20 g/l at temperatures ranging from 20 to 40 deg. C. A total number of 14 phase I experiments (consisting of independent subcritical approaches) have been performed (5 at 20 g/l, 4 at 15 g/l and 5 at 14.3 g/l) between 2006 and 2007. The impact of the uncertainties on the solution acidity and the plutonium concentration makes it difficult to clearly demonstrate the positive temperature effect, requiring an additional phase II experiment (in which the use of the same plutonium solution was ensured) from 22 to 28 deg. C performed in July 2007. This experiment has shown the existence of a positive temperature effect approx +2 pcm/deg. C (from 22 to 28 deg. C for a plutonium concentration of 14.3 g/l). (authors)

  13. Modification of the properties of Pt-Al/sub 2/O/sub 3/ catalysts by hydrogen at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Menon, P.G.; Froment, G.F.

    1979-08-01

    Pulse reactor studies were performed on the hydrogenolysis of n-pentane and n-hexane at 400/sup 0/C on two commercial reforming catalysts that contained 0.6 and 0.75% platinum on alumina, respectively, and which were calcined in air at 500/sup 0/C, followed by hydrogen-reduction at 400/sup 0/-600/sup 0/C. On catalysts reduced at 400/sup 0/C, hydrogenolysis was the main reaction; with increasing reducing temperature, hydrogenolysis was suppressed and isomerization selectivity increased; at 550/sup 0/C pretreatment temperature, hydrogenolysis was near zero. This selective catalyst deactivation was reversed by oxidizing the catalyst in air at 500/sup 0/C in a similar manner as previously found for sulfided and chlorided catalysts. Temperature-programed desorption of hydrogen adsorbed at 20/sup 0/-600/sup 0/C revealed that the higher the adsorption temperature, the higher the temperature of the hydrogen desorption peaks: the hydrogen adsorbed below 400/sup 0/C desorbed mainly at 50/sup 0/-300/sup 0/C, but the hydrogen adsorbed at higher temperatures desorbed at 300/sup 0/-500/sup 0/C. Apparently, two types of hydrogen adsorb in the two temperature regions, of which the more strongly adsorbed type inhibits hydrogenolysis but not isomerization.

  14. Stability of the hydrogen absorption and desorption plateaux in LaNi[sub 5]-H. Pt. 3. Experimental observations of compositional inhomogeneities due to temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Kisi, E H [Newcastle upon Tyne Univ. (United Kingdom). Dept. of Mechanical Engineering; Gray, E MacA [School of Science, Griffith University, Brisbane, Qld. 4111 (Australia)

    1995-01-15

    It has been predicted by Pons and Dantzer that temperature gradients due to the released enthalpy of H absorption-desorption will generate macroscopic inhomogeneities of the [alpha]/[beta] phase proportions in metal hydrides. We used in situ X-ray diffraction and in situ neutron diffraction respectively to study the growth of [beta]-LaNi[sub 5]-H at the free surface, and [beta]-LaNi[sub 5]-D in the bulk of powdered samples. It was found that a macroscopic compositional inhomogeneity does occur, and can be so severe that the free surface of the sample remains pure [alpha] phase while the bulk of the sample is rich in [beta] phase. ((orig.))

  15. Structural and energetical studies of the adsorption of para and meta-isomers of xylene on pre-hydrated zeolite BaX. Characterization by neutron diffraction and temperature programmed desorption; Etude structurale et energetique de l'adsorption des isomeres para- et meta- du xylene dans la zeolithe BaX prehydratee. Caracterisation par diffraction des neutrons et thermodesorption programmee

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Ch.

    1999-10-19

    The separation of p-xylene from C{sub 8} aromatics is performed industrially by selective adsorption on zeolitic materials. FAU-type zeolites are currently used for this separation and especially the partially hydrated BaX. The aim of this work is to characterize from a structural (by low temperature neutron powder diffraction) and an energetical (by temperature programmed desorption) point of view, the adsorption of para- and meta- isomers of xylene, for different fillings, as pure substances as well as mixtures, on pre-hydrated zeolite BaX. The influence of the water pre-adsorption on xylene adsorption selectivity is carefully discussed. The crystalline structure of the zeolite BaX (framework and compensation of charge cations) and of the adsorbed phase (water, p- and m-xylene molecules) are completely characterized by neutron diffraction. The location and the distribution of water and xylene molecules on their adsorption sites is especially followed as a function of the filling of the zeolite and of the composition of the adsorbed phase. Microscopic measurements were correlated to the energetical analysis (at a macroscopic level) in order to obtain a consistent description of adsorption phenomenon and to propose a possible origin for adsorption selectivity.

  16. Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains

    International Nuclear Information System (INIS)

    Thrower, J. D.; Abdulgalil, A. G. M.; Collings, M. P.; McCoustra, M. R. S.; Burke, D. J.; Brown, W. A.; Dawes, A.; Holtom, P. J.; Kendall, P.; Mason, N. J.; Jamme, F.; Fraser, H. J.; Rutten, F. J. M.

    2010-01-01

    The nonthermal desorption of water from ice films induced by photon and low energy electron irradiation has been studied under conditions mimicking those found in dense interstellar clouds. Water desorption following photon irradiation at 250 nm relies on the presence of an absorbing species within the H 2 O ice, in this case benzene. Desorption cross sections are obtained and used to derive first order rate coefficients for the desorption processes. Kinetic modeling has been used to compare the efficiencies of these desorption mechanisms with others known to be in operation in dense clouds.

  17. Helium implanted Eurofer97 characterized by positron beam Doppler broadening and Thermal Desorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, I., E-mail: i.carvalho@m2i.nl [Materials Innovation Institute (M2i), Delft (Netherlands); Schut, H. [Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Fedorov, A.; Luzginova, N. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Desgardin, P. [CEMHTI-CNRS, 3A Rue de la Férolerie, 45071 Orléans Cedex (France); Sietsma, J. [Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Delft (Netherlands)

    2013-11-15

    Reduced Activation Ferritic/Martensitic steels are being extensively studied because of their foreseen application in fusion and Generation IV fission reactors. To produce irradiation induced defects, Eurofer97 samples were implanted with helium at energies of 500 keV and 2 MeV and doses of 1 × 10{sup 15}–10{sup 16} He/cm{sup 2}, creating atomic displacements in the range 0.07–0.08 dpa. The implantation induced defects were characterized by positron beam Doppler Broadening (DB) and Thermal Desorption Spectroscopy (TDS). Results show that up to ∼600 K peaks that can be attributed to He desorption from overpressured He{sub n}V{sub m} (n > m) clusters and vacancy assisted mechanism in the case of helium in the substitutional position. The temperature range 600–1200 K is related to the formation of larger clusters He{sub n}V{sub m} (n < m). The dissociation of the HeV and the phase transition attributed to a sharp peak in the TDS spectra at 1200 K. Above this temperature, the release of helium from bubbles is observed.

  18. Sorption-desorption of samarium in Febex bentonite

    International Nuclear Information System (INIS)

    Ramirez-Guinart, O.; Rigol, A.; Vidal, M.; Fernandez-Poyatos, P.; Alba, M. D.

    2012-01-01

    Document available in extended abstract form only. The chemical and physical nature of the clay is a key issue in the design of engineered barriers. The FEBEX bentonite is one of the clays candidates to be used in engineered barriers in deep geology repositories (DGR). Here, its performance was tested with respect to the sorption-desorption of samarium, which is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in high level radioactive waste in the form of the radioactive isotope 151 Sm. FEBEX bentonite was used in this study. This is a di-octahedral smectite, with isomorphic substitutions in tetrahedral and octahedral sheets. Its theoretical cation exchange capacity value is 1500 meq kg -1 . Sorption isotherms were obtained for Sm in the range of initial concentrations of 0.01 and 9 meq l -1 . Tests were carried out in deionized water and in a medium simulating the composition of interstitial water. Sorption tests were performed equilibrating 30 ml of the Sm solution with 0.2 g of clay. After a contact time of 24 hours, supernatants were decanted off after centrifugation. The quantification of the concentration of Sm in the initial and final solutions allowed us to quantify the Sm equilibrium concentration (C eq ), the fraction sorbed in the FEBEX bentonite (C sorb ) and to derive the sorption K d data. Desorption tests were applied to determine the desorption K d and the percentage of Sm reversibly sorbed. Desorption tests were performed with the bentonite residue from the sorption step, under the same experimental conditions, but without Sm. Powder X-ray diffractograms were obtained from 3 to 70 deg. 2θ with a step of 0.05 deg. and a counting time of 3 s. The crystalline phases were identified using the computer program X'Pert HighScore. The morphology of the samples was analyzed by SEM at 20 kV. An EDX system was fitted to the SEM equipment to perform chemical analyses of the samples using a Si/Li detector

  19. Modification of reference temperature program in reactor regulating system

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sung Sik; Lee, Byung Jin; Kim, Se Chang; Cheong, Jong Sik [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Kim, Ji In; Doo, Jin Yong [Korea Electric Power Cooperation, Yonggwang (Korea, Republic of)

    1999-12-31

    In Yonggwang nuclear units 3 and 4 currently under commercial operation, the cold temperature was very close to the technical specification limit of 298 deg C during initial startup testing, which was caused by the higher-than-expected reactor coolant system flow. Accordingly, the reference temperature (Tref) program needed to be revised to allow more flexibility for plant operations. In this study, the method of a specific test performed at Yonggwang nuclear unit 4 to revise the Tref program was described and the test results were discussed. In addition, the modified Tref program was evaluated on its potential impacts on system performance and safety. The methods of changing the Tref program and the associated pressurizer level setpoint program were also explained. Finally, for Ulchin nuclear unit 3 and 4 currently under initial startup testing, the effects of reactor coolant system flow rate on the coolant temperature were evaluated from the thermal hydraulic standpoint and an optimum Tref program was recommended. 6 refs., 4 figs., 2 tabs. (Author)

  20. Modification of reference temperature program in reactor regulating system

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sung Sik; Lee, Byung Jin; Kim, Se Chang; Cheong, Jong Sik [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Kim, Ji In; Doo, Jin Yong [Korea Electric Power Cooperation, Yonggwang (Korea, Republic of)

    1998-12-31

    In Yonggwang nuclear units 3 and 4 currently under commercial operation, the cold temperature was very close to the technical specification limit of 298 deg C during initial startup testing, which was caused by the higher-than-expected reactor coolant system flow. Accordingly, the reference temperature (Tref) program needed to be revised to allow more flexibility for plant operations. In this study, the method of a specific test performed at Yonggwang nuclear unit 4 to revise the Tref program was described and the test results were discussed. In addition, the modified Tref program was evaluated on its potential impacts on system performance and safety. The methods of changing the Tref program and the associated pressurizer level setpoint program were also explained. Finally, for Ulchin nuclear unit 3 and 4 currently under initial startup testing, the effects of reactor coolant system flow rate on the coolant temperature were evaluated from the thermal hydraulic standpoint and an optimum Tref program was recommended. 6 refs., 4 figs., 2 tabs. (Author)

  1. Defect formation and desorption of metal atoms from alkali halide crystals under low energy electron bombardment studied by optical absorption and mass spectroscopy

    International Nuclear Information System (INIS)

    Seifert, N.R.

    1993-04-01

    This work presents an extensive investigation of electronically induced desorption of ground-state alkali atoms from alkali halides and for the first time correlates directly the desorption with the stability and spatial distribution of the defects formed during bombardment. The electron impact results in the formation of stable F-centers and F-center clusters in the bulk of the crystals. In striking contrast a significant metallization of the surface is observed. Even at temperatures as low as 90 deg C the metallization is achieved within the time resolution of our detection system, which can only be explained by the rapid diffusion of hot holes. Superimposed to the fast and short diffusion of hot holes is the slow F-center diffusion. Measuring the distribution of defects with low energy ion sputtering techniques indicates that at least in the case of LiF the observed diffusion constant of F-centers agrees with values derived by using methods different from that applied here. At low temperatures the formation of F-center clusters and metal on the surface dominates. Colloid formation clearly requires higher temperatures (typically around 200 deg C). This is a strong evidence that efficient F-center diffusion is necessary for the formation of metallic particles (colloids) in the bulk of the crystals. Desorption of alkali atoms from alkali halides at temperatures around room temperature is due to weakly bound alkali atoms. For elevated temperatures the stability of the metallic clusters in the bulk of the crystals (i.e. colloids) are the rate limiting process. (author)

  2. On factors controlling activity of submonolayer bimetallic catalysts: Nitrogen desorption

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wei; Vlachos, Dionisios G., E-mail: vlachos@udel.edu [Center for Catalytic Science and Technology, Catalysis Center for Energy Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States)

    2014-01-07

    We model N{sub 2} desorption on submonolayer bimetallic surfaces consisting of Co clusters on Pt(111) via first-principles density functional theory-based kinetic Monte Carlo simulations. We find that submonolayer structures are essential to rationalize the high activity of these bimetallics in ammonia decomposition. We show that the N{sub 2} desorption temperature on Co/Pt(111) is about 100 K higher than that on Ni/Pt(111), despite Co/Pt(111) binding N weaker at low N coverages. Co/Pt(111) has substantially different lateral interactions than single metals and Ni/Pt. The lateral interactions are rationalized with the d-band center theory. The activity of bimetallic catalysts is the result of heterogeneity of binding energies and reaction barriers among sites, and the most active site can differ on various bimetallics. Our results are in excellent agreement with experimental data and demonstrate for the first time that the zero-coverage descriptor, used until now, for catalyst activity is inadequate due not only to lacking lateral interactions but importantly to presence of multiple sites and a complex interplay of thermodynamics (binding energies, occupation) and kinetics (association barriers) on those sites.

  3. Experiments of cooling photovoltaic panel by desorption process; Dacchaku hanno wo riyoshita taiyoko hatsuden panel no ondo josho yokusei jikken

    Energy Technology Data Exchange (ETDEWEB)

    Akisawa, A; Inoue, S; Kashiwagi, T [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    It is important to cool a photovoltaic (PV) panel, because increased panel temperature is accompanied by decreased power generation efficiency. The authors have proposed a PV power generation system combined with an adsorption chiller driven by low-temperature heat, and simulated temperature changes during the desorption cycle, where the chiller utilizes endothermic reactions of an adsorbent during the desorption cycle. Described herein are results of the tests carried out to validate possibility of controlling panel temperature increase. The system consists of the PV panel with which a bed packed with an adsorbent is monolithically combined, condenser and evaporator. It generates power during the daytime by sunbeams, and provides low-temperature heat during the nighttime by the evaporator. In particular, ice can be produced when methanol and activated coal are used as the adsorbate and adsorbent. It has an advantage of effective utilization of energy as the heat source, which has been merely dissipated by the conventional system in the air. Such a system is expected to be useful for promoting effective utilization of solar energy and for peak power shaving in summer. The initial targets are achieved by the tests. 4 refs., 10 figs.

  4. Investigating Superhydrogenated Polycyclic Aromatic Hydrocarbons on HOPG and their catalytic abilities of H2 formation

    DEFF Research Database (Denmark)

    Simonsen, Frederik Doktor Skødt

    Scanning tunneling microscopy and temperature programmed desorption techniques have been used to investigate adsorption and abstraction of hydrogen atoms on the polycyclic aromatic hydrocarbon, coronene. The coronene molecules were exposed to different hydrogen fluences at a dosing temperature......). Both scanning tunneling microscopy (STM) and temperature programmed desorption (TPD) techniques have been used. Coronene monolayers were prepared on graphite and exposed to different fluences of 1000K H or D atoms. STM images show brigth spots on the coronene monolayers after hydrogenation indicating...... calcutions have also been made on desorption of H from a fully hydrogenated coronene molecule. The desorption DFT calculation reveals a favourable desorption route and stable configurations consistent with our TPD measurements[5]. References [1] Tielens, A., Reviews of Modern Physics, 85 (2013) 1021-1081 [2...

  5. Sorption-desorption behavior of polybrominated diphenyl ethers in soils

    International Nuclear Information System (INIS)

    Olshansky, Yaniv; Polubesova, Tamara; Vetter, Walter; Chefetz, Benny

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4'-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (K OC ) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration. - Highlights: → BDE-15 exhibited pronounced desorption hysteresis. → BDE-15 sowed higher sorption affinity to humin as compared to the bulk soils. → Sequestration of PBDEs depends on soil organic matter constitutes other than humin. - Pronounced desorption hysteresis was observed for BDE-15 in natural soils.

  6. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation.

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D

    2012-10-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5-100 mg dry soil cm(-2)), temperature (20-40°C), and soil moisture content (2-40%) over periods up to 16d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D.

    2012-01-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5 to 100 mg dry soil/cm2), temperature (20 °C to 40 °C), and soil moisture content (2% to 40%) over periods up to 16 d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. PMID:22704210

  8. Ge(001):B gas-source molecular beam epitaxy: B surface segregation, hydrogen desorption, and film growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.; Greene, J.E. [Materials Science Department, the Coordinated Science Laboratory and the Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    1999-03-01

    Ultrahigh B-doped Ge(001) layers, with concentrations C{sub B} up to 8{times}10{sup 21} cm{sup {minus}3}, were grown by gas-source molecular beam epitaxy from Ge{sub 2}H{sub 6} and B{sub 2}H{sub 6} at temperatures T{sub s}=325{degree}C (in the surface-reaction-limited regime) and 600{degree}C (in the flux-limited regime). The samples were quenched, D site exchanged for H, and D{sub 2} temperature-programed desorption (TPD) used to determine B coverages {theta}{sub B} as a function of C{sub B} and T{sub s} by comparison with B-adsorbed Ge(001) reference samples with known {theta}{sub B} values. During Ge(001):B film growth, strong surface B segregation to the second layer was observed with surface-to-bulk B concentration ratios ranging up to 6000. The TPD spectra exhibited {alpha}{sub 2} and {alpha}{sub 1} peaks associated with dideuteride and monodeuteride desorption as well as lower-temperature B-induced {alpha}{sub 2}{sup {asterisk}} and {alpha}{sub 1}{sup {asterisk}} peaks associated with deuterium desorption from Ge{sup {asterisk}} surface atoms with B backbonds. Increasing {theta}{sub B} expanded the area under {alpha}{sub 2}{sup {asterisk}} and {alpha}{sub 1}{sup {asterisk}} at the expense of {alpha}{sub 2} and {alpha}{sub 1} and decreased the total D coverage {theta}{sub D}. The TPD results were used to determine the B segregation enthalpy, {minus}0.64 eV, and to explain and model the effects of high B coverages on Ge(001) growth kinetics. At T{sub s}=325{degree}C, where B segregation is kinetically hindered, film deposition rates R{sub Ge} are not a strong function of C{sub B}, exhibiting only a small decrease at C{sub B}{approx_gt}5{times}10{sup 18} cm{sup {minus}3}. However, at T{sub s}=600{degree}C, R{sub Ge} decreases by up to 40{percent} with increasing C{sub B}{approx_gt}1{times}10{sup 18} cm{sup {minus}3}. This is due primarily to the combination of B-induced Ge dimer vacancies and the deactivation of surface dangling bonds caused by charge transfer

  9. Sorption/Desorption Interactions of Plutonium with Montmorillonite

    Science.gov (United States)

    Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.

    2012-12-01

    first order process. Furthermore, a pH dependence was observed, with less desorbed at pH 4 compared to pH 8. We suggest the pH dependence is likely controlled by reoxidation of Pu(IV) to Pu(V) and aqueous speciation. We will present models used to describe desorption behavior and discuss the implications for Pu transport. References: Kersting, A.B.; Efurd, D.W.; Finnegan, D.L.; Rokop, D.J.; Smith, D.K.; Thompson J.L. (1999) Migration of plutonium in groundwater at the Nevada Test Site, Nature, 397, 56-59. Novikov A.P.; Kalmykov, S.N.; Utsunomiya, S.; Ewing, R.C.; Horreard, F.; Merkulov, A.; Clark, S.B.; Tkachev, V.V.; Myasoedov, B.F. (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia, Science, 314, 638-641. Santschi, P.H.; Roberts, K.; Guo, L. (2002) The organic nature of colloidal actinides transported in surface water environments. Environ. Sci. Technol., 36, 3711-3719. This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. LLNL-ABS-570161

  10. Exciton-Promoted Desorption From Solid Water Surfaces A2

    DEFF Research Database (Denmark)

    McCoustra, M.R.S.; Thrower, J.D.

    2018-01-01

    Abstract Desorption from solid water surfaces resulting from interaction with electromagnetic and particle radiation is reviewed in the context of the role of nonthermal desorption in astrophysical environments. Experimental observations are interpreted in terms of mechanisms sharing a common basis...

  11. Tritium release from lithium ceramics at constant temperature

    International Nuclear Information System (INIS)

    Verrall, R.A.; Miller, J.M.

    1992-02-01

    Analytic methods for post-irradiation annealing tests to measure tritium release from lithium ceramics at constant temperature are examined. Modifications to the Bertone (1) relations for distinguishing diffusion-controlled release from desorption-controlled release are shown. The methods are applied to tests on sintered LiA10 2 ; first-order desorption is shown to control tritium release for these tests

  12. Experimental Investigation of Impact-Induced Molecular Desorption by 4.2 MeV/u Pb ions

    CERN Document Server

    Chanel, M; Laurent, Jean Michel; Madsen, N; Mahner, E

    2001-01-01

    In preparation for the heavy ion program of the LHC, accumulation and cooling test with lead ion beams have been performed in the LEAR storage ring. These tests have revealed that due to the unexpected, large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments are reported in terms of the molecular desorption yields for H2, CH4, CO and CO2. Unpexpected large values of molecular yields per incident ion up to 2x104 molecules/ion have been observed. The implications of these results for the vacuum system of the future ion accumulator ring (LEIR) and possi...

  13. Some properties of solid helium and helium nanoclusters using the effective HFD-like interaction potential: Adsorption and desorption inside carbon nanotube

    Science.gov (United States)

    Abbaspour, M.; Akbarzadeh, H.; Banihashemi, S. Z.; Sotoudeh, A.

    2018-02-01

    We have calculated the zero equation of state of solid helium using a two-body Hartree-Fock dispersion (HFD)-like potential from molecular dynamics (MD) simulation. To take many-body forces into account, our simple and accurate empirical expression is used with the HFD-like potential without requiring an expensive three-body calculation. This potential model also includes the quantum effects for helium at low temperatures. The results indicate that our effective HFD-like potential improves the prediction of the classical two-body results to get better agreement with experiment than many other two-body and three-body potentials of helium reported in the literature. We have also simulated the adsorption and desorption processes of the (He)55, (He)147, (He)309, (He)561, and (He)923 icosahedral nanoclusters confined into the different armchair and zigzag CNTs from 0 to 50 K using our effective model. We have observed an interesting phenomenon at 0 K for helium. The nanoclusters adsorb to the inner CNT wall as a melting process. But, the heavier noble gas clusters (such as Ne and Xe) show the different behavior than the He clusters. They form a multilayered solid structure into the CNT at zero temperature and adsorb into the inner wall of the CNT at higher temperatures. Our results for He clusters show that the absolute value of the adsorption energy increases as the size of the nanocluster increases. The desorption process begins at a certain temperature and represents itself by a jump in the configurational energy values. We have also investigated the structural and dynamical properties of the confined helium nanoclusters during the adsorption and desorption processes at different temperatures.

  14. Comparison of a disposable sorptive sampler with thermal desorption in a gas chromatographic inlet, or in a dedicated thermal desorber, to conventional stir bar sorptive extraction-thermal desorption for the determination of micropollutants in water.

    Science.gov (United States)

    Wooding, Madelien; Rohwer, Egmont R; Naudé, Yvette

    2017-09-01

    The presence of micropollutants in the aquatic environment is a worldwide environmental concern. The diversity of micropollutants and the low concentration levels at which they may occur in the aquatic environment have greatly complicated the analysis and detection of these chemicals. Two sorptive extraction samplers and two thermal desorption methods for the detection of micropollutants in water were compared. A low-cost, disposable, in-house made sorptive extraction sampler was compared to SBSE using a commercial Twister sorptive sampler. Both samplers consisted of polydimethylsiloxane (PDMS) as a sorptive medium to concentrate micropollutants. Direct thermal desorption of the disposable samplers in the inlet of a GC was compared to conventional thermal desorption using a commercial thermal desorber system (TDS). Comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS) was used for compound separation and identification. Ten micropollutants, representing a range of heterogeneous compounds, were selected to evaluate the performance of the methods. The in-house constructed sampler, with its associated benefits of low-cost and disposability, gave results comparable to commercial SBSE. Direct thermal desorption of the disposable sampler in the inlet of a GC eliminated the need for expensive consumable cryogenics and total analysis time was greatly reduced as a lengthy desorption temperature programme was not required. Limits of detection for the methods ranged from 0.0010 ng L -1 to 0.19 ng L -1 . For most compounds, the mean (n = 3) recoveries ranged from 85% to 129% and the % relative standard deviation (% RSD) ranged from 1% to 58% with the majority of the analytes having a %RSD of less than 30%. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Searching out the hydrogen absorption/desorption limiting reaction factors: Strategies allowing to increase kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zeaiter, Ali, E-mail: ali.zeaiter@femto-st.fr; Chapelle, David; Nardin, Philippe

    2015-10-05

    Highlights: • A macro scale thermodynamic model that simulates the response of a FeTi-X hydride tank is performed, and validated experimentally. • A sensibility study to identify the most influent input variables that can changes very largely the reaction rate. - Abstract: Hydrogen gas has become one of the most promising energy carriers. Main breakthrough concerns hydrogen solid storage, specially based on intermetallic material use. Regarding the raw material abundance and cost, the AB type alloy FeTi is an auspicious candidate to store hydrogen. Its absorption/desorption kinetics is a basic hindrance to common use, compared with more usual hydrides. First, discussions based on literature help us identifying the successive steps leading to metal hydriding, and allow to introduce the physical parameters which drive or limit the reaction. This analysis leads us to suggest strategies in order to increase absorption/desorption kinetics. Attention is then paid to a thermofluidodynamic model, allowing to describe a macroscopic solid storage reactor. Thus, we can achieve a simulation which describes the overall reaction inside the hydrogen reactor and, by varying the sub-mentioned parameters (thermal conductivity, the powder granularity, environment heat exchange…), we attempt to hierarchy the reaction limiting factors. These simulations are correlated to absorption/desorption experiments for which pressure, temperature and hydrogen flow are recorded.

  16. Laser induced desorption as hydrogen retention diagnostic method

    Energy Technology Data Exchange (ETDEWEB)

    Zlobinski, Miroslaw

    2016-07-15

    Laser Induced Desorption Spectroscopy (LIDS) is a diagnostic method to measure the hydrogen content in the surface of a material exposed to a hydrogen isotope (H,D,T) plasma. It is developed mainly to monitor hydrogen retention in the walls of magnetic fusion devices that have to limit the amount of their fuel tritium mainly due to safety reasons. The development of fusion increasingly focusses on plasma-wall interactions for which in situ diagnostics like LIDS are required that work during plasma operation and without tile removal. The method has first been developed for thin amorphous hydrocarbon (a-C:H < 500 nm) layers successfully and is studied in the present work on thick (15 μm) layers, carbon fibre composites (CFCs), bulk tungsten (W), W fuzz and mixed C/W materials. In LID a 3 ms Nd:YAG (1064 nm) laser pulse heats a spot of diameter 3 mm with 500 {sup MW}/{sub m{sup 2}} on W to 1800 K at the surface and thus above 1300 K within ca. 0.2 mm depth. On C materials (graphite, CFC, a-C:H) this temperature guarantees a nearly complete (>95%) desorption already within 1.5 ms pulse duration. The retained hydrogen atoms are desorbed locally, recombine to molecules and migrate promptly to the surface via internal channels like pores and grain boundaries. Whereas, in W the retained hydrogen atoms have to diffuse through the bulk material, which is a relatively slow process also directed into the depth. The desorbed hydrogen fraction can thus be strongly reduced to 18-91% as observed here. This fraction is measured by melting the central part of a previously heated spot ca. 40 μm deep with a diameter 2 mm, 3 ms laser pulse, releasing the remaining hydrogen. W samples exposed to different plasmas in TEXTOR, Pilot-PSI, PSI-2, PADOS and PlaQ show that the desorption fraction of LID mainly decreases due to higher sample temperature during plasma exposure. The heat causes deeper hydrogen diffusion and/or stronger hydrogen trapping due to creation of traps with higher

  17. Laser induced desorption as hydrogen retention diagnostic method

    International Nuclear Information System (INIS)

    Zlobinski, Miroslaw

    2016-01-01

    Laser Induced Desorption Spectroscopy (LIDS) is a diagnostic method to measure the hydrogen content in the surface of a material exposed to a hydrogen isotope (H,D,T) plasma. It is developed mainly to monitor hydrogen retention in the walls of magnetic fusion devices that have to limit the amount of their fuel tritium mainly due to safety reasons. The development of fusion increasingly focusses on plasma-wall interactions for which in situ diagnostics like LIDS are required that work during plasma operation and without tile removal. The method has first been developed for thin amorphous hydrocarbon (a-C:H < 500 nm) layers successfully and is studied in the present work on thick (15 μm) layers, carbon fibre composites (CFCs), bulk tungsten (W), W fuzz and mixed C/W materials. In LID a 3 ms Nd:YAG (1064 nm) laser pulse heats a spot of diameter 3 mm with 500 MW / m 2 on W to 1800 K at the surface and thus above 1300 K within ca. 0.2 mm depth. On C materials (graphite, CFC, a-C:H) this temperature guarantees a nearly complete (>95%) desorption already within 1.5 ms pulse duration. The retained hydrogen atoms are desorbed locally, recombine to molecules and migrate promptly to the surface via internal channels like pores and grain boundaries. Whereas, in W the retained hydrogen atoms have to diffuse through the bulk material, which is a relatively slow process also directed into the depth. The desorbed hydrogen fraction can thus be strongly reduced to 18-91% as observed here. This fraction is measured by melting the central part of a previously heated spot ca. 40 μm deep with a diameter 2 mm, 3 ms laser pulse, releasing the remaining hydrogen. W samples exposed to different plasmas in TEXTOR, Pilot-PSI, PSI-2, PADOS and PlaQ show that the desorption fraction of LID mainly decreases due to higher sample temperature during plasma exposure. The heat causes deeper hydrogen diffusion and/or stronger hydrogen trapping due to creation of traps with higher binding energy

  18. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  19. Investigations into ultraviolet matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Heise, Theodore W. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm2. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  20. Various causes behind the desorption hysteresis of carboxylic acids on mudstones.

    Science.gov (United States)

    Rasamimanana, S; Lefèvre, G; Dagnelie, R V H

    2017-02-01

    Adsorption desorption is a key factor for leaching, migration and (bio)degradation of organic pollutants in soils and sediments. Desorption hysteresis of apolar organic compounds is known to be correlated with adsorption/diffusion into soil organic matter. This work focuses on the desorption hysteresis of polar organic compounds on a natural mudstone sample. Acetic, citric and ortho-phthalic acids displayed adsorption-desorption hysteresis on Callovo-Oxfordian mudstone. The non-reversible behaviours resulted from three different mechanisms. Adsorption and desorption kinetics were evaluated using 14C- and 3H-labelled tracers and an isotopic exchange method. The solid-liquid distribution ratio of acetate decreased using a NaN 3 bactericide, indicating a rapid bacterial consumption compared with negligible adsorption. The desorption hysteresis of phthalate was apparent and suppressed by the equilibration of renewal pore water with mudstone. This confirms the significant and reversible adsorption of phthalate. Finally, persistent desorption hysteresis was evidenced for citrate. In this case, a third mechanism should be considered, such as the incorporation of citrate in the solid or a chemical perturbation, leading to strong desorption resilience. The results highlighted the different pathways that polar organic pollutants might encounter in a similar environment. Data on phthalic acid is useful to predict the retarded transport of phthalate esters and amines degradation products in sediments. The behaviour of citric acid is representative of polydentate chelating agents used in ore and remediation industries. The impact of irreversible adsorption on solid/solution partitioning and transport deserves further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  2. Adsorption and desorption of radioactive inert gases in various materials

    International Nuclear Information System (INIS)

    Butkus, D.

    1999-01-01

    Peculiarities of the 85 Kr and 133 Xe adsorption and desorption processes in active carbon and paraffin are considered in the work. During the desorption process, the distribution of 85 Kr and 133 Xe atoms in active carbon particles is uneven: atoms in narrow micropores desorb the last. It is shown that by changing adsorption conditions the presence time of radioactive inert gases in an active carbon can be prolonged. The adsorption and desorption processes change in the adsorbent, which changes its aggregation state: adsorption occurs in a liquid absorbent and desorption - in a solid absorbent. Paraffin is just such an absorbent changing its aggregation state with low energy losses. It has been obtained that 133 Xe accumulates less in liquid paraffin that in an active carbon. The absorption of 85 Kr in paraffin is larger than in an active carbon (at 18-20 degrees Celsius), while desorption is slower. The velocity of radioactive inert gas atom motion in different places of a solid paraffin sample is different - it increases approaching the borders of the sample. Prolongation of the desorption time of radioactive inert gases from adsorbents and adsorbents in many cases is of a practical importance. In this work, it has been shown by model experiments that the intensity of adsorption and desorption processes for the same sorbents can be changed. Desorption intensity changes are related to the distribution of gas atoms on the surface of particles and in micropores. Desorption velocity decreases if inert gas atoms having entered micropores are 'closed' by condensed liquids in the environment. In this case an inert gas atom diffuses within the whole particle volume or through the condensed liquid. Radioactive inert gases 85 Kr and 133 Xe are absorbed not only in liquid paraffin but in solid one as well. Therefore, after a paraffin sample is hermetically closed in a glass dish, 85 Kr (gas) having diffused from this sample is repeatedly absorbed in it. The 85 Kr

  3. Acoustic emission during hydrogen absorption and desorption in palladium

    International Nuclear Information System (INIS)

    Ramesh, R.; Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used to study charging and discharging of hydrogen in palladium. During charging, breaking of oxide film due to surface activation and saturation of hydrogen absorption have been identified by acoustic emission. In the discharging cycle, the desorption of hydrogen from the specimen leads to high AE activity immediately after initiation of discharging, followed by gradual decrease in the acoustic activity, which reaches a minimum upon completion of the desorption. The potential of the acoustic emission technique for studying the kinetics of hydrogen absorption and desorption in metals has been shown. (author)

  4. Desorption of large organic molecules by laser-induced plasmon excitation

    International Nuclear Information System (INIS)

    Lee, I.; Callcott, T.A.

    1991-01-01

    Ejection of large organic molecules from surfaces by laser-induced electronic-excited desorption has attracted considerable interest in recent years. In addition to the importance of this effect for fundamental investigations of the ejection process, this desorption technique has been applied to the study of large, fragile molecules by mass spectrometry. In this paper, we present a new method to induce electronic excitation on the metal surface for the desorption of large organic molecules. 3 refs., 3 figs

  5. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  6. In-situ infrared study of CO{sub 2} adsorption on SBA-15 grafted with {gamma}-(aminopropyl)triethoxysilane

    Energy Technology Data Exchange (ETDEWEB)

    Alex C.C. Chang; Steven S.C. Chuang; McMahan Gray; Yee Soong [University of Akron, Akron, OH (United States). Chemical Engineering Department

    2003-04-01

    CO{sub 2} adsorption/desorption on SBA-15 grafted with {gamma}-(aminopropyl)triethoxysilane (APTS) has been studied by infrared spectroscopy coupled with temperature-programmed desorption. SBA-15, a mesoporous silica material with a uniform pore size of 21 nm and a surface area of 200-230 m{sup 2}/g, provides an OH functional group for grafting of {gamma}-(aminopropyl)triethoxysilane. The amine-grafted SBA-15 adsorbed CO{sub 2} as carbonates and bicarbonates with a total capacity of 200-400 {mu}mol/g. The heat of CO{sub 2} desorption was determined to be 3.2-4.5 kJ/mol in the presence of H{sub 2}O and 6.6-11.0 kJ/mol in the absence of H{sub 2}O during temperature-programmed desorption. Repeated CO{sub 2} adsorption/desorption CO{sub 2} cycles shifted the desorption peak temperature downward and decreased the heat of CO{sub 2} adsorption. 22 refs., 9 figs., 3 tabs.

  7. Lead sorption-desorption from organic residues.

    Science.gov (United States)

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  8. Desorption of metals from Cetraria islandica (L. Ach. Lichen using solutions simulating acid rain

    Directory of Open Access Journals (Sweden)

    Čučulović Ana A.

    2014-01-01

    Full Text Available Desorption of metals K, Al, Ca, Mg, Fe, Ba, Zn, Mn, Cu and Sr from Cetraria islandica (L. with solutions whose composition was similar to that of acid rain, was investigated. Desorption of metals from the lichen was performed by five successive desorption processes. Solution mixtures containing H2SO4, HNO3 and H2SO4-HNO3 were used for desorption. Each solution had three different pH values: 4.61, 5.15 and 5.75, so that the desorptions were performed with nine different solutions successively five times, always using the same solution volume. The investigated metals can be divided into two groups. One group was comprised of K, Ca and Mg, which were desorbed in each of the five desorption processes at all pH values used. The second group included Al, Fe, Zn, Ba, Mn and Sr; these were not desorbed in each individual desorption and not at all pH values, whereas Cu was not desorbed at all under any circumstances. Using the logarithmic dependence of the metal content as a function of the desorption number, it was found that potassium builds two types of links and is connected with weaker links in lichen. Potassium is completely desorbed, 80% in the first desorption, and then gradually in the following desorptions. Other metals are linked with one weaker link (desorption 1-38% and with one very strong link (desorption below the metal detection limit. [Projekat Ministarstva nauke Republike Srbije, br. III43009 i br. ON 172019

  9. Non-isothermal desorption and nucleate boiling in a water-salt droplet LiBr

    Directory of Open Access Journals (Sweden)

    Misyura Sergey Ya.

    2018-01-01

    Full Text Available Experimental data on desorption and nucleate boiling in a droplet of LiBr-water solution were obtained. An increase in salt concentration in a liquid-layer leads to a considerable decrease in the rate of desorption. The significant decrease in desorption intensity with a rise of initial mass concentration of salt has been observed. Evaporation rate of distillate droplet is constant for a long time period. At nucleate boiling of a water-salt solution of droplet several characteristic regimes occur: heating, nucleate boiling, desorption without bubble formation, formation of the solid, thin crystalline-hydrate film on the upper droplet surface, and formation of the ordered crystalline-hydrate structures during the longer time periods. For the final stage of desorption there is a big difference in desorption rate for initial salt concentration, C0, 11% and 51%. This great difference in the rate of desorption is associated with significantly more thin solution film for C0 = 11% and higher heat flux.

  10. Effect of Grain Size on Differential Desorption of Volatile Species and on Non-ideal MHD Diffusivity

    Science.gov (United States)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun

    2018-05-01

    We developed a chemical network for modeling the chemistry and non-ideal MHD effects from the collapsing dense molecular clouds to protostellar disks. First, we re-formulated the cosmic-ray desorption rate by considering the variations of desorption rate over the grain size distribution. We find that the differential desorption of volatile species is amplified by the grains larger than 0.1 μm, because larger grains are heated to a lower temperature by cosmic-rays and hence more sensitive to the variations in binding energies. As a result, atomic nitrogen N is ˜2 orders of magnitude more abundant than CO; N2H+ also becomes a few times more abundant than HCO+ due to the increased gas-phase N2. However, the changes in ionization fraction due to freeze-out and desorption only have minor effects on the non-ideal MHD diffusivities. Our chemical network confirms that the very small grains (VSGs: below a few 100 Å) weakens the efficiency of both ambipolar diffusion and Hall effect. In collapsing dense cores, a maximum ambipolar diffusion is achieved when truncating the MRN size distribution at 0.1 μm, and for a maximum Hall effect, the truncation occurs at 0.04 μm. We conclude that the grain size distribution is crucial to the differential depletion between CO and N2 related molecules, as well as to the non-ideal MHD diffusivities in dense cores.

  11. Theoretical study of simultaneous water and VOCs adsorption and desorption in a silica gel rotor

    DEFF Research Database (Denmark)

    Zhang, G.; Zhang, Y.F.; Fang, Lei

    2008-01-01

    One-dimensional partial differential equations were used to model the simultaneous water and VOC (Volatile Organic Compound) adsorption and desorption in a silica gel rotor which was recommended for indoor air cleaning. The interaction among VOCs and moisture in the adsorption and desorption...... process was neglected in the model as the concentrations of VOC pollutants in typical indoor environment were much lower than that of moisture and the adsorbed VOCs occupied only a minor portion of adsorption capacity of the rotor. Consequently VOC transfer was coupled with heat and moisture transfer only...... by the temperatures of the rotor and the air stream. The VOC transfer equations were solved by discretizing them into explicit up-wind finite differential equations. The model was validated with experimental data. The calculated results suggested that the regeneration time designed for dehumidification may...

  12. Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program

    International Nuclear Information System (INIS)

    McGuire, L.L.

    1991-01-01

    The Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program serves two purposes. The first is to track temperature trends during normal plant operation in areas where suspected deviations from established environmental profiles exist. This includes the use of Resistance Temperature Detectors, Recorders, and Temperature Dots for evaluation of equipment qualified life for comparison with tested parameters and the established Environmental Design Profile. It also may be used to determine the location and duration of steam leaks for effect on equipment qualified life. The second purpose of this program is to aid HVAC design engineers in determining the source of heat outside anticipated design parameters. Resistance Temperature Detectors, Recorders, and Temperature Dots are also used for this application but the results may include design changes to eliminate the excess heat or provide qualified equipment (cable) to withstand the elevated temperature, splitting of environmental zones to capture accurate temperature parameters, or continued environmental monitoring for evaluation of equipment located in hot spots

  13. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth

    Energy Technology Data Exchange (ETDEWEB)

    Son, H.K. [Department of Health and Environment, Kosin University, Dong Sam Dong, Young Do Gu, Busan (Korea, Republic of); Sivakumar, S., E-mail: ssivaphd@yahoo.com [Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 627-706 (Korea, Republic of); Rood, M.J. [Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL (United States); Kim, B.J. [Construction Engineering Research Laboratory, U.S. Army Engineer Research and Development Center (ERDC-CERL), Champaign, IL (United States)

    2016-01-15

    Highlights: • We study the adsorption and desorption of VOCs by an activated carbon fiber cloth. • Desorption concentration was controlled via electrothermal heating. • The desorption rate was successfully equalized and controlled by this system. - Abstract: Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40–900 ppm{sub v}) and superficial gas velocity (6.3–9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  14. Selective adsorption-desorption method for the enrichment of krypton

    International Nuclear Information System (INIS)

    Yuasa, Y.; Ohta, M.; Watanabe, A.; Tani, A.; Takashima, N.

    1975-01-01

    Selective adsorption-desorption method has been developed as an effective means of enriching krypton and xenon gases. A seriesof laboratory-scale tests were performed to provide some basic data of the method when applied to off-gas streams of nuclear power plants. For the first step of the enrichment process of the experiments, krypton was adsorbed on solid adsorbents from dilute mixtures with air at temperatures ranging from -50 0 C to -170 0 C. After the complete breakthrough was obtained, the adsorption bed was evacuated at low temperature by a vacuum pump. By combining these two steps krypton was highly enriched on the adsorbents, and the enrichment factor for krypton was calculated as the product of individual enrichment factors of each step. Two types of adsorbents, coconut charcoal and molecular sieves 5A, were used. Experimental results showed that the present method gave the greater enrichment factor than the conventional method which used selective adsorption step only. (U.S.)

  15. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter, Fabiano André; Ferreira, Tamara Santos; Sinhorin, Adilson Paulo; Lima, Larissa Borges de; Morais, Leidimar Alves de; Pacheco, Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diu...

  16. Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium

    Science.gov (United States)

    Yang, Tai; Li, Qiang; Liu, Ning; Liang, Chunyong; Yin, Fuxing; Zhang, Yanghuan

    2018-02-01

    Yttrium (Y) is selected to modify the microstructure of magnesium (Mg) to improve the hydrogen storage performance. Thereby, binary alloys with the nominal compositions of Mg24Yx (x = 1-5) are fabricated by inexpensive casting technique. Their microstructure and phase transformation during hydriding and dehydriding process are characterized by using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy analysis. The isothermal hydrogen absorption and desorption kinetics are also measured by a Sievert's-type apparatus at various temperatures. Typical multiphase structures of binary alloy can be clearly observed. All of these alloys can reversibly absorb and desorb large amount of hydrogen at proper temperatures. The addition of Y markedly promotes the hydrogen absorption kinetics. However, it results in a reduction of reversible hydrogen storage capacity. A maximum value of dehydrogenation rate is observed with the increase of Y content. The Mg24Y3 alloy has the optimal desorption kinetic performance, and it can desorb about 5.4 wt% of hydrogen at 380 °C within 12 min. Combining Johnson-Mehl-Avrami kinetic model and Arrhenius equation, the dehydrogenation activation energy of the alloys are evaluated. The Mg24Y3 alloy also has the lowest dehydrogenation activation energy (119 kJ mol-1).

  17. Defects and morphological changes in nanothin Cu films on polycrystalline Mo analyzed by thermal helium desorption spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Seijbel, L.J.; Thijsse, B.J.

    2005-01-01

    Thermal helium desorption spectrometry (THDS) has been used for the investigation of defects and thermal stability of thin Cu films (5-200 A ) deposited on a polycrystalline Mo substrate in ultrahigh vacuum. These films are metastable at room temperature. On heating, the films transform into islands, giving rise to a relatively broad peak in the helium desorption spectra. The temperature of this island formation is dependent on film thickness, being 417 K for 10 A and 1100 K for a 200 A film. The activation energy for island formation was found to be 0.3±0.1 eV for 75 A film. Grain boundaries have a strong effect on island formation. The defect concentration in the as-deposited films is ∼5x10 -4 , for films thicker than 50 A and more for thinner films. Helium release from monovacancies was identified in the case of a 200 A film. Helium release was also seen during sublimation of the Cu film (∼1350 K). Overlayer experiments were used to identify helium trapped close to the film surface. An increase of the substrate temperature during deposition resulted in a film that had already formed islands. Argon-ion assistance (250 eV) during film deposition with an ion/atom ratio of ∼0.1 resulted in a significant enhancement of helium trapping in the films. The argon concentration in the films was found to be 10 -3 . The temperature of island formation was increased due to argon-ion assistance. The helium and argon desorption spectra are found to be similar, which is due to most of the helium becoming trapped in the defects created by the argon beam. The role of the Mo surface in affecting the defects at the film-substrate interface is investigated. The effect of variation of helium fluence and helium implantation energy is also considered. The present THDS results of Cu/poly-Mo are compared to those of Cu/Mo(100) and Cu/Mo(100) reported earlier

  18. Influence of surface coverage on the chemical desorption process

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  19. Sorption-desorption dynamics of radiocaesium in organic matter soils

    International Nuclear Information System (INIS)

    Valcke, E.; Cremers, A.

    1994-01-01

    A systematic study has been carried out on the radiocaesium sorption properties of 25 soils (forest, peat) covering organic matter (OM) contents in the range of 10-97%. Predictions are made for radiocaesium partitioning between micaceous Frayed Edge Sites (FES) and regular exchange sites (RES) on the basis of specific radiocaesium interception potentials of the soil and overall exchange capacity. It is shown that for soils with a very high OM content (>80%), significant fractions are present in a readily reversible form in the OM phase. In soils of low-medium OM content (<40%), only a very minor fraction is present in the OM exchange complex. Experimental findings, based on a desorption screening with a variety of desorption agents are in agreement with these predictions. On the basis of a study of sorption kinetics, some additional tools are available for identifying problem soils. In cases of very high OM content, radiocaesium adsorption is completed within hours demonstrating the involvement of the OM sites. In soils for which interception occurs in the FES, sorption continues to proceed for periods of 2-3 weeks. In conclusion, some examples are presented on radiocaesium desorption using ion exchangers as radiocaesium sinks in promoting desorption. For a peaty soil, near quantitative desorption is accomplished. For forest soils with OM contents in a range of 10-40%, fixation levels of 30-50% are demonstrated

  20. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider (LHC) at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring (LEAR). These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow-discharges, non-evaporable getter coating) are reported in terms of the molecular desorption yields for H2, CH4, CO, Ar and CO2. Unexpected large values of molecular yields per incident ion up to 2 104 molecules/ion have been observed. The red...

  1. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2  MeV/u lead ions

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2003-01-01

    Full Text Available In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2  MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating are reported in terms of the molecular desorption yields for H_{2}, CH_{4}, CO, Ar, and CO_{2}. Unexpected large values of molecular yields per incident ion up to 2×10^{4} molecules/ion have been observed. The reduction of the ion-induced desorption yield due to continuous bombardment with lead ions (beam cleaning has been investigated for five different stainless steel vacuum chambers. The implications of these results for the vacuum system of the future Low Energy Ion Ring and possible remedies to reduce the vacuum degradation are discussed.

  2. Adsorption-desorption and leaching of pyraclostrobin in Indian soils.

    Science.gov (United States)

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T

    2013-01-01

    Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL(-1). The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL(-1). Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1-25.3%, 9.4-20.7% and 8.1-13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow

  3. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  4. Desorption of absorbed iron in bean root and leaf tissues

    International Nuclear Information System (INIS)

    Jooste, J.H.; De Bruyn, J.A.

    1979-01-01

    The effect of different desorption media on the amount of absorbed Fe (from a solution of FeCl 3 in 0,5 mM CaCl 2 ) retained by leaf discs and excised root tips of bean plants was investigated. Attempts were also made to determine the effect of desorption on the intracellular distribution of Fe. Desorption in water or an FeCl 3 solution had no pronounced effect on the amount of absorbed Fe retained by either the leaf or root tissues. However, Na 2 -EDTA was able to desorb a considerable portion of the absorbed Fe, especially in root tissue. This applies to Fe absorbed from solutions of FeCl 3 and Fe-EDDHA. Desorption by the chelate removed Fe from practically all the different particulate fractions of both root and leaf tissues, but desorption following the longer absorption periods resulted in an increase in the Fe content of the 'soluble' fraction. The possibility that Na 2 -EDTA causes an increased permeability of cell membranes seems likely. The view that removal of Ca by the chelate causes this increase in permeability could not be confirmed [af

  5. Laser desorption mass spectrometry for biomolecule detection and its applications

    Science.gov (United States)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  6. Laser desorption mass spectrometry for biomolecule detection and its applications

    International Nuclear Information System (INIS)

    Winston Chen, C.H.; Allman, S.L.; Sammartano, L.J.; Isola, N.R.

    2001-01-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications

  7. Method and apparatus for condensing radioactive rare gases by means of use of ejector and selective adsorption and desorption process including cycles

    International Nuclear Information System (INIS)

    Kanazawa, Toshio; Tsuda, Koji; Watanabe, Yukio; Miharada, Hassui; Tani, Akira.

    1975-01-01

    Object: To recover rare gases in waste gases at one stage as high density as possible while effectively utilizing adsorption beds. Structure: The waste gases pass through an ejector and are subject to treatment of dehumidification and decarbonization in a pretreatment station, after which the gases enter a first low temperature adsorption bed through a heat exchanger and a first valve. If breaking should occur in the first adsorption bed, the waste gases would be introduced into a second adsorption bed for adsorption treatment. The first adsorption bed, which has completed adsorption, is heated to a regenerative temperature while adsorption is being performed at the second adsorption bed, and degases containing rare gases are recycled through a second and third valves and are mixed into raw waste gases by the action of the ejector. After the above adsorption and desorption have been repeated several times by alternately using the first and second adsorption bed the adsorption bed is heated to a temperature lower than the regenerative temperature to recycle the desorption gases to feed and then heated to the regenerative temperature, and the desorbed rare gases are fed to the succeeding system through a pump. (Yoshihara, H.)

  8. Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica)

    International Nuclear Information System (INIS)

    Lahsasni, S.; Kouhila, M.; Mahrouz, M.

    2004-01-01

    The equilibrium moisture contents were determined for prickly pear fruit using the gravimetric static method at t=30, 40 and 50 deg. C over a range of relative humidities from 0.05 to 0.9. The sorption curves of prickly pear fruit decreased with increase in temperature at constant relative humidity. The hysteresis effect was observed. The GAB, modified Halsey, modified Chung-Pfost, modified Oswin and modified Henderson models were tested to fit the experimental data. The GAB model was found to be the most suitable for describing the sorption curves. The monolayer moisture content values for the sorption at different temperatures are calculated using a modified BET equation. The isosteric heats of desorption and adsorption of water were determined from the equilibrium data at different temperatures

  9. Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica)

    Energy Technology Data Exchange (ETDEWEB)

    Lahsasni, S.; Kouhila, M. E-mail: kouhila@hotmail.com; Mahrouz, M

    2004-01-01

    The equilibrium moisture contents were determined for prickly pear fruit using the gravimetric static method at t=30, 40 and 50 deg. C over a range of relative humidities from 0.05 to 0.9. The sorption curves of prickly pear fruit decreased with increase in temperature at constant relative humidity. The hysteresis effect was observed. The GAB, modified Halsey, modified Chung-Pfost, modified Oswin and modified Henderson models were tested to fit the experimental data. The GAB model was found to be the most suitable for describing the sorption curves. The monolayer moisture content values for the sorption at different temperatures are calculated using a modified BET equation. The isosteric heats of desorption and adsorption of water were determined from the equilibrium data at different temperatures.

  10. Positron-annihilation-induced ion desorption from TiO2(110)

    Science.gov (United States)

    Tachibana, T.; Hirayama, T.; Nagashima, Y.

    2014-05-01

    We have investigated the positron-stimulated desorption of ions from a TiO2(110) surface. Desorbed O+ ions were detected in coincidence with the emission of annihilation γ rays. The energy dependence of the ion yields shows that the O+ ions were detected at energies much lower than the previously reported threshold for electron impact desorption corresponding to the excitation energy of Ti(3p) core electrons. These results provide evidence that core-hole creation by positron annihilation with electrons in the core levels leads to ion desorption.

  11. Inelastic surface collisions and the desorption of massive molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, R D [Texas A and M Univ., College Station (USA). Dept. of Chemistry

    1983-01-01

    The interaction of high energy ions in the region of electronic stopping (1 MeV u/sup -1/) stimulates the desorption of massive molecular ions of biomolecules such as insulin. The experimental details of the measurements are given with some examples of application for analytical mass spectrometry. Studies on the role of the incident ion (accelerator beam experiments) are reviewed as well as the contribution of the matrix to the desorption-ionization process. How the electronic relaxation process couples to desorption-ionization is a central question in understanding the overall mechanism of the process.

  12. Catalitic effect of Co on hydrogen desorption form nanostucturated magnesium hydride

    Directory of Open Access Journals (Sweden)

    Matović Ljiljana Lj.

    2008-01-01

    Full Text Available To study the influence of 3d transition metal addition on desorption kinetics of MgH2 ball milling of MgH2-Co blends was performed under Ar. Microstructural and morphological characterization, performed by XRD and SEM, show a huge correlation with thermal stability and hydrogen desorption properties investigated by DSC. A complex desorption behavior is correlated with the dispersion of the metal additive particles on hydride matrix. The activation energy for H2 desorption from MgH2-Co composite was calculated from both non-isothermal and isothermal methods to be 130 kJ/mol which means that mutually diffusion and nucleation and growth of new phase control the dehydration process.

  13. The kinetics of hydrogen absorption/desorption within nanostructured composite Ni79.1Co18.6Cu2.3 alloy using resistometry

    International Nuclear Information System (INIS)

    Spasojević, M.; Maričić, A.; Ribić Zelenović, L.; Krstajić, N.; Spasojević, P.

    2013-01-01

    Highlights: ► Nanostructured Ni 79.1 Co 18.6 Cu 2.3 powder was obtained by electrochemical deposition. ► Correlation observed between electrical conductivity and absorbed hydrogen amount. ► Hydrogen absorption/desorption mechanism was determined. - Abstract: Ni 79.1 Co 18.6 Cu 2.3 powder was obtained by electrochemical deposition from an ammonium sulfate bath. The structure and surface morphology of the powder were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically obtained Ni 79.1 Co 18.6 Cu 2.3 alloy contained an amorphous phase and nanocrystals with an average size of 6.8 nm of FCC phase of the solid solution of cobalt and copper in nickel. Nanocrystals were characterized by a high average microstrain value and high minimum density of chaotically distributed dislocations. X-ray analysis also showed that powder hydrogenation at an elevated temperature of up to 200 °C did not change unit cell parameters and mean crystallite size value. SEM images show the formation of two shapes of powder particles: large cauliflower-like particles and small dendritic ones. Powder pressing at 10 MPa and at 25 °C gave samples that were analyzed for hydrogen absorption/desorption within the temperature range of 160–200 °C. Changes in electrical resistivity during absorption/desorption were monitored. The reciprocal value of resistivity (electrical conductivity) was found to increase linearly with increasing amount of absorbed hydrogen. The experimental results were used to propose an absorption/desorption mechanism. The adsorbed hydrogen molecule dissociates on alloy surface, forming adsorbed atoms. Adatoms penetrate and diffuse into the bulk of the alloy, simultaneously donating their electrons to the conduction band of the alloy. The increase in the concentration of free electrons induces a decrease in electrical resistivity. The overall absorption rate during initial absorption is determined by the

  14. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    Science.gov (United States)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  15. Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry

    Science.gov (United States)

    Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2013-03-01

    This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution `Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10-9 M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.

  16. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  17. Temperature-dependent evolution of chemisorbed digermane in Ge thin film growth

    International Nuclear Information System (INIS)

    Eres, D.; Sharp, J.W.

    1992-01-01

    The formation and evolution of chemisorbed digermane layers in context with germanium thin film growth was investigated by time- resolved surface reflectometry. Modulation of the source gas supply made possible the separation and independent study of the temperature dependence of the adsorption and desorption processes. The regeneration of active sites by molecular hydrogen desorption was identified as the rate-limiting step at low substrate temperatures. A dynamic method of thin film growth was demonstrated by repetitively replenishing the active film growth sites regenerated between two successive source gas pulses. The film growth rate was shown to be related to the substrate temperature and the delay time between successive source gas pulses

  18. Non-isothermal kinetics of the thermal desorption of mercury from a contaminated soil

    Directory of Open Access Journals (Sweden)

    López, Félix A.

    2014-03-01

    Full Text Available The Almadén mining district (Ciudad Real, Spain was the largest cinnabar (mercury sulphide mine in the world. Its soils have high levels of mercury a consequence of its natural lithology, but often made much worse by its mining history. The present work examines the thermal desorption of two contaminated soils from the Almadén area under non-isothermal conditions in a N2 atmosphere, using differential scanning calorimetry (DSC. DSC was performed at different heating rates between room temperature and 600 °C. Desorption temperatures for different mercury species were determined. The Friedman, Flynn-Wall-Ozawa and Coasts–Redfern methods were employed to determine the reaction kinetics from the DSC data. The activation energy and pre-exponential factor for mercury desorption were calculated.El distrito minero de Almadén (Ciudad Real, España tiene la mayor mina de cinabrio (sulfuro de mercurio del mundo. Sus suelos tienen altos niveles de mercurio como consecuencia de su litología natural, pero a menudo su contenido en mercurio es mucho más alto debido a la historia minera de la zona. Este trabajo examina la desorción térmica de dos suelos contaminados procedentes de Almadén bajo condiciones isotérmicas en atmósfera de N2, empleando calorimetría diferencial de barrido (DSC. La calorimetría se llevó a cabo a diferentes velocidades de calentamiento desde temperatura ambiente hasta 600 °C. Se determinaron las diferentes temperaturas de desorción de las especies de mercurio presentes en los suelos. Para determinar la cinética de reacción a partir de los datos de DSC se utilizaron los métodos de Friedman, Flynn-Wall-Ozawa y Coasts–Redfern. Además se calcularon las energías de activación y los factores pre-exponenciales para la desorción del mercurio.

  19. Helium desorption in EFDA iron materials for use in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Salazar R, A. R.; Pinedo V, J. L.; Sanchez, F. J.; Ibarra, A.; Vila, R.

    2015-09-01

    In this paper the implantation with monoenergetic ions (He + ) was realized with an energy of 5 KeV in iron samples (99.9999 %) EFDA (European Fusion Development Agreement) using a collimated beam, after this a Thermal Desorption Spectrometry of Helium (THeDS) was made using a leak meter that detects amounts of helium of up to 10 - - 12 mbar l/s. Doses with which the implantation was carried out were 2 x 10 15 He + /cm 2 , 1 x 10 16 He + /cm 2 , 2 x 10 16 He + /cm 2 , 1 x 10 17 He + /cm 2 during times of 90 s, 450 s, 900 s and 4500 s, respectively. Also, using the SRIM program was calculated the depth at which the helium ions penetrate the sample of pure ion, finding that the maximum distance is 0.025μm in the sample. For this study, 11 samples of Fe EFDA were prepared to find defects that are caused after implantation of helium in order to provide valuable information to the manufacture of materials for future fusion reactors. However understand the effects of helium in the micro structural evolution and mechanical properties of structural materials are some of the most difficult questions to answer in materials research for nuclear fusion. When analyzing the spectra of THeDS was found that five different groups of desorption peaks existed, which are attributed to defects of He caused in the material, these defects are He n V (2≤n≤6), He n V m , He V for the groups I, II and IV respectively. These results are due to the comparison of the peaks presented in the desorption spectrum of He, with those of other authors who have made theoretical calculations. Is important to note that the thermal desorption spectrum of helium was different depending on the dose with which the implantation of He + was performed. (Author)

  20. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    International Nuclear Information System (INIS)

    Shaw, P.; Nickelson, D.; Hyde, R.

    1999-01-01

    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA

  1. Sorption and desorption of indaziflam degradates in several agricultural soils

    Directory of Open Access Journals (Sweden)

    Diego Gonçalves Alonso

    2016-04-01

    Full Text Available ABSTRACT Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption and desorption are important processes as they regulate the movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involving their metabolites in soil are scarce. Sorption and desorption of indaziflam metabolites (indaziflam-triazinediamine (FDAT, indaziflam-triazine-indanone (ITI and indaziflam-carboxilic acid (ICA were investigated in six Brazilian (BRA soils and three United States (USA soils with different physicochemical properties. The Freundlich equation described sorption of the metabolites for all soils (R2 > 0.98; 1/n ~ 1. Sorption order (Kf was ITI > ICA > FDAT. Mean values of Kf,oc were 453, 289, and 81 (BRA and 444, 48, and 48 (USA for metabolites ITI, ICA, and FDAT respectively. Desorption was hysteretic for all metabolites in all soils. These results suggest that these metabolites fall in the classification range of mobile to moderately mobile in soils.

  2. Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Hongmei Qin

    2015-04-01

    Full Text Available Conventional supported Pt catalysts have often been prepared by loading Pt onto commercial supports, such as SiO2, TiO2, Al2O3, and carbon. These catalysts usually have simple metal-support (i.e., Pt-SiO2 interfaces. To tune the catalytic performance of supported Pt catalysts, it is desirable to modify the metal-support interfaces by incorporating an oxide additive into the catalyst formula. Here we prepared three series of metal oxide-modified Pt catalysts (i.e., Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3, where M = Al, Fe, Co, Cu, Zn, Ba, La for CO oxidation. Among them, Pt/CoOx/SiO2, Pt/CoOx/TiO2, and Pt/CoOx/Al2O3 showed the highest catalytic activities. Relevant samples were characterized by N2 adsorption-desorption, X-ray diffraction (XRD, transmission electron microscopy (TEM, H2 temperature-programmed reduction (H2-TPR, X-ray photoelectron spectroscopy (XPS, CO temperature-programmed desorption (CO-TPD, O2 temperature-programmed desorption (O2-TPD, and CO2 temperature-programmed desorption (CO2-TPD.

  3. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S.D.; Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D. [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M. [Australian National Univ., Canberra, ACT (Australia)

    1996-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  4. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S D; Paterson, P J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M [Australian National Univ., Canberra, ACT (Australia)

    1997-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  5. Adsorption/desorption properties of vacuum materials for the 6 GeV synchrotron

    International Nuclear Information System (INIS)

    Krauss, A.R.

    1985-01-01

    Considerable attention must be paid to the vacuum and adsorption/desorption properties of all materials installed inside the vacuum envelope if the design goals of the 6 GeV synchrotron are to be met. Unfortunately, the data is very sparse in several key areas. Additionally, some procedures normally associated with good vacuum practice, such as air baking, may prove to be totally unsuitable on the basis of desorption properties. We present here a brief discussion of the adsorption, outgassing, electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD) properties of vacuum materials as they relate to the design of a 6 GeV synchrotron

  6. Investigating the coverage dependent behaviour of CO on Gd/Pt(111)

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese; Hansen, Martin Hangaard; Rossmeisl, Jan

    2016-01-01

    diffraction (LEED), showing that a highly ordered crystal structure had appeared. To study the molecular dynamics on this surface a detailed study of the CO adsorption on the surface was conducted using temperature programmed desorption (TPD) of CO. The TPD spectra show a desorption peak shifted down...... in temperature compared to those of pure Pt(111). The shape of the desorption peak and the desorption temperature were shown to be strongly dependent on the CO coverage of the surface. A systematic investigation of CO desorption temperature as a function of coverage was consequently performed. A simple...... simulation of the TPD spectra was carried out, based on adsorption energies from density functional theory (DFT). This simulation reproduces the shift and the narrowing of the desorption spectrum from the experiments and the DFT calculations suggest that the sharp TPD feature arises from cooperative...

  7. Sustainable remediation of mercury contaminated soils by thermal desorption.

    Science.gov (United States)

    Sierra, María J; Millán, Rocio; López, Félix A; Alguacil, Francisco J; Cañadas, Inmaculada

    2016-03-01

    Mercury soil contamination is an important environmental problem that needs the development of sustainable and efficient decontamination strategies. This work is focused on the application of a remediation technique that maintains soil ecological and environmental services to the extent possible as well as search for alternative sustainable land uses. Controlled thermal desorption using a solar furnace at pilot scale was applied to different types of soils, stablishing the temperature necessary to assure the functionality of these soils and avoid the Hg exchange to the other environmental compartments. Soil mercury content evolution (total, soluble, and exchangeable) as temperature increases and induced changes in selected soil quality indicators are studied and assessed. On total Hg, the temperature at which it is reduced until acceptable levels depends on the intended soil use and on how restrictive are the regulations. For commercial, residential, or industrial uses, soil samples should be heated to temperatures higher than 280 °C, at which more than 80 % of the total Hg is released, reaching the established legal total Hg level and avoiding eventual risks derived from high available Hg concentrations. For agricultural use or soil natural preservation, conversely, maintenance of acceptable levels of soil quality limit heating temperatures, and additional treatments must be considered to reduce available Hg. Besides total Hg concentration in soils, available Hg should be considered to make final decisions on remediation treatments and potential future uses. Graphical Abstract Solar energy use for remediation of soils affected by mercury.

  8. Magnesium growth in magnesium deuteride thin films during deuterium desorption

    Energy Technology Data Exchange (ETDEWEB)

    Checchetto, R., E-mail: riccardo.checchetto@unitn.it [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Miotello, A. [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Mengucci, P.; Barucca, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Università Politecnica delle Marche, I-60131 Ancona (Italy)

    2013-12-15

    Highlights: ► Highly oriented Pd-capped magnesium deuteride thin films. ► The MgD{sub 2} dissociation was studied at temperatures not exceeding 100 °C. ► The structure of the film samples was analyzed by XRD and TEM. ► The transformation is controlled by the re-growth velocity of the Mg layers. ► The transformation is thermally activated, activation energy value of 1.3 ± 0.1 eV. -- Abstract: Pd- capped nanocrystalline magnesium thin films having columnar structure were deposited on Si substrate by e-gun deposition and submitted to thermal annealing in D{sub 2} atmosphere to promote the metal to deuteride phase transformation. The kinetics of the reverse deuteride to metal transformation was studied by Thermal Desorption Spectroscopy (TDS) while the structure of the as deposited and transformed samples was analyzed by X-rays diffraction and Transmission Electron Microscopy (TEM). In Pd- capped MgD{sub 2} thin films the deuteride to metal transformation begins at the interface between un-reacted Mg and transformed MgD{sub 2} layers. The D{sub 2} desorption kinetics is controlled by MgD{sub 2}/Mg interface effects, specifically the re-growth velocity of the Mg layers. The Mg re-growth has thermally activated character and shows an activation energy value of 1.3 ± 0.1 eV.

  9. One pot synthesized Li, Zr doped porous silica nanoparticle for low temperature CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Mani Ganesh

    2017-05-01

    Full Text Available Li, Zr doped porous silica was synthesized in one pot and investigated for low temperature CO2 adsorption. The synthesized nanoparticle was characterized by X-ray diffraction (XRD, N2 adsorption–desorption measurement, thermogravimetric analysis (TGA and scanning electron microscopy (SEM. The specific surface area, average pore diameter and pore volume were determined to be 962 m2/g, 2.3 nm and 0.56 cm3/g respectively. ICP-AES analysis revealed a metal content of 4 wt.% (Zr and 3.42 wt.% (Li. Their CO2 adsorption capacity was tested at room temperature and atmospheric pressure. An uptake of about 5 wt.% was observed and regenerable at a low temperature of 200 °C. This adsorption and desorption temperature of the sorbent is lower than the reported lithium silicate. The CO2 adsorption–desorption cyclic performance studies illustrated that Li, Zr doped porous silica is a recyclable, selective and potential sorbent for CO2 adsorption.

  10. Effect of long-term hydrogen absorption/desorption cycling on hydrogen storage properties of MmNi3.55Co0.75Mn0.4Al0.3

    International Nuclear Information System (INIS)

    Li, S.L.; Chen, W.; Chen, D.M.; Yang, K.

    2009-01-01

    The effect of a long-term hydrogen absorption/desorption cycling up to 2000 cycles on the hydrogen storage properties of MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 alloy was investigated. The pressure-composition (PC) isotherms for absorption/desorption and absorption kinetics were measured at 338 K, 353 K and 368 K both after initial activation and 2000 cycles. X-ray diffraction analysis revealed that the alloy had a homogeneous hexagonal CaCu 5 type structure and kept this structure even after 2000 hydrogen absorption/desorption cycles. It is found that the absorption/desorption plateau pressures were lowered, the storage capacity and the absorption kinetics were slightly degraded and the hysteresis loss was increased at all the investigated temperatures after 2000 cycles. It is also found that the particle size after 2000 cycles was much smaller compared to that after initial activation. The change of the hydrogen absorption/desorption properties of the alloy after 2000 cycles has been explained by considering the crystal structure, disproportionation property, pulverization of the sample and the impurities in the charging hydrogen employed in cycling

  11. Desorption of organic molecules with fast incident atomic and polyatomic ions

    International Nuclear Information System (INIS)

    Hunt, J.E.; Salehpour, M.; Fishel, D.L.

    1989-01-01

    In 1974, Macfarlane and coworkers introduced a new mass spectrometric technique based on desorption-ionization of sample molecules from solid targets by the impact of fast heavy ions (fission fragments) from 252 Cf. The process of ion-induced desorption of molecular ions from surfaces is not yet fully understood, although a large amount of experimental data related to the mechanism has been published. This paper concerns the use of fast incident polyatomic ions to induce desorption of secondary molecular ions of valine and chlorophyll from surfaces. Polyatomic ions are unique in that they are a collection of temporally and spatially correlated atoms. The main finding in this study is that incident polyatomic ions produce drastic enhancements in the secondary ion yields over atomic ions. Also, two types of nonlinear effects in desorption have been observed and will be discussed

  12. Study of chlordecone desorption from activated carbons and subsequent dechlorination by reduced cobalamin.

    Science.gov (United States)

    Ranguin, Ronald; Durimel, Axelle; Karioua, Reeka; Gaspard, Sarra

    2017-11-01

    Since 1972, the French departments of Guadeloupe and Martinique have intensively used organochlorinated pesticides such as chlordecone (CLD) and hexachlorocyclohexane (HCH) isomers to prevent the proliferation of banana weevil (Cosmopolite sordidus). These molecules are stable in the environment, leading to a continuous contamination of soils, water, and food chain in the banana-producing areas. In these polluted areas, water treatment plants are equipped with activated carbon (AC) filters. In order to improve treatment of CLD-contaminated waters by AC, CLD adsorption and desorption kinetic studies are carried out using different ACs produced from sugar cane bagasse as adsorbents and subsequent CLD degradation is performed using reduced vitamin B12 (VB12). A GC-MS method for CLD quantification is as well optimized. This study shows that bagasse ACs are able to capture the pollutant, leading to a CLD concentration decrease from 1 to 73 μg L -1 , with an adsorption capacity of 162 μg mg -1 . Adsorption capacity increase with the temperature indicates an endothermic process. Polar solvents favor CLD desorption from ACs, suggesting hydrogen bonding between CLD and surface groups of ACs, the best solvent for chemical desorption being ethanol. Subsequent degradation of CLD in ethanol is performed using vitamin B12 reduced by either 1,4-dithiotreitol (DTT) or zerovalent zinc, leading to 90% of CLD removal and to the molecule cage structure opening for formation of a pentachloroindene intermediate product, characterized by GC MS/MS. A pathway for pentachloroindene formation from CLD is proposed.

  13. Evaluation of thermal network correction program using test temperature data

    Science.gov (United States)

    Ishimoto, T.; Fink, L. C.

    1972-01-01

    An evaluation process to determine the accuracy of a computer program for thermal network correction is discussed. The evaluation is required since factors such as inaccuracies of temperatures, insufficient number of temperature points over a specified time period, lack of one-to-one correlation between temperature sensor and nodal locations, and incomplete temperature measurements are not present in the computer-generated information. The mathematical models used in the evaluation are those that describe a physical system composed of both a conventional and a heat pipe platform. A description of the models used, the results of the evaluation of the thermal network correction, and input instructions for the thermal network correction program are presented.

  14. T/sub hot/ reduction: a program for lowering primary temperatures on a PWR

    International Nuclear Information System (INIS)

    Augustine, D.B.; DiTommaso, S.M.; Manz, E.M.; Reister, P.

    1987-01-01

    This paper focuses on the key technical issues addressed in a program to support operation of the Byron Unit 1 pressurized water reactor at primary side temperatures significantly lowered with respect at primary side temperatures significantly lowered with respect to the original design temperatures. These operating temperatures were lowered in order to reduce the potential for initiation of primary water stress corrosion cracking in the steam generator tubing. The efforts of this program were aimed at maintaining operation of the unit at the maximum possible power level at the reduced temperatures. In addition, the program is designed to allow for cycle-to-cycle flexibility within a range of operating temperatures from the original design temperatures to temperatures lowered by ∼ 11 0 C (20 0 F)

  15. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  16. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Elizabeth Guthrie [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)], E-mail: elizabeth_nichols@ncsu.edu; Gregory, Samuel T.; Musella, Jennifer S. [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)

    2008-12-15

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C{sub 3}-phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k{sub slow} and k{sub veryslow}. After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior.

  17. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    International Nuclear Information System (INIS)

    Nichols, Elizabeth Guthrie; Gregory, Samuel T.; Musella, Jennifer S.

    2008-01-01

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C 3 -phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k slow and k veryslow . After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior

  18. Desorption, dissociation and orientation of oxygen admolecules on a reconstructed platinum(110)(1x2) surface studied by thermal desorption and near-edge X-ray-absorption fine-structure

    International Nuclear Information System (INIS)

    Ohno, Yuichi; Matsushima, Tatsuo; Tanaka, Shin-ichiro; Kamada, Masao

    1993-01-01

    The desorption, dissociation and orientation of oxygen admolecules on a reconstructed Pt(110)(1x2) were studied by means of TDS combined with isotope tracer, NEXAFS, and angle-resolved TDS. The admolecules below half a monolayer lie on the bottom of the trough, being oriented along it. The molecules adsorbed additionally are lying on declining terraces. The desorption flux of the former species shows a simple cosine distribution, suggesting that the molecule is not localized on the bottom in the desorption event. (author)

  19. A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M

    2016-04-05

    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.

  20. VAC*TRAX - Thermal desorption for mixed wastes

    International Nuclear Information System (INIS)

    McElwee, M.J.; Palmer, C.R.

    1995-01-01

    The patented VAC*TRAX process was designed in response to the need to remove organic constituents from mixed waste, waste that contains both a hazardous (RCRA or TSCA regulated) component and a radioactive component. Separation of the mixed waste into its hazardous and radioactive components allows for ultimate disposal of the material at existing, permitted facilities. The VAC*TRAX technology consists of a jacketed vacuum dryer followed by a condensing train. Solids are placed in the dryer and indirectly heated to temperatures as high as 260 degrees C, while a strong vacuum (down to 50 mm Hg absolute pressure) is applied to the system and the dryer is purged with a nitrogen carrier gas. The organic contaminants in the solids are thermally desorbed, swept up in the carrier gas and into the condensing train where they are cooled and recovered. The dryer is fitted with a filtration system that keeps the radioactive constituents from migrating to the condensate. As such, the waste is separated into hazardous liquid and radioactive solid components, allowing for disposal of these streams at a permitted incinerator or a radioactive materials landfill, respectively. The VAC*TRAX system is designed to be highly mobile, while minimizing the operational costs with a simple, robust process. These factors allow for treatment of small waste streams at a reasonable cost. This paper describes the VAC*TRAX thermal desorption process, as well as results from the pilot testing program. Also, the design and application of the full-scale treatment system is presented. Materials tested to date include spiked soil and debris, power plant trash and sludge contaminated with solvents, PCB contaminated soil, solvent-contaminated uranium mill-tailings, and solvent and PCB-contaminated sludge and trash. Over 70 test runs have been performed using the pilot VAC*TRAX system, with more than 80% of the tests using mixed waste as the feed material

  1. SATCAP-B: a program for thermal-hydraulic design of 'Saturated Temperature Capsule'

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Someya, Hiroyuki; Niimi, Motoji

    1989-11-01

    As an advanced irradiation technique, the JMTR (Japan Materials Testing Reactor) project is developing a 'Saturated Temperature Capsule' which water is injected in and boiled. When the water is kept at a constant pressure, the water temperature does not become higher than the saturated temperature. This type capsule is based on the conception of keeping the coolant to the saturated temperature and using the temperature control. In designing the capsule in which the inner coolant is injected, thermal performances have to be understood as exactly as possible. Then, a program (named SATCAP) was compiled to graps the thermal performance within the capsule. On the other hand, a 'Saturated Temperature Capsule' was made and irradiated in the JMTR core. It was indicated from supplied water temperatures recorded by thermo-couples attached in the capsule that heat transfer coefficients prefered models due to natural convection to models incorporated in the initial version of the program. Then, the program was revised by adding mainly heat transfer model based on natural convection. The present report describes the calculation procedure and guides of input and output for the revised program (SATCAP version-B). (author)

  2. Temperature and pH influence adsorption of cellobiohydrolase onto lignin by changing the protein properties.

    Science.gov (United States)

    Lu, Xianqin; Wang, Can; Li, Xuezhi; Zhao, Jian

    2017-12-01

    Non-productive adsorption of cellulase onto lignin restricted the movement of cellulase and also hindered the cellulase recycling in bioconversion of lignocellulose. In this study, effect of temperature and pH on adsorption and desorption of cellobiohydrolase (CBH) on lignin and its possible mechanism were discussed. It found that pH value and temperature influenced the adsorption and desorption behaviors of CBH on lignin. Different thermodynamic models suggested that the action between lignin and CBH was physical action. More CBH was adsorbed onto lignin, but lower initial adsorption velocity was detected at 50°C comparing with 4°C. Elevating pH value could improve desorption of cellulase from lignin. The changes of hydrophobicity and electric potential on protein surface may partially explain the impact of environmental conditions on the adsorption and desorption behaviors of CBH on lignin, and comparing to electrical interaction, the hydrophobicity may be the dominating factor influencing the behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of biochars by temperature programmed oxidation/mass spectrometry

    Science.gov (United States)

    Michael Jackson; Thomas Eberhardt; Akwasi Boateng; Charles Mullen; Les Groom

    2013-01-01

    Biochars produced from thermochemical conversions of biomass were evaluated by temperature programmed oxidation (TPO). This technique, used to characterize carbon deposits on petroleum cracking catalysts, provides information on the oxidative stability of carbonaceous solids, where higher temperature reactivity indicates greater structural order, an important property...

  4. Fate and transport with material response characterization of green sorption media for copper removal via desorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-07-01

    Multiple adsorption and desorption cycles are required to achieve the reliable operation of copper removal and recovery. A green sorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was evaluated in this study for its desorptive characteristics as a companion study of the corresponding adsorption process in an earlier publication. We conducted a screening of potential desorbing agents, batch desorption equilibrium and kinetic studies, and batch tests through 3 adsorption/desorption cycles. The desorbing agent screening revealed that hydrochloric acid has good potential for copper desorption. Equilibrium data fit the Freundlich isotherm, whereas kinetic data had high correlation with the Lagergren pseudo second-order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles showed that the coconut coir and media mixture were the most resilient, demonstrating they could be used through 3 or more adsorption/desorption cycles. FE-SEM imaging, XRD, and EDS analyses supported the batch adsorption and desorption results showing significant surface sorption of CuO species in the media mixture and coconut coir, followed by partial desorption using 0.1 M HCl as a desorbing agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM

    Energy Technology Data Exchange (ETDEWEB)

    Capece, A.M., E-mail: acapece@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Roszell, J.P. [Princeton University, Department of Chemical and Biological Engineering, Princeton, NJ (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Koel, B.E. [Princeton University, Department of Chemical and Biological Engineering, Princeton, NJ (United States)

    2015-08-15

    In this work, we investigate deuterium retention at the Mo–Li interface by studying thin Li films three monolayers thick on a TZM Mo alloy. Li films at temperatures between 315 and 460 K were exposed to a deuterium ion beam and D retention was measured using temperature programmed desorption. In the absence of oxygen, D is retained as LiD, and the relative amount of retained D decreases with increasing substrate temperature. In three-monolayer thick lithium oxide films, the amount of D retained was 2.5 times higher than the amount retained as LiD in the metallic Li film. However, oxygen reduces the thermal stability of D in the film, causing D{sub 2}O and D{sub 2} to be released from the surface at temperatures 150–200 K below the LiD decomposition temperature. These results highlight the importance of maintaining a metallic Li layer for high D retention in Li films on TZM at elevated temperatures.

  6. Physisorption and desorption of H2, HD and D2 on amorphous solid water ice. Effect on mixing isotopologue on statistical population of adsorption sites.

    Science.gov (United States)

    Amiaud, Lionel; Fillion, Jean-Hugues; Dulieu, François; Momeni, Anouchah; Lemaire, Jean-Louis

    2015-11-28

    We study the adsorption and desorption of three isotopologues of molecular hydrogen mixed on 10 ML of porous amorphous water ice (ASW) deposited at 10 K. Thermally programmed desorption (TPD) of H2, D2 and HD adsorbed at 10 K have been performed with different mixings. Various coverages of H2, HD and D2 have been explored and a model taking into account all species adsorbed on the surface is presented in detail. The model we propose allows to extract the parameters required to fully reproduce the desorption of H2, HD and D2 for various coverages and mixtures in the sub-monolayer regime. The model is based on a statistical description of the process in a grand-canonical ensemble where adsorbed molecules are described following a Fermi-Dirac distribution.

  7. Photo-stimulated desorption from water and methane clusters on the surface of solid neon

    International Nuclear Information System (INIS)

    Arakawa Ichiri; Matsumoto Dairo; Takekuma Shinichi; Tamura Reimi; Miura Takashi

    2012-01-01

    Photo-stimulated desorption of ions from methane and water heterocluster on the surface of solid neon was studied. The desorption yields of the variety of photo-desorbed species showed strong dependence on the composition and the size of the mother cluster. It was found that the presence of a water molecule in the cluster significantly enhanced, or was almost essential for, the desorption of any species observed. Systematic investigation of the correlation between the cluster size and the desorption yield of each ion has revealed the mother cluster which yields the each desorbed ion.

  8. Desorption isotherms of cementitious materials: study of an accelerated protocol and estimation of RVE

    International Nuclear Information System (INIS)

    Wu, Qier

    2014-01-01

    In the framework of French radioactive waste management and storage, the durability evaluation and prediction of concrete structures requires the knowledge of desorption isotherm of concrete. The aim of the present study is to develop an accelerated experimental method to obtain desorption isotherm of cementitious materials more quickly and to estimate the Representative Volume Element (RVE) size related to the desorption isotherm of concrete. In order to ensure that experimental results can be statistically considered representative, a great amount of sliced samples of cementitious materials with three different thicknesses (1 mm, 2 mm and 3 mm) have been de-saturated. The effect of slice thickness and the saturation condition on the mass variation kinetics and the desorption isotherms is analyzed. The influence of the aggregate distribution on the water content and the water saturation degree is also analyzed. A method based on statistical analysis of water content and water saturation degree is proposed to estimate the RVE for water desorption experiment of concrete. The evolution of shrinkage with relative humidity is also followed for each material during the water desorption experiment. A protocol of cycle of rapid desaturation-re-saturation is applied and shows the existence of hysteresis between desorption and adsorption. (author)

  9. Ink dating using thermal desorption and gas chromatography / mass spectrometry: comparison of results obtained in two laboratories

    OpenAIRE

    Koenig, A.; Bügler, J.; Kirsch, D.; Köhler, F.; Weyermann, C.

    2015-01-01

    Recent ink dating methods focused mainly on changes in solvent amounts occurring over time. A promising method was developed at the Landeskriminalamt of Munich using thermal desorption (TD) followed by gas chromatography / mass spectrometry (GC/MS) analysis. Sequential extractions of the phenoxyethanol present in ballpoint pen ink entries were carried out at two different temperatures. This method is applied in forensic practice and is currently implemented in several laboratories participati...

  10. Sorption and desorption of carbamazepine from water by smectite clays.

    Science.gov (United States)

    Zhang, Weihao; Ding, Yunjie; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2010-11-01

    Carbamazepine is a prescription anticonvulsant and mood stabilizing pharmaceutical administered to humans. Carbamazepine is persistent in the environment and frequently detected in water systems. In this study, sorption and desorption of carbamazepine from water was measured for smectite clays with the surface negative charges compensated with K+, Ca2+, NH4+, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) cations. The magnitude of sorption followed the order: TMPA-smectite≥HDTMA-smectite>NH4-smectite>K-smectite>Ca-smectite⩾TMA-smectite. The greatest sorption of carbamazepine by TMPA-smectite is attributed to the interaction of conjugate aromatic moiety in carbamazepine with the phenyl ring in TMPA through π-π interaction. Partitioning process is the primary mechanism for carbamazepine uptake by HDTMA-smectite. For NH4-smectite the urea moiety in carbamazepine interacts with exchanged cation NH4+ by H-bonding hence demonstrating relatively higher adsorption. Sorption by K-, Ca- and TMA-smectites from water occurs on aluminosilicate mineral surfaces. These results implicate that carbamazepine sorption by soils occurs primarily in soil organic matter, and soil mineral fractions play a secondary role. Desorption of carbamazepine from the sorbents manifested an apparent hysteresis. Increasing irreversibility of desorption vs. sorption was observed for K-, Ca-, TMA-, TMPA- and HDTMA-clays as aqueous carbamazepine concentrations increased. Desorption hysteresis of carbamazepine from K-, Ca-, NH4-smectites was greater than that from TMPA- and HDTMA-clays, suggesting that the sequestrated carbamazepine molecules in smectite interlayers are more resistant to desorption compared to those sorbed by organic phases in smectite clays. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Demonstration of a batch vacuum thermal desorption process on hazardous and mixed waste

    International Nuclear Information System (INIS)

    Palmer, C.R.; McElwee, M.; Meyers, G.

    1995-01-01

    Many different waste streams have been identified at Department of Energy (DOE) facilities as having both hazardous organic and radioactive contaminants. There is presently only one permitted facility in which to manage these materials, and that facility has only limited capacity to process solid wastes. Over the past two years, Rust has been pilot testing a new thermal desorption process that is very well suited to these wastes, and has begun permitting and design of a unit for commercial operation. This paper presents both historic and recent pilot test data on the treatment of hazardous and mixed waste. Also described is the commercial unit. Rust's patented VAC*TRAX technology takes advantage of high vacuum to reduced operating temperature for the thermal desorption of organic contaminants from waste soils, sludges and other contaminated solids. This allows for economical thermal separation on relatively small sites (30 to 5,000 m 3 of waste). VAC*TRAX employs indirect heating; this, combined with a very low carrier gas flow, results in a vent flow rate of approximately 1 m 3 /min which allows for the use of control devices that would not be practical with conventional thermal technology. The unit is therefore ideally suited to processing mixed waste, since zero radioactive emissions can be maintained. An additional benefit of the technology is that the low operating temperature allows highly effective separation to be performed well below the degradation point for the solid components of a trash type waste stream, which constitutes a large fraction of the present mixed waste inventory

  12. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  13. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    Energy Technology Data Exchange (ETDEWEB)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model was based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.

  14. Study of the mechanisms of matrix assisted laser desorption / ionization

    International Nuclear Information System (INIS)

    Manuelli, Pascal

    1995-01-01

    This research thesis aims at a better knowledge of some aspects of a complex mechanism: the matrix-assisted laser desorption/ionization (MALDI). The author first proposes a comparative analysis of results obtained by time-of-flight (TOF) mass spectrometry and by Fourier transform mass spectrometry. He reports the study of the matrix role (notably a polymeric matrix) as a matter submitted to laser desorption. In this respect, the influence of the incident wavelength has been studied. The author also reports a comparative of ions produced by matrix laser desorption (study performed by Fourier transform mass spectrometry) and of neutral molecules (study performed by flash pyrolysis coupled with gas chromatography and with mass spectrometry). Finally, results obtained on derivatives and complexes based on beta-cyclodextrins highlight benefits as well as limitations of this technique [fr

  15. Site Specificity in Femtosecond Laser Desorption of Neutral H Atoms from Graphite(0001)

    DEFF Research Database (Denmark)

    Frigge, R.; Hoger, T.; Siemer, B.

    2010-01-01

    Femtosecond laser excitation and density functional theory reveal site and vibrational state specificity in neutral atomic hydrogen desorption from graphite induced by multiple electronic transitions. Multimodal velocity distributions witness the participation of ortho and para pair states...... of chemisorbed hydrogen in the desorption process. Very slow velocities of 700 and 400  ms-1 for H and D atoms are associated with the desorption out of the highest vibrational state of a barrierless potential....

  16. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary

    International Nuclear Information System (INIS)

    Li, Y.-H.

    1979-01-01

    The pronounced desorption of Ba and 226 Ra from river-borne sediments in the Hudson estuary can be explained quantitatively by the drastic decrease in the distribution coefficients of both elements from a fresh to a salty water medium. The desorption in estuaries can augment, at least, the total global river fluxes of dissolved Ba and 226 Ra by one and nine times, respectively. The desorption flux of 226 Ra from estuaries accounts for 17-43% of the total 226 Ra flux from coastal sediments. Two mass balance models depicting mixing and adsorption-desorption processes in estuaries are discussed. (Auth.)

  17. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems

    International Nuclear Information System (INIS)

    Castro, F.J.

    2000-01-01

    We present the theoretical and experimental developments made to study the desorption of hydrogen from metallic samples by Thermal Desorption Spectroscopy (TDS). With this technique gas desorption is stimulated by the programmed heating of the sample. To perform the study we set up a newly designed equipment and develop theoretical models of the kinetic processes involved. The equipment and the models are used to analyze the desorption process in a real system. We begin by analyzing the models developed to interpret the results of the experiments. These models consider simultaneously bulk diffusion and surface reaction processes in metal-hydrogen systems with one or two thermodynamic phases. We present numerical results, computer simulations and analytical approximations of the original models. Based on these results we analyze the main features of the spectra for the different relevant kinetic processes, and determine the changes induced in them when material parameters (activation energies, geometry) or experimental parameters (heating speed, initial concentration) are modified.We present the original equipment, designed and constructed during this work to perform the TDS experiments. We describe its main characteristics, its components, its range of operation and its sensibility. We also offer an analysis of the background spectrum. We use the Pd-H system to test the equipment and the models. The samples chosen, powders, granules, foils and wires, were previously characterized to analyze their composition, their morphology and their characteristic size. We show the results of Scanning Electron Microscopy (SEM) observation, X ray diffraction (XRD) and Auger Electron Spectroscopy (AES) analysis.We then present and analyze in depth the experimental desorption spectra of the palladium powder. Based on the analysis we determine the rate limiting step for desorption and the characteristic activation energies. When the system is on the b phase (hydride) the rate

  18. The desorptivity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

  19. Bulk-mediated surface diffusion: non-Markovian desorption dynamics

    International Nuclear Information System (INIS)

    Revelli, Jorge A; Budde, Carlos E; Prato, Domingo; Wio, Horacio S

    2005-01-01

    Here we analyse the dynamics of adsorbed molecules within the bulk-mediated surface diffusion framework, when the particle's desorption mechanism is characterized by a non-Markovian process, while the particle's adsorption as well as its motion in the bulk is governed by Markovian dynamics. We study the diffusion of particles in both semi-infinite and finite cubic lattices, analysing the conditional probability to find the system on the reference absorptive plane as well as the surface dispersion as functions of time. The results are compared with known Markovian cases showing the differences that can be exploited to distinguish between Markovian and non-Markovian desorption mechanisms in experimental situations

  20. Investigating Superhydrogenated Polycyclic Aromatic Hydrocarbons as catalysts for Interstellar H2 formation

    DEFF Research Database (Denmark)

    Simonsen, Frederik Doktor Skødt

    2016-01-01

    Temperature programmed desorption has been used to investigate adsorption and abstraction of hydrogen atoms on the polycyclic aromatic hydrocarbon, coronene. The coronene molecules were exposed to different hydrogen fluences at a dosing temperature of 1000K. Large fluences of hydrogen leave...... large abundances, alongside H2[2]. To investigate the the abstraction and adsoption patterns of hydrogen/deuterium on coronene, C24H12 (a PAH), we used temperature programmed desorption (TPD). Coronene monolayers were prepared on graphite and exposed to different fluences of 1000 K H or D atoms...

  1. Effect of Initial Moisture on the Adsorption and Desorption Equilibrium Moisture Contents of Polished Rice

    OpenAIRE

    Murata, Satoshi; Amaratunga, K.S.P.; Tanaka, Fumihiko; Hori, Yoshiaki; 村田, 敏; 田中, 史彦; 堀, 善昭

    1993-01-01

    The moisture adsorption and desorption properties for polished rice have been measured using a dynamic ventilatory method. Air temperatures of 10,20,30 and 40℃, relative humidities of 50,60,70,80 and 90%, and five levels of initial moisture contents ranging approximately from 8% to 19% d.b. were used to obtain moisture content data. The value of equilibrium moisture content for each initial moisture content at the range of air condition was determined by a method of nonlinear least squares. R...

  2. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  3. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann

    2017-06-01

    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  4. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  5. First-principles calculations of helium and neon desorption from cavities in silicon

    International Nuclear Information System (INIS)

    Eddin, A Charaf; Pizzagalli, L

    2012-01-01

    Combining density functional theory, the nudged elastic band technique, and the ultradense fluid model, we investigated the desorption process of He and Ne in silicon. Our results show that the internal surfaces of gas-filled bubbles are not a limiting factor during desorption experiments, since the surface reconstruction opens diffusion paths easier than in the bulk. We show that the vibrational contribution to the energy of helium in the bulk has to be considered in order to determine realistic pressures in the bubbles, when comparing experiments and simulations. At the maximum of desorption, an average pressure of 1-2 GPa is computed. (paper)

  6. Geothermal low-temperature reservoir assessment program: A new DOE geothermal initiative

    International Nuclear Information System (INIS)

    Wright, P.M.; Lienau, P.J.; Mink, L.L.

    1992-01-01

    In Fiscal Year 1991, Congress appropriated money for the Department of Energy to begin a new program in the evaluation and use of low- and moderate-temperature geothermal resources. The objective of this program is to promote accelerated development of these resources to offset fossil-fuel use and help improve the environment. The program will consist of several components, including: (1) compilation of all available information on resource location and characteristics, with emphasis on resources located within 5 miles of population centers; (2) development and testing of techniques to discover and evaluate low- and moderate-temperature geothermal resources; (3) technical assistance to potential developers of low- and moderate-temperature geothermal resources; and (4) evaluation of the use of geothermal heat pumps in domestic and commercial applications. Program participants will include the Geo-Heat Center at the Oregon Institute of Technology, the University of Utah Research Institute, the Idaho Water Resources Research Institute and agencies of state governments in most of the western states

  7. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  8. Counterion adsorption and desorption rate of a charged macromolecule

    Science.gov (United States)

    Shi, Yu; Yang, Jingfa; Zhao, Jiang

    The rate constant of counterion adsorption to and desorption from a synthetic polyelectrolyte, polystyrene sulfonate (PSS-), is measured in aqueous solution by single molecule fluorescence spectroscopy. The results show that both adsorption and desorption rate of counterions have strong dependence on polymer concentration, salt concentration as well as the molecular weight of polyelectrolytes. The results clearly demonstrate that the contribution of electrostatic interaction and the translational entropy to the distribution of counterions of a polyelectrolyte molecule. The information is helpful to the understanding of polyelectrolyte physics. National Natural Science Foundation of China.

  9. Unconventional resource's production under desorption-induced effects

    Directory of Open Access Journals (Sweden)

    S. Sina Hosseini Boosari

    2016-06-01

    We have developed a numerical model to study the effect of changes in porosity, permeability and compaction on four major U.S. shale formations considering their Langmuir isotherm desorption behavior. These resources include; Marcellus, New Albany, Barnett and Haynesville Shales. First, we introduced a model that is a physical transport of single-phase gas flow in shale porous rock. Later, the governing equations are implemented into a one-dimensional numerical model and solved using a fully implicit solution method. It is found that the natural gas production is substantially affected by desorption-induced porosity/permeability changes and geomechancis. This paper provides valuable insights into accurate modeling of unconventional reservoirs that is more significant when an even small correction to the future production prediction can enormously contribute to the U.S. economy.

  10. The influence of calcination temperatures on the acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol/acetaldehyde mixture

    Science.gov (United States)

    Gao, Meixiang; Jiang, Haoxi; Zhang, Minhua

    2018-05-01

    The influences of the calcination temperature on the catalysts' acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol are investigated. The results show that the 2 wt% ZrO2/Nano-SiO2 calcined at 773 K shows the best performance with the selectivity of 93.18% and conversion of 58.52% when reacted at 593 K, a WHSV of 1.8 h-1 and 3.5:1 volume ratio ethanol-to-acetaldehyde in an atmospheric fixed-bed reactor. Prepared catalysts were characterized by N2 adsorption-desorption, XRD, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2. Based on the relationship between the catalyst activity and its properties, the fact can be presumed that the formation and strength of Zrsbnd Osbnd Si bond determines the acid-based properties of the catalyst. In addition, moderate-intensity weak acid-basic sites are more suitable for ethanol conversion to BD with the amount of acid and basic sites as close as possible.

  11. Photon-induced Processing of Interstellar Ices in the Laboratory. Focus on Their Non-thermal Desorption.

    Science.gov (United States)

    Martin-Domenech, Rafael; Munoz Caro, Guillermo; Cruz-Diaz, Gustavo A.; Oberg, Karin I.

    2018-06-01

    Some of the processes that take place in the interstellar medium (ISM)can be simulated in laboratories on Earth under astrophysically relevant conditions. For example, the energetic processing of the ice mantles that accrete on top of dust grains in the coldest regions of the ISM, leading to the production of new species and their desorption to the gas phase. In particular, observation of complex organic molecules (COMs) in cold interstellar environments stress the need for not only a solid state formation but also for non-thermal desorption mechanisms that can account for the observed abundances in regions where thermal desorption is inhibited. Laboratory Astrophysics can be used to test different non-thermal desorption processes and extract yields than can be extrapolated to the astrophysical scenario with theoretical models. 0th generation COMs like CH3OH and H2CO can be formed at very low temperatures. In this talk, we present laboratory simulations of the UV photoprocessing of a binary ice mixture composed by water (the main component of astrophysical ices) and methane. Formation of CO, CO2, CH3OH and H2CO was confirmed by IR spectroscopy and subsequent TPD. At the same time, photodesorption of CO and H2CO was detected by means of a Quadrupole Mass Spectrometer, with yields on the order of 10-4 and 10-5 molecules per incident photon, respectively. In general, photodesorption can take place through a direct mechanism, where the absorbing molecule (or its photofragments) are desorbed; or through an indirect mechanism where the absorbed energy is transferred to a surface molecule which is the one finally desorbing. In the case of photoproducts, the evolution of the photodesorption yield gives information on the photodesorption mechanism: a constant photodesorption yield is observed when the photoproducts are desorbed right after their formation; while an increasing yield is measured when the photoproducts are desorbed later after energy transfer from another

  12. Rapid decompression and desorption induced energetic failure in coal

    Directory of Open Access Journals (Sweden)

    Shugang Wang

    2015-06-01

    Full Text Available In this study, laboratory experiments are conducted to investigate the rapid decompression and desorption induced energetic failure in coal using a shock tube apparatus. Coal specimens are recovered from Colorado at a depth of 610 m. The coal specimens are saturated with the strong sorbing gas CO2 for a certain period and then the rupture disc is suddenly broken on top of the shock tube to generate a shock wave propagating upwards and a rarefaction wave propagating downwards through the specimen. This rapid decompression and desorption has the potential to cause energetic fragmentation in coal. Three types of behaviors in coal after rapid decompression are found, i.e. degassing without fragmentation, horizontal fragmentation, and vertical fragmentation. We speculate that the characteristics of fracture network (e.g. aperture, spacing, orientation and stiffness and gas desorption play a role in this dynamic event as coal can be considered as a dual porosity, dual permeability, dual stiffness sorbing medium. This study has important implications in understanding energetic failure process in underground coal mines such as coal gas outbursts.

  13. New Materials for Oxygen Reduction Electrodes

    DEFF Research Database (Denmark)

    Johansson, Tobias Peter

    , on the other hand, a Pt overlayer was formed upon annealing in UHV. The reactivity of the Pt overlayer was tested by temperature programmed desorption (TPD) of CO, which yielded a lower desorption temperature compared to Pt(111). The ORR activity of the annealed Pt3Sc sample was found to be on the same order...

  14. Study of defects near molybdenum surface using thermal desorption spectrometer

    International Nuclear Information System (INIS)

    Naik, P.K.

    1980-01-01

    Thermal desorption spectrometry is utilized to study the migration of atoms and defects near molybdenum surface. The thermal desorption spectra of inert gas ions (neon, argon and krypton) injected with various energies (430-1950 eV) into a polycrystalline molybdenum target with various dosages (6.4 x 10sup(12) - 3.9 x 10sup(14) ions/cmsup(2)) are investigated. Four different states of binding of the trapped atoms corresponding to the activation energies for desorption have been revealed from the spectra. The activation energies are found to be relatively insensitive to the species of the bombarding ion, incident ion energy and the dosage. The patterns of the spectra are strongly influenced by the mean projected range of the ions into the solid. The activation energies deduced are in good agreement with those reported for the migration of atoms and defects in molybdenum. (auth.)

  15. Electron stimulated desorption of gases at technological surfaces of aluminium

    International Nuclear Information System (INIS)

    Ding, M.Q.; Williams, E.M.

    1989-01-01

    The release of gas by electron bombardment at aluminium alloy surfaces in vacuum -9 torr has been investigated for a range of treatments including bakeout and glow discharge cleaning. Particular attention has been given to the role of continuous electron bombardment, with current densities and electron energies of up to 1.5 mA cm -2 and 2.0 keV, respectively, over the 10 cm 2 of surface area under irradiation. The observations of desorption efficiency, defined as the number of desorbed molecules per incident electron, conform to a model involving a dynamic balance between adsorption and desorption, with contributions to adsorption from both surface and sub-surface gas. Continuous electron bombardment promotes a surface with low desorption efficiency, -5 mol/electron, however, the conditioning cycle is accelerated significantly by glow discharge treatment. There is evidence of some short-term memory when the samples are exposed to air. (author)

  16. Adsorption and desorption of phosphorus in ceramic capsules

    International Nuclear Information System (INIS)

    Almeida, J.R.F. de.

    1983-01-01

    Experiments were carried out in order to analyse the capacity of adsorving P from water using ceramic capsules with 32P, in the presence and absence of water flow through the capsule. Also studied was the desorption of 32 P from the capsule in water, with and without water flow. The desorption of residual 32 P was analysed by isotopic exchange with 31 P, also with and without water flow. It was observed that, in the presence of a flow, the capsule retained 32 P from the solution, which was weakly desorbed by water but was isotopically exchanged with 31 P. In the absence of a flow, the capsule was not an efficient P adsorber. (Author) [pt

  17. Interactions of germanium atoms with silica surfaces

    International Nuclear Information System (INIS)

    Stanley, Scott K.; Coffee, Shawn S.; Ekerdt, John G.

    2005-01-01

    GeH 4 is thermally cracked over a hot filament depositing 0.7-15 ML Ge onto 2-7 nm SiO 2 /Si(1 0 0) at substrate temperatures of 300-970 K. Ge bonding changes are analyzed during annealing with X-ray photoelectron spectroscopy. Ge, GeH x , GeO, and GeO 2 desorption is monitored through temperature programmed desorption in the temperature range 300-1000 K. Low temperature desorption features are attributed to GeO and GeH 4 . No GeO 2 desorption is observed, but GeO 2 decomposition to Ge through high temperature pathways is seen above 750 K. Germanium oxidization results from Ge etching of the oxide substrate. With these results, explanations for the failure of conventional chemical vapor deposition to produce Ge nanocrystals on SiO 2 surfaces are proposed

  18. Sorption – desorption of imidacloprid insecticide on Indian soils of five different locations

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2013-07-01

    Full Text Available Sorption-desorption processes govern the movement of all chemicals including pesticides in soils. The present investigation was undertaken to study the sorption-desorption of imidacloprid, using a batch method, on soils of five different location of India. Sorption data were fitted to Freundlich isotherm. The log K value was the highest for loam type soil (1.830 and the lowest for clay type soil (1.661. The value of 1/n was the maximum for silt loam soil (0.909 but minimum for loam soil (0.723. Simple correlation analysis indicated that among soil properties only electrical conductivity showed a higher but marginally non-significant negative correlation with log K (r = -0.826 indicating that higher concentration of solutes solutes are conducive to low sorption capacity of soil. The desorption data conformed to two surfaces Freundlich desorption isotherm. The values of 1/n1' corresponding to easily desorbed fraction of imidacloprid showed significant negative correlation with soil pH (r = -0.886, significant at p ≤0.05 but significant positive correlation with clay content (r = 0.980, significant at p ≤0.01. The desorption index for easily desorbed fraction of imidacloprid (n1’/n also had significant negative correlation with soil pH (r = 0.953, significant at p ≤0.05. From cumulative desorption data, it appeared that bioavailability of imidacloprid would be lower in neutral soil than acidic or alkaline soils.

  19. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  20. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil

    International Nuclear Information System (INIS)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G.

    2013-01-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg −1 ) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase. -- Highlights: •Phenanthrene desorption and mineralization compared in soils with activated carbon, charcoal or compost. •Only activated charcoal and biochar hindered both desorption and mineralization. •A linear relationship was found between the extents desorbed and mineralized. •Modelling indicated that bacterial activity was not limiting but that desorption was. -- Extraction into an exhaustive silicone sink measures the maximum phenanthrene desorption from soils with amendments, and this is reflected in the extent of mineralization

  1. The kinetics of hydrogen absorption/desorption within nanostructured composite Ni{sub 79.1}Co{sub 18.6}Cu{sub 2.3} alloy using resistometry

    Energy Technology Data Exchange (ETDEWEB)

    Spasojevic, M., E-mail: ljiljana.spasojevic51@yahoo.com [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Faculty of Agronomy Cacak, University of Kragujevac, Cara Dusana 34, 32000 Cacak, Republic of Serbia (Serbia); Maricic, A. [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Ribic Zelenovic, L. [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Faculty of Agronomy Cacak, University of Kragujevac, Cara Dusana 34, 32000 Cacak, Republic of Serbia (Serbia); Krstajic, N.; Spasojevic, P. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Republic of Serbia (Serbia)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Nanostructured Ni{sub 79.1}Co{sub 18.6}Cu{sub 2.3} powder was obtained by electrochemical deposition. Black-Right-Pointing-Pointer Correlation observed between electrical conductivity and absorbed hydrogen amount. Black-Right-Pointing-Pointer Hydrogen absorption/desorption mechanism was determined. - Abstract: Ni{sub 79.1}Co{sub 18.6}Cu{sub 2.3} powder was obtained by electrochemical deposition from an ammonium sulfate bath. The structure and surface morphology of the powder were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically obtained Ni{sub 79.1}Co{sub 18.6}Cu{sub 2.3} alloy contained an amorphous phase and nanocrystals with an average size of 6.8 nm of FCC phase of the solid solution of cobalt and copper in nickel. Nanocrystals were characterized by a high average microstrain value and high minimum density of chaotically distributed dislocations. X-ray analysis also showed that powder hydrogenation at an elevated temperature of up to 200 Degree-Sign C did not change unit cell parameters and mean crystallite size value. SEM images show the formation of two shapes of powder particles: large cauliflower-like particles and small dendritic ones. Powder pressing at 10 MPa and at 25 Degree-Sign C gave samples that were analyzed for hydrogen absorption/desorption within the temperature range of 160-200 Degree-Sign C. Changes in electrical resistivity during absorption/desorption were monitored. The reciprocal value of resistivity (electrical conductivity) was found to increase linearly with increasing amount of absorbed hydrogen. The experimental results were used to propose an absorption/desorption mechanism. The adsorbed hydrogen molecule dissociates on alloy surface, forming adsorbed atoms. Adatoms penetrate and diffuse into the bulk of the alloy, simultaneously donating their electrons to the conduction band of the alloy. The increase in the concentration of free

  2. Hydrogen production from steam reforming of ethanol over Ni/MgO-CeO_2 catalyst at low temperature

    Institute of Scientific and Technical Information of China (English)

    石秋杰; 刘承伟; 谌伟庆

    2009-01-01

    MgO,CeO2 and MgO-CeO2 with different mole ratio of Mg:Ce were prepared by solid-phase burning method.Catalysts Ni/MgO,Ni/CeO2 and Ni/MgO-CeO2 were prepared by impregnation method.The catalytic properties were evaluated in ethanol steam reforming(ESR) reaction.Specific surface areas of the supports were measured by nitrogen adsorption-desorption at 77 K,and the catalysts were characterized with X-ray diffraction(XRD),temperature programmed reduction(TPR) and thermogravimetric(TG).The results showed that well...

  3. Application of ASTM E-1559 Apparatus to Study H2O Desorption

    Science.gov (United States)

    Woronowicz, Michael; Perry, Radford, III; Meadows, George A.

    2015-01-01

    The NASA James Webb Space Telescope project identified a need to measure water vapor desorption from cryogenic surfaces in order to validate predictions of spacecraft design performance. A review of available scientific literature indicated no such measurements had been reported below 131 K. Contamination control personnel at NASA Goddard Space Flight Center recognized the possibility they readily possessed the means to collect these measurements at lower temperatures using an existing apparatus commonly employed for making outgassing observations. This presentation will relate how the ASTM E-1559 Molekit apparatus was used without physical modification to measure water vapor sublimation down to 120 K and compare this data to existing equilibrium vapor pressure models.

  4. Radiotracer experiments on the desorption of iodine from paddy soil with and without rice plants

    International Nuclear Information System (INIS)

    Muramatsu, Yasuyuki; Uchida, Shigeo; Yoshida, Satoshi

    1991-01-01

    In order to assess the behavior of radioiodine in rice fields, we have performed laboratory experiments, using 125 I tracer, on the desorption phenomena of iodine from soil during rice cultivation. Most of the 125 I added to the soil was adsorbed by the soil solid phase at the beginning of the experiment. However, the iodine started to desorb into the soil solution with the growth of rice plants. The highest desorption rate of iodine was found around the flowering period, i.e. nearly 30% of the 125 I was desorbed from Ando soil into the soil solution. In contrast to this, no particular increase in the iodine desorption was observed from the uncultivated flooded soil. It was suggested that rice plants had some influence upon iodine desorption from soil and the desorption also depended on the soil types. (author)

  5. Desorption of H atoms from graphite (0001) using XUV free electron laser pulses

    DEFF Research Database (Denmark)

    Siemer, B.; Olsen, Thomas; Hoger, T.

    2010-01-01

    The desorption of neutral H atoms from graphite with femtosecond XUV pulses is reported. The velocity distribution of the atoms peaks at extremely low kinetic energies. A DFT-based electron scattering calculation traces this distribution to desorption out of specific adsorption sites on graphite......, and identifies the highest vibrational state in the adsorbate potential as a major source for the slow atoms. It is evident that multiple electron scattering processes are required for this desorption. A direct electronic excitation of a repulsive hydrogen-carbon bond seems not to be important....

  6. Analysis of airborne pesticides from different chemical classes adsorbed on Radiello® Tenax® passive tubes by thermal-desorption-GC/MS.

    Science.gov (United States)

    Raeppel, Caroline; Fabritius, Marie; Nief, Marie; Appenzeller, Brice M R; Briand, Olivier; Tuduri, Ludovic; Millet, Maurice

    2015-02-01

    An analytical methodology using automatic thermal desorption (ATD) and GC/MS was developed for the determination of 28 pesticides of different chemical classes (dichlobenil, carbofuran, trifluralin, clopyralid, carbaryl, flazasulfuron, mecoprop-P, dicamba, 2,4-MCPA, dichlorprop, 2,4-D, triclopyr, cyprodinil, bromoxynil, fluroxypyr, oxadiazon, myclobutanil, buprofezin, picloram, trinexapac-p-ethyl, ioxynil, diflufenican, tebuconazole, bifenthrin, isoxaben, alphacypermethrin, fenoxaprop and tau-fluvalinate) commonly used in nonagricultural areas in atmospheric samples. This methodology was developed to evaluate the indoor and outdoor atmospheric contamination by nonagricultural pesticides. Pesticides were sampled passive sampling tubes containing Tenax® adsorbent. Since most of these pesticides are polar (clopyralid, mecoprop-P, dicamba, 2,4-MCPA, dichlorprop, 2,4-D, triclopyr, bromoxynil, fluroxypyr, picloram, trinexapac-p-ethyl and ioxynil), a derivatisation step is required. For this purpose, a silylation step using N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MtBSTFA) was added before thermal desorption. This agent was chosen since it delivers very specific ions on electronic impact (m/z = M-57). This method was established with special consideration for optimal thermal desorption conditions (desorption temperature, desorb flow and duration; trap heating duration and flow; outlet split), linear ranges, limits of quantification and detection which varied from 0.005 to 10 ng and from 0.001 to 2.5 ng, respectively, for an uncertainty varied from 8 to 30 %. The method was applied in situ to the analysis of passive tubes exposed during herbicide application to an industrial site in east of France.

  7. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    Science.gov (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  8. Decomposition of multilayer benzene and n-hexane films on vanadium.

    Science.gov (United States)

    Souda, Ryutaro

    2015-09-21

    Reactions of multilayer hydrocarbon films with a polycrystalline V substrate have been investigated using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Most of the benzene molecules were dissociated on V, as evidenced by the strong depression in the thermal desorption yields of physisorbed species at 150 K. The reaction products dehydrogenated gradually after the multilayer film disappeared from the surface. Large amount of oxygen was needed to passivate the benzene decomposition on V. These behaviors indicate that the subsurface sites of V play a role in multilayer benzene decomposition. Decomposition of the n-hexane multilayer films is manifested by the desorption of methane at 105 K and gradual hydrogen desorption starting at this temperature, indicating that C-C bond scission precedes C-H bond cleavage. The n-hexane dissociation temperature is considerably lower than the thermal desorption temperature of the physisorbed species (140 K). The n-hexane multilayer morphology changes at the decomposition temperature, suggesting that a liquid-like phase formed after crystallization plays a role in the low-temperature decomposition of n-hexane.

  9. Modelling of Convective Process of Water Desorption from Polystyrene

    International Nuclear Information System (INIS)

    Stakic, M.; Nikolic, A.

    2008-01-01

    This study presents a mathematical model developed to evaluate the influence of structural and operational factors on convective dehydration process (desorption of liquid phase from capillary-porous material), as well as the possibility to utilize this model for the case of water desorption from polystyrene cation resin CG-8. The model accounts for unsteady one-dimensional simultaneous heat and mass transfer between the gas (air) and the solid phase (resin). The identification of effective transport properties for the considered fixed bed of material (resin CG 8) is discussed. To this purpose available data from the literature are used. (author)

  10. Strong Temperature Dependence in the Reactivity of H 2 on RuO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Michael A.; Dahal, Arjun; Dohnálek, Zdenek; Lyubinetsky, Igor

    2016-08-04

    The ability of hydrogen to facilitate many types of heterogeneous catalysis starts with its adsorption. As such, understanding the temperature-dependence sticking of H2 is critical toward controlling and optimizing catalytic conditions in those cases where adsorption is rate-limiting. In this work, we examine the temperature-dependent sticking of H2/D2 to the clean RuO2(110) surface using the King & Wells molecular beam approach, temperature programmed desorption (TPD) and scanning tunneling microscopy (STM). We show that the sticking probability (molecular or dissociative) of H2/D2 on this surface is highly temperature-dependent, decreasing from ~0.4-0.5 below 25 K to effectively zero above 200 K. Both STM and TPD reveal that OH/OD formation is severely limited for adsorption temperatures above ~150 K. Previous literature reports of extensive surface hydroxylation from H2/D2 exposures at room temperature were most likely the result of inadvertent contamination brought about from dosing by chamber backfilling.

  11. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    Science.gov (United States)

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter,Fabiano André; Ferreira,Tamara Santos; Sinhorin,Adilson Paulo; Lima,Larissa Borges de; Morais,Leidimar Alves de; Pacheco,Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorpti...

  13. Thermal Effect on the Structural, Electrical, and Optical Properties of In-Line Sputtered Aluminum Doped Zinc Oxide Films Explored with Thermal Desorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Shang-Chou Chang

    2014-01-01

    Full Text Available This work investigates the thermal effect on the structural, electrical, and optical properties of aluminum doped zinc oxide (AZO films. The AZO films deposited at different temperatures were measured using a thermal desorption system to obtain their corresponding thermal desorption spectroscopy (TDS. In addition to obtaining information of thermal desorption, the measurement of TDS also has the effect of vacuum annealing on the AZO films. The results of measuring TDS imply part of the doped aluminum atoms do not stay at substituted zinc sites in AZO films. The (002 preferential direction of the AZO films in X-ray diffraction spectra shifts to a lower angle after measurement of TDS. The grain size grows and surface becomes denser for all AZO films after measurement of TDS. The carrier concentration, mobility, and average optical transmittance increase while the electrical resistivity decreases for AZO films after measurement of TDS. These results indicate that the AZO films deposited at 200°C are appropriate selections if the AZO films are applied in device fabrication of heat-produced process.

  14. Transient desorption characteristics of fibrous organic adsorbent; Sen'ikei yuki kyuchakuzai no katoteki dacchaku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, H.; Ozaki, K.; Horibe, A. [Okayama University, Okayama (Japan). Faculty of Engineering; Shimoyama, R. [Okayama University, Okayama (Japan); Kida, T. [Japan Exlan Co. Ltd., Osaka (Japan)

    1999-11-25

    An experimental investigation was performed to determine time transient desorption characteristics of a fibrous type organic adsorbent, which was composed of the bridged complex of sodium polyacrylate as a new kind of adsorbent. The test fibrous adsorbent was packed in a cylindrical vessel, and dry air was passed through it. The experiments were conducted under various conditions of air velocity, temperature, relative humidity and vessel length. As a result, time pressure loss for the packed bed of the test fibrous adsorbent showed a similar tendency to that for the packed bed of spherical particles. The mass transfer data was correlated by the modified Sherwood number, the Reynolds number, the Schmidt number, the ratio of desorbed water vapor mass to fibrous absorbent mass, the nondimensional temperature and the ratio of vessel length to fiber diameter. Fourier number for the nondimensional temperature and the ratio of desorbed water vapor mass to fibrous adsorbent mass, the nondimensional temperature and the ratio of vessel length to fiber diameter. (author)

  15. Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration

    International Nuclear Information System (INIS)

    Njikam, Eloh; Schiewer, Silke

    2012-01-01

    Graphical abstract: Cadmium was completely and quickly desorbed from grapefruit peels using 0.01 M HNO 3 . The kinetics followed a novel 1st or 2nd order kinetic model, related to the remaining metal bound as the rate-determining reactant concentration. For 0.001 M HNO 3 , desorption was incomplete and the model fit less perfect. Highlights: ► Metal desorption was over 90% complete within 50 min for most desorbents. ► Models for biosorbent desorption kinetics were developed. ► Desorption kinetics best fit a novel first-order model related to remaining metal bound. ► Cd uptake after desorption by HNO 3 was similar to the original uptake. ► The optimal desorbent was 0.1 or 0.01 M acid, being fast, efficient and cheap. - Abstract: Citrus peel biosorbents are efficient in removing heavy metals from wastewater. Heavy metal recovery and sorbent regeneration are important for the financial competitiveness of biosorption with other processes. The desorbing agents HNO 3 , NaNO 3 , Ca(NO 3 ) 2 , EDTA, S, S-EDDS, and Na-Citrate were studied at different concentrations to optimize cadmium elution from orange or grapefruit peels. In most cases, desorption was fast, being over 90% complete within 50 min. However sodium nitrate and 0.001 M nitric acid were less efficient. Several new models for desorption kinetics were developed. While zero-, first- and second-order kinetics are commonly applied for modeling adsorption kinetics, the present study adapts these models to describe desorption kinetics. The proposed models relate to the number of metal-filled binding sites as the rate-determining reactant concentration. A model based on first order kinetics with respect to the remaining metal bound performed best. Cd bound in subsequent adsorption after desorption was similar to the original amount bound for desorption by nitric acid, but considerably lower for calcium nitrate as the desorbent. While complexing agents were effective desorbents, their cost is higher than that

  16. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  17. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim

    2003-09-01

    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  18. Thermal desorption of hydrogen from Mg2Ni hydrogen storage materials.

    Science.gov (United States)

    Hur, Tae Hong; Han, Jeong Seb; Kim, Jin Ho; Kim, Byung Kwan

    2011-07-01

    In order to investigate the influence of HCS on the hydrogen occupation site of Mg2Ni alloy, the thermal desorption technique has been applied to Mg2Ni hydride made by hydriding combustion synthesis (HCS). Mg2Ni was made under low temperature in a short time by the HCS compared to conventional melting process. At various initial hydride wt% from 0.91 to 3.52, the sample was heated to 623 K at a rate of 1.0 K/min. The starting temperature of the evolution of hydrogen goes higher as the initial hydride wt% increases. Only one peak is shown in the case of the small initial hydride wt%. But two peaks appeared with increasing initial hydride wt%. The activation energies obtained by the first and second peaks are 113.0 and 99.5 kJ/mol respectively. The two site occupation model by Darriet et al. was proved. The influence of HCS on the hydrogen occupation site of Mg2Ni alloy is nonexistent.

  19. High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: The effects of multiple catalysts in situ formed by adding nickel sulfides/graphene

    Science.gov (United States)

    Xie, Xiubo; Chen, Ming; Liu, Peng; Shang, Jiaxiang; Liu, Tong

    2017-12-01

    Nickel sulfides decorated reduced graphene oxide (rGO) has been produced by co-reducing Ni2+ and graphene oxide (GO), and is subsequently ball milled with Mg nanoparticles (NPs) produced by hydrogen plasma metal reaction (HPMR). The nickel sulfides of about 800 nm completely in situ change to MgS, Mg2Ni and Ni multiple catalysts after first hydrogenation/dehydrogenation process at 673 K. The Mg-5wt%NiS/rGO nanocomposite shows the highest hydrogen desorption kinetics and capacity properties, and the catalytic effect order of the additives is NiS/rGO, NiS and rGO. At 573 K, the Mg-NiS/rGO nanocomposite can quickly desorb 3.7 wt% H2 in 10 min and 4.5 wt% H2 in 60 min. The apparent hydrogen absorption and desorption activation energies of the Mg-5wt%NiS/rGO nanocomposite are decreased to 44.47 and 63.02 kJ mol-1, smaller than those of the Mg-5wt%rGO and Mg-5wt%NiS samples. The best hydrogen desorption properties of the Mg-5wt%NiS/rGO nanocomposite can be explained by the synergistic catalytic effects of the highly dispersed MgS, Mg2Ni and Ni catalysts on the rGO sheets, and the more nucleation sites between the catalysts, rGO sheets and Mg matrix.

  20. Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils

    International Nuclear Information System (INIS)

    Chen Wei; Hou Lei; Luo Xiaoli; Zhu Lingyan

    2009-01-01

    In situ chemical oxidation is a commonly applied soil and groundwater remediation technology, but can have significant effects on soil properties, which in turn might affect fate and transport of organic contaminants. In this study, it was found that oxidation treatment resulted mainly in breakdown of soil organic matter (SOM) components. Sorption of naphthalene and phenanthrene to the original soils and the KMnO 4 -treated soils was linear, indicating that hydrophobic partitioning to SOM was the predominant mechanism for sorption. Desorption from the original and treated soils was highly resistant, and was well modeled with a biphasic desorption model. Desorption of residual naphthalene after treating naphthalene-contaminated soils with different doses of KMnO 4 also followed the biphasic desorption model very well. It appears that neither changes of soil properties caused by chemical oxidation nor direct chemical oxidation of contaminated soils had a noticeable effect on the nature of PAH-SOM interactions. - Chemical oxidation of soils had little effect on the mechanisms controlling sorption and desorption of PAHs.

  1. SATCAP: a program for thermal-hydraulic design of saturated temperature capsule

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Niimi, Motoji; Someya, Hiroyuki; Kobayashi, Toshiki.

    1988-02-01

    For material irradiation tests at JMTR, user's technical requirements are gradually becoming more rigid, permitting only a small temperature deviation from the desired during irradiation of test materials. As specimen temperature control equipment, several conception were proposed and some of them were translated into actual machines with the capsule having electrical seath heaters in it. This system is highly reliable unless the integrity of the heaters is threatened. However, in a test with the object of achieving a high exposure of specimen to neutrons, the break of a heater or deterioration of a heater caused by irradiation lowers the reliability of the system. To cope with this drawback, as a part of the irradiation technique improvement program, ''Satulated Temperature Capsule'' has been developing. This type capsule, in which the water suplied is boiled, bases on the conception of keeping the coolant at the saturated temperature facilitates the temperature control. Though there are various types of capsules employed at JMTR, the experience of the capsule into which the coolant is injected lacks. In designing, thermal performances have to fully understood. Therefore, a program was compiled to evaluate the thermal behavior in the capsule. The present report describes the calculation procedure and guides of input and output for the program. (author)

  2. The Absorption-Desorption of Hydrogen by 1.5 g Depleted Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Paek, Seungwoo; Lee, Minsoo; Kim, Si-Hyung; Kim, Kwang-Rag; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sohn, Soon Hwan; Song, Kyu Min [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    The form of metal tritides is one of the most popular methods for the storage of hydrogen isotopes. Particularly when metal is in a powder form, the storage capacity of hydrogen isotopes become the maximum value. Here, a 1.5g depleted uranium metal was decrepitated into a powder upon an absorption and desorption of hydrogen gas. The conditions for an activation, absorption-desorption of the hydrogen were defined.

  3. The Absorption-Desorption of Hydrogen by 1.5 g Depleted Uranium

    International Nuclear Information System (INIS)

    Kim, Sunmi; Paek, Seungwoo; Lee, Minsoo; Kim, Si-Hyung; Kim, Kwang-Rag; Ahn, Do-Hee; Sohn, Soon Hwan; Song, Kyu Min

    2008-01-01

    The form of metal tritides is one of the most popular methods for the storage of hydrogen isotopes. Particularly when metal is in a powder form, the storage capacity of hydrogen isotopes become the maximum value. Here, a 1.5g depleted uranium metal was decrepitated into a powder upon an absorption and desorption of hydrogen gas. The conditions for an activation, absorption-desorption of the hydrogen were defined

  4. Temperature-programmed technique accompanied with high-throughput methodology for rapidly searching the optimal operating temperature of MOX gas sensors.

    Science.gov (United States)

    Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen

    2014-09-08

    A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT.

  5. Molecular desorption of a nonevaporable getter St 707 irradiated at room temperature with synchrotron radiation of 194 eV critical photon energy

    CERN Document Server

    Le Pimpec, F; Laurent, Jean Michel

    2003-01-01

    Photon stimulated molecular desorption from a nonevaporable getter (NEG) St 707(R) (SAES Getters TM ) surface after conditioning and after saturation with isotopic carbon monoxide Ýcf. nomenclature in Handbook of Chemistry and Physics, 74th edition, edited by D. R. Lide (CRC Press, Boca Raton, 1994)¿ /sup 13/C/sup 18/O, has been studied on a dedicated beamline at the EPA ring at CERN. The synchrotron radiation of 194 eV critical energy and with an average photon intensity of ~1 * 10/sup 17/ photons s/sup -1/ was impinging on the sample at perpendicular incidence. It is found that the desorption yields eta (molecules/photon) of the characteristic gases in an UHV system (hydrogen, methane, carbon monoxide, and carbon dioxide) for a freshly activated NEG and for a NEG fully saturated with /sup 13/C /sup 18/O are lower than that of 300 degrees C baked stainless steel. (22 refs). Fully activated NEG was studied and found to desorb less as compared to a 300 degree c baked stainless-steel surface. Furthermore, it ...

  6. Tantalum high-temperature oxidation kinetics

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.

    1981-01-01

    Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru

  7. Desorption dynamics of deuterium molecules from the Si(100)-(3×1) dideuteride surface

    OpenAIRE

    Niida, T; Tsurumaki, Hiroshi; Namiki, Akira

    2006-01-01

    We measured polar angle ()-resolved time-of-flight spectra of D2 molecules desorbing from the Si(100)-(3×1) dideuteride surface. The desorbing D2 molecules exhibit a considerable translational heating with mean desorption kinetic energies of 0.25 eV, which is mostly independent of the desorption angles for 0°30°. The observed desorption dynamics of deuterium was discussed along the principle of detailed balance to predict their adsorption dynamics onto the monohydride Si surface.

  8. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.

    2009-01-01

    Stirred-flow cell experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments

  9. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    Science.gov (United States)

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  10. X-ray induced gas desorption within a prototype LEP vacuum chamber

    International Nuclear Information System (INIS)

    Williams, E.M.; Le Normand, F.; Hilleret, N.; Dominichini, G.

    1982-12-01

    The present report is concerned with an experimental simulation of the process of photon induced desorption within an aluminium vacuum chamber of the same basic form as proposed for the LEP accelerator. The objectives in the work can be described in the following three-fold manner: Firstly, to establish the levels of photon induced desorption efficiency for identified gas species. Secondly, to examine the contribution of surface treatments as bakeout and glow discharge cleaning, and to correlate these responses with changes in surface activity induced by beam cleaning. Thirdly, to gain insight into the energy dependence of the desorption process so as to provide a reasonable basis for predicting conditions at the levels of critical energy in excess of 100 keV which are applicable at the full design energy of the LEP accelerator. (orig./HSI)

  11. Possibility of a quasi-liquid layer of As on GaAs substrate grown by MBE as observed by enhancement of Ga desorption at high As pressure

    Science.gov (United States)

    Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.

    2000-06-01

    The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).

  12. Kinetic behaviour of the adsorption and desorption of phosphorus-32 on aluminium hydroxide

    International Nuclear Information System (INIS)

    Ribeiro, E.M.G.

    1993-01-01

    Great amount of phosphate fertilizers are used in agriculture. Soil fertility have been studied using fertilizer labelled with phosphorus 32 to improve agronomic practices by increasing the efficient use of phosphate fertilizer. Previous research work have been published suggesting the potential use of kinetics parameters to characterize phosphorus in soil and to diagnosis the phosphate level. In this work the kinetic behaviour of the absorption and desorption of phosphorus-32 on a synthetic aluminium hydroxide was studied attempting to detect the formation of a precipitated phase on the hydroxide surface. The kinetic data for adsorption was adjusted with the Elovich and Fardeau equations for isotopic exchange. It was verified a change in the kinetic behaviour when the surface was approximately 80% saturated. This change suggested the formation of a precipitate. The kinetic data for desorption was fitted with the Fardeau equation, and it was verified the desorption kinetics slower than the desorption. (B.C.A.). 40 refs, 17 figs, 5 tabs

  13. Hydrogen spillover phenomenon: Enhanced reversible hydrogen adsorption/desorption at Ta{sub 2}O{sub 5}-coated Pt electrode in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Sata, Shunsuke [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Awad, Mohamed I.; El-Deab, Mohamed S. [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Department of Chemistry, Faculty of Science, Cairo University, Cairo (Egypt); Okajima, Takeyoshi [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Ohsaka, Takeo, E-mail: ohsaka@echem.titech.ac.j [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2010-04-01

    The current study is concerned with the preparation and characterization of tantalum oxide-loaded Pt (TaO{sub x}/Pt) electrodes for hydrogen spillover application. XPS, SEM, EDX and XRD techniques are used to characterize the TaO{sub x}/Pt surfaces. TaO{sub x}/Pt electrodes were prepared by galvanostatic electrodeposition of Ta on Pt from LiF-NaF (60:40 mol%) molten salts containing K{sub 2}TaF{sub 7} (20 wt%) at 800 deg. C and then by annealing in air at various temperatures (200, 400 and 600 deg. C). The thus-fabricated TaO{sub x}/Pt electrodes were compared with the non-annealed Ta/Pt and the unmodified Pt electrodes for the hydrogen adsorption/desorption (H{sub ads}/H{sub des}) reaction. The oxidation of Ta to the stoichiometric oxide (Ta{sub 2}O{sub 5}) increases with increasing the annealing temperature as revealed from XPS and X-ray diffraction (XRD) measurements. The higher the annealing temperature the larger is the enhancement in the H{sub ads}/H{sub des} reaction at TaO{sub x}/Pt electrode. The extraordinary increase in the hydrogen adsorption/desorption at the electrode annealed at 600 deg. C is explained on the basis of a hydrogen spillover-reverse spillover mechanism. The hydrogen adsorption at the TaO{sub x}/Pt electrode is a diffusion-controlled process.

  14. Equilibrium moisture content (EMC) in Norway spruce during the first and second desorptions

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Engelund, Emil Tang; Thygesen, Lisbeth G.

    2011-01-01

    It is a commonly accepted notion that the equilibrium moisture content (EMC) of wood at a given relative humidity (RH) is highest during initial desorption of green wood due to an irreversible loss of hygroscopicity during the 1st desorption. The basis for this notion is investigated by assessing...

  15. Nuclear stimulated desorption as a potential tool for surface study

    International Nuclear Information System (INIS)

    Nir, Dror.

    1993-03-01

    The described research work constitutes a base for an experimental method to be implemented in the study of solid surfaces. Nuclear Stimulated Desorption (NSD) is a new mode of experimentation in thin film and surface physics. It Is based on the interplay between nuclear phenomena (reactions and spontaneous decays), and atomic - scale induced effects on surfaces and very thin films. One may distinguish between two generically different relationships between the two. First, the dynamics of the nuclear reaction -primarily the recoil of the nucleus - may effect the position of the atom or molecule containing it. Second, the nuclear reaction (or decay) may serve as an analytical indicator of the whereabouts of the atom, or molecule, in question. In nuclear stimulated desorption, both thee aspects combine in an essential way. Namely, one employs a series of two consecutive decays (normally weak decays or isomeric transition) . The first of these decays causes the nucleus to desorb from a surface onto which it had been placed; the second serves to determine the position of the daughter and thereby the characteristics of the primary desorption . The essential feature in NSD is that it occurs almost exclusively from the outermost surface layer. This is because we choose to work with nuclei whose recoil energy Is of the same order of magnitude of the binding energy of the atom to the surface . Furthermore, the desorption probability and its angular (and temporal) characteristics, depend on the features (topology, morphology) of its immediate neighborhood. This work describes experiments which were designed to give relevant, phenomenological information about the outgoing flux of the radioactive daughters (for specifically chosen nuclear species) , and in particular the magnitude of the flux, its time dependence and its charged state. In addition. the basic phenomena itself is being distinguished from competing processes (thermal desorption, in particular). We will now

  16. Development program for the high-temperature nuclear process heat system

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1975-09-01

    A comprehensive development program plan for a high-temperature nuclear process heat system with a very high temperature gas-cooled reactor heat source is presented. The system would provide an interim substitute for fossil-fired sources and ultimately the vehicle for the production of substitute and synthetic fuels to replace petroleum and natural gas. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system has significant potential in a unique combination of the two sources that is environmentally and economically attractive and technically sound: the production of synthetic fuels from coal. In the longer term, it could be the key component in hydrogen production from water processes that offer a substitute fuel and chemical feedstock free of dependence on fossil-fuel reserves. The proposed development program is threefold: a process studies program, a demonstration plant program, and a supportive research and development program. Optional development scenarios are presented and evaluated, and a selection is proposed and qualified. The interdependence of the three major program elements is examined, but particular emphasis is placed on the supportive research and development activities. A detailed description of proposed activities in the supportive research and development program with tentative costs and schedules is presented as an appendix with an assessment of current status and planning

  17. Sorption and desorption kinetics of diuron, fluometuron, prometryn and pyrithiobac sodium in soils.

    Science.gov (United States)

    Baskaran, S; Kennedy, I R

    1999-11-01

    The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.

  18. Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements

    DEFF Research Database (Denmark)

    Rode, Carsten; Hansen, Kurt Kielsgaard

    2011-01-01

    measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...... intermittently. For one of the materials, aerated concrete, the sorption curves are determined at three different temperatures....

  19. Direct analysis of anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption-dielectric barrier discharge ionization mass spectrometry.

    Science.gov (United States)

    Saha, Subhrakanti; Mandal, Mridul Kanti; Nonami, Hiroshi; Hiraoka, Kenzo

    2014-08-11

    Rapid detection of trace level anabolic steroids in urine is highly desirable to monitor the consumption of performance enhancing anabolic steroids by athletes. The present article describes a novel strategy for identifying the trace anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption (LPTD) coupled to dielectric barrier discharge (DBD) ionization mass spectrometry. Using this method the steroid molecules are enriched within a liquid droplet during the thermal desorption process and desorbed all-together at the last moment of droplet evaporation in a short time domain. The desorbed molecules were ionized using a dielectric barrier discharge ion-source in front of the mass spectrometer inlet at open atmosphere. This process facilitates the sensitivity enhancement with several orders of magnitude compared to the thermal desorption at a lower temperature. The limits of detection (LODs) of various steroid molecules were found to be in the range of 0.05-0.1 ng mL(-1) for standard solutions and around two orders of magnitude higher for synthetic urine samples. The detection limits of urinary anabolic steroids could be lowered by using a simple and rapid dichloromethane extraction technique. The analytical figures of merit of this technique were evaluated at open atmosphere using suitable internal standards. The technique is simple and rapid for high sensitivity and high throughput screening of anabolic steroids in urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. DNA adsorption and desorption on mica surface studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lanlan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China); Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhao Dongxu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhang Yue; Xu Fugang [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China); Li Zhuang, E-mail: zli@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China)

    2011-05-15

    The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/{mu}L. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.

  1. DNA adsorption and desorption on mica surface studied by atomic force microscopy

    International Nuclear Information System (INIS)

    Sun Lanlan; Zhao Dongxu; Zhang Yue; Xu Fugang; Li Zhuang

    2011-01-01

    The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/μL. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.

  2. Study of nitric oxide catalytic oxidation on manganese oxides-loaded activated carbon at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    You, Fu-Tian [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China); Yu, Guang-Wei, E-mail: gwyu@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Wang, Yin, E-mail: yinwang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Xing, Zhen-Jiao [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Liu, Xue-Jiao; Li, Jie [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China)

    2017-08-15

    Highlights: • Loading manganese oxides on activated carbon effectively promotes NO oxidation. • NO adsorption-desorption on activated carbon is fundamental to NO oxidation. • A high Mn{sup 4+}/Mn{sup 3+} ratio contributes to NO oxidation by promoting lattice O transfer. - Abstract: Nitric oxide (NO) is an air pollutant that is difficult to remove at low concentration and low temperature. Manganese oxides (MnO{sub x})-loaded activated carbon (MLAC) was prepared by a co-precipitation method and studied as a new catalyst for NO oxidation at low temperature. Characterization of MLAC included X-ray diffraction (XRD), scanning electron microscopy (SEM), N{sub 2} adsorption/desorption and X-ray photoelectron spectroscopy (XPS). Activity tests demonstrated the influence of the amount of MnO{sub x} and the test conditions on the reaction. MLAC with 7.5 wt.% MnO{sub x} (MLAC003) exhibits the highest NO conversion (38.7%) at 1000 ppm NO, 20 vol.% O{sub 2}, room temperature and GHSV ca. 16000 h{sup −1}. The NO conversion of MLAC003 was elevated by 26% compared with that of activated carbon. The results of the MLAC003 activity test under different test conditions demonstrated that NO conversion is also influenced by inlet NO concentration, inlet O{sub 2} concentration, reaction temperature and GHSV. The NO adsorption-desorption process in micropores of activated carbon is fundamental to NO oxidation, which can be controlled by pore structure and reaction temperature. The activity elevation caused by MnO{sub x} loading is assumed to be related to Mn{sup 4+}/Mn{sup 3+} ratio. Finally, a mechanism of NO catalytic oxidation on MLAC based on NO adsorption-desorption and MnO{sub x} lattice O transfer is proposed.

  3. Thermal desorption of deuterium from modified carbon nanotubes and its correlation to the microstructure

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; van den Berg, A.H.J.; Smithers, Mark A.; Smithers, M.A.

    2006-01-01

    The process of deuterium desorption from single-wall carbon nanotubes (SWNTs) modified by atomic (D) and molecular (D2) deuterium treatment was investigated in an ultrahigh vacuum environment using thermal desorption mass spectroscopy (TDMS). Microstructural and chemical analyses of SWNT material,

  4. Desorption of tritium and helium from high dose neutron irradiated beryllium

    Science.gov (United States)

    Kupriyanov, I. B.; Nikolaev, G. N.; Vlasov, V. V.; Kovalev, A. M.; Chakin, V. P.

    2007-08-01

    The effect of high dose neutron irradiation on tritium and helium desorption in beryllium is described. Beryllium samples were irradiated in the SM and BOR-60 reactors to a neutron fluences ( E > 0.1 MeV) of (5-16) × 10 22 cm -2 at 70-100 °C and 380-420 °C. A mass-spectrometry technique was used in out of pile tritium release experiments during stepped annealing in the 250-1300 °C temperature range. The total amount of helium accumulated in irradiated beryllium samples varied from 6000 to 7200 appm. The first signs of tritium and helium release were detected at temperature of 312-445 °C and 500-740 °C, respectively. It is shown that most tritium (˜82%) from sample irradiated at 70-100 °C releases in temperature range of 312-700 °C before the beginning of helium release (740 °C). In the case of beryllium sample irradiated at 380-420 °C, tritium release starts at a higher temperature ( Ts > Tann = 445 °C) and most of the tritium (˜99.8%) is released concurrently with helium which could be considered as evidence of co-existence of partial amounts of tritium and helium in common bubbles. Both the Be samples differ little in the upper temperatures of gas release: 745 and 775 °C for tritium; 1140 and 1160 °C for helium. Swelling of beryllium starts to play a key role in accelerating tritium release at Tann > 600 °C and in helium release - at Tann > 750 °C.

  5. Multisample matrix-assisted laser desorption source for molecular beams of neutral peptides

    International Nuclear Information System (INIS)

    Lupulescu, C.; Abd El Rahim, M.; Antoine, R.; Barbaire, M.; Broyer, M.; Dagany, X.; Maurelli, J.; Rayane, D.; Dugourd, Ph.

    2006-01-01

    We developed and tested a multisample laser desorption source for producing stable molecular beams of neutral peptides. Our apparatus is based on matrix-assisted laser desorption technique. The source consists of 96 different targets which may be scanned by a software control procedure. Examples of molecular beams of neutral peptides are presented, as well as the influence of the different source parameters on the jet

  6. Electron-stimulated desorption of lithium ions from lithium halide thin films

    International Nuclear Information System (INIS)

    Markowski, Leszek

    2007-01-01

    Electron-stimulated desorption of positive lithium ions from thin layers of lithium halides deposited onto Si(1 1 1) are investigated by the time-of-flight technique. The determined values of isotope effect of the lithium ( 6 Li + / 7 Li + ) are 1.60 ± 0.04, 1.466 ± 0.007, 1.282 ± 0.004, 1.36 ± 0.01 and 1.33 ± 0.01 for LiH, LiF, LiCl, LiBr and LiI, respectively. The observed most probable kinetic energies of 7 Li + are 1.0, 1.9, 1.1, 0.9 and 0.9 eV for LiH, LiF, LiCl, LiBr and LiI, respectively, and seem to be independent of the halide component mass. The values of lithium ion emission yield, lithium kinetic energy and lithium isotope effect suggest that the lattice relaxation is only important in the lithium ion desorption process from the LiH system. In view of possible mechanisms and processes involved into lithium ion desorption the obtained results indicate that for LiH, LiCl, LiBr and LiI the ions desorb in a rather classical way. However, for LiF, ion desorption has a more quantum character and the modified wave packet squeezing model has to be taken into account

  7. Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts

    DEFF Research Database (Denmark)

    Murphy, Shane; Strebel, Christian Ejersbo; Vendelbo, Søren Bastholm

    2011-01-01

    Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles.......Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles....

  8. Desorption of organophosphorous pesticides from soil with wastewater and surfactant solutions

    International Nuclear Information System (INIS)

    Hernandez-Soriano, M. C.; Mingorance, M. D.; Pena, A.

    2009-01-01

    Surfactants can be introduced in the environment by wastewater discharge, point-charge pollution or deliberate action, e. g. to remediate contaminated soil or groundwater. The irrigation of soil with wastewater containing surfactants may modify pesticide desorption from soil, thus affecting their affecting their environmental fate. Desorption from soil of the plain of Granada (South-eastern Spain) of two organophosphorous pesticides, diazinon and dimethoate, differing in solubility and hydrophobicity, has been evaluated in the presence of different surfactant aqueous solutions and municipal wastewater. (Author)

  9. Effect of equilibration time on Pu desorption from goethite

    International Nuclear Information System (INIS)

    Wong, Jennifer C.; Powell, Brian A.; Zavarin, Mavrik; Begg, James D.; Kersting, Annie B.

    2015-01-01

    It has been suggested that strongly sorbing ions such as plutonium may become irreversibly bound to mineral surfaces over time which has implications for near- and far-field transport of Pu. Batch adsorption-desorption data were collected as a function of time and pH to study the surface stability of Pu on goethite. Pu(IV) was adsorbed to goethite over the pH range 4.2 to 6.6 for different periods of time (1, 6, 15, 34 and 116 d). Following adsorption, Pu was leached from the mineral surface with desferrioxamine B (DFOB), a complexant capable of effectively competing with the goethite surface for Pu. The amount of Pu desorbed from the goethite was found to vary as a function of the adsorption equilibration time, with less Pu removed from the goethite following longer adsorption periods. This effect was most pronounced at low pH. Logarithmic desorption distribution ratios for each adsorption equilibration time were fit to a pH-dependent model. Model slopes decreased between 1 and 116 d adsorption time, indicating that overall Pu(IV) surface stability on goethite surfaces becomes less dependent on pH with greater adsorption equilibration time. The combination of adsorption and desorption kinetic data suggest that non-redox aging processes affect Pu sorption behavior on goethite.

  10. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    International Nuclear Information System (INIS)

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-01-01

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  11. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Imandi, Venkataramana; Chatterjee, Abhijit, E-mail: abhijit@che.iitb.ac.in [Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-07-21

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  12. Mercury speciation during in situ thermal desorption in soil

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Min, E-mail: cmpark80@gmail.com; Katz, Lynn E.; Liljestrand, Howard M.

    2015-12-30

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg{sup 0} gas until the temperature reached 358.15 K. • Phase change of HgCl{sub 2(s)} completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg{sup 0}) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  13. Mercury speciation during in situ thermal desorption in soil

    International Nuclear Information System (INIS)

    Park, Chang Min; Katz, Lynn E.; Liljestrand, Howard M.

    2015-01-01

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg"0 gas until the temperature reached 358.15 K. • Phase change of HgCl_2_(_s_) completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg"0) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  14. Desorption behaviors of BDE-28 and BDE-47 from natural soils with different organic carbon contents

    International Nuclear Information System (INIS)

    Liu Wenxin; Cheng Fangfang; Li Weibo; Xing Baoshan; Tao Shu

    2012-01-01

    Desorption kinetic and isothermal characteristics of BDE-28 and BDE-47 were investigated using natural soils with different organic carbon fractions. The results indicated that a two-compartment first-order model with dominant contribution of slow desorption could adequately describe the released kinetics of studied PBDEs. Desorption isotherms of different samples could be fitted well by linear distribution model or nonlinear Freundlich model. Moreover, most desorption procedures roughly exhibited hysteresis with respect to preceding sorption ones. At the statistically significant level of 0.05 or 0.1, total organic carbon content (f OC ) exhibited significant correlations with the fitted parameters by the isothermal models. The correlations of f OC and SOM fractions (e.g., fulvic acid and humin) with the single point desorption coefficients at lower aqueous concentrations of studied PBDEs were significant; while at higher aqueous concentrations, the relationships were less significant or insignificant. Our findings may facilitate a comprehensive understanding on behaviors of PBDEs in soil systems. - Highlights: ► A two-compartment first-order kinetic model for the PBDEs studied was established. ► Isotherm was fitted well by a linear distribution or a nonlinear Freundlich model. ► Desorption commonly exhibited somewhat hysteresis relative to sorption. ► Soil organic carbon fractions showed close correlations with the model parameters. - Two-compartment first-order model, and linear distribution model or nonlinear Freundlich model could well elucidate desorption kinetics and isotherms of PBDEs in natural soils, respectively.

  15. Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils

    DEFF Research Database (Denmark)

    Fernandez Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel

    2015-01-01

    The purpose of this work was to quantify retention/release of tetracycline, oxytetracycline, and chlortetracycline on two soils, paying attention to sorption kinetics and to implications of the adsorption/desorption processes on transfer of these pollutants to the various environmental compartments...... tetracycline > oxytetracycline > chlortetracycline in soil 1, with similar values for the three antibiotics and the sequence tetracycline > chlortetracycline > oxytetracycline in soil 2. The desorption sequences were oxytetracycline > tetracycline > chlortetracycline in soil 1 and oxytetracycline...... > chlortetracycline > tetracycline in soil 2. In conclusion, the SFC technique has yielded new kinetic data regarding tetracycline, oxytetracycline, and chlortetracycline adsorption/desorption on soils, indicating that it can be used to shed further light on the retention and transport processes affecting antibiotics...

  16. ε-Polylysine-based thermo-responsive adsorbents for immunoglobulin adsorption-desorption under mild conditions.

    Science.gov (United States)

    Maruyama, Masashi; Shibuya, Keisuke

    2017-08-22

    Thermo-responsive adsorbents for immunoglobulin G (IgG) employing ε-polylysine (EPL) as a polymer backbone were developed. The introduction of mercaptoethylpyridine (MEP) as an IgG-binding ligand and hydrophobization of side chains afforded thermo-responsive IgG adsorbents, whose thermo-responsive IgG desorption ratio was up to 88% (EPL/MEP derivative 3m). The changes in surface densities of active MEP groups, which are caused by thermal conformational changes of the adsorbents, play key roles for IgG desorption. Although a trade-off of IgG adsorption capacity and IgG desorption ratio was observed, the present study offers a novel molecular design for thermo-responsive adsorbents with high synthetic accessibility and potentially low toxicity.

  17. The use of angle resolved electron and photon stimulated desorption for the determination of molecular structure at surfaces

    International Nuclear Information System (INIS)

    Madey, T.E.; Stockbauer, R.

    1983-01-01

    A brief review of recent data related to the use of angle-resolved electron stimulated desorption and photon stimulated desorption in determining the structures of molecules at surfaces is made. Examples include a variety of structural assignments based on ESIAD (electron stimulated desorption ion angular distributions), the observation of short-range local ordering effects induced in adsorbed molecules by surface impurities, and the application of photon stimulated desorption to both ionic and covalent adsorbate systems. (Author) [pt

  18. Competitive metal sorption and desorption onto Kappaphycus alvarezii, seaweed waste biomass

    International Nuclear Information System (INIS)

    Lee, K.O.; Nazaruddin Ramli; Mamot Said; Musa Ahmad; Suhaimi Mohd Yasir; Arbakariya Ariff

    2011-01-01

    Competitive metal sorption and desorption onto Kappaphycus alvarezii waste biomass were investigated. Metal sorption capacities were 0.82 mg Cr (III)/ g, 0.73 mg Ni (II)/ g, 0.67 mg Cd (II)/ g, 0.65 mg Cu( II)/ g and 0.64 mg Zn (II)/ g in multi metal system. Whereas, desorption efficiencies were 66.08 %, 71.50 % and 80.44 % using 0.1 M HNO 3 , 0.1 M HCl and 0.1 M H 2 SO 4 , respectively. The metal sorption sequence were Cr(III) > Ni(II) > Cd(II) > Cu(II) > Zn(II), while metal desorption sequence were Cd(II) > Zn(II) > Cu(II) > Ni(II) > Cr(III). Fourier transformed infrared spectroscopy (FTIR) technique was used to characterize the seaweed waste biomass. FTIR analysis shown that carbonyl (-C-O) and nitrile (-C≡N) groups interact with the metal ions. The experiments result revealed that Kappaphycus alvarezii waste biomass represent an attractive candidate to remove multi metal ions. (author)

  19. Competitive metal sorption and desorption onto Kappaphycus alvarezii, seaweed waste biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K O; Ramli, Nazaruddin; Said, Mamot; Ahmad, Musa [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, selangor (Malaysia); Yasir, Suhaimi Mohd [School of Sciences and Technology, Universiti Malaysia Sabah (UMS), Sabah (Malaysia); Arbakariya Ariff, E-mail: naza@ukm.my [Faculty of Biotechnology and Biomolecular science, Universiti Putra Malaysia (UPM), Serdang, Selangor (Malaysia)

    2011-07-15

    Competitive metal sorption and desorption onto Kappaphycus alvarezii waste biomass were investigated. Metal sorption capacities were 0.82 mg Cr (III)/ g, 0.73 mg Ni (II)/ g, 0.67 mg Cd (II)/ g, 0.65 mg Cu( II)/ g and 0.64 mg Zn (II)/ g in multi metal system. Whereas, desorption efficiencies were 66.08 %, 71.50 % and 80.44 % using 0.1 M HNO{sub 3}, 0.1 M HCl and 0.1 M H{sub 2}SO{sub 4}, respectively. The metal sorption sequence were Cr(III) > Ni(II) > Cd(II) > Cu(II) > Zn(II), while metal desorption sequence were Cd(II) > Zn(II) > Cu(II) > Ni(II) > Cr(III). Fourier transformed infrared spectroscopy (FTIR) technique was used to characterize the seaweed waste biomass. FTIR analysis shown that carbonyl (-C-O) and nitrile (-C{identical_to}N) groups interact with the metal ions. The experiments result revealed that Kappaphycus alvarezii waste biomass represent an attractive candidate to remove multi metal ions. (author)

  20. Tritium adsorption/release behaviour of advanced EU breeder pebbles

    Science.gov (United States)

    Kolb, Matthias H. H.; Rolli, Rolf; Knitter, Regina

    2017-06-01

    The tritium loading of current grades of advanced ceramic breeder pebbles with three different lithium orthosilicate (LOS)/lithium metatitanate (LMT) compositions (20-30 mol% LMT in LOS) and pebbles of EU reference material, was performed in a consistent way. The temperature dependent release of the introduced tritium was subsequently investigated by temperature programmed desorption (TPD) experiments to gain insight into the desorption characteristics. The obtained TPD data was decomposed into individual release mechanisms according to well-established desorption kinetics. The analysis showed that the pebble composition of the tested samples does not severely change the release behaviour. Yet, an increased content of lithium metatitanate leads to additional desorption peaks at medium temperatures. The majority of tritium is released by high temperature release mechanisms of chemisorbed tritium, while the release of physisorbed tritium is marginal in comparison. The results allow valuable projections for the tritium release behaviour in a fusion blanket.

  1. Hydrogen desorption properties of MgH2–Ni–Ni2Si composites prepared by mechanochemical method

    International Nuclear Information System (INIS)

    Shimada, Motoki; Higuchi, Eiji; Inoue, Hiroshi

    2013-01-01

    Highlights: ► The MgH 2 –Ni composite showed fast hydrogen desorption rate at 250 °C. ► The MgH 2 –Ni–Ni 2 Si composite showed fast hydrogen desorption rate at 220 °C. ► Nanocrystalline Mg 2 Ni and Mg 2 Si were formed between Mg and adjacent Ni or Si. ► Ni 2 Si did not form any alloys and work as a catalyst. -- Abstract: To improve hydrogen desorbability of Mg, some composites were prepared from MgH 2 , Ni and Ni 2 Si mixed powders by the mechanochemical method. The MgH 2 –Ni(2 mol%)–Ni 2 Si(1 mol%) composite was slower in hydrogen desorption rate at 250 °C than the MgH 2 –Ni(2 mol%) composite, while the hydrogen desorption rate at 220 °C for the former was faster than that for the latter. The XRD pattern of the MgH 2 –Ni(2 mol%) composite showed that after hydrogen desorption at 400 °C small diffraction peaks assigned to Mg 2 Ni were observed with peaks assigned to Mg. They shifted to smaller angles after hydrogen absorption at 250 °C and come back to the original positions after hydrogen desorption at 250 °C, suggesting reversible hydrogen absorption/desorption of Mg 2 Ni. In contrast, Ni 2 Si was not changed over the whole processes. These results indicated that Ni 2 Si worked as a catalyst for hydrogen desorption, leading to the improvement of desorbability at 220 °C

  2. Extrapolation studies on desorption of thorium and uranium at different solution compositions on contaminated soil sediments (Malaysia)

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma

    2000-01-01

    By means of batch desorption experiments, the thorium and uranium desorption properties of contaminated soil sediments are investigated as a function of the effect of cations present in the groundwater. A phenomenological correlation between the desorption coefficient and the concentration of Ca and Mg in the water is determined. Kd Thorium -0.15849 ± 0.03237 log (Ca + Mg) + 5.06715 ± 0.09106; Kd Uranium = -0.11984 ± 0.03237 log (Ca + Mg) + 2.99909 ± 0.09105. By these models the sorption/desorption behaviour of soils can be predicted phenomenologically as function of the groundwater composition. (author)

  3. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Woo, E-mail: park85@gmail.com [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Bo Hyun [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Kune-Woo, E-mail: nkwlee@kaeri.re.kr [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-04-05

    Highlights: • A cationic polyelectrolyte has excellent ability to desorb Cs bound strongly to clay. • The polycation desorbed significantly more Cs from the clay than did single cations. • Additional NH{sub 4}{sup +} treatment following the polycation treatment enhanced desorption of Cs. • The reaction yielded efficient desorption (95%) of an extremely low concentration of Cs-137 in the clay. - Abstract: We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH{sub 4}{sup +} treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH{sub 4}{sup +} yielded efficient desorption (95%) of an extremely low concentration of radioactive {sup 137}Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations.

  4. Status of radionuclide sorption-desorption studies performed by the WRIT program

    International Nuclear Information System (INIS)

    Serne, R.J.; Relyea, J.F.

    1981-01-01

    This paper focuses on interactions between dissolved radionuclides in groundwater and rocks and sediments away from the nearfield repository. Two approaches were used to study the primary mechanism, adsorption-desorption. Empirical studies rely on distribution coefficient measurements, and mechanism studies strive to identify, differentiate, and quantify the processes that control nuclide retardation. The status of sorption mechanism studies is discussed, with emphasis on delineating the usefulness of ideal ion-exchange, site-binding electrical double-layer, and redox-controlled sorption constructs. Since studies to date show greater potential for site-binding electrical double-layer models, future efforts will concentrate on this construct. Laboratory studies are discussed which corroborate the importance of redox reactions in causing nuclide retardation for multivalent elements, such as Tc, Np, Pu, and U. Results suggest that both solution-mediated reduction, such as the Fe(II)-Fe(III) couple, and solid-solution heterogeneous reduction reactions, such as reduction of solution Pu(VI) at the mineral surface by structural Fe(II), occur. Coupled microscopy, microprobe, and autoradiography studies have determined actual sorption sites for radionuclides on polymineralic rocks. The studies show that it is possible for minor phases to completely dominate the mass of radionuclides adsorbed. The most active minerals are typically alternation products (clays and zeolites). Several exercises are discussed which rank radionuclides according to their potential dose hazards. In each of the analyses discussed, the top four radionuclides are I, Tc, Np, and Ra. Other elements that rank high in potential hazards are Pu, U, Am, Th, Pb, Sn, Pd, and Se

  5. Sorption, desorption and extraction of uranium from some sands under dynamic conditions

    International Nuclear Information System (INIS)

    Palagyi, S.; Laciok, A.

    2006-01-01

    Sorption, desorption and extraction behavior of uranium in various fluvial sands of domestic origin were investigated in continuous dynamic column experiments. For the sorption of U(VI) an aqueous 10 -4 M UO 2 (NO 3 ) 2 solution was used at a flow rate of about 0.3 cm 3 /min. Desorption was carried out with demineralized water, and the extraction with 10 -2 M Na 2 CO 3 solution following desorption. The retardation coefficients (R) and hydrodynamic dispersion coefficients (D d ), were determined using an ADE equation. From the experimentally determined values of R, bulk density and porosity, the distribution coefficients (K d ) of the UO 2 2+ species have been calculated for the respective processes. The extent of U sorption in sands, as well as the proportion of desorbed and extracted U from these sands, was also calculated. (author)

  6. Sample and plume luminescence in fast heavy ion induced desorption

    International Nuclear Information System (INIS)

    Tuszynski, W.; Koch, K.; Hilf, E.R.

    1996-01-01

    The luminescence arising in 252 Cf-fission fragment induced desorption events has been measured using the time-correlated single photon counting technique. Photons emitted from the sample have been guided from a plasma desorption ion source to a photodetector by an optical fibre. Spectra and decay functions have been obtained using thin layers of Coronene or POPOP as samples. The results are strongly dependent on the acceleration field applied for ion extraction. Approximately 10 photons per fission fragment have been produced when applying no accelerating voltage. The results clearly show that these photons come from radiative electronic relaxations of molecules in the solid sample. Considerably more photons per fission fragment have been produced when applying a positive acceleration voltage. The intensity increases almost linearly for acceleration fields below 10 kV/cm and saturates at a nearly 10-fold higher value when compared to no acceleration. The intensity is also affected by the homogeneity of the accelerating field. These additional photons are attributed to radiative electronic relaxations of desorbed neutral molecules in the plume excited by inelastic collisions with accelerated positive ions. No additional photons have been observed when extracting negative ions. The negative ions produced do obviously not hit and/or excite desorbed neutral molecules, presumably due to their specific desorption characteristics. The experimental data have been analyzed by comparing with the cw and time-resolved sample luminescence obtained by optical excitation. The findings demonstrate that valuable information on ion-solid interactions, on specific desorption quantities and on processes in the plume can be obtained by measuring and analyzing the luminescence induced by the impact of high energy primary ions. (orig.)

  7. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  8. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    Science.gov (United States)

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-06-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  9. Thermal desorption remediation in relation to landfill disposal at isolated sites in northern Alberta

    International Nuclear Information System (INIS)

    Walker, G.; Henze, M.; Fernuik, N.; MacKinnon, B.; Nelson, D.

    2005-01-01

    Thermal desorption (TD) involves the application of heat to organic-contaminated soil to release and thermally destruct contaminants using high temperatures. An overview of the technique used in the remediation of diesel-contaminated sites was presented. The paper was divided into 2 parts, the first of which provided an overview of TD at 2 electric company sites with a total of 29,000 tonnes of diesel-contaminated soil. Site contamination occurred mainly through the loading, storage and dispensing of diesel fuel. Petroleum lubricants, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), glycols and metals were among the other contaminants. Remediation work was comprised of dig and dump (DD) or thermal desorption (TD) treatment of contaminated soils as well as the removal of underground facilities including concrete foundations, screw anchors, storage tanks, pipelines and grounding grids. The TD process, and productivity with both clay and sand soil types was reviewed, and an analysis of direct, indirect and total costs was presented. Issues concerning planning, production rates, practical field experience and quality control procedures were discussed, in addition to limitations such the treatment's inability to remediate metals, sensitivity to soil water content, and water demands for soil processing. The second section described the role of TD in a staged remediation for 46,000 tonnes of diesel-contaminated soil at Fox Lake, a remote northern community accessible by winter road and ice bridges. The challenges of ice bridge construction and maintenance, excavation backfilling and soil transport at low temperature were reviewed. An outline of consultation processes with First Nations was presented, as well as details of site operations and soil hauling, truck restrictions and coordination over the ice bridge, alternate backfill sources, and TD soil treatment of the contaminated soil. 2 tabs

  10. Desorption of trihalomethanes in gas liquid contactors

    International Nuclear Information System (INIS)

    Ramirez Quesada, Kenneth

    2000-01-01

    Updated studies show that gastric cancer is related with the existence of trihalomethanes (THMs) in the drinking water. The trihalomethanes are sub products from the degradation of humic acids and your reaction with chlorine and bromine used like decontaminates. The desorption process is used to eliminate the THMs with air in contact with the water. The experimental design was used in three contactors. The contactors selected were: the bubbling's column, the packed column and the shaken tank without screen. There were selected three variable: initial concentration of THMs, the residence time and the turbulence degree (measured with the Reynolds number). The concentrations were made with a gas chromatograph. The objective of this project is to do a comparison with the gas liquid contactors more used in the industrial level to determinate which ones are the best in the desorption process. The conclusion of the experimental design is that the tank is the equipment with the best capacity to eliminate THMs. Too it includes other techniques to eliminate THMs of the water and your treatment [es

  11. Desorption and ionization processes in laser mass spectrometry

    International Nuclear Information System (INIS)

    Peyl, G.J.Q. van der.

    1984-01-01

    In this thesis results are reported from a study on the desorption- and ionization process initiated by infra-red laser irradiation (LDMS) or ion bombardment (SIMS) of thin organic sample layers. The study is especially focused on the formation of quasimolecular ions under these conditions. Results of these investigations can be used for a better optimization of the LDMS and SIMS techniques in organic mass spectrometry. First, an overview is given of laser desorption mass spectrometry. Next, the coupling of the laser energy into the organic sample layer is investigated. It is concluded that the laser energy is primarily absorbed by the substrate material and not by the organic overlayer. The formation of quasi-molecular ions, either in the gas phase or in the substrate surface is investigated. The final section reports kinetic energy distributions for ions sputtered from organic solids and liquids. (Auth.)

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... N2 adsorption desorption, Scanning Electron Microscopy (SEM-EDS) analysis, X-ray Photoelectron Spectroscopy (XPS) and Temperature Programmed Desorption (TPD).We have studied the catalytic activities, kinetics and reusability of the catalysts. 60CsTPA-ZTP is found to be an effective and re-usable catalyst for the ...

  13. Fast temperature programming in gas chromatography using resistive heating

    NARCIS (Netherlands)

    Dallüge, J.; Ou-Aissa, R.; Vreuls, J.J.; Brinkman, U.A.T.; Veraart, J.R.

    1999-01-01

    The features of a resistive-heated capillary column for fast temperature-programmed gas chromatography (GC) have been evaluated. Experiments were carried out using a commercial available EZ Flash GC, an assembly which can be used to upgrade existing gas chromatographs. The capillary column is placed

  14. Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils.

    Science.gov (United States)

    Fernández-Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, Maria J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-01-01

    The purpose of this work was to quantify retention/release of tetracycline, oxytetracycline, and chlortetracycline on two soils, paying attention to sorption kinetics and to implications of the adsorption/desorption processes on transfer of these pollutants to the various environmental compartments. We used the stirred flow chamber (SFC) procedure to achieve this goal. All three antibiotics showed high affinity for both soils, with greater adsorption intensity for soil 1, the one with the highest organic matter and Al and Fe oxides contents. Desorption was always  oxytetracycline > chlortetracycline in soil 1, with similar values for the three antibiotics and the sequence tetracycline > chlortetracycline > oxytetracycline in soil 2. The desorption sequences were oxytetracycline > tetracycline > chlortetracycline in soil 1 and oxytetracycline > chlortetracycline > tetracycline in soil 2. In conclusion, the SFC technique has yielded new kinetic data regarding tetracycline, oxytetracycline, and chlortetracycline adsorption/desorption on soils, indicating that it can be used to shed further light on the retention and transport processes affecting antibiotics on soils and other media, thus increasing knowledge on the behavior and evolution of these pharmaceutical residues in the environment.

  15. Coffee-ring effects in laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2013-03-05

    This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Adsorption, aggregation, and desorption of proteins on smectite particles.

    Science.gov (United States)

    Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pigłowski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam

    2014-10-07

    We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes.

  17. Removal of SO{sub 2} at low temperature using dead Bacillus licheniformis

    Energy Technology Data Exchange (ETDEWEB)

    Lishan Jia; Hao Song; Weiping Fang; Qingbiao Li; Jing Gao; Juanjuan Li; Qian Zhang [Xiamen University, Xiamen (China). China Department of Chemical Engineering and Biochemical Engineering

    2010-03-15

    In this paper we studied the adsorption and desorption behavior of SO{sub 2} by the dead Bacillus licheniformis R08 biomass. The effects of water vapor, temperature and O{sub 2} on the removal of SO{sub 2} by the biomass were studied. FTIR and XPS were used to characterize the mechanism of the SO{sub 2} adsorption on the biomass. The experimental results showed that water vapor and temperature deeply influenced the adsorption of SO{sub 2} by the biomass. However, O{sub 2} cannot oxidize SO{sub 2} to SO{sub 3} on the biomass. FTIR and XPS results showed that oxygenous and nitrogenous functional groups on the cell walls of biomass may be related to the SO{sub 2} adsorption and three sulfur species were formed on the biomass in adsorption process. In the desorption process, weakly adsorbed SO{sub 2} could be desorbed by increasing temperature and the biomass can be reused for 10 cycles. 27 refs., 6 figs., 2 tabs.

  18. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    Science.gov (United States)

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation.

  19. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung-Young; Camillone, Nina R.; Camillone, Nicholas, E-mail: nicholas@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Xu, Pan [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794 (United States); White, Michael G. [Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Chemistry, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-07-07

    We report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate–adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probability increases roughly two orders magnitude, and (ii) the adsorbate–substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate–substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, η{sub el}, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of η{sub el} largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.

  20. Effect of pH on desorption of CO2 from alkanolamine - rich solvents

    Science.gov (United States)

    Du, Min

    2017-08-01

    Adipic acid was used as a pH regulator, which was added to 0.4 mol/L MEA, DEA and MDEA solvents during CO2 desorption process. It is found that when pH value of the solvents swing between 8-10, CO2 desorption rate enhanced, and energy consumption has declined obviously. This research may have reference significance on optimization of alkanolamine CO2 capture process.

  1. Retention of Nickel in Soils: Sorption-Desorption and Extended X-ray Absorption Fine Structure Experiments

    Science.gov (United States)

    Adsorption and desorption of heavy metals in soils are primary factors that influence their bioavailability and mobility in the soil profile. To examine the characteristics of nickel (Ni) adsorption-desorption in soils, kinetic batch experiments were carried out followed by Ni re...

  2. Investigation of ethyl lactate as a green solvent for desorption of total petroleum hydrocarbons (TPH) from contaminated soil.

    Science.gov (United States)

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2016-11-01

    Treatment of oil-contaminated soil is a major environmental concern worldwide. The aim of this study is to examine the applicability of a green solvent, ethyl lactate (EL), in desorption of diesel aliphatic fraction within total petroleum hydrocarbons (TPH) in contaminated soil and to determine the associated desorption kinetics. Batch desorption experiments were carried out on artificially contaminated soil at different EL solvent percentages (%). In analysing the diesel range of TPH, TPH was divided into three fractions and the effect of solvent extraction on each fraction was examined. The experimental results demonstrated that EL has a high and fast desorbing power. Pseudo-second order rate equation described the experimental desorption kinetics data well with correlation coefficient values, R 2 , between 0.9219 and 0.9999. The effects of EL percentage, initial contamination level of soil and liquid to solid ratio (L/S (v/w)) on initial desorption rate have also been evaluated. The effective desorption performance of ethyl lactate shows its potential as a removal agent for remediation of TPH-contaminated soil worldwide.

  3. High stability of palladium/kieselguhr composites during absorption/desorption cycling for hydrogen isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yang, E-mail: lei.y@outlook.com; Liu, Xiaopeng; Li, Shuo; Jiang, Lijun; Zhang, Chao; Li, Shuai; He, Di; Wang, Shumao

    2016-12-15

    Highlights: • Pd/K composites with as high as 57 wt.% of Pd have been successfully prepared. • Palladium particles can be effectively packed into the pores of kieselguhr substrates. • Variation of heat-treatment temperatures hardly affect hydrogen absorption capacity and hydrogen saturation time of the Pd/K. • Anti-pulverization property of Pd/K can be improved by packing palladium into the kieselguhr internal pores and heating at 1300 °C. - Abstract: Palladium/kieselguhr (Pd/K) composites with 57 wt.% of Pd were prepared by an improved dipping and thermal decomposition method and heated at elevated temperature to reduce breakdown during hydrogenation-dehydrogenation cycles. The hydrogen absorption kinetic properties of the samples heated at different temperatures were tested under the condition of 20 °C with 100 kPa hydrogen pressure. The 1300 °C heated Pd/K composites were repeated up to 4010 absorption and desorption cycles at temperature ranges between −40 °C and 200 °C. The results show that the phase structure, hydrogen absorption capacity and hydrogen saturation time of the Pd/K were not affected by the change of heat-treated temperatures. And after heat treatment at 1300 °C, the Pd/K particles were strengthened and fraction of larger than 80 mesh were as high as 93.4%.

  4. Tritium adsorption/release behaviour of advanced EU breeder pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Matthias H.H., E-mail: matthias.kolb@kit.edu; Rolli, Rolf; Knitter, Regina

    2017-06-15

    The tritium loading of current grades of advanced ceramic breeder pebbles with three different lithium orthosilicate (LOS)/lithium metatitanate (LMT) compositions (20–30 mol% LMT in LOS) and pebbles of EU reference material, was performed in a consistent way. The temperature dependent release of the introduced tritium was subsequently investigated by temperature programmed desorption (TPD) experiments to gain insight into the desorption characteristics. The obtained TPD data was decomposed into individual release mechanisms according to well-established desorption kinetics. The analysis showed that the pebble composition of the tested samples does not severely change the release behaviour. Yet, an increased content of lithium metatitanate leads to additional desorption peaks at medium temperatures. The majority of tritium is released by high temperature release mechanisms of chemisorbed tritium, while the release of physisorbed tritium is marginal in comparison. The results allow valuable projections for the tritium release behaviour in a fusion blanket.

  5. Japanese HTTR program for demonstration of high temperature applications of nuclear energy

    International Nuclear Information System (INIS)

    Nishihara, T.; Hada, K.; Shiozawa, S.

    1997-01-01

    Construction works of the HTTR started in March 1991 in order to establish and upgrade the HTGR technology basis, to carry out innovative basic researches on high temperature engineering and to demonstrate high temperature heat utilization and application of nuclear heat. This report describes the demonstration program of high temperature heat utilization and application. (author). 2 refs, 4 figs, 3 tabs

  6. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    Science.gov (United States)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  7. Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis

    Science.gov (United States)

    Deng, Liping; Zhu, Xiaobin; Su, Yingying; Su, Hua; Wang, Xinting

    2008-02-01

    The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.

  8. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients.

    Science.gov (United States)

    Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2011-09-28

    In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed to predict retention times for segmented-temperature gradients based on temperature-gradient input data in liquid chromatography (LC) with high accuracy. The LES model assumes that retention times for isothermal separations can be predicted based on two temperature gradients and is employed to calculate the retention factor of an analyte when changing the start temperature of the temperature gradient. In this study it was investigated whether this approach can also be employed in LC. It was shown that this approximation cannot be transferred to temperature-programmed LC where a temperature range from 60°C up to 180°C is investigated. Major relative errors up to 169.6% were observed for isothermal retention factor predictions. In order to predict retention times for temperature gradients with different start temperatures in LC, another relationship is required to describe the influence of temperature on retention. Therefore, retention times for isothermal separations based on isothermal input runs were predicted using a plot of the natural logarithm of the retention factor vs. the inverse temperature and a plot of the natural logarithm of the retention factor vs. temperature. It could be shown that a plot of lnk vs. T yields more reliable isothermal/isocratic retention time predictions than a plot of lnk vs. 1/T which is usually employed. Hence, in order to predict retention times for temperature-gradients with different start temperatures in LC, two temperature gradient and two isothermal measurements have been employed. In this case, retention times can be predicted with a maximal relative error of 5.5% (average relative error: 2.9%). In comparison, if the start temperature of the simulated temperature gradient is equal to the start temperature of the input data, only two temperature

  9. Modeling photo-desorption in high current storage rings

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1991-01-01

    High luminosity flavor factories are characterized by high fluxes of synchrotron radiation that lead to thermal management difficulties. The associated photo-desorption from the vacuum chamber walls presents an additional design challenge, providing a vacuum system suitable for maintaining acceptable beam-gas lifetimes and low background levels of scattered radiation in the detector. Achieving acceptable operating pressures (1-10 nTorr) with practical pumping schemes requires the use of materials with low photodesorption efficiency operating in a radiation environment beyond that of existing storage rings. Extrapolating the existing photo-desorption data base to the design requirements of high luminosity colliders requires a physical model of the differential cleaning in the vacuum chamber. The authors present a simple phenomenological model of photodesorption that includes effects of dose dependence and diffuse photon reflection to compute the leveling of gas loads in beamlines of high current storage rings that typify heavy flavor factories. This model is also used to estimate chamber commissioning times

  10. Testing program for concrete at temperatures to 8940K

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Robinson, G.C.

    1981-01-01

    A test program was conducted to define the variations in mechanical properties of a limestone aggregate concrete and a lightweight insulating concrete exposed to elevated temperatures. Four test series were conducted: (1) unconfined compression; (2) shear; (3) rebar bond; and (4) sustained loading (creep). Tests results are presented

  11. Summary of ORNL high-temperature gas-cooled reactor program

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1981-01-01

    Oak Ridge National Laboratory (ORNL) efforts on the High-Temperature Gas-Cooled Reactor (HTGR) Program have been on HTGR fuel development, fission product and coolant chemistry, prestressed concrete reactor vessel (PCRV) studies, materials studies, graphite development, reactor physics and shielding studies, application assessments and evaluations and selected component testing

  12. The impact of soil organic matter and soil sterilisation on the bioaccessibility of {sup 14}C-azoxystrobin determined by desorption kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Helen; Riding, Matthew J. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Oliver, Robin [Syngenta, Jealotts Hill Research Station, Bracknell RG42 6ET (United Kingdom); Jones, Kevin C. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2014-08-15

    Highlights: • Desorption of azoxystrobin from soils occurs in a bi-phasic manner. • Soil organic matter, indigenous microorganisms and contact time reduce desorption. • Choice of extractant is important in determining predicting the bioaccessible fraction. - Abstract: As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of {sup 14}C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (F{sub rap}) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F{sub slow}). The rapid desorption rate constant (k{sub fast}) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F{sub rap}. In non-sterile soil, F{sub rap} was lower resulting in higher F{sub slow}, while desorption rates remained unaffected. Organic matter (OM) reduces F{sub rap}; but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil.

  13. Characterization and Catalytic Activity of Mn-Co/TiO2 Catalysts for NO Oxidation to NO2 at Low Temperature

    Directory of Open Access Journals (Sweden)

    Lu Qiu

    2016-01-01

    Full Text Available A series of Mn-Co/TiO2 catalysts were prepared by wet impregnation method and evaluated for the oxidation of NO to NO2. The effects of Co amounts and calcination temperature on NO oxidation were investigated in detail. The catalytic oxidation ability in the temperature range of 403–473 K was obviously improved by doping cobalt into Mn/TiO2. These samples were characterized by nitrogen adsorption-desorption, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission electron microscope (TEM and hydrogen temperature programmed reduction (H2-TPR. The results indicated that the formation of dispersed Co3O4·CoMnO3 mixed oxides through synergistic interaction between Mn-O and Co-O was directly responsible for the enhanced activities towards NO oxidation at low temperatures. Doping of Co enhanced Mn4+ formation and increased chemical adsorbed oxygen amounts, which also accelerated NO oxidation.

  14. A development report on the inelastic analysis program for the high temperature structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum; Lee, H. Y.; Lee, J. H.

    2001-04-01

    LMR high temperature structures such as reactor vessel and reactor internal structures are subject to high temperature operating loads thus they can undergo damage due to creep, creep-fatigue, and ratcheting behavior. In this project, NONSTA-EP program implementing combined isotropic and kinematic hardening behavior and NONSTA-VP program implementing Chaboche model, which is so called viscoplasticity model, have been developed and have been continuously improved. In the year of 2000, NONSTA-OW program implementing Ohno-Wang model which can simulate progressive plasticity (that is ratcheting) more precisely compared to other models. One of the characteristics of inelastic constitutive equations is to have various numbers of material parameters to simulate complex material behaviors realistically and it is very important to obtain these material parameters. In this project, the improved method to obtain these material parameters has been studied with the optimal technique and by conducting material characteristic tests under high temperature conditions. The feasibility of the developed program with Ohno-Wang model, which contains 9 isotropic constitutive equations, has been studied through the example problem

  15. Ge interactions on HfO2 surfaces and kinetically driven patterning of Ge nanocrystals on HfO2

    International Nuclear Information System (INIS)

    Stanley, Scott K.; Joshi, Sachin V.; Banerjee, Sanjay K.; Ekerdt, John G.

    2006-01-01

    Germanium interactions are studied on HfO 2 surfaces, which are prepared through physical vapor deposition (PVD) and by atomic layer deposition. X-ray photoelectron spectroscopy and temperature-programed desorption are used to follow the reactions of germanium on HfO 2 . Germanium chemical vapor deposition at 870 K on HfO 2 produces a GeO x adhesion layer, followed by growth of semiconducting Ge 0 . PVD of 0.7 ML Ge (accomplished by thermally cracking GeH 4 over a hot filament) also produces an initial GeO x layer, which is stable up to 800 K. PVD above 2.0 ML deposits semiconducting Ge 0 . Temperature programed desorption experiments of ∼1.0 ML Ge from HfO 2 at 400-1100 K show GeH 4 desorption below 600 K and GeO desorption above 850 K. These results are compared to Ge on SiO 2 where GeO desorption is seen at 550 K. Exploiting the different reactivity of Ge on HfO 2 and SiO 2 allows a kinetically driven patterning scheme for high-density Ge nanoparticle growth on HfO 2 surfaces that is demonstrated

  16. Thermal desorption spectroscopy for investigating hydrogen isotope behavior in materials

    International Nuclear Information System (INIS)

    Xia Tirui; Yang Hongguang; Zhan Qin; Han Zhibo; He Changshui

    2012-01-01

    The behavior of hydrogen isotope generated in fusion reactor materials is the key issue for safety and economic operation of fusion reactors and becomes an interesting field. In order to investigate the mechanism of hydrogen isotope such as diffusion, release and retention, a high-sensitivity thermal desorption spectroscopy (TDS) in combination with a quadruple mass spectrometer (QMS) was developed. A major technical breakthrough in ultrahigh vacuum (UHV), low hydrogen background, linear heating and sensitivity calibration of TDS system was made. UHV of l × 10 -7 Pa and low hydrogen background of l × 10 -9 Pa were obtained by combining turbo molecule pump and sputter ion pump. Specimens can be linearly heated up to 1173 K at the rate of 1 to 50 K/min under the MCGS PID software. Sensitivity calibration of the TDS system was accomplished using a special deuterium leak in the detector mode of QMS second electron multiplier. The desorption sensitivity coefficient and the minimum detection limit of deuterium desorption rate are 6.22 × l0 24 s -l · and l.24 × l0 -10 s -1 , respectively. The measurement was also routinely conducted on a specimen of standard, deuterium-containing Zr-4 alloy maintained in the laboratory, so as to validate the TDS method. (authors)

  17. The impact of soil organic matter and soil sterilisation on the bioaccessibility of 14C-azoxystrobin determined by desorption kinetics.

    Science.gov (United States)

    Clegg, Helen; Riding, Matthew J; Oliver, Robin; Jones, Kevin C; Semple, Kirk T

    2014-08-15

    As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of (14)C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (Frap) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F(slow)). The rapid desorption rate constant (k(fast)) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F(rap). In non-sterile soil, F(rap) was lower resulting in higher F(slow), while desorption rates remained unaffected. Organic matter (OM) reduces F(rap); but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Optimization of CO2 adsorption capacity and cyclical adsorption/desorption on tetraethylenepentamine-supported surface-modified hydrotalcite.

    Science.gov (United States)

    Thouchprasitchai, Nutthavich; Pintuyothin, Nuthapol; Pongstabodee, Sangobtip

    2018-03-01

    The objective of this research was to investigate CO 2 adsorption capacity of tetraethylenepentamine-functionalized basic-modified calcined hydrotalcite (TEPA/b-cHT) sorbents at atmospheric pressure formed under varying TEPA loading levels, temperatures, sorbent weight to total gaseous flow rate (W/F) ratios and CO 2 concentrations in the influent gas. The TEPA/b-cHT sorbents were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), Brunauer-Emmet-Teller (BET) analysis of nitrogen (N 2 ) adsorption/desorption and carbon-hydrogen-nitrogen (CHN) elemental analysis. Moreover, a full 2 4 factorial design with three central points at a 95% confidence interval was used to screen important factor(s) on the CO 2 adsorption capacity. It revealed that 85.0% variation in the capacity came from the influence of four main factors and the 15.0% one was from their interactions. A face-centered central composite design response surface method (FCCCD-RSM) was then employed to optimize the condition, the maximal capacity of 5.5-6.1mmol/g was achieved when operating with a TEPA loading level of 39%-49% (W/W), temperature of 76-90°C, W/F ratio of 1.7-2.60(g·sec)/cm 3 and CO 2 concentration of 27%-41% (V/V). The model fitted sufficiently the experimental data with an error range of ±1.5%. From cyclical adsorption/desorption and selectivity at the optimal condition, the 40%TEPA/b-cHT still expressed its effective performance after eight cycles. Copyright © 2017. Published by Elsevier B.V.

  19. The Complete Oxidation of Ethanol at Low Temperature over a Novel Pd-Ce/γ-Al2O3-TiO2 Catalyst

    International Nuclear Information System (INIS)

    Wang, Yanping; Zhao, Jinshuang; Wang, Xiaoli; Li, Zhe; Liu, Pengfei

    2013-01-01

    Pd-Ce/γ-Al 2 O 3 -TiO 2 catalysts were prepared by combined sol.gel and impregnation methods. Transmission electron microscopy, X-ray diffraction, H 2 -temperature-programmed reduction, O 2 -temperature-programmed desorption, and ethanol oxidation experiments were conducted to determine the properties of the catalysts. Addition of an optimal amount of Ce improved the performance of the Pd/γ-Al 2 O 3 -TiO 2 catalyst in promoting the complete oxidation of ethanol. The catalyst with 1% Ce exhibited the highest activity, and catalyzed complete oxidation of ethanol at 175 .deg. C; its selectivity to CO 2 reached 87%. Characterization results show that addition of appropriate amount of Ce could enrich the PdO species, and weaken the Pd-O bonds, thus enhancing oxidation ability of the catalyst. Meanwhile, the introduction of CeO 2 could make PdO better dispersed on γ-Al 2 O 3 -TiO 2 , which is beneficial for the improvement of the catalytic oxidation activity

  20. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    Science.gov (United States)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  1. CCl 4 chemistry on the magnetite selvedge of single-crystal hematite: competitive surface reactions

    Science.gov (United States)

    Adib, K.; Camillone, N., III; Fitts, J. P.; Rim, K. T.; Flynn, G. W.; Joyce, S. A.; Osgood, R. M., Jr.

    2002-01-01

    Temperature programmed reaction/desorption (TPR/D) studies were undertaken to characterize the surface chemistry which occurs between CCl 4 and the Fe 3O 4 (1 1 1) selvedge of single crystal α-Fe 2O 3 (0 0 0 1). Six separate desorption events are clearly observed and four desorbing species are identified: CCl 4, OCCl 2, C 2Cl 4 and FeCl 2. It is proposed that OCCl 2, CCl 4 and C 2Cl 4 are produced in reactions involving the same precursor, CCl 2. Three reaction paths compete for the CCl 2 precursor: oxygen atom abstraction (for OCCl 2), molecular recombinative desorption (for CCl 4) and associative desorption (for C 2Cl 4). During the TPR/D temperature ramp, the branching ratio is observed to depend upon temperature and the availability of reactive sites. The data are consistent with a rich site-dependent chemistry.

  2. Electron-stimulated desorption from condensed branched alkanes

    International Nuclear Information System (INIS)

    Kelber, J.A.; Knotek, M.L.

    1982-01-01

    Desorption of H + , CH 3+ , H 2+ , and D + have been measured as a function of electron excitation energy for solid neopentane, tetramethylsilane and two deuterated isomers of isobutane. The evidence shows that C-C (or Si-C) and C-H bonds are broken by electronic excitations localized on methyl groups, in contrast to CH 3+ production in gas-phase neopentane, and that these excitations are the final states of decay processes initiated by creation of a hole in the C2s level, or, in tetramethylsilane, the C2s/Si3s level. This is in accord with other evidence which shows that localized multi-valence hole states result in C-H, C-C, Si-C and Si-H dissociation, and that such states may be excited either directly or by shakeup, by decay from a C2s hole, or by decay for a C1s core hole. It is apparent then, that dissociation and desorption of ions from covalent materials is a multi (electron) hole mechanism, and that the means of localizing the excitation energy in such systems involves multi-hole correlation

  3. Summary of Adsorption/Desorption Experiments for the European Database on Indoor Air Pollution Sources in Buildings

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte; Tirkkonen, T.

    1996-01-01

    Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings.......Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings....

  4. Organic solvents improve hydrocarbon desorption and biodegradation in highly contaminated weathered soils

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rivero, M. [Tecnologico de Estudios Superiores de Ecatepec, Mexico City (Mexico); Saucedo-Casteneda, G.; Gutierrez-Rojas, M. [Autonoma Metropolitan Univ., Mexico City (Mexico). Dept. of Biotechnology

    2007-07-15

    A toluene-based microbial slurry phase system was used to remediate hydrocarbons (HC) in highly contaminated soil samples collected from a site next to a working refinery in Mexico. Initial HC concentrations of the samples were 237.2 {+-} 16,6 g kg{sup -1} in dry soil. The microbial consortium consisted of 10 different strains in a mineral solution. Non-polar solvents used in the phase system included hexane, benzene, and toluene. Polar solvents included n-butanol, acetone, and methanol. The bioavailability of the HCs was increased using both polar and nonpolar solvents in order to promote desorption from the soil and to enhance overall HC biodegradation. HC desorption was analyzed in an abiotic system. Respiration and residual HCs were examined after a period of 30 days in order to compare the effects of the 2 solvents. The biodegradation extracts were then fractionated in a silica gel column to determine if the solvents actually enhanced the biodegradation of specific HC fractions. The study showed that induced dipole interactions forces resulted when nonpolar molecules were dissolved into a nonpolar solvent. Results for desorption and solubility varied among the 6 solvents. Higher dielectric constants resulted in higher solubility and desorption of HCs for nonpolar solvents, while the opposite effect was observed for polar solvents. It was concluded that toluene produced better biodegradation results than any of the milder solvents. 34 refs., 4 tabs., 1 fig.

  5. Partitioning and desorption behavior of polycyclic aromatic hydrocarbons from disparate sources

    International Nuclear Information System (INIS)

    Reeves, W.R.; McDonald, T.J.; Cizmas, L.; Donnelly, K.C.

    2004-01-01

    Contaminated sediments pose a unique challenge for risk assessment or remediation because the overlying water column may transport contaminants offsite or to ecological receptors. This research compares the behavior of polycyclic aromatic hydrocarbons (PAHs) on marine sediments from two sites. The first site was affected by shipping activities and the second was impacted by a creosote seep. Organic carbon:water partitioning coefficients (K oc values) were measured with three solutions. Desorption was measured using Tenax beads. PAHs from the ship channel had lower K oc values than those from the creosote facility. For example, the average log K oc value of ship channel pyrene was significantly lower than that of creosote facility pyrene (4.39±0.35 and 5.29±0.09, respectively, when tested in 5 mM calcium chloride). These results were consistent with the greater desorption of pyrene, phenanthrene and benzo(a)pyrene from the ship channel than from the creosote facility sediments. Organic compound desorption from sediments can be considered to be a two-stage process, with a labile fraction that desorbs quickly and a refractory fraction that desorbs much more slowly. In both sediments, more than 75% of the benzo(a)pyrene was found to have partitioned into the refractory phase. The amounts of phenanthrene and pyrene that partitioned into the refractory phase were lower. Linear correlations of log K oc with log (C R /C L ) (where C R and C L are the fractions of the compound in the refractory and labile phases, respectively, at time zero) showed that partitioning measurements made with the US EPA's Toxicity Characteristic Leaching Procedure fluid (US EPA, 1996) most closely matched predictions of desorption behavior. The data imply that with a larger data set, it may be possible to relate simple partitioning measurements to desorption behavior. Partitioning measurements were used to predict water concentrations. Despite having higher concentrations of carcinogenic PAHs

  6. Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe Force Microscopy

    Science.gov (United States)

    Slobodian, Oleksandr M.; Lytvyn, Peter M.; Nikolenko, Andrii S.; Naseka, Victor M.; Khyzhun, Oleg Yu.; Vasin, Andrey V.; Sevostianov, Stanislav V.; Nazarov, Alexei N.

    2018-05-01

    Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.

  7. Matrix-assisted laser desorption fourier transform mass spectrometry for biological compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hettich, R.; Buchanan, M.

    1990-01-01

    The recent development of matrix-assisted UV laser desorption (LD) mass spectrometry has made possible the ionization and detection of extremely large molecules (with molecular weights exceeding 100,000 Daltons). This technique has generated enormous interest in the biological community for the direct examination of large peptides and oligonucleotides. Although this matrix-assisted ionization method has been developed and used almost exclusively with time-of-flight (TOF) mass spectrometers, research is currently in progress to demonstrate this technique with trapped ion mass spectrometers, such as Fourier transform ion cyclotron resonance mass spectrometry (FTMS). The potential capabilities of FTMS for wide mass range, high resolution measurement, and ion trapping experiments suggest that this instrumental technique should be useful for the detailed structural characterization of large ions generated by the matrix-assisted technique. We have recently demonstrated that matrix-assisted ultraviolet laser desorption can be successfully used with FTMS for the ionization of small peptides. The objective of this report is to summarize the application and current limitations of matrix-assisted laser desorption FTMS for the characterization of peptides and oligonucleotides at the isomeric level. 4 refs., 3 figs., 2 tabs.

  8. High-temperature fabrication of Ag(In,Ga)Se{sub 2} thin films for applications in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianfeng [International Center for Science and Engineering Programs, Waseda University, Tokyo (Japan); Yamada, Akira [Department of Physical Electronics, Tokyo Institute of Technology, Tokyo (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo (Japan); Kagami Memorial Research Institute for Materials Science, Waseda University, Tokyo (Japan)

    2017-10-15

    Molecular beam epitaxy was used to fabricate Ag(In,Ga)Se{sub 2} (AIGS) thin films. To improve the diffusion of Ag, high-temperature deposition and high-temperature annealing methods were applied to fabricate AIGS films. The as-grown AIGS thin films were then used to make AIGS solar cells. We found that grain size and crystallinity of AIGS films were considerably improved by increasing the deposition and annealing temperature. For high-temperature deposition, temperatures over 600 C led to decomposition of the AIGS film, desorption of In, and deterioration of its crystallinity. The most appropriate deposition temperature was 590 C and a solar cell with a power conversion efficiency of 4.1% was obtained. High-temperature annealing of the AIGS thin films showed improved crystallinity as annealing temperature was increased and film decomposition and In desorption were prevented. A solar cell based on this film showed the highest conversion efficiency of 6.4% when annealed at 600 C. When the annealing temperature was further increased to 610 C, the performance of the cell deteriorated due to loss of the out-of-plane Ga gradient. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Adsorption-desorption behavior of atrazine on agricultural soils in China.

    Science.gov (United States)

    Yue, Lin; Ge, ChengJun; Feng, Dan; Yu, Huamei; Deng, Hui; Fu, Bomin

    2017-07-01

    Adsorption and desorption are important processes that affect atrazine transport, transformation, and bioavailability in soils. In this study, the adsorption-desorption characteristics of atrazine in three soils (laterite, paddy soil and alluvial soil) were evaluated using the batch equilibrium method. The results showed that the kinetics of atrazine in soils was completed in two steps: a "fast" adsorption and a "slow" adsorption and could be well described by pseudo-second-order model. In addition, the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models. It was found that the adsorption data on laterite, and paddy soil were better fitted by the Freundlich model; as for alluvial soil, the Langmuir model described it better. The maximum atrazine sorption capacities ranked as follows: paddy soil>alluvial soil>laterite. Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic. The desorption data showed that negative hysteresis occurred. Furthermore, lower solution pH value was conducive to the adsorption of atrazine in soils. The atrazine adsorption in these three tested soils was controlled by physical adsorption, including partition and surface adsorption. At lower equilibrium concentration, the atrazine adsorption process in soils was dominated by surface adsorption; while with the increase of equilibrium concentration, partition was predominant. Copyright © 2016. Published by Elsevier B.V.

  10. Sorption and desorption of 17α-ethinylestradiol onto sediments affected by rhamnolipidic biosurfactants.

    Science.gov (United States)

    Guo, Yan-Ping; Hu, Yong-You; Lin, Hui; Ou, Xue-Lian

    2018-02-15

    Many studies have addressed the desorption and mobilization performances of sorbed contaminants affected by different rhamnolipidic biosurfactants. Study results have been mixed and complicated. Rhamnolipids are always microbial produced with variable homologues. In this study, two representative rhamnolipidic fractions (i.e., RL-F1 and RL-F2, which are mono- and di-rhamnolipids, respectively) were investigated and compared to determine their influence on 17α-ethynylestradiol (EE2) distribution within sediment-water sorption and desorption systems. In general, the coexistence of RL-F1 and EE2 enhanced EE2 sorption in a wider monorhamnolipidic dosage range when freshly treated sorbate was used. The sorbed EE2 concentration decreased as the RL-F1 dosage increased in the aged sorbate desorption systems. However, RL-F2 facilitated EE2 mobilization in both sorption and desorption processes. Experimental data were estimated using a conceptual model that considered the sorbed rhamnolipids and aqueous micelles for organic partitioning. The model results indicated that the rhamnolipid type is an important factor influencing organic distribution, in addition to sorbate aging process and sediment characteristics. The use of a rhamnolipidic mixture containing both mono- and di-rhamnosyl components may not achieve the desired effect when the biosurfactant-enhanced mobilization or immobilization approach is selected. These results are significant for selecting and applying rhamnolipids to remediate contaminants. Copyright © 2017. Published by Elsevier B.V.

  11. Research program of the high temperature engineering test reactor for upgrading the HTGR technology

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Tachibana, Yukio; Takeda, Takeshi; Saikusa, Akio; Sawa, Kazuhiro

    1997-07-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium-cooled reactor with an outlet power of 30 MW and outlet coolant temperature of 950degC, and its first criticality will be attained at the end of 1997. In the HTTR, researches establishing and upgrading the technology basis necessary for an HTGR and innovative basic researches for a high temperature engineering will be conducted. A research program of the HTTR for upgrading the technology basis for the HTGR was determined considering realization of future generation commercial HTGRs. This paper describes a research program of the HTTR. (author)

  12. Theoretical evidence of the observed kinetic order dependence on temperature during the N(2)O decomposition over Fe-ZSM-5.

    Science.gov (United States)

    Guesmi, Hazar; Berthomieu, Dorothee; Bromley, Bryan; Coq, Bernard; Kiwi-Minsker, Lioubov

    2010-03-28

    The characterization of Fe/ZSM5 zeolite materials, the nature of Fe-sites active in N(2)O direct decomposition, as well as the rate limiting step are still a matter of debate. The mechanism of N(2)O decomposition on the binuclear oxo-hydroxo bridged extraframework iron core site [Fe(II)(mu-O)(mu-OH)Fe(II)](+) inside the ZSM-5 zeolite has been studied by combining theoretical and experimental approaches. The overall calculated path of N(2)O decomposition involves the oxidation of binuclear Fe(II) core sites by N(2)O (atomic alpha-oxygen formation) and the recombination of two surface alpha-oxygen atoms leading to the formation of molecular oxygen. Rate parameters computed using standard statistical mechanics and transition state theory reveal that elementary catalytic steps involved into N(2)O decomposition are strongly dependent on the temperature. This theoretical result was compared to the experimentally observed steady state kinetics of the N(2)O decomposition and temperature-programmed desorption (TPD) experiments. A switch of the reaction order with respect to N(2)O pressure from zero to one occurs at around 800 K suggesting a change of the rate determining step from the alpha-oxygen recombination to alpha-oxygen formation. The TPD results on the molecular oxygen desorption confirmed the mechanism proposed.

  13. Study of boric acid sorption and desorption processes

    International Nuclear Information System (INIS)

    Czosnowska, B.; Laren, E.

    1978-01-01

    The results are given of the experimental determination of the effect on the boric acid flow and sorption and desorption efficiency of the flow rate of boric acid at different concentrations through an ion exchange column 10.2 cm 2 in cross section. The strongly alkaline VOFATIT RO ion exchanger was used. (B.S.)

  14. Controlling the surface density of DNA on gold by electrically induced desorption.

    Science.gov (United States)

    Arinaga, Kenji; Rant, Ulrich; Knezević, Jelena; Pringsheim, Erika; Tornow, Marc; Fujita, Shozo; Abstreiter, Gerhard; Yokoyama, Naoki

    2007-10-31

    We report on a method to control the packing density of sulfur-bound oligonucleotide layers on metal electrodes by electrical means. In a first step, a dense nucleic acid layer is deposited by self-assembly from solution; in a second step, defined fractions of DNA molecules are released from the surface by applying a series of negative voltage cycles. Systematic investigations of the influence of the applied electrode potentials and oligonucleotide length allow us to identify a sharp desorption onset at -0.65 V versus Ag/AgCl, which is independent of the DNA length. Moreover, our results clearly show the pronounced influence of competitive adsorbents in solution on the desorption behavior, which can prevent the re-adsorption of released DNA molecules, thereby enhancing the desorption efficiency. The method is fully bio-compatible and can be employed to improve the functionality of DNA layers. This is demonstrated in hybridization experiments revealing almost perfect yields for electrically "diluted" DNA layers. The proposed control method is extremely beneficial to the field of DNA-based sensors.

  15. Adsorption/Desorption Transition of Recombinant Human Neurotrophin 4: Physicochemical Characterization.

    Science.gov (United States)

    Dąbkowska, Maria; Adamczak, Małgorzata; Barbasz, Jakub; Cieśla, Michał; Machaliński, Bogusław

    2017-09-26

    Bulk physicochemical properties of neurotrophin 4 (NT-4) in electrolyte solutions and its adsorption/desorption on/from mica surfaces have been studied using dynamic light scattering (DLS), microelectrophoresis, a solution depletion technique (enzyme-linked immunosorbent assay, ELISA), and AFM imaging. Our study presents a determination of the diffusion coefficient, hydrodynamic diameters, electrophoretic mobility, and isoelectric point of the NT-4 under various ionic strength and pH conditions. The size of the NT-4 homodimer for an ionic strength of 0.015 M was substantially independent of pH and equal to 5.1 nm. It has been found that the number of electrokinetic charges per NT-4 molecule was equal to zero for all studied ionic strengths at pH 8.1, which was identified as the isoelectric point (iep). The protein adsorption/desorption on/from mica surfaces was examined as a function of ionic strength and pH. The kinetics of neurotrophin adsorption/desorption were evaluated at pH 3.5, 7.4, and 11 by direct AFM imaging and the ELISA technique. A monotonic increase in the maximum coverage of adsorbed NT-4 molecules with ionic strength (up to 5.5 mg/m 2 ) was observed at pH 3.5. These results were interpreted in terms of the theoretical model postulating an irreversible adsorption of the protein governed by the random sequential adsorption (RSA). Our measurements revealed a significant role of ionic strength, pH, and electrolyte composition in the lateral electrostatic interactions among differently charged NT-4 molecules. The transition between adsorption/desorption processes is found for the region of high pH and low surface concentration of adsorbed neurotrophin molecules at constant ionic strength. Additionally, results presented in this work show that the adsorption behavior of neurotrophin molecules may be governed by intrasolvent electrostatic interactions yielding an aggregation process. Understanding polyvalent neurotrophin interactions may have an impact on

  16. Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Jensen, Pernille Erland

    2009-01-01

    Desorption of Cu, Cr, Pb, and Zn from industrially polluted soils as a result of acidification is in focus. The eight soils of the investigation vary greatly in composition and heavy metal concentration/combination. Three soils had elevated concentrations of Cu, Pb, and Zn; regardless of pollution...... level, pollution origin, and soil type, the order for desorption as pH decreased was Zn > Cu > Pb. Turning to a single heavy metal in different soils, there was a huge difference in the pH at which the major desorption started. The variation was most significant for Pb where, e.g., less than 10......% was desorbed at pH 2.5 from one soil, whereas in another soil 60% Pb was desorbed at this pH. Sequential extraction was made and the soils in which a high percentage of Pb was found in the residual phase (adsorbed strongest) was also the soils where less Pb was desorbed at low pH in the desorption experiments...

  17. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  18. Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system.

    Science.gov (United States)

    Wang, Peng; Keller, Arturo A

    2008-05-01

    Although nonionic surfactants have been considered in surfactant-aided soil washing systems, there is little information on the particle-size dependence of these processes, and this may have significant implications for the design of these systems. In this study, Triton-100 (TX) was selected to study its effect on the sorption and desorption of two pesticides (Atrazine and Diuron) from different primary soil size fractions (clay, silt, and sand fractions) under equilibrium sorption and sequential desorption. Soil properties, TX sorption, and pesticide sorption and desorption all exhibited significant particle-size dependence. The cation exchange capacity (CEC) of the bulk soils and the soil fractions determined TX sorption capacity, which in turn determined the desorption efficiency. Desorption of pesticide out of the clay raction is the limiting factor in a surfactant-aided washing system. The solubilization efficiency of the individual surfactant micelles decreased as the amount of surfactant added to the systems increased. Thus, instead of attempting to wash the bulk soil, a better strategy might be to either (1) use only the amount of surfactant that is sufficient to clean the coarse fraction, then separate the fine fraction, and dispose or treat it separately, or (2) to separate the coarse fractions mechanically and then treatthe coarse and fine fractions separately. These results may be applicable to many other hydrophobic organic compounds such as polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) strongly sorbed onto soils and sediments.

  19. Influence of pre-treatments on the desorption isotherm ...

    African Journals Online (AJOL)

    Influence of pre-treatments on the desorption isotherm characteristics of plaintain. P-N T Johnson. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/gjs.v39i1.15851 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for ...

  20. Laser desorption and time-of-flight mass spectrometry. Fundamentals .Applications; Desorption laser et spectrometrie de masse par temps de vol. Aspects fondamentaux. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chaurand, P

    1994-11-01

    Time-of-flight mass spectrometry is a very powerful technique for the analysis of heavy molecular ions (100 000 u and more). The ejection in the gas phase and the ionization of these molecules is now possible through the MALDI technique (Matrix Assisted Laser Desorption Ionization). This technique consists in mixing the heavy molecules to be analysed with a organic matrix which absorbs at the wavelength of the laser. The necessary irradiance are of the order of 10{sup 6} W/cm{sup 2}. In these conditions we have shown that the mass resolutions are optimum and that the relative mass accuracies are of the order of 10{sup -4}. We have also demonstrated that the emission angle of the molecular ions in MALDI depends on the incident angle of the laser light. During the desorption process, the molecular ions are emitted in the opposite direction of the incident laser light. This effect is particularly important for the design of the accelerating stage of the time-of-flight spectrometers. Problems relative to the detection of these heavy molecular ions have been studied in details between 0.5 10{sup 4} m/s and 10{sup 5} m/s. The velocity threshold of the electronic emission is lower than the value of 0.5 10{sup 4} m/s. The relation between the electronic emission and the projectile velocity is complex. Finally, examples on mass identification of C{sub 60} molecules and derivated C{sub 60} are presented. Desorption methods are compared. (author). 32 refs., 34 figs.

  1. Ti and Si doping as a way to increase low temperature activity of sulfated Ag/Al2O3 in H2-assisted NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Doronkin, Dmitry E.; Fogel, Sebastian; Gabrielsson, Pär

    2013-01-01

    Ag/Al2O3 catalysts modified by Si, Ti, Mg and W were studied to obtain higher NOx SCR activity and potentially also higher SO2 resistance than the pure silver-based catalyst for automotive applications. Addition of Ti or Si to the alumina support leads to a better NOx removal at low temperature i......-TPR) and temperature-programmed desorption of ammonia (NH3-TPD). The obtained results suggest a better silver dispersion and better regeneration capability in the case of Ti- and Si-modified Ag/Al2O3 catalysts........e. reduces the SCR onset temperature by about 10°C under the applied conditions. However, it does not increase the SO2 resistance. The catalysts and the supports have been characterized by BET, conventional and synchrotron XRD, X-ray absorption spectroscopy during temperature-programmed reduction (XAS......Ag/Al2O3 catalysts modified by Si, Ti, Mg and W were studied to obtain higher NOx SCR activity and potentially also higher SO2 resistance than the pure silver-based catalyst for automotive applications. Addition of Ti or Si to the alumina support leads to a better NOx removal at low temperature i...

  2. Weak interactions between water and clathrate-forming gases at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  3. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    Science.gov (United States)

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  4. Interlaboratory determinations of isotopically enriched metals by field desorption mass spectroscopy

    International Nuclear Information System (INIS)

    Bahr, U.; Schulten, H.R.; Achenbach, C.; Ziskoven, R.

    1982-01-01

    The isotopic distribution of stable isotopes in six enriched metals (calcium, copper, barium, rubidium, strontium and thallium) has been determined by field desorption mass spectrometry. A first evaluation of the interlaboratory reproducibility of the application of this method for trace determination of metals was made using three different types of mass spectrometers in three different laboratories. The standard deviations for the most abundant isotopes of the metals investigated are between +-0.1 and +-0.5%. Within these standard deviations, the values obtained by the three mass spectrometry groups are the same. To support the accuracy of our quantification, thermal ionization mass spectrometry has been employed and confirms the results of the field desorption method. (orig.) [de

  5. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis.

    Science.gov (United States)

    Deng, Liping; Su, Yingying; Su, Hua; Wang, Xinting; Zhu, Xiaobin

    2007-05-08

    Biosorption is an effective method to remove heavy metals from wastewater. In this work, adsorption features of Cladophora fascicularis were investigated as a function of time, initial pH, initial Pb(II) concentrations, temperature and co-existing ions. Kinetics and equilibria were obtained from batch experiments. The biosorption kinetics followed the pseudo-second order model. Adsorption equilibria were well described by the Langmuir and Freundlich isotherm models. The maximum adsorption capacity was 198.5 mg/g at 298K and pH 5.0. The adsorption processes were endothermic and the biosorption heat was 29.6 kJ/mol. Desorption experiments indicated that 0.01 mol/L Na(2)EDTA was an efficient desorbent for the recovery of Pb(II) from biomass. IR spectrum analysis suggested amido or hydroxy, CO and C-O could combine intensively with Pb(II).

  6. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  7. Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation

    Directory of Open Access Journals (Sweden)

    Blejchař Tomáš

    2016-06-01

    Full Text Available The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoride targets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR or extreme ultraviolet (XUV lasers for the pulsed ablation and thin film deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoride targets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code taking into account laser heating and surface evaporation of the lithium fluoride target occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave model.

  8. Development of a program for evaluating the temperature of SMART-P fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Jin Sik; Lee, Byung Ho; Koo, Yang Hyun; Oh, Je Yong; Yim, Jeong Sik; Sohn, Dong Seong

    2003-11-01

    A code for evaluating the temperature of SMART-P fuel rod has been developed. Finite Element (FE) method is adopted for the developed code sharing the user subroutines which has been prepared for the ABAQUS commercial FE code. The developed program for SMART-P fuel rod corresponds to a nonlinear transient heat transfer problem, and uses a sparse matrix solver for FE equations during iterations at every time step. The verifications of the developed program were conducted using the ABAQUS code. Steady state and transient problems were analyzed for 1/8 rod model due to the symmetry of the fuel rod and full model. From the evaluation of temperature for the 1/8 rod model at steady state, maximal error of 0.18 % was present relative to the ABAQUS result. Analysis for the transient problem using the fuel rod model resulted in the same as the variation of centerline temperature from the ABAQUS code during a hypothetical power transient. Also, given a power depression in fuel meat as a function of burnup, its effect on the centerline temperature was more precisely evaluated by the developed program compared to the ABAQUS code. The distribution of heat flux for the entire cross section and surface was almost identical for the two codes.

  9. Adsorption and desorption of 14C-chlorsulfuron in soils

    International Nuclear Information System (INIS)

    Chen Zuyi; Cheng Wei; Mi Chunyun

    1995-01-01

    The adsorption and desorption of the 4 concentrations of 14 C-chlorsulfuron in 10 soils were studied. As a result the soils had weak adsorptions of chlorsulfuron and the adsorptions varied with different type of soils tested. Adsorption rate of paddy soil (infant red earth) from Hunan and latosol red earth from Hainan was 3%∼4%; Yellow-brown earth from Nanjing and red earth from Jiangxi was 6%∼9%; black soil from Jilin, paddy soil (infant red earth) from Jiangxi and red earth from Anhui was 10%∼14%; Albic bleached soil from Jilin and yellow fluvo-aquatic soil from Jiangsu was 19%∼23%. pH value had an influence on the adsorption and organic matter had not obvious influence on the adsorption. Chlorsulfuron absorbed in soil could be desorbed through water. The relation between the adsorption and desorption was negative. The weak adsorption in soil shows that chlorsulfuron is active movable and diffusible and likely to pollute the ecological environment

  10. Electron stimulated desorption study of oxygen adsorption on tungsten

    International Nuclear Information System (INIS)

    Prince, R.H.; Floyd, G.R.

    1978-01-01

    The adsorption of oxygen on a polycrystalline tungsten surface at approximately 800 K has been studied by means of electron stimulated desorption (ESD). Although precision gas dosing was not employed, the initial sticking probability for dissociative adsorption appears to be essentially unity, while the variation with coverage suggests that a high degree of order exists and that precursor state kinetics are significant. A most noticeable and reproducible discontinuity in ESD parameters occurs at a fractional coverage theta approximately 0.8 (exposure approximately 1.4 X 10 15 molecules/cm 2 incident) which is interpreted as an order-disorder transition within a single (β 1 ) chemisorption state, and results in an increase in the ionic desorption cross-section by a factor of approximately 1.26. A discussion of the adsorption kinetics and the disorder transition is given in terms of current models of dissociative adsoption which include the effects of nearest neighbour lateral interactions. (Auth.)

  11. Microwave-Enhanced Thermal Desorption of Polyhalogenated Biphenyls from Contaminated Soil

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, P.; Kaštánek, František; Hájek, Milan

    2010-01-01

    Roč. 136, č. 3 (2010), s. 295-300 ISSN 0733-9372 Institutional research plan: CEZ:AV0Z40720504 Keywords : microwave * experiments * desorption Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.117, year: 2010

  12. The desorption of ammonia and carbon dioxide from multicomponent solutions: I. Model description and development

    Directory of Open Access Journals (Sweden)

    Jotanović Milovan B.

    2002-01-01

    Full Text Available A mathematical model of the desorption process based on the synthesised technological topology of the regeneration process gas components NH3 and CO2, was developed. The logical principle methodology of the mathematical modelling of desorption processes was worked out in detail. The mathematical model of the process, including the following: - The synthesized technological scheme of the desorption of components NH3 and CO2, with all the necessary requirements and limitations of the mathematical model; - The relevant multicomponent systems which exist in the process were defined in which the interphase transformation occurs; - The considered units (aparatus are defined which make up the basic technological topology of the process; - Desorption processes in towers with different types of trays were defined and mathematically described; - The cooling process and condensation of gas phase in a complex multicomponent system was of the gas phase in a complex multicomponent system was defined and mathematically described. Many variants of the process were analyzed by using developed model with the aim of determining the relevant functional dependences between some basic parameters of the process. They will be published in the second part of this study.

  13. General purpose nonlinear analysis program FINAS for elevated temperature design of FBR components

    International Nuclear Information System (INIS)

    Iwata, K.; Atsumo, H.; Kano, T.; Takeda, H.

    1982-01-01

    This paper presents currently available capabilities of a general purpose finite element nonlinear analysis program FINAS (FBR Inelastic Structural Analysis System) which has been developed at Power Reactor and Nuclear Fuel Development Corporation (PNC) since 1976 to support structural design of fast breeder reactor (FBR) components in Japan. This program is capable of treating inelastic responses of arbitrary complex structures subjected to static and dynamic load histories. Various types of finite element covering rods, beams, pipes, axisymmetric, two and three dimensional solids, plates and shells, are implemented in the program. The thermal elastic-plastic creep analysis is possible for each element type, with primary emphasis on the application to FBR components subjected to sustained or cyclic loads at elevated temperature. The program permits large deformation, buckling, fracture mechanics, and dynamic analyses for some of the element types and provides a number of options for automatic mesh generation and computer graphics. Some examples including elevated temperature effects are shown to demonstrate the accuracy and the efficiency of the program

  14. Development of detailed analysis program for high-temperature crack growth evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yukio; Nakayama, Yasunari [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    2001-04-01

    Evaluation of crack growth as well as crack initiation is necessary to make realistic evaluation of structural integrity and life management of high-temperature plant components. Domain integral formulae for three kinds of nonlinear fracture mechanics parameters, i.e. J-integral, fatigue J-integral range and creep J-integral were derived for two-dimensional, three-dimensional and axi-symmetrical structures. Furthermore, methods for applying them to finite element results were derived and a computer program was developed for the general-purpose finite element program, MARC. The program was applied to various problems and its effectiveness was demonstrated. (author)

  15. Multiyear Program Plan for the High Temperature Materials Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  16. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    Science.gov (United States)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  17. Impact of equilibrating time on phosphate adsorption and desorption behaviour in some selected saline sodic soils

    International Nuclear Information System (INIS)

    Khan, Q.U.; HAN; Khan, M.J.; Rehman, S.; Khan, S.U.

    2012-01-01

    To investigate the effect of equilibrating time on phosphate adsorption and desorption on saline sodic soils a study was carried using three soil series from Dera Ismail Khan (Pakistan) district, namely Zindani, Tikken and Gishkori. These soils are alkaline calcareous in nature with greater Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) values which classify them as saline sodic soils. The equilibrating time for the adsorption study was 8, 12, 16, 20, 24, 48 and 72 hours for two levels (5 mg L/sup -1/ and 100 mg L/sup -1/). For desorption study 1, 2, 3, 4 and 5 hours after 24 hours for low and high dilution. Adsorption and desorption isotherms of phosphate were developed for these soils. The Gishkori soil showed the greatest rate of adsorption as compared with the other two soils. Applying Langmuir and Freundlich models to P adsorption data revealed that Freundlich equation (R2 = 0.99) showed a better fit over the Langmuir equation (R2 =0. 97) in the three soils. The desorption curves varied similarly from each other. The amount of P adsorbed was different from that released back to the soil solution. The amount of adsorption increased with the time. Statistical analysis showed that the rate of adsorption for both 5 and 100 mg P L/sup -1/ was significantly different at P<0.05 at 16 and 20 hours and at P<0.01 beyond 20 hours. However, the rate of desorption was not significantly influenced by the equilibrating time as compared with the theoretical values of the three series. As the P - desorption curve did not coincide the P - adsorption curve, hence the availability of P to plant was adversely affected on its application. (author)

  18. Thermal desorption and bombardment-induced release of deuterium implanted into stainless steels at low energy

    International Nuclear Information System (INIS)

    Farrell, G.; Donnelly, S.E.

    1978-01-01

    Thermal desorption spectra have been obtained for low energy (15-750 eV) deuterons implanted into types 321 and 304 stainless steel, to total fluences in the range 10 13 - 10 17 deuterons/cm 2 . In each case the spectra show a peak at about 350 K, but in the 321 steel there is a second peak in the region of 900 K, the population and peak temperature of which increase with energy. Activation energies of 0.99 and 2.39 eV and a rate constant of 7 x 10 15 /s have been derived for the peaks and it is thought that the first peak corresponds to release from sites close to the surface, while the second peak may be related to trapping at impurities such as Ti. Measurements have also been made of the release of deuterium resulting from post-implantation bombardment with hydrogen ions. It is found that depletion of the first peak in the 321 steel is the result of gas sputtering, but depletion of the second peak is the result of the formation of HD during desorption, while depletion of the peak in the 304 stainless steel also results from HD formation even though this peak is the same as the first peak in the 321 steel. Estimates have also been made of the deuterium self-sputtering cross section at various energies, which show a monotonic decrease as energy increases. (Auth.)

  19. Review of Heavy-ion Induced Desorption Studies for Particle Accelerators

    CERN Document Server

    Mahner, E

    2008-01-01

    During high-intensity heavy-ion operation of several particle accelerators worldwide, large dynamic pressure rises of orders of magnitude were caused by lost beam ions that impacted under grazing angle onto the vacuum chamber walls. This ion-induced desorption, observed, for example, at CERN, GSI, and BNL, can seriously limit the ion intensity, luminosity, and beam lifetime of the accelerator. For the heavyion program at CERN's Large Hadron Collider collisions between beams of fully stripped lead (208Pb82+) ions with a beam energy of 2.76 TeV/u and a nominal luminosity of 10**27 cm**-2 s**-1 are foreseen. The GSI future project FAIR (Facility for Antiproton and Ion Research) aims at a beam intensity of 10**12 uranium (238U28+) ions per second to be extracted from the synchrotron SIS18. Over the past years an experimental effort has been made to study the observed dynamic vacuum degradations, which are important to understand and overcome for present and future particle accelerators. The paper reviews the resu...

  20. Desorption dynamics of deuterium molecules from the Si(100)-(3x1) dideuteride surface.

    Science.gov (United States)

    Niida, T; Tsurumaki, H; Namiki, A

    2006-01-14

    We measured polar angle (theta)-resolved time-of-flight spectra of D2 molecules desorbing from the Si(100)-(3x1) dideuteride surface. The desorbing D2 molecules exhibit a considerable translational heating with mean desorption kinetic energies of approximately 0.25 eV, which is mostly independent of the desorption angles for 0 degreesdynamics of deuterium was discussed along the principle of detailed balance to predict their adsorption dynamics onto the monohydride Si surface.

  1. Mechanisms of desorption of 134Cs and 85Sr aerosols deposited on urban surfaces

    International Nuclear Information System (INIS)

    Real, J.; Persin, F.; Camarasa-Claret, C.

    2002-01-01

    The radioactive isotopes of cesium and strontium may be deposited on urban surfaces in the case of an accidental atmospheric discharge from a nuclear facility and thus imply a health hazard. In order to handle the decontamination of these surfaces, we have carried out experiments under controlled conditions on tiles and concrete and we have studied the physical and chemical mechanisms at the solid-liquid interface. The deposition of radionuclides was carried out in the form of aerosols indicating an accidental source term. Their desorption by rainwater is low in all cases, of the order of 5-6% for cesium for any material and 29 and 12% for strontium on tile and concrete, respectively. The low desorption values of cesium may be explained by the strong bonding that occurs with the silicates constituting the tile due to virtually irreversible processes of exchange of ions and by the formation of insoluble complexes with the C-S-H gel of concrete. The strontium-tile bonds are weaker, while strontium precipitates with the carbonates of concrete in the form of SrCO 3 . In view of these characteristics, washing solutions with high concentrations of chloride and oxalate of ammonium chosen for their ion-exchanging and sequestering properties were tested on these surfaces. The desorption of cesium improved strongly since it reached 70% on tile and 90% on concrete after 24 h of contact, which is consistent with our knowledge of the bonds between this element and the surfaces. Strontium, given the greater complexity of physical and chemical forms that it may take is less well desorbed. The ammonium chloride improves the desorption (50% and 40%, for tile and concrete, respectively) but the oxalate, while it does not affect desorption on the tiles, decreases that on the concrete since by strongly etching the concrete, it causes the release of carbonate ions that precipitate with strontium

  2. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    Science.gov (United States)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  3. Sensor programming and concept implementation of a temperature monitoring system, using Arduino as prototyping platform

    DEFF Research Database (Denmark)

    Sbîrnă, Sebastian; Søberg, Peder Veng; Sbîrnă, Liana Simona

    2016-01-01

    The present work reports the programming paradigms that have been developed for a temperature monitoring system able to provide accurate data regarding food temperatures inside refrigerated vehicles and alert the driver accordingly, in relation to which temperature states are encountered. The men...

  4. Comparison of biomolecule desorption yields for low and high energy primary ions

    International Nuclear Information System (INIS)

    Kamensky, I.; Hakansson, P.; Sundqvist, B.; McNeal, C.J.; MacFarlane, R.

    1982-01-01

    Ion induced desorption yields of molecular ions from samples of cesium iodide, glycylglycine, ergosterol, bleomycin and a trinucleoside diphosphate have been studied using primary beams of 54 MeV 63 Cu 9+ and 3 keV 133 Cs + . Mass analysis was performed with a time-of-flight technique. Each sample was studied with the same spectrometer for both low and high energy primary ions and without opening of the vacuum chamber in between the measurements. The results show that fast heavy ions give larger yields for all samples studied and that the yield ratios for high to low energy desorption increase with the mass of the sample molecule. (orig.)

  5. Possibilities and limitations of fast temperature programming as a route towards fast GC

    NARCIS (Netherlands)

    Deursen, van M.M.; Beens, J.; Cramers, C.A.M.G.; Janssen, J.G.M.

    1999-01-01

    One possible way to speed up a gas chromatographic analysis is the application of fast temperature programming by using resistive heating techniques. With this heating technique programming rates up to 20° per second can be reached. A relative standard deviation of retention times better than 0.2%

  6. Study of desorption of methyl iodide from activated carbon impregnated by TEDA

    International Nuclear Information System (INIS)

    Yue Longqing; Luo Deli; Yue Ziyu

    2013-01-01

    The capability of iodine retention is an important parameter of solid sorbent, iodine could be desorbed from activated carbon once the parameter doesn't meet requirement. This work discussed the effects of nitrogen flow rate, dipping in water, temperature and K + on the iodine retention. The results show, the quantities of iodine released increase to 3.15 times when nitrogen flow rates increase from 0.1 m 3 /h to 1.5 m 3 /h; methyl iodine molecules are desorbed after half of an hour's dipping in water with no notable change observed thereafter to the desorption capacity at l.5 h, 2 h, 3 h, 4 h respectively; there was no release of iodine below 80 ℃; K + play a positive role for retention of iodine species; and that the quantities of methyl iodine released with 0.06 g KCl account for 56% of that without KCl. (authors)

  7. Property changes of some hydrogen storage alloys upon hydrogen absorption-desorption cycling

    International Nuclear Information System (INIS)

    Park, C.N.; Cho, S.W.; Choi, J.

    2005-01-01

    Hydrogen absorption-desorption cycling induced by pressure change in a closed system were carried out with LaNi 5 , La 0.7 Ce 0.3 Ni 4 Cu and TiFe 0.9 Ni 0.1 alloys. PC isotherms measured during the cycling showed some changes in hydrogen storage capacity, plateau pressure and hysteresis of the alloys. The half capacity life of LaNi 5 alloy can be projected as 70,000 cycles for room temperature pressure cycling. When La 0.7 Ce 0.3 Ni 4 Cu alloy was pressure cycled both of the plateau pressures were decreased significantly and continuously. TiFe 0.9 Ni 0.1 alloy showed a good resistance to cyclic degradation. Heat treatments of the degraded alloys under 1 atm of hydrogen gas recovered most of the hydrogen storage properties to the initial level even though they were degraded again more rapidly upon subsequent cycling. (orig.)

  8. Adsorption and desorption for dynamics transport of hexavalent chromium Cr(Ⅵ) in soil column

    Science.gov (United States)

    Tong, J.

    2017-12-01

    Batch experiments have been carried out to study the adsorption of heavy metals in soils, and the migration and transformation of hexavalent chromium Cr(Ⅵ) in the soil of a vegetable base were studied by dynamic adsorption and desorption soil column experiments. The aim of this study was to investigate the effect of initial concentration and pH value on the adsorption process of Cr(Ⅵ). Breakthrough curve were used to evaluate the capacity of Cr(Ⅵ) adsorption in soil columns. The results show that the higher the initial concentration, the worse the adsorption capacity of Cr(Ⅵ). The adsorption of Cr(Ⅵ) was strongly sensitive to pH value. The capacity of Cr(Ⅵ) adsorption is maximized at very low pH value. This may be due to changes in pH that cause a series of complex reactions in Cr(Ⅵ). In a strongly acidic environment, the reaction of Cr(Ⅵ) with hydrogen ions is accompanied by the formation of Cr3+, which reacts with the soil free iron-aluminum oxide to produce hydroxide in the soil. The results of the desorption experiments indicate that Cr(Ⅵ) is more likely to leach from this soil, but if the eluent is strong acid solution, the leaching process will be slow and persistent. The program CXTFIT was used to fit the breakthrough curve to estimate parameters. The results of the calculation of the dispersion coefficient (D) can be obtained by this program. The two-site model fit the breakthrough curve data of Cr(Ⅵ) well, and the parameters calculated by CXTFIT can be used to explain the behavior of Cr(Ⅵ) migration and transformation in soil columns. When pH=2, the retardation factor (R) reach at 79.71 while the value of the R is generally around 10 in other experiments. The partitioning coefficient β shows that more than half of the adsorption sites are rate-limited in this adsorption process and non-equilibrium effects the Cr(Ⅵ) transport process in this soil.

  9. Study of the influence of the temperature in the magnetic properties and in microstructure in the permanent magnets Pr-Fe-B-Nb-Co based obtained by hydrogen

    International Nuclear Information System (INIS)

    Silva, Suelanny Carvalho da

    2007-01-01

    Fine magnetic powders were produced using the hydrogenation disproportionation desorption and recombination (HDDR) process. The first stage in this work involved an investigation of the effect of the Co content and range of desorption/ recombination temperatures between 800 and 900 deg C with the purpose of optimizing the HDDR treatment for Pr 14 Fe 80 B 6 and Pr 14 Fe bal Co x B 6 Nb 0,1 (x= 0, 4, 8, 10, 12, 16) alloys. The cast alloys were annealed at 1100 deg C for 20 hours for homogenization. The processing temperature (desorption/ recombination) affected the microstructure and magnetic properties of the bonded magnets. The alloy with low cobalt content (4 at.%) required the highest reaction temperature (880 deg C) to yield anisotropic bonded magnets. The optimum temperature for alloys with 8 at.% Co and 10 at.% Co were 840 deg C and 820 deg C, respectively. Alloys with high cobalt content (12 at.% and 16 at.%) were processed at 840 deg C. The optimum desorption temperature for achieving high anisotropy for Pr 14 Fe 80 B 6 and Pr 14 Fe 79,9 B 6 Nb 0,1 was 820 deg C. The best remanence (862 mT) was achieved with the Pr 14 Fe 67,9 B 6 Co 12 Nb 0,1 magnet, processed at 840 deg C. Each alloy required an optimum reaction temperature and exhibited a particular microstructure according to the composition. The second stage of the work involved the characterization, for each temperature, of the Pr 14 Fe 80 B 6 HDDR powder processed using X-ray diffraction analysis. The samples of the HDDR material were studied by synchrotron radiation powder diffraction using the Rietveld method for cell refinement, phase quantification and crystallite sizes determination. Scanning electron microscopy has also been employed to reveal the morphology of the HDDR powder. (author)

  10. Laser-induced desorption of organic molecules from front- and back-irradiated metal foils

    International Nuclear Information System (INIS)

    Zinovev, Alexander V.; Veryovkin, Igor V.; Pellin, Michael J.

    2009-01-01

    Laser-Induced Acoustic Desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the Single Photon Ionization (SPI) method combined with time-of-flight mass-spectrometry (TOF MS), desorbed flux in LIAD was examined and compared to that from direct laser desorption (LD). Molecules of various organic dyes were used in experiments. Translational velocities of the desorbed intact molecules did not depend on the desorbing laser intensity, which implies the presence of more sophisticated mechanism of energy transfer than the direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. The results of our experiments indicate that the LIAD phenomenon cannot be described in terms of a simple mechanical shake-off nor the direct laser desorption. Rather, they suggest that multi-step energy transfer processes are involved. Possible qualitative mechanism of LIAD that are based on formation of non-equilibrium energy states in the adsorbate-substrate system are proposed and discussed.

  11. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene

    International Nuclear Information System (INIS)

    Zhang Honghua; Lin Kunde; Wang Hailong; Gan, Jay

    2010-01-01

    Biochars are anthropogenic carbonaceous sorbent and their influences on the sorption of environmental contaminants need to be characterized. Here we evaluated the effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Two biochars separately produced at 350 o C and 700 o C and three soils were tested. Biochar amendment generally enhanced the soil sorption of phenanthrene. The biochar produced at 700 o C generally showed a greater ability at enhancing a soil's sorption ability than that prepared at 350 o C. The single-step desorption measurement showed an apparent hysteresis in biochar-amended soils. After 28 d equilibration, the sorptive capacity of biochar-amended soil (with an organic carbon content of 0.16%) significantly decreased. This study clearly suggested that biochar application enhanced soil sorption of hydrophobic organic compounds, but the magnitude of enhancement depended on the preparation of biochars, the indigenous soil organic carbon levels, and the contact time between soil and biochar. - Pinus radiata derived biochars influence soil sorption and desorption of phenanthrene.

  12. Anode-supported single-chamber solid oxide fuel cell based on cobalt-free composite cathode of Nd0.5Sr0.5Fe0.8Cu0.2O3-δ-Sm0.2Ce0.8O1.9 at intermediate temperatures

    Science.gov (United States)

    Yin, Jie-Wei; Zhang, Chunming; Yin, Yi-Mei; Shi, Huangang; Lin, Ye; Lu, Jun; Ma, Zi-Feng

    2015-07-01

    As a candidate of cathode material of single-chamber solid oxide fuel cell (SC-SOFC), cobalt-free mixed ionic electronic conductor (MIEC) Nd0.5Sr0.5Fe0.8Cu0.2O3-δ (NSFCu) is synthesized by sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-complexing agents. The XRD shows NSFCu is stable after CO2 treatment and chemical compatible with SDC at high temperatures. CO2-TPD (CO2-temperature programmed desorption) demonstrates both CO2 adsorption and desorption phenomenon on NSFCu surface. However, the polarization resistances (Rp) of NSFCu and SDC (10:4 in weight) composite electrodes showed no decay in 5% CO2. Single cell using N2-O2-CH4 mixed gas (CH4 to O2 ratio = 1.5) as fuel shows maximum power density of 635 mW cm-2 at 700 °C. These results suggest that NSFCu-SDC is a promising composite cathode material for application in single-chamber solid oxide fuel cell.

  13. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno

    2013-01-01

    can be degraded at all, the desorption and biodegradation of low concentrations of 14C-labelled phenanthrene (⩽5μgL−1) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene...

  14. Competitive sorption and desorption of heavy metals by individual soil components

    International Nuclear Information System (INIS)

    Covelo, E.F.; Vega, F.A.; Andrade, M.L.

    2007-01-01

    Knowledge of sorption and desorption of heavy metals by individual soil components should be useful for modelling the behaviour of soils of arbitrary composition when contaminated by heavy metals, and for designing amendments increasing the fixation of heavy metals by soils polluted by these species. In this study the competitive sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by humified organic matter, Fe and Mn oxides, kaolinite, vermiculite and mica were investigated. Due to the homogeneity of the sorbents, between-metal competition for binding sites led to their preferences for one or another metal being much more manifest than in the case of whole soils. On the basis of k d100 values (distribution coefficients calculated in sorption-desorption experiments in which the initial sorption solution contained 100 mg L -1 of each metal), kaolinite and mica preferentially sorbed and retained chromium; vermiculite, copper and zinc; HOM, Fe oxide and Mn oxide, lead (HOM and Mn oxide also sorbed and retained considerable amounts of copper). Mica only retained sorbed chromium, Fe oxide sorbed cadmium and lead, and kaolinite did not retain sorbed copper. The sorbents retaining the greatest proportions of sorbed metals were vermiculite and Mn oxide, but the ratios of k d100 values for retention and sorption suggest that cations were least reversibly bound by Mn oxide, and most reversibly by vermiculite

  15. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Adsorption and desorption of plant growth regulator 14C-PP333 in various soils

    International Nuclear Information System (INIS)

    Yu Fengyi; Zhang Ping; Yang Xiu

    1995-01-01

    Adsorption, desorption and residue of 14 C-PP333 with 4 concentrations in various soils were studied by radioactive isotopic tracer. The results showed that the adsorption rates in 6 soils were different. The lowest adsorption rate of fluvo-aquatic soil from Shanxi was 15.22%, the highest adsorption rate of black soil from Heilongjiang was 22.53%. The relation between the C.E.C., O.M. and adsorption rate in soil was correlative. Adsorption rate in soil increased with an increase in C.E.C.. 14 C-PP3333 adsorbed in 6 soils could be desorbed by water. The desorption rate in soils was high. There is residue of 14 C-PP333 in soil desorbed by water. There was a negative relationship between the residue amount and the adsorption rate in soil. Easy desorption of PP333 adsorbed in soil showed that PP333 was movable and diffusible in soil and had influence on agro-ecosystem

  17. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    International Nuclear Information System (INIS)

    Choi, Hyeok; Lawal, Wasiu; Al-Abed, Souhail R.

    2015-01-01

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls

  18. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok, E-mail: hchoi@uta.edu [Department of Civil Engineering, The University of Texas at Arlington, 416 Yates Street, Arlington, TX 76019-0308 (United States); Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Lawal, Wasiu [Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268 (United States)

    2015-04-28

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls.

  19. Sorption-desorption of antimony species onto calcined hydrotalcite: Surface structure and control of competitive anions.

    Science.gov (United States)

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2018-02-15

    Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.

  20. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    Science.gov (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.