WorldWideScience

Sample records for talus slopes

  1. Reflection of climate changes in the structure and morphodynamics of talus slopes (the Tatra Mountains, Poland)

    Gądek, Bogdan; Grabiec, Mariusz; Kędzia, Stanisław; Rączkowska, Zofia

    2016-06-01

    Talus slopes beside glaciers are among the best objects to research on climate change. In the Tatra Mountains, the highest mountains of central Europe, no glaciers remain, only glacierets and permafrost. For that reasona complex investigation of talus slopes was conducted there in the years 2009-2010. This paper presents the results of GPR and lichenometric measurements of the talus slopes in six glacial cirques located in the High and Western Tatras. The thickness and internal structure of talus slopes were identified along with the variability and conditions of their development. Maximum thickness of the talus slopes ranges from 20 to 35 m, reaching higher values in the High Tatras. The diversity of the thickness of the talus slopes within the Tatras is mostly explained by differences in the relief conditioned by lithology. The diverse altitudinal locations of the talus slopes, and the exposure and inclinations are not reflected in the size and thickness. The thickness of the studied slopes depends primarily on the activity of the processes supplying rock material and on the size and shape of the sediment supply area. The results of the lichenometric testing together with the analysis of the long-term precipitation data imply a several hundred-year-long deterioration of the climate during the Little Ice Age, which is reflected in the increased activity of morphogenetic processes on the talus slopes across the whole massif of the Tatras. In the last 200 years, the talus slopes of the Tatras were most active in three periods: at the end of the Little Ice Age, in the 1930s and 1940s, and in the early 1970s.

  2. New insights into the ground thermal regime of talus slopes with permafrost below the timberline

    Schwindt, Daniel; Kneisel, Christof

    2013-04-01

    In the central Alps permafrost can be expected above 2400 m a.s.l., at altitudes where mean annual air temperatures are below -1° C. However, isolated permafrost occurrences are present in north-exposed talus slopes, far below the timberline, where mean annual air temperatures are positive. Driving factors are assumed to be a low income of solar radiation, a thick organic layer with high insulation capacities as well as the thermally induced chimney effect (Wakonigg, 1996). Investigated are three talus slopes with permafrost in the Swiss Alps that differ with regard to elevation level, talus material, humus characteristics and vegetation composition as well as the mean annual air temperatures. Aim is to achieve a deeper understanding of the factors determining the site-specific thermal regime, as well as the spatially limited and temporally highly variable permafrost occurrences in vegetated talus slopes. Focus is not solely on the question of why permafrost exists at these sites, but also why permafrost does not exist in the immediate surroundings. To detect the temporal variability and spatial heterogeneity of the permafrost occurrences, electrical resistivity tomography monitoring, seismic refraction tomography monitoring, and quasi-3D ERT were applied. To determine the ground thermal regime, air-, ground surface-, and humus temperatures, as well as temperatures within vents of the chimneys were recorded. Furthermore, humus characteristics (thickness, -temperature and -moisture) were mapped in permafrost-affected slope areas and in the immediate surroundings. To test the correlation between solar radiation, permafrost distribution, and humus/vegetation composition, digital elevation models were used to calculate the income of solar radiation. The areal extent of the permafrost bodies coincide precisely with slope sections where the organic layer is thickest, a consistent moss cover is present, and where temperatures at the transition between humus layer and

  3. Snow cover and ground surface temperature on a talus slope affected by mass movements. Veleta cirque, Sierra Nevada, Spain

    Tanarro, L. M.; Palacios, D.; Gómez-Ortiz, A.; Salvador-Franch, F.

    2012-04-01

    This paper analyses the thermal ground behaviour on an alpine talus slope located at the foot of the north wall of the glacial cirque on the Pico del Veleta (3398 m, 37°03'21''N, 3°21'57''W, MAAT: -0,4°C) in Sierra Nevada, SE Spain. There are frequent mass movements on this talus slope, particularly in its central section, caused by the abundant presence of fine-grained sediment and by the water from snowmelt and/or ice degradation in the ground or permafrost (Gómez et al., 2003). To determine the snowmelt pattern and ocurrence of permafrost, a continuous ground surface temperature was kept by installing 6 mini-loggers (HOBO Pendant) along the descending profile of the central talus, which is 170 m long with altitudes ranging from 3180 m at the higher end to 3085 m at the lower end. A thermal borehole was also installed at a depth of 2 m at the base of the slope on an active rock glacier. The results obtained for the period October 2008 - September 2009 show that, in contrast to alpine talus slopes (Luetschg et. al., 2004; Lambiel and Pieracci, 2008), the upper part of the slope is characterized by mean annual ground surface temperatures (MAGST) lower than at the base of the talus, possibly due to the effect of the shadow of the cirque wall. The MAGST oscillate between 0.592°C at the station near the slope apex (S2) and 1.836°C at the station near the base (S5). In winter-spring, when the talus slope is covered with snow, the GST are stabilized at all stations between mid-October and early November. The minimum GST, which express the BTS conditions, oscillate between 0.232 and 0.01°C, depending on the month, with lowest values recorded during the month of April. Only one station (S3, mid-slope) recorded negative values (max. value : - 0.549°C in December and - 0.211 in April ). In summer, the snow disappears fairly quickly between mid- and late July on the intermediate stretch of the talus slope (S3, S4, S6), where the majority of the flows detected occur

  4. Paediatric talus fracture.

    Byrne, Ann-Maria

    2012-01-01

    Paediatric talus fractures are rare injuries resulting from axial loading of the talus against the anterior tibia with the foot in dorsiflexion. Skeletally immature bone is less brittle, with higher elastic resistance than adult bone, thus the paediatric talus can sustain higher forces before fractures occur. However, displaced paediatric talus fractures and those associated with high-energy trauma have been associated with complications including avascular necrosis, arthrosis, delayed union, neurapraxia and the need for revision surgery. The authors present the rare case of a talar neck fracture in a skeletally immature young girl, initially missed on radiological review. However, clinical suspicion on the part of the emergency physician, repeat examination and further radiographic imaging revealed this rare paediatric injury.

  5. Symmetry analysis of talus bone

    Islam, K.; Dobbe, A.; Komeili, A.; Duke, K; EL-RICH,M; Dhillon, S.; Adeeb, S.; Jomha, N. M.

    2014-01-01

    Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric sh...

  6. [Talus necrosis and its treatment].

    Trauth, J; Bläsius, K

    1988-08-01

    Aetiopathogenesis of the necrosis of the talus has not yet been definitely clarified, and neither has that of the other aseptic necroses. We were able to study the aetiopathogenesis, course of the disease and therapy in 20 of our own patients by follow-up; two of these developed necrosis of the talus in both feet. We definitely excluded patients suffering from osteochondrosis dissecans. Even though fracture of the talus is on the whole relatively rare, it remains the most frequent cause of necrosis of the talus. We also found talonecrosis after surgical correction of clubfoot, after Sudeck's disease (Sudeck-Leriche syndrome, Sudeck's atrophy or dystrophy), suppurative arthritis of the ankle joint, subtalar luxation and haematogenic osteomyelitis. Only few patients required surgery. In most cases a special boot constructed for arthrodesis patients proved sufficient. Each patient developed arthrodesis to a different degree. Depending upon the complaints and stiffening of the ankle joint or of the talo-calcanonavicular joint, the capacity of the patients to be gainfully employed was reduced by an amount between 20 and 30 per cent. PMID:2905578

  7. Epidemiological study on talus fractures

    Marcos Hideyo Sakaki

    2014-08-01

    Full Text Available Objective:To analyze the characteristics of patients with talus fractures and the injuries that they present.Methods:Retrospective analysis on patients hospitalized in the Institute of Orthopedics and Traumatology, Hospital das Clínicas, School of Medicine of the University of São Paulo, between 2006 and 2011, with talus fractures. Patient profile parameters, risk factors, fracture characteristics, treatment data and acute complications were analyzed.Results:Analysis on 23 cases showed that men were more affected than women, with a ratio of 4.8:1. The most frequent trauma mechanism was traffic accidents, followed by falls from a height. The most frequent type of fracture was at the neck of the talus, with 17 cases. Among the 23 cases, seven had peritalar dislocation at the time of presentation, four had exposed fractures and 11 presented other associated fractures. The mean length of time between the trauma and the definitive treatment was six days, while the mean length of hospital stay was 11 days. Three patients presented acute postoperative complications.Conclusion:Talus fractures occurred most commonly in the region of the talar neck and most frequently in young males who suffered high-energy trauma. In almost half of the cases, there were other associated fractures. The length of hospital stay was 11 days.

  8. Analysis of the slope stability of the Afsin - Elbistan lignite open cast mine (Turkey); Analyse de la stabilite des talus de la mine de lignite d`Afsin - Elbistan (Turquie)

    Kilic, A.M.

    1996-09-27

    The aim of this work was to analyse the slope stability of the Afsin - Elbistan lignite open cast mine (Turkey) taking into account the geological, geotechnical, hydrogeological and seismic factors. The analyses showed the importance to the stability of the following parameters: lithology, bedding structure, hydrogeology, geometrical configuration of the walls and the seismicity. Stability calculations enabled the comparison of several approaches (static and pseudo - static) and calculation methods (Bishop, Carter and Sarma). Finally, this study enabled the proposition of several solutions to achieve wall stability, which need further economic to find the optimal solution. (author) 48 refs.

  9. Multidisciplinary investigations on coupled rockwall-talus-systems (Turtmann valley, Swiss Alps)

    Messenzehl, Karoline; Draebing, Daniel

    2015-04-01

    Talus slopes covering the base of steep, unstable rockwalls are characteristic periglacial landforms and major sediment storages in mountain systems. In the Turtmann valley (Swiss Alps), rockfall deposits account for 1/8 of the debris volume stored in the hanging valleys. To evaluate the spatio-temporal efficiency of rockfalls for long-term talus evolution, geophysical measurements on rockwalls and talus slopes are increasingly applied during the last decades. However, the correct interpretation of the geophysical data is still a difficult task due to the landforms' specific material properties. Moreover, no comprehensive geophysical study exists investigating the coupled rockwall-talus-system. Here, we studied two rockwalls and corresponding talus slopes in a tributary of the Turtmann valley. The active rockfall source areas dominate on rockwalls, for which a high permafrost probability was modelled (Nyenhuis et al. 2005). Rockwalls were selected based on their contrasting lithology, activity degree and valley location. By combining geophysical, geotechnical and geomorphological methods, we investigated (i) the rockwalls' mechanical characteristics as well as (ii) the material properties of the talus slopes in order to (iii) gain a further process understanding of the coupled rockwall-talus system. (i) At the rockwalls, Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) were applied along 40-50m transects with an electrode/geophone spacing of 1-1.25m. In addition, detailed geotechnical surveys of the rock mass and its discontinuity properties were performed. The combined results reveal that high resistivity (>10'000kΩm) and high p-wave velocities (>3'000m/s) correlate with dried bedrock consisting of amphibolites with large joint spacing (52cm) and long persistences (> 220cm). In contrast, the small joint spacing (17cm) and short persistences (permafrost. (ii) At the rockwalls' corresponding talus slopes, ERT and SRT were performed

  10. Congenital Vertical Talus: Etiology and Management.

    Miller, Mark; Dobbs, Matthew B

    2015-10-01

    Congenital vertical talus is a rare foot deformity. If left untreated, it causes significant disability, including pain and functional limitations. Although the etiology of vertical talus is likely heterogeneous, recent evidence strongly supports a genetic cause linking it to genes expressed during early limb development. Traditional management for vertical talus involves extensive surgeries that are associated with significant short- and long-term complications. A minimally invasive approach that relies on serial manipulation and casting to achieve most of the correction has been shown to produce excellent short-term results with regard to clinical and radiographic correction in both isolated and nonisolated cases of vertical talus. Although long-term studies are needed, achieving correction without extensive surgery may lead to more flexible and functional feet, much as Ponseti method has done for clubfeet. PMID:26337950

  11. Talus avulsion fractures: are they accurately diagnosed?

    Robinson, Karen P; Davies, Mark B

    2015-10-01

    Dorsal talus avulsion fractures occurring along the supination line of the foot can cause pain and discomfort. Examination of the foot and ankle using the Ottawa ankle rules does not include examination of the talus, an injury here is easily missed causing concern to the patient. This is a retrospective study carried out in a major trauma centre to look at the assessment and diagnosis of all patients with a dorsal talus and navicular avulsion fractures over a one year period. Nineteen patients with an isolated dorsal talus avulsion fracture and five patients with an isolated dorsal navicular fracture were included. The correct diagnosis was made in 12 of patients with isolated dorsal talus avulsion fractures, 7 patients were given an incorrect diagnosis after misreading of the radiograph. Four patients with a dorsal navicular avulsion fracture were given the correct diagnosis. If not correctly diagnosed on presentation patients can be overly concerned that a 'fracture was missed' which can lead to confusion and anxiety. Therefore these injuries need to be recognised early, promptly diagnosed, treated symptomatically and reassurance given. We recommend the routine palpation of the talus in addition to the examination set out in the Ottawa Ankle Rules and the close inspection of plain radiographs to adequately diagnose an injury in this area. PMID:26190632

  12. A Case Report: Ipsilateral Closed Talus Dislocation and Navicular Fracture

    Tolga Atay

    2014-02-01

    Full Text Available Dislocation of the subtalar joint dislocations are rare. Three joint axes associated with that (which, tibiotalar, subtalar and talonavicular talus bone dislocation totally high-energy trauma or sports competitions outcome occurs, and this trauma as a result of complications of neurovascular injury, the talus capsular structure damage, skin necrosis and ligament damage may occur. Result of late term complications are avascular necrosis and degenerative arthritis. Talus fractures often are associated with one of the malleolus fracture or dislocation of the talus. Isolated talus dislocations without malleolus and talus fractures are usually occurs in open wounds. In this case, closed talus dislocation and ipsilateral navicular bone of foot fracture are observed as a result of the high energy trauma without malleolar fractures or fracture of the talus. Closed Talus dislocations are rare in the literature and has very less informations.

  13. Lopsakalt rahvuslik mood Pulga talus / Tanel Veenre

    Veenre, Tanel, 1977-

    2009-01-01

    Eesti Moekunstnike Ühenduse näitus "Lillemotiiv moevormil" Eesti Vabaõhumuuseumi Pulga talus. Osalevad Anne Metsis, Anneliis Vabul, Diana Denissova, Monika Kisand, Juta Piirlaid, Anu Hint ja moekunsti õppejõud Yumiko Okazaki Jaapanist. Eksponeeritud rõivamudelid on kaunistatud rahvuslikest tikanditest inspireeritud stiliseeritud kujunditega

  14. [Open total dislocation of the talus].

    Grabski, R S; Sosiński, R

    1992-01-01

    A case of 35 years old patient with open, total, fixed dislocation of the talus reduced with heel traction is presented. The Sudeck syndrome subsided after one year. Weight bearing was not allowed for 7 months. An examination after 2.5 years revealed minor osteoarthritis, full range of movement in the foot but limited walking capability. PMID:7555299

  15. Tibiotalar arthrodesis for injuries of the talus

    Singh Jaswant

    2008-01-01

    Full Text Available Background: Fracture-dislocation of the talus is one of the most severe injuries of the ankle. Opinion varies widely as to the proper treatment of this injury. Since Blair′s original description of the tibiotalar fusion in 1943, there is little mention in the literature of his method. The present study reports the results of tibiotalar arthrodesis with modification in Blair′s technique. Materials and Methods: Eleven cases of modified Blair ′ s tibiotalar arthrodesis were retrospectively studied. The average age was 32.4 years (range, 26-51 years. Six patients had posttraumatic avascular necrosis; five had neglected fracture-dislocation of the talus. Results: The mean followup is 8 years (range 3-12 years. Tibiotalar fusion was achieved in all the ankles at an average of 20.5 weeks (range 16-28 weeks. Nine cases having 15°-20° tibiopedal motion had excellent results and two ankles having 10°-15° of tibiopedal motion had good result. Conclusion: We achieved good long term results with tibiotalar arthrodesis with modification in Blair technique. The principal modification in the present study is retention of the talar body while performing arthrodesis with anterior sliding graft. The retention of the talar body provides intraoperative stability and in the long term, the retained talar body shares the load transmitted to the anterior and middle subtalar joints thus resulting in improved hind foot function and gait.

  16. Ephemeral skin-flows on talus affected by permafrost degradation (Corral del Veleta, Spain)

    Tanarro, L. M.; Palacios, D.; Zamorano, J. J.; Gómez, A.

    2009-04-01

    (gelifraction) and hillslope dynamics (rockfall activity) which affect the headwall (Gómez et al., 2003) and is formed mainly by various talus cones which are irregular in shape and stepped as the accumulated debris covers the remains of the stepped structural shelves which were not destroyed by the glacial erosion. Although the talus debris is basically made up of blocks, it is important to point out the abundant presence of fine material, produced by the weathering of the micaschist. (Castillo and Fedeli, 2002; Gómez et al., 2003). Field work carried out over the last ten years (1998-2008) has allowed observation of the triggering and formation in some years of various skin flows in different sectors of the talus, especially in the late summer of 2002 when four skin flows occurred. Within this timeframe monitoring and analysis of this kind of skin flow has been carried out. On the one hand, the description of the morphology, morphometry and sedimentology of each flow has been completed with the production of detailed geomorphological mapping and from sedimentological analysis. The geomorphological mapping has, in turn, allowed the observation of the geomorphological evolution of the flows from the time they occurred. On the other hand, a study has been made of the variables or factors which seem a priori to control the triggering of the skin flow landslips: the snow melt and the presence of permafrost in the detrital talus. The former has been monitored through photographic control of the snow cover at the end of the summer season, so that for each date analyzed a map was obtained of the snow cover, superimposing in turn the location of the skin flows at that date. A GIS processing of the different snow covers has also allowed a map to be produced with the areas of maximum summer snow cover, which was compared with the sites of the skin flow landslips. The existence of permafrost and its presence in the detrital slope has been detected through the monitoring of the ground

  17. Mixed approach (numerical modeling / equilibrium analysis) for slope stability analysis: development and application to the dams and open pit mining; Une approche mixte (numerique/equilibre limite) pour le calcul de stabilite des ouvrages en terre: developpement et application aux barrages et talus miniers

    Kourdey, A.

    2002-09-15

    The determination of the sliding surface of slope (dam, slope natural..) is one of the important and complicated problems in geotechnics. The Analyze of stability by the methods of Limit Equilibrium like the method of slices are the most used methods. They are able to determine a safety factor for a geometrically defined failure surface. These methods well adapted to the homogeneous mediums, have been developed a lot but they do not integrate the basic relations of mechanics (stress-strain). The numerical methods are better adapted to mediums having more complexity (effect of water, seismicity, fracturing,..). But, they are seldom used to determine a sliding surface and a safety factor. Each family offers appreciable advantages in the analysis of slope stability. For that purpose, we have developed a method that combines the advantages of the numerical methods as well as those of Limit Equilibrium allowing obtaining a slip surface determined by the calculated constraints. This slip surface may be imposed or better optimized, thus providing a minimal safety factor. Methods of operation research are used to obtain this surface. They are search methods by level, dynamic research.. or both at the same time. We integrated these developments in an existing computer code based on the method of Finite Differences known as FLAC. The stresses are determined for a linear behavior and for nonlinear. Interfaces and graphic tools are also produced to facilitate the analysis of stability. The validity of this approach was carried out for a standard case of slope, we analyzed and compared the results with the methods of Limit Equilibrium. The parametric study shows that this approach takes account of different parameters, which influences stability. We also kept a particular place for the application on real cases presenting slopes of different nature (dams, mining slops,...). (author)

  18. Congenital vertical talus: Treatment by reverse ponseti technique

    Bhaskar Atul

    2008-01-01

    Full Text Available Background: The surgery for idiopathic congenital vertical talus (CVT can lead to stiffness, wound complications and under or over correction. There are sporadic literature on costing with mixed results. We describe our early experience of reverse ponseti technique. Materials and methods: Four cases (four feet of idiopathic congenital vertical talus (CVT which presented one month after birth were treated by serial manipulation and casting, tendoachilles tenotomy and percutaneous pinning of talonavicular joint. An average of 5.2 (range - four to six plaster cast applications were required to correct the forefoot deformity. Once the talus and navicular were aligned based on the radiographic talus-first metatarsal axis, percutaneous fixation of the talo-navicular joint with a Kirschner wire, and percutaneous tendoachilles tenotomy under anesthesia was performed following which a cast was applied with the foot in slight dorsiflexion. Results: The mean follow-up period for the four cases was 8.5 months (6-12 months. At the end of the treatment all feet were supple and plantigrade but still using ankle foot orthosis (AFO. The mean talocalcaneal angle was 70 degrees before treatment and this reduced to 31 degrees after casting. The mean talar axis first metatasal base angle (TAMBA angle was 60° before casting and this improved to 10.5°. Conclusion: Although our follow-up period is small, we would recommend early casting for idiopathic CVT along the same lines as the Ponseti technique for clubfoot except that the forces applied are in reverse direction. This early casting method can prevent extensive surgery in the future, however, a close vigil is required to detect any early relapse.

  19. Retrograde osteochondral grafting for osteochondral lesion of the talus: a new technique eliminating malleolar osteotomy

    Kilicoglu, Onder; Taser, Omer

    2004-01-01

    Osteochondral grafting is one of the most effective treatment options for osteochondral lesions of the talus. However, the necessity for a medial malleolar osteotomy is the major drawback of the technique. This report presents a case treated with retrograde osteochondral grafting that eliminated the need for a medial malleolar osteotomy. An osteochondral lesion of the medial talus was detected in a 49-year-old woman. Under arthroscopic guidance, the talus was entered from the sinus tarsi regi...

  20. Can paleorefugia of cold-adapted species in talus slopes resist global warming?

    Růžička, Vlastimil; Zacharda, M.; Šmilauer, P.; Kučera, T.

    2015-01-01

    Roč. 20, č. 3 (2015), s. 403-412. ISSN 1239-6095 Grant ostatní: GA JU(CZ) 04-142/2010/P Institutional support: RVO:60077344 Keywords : global warming Subject RIV: EH - Ecology, Behaviour Impact factor: 1.481, year: 2014 http://www.borenv.net/BER/pdfs/ber20/ber20-403.pdf

  1. Slope filtrations

    André, Yves

    2008-01-01

    Many slope filtrations occur in algebraic geometry, asymptotic analysis, ramification theory, p-adic theories, geometry of numbers... These functorial filtrations, which are indexed by rational (or sometimes real) numbers, have a lot of common properties. We propose a unified abstract treatment of slope filtrations, and survey how new ties between different domains have been woven by dint of deep correspondences between different concrete slope filtrations.

  2. CT for diagnosing fractures of the undersurface of the talus and mechanism of injury

    Talus fractures whose fracture lines extend to the subtalar joint, except fractures of the neck and the body of the talus, are defined as fractures of the lower portion of the talus. It is difficult to make a correctly diagnosis of inferior fractures of the talus by plain radiography or tomography alone. The author encountered 12 cases of inferior fractures of the talus between 1989 and 1997, and CT imaging in 2 directions, in the horizontal and frontal plane, was useful in making the diagnosis. The correct diagnosis rate was 100%, and differentiation of the site and extent of the fractures was possible. Based on the CT findings, the fractures were classified into 8 types (fractures of the lateral process of the talus, fractures of the medial tubercle, fractures of the posterior process, and combinations of the above, and comminuted fractures). The mechanism of the injuries was also investigated, and the fractures of the lateral process of the talus seemed to have been caused by excessive eversion force on the ankle joint, with the lateral process becoming trapped between the fibula and the calcaneus. Medial tubercle fractures also seemed to be caused by forcible inversion of the ankle, with the tip of the medial malleous impacting and the medial tubercle being trapped between it and the sustentaculum tali. The comminuted fractures seem to have been caused by axial compression added to various of external forces. (K.H.)

  3. CT for diagnosing fractures of the undersurface of the talus and mechanism of injury

    Okamoto, Hideaki; Shibata, Yoshimori; Nishi, Genzaburo; Tago, Kyoji; Tsuchiya, Daiji; Chiba, Takehiro; Okumura, Hisashi [Aichiken Koseiren Kainan Hospital, Yatomi (Japan); Ikeda, Takeshi; Wada, Ikuo

    2000-02-01

    Talus fractures whose fracture lines extend to the subtalar joint, except fractures of the neck and the body of the talus, are defined as fractures of the lower portion of the talus. It is difficult to make a correctly diagnosis of inferior fractures of the talus by plain radiography or tomography alone. The author encountered 12 cases of inferior fractures of the talus between 1989 and 1997, and CT imaging in 2 directions, in the horizontal and frontal plane, was useful in making the diagnosis. The correct diagnosis rate was 100%, and differentiation of the site and extent of the fractures was possible. Based on the CT findings, the fractures were classified into 8 types (fractures of the lateral process of the talus, fractures of the medial tubercle, fractures of the posterior process, and combinations of the above, and comminuted fractures). The mechanism of the injuries was also investigated, and the fractures of the lateral process of the talus seemed to have been caused by excessive eversion force on the ankle joint, with the lateral process becoming trapped between the fibula and the calcaneus. Medial tubercle fractures also seemed to be caused by forcible inversion of the ankle, with the tip of the medial malleous impacting and the medial tubercle being trapped between it and the sustentaculum tali. The comminuted fractures seem to have been caused by axial compression added to various of external forces. (K.H.)

  4. HYBRID ANKLE PROSTHESIS IN A CASE OF POST-TRAUMATIC AVASCULAR NECROSIS OF THE TALUS

    de Sousa, Ricardo Jorge Gomes; Pinto, Ricardo Pedro Ferreira Rodrigues; de Oliveira Massada, Marta Maria Teixeira; Pereira, Manuel Alexandre Negrais Pinho Gonçalves; Geada, José Muras; Costa, Isabel Maria Gonçalves

    2015-01-01

    Talus fractures often lead to late post-traumatic arthrosis. In such cases, the use of latest generation, cementless prostheses has been hindered by the presence of avascular necrosis. We report the case of a 65-year-old patient who presented four years after a talus neck fracture. He had painful ankle arthrosis (AOFAS ankle-hindfoot score 19) and avascular necrosis, with collapse of the entire talar dome. Given the extent of the necrosis, it was decided to cement the talus prosthetic compone...

  5. Reconstruction of focal cartilage defects in the talus with miniarthrotomy and collagen matrix

    Walther, M.; Altenberger, S; Kriegelstein, S; Volkering, C; Röser, A.

    2014-01-01

    Surgical principal and objective Treatment of focal cartilage defects (traumatic or osteochondrosis dissecans) of the talus using a collagen matrix. The goal is to stabilize the superclot formed after microfracturing to accommodate cartilage repair. The procedure can be carried out via miniarthrotomy, without medial malleolus osteotomy. Indications International Cartilage Repair Society (ICRS) grade III and IV focal cartilage defects of the talus > 1.5 cm2. Contraindications Generalized osteo...

  6. Parrotfish erosion underpins reef growth, sand talus development and island building in the Maldives

    Morgan, Kyle M.; Kench, Paul S.

    2016-07-01

    Parrotfish play a key functional role on coral reefs as external bioerosion agents and produce large quantities of carbonate sediment as a by-product of grazing on reef surfaces. Parrotfish are therefore an important potential source of sediment for island construction and maintenance within atoll reef environments, particularly under future scenarios of sea level rise and island morphological change. Here, we present the first field-based estimates of excavating parrotfish erosion (Chlorurus sordidus and Chlorurus strongylocephalus) within the Indian Ocean and quantify the contribution of parrotfish to the carbonate and sediment budgets of an atoll interior reef platform in the Maldives. We note that parrotfish erosion rates are high (6.3 kg m- 2 y- 1), generating large amounts of new coral-based sediment (2.6 kg m- 2 y- 1) that has a comparable grain size distribution to island deposits. Mean erosion rates by individual C. strongylocephalus (405 kg individual y- 1) were higher than C. sordidus (55 kg individual y- 1), but their contribution to erosion per unit area of reef was less due to a lower relative biomass (C. strongylocephalus: 1.3 kg m- 2 y- 1; C. sordidus: 5.0 kg m- 2 y- 1). Parrotfish also facilitate sediment export from reefs (0.7 kg m- 2 y- 1), which contributes extensively to the development of the sand talus on the fore-reef slope and to the evolution of the wider atoll basin. Our results provide strong evidence that parrotfish erosion (and sediment generation) underpins island morphology on Maldivian reefs and highlight the importance of larger parrotfish as producers of island-grade sediment. Ecological processes must therefore be considered within future coastal management strategies for enhancing island stability.

  7. Congenital vertical talus in four generations of the same family

    This paper presents four generations of a family with radiographically demonstrated congenital vertical talus (CVT) in whom a HOXD10 gene mutation was identified. Some members of the family with this mutation exhibited cavo-varus foot deformity consistent with a Charcot-Marie-Tooth (CMT)-like disorder. Physical examination was performed on nearly all of the affected and unaffected family members. DNA was extracted from blood obtained from 14 subjects who showed radiographic and clinical features of CVT (two of whom also had CMT), from two subjects with features of CMT but not CVT, and from 20 related family members who were clinically normal. Radiographs show the appearance of uncorrected CVT in infancy, in childhood, and in adulthood. DNA analysis revealed a mutation in a HOXD10gene located on chromosome 2 in all of the affected but none of the unaffected family members. There is an autosomal-dominant-inherited mutation with complete penetrance which is found in all members of a pedigree with CVT, some of whom exhibit a CMT-like foot disorder. Radiologic findings vary depending on the severity of involvement, treatment provided and age of the patient. (orig.)

  8. Impact of land-use change on soil degradation by establishment of terraces with subtropical orchards in sloping areas (Granada, SE Spain)

    In the coast of Granada, an intensive irrigated agriculture based on subtropical crops has been established. These trees have been planted in highly sloped areas, by the construction of terraces. In this fragile Mediterranean agroecosystem, the removal of native spontaneous vegetation cover and substitution by orchards, increase the susceptibility to soil degradation and eventually brings up the destruction of these structures by rainfall events. To study this net change, we monitored the soil loss and runoff over a two-year period in the taluses of terraces with a mature mango (Mangifera indica L.) orchard. The studied treatments were bare soil (BS) and spontaneous vegetation (NSV), each twice replicated. The erosion plots were 4 m x 4 m in area and were located in the taluses of orchard in the taluses of orchard terraces (65 degree centigrade slope). The average annual soil loss by erosion for BS and NSV was 2.5 and 0.3 Mg ha-1 yr-1, and for runoff 34.1 and 6.8 mm yr-1, respectively. Therefore, soil erosion and runoff from BS plot were 8- and 5-times higher than in NSV, showing the importance of plant covers in the taluses of terraces in reducing this impact. Thus, the removal of plant cover from the taluses under these conditions, represent a high risk of slump and collapse, causing serious environmental and economic problems for farmers of subtropical crops. (Author) 11 refs.

  9. Finite Element Analysis of Foot and Ankle Impact Injury: Risk Evaluation of Calcaneus and Talus Fracture

    Duo Wai-Chi Wong; Wenxin Niu; Yan Wang; Ming Zhang

    2016-01-01

    Introduction Foot and ankle impact injury is common in geriatric trauma and often leads to fracture of rearfoot, including calcaneus and talus. The objective of this study was to assess the influence of foot impact on the risk of calcaneus and talus fracture via finite element analysis. Methods A three-dimensional finite element model of foot and ankle was constructed based on magnetic resonance images of a female aged 28. The foot sustained a 7-kg passive impact through a foot plate. The sim...

  10. Fracture of the lateral process of the talus: appearance at MR imaging and clinical significance

    The case of a 59-year-old man with chronic lateral ankle pain following an inversion injury is presented. MR imaging performed to evaluate for soft tissue injury revealed an unsuspected fracture of the lateral process of the talus. The patient underwent surgical exploration of the fracture with debridement of adjacent loose bodies and is currently undergoing aggressive physical rehabilitation. (orig.)

  11. Fracture of the lateral process of the talus: computed tomographic scan diagnosis.

    Noble, J; Royle, S G

    1992-01-01

    Fracture of the lateral process of the talus is rare but can be mistaken for a simple ankle sprain. A case with normal conventional radiographs is presented to draw attention to this diagnosis in the resistant ankle sprain, and to highlight some of the problems that may be encountered with treatment.

  12. Finite Element Analysis of Foot and Ankle Impact Injury: Risk Evaluation of Calcaneus and Talus Fracture.

    Duo Wai-Chi Wong

    Full Text Available Foot and ankle impact injury is common in geriatric trauma and often leads to fracture of rearfoot, including calcaneus and talus. The objective of this study was to assess the influence of foot impact on the risk of calcaneus and talus fracture via finite element analysis.A three-dimensional finite element model of foot and ankle was constructed based on magnetic resonance images of a female aged 28. The foot sustained a 7-kg passive impact through a foot plate. The simulated impact velocities were from 2.0 to 7.0 m/s with 1.0 m/s interval.At 5.0 m/s impact velocity, the maximum von Mises stress of the trabecular calcaneus and talus were 3.21MPa and 2.41MPa respectively, while that of the Tresca stress were 3.46MPa and 2.55MPa. About 94% and 84% of the trabecular calcaneus and talus exceeded the shear yielding stress, while 21.7% and 18.3% yielded the compressive stress. The peak stresses were distributed around the talocalcaneal articulation and the calcaneal tuberosity inferiorly, which corresponded to the common fracture sites.The prediction in this study showed that axial compressive impact at 5.0 m/s could produce considerable yielding of trabecular bone in both calcaneus and talus, dominantly by shear and compounded with compression that predispose the rearfoot in the risk of fracture. This study suggested the injury pattern and fracture mode of high energy trauma that provides insights in injury prevention and fracture management.

  13. ElevationSlope_SLOPE2M

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington County 2012 2.0m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  14. Arthroscopic treatment for osteochondral lesions of the talus: analysis of outcome predictors

    GUO Qin-wei; HU Yue-lin; JIAO Chen; YU Chang-long; AO Ying-fang

    2010-01-01

    Background Compared with traditional arthrotomy procedures, arthroscopic treatment for osteochondral lesions of the talus has some advantages. However, there has been considerable debate about the outcome predictors for this surgical technique. This study aimed to investigate the outcomes of arthroscopic treatment for osteochondral lesions of the talus, and analyze its outcome predictors.Methods Clinical data of 48 patients with osteochondral lesions of the talus who underwent ankle arthroscopy were studied. Arthroscopic debridement was performed on all patients, and microfracture was also performed in 36 cases. Scores on a subjective satisfaction questionnaire, visual analog scale (VAS) for pain, and the American Orthopedic Foot & Ankle Society (AOFAS) ankle and hindfoot scores were obtained before and after surgery.Results Five patients lost to follow up. The other forty-three patients, 8 of whom were athletes, were followed up for an average of 23.9 months. The average AOFAS post-operative score was 90.16±9.96, compared with 70.81±6.96 before surgery (t=9.353, P <0.001). The VAS pain score after the operation (2.51±9.45) was significantly lower than that before the operation (6.95±1.40) (t=8.647, P<0.001). Of the 43 patients, 35 (81.4%) had good or excellent results. There was no significant difference in outcome between the medial and lateral groups (z=0.205, P=0.838), while a better outcome was found with lesions smaller than 10 mm than those with larger lesions (z=2.199, P=0.028). Age, sex, athletic profession and location of the lesion did not significantly correlate with outcomes.Conclusions Arthroscopic treatment is effective and safe for osteochondral lesions of the talus. A strong correlation was found between the size of the lesion and successful outcome.

  15. A Review of Arthroscopic Bone Marrow Stimulation Techniques of the Talus

    Murawski, Christopher D.; Foo, Li Foong; Kennedy, John G

    2010-01-01

    Osteochondral lesions of the talus are common injuries following acute and chronic ankle sprains. Numerous surgical treatment strategies have been employed for treating these lesions; arthroscopic bone marrow stimulation is recognized as the first-line technique to provide fibrocartilage infill of the defect site. While the short- and medium-term outcomes of this technique are good, the long-term outcomes are not yet known. An increasing number of studies, however, show a cause for concern in...

  16. Fracture of the lateral process of the talus: appearance at MR imaging and clinical significance

    Sanders, T.G.; Morrison, W.B. [Department of Radiology, Wilford Hall United States Air Force Medical Center, Lackland AFB, TX (United States); Ptaszek, A.J. [Department of Orthopaedic Surgery, Foot and Ankle Service, Wilford Hall United States Air Force Medical Center, Lackland AFB, Texas (United States)

    1999-04-01

    The case of a 59-year-old man with chronic lateral ankle pain following an inversion injury is presented. MR imaging performed to evaluate for soft tissue injury revealed an unsuspected fracture of the lateral process of the talus. The patient underwent surgical exploration of the fracture with debridement of adjacent loose bodies and is currently undergoing aggressive physical rehabilitation. (orig.) With 3 figs., 21 refs.

  17. Assessment of talus deformity by three-dimensional MRI in congenital clubfoot

    Purpose: To evaluate the morphological deformity of talus in congenital clubfoot by three-dimensional MRI. Material and method: Subjects were five patients (two male, three female, mean age 5 months) with unilateral congenital clubfoot. Magnetic resonance imaging was performed of both feet using 1.5 T magnet. Based on the resulting magnetic resonance imaging volume data, a three-dimensional surface bone model was reconstructed by the Marching Cubes method. The long axis of the reconstructed model was determined, and in relation to the standard planes including this axis, the degree of talar head and neck deviation, and the relative positioning of the talus and navicular in the talonavicular joint were compared between normal foot and clubfoot. Result: The talar head and neck angle in relation to the talus exhibited significant medial deviation in the clubfoot, but the degree of plantar deviation of the talar head and neck did not show significance. The navicular was located more medially in clubfoot than in normal foot. The volume of the total talar and of the ossific nucleus for the clubfoot was smaller than that for the normal foot. Conclusion: The assessment technique presented herein was shown to be useful in ascertaining the various pathological characteristics associated with clubfoot

  18. Assessment of talus deformity by three-dimensional MRI in congenital clubfoot

    Itohara, T. E-mail: tomonobu@ort.med.osaka-u.ac.jp; Sugamoto, K.; Shimizu, N.; Ohno, I.; Tanaka, H.; Nakajima, Y.; Sato, Y.; Yoshikawa, H

    2005-01-01

    Purpose: To evaluate the morphological deformity of talus in congenital clubfoot by three-dimensional MRI. Material and method: Subjects were five patients (two male, three female, mean age 5 months) with unilateral congenital clubfoot. Magnetic resonance imaging was performed of both feet using 1.5 T magnet. Based on the resulting magnetic resonance imaging volume data, a three-dimensional surface bone model was reconstructed by the Marching Cubes method. The long axis of the reconstructed model was determined, and in relation to the standard planes including this axis, the degree of talar head and neck deviation, and the relative positioning of the talus and navicular in the talonavicular joint were compared between normal foot and clubfoot. Result: The talar head and neck angle in relation to the talus exhibited significant medial deviation in the clubfoot, but the degree of plantar deviation of the talar head and neck did not show significance. The navicular was located more medially in clubfoot than in normal foot. The volume of the total talar and of the ossific nucleus for the clubfoot was smaller than that for the normal foot. Conclusion: The assessment technique presented herein was shown to be useful in ascertaining the various pathological characteristics associated with clubfoot.

  19. Neglected lateral process of talus fracture presenting as a loose body in tarsal canal

    Kamal Bali; Sharad Prabhakar; Nitesh Gahlot; Mandeep S Dhillon

    2011-01-01

    Lateral process fractures of talus are rare injuries with a potential to cause significant morbidity if rnisdiagnosed.The appropriate management of these fractures is still controversial and only a few reports are available on this subject.We presented a case of a 37-year-old male with neglected fracture on the lateral process of talus which was misdiagnosed at the time of injury.The patient presented to 7 months after misdiagnosis with a chronic ankle pain.Our case is unique in the sense that it is a rare case of neglected fracture on the lateral process of talus which presented as a loose body in sinus tarsi.However,a surgery with an excision of the loose body presented a satisfactory outcome along with 2 years' follow-up.To our knowledge,it ought to be the first case reported in the English literature.Through this case report,we highlight the importance of high index of suspicion for such rare bony injuries while evaluating trauma to the lateral side of ankle and discuss the principles of management of these fractures.

  20. Fracture of the lateral process of the talus: a report of two cases.

    Lunebourg, Alexandre; Zermatten, Philippe

    2014-01-01

    Fracture of the lateral process of the talus is a rare lesion commonly described in snowboarding injuries. Nevertheless, several conditions can lead to this injury, which is often misdiagnosed as a severe ankle sprain because of the difficulty in detecting it on standard radiographic views. Computed tomography is very helpful for the assessment of this injury. The type of treatment will depend on the size and degree of the displacement of the fracture. This injury can also lead to subtalar joint osteoarthritis. We report 2 cases of fracture of the lateral process of the talus. In the first case, a young male sustained a combined inversion and dorsiflexion strain of his right foot when he fell from a ladder. In the second case, a woman broke the lateral process of her right talus by the same mechanism when she was sledding. In the 2 situations, we opted for an open reduction and internal fixation using 2.4-mm cannulated screws. Both patients were allowed walking with partial weightbearing with a walker boot (VACOped(®)) for 6 weeks. At 1 year, both showed a consolidated fracture and had regained their preinjury level of activity. PMID:24618244

  1. A comparative study of the trabecular bony architecture of the talus in humans, non-human primates, and Australopithecus.

    DeSilva, Jeremy M; Devlin, Maureen J

    2012-09-01

    This study tested the hypothesis that talar trabecular microarchitecture reflects the loading patterns in the primate ankle joint, to determine whether talar trabecular morphology might be useful for inferring locomotor behavior in fossil hominins. Trabecular microarchitecture was quantified in the anteromedial, anterolateral, posteromedial, and posterolateral quadrants of the talar body in humans and non-human primates using micro-computed tomography. Trabecular bone parameters, including bone volume fraction, trabecular number and thickness, and degree of anisotropy differed between primates, but not in a manner entirely consistent with hypotheses derived from locomotor kinematics. Humans have highly organized trabecular struts across the entirety of the talus, consistent with the compressive loads incurred during bipedal walking. Chimpanzees possess a high bone volume fraction, consisting of plate-like trabecular struts. Orangutan tali are filled with a high number of thin, connected trabeculae, particularly in the anterior portion of the talus. Gorillas and baboons have strikingly similar internal architecture of the talus. Intraspecific analyses revealed no regional differences in trabecular architecture unique to bipedal humans. Of the 22 statistically significant regional differences in the human talus, all can also be found in other primates. Trabecular thickness, number, spacing, and connectivity density had the same regional relationship in the talus of humans, chimpanzees, gorillas, and baboons, suggesting a deeply conserved architecture in the primate talus. Australopithecus tali are human-like in most respects, differing most notably in having more oriented struts in the posteromedial quadrant of the body compared with the posterolateral quadrant. Though this result could mean that australopiths loaded their ankles in a unique manner during bipedal gait, the regional variation in degree of anisotropy was similar in humans, chimpanzees, and gorillas

  2. Lichenometry and Cosmogenic Surface Exposure Dating of Possible Fossil Talus Deposits, Devil's Lake State Park, Wisconsin

    Knochenhauer, K. J.; Weber, J. C.

    2011-12-01

    Lichenometry and cosmogenic surface exposure dating have been highly successful in deciphering landform evolution in tectonically active regions, but have not been widely applied in mid-continent settings. We propose to test the idea that many of the talus deposits in Devil's Lake State Park (DLSP) are ancient, fossil, periglacial deposits that have been frozen in space and time not moving since ~18,000 years ago. Our results may provide valuable information that could be applied to other settings and may also offer information on the effects of 2nd order climatic events such as the Little Ice Age of the 16th-19th centuries, and also help determine the relation between the last glacial maximum about 18ky ago and its related timing to major mass sediment movements. Our preliminary data was collected methodologically offering tight, unimodal peaks of lichen diameters/ages for Aspicilia cinerea and Dimelaena oreina most consistent with the idea that the deposits have not moved since the last ice age. A growth curve for Dimelaena oreina was established through the use of a neighboring cemetery giving a local growth rate of 67.13mm/100yr with R=68. Size-distribution results for DLSP peaked at only 65.2mm. This suggests that current talus block lichen cover is not a record of the first generation. We will pair our lichenometric results with the future use of 10Be cosmogenic surface exposure dating to determine the ages of the 3 major talus deposits themselves (as opposed to lichen initialization ages) which should allow us to test our initial hypothesis, enhance our lichenometry data set, and begin to develop a more robust sampling strategy for further work. Deciphering the landform evolution of this area would offer insight to past landslides and mass debris flows.

  3. Dysplasia Epiphysealis Hemimelica (Trevor Syndrome of Talus in a 21-Year Old Woman; Case Report

    Amir R Sdeghifar

    2014-03-01

    Full Text Available Dysplasia epiphysealis hemimelica is a rare nonhereditary epiphyseal disease that mimics synovial chondromatosis and osteochondroma of the joints. The disease mainly involves long bones of the lower extremities and tarsal bones. Herein we report 21-year old woman who presented with pain and limited range of ankle motion, who underwent surgical excision of talus exostosis after preoperative imaging and careful planning. after that she was discharged and her problem improved and she have no problem in three year follow up .pathologic examination of specimen confirm the diagnosis.

  4. Groundwater flow and storage within an alpine meadow-talus complex

    A. F. McClymont

    2010-06-01

    Full Text Available The different types of geological deposits and rock formations found in alpine watersheds play key roles in regulating the rate and timing of runoff to mountain rivers. Talus and alpine meadows are dominant features in these areas, but scant data exist for their capacity to store and transmit groundwater. To gain further understanding of these processes, we have undertaken a combined geophysical and hydrological study of a small (2100 m2 alpine meadow and surrounding talus within the Lake O'Hara watershed in the Canadian Rockies. Several intersecting ground-penetrating radar (GPR and electrical resistivity tomography (ERT profiles and a seismic refraction profile were acquired to map the thickness of the talus and to image the topography of the bedrock basin that underlies the meadow. From analysis of the GPR and seismic profiles, we estimate that the talus deposits are relatively thin (<6 m. Combined interpretations from the GPR and ERT data show that the fine-grained sediment comprising the meadow basin has a total volume of ca. 3300 m3 and has a maximum thickness of ca. 4 m. Annual snow surveys and stream gauging reveal that the total input volume of snowmelt and rainfall to the meadow basin is several times larger than its groundwater storage capacity, giving rise to low total-dissolved species concentrations (14–21 mg/L within the meadow groundwater. Observations from four piezometers established on the meadow show that the water table fluctuates rapidly in response to spring snowmelt and precipitation events but otherwise maintains a relatively stable depth of 0.3–0.4 m below the meadow surface during summer months. A slug test performed on one of the piezometers indicated that the saturated hydraulic conductivity of the shallow meadow sediments is 2.5×10−7 m/s. We suggest that a bedrock saddle imaged underneath the southern end of the meadow forms a natural constriction to subsurface flow out of the

  5. Recurrent parosteal osteosarcoma of the talus in a 2-year-old child

    Parosteal osteosarcoma is an uncommon, low-grade malignant bone tumor and is found in an older age group than conventional osteosarcoma. We present a talar parosteal osteosarcoma that recurred twice in a 2-year-old child. To our knowledge, this is the youngest patient reported with a parosteal osteosarcoma. The talus is an unusual site for parosteal osteosarcoma. Inadequate resection due to a diagnosis of juxtacortical chondroma resulted in recurrence of the tumor. The age of the patient, the thick cartilaginous cap, and well-differentiated trabecular bone all contributed to the critical erroneous diagnosis. (orig.)

  6. Groundwater flow and storage within an alpine meadow-talus complex

    A. F. McClymont

    2010-02-01

    Full Text Available The different types of geological deposits and rock formations found in alpine watersheds play key roles in regulating the rate and timing of runoff to mountain rivers. Talus and alpine meadows are dominant features in these areas, but scant data exist for their capacity to store and transmit groundwater. To gain further understanding of these processes, we have undertaken a combined geophysical and hydrological study of a small (2100 m2 alpine meadow and surrounding talus within the Lake O'Hara watershed in the Canadian Rockies. Several intersecting ground-penetrating radar (GPR and electrical resistivity tomography (ERT profiles and a seismic refraction profile were acquired to map the thickness of the talus and to image the topography of the bedrock basin that lies under the meadow. From analysis of the GPR and seismic profiles, we estimate that the talus deposits are relatively thin (<6 m. Combined interpretations from the GPR and ERT data show that the fine-grained sediment, that the meadow basin is comprised of, has a total volume of ca. 3300 m3 and has a maximum thickness of ca. 4 m. Annual snow surveys and stream gauging reveal that the total input volume of snowmelt and rainfall to the meadow basin is several times larger than its groundwater storage capacity, giving rise to low total-dissolved species concentrations (14–21 mg/L within the meadow groundwater. Observations from four piezometers established on the meadow show that the water table fluctuates rapidly in response to spring snowmelt and precipitation events but otherwise maintains a relatively stable depth of 0.3–0.4 m below the meadow surface during summer months. A slug test performed on one of the piezometers indicated that the saturated hydraulic conductivity of the shallow meadow sediments is 2.5×10−7 m/s. We suggest that a bedrock saddle imaged underneath the southern end of the meadow forms a natural constriction to subsurface

  7. Possible application of CT morphometry of the calcaneus and talus in forensic anthropological identification.

    Inamori-Kawamoto, Osamu; Ishikawa, Takaki; Michiue, Tomomi; Mustafa, Asmaa Mohammed Hishmat; Sogawa, Nozomi; Kanou, Tetsuya; Oritani, Shigeki; Maeda, Hitoshi

    2016-03-01

    Computed tomography (CT) data provide information for volumetric and radiographic density analysis. The present study investigated the application of virtual CT volumetry of the tarsal bones to estimation of the sex, stature, and body weight using postmortem CT (PMCT) data of forensic autopsy cases. Three-dimensional (3D) images of the bilateral foot bones of intact Japanese subjects after adolescence (age ≥ 15 years, n = 179, 100 males and 79 females) were reconstructed on an automated CT image analyzer system. Measured parameters were mass volume, mean CT value (HU), and total CT value of the talus and calcaneus. Mean CT values of these bones showed age-dependent decreases in elderly subjects over 60 years of age for both sexes, with significant sex-related differences especially in the elderly. The mass volumes and total CT values of the talus and calcaneus showed significant sex-related differences, and also moderate correlations with body height and weight for bilateral bones in all cases (r = 0.58-0.78, p forensic identification; however, greater variations should be considered in body weight estimations of females. PMID:26362306

  8. Tarsal Tunnel Syndrome Secondary to an Unreported Ossicle of the Talus: A Case Report.

    Sweed, Tamer Ahmed; Ali, Seyed Asghar; Choudhary, Surabhi

    2016-01-01

    Tarsal tunnel syndrome (TTS) is a compression neuropathy of the posterior tibial nerve in the tarsal tunnel. In about 80% of patients, a specific cause can be identified for TTS. We present a case of TTS secondary to an ossicle in close relation to the talus that, to our knowledge, has not previously been reported. A 26-year-old male presented with left ankle and foot pain that increased with activity and playing football. He had a tingling sensation and paresthesia in the sole and medial border of the foot along the distribution of the medial and lateral plantar nerves. Clinically, he had hard swelling at the floor of the tarsal tunnel, and Tinel's sign was positive. Computed tomography showed an accessory ossicle articulating with the posteromedial aspect of the talus, separating the flexor digitorum longus and flexor hallucis longus tendons, with tenosynovitis of the tibialis posterior, flexor digitorum longus and flexor hallucis longus tendons. Surgical release of the tarsal tunnel and excision of the ossicle were performed. Postoperatively, the patient showed dramatic improvement and had no complications or recurrence of symptoms after 8 months of follow-up. More interestingly, to the best of our knowledge, this ossicle has not been previously reported to cause TTS. PMID:25441278

  9. Orthopaedic surgeon’s nightmare: iatrogenic fractures of talus and medial malleolus following tibial nailing

    Meena Sanjay

    2013-08-01

    Full Text Available 【Abstract】Intramedullary interlocking nailing is the gold standard for treatment of tibial shaft fractures. The growing use of intramedullary nailing has resulted in an increased number of tibial nailing in daily clinical practice. Despite adequate surgeon experience, tibial nailing is not without complications if proper techniques are not followed. A case of iatrogenic talar neck and medial malleolus frac-tures during intramedullary nailing of tibia in a 24-year-old male is reported. It is believed to be caused by forceful hammering of insertion zig with foot dorsiflexed. To the best of our knowledge, no such case has been reported in the literature. It is possible to reduce the risk of this complica-tion by adoption of preventive measures. Key words: Tibial fracture; Talus; Fracture fixation, intramedullary

  10. RADIOGRAPHIC ABNORMALITIES OF THE TALUS IN PATIENTS WITH CLUBFOOT AFTER SURGICAL RELEASE USING THE MCKAY TECHNIQUE

    Pinto, José Antonio; Hernandes, Andréa Canizares; Buchaim, Thais Paula; Blumetti, Francesco Camara; Chertman, Carla; Yamane, Patrícia Corey; da Rocha Corrêa Fernandes, Artur

    2015-01-01

    Objective: To analyze morphological abnormalities of the talus in patients with clubfoot after surgical treatment using the McKay technique. Method: Lateral standing-position radiographs of the feet of 14 patients with unilateral clubfoot who underwent treatment by means of the doubleincision McKay technique were retrospectively analyzed. All the patients were operated by the same surgeon, with an average of 6.53 years between surgery and the radiograph. We compared the radiographic characteristics of the talus between the operated and the contralateral foot. We assessed the presence of deformity of the talar dome and head (sphericity evaluation); the talar length and height; the percentage and degree of navicular subluxation; abnormalities of the Gissane angle; and the trabecular bone pattern. Results: Abnormalities of the talar head occurred in 92.8% of the patients; of the talar dome in 92.8%; and of the trabecular pattern in 100%. The talar length ratio between the operated and the contralateral foot ranged from 0.61 to 0.88 (mean 0.79; SD = 0.09), while the height ratio ranged from 0.57 to 0.98 (mean 0.82; SD = 0.12). The Gissane angle was greater in all of the operated feet, and all of them also showed navicular subluxation, at a rate ranging from 6.43 to 59.75% (mean 26.34%; SD = 16.66%). Conclusion: Talar abnormalities occurred in 100% of the feet treated using the McKay technique. It was shown that establishing radiographic parameters to describe and quantify these deformities was feasible, through simple and easy-to-perform techniques. PMID:27047821

  11. Elastic slopes and diffraction

    It is well known that elastic hadronic slopes grow with energy and appear sizeably larger when measured very close to t=0 than at intermediate t-values. This has been confirmed by the recent anti-p p measurements at the CERN SPS-Collider. By comparing the data with a formula derived recently which gives the slope as a function of the four momentum transfer squared t and of the average multiplicity we argue that all the basic properties of hadronic slopes may be attributed to the role of multiparticle unitarity, i.e. to diffraction

  12. Snowboard, wakeboard, dashboard? Isolated fracture of the lateral process of the talus in a high-speed road traffic accident.

    Ng, Evangeline Shimei

    2013-01-01

    We present a 23-year-old man who sustained an isolated fracture of the lateral process of the talus (LPT) in a head-on vehicle collision at a combined speed of 200 km\\/h. The driver of the other vehicle sustained fatal injuries at the scene. The LPT was openly reduced and fixed with successful outcome at 3 months. This case is unusual in the method of injury, in particular in relation to the isolated relatively minor injury sustained.

  13. Closed subtalar dislocation with non-displaced fractures of talus and navicular: a case report and review of the literature

    Fotiadis, Elias; Lyrtzis, Christos; Svarnas, Theodoros; Koimtzis, Miltos; Akritopoulou, Kiriaki; Chalidis, Byron

    2009-01-01

    Closed subtalar dislocations associated with talus and navicular fractures are rare injuries. We report on a case of a 43-year-old builder man with medial subtalar dislocation that was further complicated by minimally displaced talar and navicular fractures. Successful closed reduction under general anesthesia was followed by non-weight bearing and ankle immobilization with a below-knee cast for 6 ;weeks. At 3 years post-injury, the subtalar joint was stable, the foot and ankle mobility was i...

  14. A platyrrhine talus from the early Miocene of Peru (Amazonian Madre de Dios Sub-Andean Zone).

    Marivaux, Laurent; Salas-Gismondi, Rodolfo; Tejada, Julia; Billet, Guillaume; Louterbach, Mélanie; Vink, Jochem; Bailleul, Julien; Roddaz, Martin; Antoine, Pierre-Olivier

    2012-11-01

    The earliest platyrrhines have been documented from the late Oligocene of Bolivia (Salla) and from the early and early middle Miocene of middle and high latitudes (central Chile and Argentinean Patagonia). Recent paleontological field expeditions in Peruvian Amazonia (Atalaya, Cusco; Upper Madre de Dios Basin) have led to the discovery of a new early Miocene locality termed MD-61 ('Pinturan' biochronological unit, ~18.75-16.5 Ma [millions of years ago]). Associated with the typical Pinturan dinomyid rodent Scleromys quadrangulatus, we found a well-preserved right talus of a small-bodied anthropoid primate (MUSM-2024). This new platyrrhine postcranial element displays a combination of talar features primarily found among the Cebidae, and more especially in the Cebinae. Its size approximates that of the talus of some living large marmosets or small tamarins (Cebidae, Callitrichinae). MUSM-2024 would thus document a tiny Saimiri-like cebine, with the body size of a large marmoset. Functionally, the features and proportions of MUSM-2024 indicate that this small primate was arboreal and primarily quadrupedal, agile, with frequent horizontal leaping and vertical clinging in its locomotor repertoire. This small talus is the first platyrrhine fossil to be found from Peru and the earliest primate fossil from northern South America. This new early Miocene taxon could be a stem cebid, thereby providing new evidence on the existence of some long-lived clades of modern platyrrhines. PMID:22974538

  15. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the talus: a feasibility study

    Kerimaa, Pekka; Ojala, Risto; Markkanen, Paula; Tervonen, Osmo; Blanco Sequeiros, Roberto [Oulu University Hospital, Department of Radiology, Oulu (Finland); Sinikumpu, Juha-Jaakko; Korhonen, Jussi [Oulu University Hospital, Department of Paediatric Surgery, Oulu (Finland); Hyvoenen, Pekka [Oulu University Hospital, Department of Surgery, Oulu (Finland)

    2014-07-15

    The purpose of this study was to evaluate the feasibility of MRI guidance for percutaneous retrograde drilling in the treatment of osteochondritis dissecans of the talus (OCDT). Four patients, one juvenile and three adults, with one OCDT lesion each and persisting ankle pain after conservative treatment, were treated with MRI-guided retrograde drilling. All lesions were stable and located in the middle or posterior medial third of the talar dome. Pain relief and the ability to return to normal activities were assessed during clinical follow-up. MRI and plain film radiographs were used for imaging follow-up. Technical success was 100 % with no complications and with no damage to the overlying cartilage. All patients experienced some clinical benefit, although only one had complete resolution of pain and one had a relapse leading to surgical treatment. Changes in the pathological imaging findings were mostly very slight during the follow-up period. MRI guidance seems accurate, safe and technically feasible for retrograde drilling of OCDT. Larger series are needed to reliably assess its clinical value. (orig.)

  16. Imaging of fractures of the lateral process of the talus, a frequently missed diagnosis

    Bonvin, Florent; Montet, Xavier; Copercini, Michele; Martinoli, Carlo; Bianchi, Stefano E-mail: stefano.bianchi@hcuge.ch

    2003-07-01

    Although if fractures of the lateral process of the talus (LPT) have been considered rare the widespread diffusion in snowboard practice has resulted in a dramatic increase in their frequency. If unrecognized they can result in secondary osteoarthritis of the ankle and/or talo-calcaneal joints and chronic pain and stiffness. Due to the complex anatomy of the region, these fractures are difficult to detect by standard radiographs. A high degree of suspicion is then necessary to diagnose them. Once suspected on the basis of physical examination and/or non concluding radiographs, computed tomography (CT) is the best modality to confirm the diagnosis and accurately appreciate the number of the fragments and their position which have therapeutic consequences (medical vs. surgical treatment). A better knowledge of these lesions seems necessary to the general radiologist to allow an early diagnosis in order to avoid chronic sequel. The purpose of this article is to report three additional cases of LPT fractures and discuss their pathogenesis, diagnosis and treatment.

  17. The emergency and delay management in total talus extrusion:Case report and review of literature after 24 months of follow up

    Luigi Piscitelli; Michele Bisaccia; Luigi Meccariello; Gabriele Falzarano; Antonio Medici; Daniele Maiettini; Alberto Rebonato; Giuseppe Rinonapoli; Auro Caraffa

    2016-01-01

    Total talus extrusion is a rare and severe injury. It is burdened by many complications as avascular necrosis and osteomyelitis even if a proper debridement of extruded talus is performed. Few case reports or case series were published, and because of the rarity of this event, there are no guidelines for treatment. We report the first case on an octoge-narian man providing a long-term follow-up performing contrast enhanced magnetic resonances. The authors report the case of an octogenarian man who fell from an olive tree reporting a total talus extrusion associated with the fracture of the medial malleolus. After an accurate debridement and washing of the wound, the talus was anatomically repositioned and the fracture was treated with an external fixator. The wound healed with difficulty after 12 months and the patient developed a chronic osteomyelitis of the talar dome and avascular necrosis of talar head. We followed the patient for 24 months per-forming contrast enhanced magnetic resonances and evaluating the development of the avascular necrosis. Even if we encountered these complications, the treatment allowed the patient to walk without pain, using a talus type shoe and one crutch. Although the literature suggests that an anatomic replacement of talus allows avoiding main compli-cations, we deem that the patient's age is an important biological feature to consider in the prognostic stratification. Moreover, primary talectomy and tibio-calcaneal fusion should be reserved as a salvage procedure. Talus replacement allows an overall good outcome for the patients, retaining height, and allowing a good quality of life.

  18. Treatment of osteochondral lesions of the talus%距骨软骨损伤的治疗

    张波; 曲家富

    2016-01-01

    Osteochondral lesions of the talus are rare.The factors leading to them include trauma,chronic fatigue,family history,and idiopathic necrosis.The patients present with ankle pain,swelling,bruise,limited mobility and limp at an early stage while joint stiffness and walking and moving pain at a late stage.Normal check is likely to overlook them,resulting in delayed diagnosis and treatment.If an osteochondral lesion of the talus is suspected with negative X-ray manifestations,further radionuclide bone scan or MRI is indicated for definite diagnosis.As there is no blood supply to the talar cartilage which is relatively too small,it is difficult to treat osteochondral lesions of the talus.Early mild lesions can be treated by conservative therapy.If conservative treatment fails or the lesions deteriorate,surgery is required.This paper reviews the research progress in the treatment of osteochondral lesions of the talus.%距骨软骨损伤是一种比较少见的损伤,导致其损伤的因素包括创伤或慢性劳损、家族史、特发性坏死等.患者早期表现为踝关节疼痛、肿胀、瘀斑、活动受限和跛行;晚期表现为关节僵硬、行走和活动时疼痛等.普通检查很容易因为漏诊而延误治疗;若X线阴性而高度怀疑距骨软骨损伤时,可进一步作核素骨扫描或MRI以明确诊断.由于距骨软骨缺乏血供和相对过少的关节软骨,距骨软骨损伤难以治疗.早期轻度的损伤可选择保守治疗,保守治疗无效或病变严重,需要手术治疗.本文主要就距骨软骨损伤治疗方面的研究进展作一综述.

  19. Arctic Submarine Slope Stability

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  20. ElevationSlope_SLOPE3p2M

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): ( and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce change in elevation over...

  1. ElevationSlope_SLOPE1p6M2010

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and related SLOPE datasets. Created using ArcGIS "SLOPE" command to produce...

  2. Functional anatomy of the calcaneum and talus in Cercopithecinae (Mammalia, Primates, Cercopithecidae

    Pina, M.

    2011-12-01

    Full Text Available Among the species of the order Primates exist a huge variety of forms and habitats. This heterogeneity has encouraged the evolution and development of a great number of locomotor adaptations to different environments. Thus, nowadays there are both arboreal and terrestrial groups within the order. The subfamily Cercopithecinae present taxa with both kinds of locomotor behaviours, although the most of them are adapted to a ground life-style. This group probably has an arboreal ancestor and its radiation is relatively recent. Consequently, species belonged to this group present mixed features or sometimes not too much derived ones. Likewise, it is important the fact that the evolutionary history and phylogeny of the group could influence in some characteristics. Both the calcaneum and the talus are two of the largest bones of the foot and are good for inferring the kind of locomotion. For this reason, it has been used these two tarsal bones to study the morphology of eight species of cercopithecines and then deduce functional implications of the kind of locomotion.

    Dentro del orden Primates existe una gran variedad de especies distribuidas a lo largo de hábitats muy diversos. Dicha heterogeneidad ha fomentado la evolución y desarrollo de un gran número de adaptaciones locomotoras a los diferentes ambientes en los que habitan. Así, existen en la actualidad tanto grupos arborícolas como terrestres. La subfamilia Cercopithecinae agrupa una serie de taxones que representan ambos comportamientos locomotores, aunque la mayoría de las especies están adaptadas a una vida en el suelo. Se supone que este grupo desciende de un ancestro arborícola y que su radiación es relativamente reciente. En consecuencia, las especies de este grupo presentan características mixtas o poco derivadas en algunas ocasiones. Asimismo, es importante tener en cuenta la influencia que la herencia filogenética puede tener sobre alguno de estos rasgos. El calc

  3. Comments on the slope function

    Kim, Minkyoo

    2016-01-01

    The exact slope function was first proposed in $SL(2)$ sector and generalized to $SU(2)$ sector later. In this note, we consider the slope function in $SU(1|1)$ sector of ${\\cal N}=4$ SYM. We derive the quantity through the method invented by N. Gromov and discuss about its validity. Further, we give comments on the slope function in deformed SYM.

  4. ElevationSlope_SLOPE1p6M

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Addison County 2012 1.6m; Missisquoi Upper 2010 1.6m; Missisquoi Lower 2008 1.6m and related SLOPE...

  5. The use of fibrin matrix-mixed gel-type autologous chondrocyte implantation in the treatment for osteochondral lesions of the talus

    Lee, Kyung Tai; Kim, Jin Su; Young, Ki Won; Lee, Young Koo; Park, Young Uk; Kim, Yong Hoon; Cho, Hun ki

    2012-01-01

    Purpose This study assessed the clinical results and second-look arthroscopy after fibrin matrix-mixed gel-type autologous chondrocyte implantation to treat osteochondral lesions of the talus. Methods Chondrocytes were harvested from the cuboid surface of the calcaneus in 38 patients and cultured, and gel-type autologous chondrocyte implantation was performed with or without medial malleolar osteotomy. Preoperative American orthopedic foot and ankle society ankle-hind foot scores, visual anal...

  6. North Slope (Wahluke Slope) expedited response action cleanup plan

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  7. North Slope (Wahluke Slope) expedited response action cleanup plan

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi2 (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives

  8. Human talus bones from the Middle Pleistocene site of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain).

    Pablos, Adrián; Martínez, Ignacio; Lorenzo, Carlos; Gracia, Ana; Sala, Nohemi; Arsuaga, Juan Luis

    2013-07-01

    Here we present and describe comparatively 25 talus bones from the Middle Pleistocene site of the Sima de los Huesos (SH) (Sierra de Atapuerca, Burgos, Spain). These tali belong to 14 individuals (11 adult and three immature). Although variation among Middle and Late Pleistocene tali tends to be subtle, this study has identified unique morphological characteristics of the SH tali. They are vertically shorter than those of Late Pleistocene Homo sapiens, and show a shorter head and a broader lateral malleolar facet than all of the samples. Moreover, a few shared characters with Neanderthals are consistent with the hypothesis that the SH population and Neanderthals are sister groups. These shared characters are a broad lateral malleolar facet, a trochlear height intermediate between modern humans and Late Pleistocene H. sapiens, and a short middle calcaneal facet. It has been possible to propose sex assignment for the SH tali based on their size. Stature estimates based on these fossils give a mean stature of 174.4 cm for males and 161.9 cm for females, similar to that obtained based on the long bones from this same site. PMID:23706407

  9. Three-Dimensional Matrix-Induced Autologous Chondrocytes Implantation for Osteochondral Lesions of the Talus: Midterm Results

    B. Magnan

    2012-01-01

    Full Text Available Introduction. We evaluate the midterm results of thirty patients who underwent autologous chondrocytes implantation for talus osteochondral lesions treatment. Materials and Methods. From 2002 to 2009, 30 ankles with a mean lesion size of 2,36 cm2 were treated. We evaluated patients using American Orthopaedic Foot and Ankle Surgery and Coughlin score, Van Dijk scale, recovering time, and Musculoskeletal Outcomes Data Evaluation and Management System. Results. The mean AOFAS score varied from 36.9 to 83.9 at follow-up. Average of Van Dijk scale was 141.1. Coughlin score was excellent/good in 24 patients. MOCART score varied from 6.3 to 3.8. Discussion. This matrix is easy to handle conformable to the lesion and apply by arthroscopy. No correlation between MRI imaging and clinical results is found. Conclusions. Our results, compared with those reported in literature with other surgical procedures, show no superiority evidence for our technique compared to the others regarding the size of the lesions.

  10. Slope stability hazard management systems

    2007-01-01

    Weather-related geo-hazards are a major concern for both natural slopes and man-made slopes and embankments.Government agencies and private companies are increasingly required to ensure that there is adequate protection of sloping surfaces in order that interaction with the climate does not produce instability. Superior theoretical formulations and computer tools are now available to address engineering design issues related to the near ground surface soil-atmospheric interactions. An example is given in this paper that illustrates the consequences of not paying adequate attention to the hazards of slope stability prior to the construction of a highway in South America. On the other hand, examples are given from Hong Kong and Mainland China where significant benefits are derived from putting in place a hazard slope stability management system. Some results from a hazard management slope stability study related to the railway system in Canada are also reported. The study took advantage of recent research on unsaturated soil behaviour and applied this information to real-time modelling of climatic conditions. The quantification of the water balance at the ground surface, and subsequent infiltration, is used as the primary tool for hazard level assessment. The suggested hazard model can be applied at either specific high risk locations or in a more general, broad-based manner over large areas. A more thorough understanding of unsaturated soil behaviour as it applies to near ground surface soils,along with the numerical computational power of the computer has made it possible for new approaches to be used in slope hazard management engineering.

  11. ElevationSlope_SLOPE0p7M

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Windham County 2015 0.7m; Eastern VT 2014 0.7m; Rutland/GI Counties 2013 0.7m and related SLOPE datasets....

  12. Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars

    Chojnacki, Matthew; McEwen, Alfred; Dundas, Colin M.; Ojha, Lujendra; Urso, Anna; Sutton, Sarah

    2016-01-01

    One of the major Mars discoveries of recent years is the existence of recurring slope lineae (RSL), which suggests that liquid water occurs on or near the surface of Mars today. These dark and narrow features emerge from steep, rocky exposures and incrementally grow, fade, and reform on a seasonal basis and are detected in images from the High Resolution Imaging Science Experiment camera. RSL are known to occur at scattered midlatitude and equatorial sites with little spatial connection to one another. One major exception is the steep, low-albedo slopes of Melas and Coprates Chasmata, in Valles Marineris where RSL are detected among diverse geologic surfaces (e.g., bedrock and talus) and landforms (e.g., inselbergs and landslides). New images show topographic changes including sediment deposition on active RSL slopes. Midwall locations in Coprates and Melas appear to have more areally extensively abundant RSL and related fans as compared with other RSL sites found on Mars. Water budget estimates for regional RSL are on the order of 105 to 106 m3 of fluid, for depths of 10 to 100mm, and suggest that a significant amount of near-surface watermight be present. Many RSL are concentrated near local topographic highs, such as ridge crests or peaks, which is challenging to explain via groundwater or ice without a recharge mechanism. Collectively, results provide additional support for the notion that significant amounts of near-surface water can be found on Mars today and suggest that a widespread mechanism, possibly related to the atmosphere, is recharging RSL sources.

  13. Exploring Slope with Stairs & Steps

    Smith, Toni M.; Seshaiyer, Padmanabhan; Peixoto, Nathalia; Suh, Jennifer M.; Bagshaw, Graham; Collins, Laurena K.

    2013-01-01

    As much as ever before, mathematics teachers are searching for ways to connect mathematics to real-life scenarios within STEM contexts. As students develop skill in proportional reasoning, they examine graphical representations of linear functions, learn to associate "slope" with "steepness" and rate of change, and develop…

  14. Slope Estimation from ICESat/GLAS

    Craig Mahoney; Natascha Kljun; Sietse O. Los; Laura Chasmer; Jorg M. Hacker; Christopher Hopkinson; North, Peter R.J.; Jacqueline A. B. Rosette; Eva van Gorsel

    2014-01-01

    We present a novel technique to infer ground slope angle from waveform LiDAR, known as the independent slope method (ISM). The technique is applied to large footprint waveforms (\\(\\sim\\) mean diameter) from the Ice, Cloud and Land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) to produce a slope dataset of near-global coverage at \\(0.5^{\\circ} \\times 0.5^{\\circ}\\) resolution. ISM slope estimates are compared against high resolution airborne LiDAR slope measurements for ...

  15. Is rock slope instability in high-mountain systems driven by topo-climatic, paraglacial or rock mechanical factors? - A question of scale!

    Messenzehl, Karoline; Dikau, Richard

    2016-04-01

    Due to the emergent and (often non-linear) complex nature of mountain systems the key small-scale system properties responsible for rock slope instability contrast to those being dominant at larger spatial scales. This geomorphic system behaviour has major epistemological consequences for the study of rockfalls and associated form-process-relationships. As each scale requires its own scientific explanation, we cannot simply upscale bedrock-scale findings and, in turn, we cannot downscale the valley-scale knowledge to smaller phenomena. Here, we present a multi-scale study from the Turtmann Valley (Swiss Alps), that addresses rock slope properties at three different geomorphic levels: (i) regional valley scale, (ii) the hillslope scale and (iii) the bedrock scale. Using this hierarchical approach, we aim to understand the key properties of high-mountain systems responsible for rockfall initiation with respect to the resulting form-process-relationship at each scale. (i) At the valley scale (110 km2) rock slope instability was evaluated using a GIS-based modelling approach. Topo-climatic parameters, i.e. the permafrost distribution and the time since deglaciation after LGM were found to be the key variables causative for the regional-scale bedrock erosion and the storage of 62.3 - 65.3 x 106 m3 rockfall sediments in the hanging valleys (Messenzehl et al. 2015). (ii) At the hillslope scale (0.03 km2) geotechnical scanline surveys of 16 rock slopes and one-year rock temperature data of 25 ibuttons reveal that the local rockfall activity and the resulting deposition of individual talus slope landforms is mainly controlled by the specific rock mass strength with respect to the slope aspect, than being a paraglacial reaction. Permafrost might be only of secondary importance for the present-day rock mechanical state as geophysical surveys disprove the existence of frozen bedrock below 2600 m asl. (Messenzehl & Draebing 2015). (iii) At the bedrock scale (0.01 mm - 10 m) the

  16. THE EQUIVALENT SLOPE - A NEW METHOD FOR CALCULATING SOIL LOSS FROM IRREGULAR SLOPES

    Xiaoguang ZHAO; Hui SHI; Ming'an SHAO

    2004-01-01

    The slopes in field conditions are always irregular, but the supposed uniform slopes are used in most erosion models. Some studies used several uniform slopes to approximate an irregular slope for estimating soil erosion. This approximation is both time-consuming and weak in physical insights. In this paper, the concept of equivalent slope is presented based on that runoff potential on uniform slope is equal to that of irregular slope, and the equivalent uniform slope is used to estimate soil erosion instead of the irregular slopes. The estimated results of slope-length factors for convex and concave slopes are consistent with those from the method of Foster and Wischmeier.The experiments in the southern part of the Loess Plateau in China confirmed the applicability of the present method. The method is simple and has, to some extent, clear physical meanings, and is applicable for estimating soil erosion from irregular slopes.

  17. In-Place Randomized Slope Selection

    Blunck, Henrik; Vahrenhold, Jan

    2006-01-01

    Slope selection, i.e. selecting the slope with rank k among all 􀀀n 2lines induced by a collection P of points, results in a widely used robust estimator for linefitting. In this paper, we demonstrate that it is possible to perform slope selection in expected O(n·log2 n) time using only c...

  18. Mycorrhizal aspects in slope stabilisation

    Graf, Frank

    2016-04-01

    In order to re-colonise and stabilise slopes affected by superficial soil failure with plants essential requirements have to be met: the plants must grow the plants must survive sustainably plant succession must start and continuously develop These requirements, however, are anything but easy given, particularly under the often hostile environmental conditions dominating on bare and steep slopes. Mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, are said to improve the plants' ability to overcome periods governed by strongly (growth) limiting factors. Subsequently, results of investigations are presented of mycorrhizal effects on different plant and soil functions related to eco-engineering in general and soil and slope stabilisation in particular. Generally, inoculation yielded higher biomass of the host plants above as well as below ground. Furthermore, the survival rate was higher for mycorrhized compared to non-mycorrhized plants, particularly under extreme environmental conditions. However, the scale of the mycorrhizal impact may be species specific of both the plant host as well as the fungal partner(s) and often becomes evident only after a certain time lag. Depending on the plant-fungus combination the root length per soil volume was found to be between 0 and 2.5 times higher for inoculated compared to non-inoculated specimens. On an alpine graded ski slope the survival of inoculated compared to non-treated Salix herbacea cuttings was significant after one vegetation period only for one of the three added mycorrhizal fungus species. However, after three years all of the inoculated plantlets performed significantly better than the non-inoculated controls. The analysis of the potential for producing and stabilising soil aggregates of five different ectomycorrhizal fungi showed high variation and, for the species Inocybe lacera, no significant difference compared to untreated soil. Furthermore, inoculation of Salix

  19. Treatment of ankle fracture and biomechanics of talus%踝部骨折治疗效果与距骨生物力学的关系

    梁庆威; 范广宇; 吕刚

    2004-01-01

    BACKGROUND: The anatomical structure of ankle joint is not complicated, but its biomechanics is very important. The talus has participated in consisting of three joints and played very important role in supporting the functions of ankle. Therefore, it is very important to stabilize the position of talus in order to restore the anatomical structure of ankle.OBJECTIVE: To explore the relationship between treatment of ankle fracture and the biomechanics of the talus.DESIGN: A non-randomized case controlled study was conducted.SETTING and PARTICIPANTS: There were 95 patients with fracture of ankle joints during January 1985 to October 2000 from the First Affiliated Hospital of China Medical University. Three specimens of amputating legs due to malignant tumor were collected.INTERVENTIONS: The biomechanics of talus in ankle fracture was observed by amputated leg specimens and the clinical manifestation and Xray examinations were analyzed in the 95 fracture patients after treatment.MAIN OUTCOME MEASURES: Forces acting on different fracture types,relationship between therapeutic effects and biomechanics of talus.RESULTS: Sixty-five cases were followed up. There were 41 cases with very good therapeutic effects, 12 cases with good effects, 7 cases with fair effects and 5 cases with poor effects. Biomechanics results: the neck was compressed 0.48 cm when both ankles were broken. The lateral malleolar facet got more pressure than medial malleolar facet when vertical pressure acted in external facet fracture. When fracture happened in the lower 1/3 of fibula, the pressure acted on lateral malleolar facet was less than that on medial malleolar facet when in inversion position.CONCLUSION: It should pay more attention to the anatomical relations of talus in ankle cavity and the gap of lower tibiofibular joint no matter external fixation or internal fixation of manual reposition to ankle fracture was used. It is a very important treatment standard to restore the biomechanical

  20. The Influence of Shales on Slope Instability

    Stead, Doug

    2016-02-01

    Shales play a major role in the stability of slopes, both natural and engineered. This paper attempts to provide a review of the state-of-the-art in shale slope stability. The complexities of shale terminology and classification are first reviewed followed by a brief discussion of the important physical and mechanical properties of relevance to shale slope stability. The varied mechanisms of shale slope stability are outlined and their importance highlighted by reference to international shale slope failures. Stability analysis and modelling of anisotropic rock slope masses are briefly discussed and the potential role of brittle rock fracture and damage highlighted. A short review of shale slopes in open pits is presented.

  1. Enucleación medial de astrágalo abierta: Evolución a medio plazo Medial dislocation of the talus: Medium term evolution

    S. García Mata

    2009-04-01

    Full Text Available Paciente de 57 años con enucleación abierta medial del astrágalo izquierdo, con fractura suprasindesmal de peroné, por traumatismo indirecto. Se realizó lavado, limpieza del astrágalo y partes blandas, Friedrich, reducción, fijación con agujas de kirschner, sutura del ligamento deltoideo y osteosíntesis del peroné. No hubo infección superficial ni profunda postoperatoria. Permaneció seis semanas de inmovilización y tres meses en descarga. Dos años después no había signos radiológicos de necrosis avascular. En gammagrafía ósea realizada a los 18 meses de la lesión se observaba necrosis avascular parcial astragalina. Tres años después de la lesión realizaba vida normal, sin dolor en reposo pero sí a la marcha y movilidad con limitación de la dorsiflexión (-20º. Cinco años y medio después de la lesión presentaba hundimiento de cúpula astragalina por la necrosis avascular con sintomatología dolorosa a la marcha y diástasis tibio-peronea distal, que requirió realizar artrodesis tibio-astragalina.Fifty-seven year old patient with open medial dislocation of the left talus, with suprasyndesmotic fracture of the fibula, due to indirect traumatism. The following were carried out: washing, cleaning the talus and the soft parts, Friedrich, reduction, fixing with Kirschner needles, suture of the deltoid ligament, and osteosynthesis of the fibula. There were neither surface nor deep post-operational infections. The patient underwent six weeks of immobilisation and spent three months on discharge. Two years later there were no radiological signs of avascular necrosis. In the osseous gammagraphy carried out 18 months after the lesion, partial avascular necrosis of the talus was observed. Three years after the lesion, the patient was able to carry out a normal life, without pain in repose but with pain whilst moving, and mobility with limitation of dorsoinflection (-20º. Five and a half years after the lesion, the patient

  2. Delayed gadolinium-enhanced MRI of cartilage of the ankle joint: Results after autologous matrix-induced chondrogenesis (AMIC)-aided reconstruction of osteochondral lesions of the talus

    Aim: To assess cartilage quality using delayed gadolinium-enhanced magnetic resonance imaging after repair of osteochondral lesions of the talus using autologous matrix-induced chondrogenesis (AMIC). Materials and methods: A three-dimensional (3D) spoiled gradient-echo (SGE) sequence at 3 T was used to obtain quantitative T1 relaxation times before and after Gd-DTPA2 (Magnevist, 0.2 mM/kg bod weight) administration to assess 23 cases of AMIC-aided repair of osteochondral lesions of the talus. Delta relaxation rates (ΔR1) for reference cartilage (RC) and repair tissue (RT), and the relative delta relaxation rate (rΔR1) were calculated. The morphological appearance of the cartilage RT was graded on sagittal dual-echo steady-state (DESS) views according to the “magnetic resonance observation of cartilage repair tissue” (MOCART) protocol. The study was approved by the institutional review board and written consent from each patient was obtained. Results: The AMIC cases had a mean T1 relaxation time of 1.194 s (SD 0.207 s) in RC and 1.470 s (SD 0.384 s) in RT before contrast medium administration. The contrast-enhanced T1 relaxation time decreased to 0.480 s (SD 0.114 s) in RC and 0.411 s (SD 0.096 s) in RT. There was a significant difference (p > 0.05) between the ΔR1 in RC (1.372 × 10−3/s, range 0.526–3.201 × 10−3/s, SD 0.666 × 10−3/s) and RT (1.856 × 10−3/s, range 0.93–3.336 × 10−3/s, SD 0.609 × 10−3/s). The mean rΔR1 was 1.49, SD 0.45). The mean MOCART score at follow-up was 62.6 points (range 30–95, SD 15.3). Conclusion: The results of the present study suggest that repair cartilage resulting from AMIC-aided repair of osteochondral lesions of the talus has a significantly lower glycosaminoglycan (GAG) content than normal hyaline cartilage, but can be regarded as having hyaline-like properties

  3. Preliminary results of short term continuous monitoring of an unstable permafrost affected rock slope using a portable, real aperture radar interferometer (GPRI).

    Kos, Andrew; Amann, Florian; Strozzi, Tazio; Button, Edward; Rothard, Gerd

    2010-05-01

    A portable real aperture radar interferometer was used to continuously monitor a large unstable rock slope located in the Glarner Alps of Switzerland over a 26 hour period. With an elevation ranging between 2500 and 2800 m.a.s.l., and a north facing aspect, the slope is influenced by permafrost processes. Radar images revealed a larger than previously known area of instability, characterized by several discrete zones of movement. Maximum average displacements were on the order of approx. 0.5mm per hour. The unstable area was delineated by structural features, one of which included open (ice-filled) fractures. A strong radar signature for toppling was observed after 6 hours corresponding to a large rock column leaning approximately 10 degrees towards the radar's line of sight at the top of slope, however, further interpretation of failure mechanisms from the observed displacement field is complicated without additional data due to the heterogeneous nature of the rock mass characteristics and distribution of discrete talus deposits.

  4. Precision of SPECT/CT allows the diagnosis of a hidden Brodie's abscess of the talus in a patient with sickle cell disease

    Brodie's abscess is a rare subacute osteomyelitis that can be found in sickle cell disease along with other bone complications. A 21-year-old female with sickle cell disease was presenting frequently to the medical casualty department for painful vasoocclusive crises and for persistent ankle pain and swelling. Hybrid imaging with single-photon emission computed tomography-computed tomography (SPECT-CT) incidentally revealed Brodie's abscess in the talus bone of the ankle, causing persisting long-standing pain. SPECT-CT is a modern technology used to scan bone to detect both anatomical and functional abnormalities with high specificity. Brodie's abscess is a rare bone inflammation that could be a hidden cause of pain and infection in sickle cell disease. Although rare, this lesion requires more attention in patients with sickle cell disease because their immunocompromised status renders them prone to this infection

  5. Precision of SPECT/CT allows the diagnosis of a hidden Brodie's abscess of the talus in a patient with sickle cell disease

    Al jafar, Hassan [Dept. of Hematology, Amiri Hospital, Kuwait (Kuwait); Al Shemmeri, Eman [Dept. of Nuclear Medicine, Farwaniya Hospital, Al-Farwania (Kuwait); Al Shemmeri, Jehan; Al Enizi, Saud [Faculty of Medicine, Nuclear Medicine Dept, Kuwait University, Kuwait (Kuwait); Aytglu, Leena [Molecular Imaging Center, Jaber Al-Ahmad Center, Kuwait (Kuwait); Afzai, Uzma [Dept. of Nuclear Medicine, Farwaniya Hospital, Al-Farwania (Kuwait)

    2015-06-15

    Brodie's abscess is a rare subacute osteomyelitis that can be found in sickle cell disease along with other bone complications. A 21-year-old female with sickle cell disease was presenting frequently to the medical casualty department for painful vasoocclusive crises and for persistent ankle pain and swelling. Hybrid imaging with single-photon emission computed tomography-computed tomography (SPECT-CT) incidentally revealed Brodie's abscess in the talus bone of the ankle, causing persisting long-standing pain. SPECT-CT is a modern technology used to scan bone to detect both anatomical and functional abnormalities with high specificity. Brodie's abscess is a rare bone inflammation that could be a hidden cause of pain and infection in sickle cell disease. Although rare, this lesion requires more attention in patients with sickle cell disease because their immunocompromised status renders them prone to this infection.

  6. Dip-slope and Dip-slope Failures in Taiwan - a Review

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  7. Mathematical Model of the Identical Slope Surface

    2002-01-01

    The formation of the identical slope surface and the method of construction are discussed. Onthe basement of building the parameter equation of variable-radius circle family envelope, the frequentlyused parameter equation of the identical slope surface of the top of taper moving along column helix,horizental arc and line is built. The equation can be used to construct the identical slope surface's con-tours, gradient lines and three dimensional figures correctly.

  8. INFLUENCES OF SLOPE GRADIENT ON SOIL EROSION

    刘青泉; 陈力; 李家春

    2001-01-01

    The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows , and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size , soil bulk density , surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41. 5 °~ 50°.

  9. Slope Estimation from ICESat/GLAS

    Craig Mahoney

    2014-10-01

    Full Text Available We present a novel technique to infer ground slope angle from waveform LiDAR, known as the independent slope method (ISM. The technique is applied to large footprint waveforms (\\(\\sim\\ mean diameter from the Ice, Cloud and Land Elevation Satellite (ICESat Geoscience Laser Altimeter System (GLAS to produce a slope dataset of near-global coverage at \\(0.5^{\\circ} \\times 0.5^{\\circ}\\ resolution. ISM slope estimates are compared against high resolution airborne LiDAR slope measurements for nine sites across three continents. ISM slope estimates compare better with the aircraft data (R\\(^{2}=0.87\\ and RMSE\\(=5.16^{\\circ}\\ than the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM inferred slopes (R\\(^{2}=0.71\\ and RMSE\\(=8.69^{\\circ}\\ ISM slope estimates are concurrent with GLAS waveforms and can be used to correct biophysical parameters, such as tree height and biomass. They can also be fused with other DEMs, such as SRTM, to improve slope estimates.

  10. Slope of the Slope Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope of slope was calculated from the bathymetry surface for each raster cell by applying the ArcGIS Spatial Analyst 'Slope' Tool to a previously created slope...

  11. Stability Analysing of Unsaturated Soil Slope

    张士林; 邵龙潭

    2003-01-01

    The stability of unsaturated soil slope has been the hot point recently. Especially, the seeping rainfall makes losing stability of unsaturated soil slope, and causes enormous loss to the producation and safety of other people. The seeping rainfall makes volumetric water content of unsaturated soil slope changing, and the volumetric water content has directly relationship with matric suction. And matric suction also has directly relationship with the stability of unsaturated soil slope. So the change of matric suction influence the stability changing, that is, safety coefficient has decided relationship with volumetric water content. The profile of dangerous volumetric water content curves of unsaturated soil slope has been obtained. If a volumetric water content curve of some unsaturated soil slope belongs to one of these dongerous curves, the unsaturated soil slope could be in danger. So this is called DVWCCP(dangerous volumetric water content curves profile). By monitoring the volumetric water content curves can obtain the stability information of some soil slope to serve producing and safety.

  12. Lattice calculus of the morphological slope transform

    Heijmans, H.J.A.M.; Maragos, P.

    1995-01-01

    This paper presents a study of the morphological slope transform in the complete lattice framework. It discusses in detail the interrelationships between the slope transform at one hand and the (Young-Fenchel) conjugate and Legendre transform, two well-known concepts from convex analysis, at the oth

  13. Internal waves and temperature fronts on slopes

    S. A. Thorpe

    Full Text Available Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a instabilities advected by the flow (b internal waves propagating along-slope or (c internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c, evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles.

    Key words. Oceanography: general (benthic boundary layers; limnology, Oceanography: physical (internal and inertial waves

  14. Rock slopes and reservoirs - lessons learned

    Lessons learned about slope stability in the course of four decades of monitoring, and in some cases stabilizing, slopes along British Columbia's hydroelectric reservoirs are discussed. The lessons are illustrated by short case histories of some of the more important slopes such as Little Chief Slide, Dutchman's Ridge, Downie Slide, Checkerboard Creek and Wahleach. Information derived from the monitoring and other investigations are compared with early interpretations of geology and slope performance. The comparison serves as an indicator of progress in slope stability determination and as a measure of the value of accumulated experience in terms of the potential consequences to safety and cost savings over the long life-span of hydroelectric projects.14 refs., 2 tabs., 15 figs

  15. Slope-scale dynamic states of rockfalls

    Agliardi, F.; Crosta, G. B.

    2009-04-01

    Rockfalls are common earth surface phenomena characterised by complex dynamics at the slope scale, depending on local block kinematics and slope geometry. We investigated the nature of this slope-scale dynamics by parametric 3D numerical modelling of rockfalls over synthetic slopes with different inclination, roughness and spatial resolution. Simulations were performed through an original code specifically designed for rockfall modeling, incorporating kinematic and hybrid algorithms with different damping functions available to model local energy loss by impact and pure rolling. Modelling results in terms of average velocity profiles suggest that three dynamic regimes (i.e. decelerating, steady-state and accelerating), previously recognized in the literature through laboratory experiments on granular flows, can set up at the slope scale depending on slope average inclination and roughness. Sharp changes in rock fall kinematics, including motion type and lateral dispersion of trajectories, are associated to the transition among different regimes. Associated threshold conditions, portrayed in "phase diagrams" as slope-roughness critical lines, were analysed depending on block size, impact/rebound angles, velocity and energy, and model spatial resolution. Motion in regime B (i.e. steady state) is governed by a slope-scale "viscous friction" with average velocity linearly related to the sine of slope inclination. This suggest an analogy between rockfall motion in regime B and newtonian flow, whereas in regime C (i.e. accelerating) an analogy with a dilatant flow was observed. Thus, although local behavior of single falling blocks is well described by rigid body dynamics, the slope scale dynamics of rockfalls seem to statistically approach that of granular media. Possible outcomes of these findings include a discussion of the transition from rockfall to granular flow, the evaluation of the reliability of predictive models, and the implementation of criteria for a

  16. Factors affecting seismic response of submarine slopes

    G. Biscontin

    2006-01-01

    Full Text Available The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and 'local' tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event.

  17. Reinforcement of sloping banks in open cast mines: analysis of stability and dimensions from block models. Final report; Renforcement des talus de mines a ciel ouvert: analyse de stabilite et dimensionnement par models de blocs. Rapport final

    Paquette, Y. [INERIS, Paris (France)

    1997-12-31

    Resoblok software is a powerful computing tool which allows simulation of fracturing in rock formations from actual or statistically defined data. Combined with a method of analysis of the stability of isolated blocks, it becomes a means of predicting risks of instability and enables the calculation of a suitable bolt-propping system to remedy the problem. In general the choice of a bolt-propping plan is made by analysing various possible alternatives. The criterion used is the minimisation of the numbers and size of unstable blocks, but economic considerations and complementary technical solutions (grillage and concreting) are also taken into account. The relatively simple calculation method used speeds up the analysis of stability, and permits the study of various method of bolting for various types of fracturing geometries. Application to actual situations should be carried out progressively, comparing the model results with observations and measurements in situ, as well as continuously improving knowledge of the fracturing, the mechanical characteristics and the hypotheses of the calculation.

  18. North Slope, Alaska ESI: HABITATS (Habitat Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for benthic marine habitats for the North Slope of Alaska. Vector polygons in this data set represent...

  19. ElevationOther_SLOPE10M

    Vermont Center for Geographic Information — Used ElevationDEM_DEM10M and the Arc/Info SLOPE command with the "PERCENT_RISE" and ".3048" Z_unit options to create this data layer. Input source dataset is...

  20. North Slope, Alaska ESI: BIRDS (Bird Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls and terns, seabirds, shorebirds, and waterfowl for the North Slope of Alaska....

  1. North Slope, Alaska ESI: NESTS (Nest Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for waterfowl, seabirds, gulls and terns for the North Slope of Alaska. Vector points in this data set...

  2. Percent Agricultural Land Cover on Steep Slopes

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  3. The sloping land conversion program in China

    Liu, Zhen; Lan, Jing

    2015-01-01

    Through addressing the motivations behind rural households’ livelihood diversification, this paper examines the effect of the Sloping Land Conversion Program (SLCP) on livelihood diversification using a longitudinal household survey data set spanning the overall implementation of the SLCP. Our...

  4. North Slope, Alaska ESI: FACILITY (Facility Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  5. Rock Slopes from Mechanics to Decision Making

    Einstein, H.H.; Sousa, R.L.; Karam, K.; Manzella, Irène; Kveldsvik, V.

    2010-01-01

    Rock slope instabilities are discussed in the context of decision making for risk assessment and management. Hence, the state of the slope and possible failure mechanism need to be defined first. This is done with geometrical and mechanical models for which recent developments are presented. This leads with appropriate consideration of uncertainties to risk determination and to the description of tools for risk management through active and passive countermeasures, including warning systems. ...

  6. Quadratic integer programming and the slope conjecture

    Garoufalidis, Stavros; van der Veen, Roland

    2014-01-01

    The Slope Conjecture relates a quantum knot invariant, (the degree of the colored Jones polynomial of a knot) with a classical one (boundary slopes of incompressible surfaces in the knot complement). The degree of the colored Jones polynomial can be computed by a suitable (almost tight) state sum and the solution of a corresponding quadratic integer programming problem. We illustrate this principle for a 2-parameter family of 2-fusion knots. Combined with the results of Dunfield and the first...

  7. Numerical Computation of Homogeneous Slope Stability

    Shuangshuang Xiao

    2015-01-01

    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  8. Seasonal slope surface deformation measured with TLS

    Fan, L.; Smethurst, J.; Powrie, W.; Sellaiya, A.

    2014-03-01

    In temperate European climates, soil water removal due to vegetation transpiration peaks in summer and soil rewetting from higher levels of precipitation occurs in winter. In clays of high plasticity, the seasonal cycles of drying and wetting cause the soil to experience a volumetric change, resulting in seasonal shrinking and swelling. For a clay slope exhibiting volume change, such behaviour can lead to excessive deformation and could contribute to strain-softening and progressive slope failure. This can in turn cause traffic disruption and loss of life if roads and railways are founded on or surrounded by such slopes. This paper discusses the driving forces of seasonal surface movement, in particular the role of vegetation, and presents the use of Terrestrial Laser Scanning (TLS) to measure the surface movement of a lightly vegetated London Clay slope near Newbury, UK. Two TLS scans were carried out in early and late summer respectively, representing relative wet and dry conditions of the slope. Continuous field measurements of soil water content in upper layers of the slope were obtained from TDR ThetaProbes already installed at the site. The water content data are used to support the results obtained from TLS by indicating the likely volumetric change in the soil due to loss of water.

  9. Electrokinetic Geotextile Stabilization Of Embankment Slopes

    Mumtaz M

    2014-12-01

    Full Text Available The choice of repair of slope depends on site conditions and cost. This includes reducing the slope, installing horizontal drains, soil nailing and providing stability by structural methods. All these methods have their limitations and some are very costly. Another alternative is the electrokinetic stabilization of slopes. EKG reinforcement or soil nails not only provide reinforcement, but also increase the shear strength of the soil in which they are placed as well as improving soil-reinforcement bond. The development of EKG materials offers slope stabilisation of embankments and cuttings in fine grained soils, which will significantly increase the factor of safety , address pore pressure changes and also avoids importing earthwork materials or aggregates. By inserting a grid of anodes and a cathode into the ground and applying an electrical potential difference across the slope drives water away, via the cathodes and creates physical changes in the embankment, promoting consolidation of the slope materials. Anodes and cathodes were connected to a DC power circuit and electrified for a calculated period based on water content, strength and electrode spacing. The conductive geotextile used was coir geotextile and it was woven with steel filament in weft direction only. The steel filament made the geotextile conductive. The geotextile used was natural geotextile and it is required after the end of construction of embankment only, till the completion of dissipation of pore pressure.

  10. Value of magnetic resonance imaging in the mid-term follow-up of osteochondritis dissecans of the femoral condyle and talus

    Purpose: Definition of the prognostic value of clinical and morphological findings in the mid-term follow-up of OCD of the femoral condyle and talus. Demonstration of the consolidation of OCD on MRI depending on different therapies. Materials and Methods: 76 patients were examined before and at an average of 30 months after conservative or surgical therapy using T1 and T2 weighted SE and 3D-FISP sequences and contrast enhanced studies. Six clinical (age, gender, site, duration and severity of symptoms, therapy) and six morphological (size, signal intensity, fragmentation, contrast enhancement, condition of cartilage, staging) data were registered on first MRI and correlated with the degree of consolidation of OCD (partial and complete remission, no change and progression) on control MRI. Results: Patients under 17 years showed partial or complete remissions in 73%, those of 17 years or older in 33%. Conservatively treated patients had a higher remission rate (54%) than those treated with different surgical techniques (drilling 50%, refixation 43%, abrasio 38%). Small OCDs had a higher remission rate than large lesions (63% vs. 33%). OCDs covered with intact cartilage healed better than lesions with chondral defects (61% vs. 26%). Contrast enhancing fragments had a better prognosis than non-enhancing lesions (100% vs. 40%). Conclusions: Prognosis of OCD can be better estimated when size of OCD, condition of cartilage and enhancement of contrast agent is graduated with MRI and patient age is registered. The consequences for therapy planning are great. (orig.)

  11. Assessment of Slope Instability and Risk Analysis of Road Cut Slopes in Lashotor Pass, Iran

    Mohammad Hossein Taherynia; Mojtaba Mohammadi; Rasoul Ajalloeian

    2014-01-01

    Assessment of the stability of natural and artificial rock slopes is an important topic in the rock mechanics sciences. One of the most widely used methods for this purpose is the classification of the slope rock mass. In the recent decades, several rock slope classification systems are presented by many researchers. Each one of these rock mass classification systems uses different parameters and rating systems. These differences are due to the diversity of affecting parameters and the degree...

  12. Decision Guide for Roof Slope Selection

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  13. Steady state phreatic surfaces in sloping aquifers

    Loáiciga, Hugo A.

    2005-08-01

    Steady state groundwater flow driven by constant recharge in an unconfined aquifer overlying sloping bedrock is shown to be represented, using the Dupuit approximation, by an ordinary differential equation of the Abel type y(x) . y'(x) + a . y(x) + x = 0, whose analytical solution is derived in this work. This article first investigates the case of zero saturated thickness at the upstream boundary, a flow system reminiscent of perched groundwater created by percolation of precipitation or irrigation in a sloping aquifer fully draining at its downstream boundary. A variant of this flow system occurs when the phreatic surface mounds and produces groundwater discharge toward the upstream boundary. This variant is a generalization of the classical groundwater flow problem involving two lakes connected by an aquifer, the latter being on sloping terrain in this instance. Analytical solutions for the phreatic surface's steady state geometry are derived for the case of monotonically declining hydraulic head as well as for the case of a mounded phreatic surface. These solutions are of practical interest in drainage studies, slope stability, and runoff formation investigations. It is shown that the flow factor a = -$\\sqrt{{\\rm K}/{\\rm N} tan β (where K, N, and tan β are the hydraulic conductivity, vertical recharge, and aquifer slope, respectively) has a commanding role on the phreatic surface's solutions. Two computational examples illustrate the implementation of this article's results.

  14. The logarithmic slope in diffractive DIS

    The logarithmic slope of diffractive structure function is a potential observable to separate the hard and soft contributions in diffraction, allowing to disentangle the QCD dynamics at small-x region. In this paper we extend our previous analyzes and calculate the diffractive logarithmic slope for three current approaches in the literature: (i) the Bartels-Wusthoff model, based on perturbative QCD, (ii) the CKMT model, based on Regge theory and (iii) the Golec-Biernat-Wusthoff model which assumes that the saturation phenomena is present in the HERA kinematic region. We analyze the transition region of small to large momentum transfer and verify that future experimental results on the diffractive logarithmic slope could discriminate between these approaches

  15. The Sloping Land Conversion Program in China

    Liu, Zhen

    By overcoming the barriers that limit access to financial liquidity and human resource, the Sloping Land Conversion Program (SLCP) can promote rural livelihood diversification. This paper examines this effect using a household survey data set spanning the 1999 implementation of the Sloping land...... conversion program. Our results show that SLCP works as a valid external policy intervention on rural livelihood diversification. In addition, the findings demonstrate that there exist heterogeneous effects of SLCP implementation on livelihood diversification across different rural income groups. The lower...

  16. 距骨骨软骨损伤的诊断及关节镜治疗%Diagnosis and arthroscopic treatment of osteochondral lesions of the talus

    郭秦炜; 胡跃林; 焦晨; 敖英芳; 于长隆

    2008-01-01

    目的 总结、分析距骨骨软骨损伤的症状、体征、影像学特点、关节镜下治疗方法及手术效果.方法 2000年至2005年共收治34例距骨骨软骨损伤患者,对其临床资料包括症状、体征、X线片、MRI表现、关节镜手术方法等进行回顾性分析,术后随访根据主观和客观评分判断疗效.术前美国足踝外科后足评分平均(71±8)分,术前主观疼痛程度评分(7.5±1.3)分.结果 34例患者MRI均有骨软骨损伤征象,其中21例通过X线片检查发现距骨骨软骨损伤.距骨骨软骨损伤的主要症状为负重疼痛以及运动后加重,MRI诊断准确率较X线片高(χ2=16.07,P<0.001).31例患者获得随访,平均随访时间为28个月.术后美国足踝外科后足评分(91±9)分,显著高于术前(t=9.147,P<0.001);术后主观疼痛程度评分(2.4±2.3)分,显著低于术前(t=10.853,P<0.001);临床疗效优良率为87.1%.结论 MRI检查能够提高诊断的正确率,关节镜微创手术治疗距骨骨软骨损伤效果良好.%Objective To summarize and analyze the diagnosis and arthroscopic treatment of osteochondral lesion of talus(OLT).Methods From 2000 to 2005 the data of 34 patients of OLT of the talus were retrospectively studied,including the symptom,physical examination,image,arthroscopic treatment.All patients took X-ray and MRI examination before the arthroscopic surgery.Arthroscopic debridement was performed for all patients,in addition to drilling in 5 cases,and microfracture in 18 cases.Before operation,ankle-hindfoot score of American Orthopaedic Foot and Ankle Society(AOFAS)was 71±8,and the score of pain(visual analogue scale,VAS)Was 7.5±1.3.Results Weight-bearing pain of the ankle joint aggravated after exercise was the predominant complaint of OLT.X-ray examination was negative in 13 cases,and all lesions were detected by MRI,which was signifcantly better than X-ray(χ2=16.07,P<0.001).Thirty-one patients were followed up for an average of 28

  17. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    2010-07-01

    ... COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and shafts shall be ventilated by mechanical ventilation equipment during development. Such equipment shall... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation of slopes and shafts....

  18. Passive solar meets North slope rockies

    Duffield, J.

    1980-01-01

    The origin and construction of a passive solar home near Missoula, Montana is described. The site is a relatively cold and wet north slope huckleberry/larch habitat. The key element of the design is integration of a wood furnace/fireplace/oven into a massive Trombe wall. The design has emerged from an on-going interaction of the builder, site, and materials.

  19. MIBSA: Multi Interacting Blocks for Slope Analysis

    Dattola, Giuseppe; Crosta, Giovanni; Castellanza, Riccardo; di Prisco, Claudio

    2016-04-01

    As it is well known, the slope instabilities have very important consequences in terms of human lives and activities. So predicting the evolution in time and space of slope mass movements becomes fundamental. This is even more relevant when we consider that the triggering mechanisms are a rising ground water level and the occurrence of earthquakes. Therefore, seasonal rainfall has a direct influence on the triggering of large rock and earthslide with a composite failure surface and causing differential behaviors within the sliding mass. In this contribution, a model describing the slope mass by means of an array of blocks that move on a prefixed failure surface, is defined. A shear band located at the base of each block, whose behavior is modelled via a viscous plastic model based on the Perzyna's approach, controls the slip velocity of the block. The motion of the blocks is obtained by solving the second balance equation in which the normal and tangential interaction forces are obtained by a specific interaction model. The model has been implemented in an original code and it is used to perform a parametric analysis that describes the effects of block interactions under a transient ground water oscillation. The numerical results confirm that the normal and tangential interactions between blocks can inhibit or induce the slope movements. The model is tested against some real case studies. This model is under development to add the dynamic effects generated by earthquake shaking.

  20. A Novel Way To Practice Slope.

    Kennedy, Jane B.

    1997-01-01

    Presents examples of using a tic-tac-toe format to practice finding the slope and identifying parallel and perpendicular lines from various equation formats. Reports the successful use of this format as a review in both precalculus and calculus classes before students work with applications of analytic geometry. (JRH)

  1. Slope stability and erosion control: Ecotechnological solutions

    J.E. Norris; A. Stokes; S.B. Mickovski; E. Cammeraat; R. van Beek; B.C. Nicoll; A. Achim

    2008-01-01

    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used i

  2. Ranking Slope Stability in Frozen Terrain

    Stothoff, S.; Dinwiddie, C. L.; Walter, G. R.; Necsoiu, M.

    2011-12-01

    Motivated by the need to assess the risk of permafrost thaw to infrastructure, such as roads, bridges, and pipelines, a landscape-scale approach was developed to rank the risk of slope failures and thermokarst development in areas of seasonally frozen soils underlain by permafrost. The approach has two parts: (i) identifying locations where permafrost thaw is likely to occur under future climates, and (ii) identifying areas where thaw would have consequences with respect to a disturbance. The developed screening tool uses (i) land classification maps developed from remotely sensed data and (ii) a thermohydrologic hazard risk assessment to identify areas susceptible to slope instability under current and future climate states. The screening tool combines a numerical ground thawing and freezing dynamics model for calculating the thickness of the active layer and depth of permafrost with a simple slope stability model that is based upon the Level I Stability Analysis (LISA) approach of Harrell et al. (1992). Instead of using the numerical models directly within probabilistic sampling, a response function for the factor of safety in slope stability is developed from numerical simulations that systematically vary input parameters across their range of applicability. The response function is used within Monte Carlo sampling for each grid cell in a landscape model, with a probability distribution for each input parameter assigned to each grid cell based on (i) classes defined for each grid cell; (ii) a digital elevation model; (iii) empirical, mathematical, and numerical interpretive models; and (iv) probabilistic descriptions of the parameters in the interpretive models. For example, the root cohesion distribution is defined by vegetation class, with vegetation spread across the landscape using Landsat-derived vegetation classification maps. The probability of slope failure is the fraction of parameter realizations that result in a factor of safety less than 1. Ranking

  3. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    Gui-rong Zhang; Ya-jun Qian; Zhang-chun Wang; Bo Zhao

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  4. 距骨缺血坏死的MRI表现(附12例报告)%MRI features of avascular necrosis of talus:a report of 12 cases

    马晓文; 李海燕

    2011-01-01

    目的 评价MRI检查对距骨缺血坏死早期诊断及治疗方法选择的价值.方法 对已确诊的12例距骨缺血坏死的MRI表现进行回顾性分析.结果 本组12例均行MRI检查.4例距骨早期坏死,病灶呈不规则条带状异常信号,T1WI呈低信号,T2WI呈高信号,均伴有周围骨髓水肿;8例典型距骨坏死,即地图样表现,T2WI病灶中间呈高信号,周边环绕低信号的硬化带.结论 MRI对于距骨早期缺血坏死的诊断具有重要价值,并且可以准确评价其坏死程度,为临床治疗方案的选择提供客观依据.%Objective To explore the applied value of MRI in diagnosis and clinical administration for avascular necrosis of talus. Methods MRI findings were reviewed in 12 patients with complaint of avascular necrosis of talus at a 0. 35T MR machine. Results All cases underwent MRI scan. The early necrosis of talus in 4 cases were showed,the lesions appeared as irregular linear abnormal signals accompanied by surrounding bone marrow edema, the lesions were hypointense on T1 WI and hyperintense on T2WI. The typical MRI signs showed map-like changes in 8 cases, the lesions were hyperintense in the center and hypointense in the periphery on T2 WI. Conclusion MRI is of important value for early diagnosis of avascular necrosis of talus,and can accurately evaluate the necrosis degree of the lesions,which may provide informations for clinical administration.

  5. Automatic delineation of geomorphological slope units

    Alvioli, Massimiliano; Marchesini, Ivan; Fiorucci, Federica; Ardizzone, Francesca; Rossi, Mauro; Reichenbach, Paola; Guzzetti, Fausto

    2014-05-01

    Slope units are portions of land surface, defined by the general requirement of maximizing homogeneity within a single unit and heterogeneity between different units, but whose formal characterization and practical delineation has been done in different ways. This is often justified by the statement that the slope unit partitioning of a territory can be used to describe a variety of landforms and processes, and for the assessment of natural hazards. As a result, they need to be tailored according to the specific model in use. This may result in an ambiguous definition of such objects, while an objective definition is highly desirable, which would also allow their reproducibility. We have developed a publicly accessible Web Processing Service (WPS) with the aim of incrementally achieve a satisfactory definition of slope unit. The service allows any user to connect to a CNR-IRPI (Perugia) server, upload his own Digital Elevation Model (DEM) and optional additional data, specify parameters constraining the size and aspect of slope units, and quickly obtain the result in a layer in vector format. The calculation is performed using a parallel algorithm, resulting in a processing time short enough to allow the user to tune the input parameters, repeating the process for a sufficient number of times in order to obtain a satisfactory result. We use quantitative criteria to define and draw the slope units, depending on the input parameters. The algorithm starts from a hydrologically consistent partition of the study area into half-basins with a large number of contributing DEM cells. Each of the half-basins is then checked against a few requirements: maximum area required by the user and maximum standard deviation of the aspect on two orthogonal directions. Those specific half-basin that do not meet the requirements are partitioned further, requiring a lower number of contributing cells. The process is iterated until no half-basin exceeds the user-specified thresholds. Our

  6. CCN-supersaturation spectra slopes (k)

    Jiusto, J. E.; Lala, G. G.

    1981-11-01

    Theoretically the slope k of a CCN-supesaturation spectrum should equal two thirds of the slope of the total (soluble) aerosol size distribution. Workshop results tended to verify this relation. The k values are markedly different depending on whether one is measuring ambient CCN concentrations at supersaturations S above or below approximately 0.1-0.2%. The larger k values for S approximately 0.1% is consistent with the greater decrease in large particle concentration with increasing size. It is concluded that over the S range of 0.02% to 2%, two power fits (and k values) may sometimes suffice for a reasonable approximation of the CCN distribution. At other times, and with laboratory generated aeosols, such an approach is inadequate and requires refinement.

  7. Pipeline modeling and assessment in unstable slopes

    Caceres, Carlos Nieves [Oleoducto Central S.A., Bogota, Cundinamarca (Colombia); Ordonez, Mauricio Pereira [SOLSIN S.A.S, Bogota, Cundinamarca (Colombia)

    2010-07-01

    The OCENSA pipeline system is vulnerable to geotechnical problems such as faults, landslides or creeping slopes, which are well-known in the Andes Mountains and tropical countries like Colombia. This paper proposes a methodology to evaluate the pipe behaviour during the soil displacements of slow landslides. Three different cases of analysis are examined, according to site characteristics. The process starts with a simplified analytical model and develops into 3D finite element numerical simulations applied to the on-site geometry of soil and pipe. Case 1 should be used when the unstable site is subject to landslides impacting significant lengths of pipeline, pipeline is straight, and landslide is simple from the geotechnical perspective. Case 2 should be used when pipeline is straight and landslide is complex (creeping slopes and non-conventional stabilization solutions). Case 3 should be used if the pipeline presents vertical or horizontal bends.

  8. Wildlife response on the Alaska North Slope

    Recognizing the need for a comprehensive plan to deal with potentially oiled wildlife on the Alaskan North Slope, a multifaceted wildlife protection strategy was developed and implemented during 1991. The strategy incorporated all aspects of wildlife response including protection of critical habitat, hazing, capture and stabilization, long term rehabilitation, and release. The primary wildlife response strategy emphasizes controlling of the release and spreading of spilled oil at the source to prevent or reduce contamination of potentially affected species and/or their habitat. A secondary response strategy concentrates on keeping potentially affected wildlife away from an oiled area through the use of deterrent techniques. Tertiary response involves the capture and treatment of oiled wildlife. Implementation of the strategy included the development of specialized training, the procurement of equipment, and the construction of a bird stabilization center. The result of this initiative is a comprehensive wildlife response capability on the Alaskan North Slope. 1 ref., 5 figs., 3 tabs

  9. An Extended Mild-Slope Equation

    PAN Junning; HONG Guangwen; ZUO Qihua

    2000-01-01

    On the assumption that the vortex and the vertical velocity component of the current are small, a mild-slope equation for wave propagation on non-uniform flows is deduced from the basic hydrodynamic equations, with the terms of ( h h)2 and /2h h included in the equation. The terms of bottom friction, wind energy input and wave nonlinearity are also introduced into the equation. The wind energy input functions for wind waves and swells are separately considered by adopting Wen′s (1989) empirical formula for wind waves and Snyder′s observation results for swells. Thus, an extended mild-slope equation is obtained, in which the effects of refraction, diffraction, reflection, current, bottom friction, wind energy input and wave nonlinearity are considered synthetically.

  10. Viscous liquid flow on Martian dune slopes

    Dobrovolskis, Anthony R.

    2014-01-01

    The observed temporary dark streaks on some dune slopes on Mars may be due to thin sheets of water (or some other liquid) trickling downhill. This note corrects conceptual errors in a previous paper (M\\"{o}hlmann and Kereszturi 2010, Icarus 207, 654-658) which affect the velocity profile of such flows, and produce over-estimates of their depths and mass fluxes by factors of almost two.

  11. Back analysis of reinforced soil slopes

    Procházka, P.; Trčková, Jiřina

    Southampton : WIT Press, 2012 - (Mammoli, A.; Brebbia, C.), s. 423-432 ISBN 978-1-84564-602-8. ISSN 1743-3533. [Computational methods and experiments in material characterisation /3./. Material Characterisation 2007. Bologna (IT), 13.06.2007-15.06.2007] R&D Projects: GA AV ČR IAA2119402 Institutional research plan: CEZ:AV0Z30460519 Keywords : back analysis * numerical and experimental modelling * slopes Subject RIV: JM - Building Engineering

  12. Assessment of slope stability endangered by groundwater

    Procházka, P.; Trčková, Jiřina

    Southampton : WIT Press, 2006 - (Brebbia, C.; Conti, M.; Tiezzi, E.), s. 709-718 ISBN 978-1-84564-048-4. [Ravage of Planet. Baryloche (AR), 12.12.2006-14.12.2006] R&D Projects: GA AV ČR IAA2119402 Institutional research plan: CEZ:AV0Z30460519 Keywords : physical and numerical modelling * slope stability * groundwater Subject RIV: JN - Civil Engineering

  13. Geosynthetic clay liners - slope stability field study

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project

  14. Geosynthetic clay liners - slope stability field study

    Carson, D.A. [Environmental Protection Agency, Cincinnati, OH (United States); Daniel, D.E. [Univ. of Illinois, Urbana, IL (United States); Koerner, R.M. [Geosynthetic Research Institute, Philadelphia, PA (United States); Bonaparte, R. [GeoSyntec Consultants, Atlanta, GA (United States)

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  15. Stability of nuclear crater slopes in rock

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects

  16. Monitoring method for the aging slope by geophysical explorations

    Tatsuru, YAMAMOTO; Harushige, KUSUMI; 楠見, 晴重 (編); Tsuyoshi, YAMAMOTO; Makoto, NAKAMURA

    2009-01-01

    This research is monitoring the ground condition inside the aging slope. The purpose of this research is to consider the value of a monitoring method with the ground evaluating system to estimate the soundness in the aging slope. In Japan, at the high economic growth period after the 1960’s, a great number of slopes were formed to construct many roads and most slope protection methods were to cover with shotcrete on the slope. Now, those slopes are aging. Therefore, there is a possibility tha...

  17. Slope stability monitoring from microseismic field using polarization methodology

    Yu. I. Kolesnikov

    2003-01-01

    Full Text Available Numerical simulation of seismoacoustic emission (SAE associated with fracturing in zones of shear stress concentration shows that SAE signals are polarized along the stress direction. The proposed polarization methodology for monitoring of slope stability makes use of three-component recording of the microseismic field on a slope in order to pick the signals of slope processes by filtering and polarization analysis. Slope activity is indicated by rather strong roughly horizontal polarization of the respective portion of the field in the direction of slope dip. The methodology was tested in microseismic observations on a landslide slope in the Northern Tien-Shan (Kyrgyzstan.

  18. Chemical differences in atmospheric, talus and stream water from a small rainforest low-mountain experimental catchment, Sikhote-Alin' Mountains, Pacific Russia

    Boldeskul, Anna; Shamov, Vladimir; Kozhevnikova, Nadezhda; Gartsman, Boris; Bugaets, Andrey; Lupakov, Sergey; Matveyeva, Lubov; Lutsenko, Tatyana

    2013-04-01

    Some results of detailed hydrological and hydrochemical observations on the experimental low-mountain basin "Elovyi", Pacific Russia in 2011-2012, are presented. The studied catchment area is 82 ha, and its elevation ranges from 620 to 960 m a.s.l. The basin is shaped by a narrow deeply-incised valley, and entirely covered by typical coniferous-deciduous forest. The regional temperate and humid climate is attributed to monsoon activity. Brown mountain-forest soils (top and sides of the valley); mountain-taiga illuvial-humus soils (sides of the valley); soddy-alluvial soils (bottom of valley) are the main soil types there. The underlying effusive rocks (mostly liparite porphyres, porphyrites, dacites, syenites and its tuffs) are rather acid. All the dataset obtained was studied to reveal the most applicable chemical indices for distinguishing of water sources. Preliminarily, the seven genetic categories of water as 1) cyclonic rain, 2) intermittent rain, 3) throughfall, 4) talus flow, 5) low-water streamflow (specific discharge is less 2.5 l/s per sq. km), 6) low flood streamflow (specific discharge is more 2.5 and less 16 l/s per sq. km), and 7) medium flood streamflow (specific discharge is more 16 and less 100 l/s per sq. km) were sampled and analyzed for chemical compounds. The talus water was taken from tensiolysimeters. According to the sequence of the water types given above, the following is the series of mean values of several compounds: TDS (ppm) = 2.4, 5.7, 9.4, 28.2, 22.6, 24.2, 22.7; pH = 4.8, 4.4, 5.2, 6.4, 5.9, 5.8, 5.7; K (ppm) = 0.09, 1.27, 3.47, 1.35, 1.42, 1.63, 1.49; Na (ppm) = 0.04, 0.21, 0.39, 2.30, 1.60, 1.91, 1.64; Ca (ppm) = 0.36, 1.11, 1.00, 4.11, 2.97, 3.40, 2.98; Mg (ppm) = 0.02, 0.16, 0.32, 0.74, 0.54, 0.57, 0.59; Hydrocarbonate (ppm) = 0.33, 0.16, 2.61, 10.3, 3.07, 3.84, 3.10; Sulfate (ppm) = 0.94, 4.25, 1.49, 8.00, 9.75, 10.20, 8.24; Chloride (ppm) = 0.19, 0.85, 0.46, 1.47, 0.75, 0.97, 0.88; Nitrate (ppm) = 0.70, 2.74, 0.52, 1.39, 2

  19. Propagation of internal waves up continental slope and shelf

    DAI Dejun; WANG Wei; QIAO Fangli; YUAN Yeli; XIANG Wenxi

    2008-01-01

    In a two-dimensional and linear framework, a transformation was developed to derive eigensolutions of internal waves over a subcriticai hyperbolic slope and to approximate the continental slope and shelf. The transformation converts a hyperbolic slope in physical space into a fiat bottom in transform space while the governing equations of internal waves remain hyperbolic. The eigensolutions are further used to study the evolution of linear internal waves as it propagates to subcritical continental slope and shelf. The stream function, velocity, and vertical shear of velocity induced by internal wave at the hyperbolic slope are analytically expressed by superposition of the obtained eigensolutions. The velocity and velocity shear increase as the internal wave propagates to a hyperbolic slope. They become very large especially when the slope of internal wave rays approaches the topographic slope, which is consistent with the previous studies.

  20. Mechanical interaction between roots and soil mass in slope vegetation

    2010-01-01

    The most basic function of slope vegetation is to strengthen rock and soil mass through plant roots which increase the shear strength of the slope markedly and thereby increase the stability of the slope. However, the calculation of the reinforcement ability of slope vegetation still remains at the stage of judging by experience, because it is rather difficult due to the intricacy and volatility of the force condition of plant roots in rock and soil medium. Although some scholars have tried to study the interaction between plant roots and soil mass, the systemic analysis of the mechanical reinforcement mechanism and the contribution of plant roots to strengthening the rock and soil mass on the surface of the slope is untapped. In this paper, by analyzing the mechanism of slope vegetation and the corresponding reinforcement effect, the effects that slope vegetation generates on the shear strength of slope soil mass are studied, thereby a theoretical basis for plant protection designing is provided.

  1. THE ARTIFICIAL NEURAL NETWORK OF FORECASTING OPEN MINING SLOPE STABILITY

    魏春启; 白润才

    2000-01-01

    The artificial neural network model which forecasts Open Mining Slope stability is established by neural network theory and method. The nonlinear reflection relation between stability target of open mining slope and its influence factor is described. The method of forecasting Open Mining Slope stability is brought forward.

  2. Slope stability of moraines, Cordillera Blanca, Peru

    Klimes, J.; Novotny, J.

    2012-12-01

    Landslides originating from inner slopes of moraine dams are often capable of producing glacial lakes outburst floods (GLOFs). Therefore assessing stability conditions of the moraines is important for predicting this potentially damaging phenomenon. Characteristics of the basic mechanical properties of the material and geophysical investigations were applied to collect necessary information for slope stability assessment of the Palcacocha Lake moraine dam, Peru. The lake is situated in the Cordillera Blanca Mts. at the altitude of about 4,500m asl and produced catastrophic GLOF in 1941. Another minor flood originated in 2003 due to landslide impact into the lake. Detailed investigations of this landslide site included geomorphological mapping, geophysical investigations and characterization of basic mechanical properties of the forming material. Geomorphological mapping identified dormant landslide with scarp up to 2m high which developed on the edge of the inner moraine slope. It is conditioned by set of parallel extension trenches which also affected the origin of 2003 landslide. Within its scarp area, significant water bearing layer was noticed around 10 m bellow the moraine surface. Three profiles were investigated using electric resistivity tomography performed on 4poing light instrument with 24 electrodes and with spacing ranging from 1 to 4m. Results helped to verify geometry of the main shear plane of the mapped landslide as well as the spacing and depth of extension trenches. Significant heterogeneity in the moraine resistivity characteristics was found. The high resistivity regions are explained by rock block accumulation whereas the low resistivity may represent wet layers within the moraine body. Grain size distribution of 33 disturbed soil samples originating from moraine material within the Cordillera Blanca Mts., Peru were determined and classified according to the UCSC classification system. The samples were taken from moraine dams and slopes

  3. Outerplanar graph drawings with few slopes

    Knauer, Kolja; Walczak, Bartosz

    2012-01-01

    We consider straight-line outerplanar drawings of outerplanar graphs in which the segments representing edges are parallel to a small number of directions. We prove that Delta-1 directions suffice for every outerplanar graph with maximum degree Delta>=4. This improves the previous bound of O(Delta^5), which was shown for planar partial 3-trees, a superclass of outerplanar graphs. The bound is tight: for every Delta>=4 there is an outerplanar graph of maximum degree Delta which requires at least Delta-1 distinct edge slopes for an outerplanar straight-line drawing.

  4. Slope equalities for genus 5 surface fibrations

    Tenni, Elisa

    2010-01-01

    K. Konno proved a slope equality for fibred surfaces with fibres of odd genus and general fibre of maximal gonality. More precisely he found a relation between the invariants of the fibration and certain weights of special fibres (called the Horikawa numbers). We give an alternative and more geometric proof in the case of a genus 5 fibration, under generality assumptions. In our setting we are able to prove that the fibre with positive Horikawa numbers are precisely the trigonal ones, we compute their weights explicitly and thus we exhibit explicit examples of regular surfaces with assigned invariants and Horikawa numbers.

  5. NOAA TIFF Image - 4m Bathymetric Slope of Slope for Red Snapper Research Areas in the South Atlantic Bight, 2010

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains unified Bathymetric Slope of Slope GeoTiffs with 4x4 meter cell resolution describing the topography of 15 areas along the shelf edge off the...

  6. Slope evolution of GRB correlations and cosmology

    Dainotti, Maria Giovanna; Piedipalumbo, Ester; Capozziello, Salvatore

    2013-01-01

    Gamma -ray bursts (GRBs) observed up to redshifts $z>9.4$ can be used as possible probes to test cosmological models. Here we show how changes of the slope of the {\\it luminosity $L^*_X$ -break time $T^*_a$} correlation in GRB afterglows, hereafter the LT correlation, affect the determination of the cosmological parameters. With a simulated data set of 101 GRBs with a central value of the correlation slope that differs on the intrinsic one by a $5\\sigma$ factor, we find an overstimated value of the matter density parameter, $\\Omega_M$, compared to the value obtained with SNe Ia, while the Hubble constant, $H_0$, best fit value is still compatible in 1$\\sigma$ compared to other probes. We show that this compatibility of $H_0$ is due to the large intrinsic scatter associated with the simulated sample. Instead, if we consider a subsample of high luminous GRBs ($HighL$), we find that both the evaluation of $H_0$ and $\\Omega_M$ are not more compatible in 1$\\sigma$ and $\\Omega_M$ is underestimated by the $13\\%$. Ho...

  7. Foam drainage on a sloping weir.

    Grassia, P; Neethling, S J; Cilliers, J J

    2002-08-01

    Foam drainage is considered in a froth flotation tank with a sloping weir. The drainage is shown to be gravity dominated in most of the foam, except for thin boundary layers at the base of the froth, and along the sloping weir. The mathematical reason for the boundary layers is that capillary suction is a much weaker effect than gravity, but cannot be ignored altogether, because it represents a singular perturbation. The relative weakness of capillary suction with respect to gravity is represented by a key dimensionless parameter, denoted K, which satisfies Kbulk of the flotation tank. The liquid volume fraction in the jet is likewise O(K(-2/3)) larger than that in the bulk. Across the jet, the foam exhibits a known profile of liquid fraction vs. distance from the weir: this is known as the equilibrium profile. The foam requires a distance equivalent to O(K(4/3)) weir lengths to dry out significantly from the wetness value on the weir, but a larger O(K) distance to fall back to a wetness comparable with that in the bulk of the froth. PMID:15015124

  8. Assessment of highway slope failure using neural networks

    Tsung-lin LEE; Hung-ming LIN; Yuh-pin LU

    2009-01-01

    An artificial intelligence technique of back-propagation neural networks is used to assess the slope failure. On-site slope failure data from the South Cross-Island Highway in southern Taiwan are used to test the performance of the neural network model. The numerical results demonstrate the effectiveness of artificial neural networks in the evaluation of slope failure potential based on five major factors, such as the slope gradient angle, the slope height, the cumulative precipitation, daily rainfall and strength of materials.

  9. Multi Rotor Uav at Different Altitudes for Slope Mapping Studies

    Tahar, K. N.

    2015-08-01

    Most of consultation work only involves a small area, especially for slope mapping studies. The objective of this study is to evaluate the accuracy of slope mapping results from different altitudes at semi-undulated area and undulated area. Multi-rotor UAV is used as an instrument for data acquisition for this study. The images of slope were captured from five different altitudes in the same study area. All images were processed using photogrammetric software to produce digital elevation models and digital orthophoto. In this study, slope map from all different altitudes were identified and recorded for analysis purposes. It was found that the accuracy of slope is increase when altitude is increase. In conclusion, the condition of slope such as semi-undulated and undulated area did have an influence on the slope accuracy.

  10. Linear chirped slope profile for spatial calibration in slope measuring deflectometry.

    Siewert, F; Zeschke, T; Arnold, T; Paetzelt, H; Yashchuk, V V

    2016-05-01

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument's spatial resolution, or more generally by the instrument's modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed. PMID:27250379

  11. Overland flow resistances on varying slope gradients and partitioning on grassed slopes under simulated rainfall

    Pan, Chengzhong; Ma, Lan; Wainwright, John; Shangguan, Zhouping

    2016-04-01

    It is still unclear how slope steepness (S) and revegetation affect resistance (f) to overland flow. A series of experiments on runoff hydraulics was conducted on granular surfaces (bare soil and sandpaper) and grassed surfaces, including grass plots (GP), GP with litter (GL), and GP without leaves (GS) under simulated rainfall and inflow (30erosion on hillslopes impacted by vegetation restoration.

  12. On Front Slope Stability of Berm Breakwaters

    Burcharth, Hans F.

    reshaping of a large Norwegian breakwater exposed to the North Sea waves. As a motivation for applying the Van der Meer formula a discussion of design parameters related to berm breakwater stability formulae is given. Comparisons of front erosion predicted by the use of the Van der Meer formula with model......The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison with the......, relative berm width, method of armour stone placement, and hydraulic parameters. The formulae should cover the structure range from statically stable berm breakwaters to conventional double layer armoured breakwaters....

  13. Methodologies for risk analysis in slope instability

    This paper is an approach to the different methodologies used in conducting landslide risk maps so that the reader can get a basic knowledge about how to proceed in its development. The landslide hazard maps are increasingly demanded by governments. This is because due to climate change, deforestation and the pressure exerted by the growth of urban centers, damage caused by natural phenomena is increasing each year, making this area of work a field of study with increasing importance. To explain the process of mapping a journey through each of the phases of which it is composed is made: from the study of the types of slope movements and the necessary management of geographic information systems (GIS) inventories and landslide susceptibility analysis, threat, vulnerability and risk. (Author)

  14. Seismic Stability of Reinforced Soil Slopes

    Tzavara, I.; Zania, Varvara; Tsompanakis, Y.; Psarropoulos, P.N.

    Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... to prevent the development of slope instability taking advantage of their reinforcing effect. For this purpose, a onedimensional (SDOF) model, based on Newmark’s sliding block model as well as a two-dimensional (plane-strain) dynamic finite-element analyses are conducted in order to investigate the...... impact of the most significant parameters involved, such as the flexibility of the sliding system, the mechanical properties of the soil and of the geosynthetics material, the frequency content of the excitation and the interface shear strength....

  15. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  16. Foam drainage on a sloping weir

    Grassia, P.; Neethling, S. J.; Cilliers, J. J.

    2002-08-01

    Foam drainage is considered in a froth flotation tank with a sloping weir. The drainage is shown to be gravity dominated in most of the foam, except for thin boundary layers at the base of the froth, and along the sloping weir. The mathematical reason for the boundary layers is that capillary suction is a much weaker effect than gravity, but cannot be ignored altogether, because it represents a singular perturbation. The relative weakness of capillary suction with respect to gravity is represented by a key dimensionless parameter, denoted K, which satisfies Kll 1. The volumetric flow at any point along the weir boundary layer is the accumulation of all liquid that has rained onto the weir above the point in question: typically, this flow is linear in distance measured downward from the weir lip. All liquid raining onto the weir is ultimately returned to the pulp phase as a high-speed jet. The jet velocity scales with the frac{2}{3} power of distance from the weir lip, and is O(K^{-2/3}) times larger than the typical velocity in the gravity-dominated flow in the bulk of the flotation tank. The liquid volume fraction in the jet is likewise O(K^{-2/3}) larger than that in the bulk. Across the jet, the foam exhibits a known profile of liquid fraction vs. distance from the weir: this is known as the equilibrium profile. The foam requires a distance equivalent to O(K^{4/3}) weir lengths to dry out significantly from the wetness value on the weir, but a larger O(K) distance to fall back to a wetness comparable with that in the bulk of the froth.

  17. Dendrogeomorphic approach to estimating slope retreat, Maxey Flats, Kentucky

    A dendrogeomorphic study of slope retreat was conducted at the Maxey Flats nuclear-waste disposal site in northeastern Kentucky. Tree roots exposed by surface lowering were used as an indicator of ground surface at the time of germination. The amount of lowering was measured and divided by tree-ring-determined tree age. Surface lowering and slope degradation rates were estimated for three slopes below waste-burial trenches and compared with data obtained from sediment troughs and erosion frames at the site. Mean rates of slope retreat ranged from 1.92 to 3.16 mm/yr. Sediment-trough results are two to three orders of magnitude less than dendrogeomorphic and erosion-frame estimates of slope degradation, which suggests that piping and solution-weathering processes may be important in slope degradation. Slope aspect and declivity may be important factors affecting retreat of slopes with a uniform lithology. Dendrogeomorphic techniques provide results comparable to those in the literature and offer a rapid method for estimating slope retreat that integrates slope processes over many years

  18. Dendrogeomorphic approach to estimating slope retreat, Maxey Flats, Kentucky

    Hupp, Cliff R.; Carey, William P.

    1990-07-01

    A dendrogeomorphic study of slope retreat was conducted at the Maxey Flats nuclear-waste disposal site in northeastern Kentucky. Tree roots exposed by surface lowering were used as an indicator of ground surface at the time of germination. The amount of lowering was measured and divided by tree-ring-determined tree age. Surface lowering and slope degradation rates were estimated for three slopes below waste-burial trenches and compared with data obtained from sediment troughs and erosion frames at the site. Mean rates of slope retreat ranged from 1.92 to 3.16 mm/yr. Sediment-trough results are two to three orders of magnitude less than dendrogeomorphic and erosion-frame estimates of slope degradation, which suggests that piping and solution-weathering processes may be important in slope degradation. Slope aspect and declivity may be important factors affecting retreat of slopes with a uniform lithology. Dendrogeomorphic techniques provide results comparable to those in the literature and offer a rapid method for estimating slope retreat that integrates slope processes over many years.

  19. Three-dimensional analysis of slopes reinforced with piles

    高玉峰; 叶茂; 张飞

    2015-01-01

    Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.

  20. Model tests of geosynthetic reinforced slopes in a geotechnical centrifuge

    Geosynthetic-reinforced slopes and walls became very popular in recent years because of their financial, technical, and ecological advantages. Centrifuge modelling is a powerful tool for physical modelling of reinforced slopes and offers the advantage to observe the failure mechanisms of the slopes. In order to replicate the gravity induced stresses of a prototype structure in a geometrically 1/N reduced model, it is necessary to test the model in a gravitational field N times larger than that of the prototype structure. In this dissertation, geotextile-reinforced slope models were tested in a geotechnical centrifuge to identify the possible failure mechanisms. Slope models were tested by varying slope inclination, tensile strengths of the geotextiles, and overlapping lengths. Photographs of the geotextile reinforced slope models in flight were taken with a digital camera and the soil deformations of geotextile reinforced slopes were evaluated with Particle Image Velocimetry (PIV). The experimental results showed that failure of the centrifuge models initiated at midheight of the slope, and occurred due to geotextile breakage instead of pullout. The location of the shear surface is independent of the tensile strength of the geotextile; it is dependent on the shear strength of the soil. It is logical to see that the required acceleration of the centrifuge at slope failure was decreased with increasing slope inclination. An important contribution to the stability of the slope models was provided by the overlapping of the geotextile layers. It has a secondary reinforcement effect when it was prolonged and passed through the shear surface. Moreover, the location of the shear surface observed with PIV analysis exactly matches the tears of the retrieved geotextiles measured carefully after the centrifuge testing. It is concluded that PIV is an efficient tool to instrument the slope failures in a geotechnical centrifuge.(author)

  1. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    Kretzschmar, M.; Hainc, N.; Studler, U. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Bieri, O. [University Hospital Basel, Division of Radiological Physics, Basel (Switzerland); Miska, M. [University Hospital, Department of Orthopedics, Heidelberg (Germany); Wiewiorski, M.; Valderrabano, V. [University Hospital Basel, Department of Orthopedic Surgery, Basel (Switzerland)

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm{sup 2}/ms) was significantly higher compared to normal cartilage (1.46 μm{sup 2}/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  2. Slope Stability: Factor of Safety along the Seismically Active Continental Slope Offshore Sumatra

    Patton, J. R.; Goldfinger, C.; Djadjadihardja, Y.; None, U.

    2013-12-01

    Recent papers have documented the probability that turbidites deposited along and downslope of subduction zone accretionary prisms are likely the result of strong ground shaking from great earthquakes. Given the damaging nature of these earthquakes, along with the casualties from the associated tsunamis, the spatial and temporal patterns of these earthquakes can only be evaluated with paleoseismologic coring and seismic reflection methods. We evaluate slope stability for seafloor topography along the Sunda subduction offshore Sumatra, Indonesia. We use sediment material properties, from local (Sumatra) and analogous sites, to constrain our estimates of static slope stability Factor of Safety (FOS) analyses. We then use ground motion prediction equations (GMPE's) to estimate ground motion intensity (Arias Intensity, AI) and acceleration (Peak Ground Acceleration, PGA), as possibly generated by fault rupture, to constrain seismic loads for pseudostatic slope stability FOS analyses. The ground motions taper rapidly with distance from the fault plane, consistent with ground motion - fault distance relations measured during the 2011 Tohoku-Oki subduction zone earthquake. Our FOS analyses include a Morgenstern method of slices probabilistic analysis for 2-D profiles along with Critical Acceleration (Ac) and Newmark Displacement (Dn) analysis of multibeam bathymetry of the seafloor. In addition, we also use estimates of ground motion modeled with a 2004 Sumatra-Andaman subduction zone (SASZ) earthquake fault slip model, to also compare with our static FOS analyses of seafloor topography. All slope and trench sites are statically stable (FOS < 1) and sensitive to ground motions generated by earthquakes of magnitude greater than 7. We conclude that for earthquakes of magnitude 6 to 9, PGA of 0.4-0.6 to 1.4-2.5 g would be expected, respectively, from existing GMPE's. However, saturation of accelerations in the accretionary wedge may limit actual accelerations to less than 1

  3. Improvement parameters in dynamic compaction adjacent to the slopes

    Elham Ghanbari

    2015-04-01

    Full Text Available Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils. A number of researchers have investigated experimentally and numerically the improvement parameters of soils using dynamic compaction, such as crater depth, improvement depth, and radial improvement, however, these parameters are not studied for improvement adjacent to the slopes or trenches. In this research, four different slopes with different inclinations are modeled numerically using the finite element code ABAQUS, and impact loads of dynamic compaction are applied. The static factors of safety are kept similar for all trenches and determined numerically by application of gravity loads to the slope using strength reduction method (SRM. The analysis focuses on crater depth and improvement region which are compared to the state of flat ground. It can be observed that compacted area adjacent to the slopes is narrower and slightly away from the slope compared to the flat state. Moreover, crater depth increases with increase in slope inclination.

  4. Calculation method of solar radiation incident upon slopes considering topography

    When radiation in a basin is calculated, slope inclination, slope orientation and topography of surroundings have to be taken into account. The method of approximation to topography by triangles proposed by Miura et al. is employed to take slope characteristics and topography of surroundings into account. Authors prepared 360 directions' shades altitudes, i.e. every degree of angle, for each triangle in advance, and used these shades' altitudes to calculate both direct radiation on a slope diffuse radiation taking topography of surroundings into account. And authors show how to estimate hourly direct and diffuse solar radiation from hourly horizontal global radiation and synthesize hourly slope global radiation on slopes

  5. Numerical analysis of slope failure in granitic soil slopes : main types of instability and remediation measures

    Neves, Manuel João Niza das

    2015-01-01

    Slope stability is a worldwide problem which above all affects people’s safety. However, in tropical or temperate regions (such as the Mediterranean), a combination of their topographic, geologic and climate settings contributes to an increased landslide hazard. A full understanding of this topic, and what it entails, requires an accurate knowledge of its triggers and awareness to the different instability mechanisms that may occur. Furthermore, the instability phenomenon may present differen...

  6. Coherent sea-level fluctuations along the global continental slope

    Chris W. Hughes; Meredith, Michael P

    2006-01-01

    Signals in sea-level or, more properly, sub-surface pressure (SSP; sea-level corrected for the inverse barometer effect) are expected to propagate rapidly along the continental slope due to the effect of sloping topography on wave modes, resulting in strongly correlated SSP over long-distances. Observations of such correlations around the Arctic and Antarctic are briefly reviewed, and then extended using satellite altimetry to the rest of the global continental slope. It is shown that such lo...

  7. Slope Stability Analysis Using Limit Equilibrium Method in Nonlinear Criterion

    Hang Lin; Wenwen Zhong; Wei Xiong; Wenyu Tang

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the fric...

  8. Geotechnical methods of reinforcement of slopes near railroads

    Vladimir D.Vereskun; Victor A.Yavna

    2015-01-01

    In order to generate well-based design decisions on reinforcement of landslide slopes and road embankment slopes, a system of combined geotechnical analysis of geological conditions is suggested which includes topographic and geo-physical survey, and laboratory studies of soils using infra-red spectroscopy methods. Calculations of slopes' deflected modes are carried out with taking into account elastic and elasto-plastic behavior of soil, and the presence of supporting man-made constructions. Results of the application of the system suggested may be used as criteria for the classification of landslide slopes along permanent ways according to the degree of danger when used for transportation.

  9. HeppleⅤ型距骨骨软骨损伤的手术治疗%Surgical treatment for Hepple typeⅤosteochondral lesion of the talus

    施忠民; 顾文奇; 许同龙; 邹剑; 薛剑锋; 梅国华

    2015-01-01

    Background:Most of osteochondral lesions of the talus (OLT) results from trauma of ankle fracture or ankle sprain. There are a lot of literatures on the classification and treatment of OLT, but there is no consensus of treatment or prognosis in Hep-ple typeⅤlesion, especially for lesion more than 1.5 mm2. Objective: To investigate surgical techniques and clinical outcomes of medial malleolar osteotomy and cancellous bone graft with platelet-rich plasma (PRP) gel covering for Hepple typeⅤOLT. Methods:From October 2013 to December 2014, 13 patients with Hepple typeⅤOLT underwent medial malleolar osteoto-my, cyst debridement and cancellous bone graft with PRP gel covering. There were 9 males and 4 females with a mean age of 38.2 years old (range, 19-61 years). The mean onset was 25 months (range, 11-49 months). Ankle X-ray examination and MRI were obtained at the final follow-up. The VAS score and American Orthopaedic Foot and Ankle Society (AOFAS) an-kle-hindfoot score were recorded before surgery and at the final follow-up. Results:Twelve patients got the final follow-up with a mean duration of 15 months (range, 9-22 months). X-rays showed bone union at a mean time of 12 weeks (range, 10-14 weeks) after treatment. MRI showed good recovery of cartilage at OLT lesion, except for 2 cases of excessive hyperplasia without ankle function disability. The mean VAS and AOFAS ankle-hindfoot scores improved significantly after surgery (P1.5 cm2的缺损的治疗和预后临床并不统一.目的:探讨经内踝截骨、松质骨植骨、富血小板血浆凝胶覆盖治疗HeppleⅤ型距骨骨软骨损伤的手术技巧及预后.方法:2013年10月至2014年11月,13例HeppleⅤ型内侧距骨骨软骨损伤行内踝截骨、囊腔病灶清理、松质骨打压植骨及富血小板血浆凝胶覆盖软骨缺损区域.男9例,女4例;年龄19~61岁,平均38.2岁.病程11~49个月,平均25个月.末次随访摄踝关节正侧位片,并同时行踝关节MRI检查,比较术

  10. Slope destabilization during the Messinian Salinity Crisis

    Gargani, Julien; Bache, François; Jouannic, Gwenael; Gorini, Christian

    2014-05-01

    During the Messinian Salinity Crisis, ~ 6 Myr ago, deep canyons were incised when a huge sea-level drawdown of ~ 1.5 km affected the Mediterranean Sea. Nearly contemporaneously, more than 2 km of evaporites accumulated in the basin. This event was the consequence of a complex interaction of tectonic movements and global sea-level variation associated with climatic evolution. This unusual event ended with the reflooding of the Mediterranean area. In this paper, using seismic line interpretation, we show that several landslides occurred in various parts of the Mediterranean Basin during this crisis. Three of these landslides are well preserved, and their dynamics were analyzed. Modeling of the slope stability demonstrates that these landslides may have been due to (i) the relief created by the deep erosion, and/or (ii) the reflooding, which triggered a pore pressure increase. The relatively small run-out distances of the three landslides suggest propagation in a submarine environment and triggering by sea-level rise.

  11. Design of Rock Slope Reinforcement: An Himalayan Case Study

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  12. Biogeochemistry of southern Australian continental slope sediments

    Sediment cores from the middle to lower slope of the southern continental margin of Australia between the Great Australian Bight and western Tasmania are compared in terms of marine and terrigenous input signals during the Holocene. The mass accumulation rates of carbonate, organic carbon, biogenic Ba. and Al are corrected for lateral sediment input (focusing), using the inventory of excess 230Th in the sediment normalised to its known production rate in the water column above each site. The biogenic signal is generally higher in the eastern part of the southern margin probably due to enhanced productivity associated with seasonal upwelling off southeastern South Australia and the proximity of the Subtropical Front, which passes just south of Tasmania. The input of Al, representing the terrigenous signal, is also higher in this region reflecting the close proximity of river runoff from the mountainous catchment of southeastern Australia. The distribution pattern of Mn and authigenic U, together with pore-water profiles of Mn++, indicate diagenetic reactions driven by the oxidation of buried organic carbon in an oxic to suboxic environment. Whereas Mn is reduced at depth and diffuses upwards to become immobilised in a Mn-rich surface layer. U is derived from seawater and diffuses downward into the sediment, driven by reduction and precipitation at a depth below the reduction zone of Mn. The estimated removal rate of U from seawater by this process is within the range of U removal measured in hemipelagic sediments from other areas, and supports the proposition that hemipelagic sediments are a major sink of U in the global ocean. Unlike Mn, the depth profile of sedimentary Fe appears to be little affected by diagenesis, suggesting that little of the total Fe inventory in the sediment is remobilised and redistributed as soluble Fe. Copyright (1999) Blackwell Science Pty Ltd

  13. Quasi-steady flow in sloping aquifers

    Akylas, Evangelos; Gravanis, Elias; Koussis, Antonis D.

    2015-11-01

    Mass conservation links the storage S and the outflow Q of an aquifer. A relation between them (an S-Q relation) provides then a model governing the evolution of these quantities. In this work we construct an analytical quasi-steady state model which exploits the properties of the exact S-Q relation associated with steady state solutions of the Boussinesq equation for the sloping aquifer (that is, the Henderson and Wooding [1964] solutions). The model is derived by matching the asymptotic forms of the exact S-Q relation which arise for small and large values of the Henderson and Wooding parameter λ. These asymptotic forms provide a novel rederivation of well-known semiempirical S-Q relations of the form Q∝ S and Q∝ S2, and they lead to soluble quasi-steady state models. The quadratic asymptotic relation turns out to hold for surprisingly low values of λ. This characteristic and its formal properties allow smooth matching with the linear relation at λ=π2/4=2.47. The obtained model holds over the entire parameter space. An important characteristic of the model, stemming from its derivation, is that it involves only the geometric and hydraulic quantities present in the exact Boussinesq equation. The model is tested by best fitting four data sets from experiments simulating aquifer drainage. The derived curves for the drained volume are in excellent agreement with the data. The estimated values for k and n are also in overall very good agreement with their reference values.

  14. Culture of Sharing: North Slope Leaders Forge Trail into Future

    Patkotak, Elise Sereni

    2010-01-01

    To create a strong local economy, the community needs a workforce. In Native communities, the workforce should be grounded in the local culture and values. On the North Slope of Alaska, this has long been a goal of leaders. To achieve this goal, North Slope leaders came together February 2010 in Barrow, Alaska, for the "Tumitchiat" Leadership…

  15. The World Is Not Flat: Can People Reorient Using Slope?

    Nardi, Daniele; Newcombe, Nora S.; Shipley, Thomas F.

    2011-01-01

    Studies of spatial representation generally focus on flat environments and visual input. However, the world is not flat, and slopes are part of most natural environments. In a series of 4 experiments, we examined whether humans can use a slope as a source of allocentric, directional information for reorientation. A target was hidden in a corner of…

  16. Wave overtopping resistance of grassed dike slopes in Vietnam

    Trung, L.H.; Van der Meer, J.W.; Luong, N.Q.; Verhagen, H.J.; Schiereck, G.J.

    2011-01-01

    The resistance of various grassed slopes against wave overtopping has been appraised by means of the Wave Overtopping Simulator in situ for a couple of years in Viet Nam. Destructive test results show that a dike slope covered with grass could suffer a certain overtopping discharge not smaller than

  17. RMS slope of exponentially correlated surface roughness for radar applications

    Dierking, Wolfgang

    2000-01-01

    In radar signature analysis, the root mean square (RMS) surface slope is utilized to assess the relative contribution of multiple scattering effects. For an exponentially correlated surface, an effective RMS slope can be determined by truncating the high frequency tail of the roughness spectrum...

  18. Conceptual model for reinforced grass on inner dike slopes

    ComCoast

    2005-01-01

    A desk study has been carried out in order to develop a conceptual model for the erosion of inner dike slopes with reinforced grass cover. Based on the results the following can be concluded: The presence of a geosynthetic in a grass slope can be taken into account in the EPM method by increasing th

  19. Assessing slope stability in unplanned settlements in developing countries.

    Anderson, Malcolm G; Holcombe, Liz; Renaud, Jean-Philippe

    2007-10-01

    Unplanned housing in developing countries is often located on steep slopes. Frequently no building code is enforced for such housing and mains water is provided with no drainage provision. Both of these factors can be particularly significant in terms of landslide risk if, as is so often the case, such slopes lack any planned drainage provision. There is thus a need to develop a model that facilitates the assessment of slope stability in an holistic context, incorporating a wide range of factors (including surface cover, soil water topographic convergence, slope loading and point source water leakage) in order that appropriate advice can be given as to the general controls on slope stability in such circumstances. This paper outlines a model configured for this specific purpose and describes an application to a site in St. Lucia, West Indies, where there is active slope movement in an unplanned housing development on relatively steep topography. The model findings are in accord with the nature of the current failure at the site, provide guidance as to the significance of slope drainage and correspond to inferences drawn from an application of resistance envelope methods to the site. In being able to scenario test a uniquely wide range of combinations of factors, the model structure is shown to be highly valuable in assessing dominant slope stability process controls in such complex environments. PMID:17107745

  20. An experimental model for slopes subject to weathering

    Voulgari, C.

    2015-09-01

    In this paper, an experimental prototype model to study the influence of cracks on the morphologic evolution of natural cliffs subject to progressive retreat induced by weathering is presented. A set of small scale laboratory tests is designed to investigate weathering induced successive landslides. Weathering is applied to the slope model by wetting the slope crest through a rainfall simulator device. The moisture content and the suction of the soil during the tests are monitored by soil moisture sensors and tensiometers that are buried inside the slope model. High resolution cameras record the behaviour of the slope model and GeoPIV is used to analyse the frames and obtain the deformations of the slope model during the tests. After a short time of rainfall, vertical cracks appear in the slope model with significant vertical deformations developing. Experimental results indicate that there is a strong connection between moisture content - thus degree of weathering - and the occurrence of a landslide. A prediction model of slope failures can be introduced based on the observed moisture content response of the slope models.

  1. Identifying Colluvial Slopes by Airborne LiDAR Analysis

    Kasai, M.; Marutani, T.; Yoshida, H.

    2015-12-01

    Colluvial slopes are one of major sources of landslides. Identifying the locations of the slopes will help reduce the risk of disasters, by avoiding building infrastructure and properties nearby, or if they are already there, by applying appropriate counter measures before it suddenly moves. In this study, airborne LiDAR data was analyzed to find their geomorphic characteristics to use for extracting their locations. The study site was set in the suburb of Sapporo City, Hokkaido in Japan. The area is underlain by Andesite and Tuff and prone to landslides. Slope angle and surface roughness were calculated from 5 m resolution DEM. These filters were chosen because colluvial materials deposit at around the angle of repose and accumulation of loose materials was considered to form a peculiar surface texture differentiable from other slope types. Field survey conducted together suggested that colluvial slopes could be identified by the filters with a probability of 80 percent. Repeat LiDAR monitoring of the site by an unmanned helicopter indicated that those slopes detected as colluviums appeared to be moving at a slow rate. In comparison with a similar study from the crushed zone in Japan, the range of slope angle indicative of colluviums agreed with the Sapporo site, while the texture was rougher due to larger debris composing the slopes.

  2. Slope Morphology of Twin Peaks, Mars Pathfinder Landing Site

    Hobbs, Steven; Paine, Colin; Clarke, Jon; Caprarelli, Graziella

    2010-05-01

    Development of slope form over time has long been a concern of geomorphologists, although recently this concern has been moved to slope processes rather than form. There are two basic approaches. The first is theoretical, involving modeling of different types and rates of processes, and calculation of results in terms of slope evolution over time. Comparisons with real-life slopes can follow this approach [1], [2]. The second, inductive, approach involves field measurements to test ideas about slope evolution starting from the assumption that observed slopes represent different stages of an essentially similar evolution [3]. Space is substituted for time, and a number of slopes, assumed to be of increasing age, are measured and placed in an evolutionary sequence (e.g. [4], [5], [6]). [5] showed that slope angles are modally distributed, with the modal angles controlled by the materials (regolith) of which the slopes are formed, and by the processes operating on them. Data can be obtained directly from field work or from digital elevation models (DEM) derived from remote sensing investigations [7]. DEMs are particularly useful to study inaccessible planets, such as Mars, where on site observations are restricted to only a few landing sites. Here we present a study of slopes on the Twin Peaks, two small hills located 780 m north and 910 m south of the Mars Pathfinder landing site at the mouth of the Ares and Tiu flood channels. The presence of streamlined hills, jumbled surfaces and conglomerates suggested the region was modified by massive flooding 1.8 - 3.5 billion years ago [8], [9]. The streamlined forms and terraces of the Twin Peaks were taken to indicate catastrophic flood conditions that were believed to be prevalent in the area [8]. It was also suggested that the northernmost peak was topped by floodwater, causing its flatter appearance. Other researchers postulated alternative geomorphological origins for the features observed at the Pathfinder landing site

  3. Simulating the seismic behaviour of soil slopes and embankments

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    2010-01-01

    parametric dynamic numerical analyses taking into account not only the main parameters dominating the seismic slope stability, but also the inherent assumptions of the applied approaches that affect the obtained results. The investigation conclude to a realistic procedure for seismic slope stability...

  4. Wave energy saturation on a natural beach of variable slope.

    Sallenger, A.H., Jr.; Holman, R.A.

    1985-01-01

    Time series of flow were measured across the inner surf zone during a storm. These data were used to quantify the dependence of wave height (transformed from measured flow) and velocity on local slope and depth. Local depth increased with local slope and was independent of deepwater wave steepness.-from Authors

  5. SLOPE--a real-time ECG data compressor.

    Tai, S C

    1991-03-01

    An ECG sampled at a rate of 250 samples s-1 or more produces a large amount of redundant data that are difficult to store and transmit. In the paper, a real-time ECG data compressor, SLOPE, is presented. SLOPE considers some adjacent samples as a vector, and this vector is extended if the coming sample falls in a fan spanned by this vector and a threshold angle; otherwise, it is delimited as a linear segment. By this means SLOPE repeatedly delimits linear segments of different lengths and different slopes. The Huffman codes for the parameters to describe this linear segment are transmitted for that linear segment. SLOPEa, which is a slightly modified version of SLOPE, is used to compress ambulatory ECG data. All the operations used by SLOPE and SLOPEa are simple integer operations, both SLOPE and SLOPEa being real-time compressors. Experimental results show that an average of 192 bits per channel per second (bpcs) for each ECG signal is obtained by SLOPE and an average of 148 bpcs for each ECG signal is obtained by SLOPEa. PMID:1857123

  6. Long Wave Reflection and Transmission over A Sloping Step

    Hsien-Kuo CHANG; Jin-Cheng LIOU

    2004-01-01

    This investigation examines long wave reflection and transmission induced by a sloping step. Bellman and Kalaba's(1959) invariant imbedding is introduced to find wave reflection. An alternative method matching both the surface elevation and its surface slope of each region at the junction is applied to the determination of wave reflection and transmission.The proposed methods are compared with the accurate numerical results of Porter and Porter (2000) and those of Mei(1983) for a vertical step. The wave reflection obtained for a mildly sloping step differs significantly from the result of Mei. The wave reflection is found to fluctuate owing to wave trapping for the mild sloping step. The height and the face slope of the step are important for determining wave reflection and transmission coefficients.

  7. Wave run-up on permeable fixed reveted slopes

    I.G. Kantardgi

    2014-10-01

    Full Text Available A numerical model of surface wave movement and water filtration in saturated-unsaturated porous medium has been developed. The model can be used to define the parameters of the wave run-up on the slope protected with a permeable fixed layer. The model is applied to determine positions of the free wave surface at the different times, including such parameters as the height of wave run-up and wave run-down on the slope. In addition, both flow velocity field in the upper protected layer and moisture distribution in the soil body of the slope were defined. The model is verified with the results of the published large-scale tests that have been conducted at Technical University Braunschweig in the wave flume with the slopes protected according to Elastocoast technology. The numerical model can be applied to calculate the run-up of extreme waves on protected engineering and beach slopes in natural conditions.

  8. Effects of rainfall infiltration on deep slope failure

    2009-01-01

    With the finite element method and the limit equilibrium method, a numerical model has been established for examining the effects of rainfall infiltration on the stability of slopes. This model is able to availably reflect the variations in pore pressure field in slopes, dead weight of soil, and the softening of soil strength caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing is studied to analyze the effects of rainfall infiltration on the seepage field and the slope stability. The simulated results show that a deep slope failure is prone to occur when rainfall infiltration will lead to a remarkable variation in the seepage field, in particular, for large range pore water pressure increase in slopes.

  9. Effects of rainfall infiltration on deep slope failure

    SUN JianPing; LIU QingQuan; LI JiaChun; AN Yi

    2009-01-01

    With the finite element method and the limit equilibrium method, a numerical model has been estab-lished for examining the effects of rainfall infiltration on the stability of slopes. This model is able to availably reflect the variations in pore pressure field in slopes, dead weight of soil, and the softening of soil strength caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing is studied to analyze the effects of rainfall infiltration on the seepage field and the slope stability. The simulated results show that a deep slope failure is prone to occur when rainfall infiltration will lead to a remarkable variation in the seepage field, in particular, for large range pore water pressure increase in slopes.

  10. DOWNWARD SLOPING DEMAND CURVES FOR STOCK AND LEVERAGE

    Liem Pei Fun

    2006-01-01

    Full Text Available This research attempts to investigate the effect of downward sloping demand curves for stock on firms' financing decisions. For the same size of equity issuance, firms with steeper slope of demand curves for their stocks experience a larger price drop in their share price compare to their counterparts. As a consequence, firms with a steeper slope of demand curves are less likely to issue equity and hence they have higher leverage ratios. This research finds that the steeper the slope of demand curve for firm's stock, the higher the actual leverage of the firm. Furthermore, firms with a steeper slope of demand curves have higher target leverage ratios, signifying that these firms prefer debt to equity financing in order to avoid the adverse price impact of equity issuance on their share price.

  11. The effects of plant density of Melastoma malabathricum on the erosion rate of slope soil at different slope orientations

    Aimee Halim n; Osman Normaniza

    2015-01-01

    abstract Malaysia's cut slopes, especially for road lines accommodation, are prone to erosions and landslides. These problems mainly occur due to lack of vegetation cover and strong erosive forces. In addition, the topography factors have also become a major factor affecting soil degradation. Thus, this study is aimed at determining the effects of planting density of a selected species, namely Melastoma malabathricum;one, two, and three seedlings per box, on the erosion rate at selected slopes of different orientation (morning and evening sun) at the Guthrie Corridor Expressway, Selangor. In six months of observation, treatment with three seedlings/box on the morning sun slope showed a lower erosion rate by 69.2%than those with the same treatment on the evening sun slope. In addition, the treatment of the three seedlings recorded at month six (final observation) had the highest reduction of soil saturation level (STL), by 23.6%. Furthermore, the physiological values of the species studied, grown on the morning sun slope, were higher in terms of stomatal conductance and photosynthetic rate by 12.1%and15.8%(three seedlings/box), respectively. The overall results showed that plant density was inversely related to the STL and erosion rate on the slope. In conclusion, a planting density of three seedlings/box and morning sun orientation gave positive effects on the plant's physiological performance of the slope, reducing the STL, as well as alleviating the erosion rate of slope soils.

  12. Slope mass rating and kinematic analysis of slopes along the national highway-58 near Jonk, Rishikesh, India

    Tariq Siddique

    2015-10-01

    Full Text Available The road network in the Himalayan terrain, connecting remote areas either in the valleys or on the hill slopes, plays a pivotal role in socio-economic development of India. The planning, development and even maintenance of road and rail networks in such precarious terrains are always a challenging task because of complexities posed by topography, geological structures, varied lithology and neotectonics. Increasing population and construction of roads have led to destabilisation of slopes, thus leading to mass wasting and movement, further aggravation due to recent events of cloud bursts and unprecedented flash floods. Vulnerability analysis of slopes is an important component for the “Landslide Hazard Assessment” and “Slope Mass Characterisation” guide planners to predict and choose suitable ways for construction of roads and other engineering structures. The problem of landslides along the national highway-58 (NH-58 from Rishikesh to Devprayag is a common scene. The slopes along the NH-58 between Jonk and Rishikesh were investigated, which experienced very heavy traffic especially from March to August due to pilgrimage to Kedarnath shrine. On the basis of slope mass rating (SMR investigation, the area falls in stable class, and landslide susceptibility score (LSS values also indicate that the slopes under investigation fall in low to moderate vulnerability to landslide. More attentions should be paid to the slopes to achieve greater safe and economic benefits along the highway.

  13. Is there a distinct continental slope fauna in the Antarctic?

    Kaiser, Stefanie; Griffiths, Huw J.; Barnes, David K. A.; Brandão, Simone N.; Brandt, Angelika; O'Brien, Philip E.

    2011-02-01

    The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ˜3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (BIOdiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be

  14. Anisotropy of Soil Hydraulic Properties Along Arable Slopes

    JING Yuan-Shu; ZHANG Bin; A.THIMM; H.ZEPP

    2008-01-01

    The spatial variations of the soil hydraulic properties were mainly considered in vertical direction.The objectives of this study were to measure water-retention curves,θ(ψ),and unsaturated hydraulic conductivity functions,K(ψ),of the soils sampled at different slope positions in three directions,namely,in vertical direction,along the slope and along the contour,and to determine the effects of sampling direction and slope position of two soil catenas.At the upper slope positions,the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content,θ,at a certain soil water potential (-1500 kPa <ψ<-10 kPa) and had the greatest unsaturated hydraulic conductivity,K,at ψ> -10kPa.At the lower slope positions,K at ψ>-10 kPa was smaller in the vertical direction than in the direction along the slope.The deep soils (100-110 cm) had similar soil hydraulic properties in all the three directions.The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity.These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling.

  15. Pleistocene tectonic accretion of the continental slope off Washington

    Silver, E.A.

    1972-01-01

    Interpretation of reflection profiles across the Washington continental margin suggests deformation of Cascadia basin strata against the continental slope. Individual reflecting horizons can be traced across the slope-basin boundary. The sense of offset along faults on the continental slope is predominantly, but not entirely, west side up. Two faults of small displacement are seen to be west-dipping reverse faults. Magnetic anomalies on the Juan de Fuca plate can be traced 40-100 km eastward under the slope, and structural interpretation combined with calculated rates of subduction suggests that approximately 50 km of the outer continental slope may have been formed in Pleistocene time. Rocks of Pleistocene age dredge from a ridge exposing acoustic "basement" on the slope, plus the results of deep-sea drilling off northern Oregon, are consistent with this interpretation. The question of whether or not subduction is occurring at present is unresolved because significant strain has not affected the upper 200 m of section in the Cascadia basin. However, deformation of the outer part of the slope has been episodic and may reflect episodic yield, deposition rate, subduction rate, or some combination of these factors. ?? 1972.

  16. Soil erosion processes on sloping land using REE tracer

    Sheet erosion is the main performance in the slope soil erosion process at the primary stage of natural rainfall. For three times of rainfall during experiment, the ratios of sheet erosion to total erosion account for 71%, 48% and 49% respectively, which showed that the sloping erosion was still at the primary stage from sheet erosion to rill erosion. With the rainfall going, the rill erosion amount increase. It showed that soil erosion was changing from sheet erosion to rill erosion. The sources of sediment from different sections of the plot were analyzed, and the results indicated that whatever the sheet erosion changed, the ratio erosion of upper part of surface soil was always lower than 10%. Sheet erosion came mainly from the lower section of surface soil. With the ratios to the amount of total rill erosion changes, the rill erosion amount of each section regularly changes too. The general conclusion is that when the rainfall ends, relative erosion of different slope element to the foot of slope is: 1 meter away accounts for 16%, 2-4 meters away is 6% and 5-9 meters away is 3%. The ratio of rill erosion amount of these three slope element is 5:2:1, which shows the rill erosion amount are mainly from the slope element of 4 meters from the foot of slope. (authors)

  17. Finite element analysis of effect of ankle ligment injury on stability of talus%踝关节周围韧带损伤对距骨稳定性影响的有限元分析

    戴海飞; 余斌; 张凯瑞; 熊小龙; 陈志刚; 崔壮; 卢昌怀

    2012-01-01

    Objective To explore the biomechanical properties of the talus in different ankle ligament injury through finite element analysis and therefore to provide theoretical basis for the clinic treatment of ankle ligament injury. Methods CT scan data, three-dimensional anatomically detailed finite element models was used to simulate human ankle joint internal rotation, external rotation stress state of the finite element analysis. The contact pressure and Von Mises stress distribution of the talar articular surface were compared in different ankle ligament injury. Results The three-dimensional finite element model of bone, cartilage and ligaments of the normal human ankle was established. The biomechanical stability of the talus which influenced by the ankle ligament was different in the internal rotation and external rotation force. Conclusion The anterior tibio-talar ligament playes an important role in ankle stability under external rotation force while under internal rotation force, calca-neofibular ligament playes an important role.%目的 有限元法分析踝关节周围韧带损伤对距骨生物力学稳定性的影响,为临床踝关节周围韧带损伤的治疗提供理论依据.方法 基于正常男性的足踝部螺旋CT扫描数据,运用三维重建软件,建立足踝部三维几何模型,最后导人Abaqus 6.9软件中,模拟人体踝关节内旋、外旋的受力状况,分析踝关节周围韧带损伤后距骨各关节面的接触压力及Von Mises应力分布.结果 建立包括骨、软骨、韧带在内的正常人体足踝部三维有限元模型,踝关节周围韧带在踝关节内旋、外旋时对距骨的生物力学影响不同.结论 在外旋作用力下胫距后韧带对踝关节的稳定性具有重要作用,而在内旋作用力下跟腓韧带对踝关节的稳定性具有重要作用.

  18. Slope Deformation Prediction Based on Support Vector Machine

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  19. Stability analysis of slopes of expansive soils considering rainfall effect

    ZHU Fang-cai

    2007-01-01

    Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content and shear strength inculding cohesion and friction angle, was studied in detail. Acoording to change of water content and depth effect during rainfall, distribution of shear strength in slopes of expansive soils was analyzed. Finally,with a slope of expansive soils in Nanning city of Guangxi Autonomous Region of China as a case, safety factor and slip surface was studied.

  20. Photogrammetry and altimetry: Part C: frequency distributions of lunar slopes

    Wu, Sherman S.C.; Moore, H.J.

    1972-01-01

    The metric and panoramic cameras aboard the Apollo 16 spacecraft provided photographs on which photogrammetric techniques may be used to obtain precise measurements of horizontal distances and elevations. These measurements of horizontal distances and elevations. These measurements may in turn be used to obtain slope-frequency distributions of lunar surfaces at various slope lengths and for various types of terrain and geologic map units (ref. 30-4). Bistatic radar and photoclinometric methods have also been used to obtain slope-frequency distributions of lunar surfaces. The problem arises as to how well these varied methods correlate with one another (ref. 30-5).

  1. A modified risk evaluation method of slope failure in a heavy rain. For application to slopes in widespread area

    A risk evaluation method of slope failure has developed to combine gas-liquid two phase flow analysis as a rainfall infiltration analysis and elastic-plastic finite element analysis as a slope stability analysis and has applied to a slope field. This method, however, had a difficulty to apply to many slopes since it needed many parameters to calculate the risk of the slope failure. The method was simplified to lessen input parameters which included an inclination and length of a slope, a depth of bedrock and a rainfall pattern assuming that hydraulic properties and mechanical properties were similar for the same geological unit. The method was also modified to represent a water collection structure, a surface runoff, an existence of a forest road and a water level variation of a downward river / pond which could affect infiltration phenomena. Results of the simplification and the modification made it possible to enhance a prediction precision of the method and create a hazard map of slopes in widespread area. (author)

  2. North Slope, Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for brown bears, caribou, and muskoxen for the North Slope, Alaska. Vector polygons in this data set...

  3. Slope movements in Callejón de Huyalas, Peru

    Vilímek, V.; Zapata, M. L.; Stemberk, Josef

    2003-01-01

    Roč. 35, supplementum (2003), s. 39-51. ISSN 0300-5402 Institutional research plan: CEZ:AV0Z3046908 Keywords : slope movements * natural hazards * Cordillera Blanca Subject RIV: DB - Geology ; Mineralogy

  4. Adaptive slope compensation for high bandwidth digital current mode controller

    Taeed, Fazel; Nymand, Morten

    converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter. The......An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations in...... experimental results of measured loop-gain at different operating points are presented to validate the theoretical performance of the controller....

  5. The swans and geese of Alaska's arctic slope

    US Fish and Wildlife Service, Department of the Interior — A mid-summer aerial search was made on the 23,000 square miles of waterfowl habitat on Alaska's Arctic slope. Observations included 159 whistling swan (Olor...

  6. North Slope, Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for whales, seals, walruses, and polar bears for the North Slope of Alaska. Vector polygons in this data...

  7. Goose banding, Koyukuk and north slope Alaska, 1978

    US Fish and Wildlife Service, Department of the Interior — Goose drive trapping and banding was successfully conducted in the Galena and North Slope areas of Alaska in 1978. This was the fourth year of a five consecutive...

  8. CONCIDERING OF FUNDATION SLOPE TO DETERMINE THE ENGENEERING STRUCTURE HEIGHT

    Zubko, Z.

    2005-01-01

    The article considers some aspects of determining of engineering structure height. It proposes the technique for terrain slope consideration in the course of base adjustment under difficult conditions of geodetic surveying.

  9. Percent Agricultural Land Cover on Steep Slopes (Future)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  10. Mass movement hazard assessment model in the slope profile

    Colangelo, A. C.

    2003-04-01

    The central aim of this work is to assess the spatial behaviour of critical depths for slope stability and the behaviour of their correlated variables in the soil-regolith transition along slope profiles over granite, migmatite and mica-schist parent materials in an humid tropical environment. In this way, we had making measures of shear strength for residual soils and regolith materials with soil "Cohron Sheargraph" apparatus and evaluated the shear stress tension behaviour at soil-regolith boundary along slope profiles, in each referred lithology. In the limit equilibrium approach applied here we adapt the infinite slope model for slope analysis in whole slope profile by means of finite element solution like in Fellenius or Bishop methods. In our case, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. For each slice, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, slope gradient, top of subsurface flow gradient, apparent soil bulk density. The correlations showed the relative weight of cohesion, internal friction angle, apparent bulk density of soil materials and slope gradient variables with respect to the evaluation of critical depth behaviour for different simulated soil moisture content levels at slope profile scale. Some important results refer to the central role of behaviour of soil bulk-density variable along slope profile during soil evolution and in present day, because the intense clay production, mainly Kaolinite and Gibbsite at B and C-horizons, in the humid tropical environment. A increase in soil clay content produce a fall of friction angle and bulk density of material, specially when some montmorillonite or illite clay are present. We have observed too at threshold conditions, that a slight change in soil bulk-density value may disturb drastically the equilibrium of

  11. Novel Measurement Technique of the Tibial Slope on Conventional MRI

    Hudek, Robert; Schmutz, Silvia; Regenfelder, Felix; Fuchs, Bruno; Koch, Peter P.

    2009-01-01

    The posterior inclination of the tibial plateau, which is referred to as posterior tibial slope, is determined routinely on lateral radiographs. However, radiographically, it is not always possible to reliably recognize the lateral plateau, making a separate assessment of the medial and lateral plateaus difficult. We propose a technique to measure the plateaus separately by defining a tibial longitudinal axis on a conventional MRI. The medial plateau posterior tibial slope obtained from radio...

  12. Slope Stability Evaluations by Limit Equilibrium and Finite Element Methods

    Aryal, Krishna Prasad

    2006-01-01

    This thesis deals with slope stability evolutions carried out by commonly used limit equilibrium (LE) and finite element (FE) methods. The study utilizes two LE based software (SLOPE/W and SLIDE) and one FE based software (PLAXIS). The principal difference between these two analyses approaches is that the LE methods are based on the static of equilibrium whereas FE methods utilise the stress‐strain relationship or constitutive law. To fulfil one of the aims of the study, the LE based method...

  13. Assessment of overgrazing on degradation of sloping soil

    Bondi, Giulia; Peruzzi, Eleonora; Macci, Cristina; Doni, Serena; Masciandaro, Grazia; Pistoia, Alessandro

    2012-01-01

    Overgrazing, particularly on slopes, can cause significant alterations in soil quality, determining a greater vulnerability to soil erosion. The aim of this work was to assess the influence of horse overgrazing on sloping (20%) soil properties. Chemical and biochemical parameters have been determined in order to evaluate soil quality. A significant decrease in nutrients was observed after one year. The trend of enzyme activities highlighted a reduction of metabolic processes. However, after o...

  14. Research on the Slope Protection Mechanism of Roots

    Juan Wan

    2013-08-01

    Full Text Available This study aims to investigate the slope protection mechanism of roots. In ecological slope protection, plant roots can fix soil and protect slop through biological and mechanical action. However, previous studies on the slope protection mechanism are still not deep enough and inadequate. By taking four kinds of typical plant roots along Wu-Shen Expressway as the research object, through the indoor tensile test and root morphology observation analysis, the tensile strength and ultimate tension were studied and the influence to the stability of the slope was discussed in this study. The results show that the mean ultimate tension of roots is 7.19~29.96 N. The mean tension of shrub roots is 2~4 times greater than that of herb roots. The ultimate tension of the same plant roots increases with the diameter significantly. To the range of improvement, Shrub roots exceed herb ones. It also indicates that the mean tensile strength of roots are 24.48~74.25 MPa. Compared with the steel HRB235, the tensile strength of herb roots is as great as 1/5~1/3, while Shrub roots is about 1/10~1/5. The slope stability coefficient with plant growing is a positive correlation with roots tension and root number through the sliding surface and is a negative correlation with plants weight. In addition, the slope stability coefficient is related to plant density and root morphology. The test results demonstrate that the roots tension with acute angle or right angle to the landslide surface and the roots shear stiffness with obtuse angle can improve the performance of slope’s anti-slide. Four kinds of plants can improve the stability coefficient of shallow soil. As for the slope protection effect, herbage is superior to shrub. In general, grass-shrub mixed community is the ideal system for slope protection.

  15. Factors affecting the molybdenum line slope by reactive ion etching

    Factors affecting the slope of the reactive ion etched molybdenum line have been studied with a simulation method and with experiments. Plasma chemistry and process parameters of the CF4/O2 mixture for the molybdenum etch have been examined. The theoretical calculation matches experimental results. Surface topography and composition of the etched molybdenum have been analyzed. A highly sloped molybdenum profile can be obtained by using the RIE method with a large process window

  16. Slope Stability Evaluations by Limit Equilibrium and Finite Element Methods

    Aryal, Krishna Prasad

    2006-01-01

    This thesis deals with slope stability evolutions carried out by commonly used limit equilibrium (LE) and finite element (FE) methods. The study utilizes two LE based software (SLOPE/W and SLIDE) and one FE based software (PLAXIS). The principal difference between these two analyses approaches is that the LE methods are based on the static of equilibrium whereas FE methods utilise the stress‐strain relationship or constitutive law. To fulfil one of the aims of the study, the LE based methods...

  17. Assessment of cropland area on sloping land in DPRK

    Following the famines of the mid 1990s, the government of the Democratic People's Republic of Korea (DPRK) authorized cultivation on sloping land before deciding, in the years 2000, to limit this practice on slopes above 15 degrees in order to reduce erosion. There are still many cultivated fields on slopes and their total estimated area ranges from 300,000 ha to more than 2 million ha. This study aims at assessing cropland areas on slopes above 10 and 15 degrees by using high to very high resolution remote sensing satellite imagery. For this purpose, a grid of points was superimposed over the DPRK territory and stratified according to slope, as derived from two DEMs, the 30 m ASTER GDEM V2 and the 3 arc second (∼90 m) SRTM Dem V4. A sample of about 2100 points was drawn using an optimal allocation sampling plan, based on a preliminary assessment of the variance of the estimated cropland percentage per class of slope. These 2100 points were interpreted into cropland, no cropland and doubt using mostly Google Earth imagery acquired after 2004. For slopes above 10 degrees, the area cropped was estimated to be around 1,000,000 ha (5.6% CV) and 742,000 ha (8.1% CV) according to the ASTER and SRTM DEM respectively. Above 15 degrees, the estimated cropland area ranges from 360,000 ha (9.7% CV) with SRTM to 540,000 ha (6.6.% CV) with ASTER. To decide between these two estimations, a validation of the two DEMs should be carried out on a region with similar relief. Alternatively, a higher accuracy DEM such as the one to be derived from the TanDEM-X mission in 2014 should provide more accurate estimates of the cropland area on sloping land

  18. Exploring Benthic Biodiversity Patterns and Hotspots on European Margin Slopes

    Roberto Danovaro; Miquel Canals; Serge Heussner; Nikolaos Lampadariou; Ann Vanreusel

    2009-01-01

    There is increasing evidence that continental slope ecosystems represent one of the major repositories of benthic marine biodiversity. The enhanced levels of biodiversity along slopes are hypothesized to be a source of biodiversity for continental shelves and deeper basins. Continental margins are increasingly altered by human activities, but the consequences of these anthropogenic impacts on benthic biodiversity and ecosystem functioning are almost completely unknown. Thus, there is an urgen...

  19. Exploring benthic biodiversity patterns and hotspots on European margin slopes

    Danovaro, R.; M. Canals; Gambi, C.; S. Heussner; Lampadariou, N.; Vanreusel, A.

    2009-01-01

    There is increasing evidence that continental slope ecosystems represent one of the major repositories of benthic marine biodiversity. The enhanced levels of biodiversity along slopes are hypothesized to be a source of biodiversity for continental shelves and deeper basins. Continental margins are increasingly altered by human activities, but the consequences of these anthropogenic impacts on benthic biodiversity and ecosystem functioning are almost completely unknown. Thus, there is an urgen...

  20. A new vision of carbonate slopes: the Little Bahama Bank

    Mulder, Thierry; Gillet, Hervé; Hanquiez, Vincent; Reijmer, John J.; Tournadour, Elsa; Chabaud, Ludivine; Principaud, Mélanie; Schnyder, Jara; Borgomano, Jean

    2015-04-01

    Recent data collected in November 2014 (RV Walton Smith) on the upper slope of the Little Bahama Bank (LBB) between 30 and 400 m water depth allowed to characterize the uppermost slope (Rankey et al., 2012) over a surface of 170 km2. The new data set includes multibeam bathymetry and acoustic imagery, 3.5 kHz very-high resolution (VHR) seismic reflection lines, 21 gravity cores and 11 Van Veen grabs. The upper slope of the LBB does not show a steep submarine cliff as known from western Great Bahama Bank. The carbonate bank progressively deepens towards the basin through a slighty inclined plateau. The slope value is genus Halimeda. Sediments collected in the deeper part of the basin (water depth = 1080 m) on the distal lobe consist of massive fine to medium well-sorted aragonitic sand. This suggests that carbonate slope systems are able to sort sediment despite the relative short slope distance. Sorting could either be due to flow spilling above the terraces identified in the canyon heads (Mulder et al., 2012) or could result from bottom currents. In this area, flow velocity profiles in the water column show the presence of two superposed water masses with a pycnocline at about 600-700 m water depth. Mulder, T., Ducassou, E., Gillet, H., Hanquiez, V., Tournadour, E., Combes, J., Eberli, G.P, Kindler, P., Gonthier, E., Conesa, G., Robin, C., Sianipar, R., Reijmer, J.J.G., and François A. Canyon morphology on a modern carbonate slope of the Bahamas: Evidence of regional tectonic tilting. Geology, 40(9), 771-774. Rankey, E.C, and Doolittle, D.F. (2012). Geomorphology of carbonate platform-marginal uppermost slopes: Insights from a Holocene analogue, Little Bahama Bank, Bahamas. Sedimentology, 59, 2146-2171.

  1. Problems of definitive slopes mining at Doly Nastup Tusimice

    The instability of slopes influents mining business in many aspects at open-cast mining. The temporary decrease of intended mined volumes due to land slips is common and sometimes there is necessary to change origin-mining plans. It has impact to economy and other essential costs for rehabilitation are required. In case of definitive slopes formation in contact to traffic and communication networks, watercourses and infrastructures of seats stability of slope security there is even more important. Monitoring of rock massive stability plays an important role. Everything which stability of slopes is concerned belongs to essential tasks for mining technicians at open-cast mining. The article explains what ways for definitive slope formation near mining boundary were selected at Severoceske doly j.s.c., Doly Nastup Tusimice mining site. The precautions refer to mining technology, preventive and reconstruction precautions for stabilization of slopes must to solve, are to described. Tasks, which mining engineers, surveyors, geologists and geotechnics have to solve are described. (authors)

  2. Alternative method for direct measurement of tibial slope

    Stijak Lazar

    2014-01-01

    Full Text Available Background/Aim. The tibial slope is one of the most frequently cited anatomical causes of anterior cruciate ligament trauma. The aim of this study was to determine the possibility of direct measuring of the tibial slope of the knee without prior soft tissue dissection in cadavers. Methods. Measurement was performed on the two groups of samples: osteological and cadaveric. The osteological group consisted of 102 matured tibiae and measurement was performed: indirectly by sagittal photographing of the tibia, and directly by a set of parallel bars. The cadaveric group consisted of 50 cadaveric knees and measurement was performed directly by a set of parallel bars. The difference and correlation between indirect and the direct measurements were observed, which included also measuring of the difference and correlation of the tibial slope on the medial and lateral condyles. Results. A statistically significant difference between the direct and indirect method of measuring (p 0.05. However, the slope on the medial condyle, as well as indirect measurement showed a statistically significant difference (p < 0.01. Conclusion. By the use of a set of parallel bars it is possible to measure the tibial slope directly without removal of the soft tissue. The results of indirect, photographic measurement did not statistically differ from the results of direct measurement of the tibial slope.

  3. Slope Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope was calculated from the bathymetry surface for each raster cell using ArcGIS's Spatial Analyst 'Slope' Tool. Slope describes the maximum steepness of a...

  4. Soil properties in high-elevation ski slopes

    Filippa, Gianluca; Freppaz, Michele; Letey, Stéphanie; Corti, Giuseppe; Cocco, Stefania; Zanini, Ermanno

    2010-05-01

    The development of winter sports determines an increasing impact on the high altitude ecosystems, as a consequence of increased participation and an increasing demand of high quality standards for skiable areas. The construction of a ski slope is associated with a certain impact on soil, which varies as a function of the degree of human-induced disturbance to the native substrata. In this work, we provide a description of the characteristics of alpine tundra ski-slope soils and their nutrient status, contrasted with undisturbed areas. The study site is located in the Monterosaski Resort, Aosta Valley, NW Italy (45°51' N; 7°48' E). We chose 5 sites along an altitudinal gradient between 2700 and 2200 m a.s.l.. Per each site, one plot was established on the ski slope, while a control plot was chosen under comparable topographic conditions a few meters apart. Soils were described and samples were collected and analysed for main chemical-physical properties. In addition an evaluation of N forms, organic matter fractionation and microbial biomass was carried out. Soil depth ranged between 10 to more than 70 cm, both on the ski slope and in the undisturbed areas. A true organo-mineral (A) horizon was firstly identified at 2500 m a.s.l., while a weathering horizon (Bw) was detected at 2400 m a.s.l.. However, a Bw horizon thick enough to be recognised as diagnostic for shifting soil classification order from Entisols to Inceptisols (USDA-Soil Taxonomy) was detected only below 2400 m a.s.l.. Lithic Cryorthents were predominant in the upper part of the sequence (above 2500 m a.s.l.), both in the ski slope and the undisturbed areas; Typic Cryorthents were identified between 2500 and 2400 m a.s.l., while Inceptisols were predominant between 2400 and 2200 m a.s.l.. Chemical-physical properties will be discussed focusing on the main differences between ski slope and undisturbed soils, as determined by the ski slope construction. Pedogenetic processes at high altitude are

  5. Landslides induced by heavy rainfall in July 2012 in Northern Kyushu District, Japan and the influence of long term rainfall increase comparing with the slope destabilization due to strong seismic shaking

    Kubota, Tetsuya; Shinohara, Yoshinori; Aditian, Aril

    2013-04-01

    soil strength reduction by seismic shaking. The target areas are located in northern Kyushu district, western Japan where they often have severe landslide disasters. The geology in research areas consists of Paleozoic and Mesozoic rocks (mainly schist, slate) and Quaternary volcanic sediment such as Aso volcano body. The vegetation consists of mainly Japanese cypress, cedar or bamboo. 3. Result and consideration Consequently, the long term rainfall increase in the region such as increment of approximately 20 mm/hr for rain intensity Ri in 36 years is confirmed statistically using Kendall's rank correlation, and it is found that its impact on slope stability is considerable and critical in other cases. In the sample landslide slopes, even the increase in rain of duration for only 10 years has impact to a certain extent on their stabilities in terms of Fs. The Fs calculated with rains in previous decade is higher than 1.0 that corresponds to stable state, whereas the Fs with present rains is lower than 1.0 such as 0.99 which means unstable state. Extremely heavy rainfall with this impact is generally cause extreme ground water pressure in the slope. It is also obvious that the extreme ground water content rendered even small landslides liquefied to be source of destructive debris flows. In this disaster, especially in the Aso volcanic region, tremendous number of debris flow occurred and even the talus cone slopes which are usually stable collapsed to flow down. However, the influence of the long term rainfall increase on the slopes (such as 1% decrease in Fs) is not relatively small compared with the destabilization of the slopes due to the reduction of soil strength by seismic shaking (8~9 % reduction in Fs after seismic shaking of even 490gal). 4. Conclusion In the disaster in July 2012, many landslides and debris flows originated from landslides induced by concentrated underground water supplied by the heavy rainfall occurred. The increase of rainfall due to climate

  6. Effect of subthreshold slope on the sensitivity of nanoribbon sensors

    Sun, K.; Zeimpekis, I.; Hu, C.; Ditshego, N. M. J.; Thomas, O.; de Planque, M. R. R.; Chong, H. M. H.; Morgan, H.; Ashburn, P.

    2016-07-01

    In this work, we investigate how the sensitivity of a nanowire or nanoribbon sensor is influenced by the subthreshold slope of the sensing transistor. Polysilicon nanoribbon sensors are fabricated with a wide range of subthreshold slopes and the sensitivity is characterized using pH measurements. It is shown that there is a strong relationship between the sensitivity and the device subthreshold slope. The sensitivity is characterized using the current sensitivity per pH, which is shown to increase from 1.2% ph‑1 to 33.6% ph‑1 as the subthreshold slope improves from 6.2 V dec‑1 to 0.23 V dec‑1 respectively. We propose a model that relates current sensitivity per pH to the subthreshold slope of the sensing transistor. The model shows that sensitivity is determined only on the subthreshold slope of the sensing transistor and the choice of gate insulator. The model fully explains the values of current sensitivity per pH for the broad range of subthreshold slopes obtained in our fabricated nanoribbon devices. It is also able to explain values of sensitivity reported in the literature, which range from 2.5% pH‑1 to 650% pH‑1 for a variety of nanoribbon and nanowire sensors. Furthermore, it shows that aggressive device scaling is not the key to high sensitivity. For the first time, a figure-of-merit is proposed to compare the performance of nanoscale field effect transistor sensors fabricated using different materials and technologies.

  7. Simulation of a sloped solar chimney power plant in Lanzhou

    Research highlights: → A sloped solar chimney power plant in Lanzhou, China is investigated. → The configuration sizes are designed separately. → The system has high periodicity and stability but low efficiency. → The sloped solar chimney power system is of high value for Northwest China. -- Abstract: Solar chimney power system is one large-scale utilization style of solar energy, which has drawn high attentions worldwide. Though scholars all over the world have made many researches on the solar chimney power system, reports of sloped solar chimney power system are still few. A sloped solar chimney power plant, which is expected to provide electric power for remote villages in Northwest China, has been designed for Lanzhou City in this paper. The designed plant, in which the height and radius of the chimney are 252.2 m and 14 m respectively, the radius and angle of the solar collector are 607.2 m and 31o respectively, is designed to produce 5 MW electric power on a monthly average all year. The performances, such as the airflow temperature increase, pressure, the airflow speed, system efficiency and solar collector efficiency, of the built sloped solar chimney power plant are simulated and presented. Simulation results show that parameters of the sloped solar chimney power plant are symmetrical and stable; the power plant has better performances in spring and autumn days; the overall efficiency of the power plant is low. Considering the abundant solar radiation, environmental friendliness, easy management and low population density, the sloped solar chimney power system is of high value to Northwest China.

  8. Impacts of Habitat Slope on Plant from of Astracantha adscendens

    S.J. Khajeddin

    2001-01-01

    Full Text Available Astracantha adscendens is an endemic species in Iran growing on alpine and above alpine timberline habitats on the Zagross Mountain Range. These habitats are characterized by steep slopes, heavy snowfalls and long ice formation periods. The present study was carried out in Chelgerd, Bakhtiari, and Fereidan, Isfahan. Slopes, elevation above sea-level, and magnetic north azimuth were measured. The canopy cover was also measured along four radii in upward, downward, left and right directions. Regression analysis was performed for the measured values of plant and environmental factors. The results revealed that the upward radius had a high negative correlation with slope changes while the downward radius showed no relationship with slope variations. The two left and right radii had a high and positive relationship with each other, both reducing in length as the slope steepness increased. Shrub volume decreases with increasing slope steepness. Plant shape was classified into seven groups using Sorenson similarity index and constructing the dendrogram. Snow pressure bends the stem toward the soil surface. Snow gliding pressure scratches stem and its base buds above the bent stem. Soil and debris move downward the slope as a result of snow gliding and rainfall runoff as well as wildlife and domestic animals. Snow gliding along with other natural factors have various effects on A. adscendens plant form which can be grouped under three categories: direct mechanical effect of snow, physiological effect of snow, and indirect effect of precipitation and wildlife. The environmental factors and plant physiological responses to them change the A. adscendens plant form from a funnel or ob-conical shape to a semi-funnel or semi ob-conical form.

  9. Very rare Q-slope none overcome by electropolishing and baking

    We discovered the very rare Q-slope none overcome by electropolishing and baking at 120degC for 48 hours. The Q-slope is not related to 'Hydrogen disease'. The Q-slope is not improved by the wiping and steam so that we recognize that the Q-slope is not caused by some cohesion things of the cavity's surface. The rare Q-slope is categorized a low, medium and high rare Q-slope. In this paper, we report the Rare Q-slope and the categorized rare Q-slope. (author)

  10. The Stability of Unsaturated Soil Slope Affected by Rainfall Seeping

    Zhang Shilin; Wang Guochen; Shao Longtan

    2007-01-01

    Because rainfall seeping makes losing stability of unsaturated soil slope, and arouses great loss to production and human being safety, the stability of unsaturated soil slope has been researched by many scholars recently. This article mainly uses the model for the prediction of shear strength with respect to soil suction, developed by Vanapalli and Fredlund to formulate rainfall seeping how to affect the stability of unsaturated soil slope. Firstly, volumetric water content of unsaturated soil slope changes with rainfall duration, and effective saturation changes with its volumetric water content. Secondly, soil volume weight changes with its volumetric water content. Thirdly, matric suction also changes with its volumetric water content. According to these causes, this article researches how much they make the contribution to the minimum safety coefficient respectively. At last, these factors roundly considered, this article gets the rule of minimum safety coefficient of unsaturated soil slope with rainfall duration that is minimum safety coefficient gradually increasing firstly, then decreasing that is composed of two sectors, first is slowly decreasing, then is fast decreasing after some value.

  11. Retrieval of short ocean wave slope using polarimetric imaging

    We present a passive optical remote sensing technique for recovering shape information about a water surface, in the form of a two-dimensional slope map. The method, known as polarimetric slope sensing (PSS), uses the relationship between surface orientation and the change in polarization of reflected light to infer the instantaneous two-dimensional slope across the field-of-view of an imaging polarimeter. For unpolarized skylight, the polarization orientation and degree of linear polarization of the reflected skylight provide sufficient information to determine the local surface slope vectors. A controlled laboratory experiment was carried out in a wave tank with mechanically generated gravity waves. A second study was performed from a pier on the Hudson River, near Lamont-Doherty Earth Observatory. We demonstrated that the two-dimensional slope field of short gravity waves could be recovered accurately without interfering with the fluid dynamics of the air or water, and water surface features appear remarkably realistic. The combined field and laboratory results demonstrate that the polarimetric camera gives a robust characterization of the fine-scale surface wave features that are intrinsic to wind-driven air–sea interaction processes

  12. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  13. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  14. On the role of topographic amplification in seismic slope instabilities

    Fardin Jafarzadeh

    2015-04-01

    Full Text Available Surface wave generation due to body wave propagation near ground surface has been discussed in the literature. This phenomenon, typically occurring in topographic changing areas, along with its interaction with body waves (SV, decreases precision of formulas for evaluation of slope displacement. This significant fact caused the researchers not only to investigate the combined surface and SV waves motion pattern, but also to consider its effect on structures built on the slopes. In order to reveal the phenomenon, several finite element numerical studies have been performed by ABAQUS programme. Besides, two physical model slopes simulating the landslide occurrence have been constructed and tested by shaking table device. The results of induced and calculated accelerations obtained by two approaches have been compared and Rayleigh wave generation has been proved. Furthermore, the slope displacements have been calculated by various empirical methods and the results were compared with numerical ones. The results proved that in order to increase the precision of empirical formulas for displacement prediction, surface wave effect should be taken into account. Finally, a concept of “effective depth of surficial amplification” is introduced and its effect on dynamic slope stability is analysed.

  15. Robustness for slope stability modelling under deep uncertainty

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2015-04-01

    Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.

  16. Linking Slope Sedimentation, Gradient, Morphology, and Active Faulting: An Integrated Example from the Palos Verdes Slope, Southern California Borderland

    Maier, K. L.; Brothers, D. S.; Paull, C. K.; McGann, M.; Caress, D. W.; Conrad, J. E.

    2015-12-01

    Seafloor gradient variations associated with restraining and releasing bends along the active (1.6-1.9 mm/yr) right-lateral Palos Verdes Fault appear to control Holocene sediment thickness, depositional environment, and morphodynamic processes along a section of the continental slope offshore Los Angeles, California. Autonomous underwater mapping vehicle (AUV), remotely operated vehicle (ROV), and shipboard methods were used to acquire a dense grid of high-resolution chirp profiles (150 m line spacing; 11 cm vertical resolution), multibeam bathymetry (2 m grid), and targeted sediment core samples (<2 m length). Detailed interpretation of Holocene deposits in the chirp profiles combined with radiocarbon dating and laser particle-size analyses allow correlation of Holocene sediment thickness and seafloor gradient with sediment gravity flow deposits. Holocene down-slope flows appear to have been generated by mass wasting processes, primarily on the upper slope (~100-200 m water depth) where shipboard multibeam bathymetry reveals submarine landslide headwall scarps in a region that has been isolated from terrigenous sediment sources throughout the Holocene. Submarine landslides appear to have transformed into sandy and organic-rich turbidity currents that created up-slope migrating sediment waves, a low relief (<5 m) fault-bounded channel, and a series of depocenters. A down-slope gradient profile and a Holocene isopach down-slope profile show that the primary depocenter occurs within a small pull-apart basin associated with a decrease in seafloor gradient of ~1.5°. Holocene sediment-flow deposits vary in number, thickness, and character with subtle changes in seabed gradient (<0.5°) and depositional environment. These results help quantify morphodynamic sensitivity to seafloor gradients and have implications for down-slope flow dynamics, deep-water depositional architecture, Holocene sediment, nutrient, and contaminant transport, and turbidite paleoseismology along

  17. An anatomic study and clinical application of sustentaculum talus for displaced intraarticular calcaneal fractures%载距突的解剖学研究及其在跟骨关节内移位骨折手术中的应用

    王志杰; 邹云雯; 钟世镇; 丁自海

    2009-01-01

    Objective To study the anatomy and clinical application of sustentaculum talus for displaced intraarticular calcancal fractures. Methods The anterior tilt angles of the sustentaculum talus and the anterior part of posterior calcaneal facet, the maximal width of the middle calcaneum and the maximal and minimal thicknesses of the sustentaculum talus base were measured in 40 pieces of adult calcaneal spec-imens. The intraarticular structures of normal calcaneum were observed, including anatomical relations of the sustentaculum talus. The internal screw fixation of middle calcaneum was simulated to measure the positions and angles of screws. Follow-ups were conducted in 27 patients with displaced intraarticular calcaneal fractures treated by ORIF through an extensile right-angled lateral incision. The accuracy of screw insertion and func-tional outcome were assessed. Results The anterior tilt angle of the sustentaculum talus is 50°±5°, the anterior tilt angle of anterior part of posterior calcaneal facet is 69°±5°, the width of the middle calcaneum is (41.75±1.76) mm, and the maximal and minimal thicknesses of sustentaculum tali base are (12.14±1.60) mm and (4.81±1.07) mm respectively. The compact structure of bone trabecula beneath the sus-tentaculum talus progresses to the inferior part of the posterior calcaneal facet. The sustentaculum talus is closely connected with the tendons and vessels running along medially. The best 3 positions for screw insertion measured on coronal plane from the posterior facet to the sustentaculum talus are as follows: the lowest position is 25°±5° upwards, the highest point is 3°±3° downwards and the middle position is 13°±3°. The excellent and good rate of functional outcome was 88.9%. Conclusions ORIF through an extensile right-angled lateral incision is effective for displaced intraarticular calcaneal fractures. The sustentaculum talus is a good place for screw insertion. The length of screws can be determined by

  18. Development of a GIS-based failure investigation system for highway soil slopes

    Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.

    2015-06-01

    A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).

  19. Forest harvesting influence on slope erosion in Baikal Basin Mountains

    Onuchin, A. A.; Borisov, A. N.; Burenina, T. A.

    2009-04-01

    Post-logging recovery of forest water protection and erosion prevention functions can occur different ways on slopes and in big river catchments. While erosion decreases several times during only three to five years after logging on slopes, as compared to its immediate post-logging rate, water silt load in big rivers can remain high for decades after forest logging in their catchments. Among other factors, this can be attributable to erosion of timber transportation roads and skidding trails, which become extremely eroded 10-15 years following forest logging. One should not underestimate a probable sediment load increase resulting from post-logging channel runoff changes. Disregarding this increase leads to contradictory conclusions about post-logging recovery of forest water protecting capability. Investigating this issue requires to clearly determine the type of the forest site of interest (a certain slope, an elementary or a complex catchments) and to consider the experience gained so far in estimating erosion rate changes depending on changing forest areas of continents. Therefore, hierarchical river catchments ranking should be recognized effective and useful for forest hydrology. This approach will allow systematizing the existing information and facilitating the development of fruitful analysis of water protection and erosion prevention functions of forest in areas of different ranks. This study used an approach that enabled a single-model description of the rate of soil erosion previously estimated by different models for areas of various ranks, from a micro slope to elementary catchments. An elementary catchments is defined as the smallest drainage area characterized by uniform surface, ground, and vegetation structures and having a single well-pronounced channel, with hydro network being practically absent. Using runoff slope length as the argument and introducing a dummy variable that describes specific investigation methodologies ensured high generality

  20. Experimental Study of Wave Breaking on Gentle Slope

    2000-01-01

    -An experimental study of regular wave and irregular wave breaking is performed on a gentle slope of 1:200. In the experiment, asymmetry of wave profile is analyzed to determine its effect on wave breaker indices and to explain the difference between Goda and Nelson about the breaker indices of regular waves on very mild slopes. The study shows that the breaker index of irregular waves is under less influence of bottom slope i, relative water depth d/ L0 and the asymmetry of wave profile than that of regular waves. The breaker index of regular waves from Goda may be used in the case of irregular waves, while the coefficient A should be 0.15. The ratio of irregular wavelength to the length calculated by linear wave theory is 0.74. Analysis is also made on the waveheight damping coefficient of regular waves after breaking and on the breaking probability of large irregular waves.

  1. Development of a new generation of optical slope measuring profiler

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen; Siewert, Frank; Zeschke, Thomas

    2010-09-16

    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  2. Rock mass characterisation and stability analyses of excavated slopes

    Zangerl, Christian; Lechner, Heidrun

    2016-04-01

    Excavated slopes in fractured rock masses are frequently designed for open pit mining, quarries, buildings, highways, railway lines, and canals. These slopes can reach heights of several hundreds of metres and in cases concerning open pit mines slopes larger than 1000 m are not uncommon. Given that deep-seated slope failures can cause large damage or even loss of life, the slope design needs to incorporate sufficient stability. Thus, slope design methods based on comprehensive approaches need to be applied. Excavation changes slope angle, groundwater flow, and blasting increases the degree of rock mass fracturing as well as rock mass disturbance. As such, excavation leads to considerable stress changes in the slopes. Generally, slope design rely on the concept of factor of safety (FOS), often a requirement by international or national standards. A limitation of the factor of safety is that time dependent failure processes, stress-strain relationships, and the impact of rock mass strain and displacement are not considered. Usually, there is a difficulty to estimate the strength of the rock mass, which in turn is controlled by an interaction of intact rock and discontinuity strength. In addition, knowledge about in-situ stresses for the failure criterion is essential. Thus, the estimation of the state of stress of the slope and the strength parameters of the rock mass is still challenging. Given that, large-scale in-situ testing is difficult and costly, back-calculations of case studies in similar rock types or rock mass classification systems are usually the methods of choice. Concerning back-calculations, often a detailed and standardised documentation is missing, and a direct applicability to new projects is not always given. Concerning rock mass classification systems, it is difficult to consider rock mass anisotropy and thus the empirical estimation of the strength properties possesses high uncertainty. In the framework of this study an approach based on

  3. The Socioeconomic Assessment of Sloping Land Conversion Program in China

    Liu, Zhen

    Abstract This thesis mainly focuses on the socioeconomic impact of the largest Ecological Recovery Program ― the Sloping Land Conversion Program (SLCP), also called Grain for Green Program (GFG) in China. The central government initiated this program in 1999 and it was launched nationwide in 2002...... amount of household survey data, this study aims to improve our understanding of the treatment effect of the SLCP on farm households, which is split into three parts. The first paper ― The Sloping Land Conversion Program in China: Effects on Rural Households’ Livelihood Diversification, evaluates the...... effects of the implementation of the Sloping Land Conversion Program (SLCP) on livelihood diversification, which is thought to be the solution to poverty and environmental dilemmas. Our results show that SLCP works as a valid external policy intervention on rural livelihood diversification. In addition...

  4. Newton slopes for Artin-Schreier-Witt towers

    Davis, Christopher James; Wan, Daqing; Xiao, Liang

    2016-01-01

    We fix a monic polynomial f(x)∈Fq[x] over a finite field and consider the Artin-Schreier-Witt tower defined by f(x); this is a tower of curves ⋯→Cm→Cm−1→⋯→C0=A1, with total Galois group Zp. We study the Newton slopes of zeta functions of this tower of curves. This reduces to the study of the Newton...... slopes of L-functions associated to characters of the Galois group of this tower. We prove that, when the conductor of the character is large enough, the Newton slopes of the L-function form arithmetic progressions which are independent of the conductor of the character. As a corollary, we obtain a...

  5. Sensitivity of atypical lateral fire spread to wind and slope

    Simpson, Colin. C.; Sharples, Jason J.; Evans, Jason P.

    2016-02-01

    This study presents new knowledge of the environmental sensitivity of a dynamic mode of atypical wildland fire spread on steep lee-facing slopes. This is achieved through a series of idealized numerical simulations performed with the Weather Research and Forecasting (WRF) and WRF-Fire coupled atmosphere-fire models. The sensitivity of the atypical lateral fire spread across lee slopes is tested for a varying background wind speed, wind direction relative to the terrain aspect, and lee slope steepness. The results indicate that the lateral spread characteristics are highly sensitive to each of these environmental conditions, and there is a broad agreement with the empirical thresholds calculated for lateral spread events observed in the 2003 Canberra bushfires. A theory to explain these environmental thresholds and their apparent interdependency is presented. The results are expected to have important implications for the management of wildland fires in rugged terrain.

  6. Detecting regular dynamics from time series using permutations slopes

    Eyebe Fouda, J. S. Armand; Koepf, Wolfram

    2015-10-01

    In this paper we present the entropy related to the largest slope of the permutation as an efficient approach for distinguishing between regular and non-regular dynamics, as well as the similarities between this method and the three-state test (3ST) algorithm. We theoretically establish that for suitably chosen delay times, permutations generated in the case of regular dynamics present the same largest slope if their order is greater than the period of the underlying orbit. This investigation helps making a clear decision (even in a noisy environment) in the detection of regular dynamics with large periods for which PE gives an arbitrary nonzero complexity measure.

  7. Comparison between characteristics of mild slope equations and Boussinesq equations

    2005-01-01

    Boussinesq-type equations and mild-slope equations are compared in terms of their basic forms and characteristics. It is concluded that linear mild-slope equations on dispersion relation are better than non-linear Boussinesq equations. In addition, Berkhoff experiments are computed and compared by the two models, and agreement between model results and available experimental data is found to be quite reasonable, which demonstrates the two models' capacity to simulate wave transformation. However they can deal with different physical processes respectively, and they have their own characteristics.

  8. Wave Run-Up on Sloping Coastal Structures

    Rouck, J. De; Troch, P.; Ronde, J. De; Frigaard, Peter; Gent, M. R. A. van

    2001-01-01

    Wave run-up is one of the main physical processes which are taken into account in the design of the crest level of sloping coastal structures. The crest level design of these structures is mainly based on physical scale model results.......Wave run-up is one of the main physical processes which are taken into account in the design of the crest level of sloping coastal structures. The crest level design of these structures is mainly based on physical scale model results....

  9. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by definition limited by its reference to future developments which cannot empirically be sustained. Experience in the Netherlands—where a law regulating active euthanasia was accepted in April 2001—may shed...

  10. Radiographic and functional results of the Hawkins Ⅲ talus neck fractures via internal and lateral approaches%内、外侧双切口治疗HawkinsⅢ型距骨颈骨折

    张文海; 卢艳东; 王敬博; 张克刚; 郑玉晨; 姚辉; 李宝和; 王裕民

    2012-01-01

    Objective To investigate the clinical results and related key points of surgical treatment for Hawkins Ⅲ talus neck fractures.Methods From March 2005 to March 2010,26 patients with Hawkins Ⅲ talus neck fracture were treated and 21 of them were followed,including 13 males and 8 females,with an average age of 37.6 years.The fractures occurred on the left side in 11 patients and on the right side in 10patients.The mechanism of injury included high falling injury in 13 patients,traffic accident injury in 7 patients and rolling down injury in 1 patient.Five cases were closed fractures and 6 cases were open fractures.A bilateral approach,the medial and lateral approaches,was used to perform the operation with cannulated screw fixation in emergency.After external fixation in functional position for 6 weeks without loading,ankle joints were allowed to take exercise with hinge brace and to bear partially basing on plain radiograph 12-16weeks later.The weight-bearing should be adjusted with follow-up.Functional results were assessed according to AOFAS (American Orthupaedic Foot and Ankle Society,AOFAS)score.Results The average duration of follow-up was 36.6 months (range,6-60 months).All fractures gained union and the average union time was 4.5 months.The average AOFAS score was 78.6.There were 4 cases in excellent results,10 in good,5 in fair and 2 in poor.The overall excellent and good rate was 67.8%.Traumatic arthritis occurred in 13 cases and avascular necrosis in 5 cases.Conclusion The effect of surgical treatment for Hawkins Ⅲtalus neck fracture via a bilateral approach is satisfactory.%目的 探讨HawkinsⅢ型距骨颈骨折的手术注意事项及临床疗效.方法 2005年3月至2010年3月手术治疗HawkinsⅢ型距骨颈骨折26例,完整随访资料者21例,男13例,女8例;年龄18~50岁,平均37.6岁;左侧11例,右侧10例.坠落伤13例,车祸伤7例,滚落伤l例.闭合骨折15例,开放骨折6例.所有患者均急症采用内、外侧双切

  11. Study of Geometric Parameters of Slope Streaks on Mars.

    Brusnikin, Eugene; Kreslavsky, Mikhail; Karachevtseva, Irina; Zubarev, Anatoliy; Patratiy, Vyacheslav

    2015-04-01

    Slope streaks are a unique active phenomenon observed in low-latitude dusty regions on Mars. They are dark markings formed by an unknown type of run-away downslope propagation of surface disturbance. There are two kinds of hypotheses of their formation mechanism: "dry", involving granular follow, in particular, dust avalanche, and "wet", involving liquid flow, in particular, percolation of concentrated brines in shallow subsurface (1). Study of geometric characteristics of the slope streaks, especially their slopes, is a way to decipher their origin. We are carrying out an extensive set of measurements of geometric parameters of the slope streaks. We use stereo pairs of images obtained by High Resolution Imaging Science Experiment (HiRISE) onboard MRO orbital mission to Mars. These stereo pairs potentially allow geometric measurements (both horizontal and vertical) with accuracy on an order of a meter. Unfortunately, the digital terrain model is currently released for only one stereo pair in the regions of slope streak occurrence, and we have to work with raw, unprocessed stereo pairs. We perform direct photogrammetric measurements using PHOTOMOD software complex (http://www.racurs.ru/). We use our custom software to import "raw" HiRISE imgas (EDRs) and supplementary geometric information from SPICE into PHOTOMOD (2). We select tens to a hundred meters long segments in the beginning and the end of selected streaks and register length, azimuth, and slope of each segment. We also search for anomalously gentle parts of streaks. We analyze the obtained results by means of ESRI ArcGIS software. Our survey is in progress. So far we registered over a hundred of streaks. We found that the extent of the streaks varies from several meters to hundreds of meters. The streaks are formed in locales with a slope from 17 to 37 degrees. The lower boundary indicates that the streaks can propagate on slopes that are significantly gentler than the static angle of repose. Distal

  12. Prótese do tornozelo híbrida em um caso de necrose avascular pós-traumática do tálus Hybrid ankle prosthesis in a case of post-traumatic avascular necrosis of the talus

    Ricardo Jorge Gomes de Sousa

    2011-01-01

    Full Text Available As fraturas do astrágalo originam frequentemente artrose pós-traumática tardia. Nestes casos, a utilização de próteses do tornozelo não cimentadas de última geração tem sido evitada pela presença de necrose avascular. Relatamos o caso de um paciente com 65 anos que se apresenta quatro anos após uma fratura do colo do astrágalo. Apresentava uma artrose do tornozelo dolorosa (escala AOFAS do retropé e tornozelo 19 e necrose avascular com colapso de toda a cúpula astragalina. Dada a extensão da necrose, foi decidido cimentar o componente protésico astragalino. Um ano após a cirurgia, o paciente apresenta bom resultado clínico e radiológico (escala AOFAS do retropé e tornozelo 87 e está satisfeito com o procedimento. Não temos conhecimento de nenhum relato semelhante na literatura.Talus fractures often lead to late post-traumatic arthrosis. In such cases, the use of latest generation, cementless prostheses has been hindered by the presence of avascular necrosis. We report the case of a 65-year-old patient who presented four years after a talus neck fracture. He had painful ankle arthrosis (AOFAS ankle-hindfoot score 19 and avascular necrosis, with collapse of the entire talar dome. Given the extent of the necrosis, it was decided to cement the talus prosthetic component. One year after the surgery, the patient shows good clinical and radiological results (AOFAS ankle-hindfoot score 87 and is satisfied with the procedure. We are not aware of any similar reports in the literature.

  13. 30 CFR 716.2 - Steep-slope mining.

    2010-07-01

    ..., residential or public land uses of 30 CFR 715.13 has been achieved except for the requirement at § 715.13(d)(3... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep-slope mining. 716.2 Section 716.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL...

  14. 30 CFR 785.15 - Steep slope mining.

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY...

  15. The Perceptual Experience of Slope by Foot and by Finger

    Hajnal, Alen; Abdul-Malak, Daniel T.; Durgin, Frank H.

    2011-01-01

    Historically, the bodily senses have often been regarded as impeccable sources of spatial information and as being the teacher of vision. Here, the authors report that the haptic perception of slope by means of the foot is greatly exaggerated. The exaggeration is present in verbal as well as proprioceptive judgments. It is shown that this…

  16. Slope failure on Eros- Implications for regolith properties

    Barnouin-Jha, O. S.; Murchie, S.; Cheng, A.; Robinson, M.

    2001-12-01

    The physical properties of regolith record processes important in the surface evolution of asteroids. For example, grain size is affected by the rates and style of cratering, and in turn affects spectral properties. In this study, we combine results acquired from the NEAR laser rangefinder (NLR) and the multispectral imager (MSI) to gain insight into physical characteristics of the regolith. By comparing the most recent NLR shape model to MSI albedo maps of Eros, we can determine the regional slope at which regolith fails. High albedos have been identified by the MSI team primarily in regions of steep slope, and attributed to exposure of the subsurface by mass-wasting processes. We determine the angles at which slope failure occurs by mapping individual NLR transects through high albedo regions visible in the MSI images, and use slope stability analyses to estimate the range of regolith grain sizes required to obtain failure at the observed angle. Preliminary results suggest that the regolith of Eros associated with these failures is coarse and possibly gravel-sized.

  17. Spider (Araneae) communities of scree slopes in the Czech Republic

    Růžička, Vlastimil; Klimeš, Leoš

    2005-01-01

    Roč. 33, č. 2 (2005), s. 280-289. ISSN 0161-8202 R&D Projects: GA AV ČR(CZ) IAA6007401 Institutional research plan: CEZ:AV0Z50070508; CEZ:AV0Z6005908 Keywords : scree slopes * environmental factors * ice formation Subject RIV: EG - Zoology Impact factor: 0.557, year: 2005

  18. Slope stability assessment for historical monument management, Machu Picchu, Peru

    Klimeš, Jan

    Zittau : DGGT, 2009. s. 413. [Conference on Engineering Geology and Forum Young Engineering Geologists /17./. 07.05.2009-10.05.2009, Zittau] R&D Projects: GA ČR GP205/09/P383 Institutional research plan: CEZ:AV0Z30460519 Keywords : slope stability Subject RIV: DB - Geology ; Mineralogy

  19. Wave overtopping resistance of grassed slopes in Viet Nam

    Trung, L.H.; Verhagen, H.J.; Van der Meer, J.W.

    2011-01-01

    The Simulator was applied to test the resistance against wave overtopping of grass covered dike slopes in Viet Nam. Observation and measurement during destructive tests were performed to investigate the development process of damage induced by overtopping flow. Damages were likely to be initiated at

  20. Soil Strength Characteristics Along an Arable Eroded Slope

    PENG Xin-Hua; ZHANG Bin; ZHAO Qi-Guo; R. HORN

    2005-01-01

    Undisturbed soil cores were taken from different slope positions (upslope, backslope and footslope) and soil depths (0-15, 20-35 and 100-115 cm) in a soil catena derived from Quaternary red clay to determine the spatial changes in soil strength along the eroded slope and to evaluate an indicator to determine soil strength during compaction. Precompression stress, as an indicator of soil strength, significantly increased from topsoil layer to subsoil layer (P<0.05) and was affected by slope position. In the subsoil layer (20-35 cm), the precompression stress at the footslope position was significantly greater than at the backslope and upslope positions (P<0.05), while there were no significant differences at 0-15 and 100-115 cm. Precompression stress followed the spatial variation of soil clay content with soil depth and had a significant linear relationship with soil porosity (r2 = 0.40, P<0.01). Also, soil cohesion increased with increasing soil clay content.The precompression stress was significantly related to the applied stress corresponding to the highest change of pore water pressure (r2 = 0.69, P<0.01). These results suggested that soil strength induced by soil erosion and soil management varied spatially along the slope and the maximum change in pore water pressure during compaction could be an easy indicator to describe soil strength.

  1. Overtopping And Rear Slope Stabillity Of Reshaping Breakwaters

    Burcharth, Hans Falk; Lykke Andersen, Thomas

    2003-01-01

    An experimental study of overtopping and rear slope stability of reshaping breakwaters has been carried out. The variation of those two parameters with crest width, crest freeboard and sea state was investigated. The tests showed that the variation in overtopping discharge with crest freeboard was...

  2. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    Sherwood, O; Edinger, E; Guilderson, T P; Ghaleb, B; Risk, M J; Scott, D B

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface water bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.

  3. Slope versus Elasticity and the Burden of Taxation.

    Graves, Philip E.; And Others

    1996-01-01

    Criticizes the standard presentation, in introductory economics, of the burden of a tax as an application of elasticity. Argues that using the slopes of a supply and demand curve is the simplest and easiest way to clarify tax incidence. Includes three graphs illustrating this approach. (MJP)

  4. The Snowmass points and slopes: Benchmarks for SUSY searches

    The ''Snowmass Points and Slopes'' (SPS) are a set of benchmark points and parameter lines in the MSSM parameter space corresponding to different scenarios in the search for Supersymmetry at present and future experiments. This set of benchmarks was agreed upon at the 2001 ''Snowmass Workshop on the Future of Particle Physics'' as a consensus based on different existing proposals

  5. The Snowmass points and slopes: benchmarks for SUSY searches

    The ''snowmass points and slopes'' (SPS) are a set of benchmark points and parameter lines in the MSSM parameter space corresponding to different scenarios in the search for Supersymmetry at present and future experiments. This set of benchmarks was agreed upon at the 2001 ''Snowmass Workshop on the Future of Particle Physics'' as a consensus based on different existing proposals. (orig.)

  6. The Snowmass points and slopes : benchmarks for SUSY searches

    The ''Snowmass Points and Slopes'' (SPS) are a set of benchmark points and parameter lines in the MSSM parameter space corresponding to different scenarios in the search for Supersymmetry at present and future experiments. This set of benchmarks was agreed upon at the 2001 ''Snowmass Workshop on the Future of Particle Physics'' as a consensus based on different existing proposals

  7. The Snowmass Points and Slopes: benchmarks for SUSY searches

    The ''Snowmass Points and Slopes'' (SPS) are a set of benchmark points and parameter lines in the MSSM parameter space corresponding to different scenarios in the search for Supersymmetry at present and future experiments. This set of benchmarks was agreed upon at the 2001 ''Snowmass Workshop on the Future of Particle Physics'' as a consensus based on different existing proposals. (orig.)

  8. The Snowmass Points and Slopes: Benchmarks for SUSY Studies

    The ''Snowmass Points and Slopes'' (SPS) are a set of benchmark points and parameter lines in the MSSM parameter space corresponding to different scenarios in the search for Supersymmetry at present and future experiments. This set of benchmarks was agreed upon at the 2001 ''Snowmass Workshop on the Future of Particle Physics'' as a consensus based on different existing proposals

  9. How the spatial variation of tree roots affects slope stability

    Mao, Zhun; Stokes, A.; Jourdan, C.; Rey, H.; Courbaud, B.; Saint-André, L.

    2010-05-01

    It is now widely recognized that plant roots can reinforce soil against shallow mass movement. Although studies on the interactions between vegetation and slope stability have significantly augmented in recent years, a clear understanding of the spatial dynamics of root reinforcement (through additional cohesion by roots) in subalpine forest is still limited, especially with regard to the roles of different forest management strategies or ecological landscapes. The architecture of root systems is important for soil cohesion, but in reality it is not possible to measure the orientation of each root in a system. Therefore, knowledge on the effect of root orientation and anisotropy on root cohesion on the basis of in situ data is scanty. To determine the effect of root orientation in root cohesion models, we investigated root anisotropy in two mixed, mature, naturally regenerated, subalpine forests of Norway spruce (Picea abies), and Silver fir (Abies alba). Trees were clustered into islands, with open spaces between each group, resulting in strong mosaic heterogeneity within the forest stand. Trenches within and between clusters of trees were dug and root distribution was measured in three dimensions. We then simulated the influence of different values for a root anisotropy correction factor in forests with different ecological structures and soil depths. Using these data, we have carried out simulations of slope stability by calculating the slope factor of safety depending on stand structure. Results should enable us to better estimate the risk of shallow slope failure depending on the type of forest and species.

  10. Breaking of Waves over a Steep Bottom Slope

    Jensen, Morten S.

    The thesis deals with the wave breaking process of waves propagating over a steep submerged bottom slope. The amount of energy dissipated in the wave breaking process is focused upon. An extensive number of experimental tests (>400) using regular and irregular waves breaking over a simulated reef...

  11. A numerical study of flexural buckling of foliated rock slopes

    Adhikary, D. P.; Mühlhaus, H.-B.; Dyskin, A. V.

    2001-08-01

    The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes.

  12. Facets of Uncertainty in Digital Elevation and Slope Modeling

    ZHANG Jingxiong; LI Deren

    2005-01-01

    This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope,with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty.

  13. Geological Aspect of Slope Failure and Mitigation Approach in Bireun - Takengon Main Road, Aceh Province, Indonesia

    Ibnu Rusydy; Didik Sugiyanto; Lono Satrio; . Zulfahriza; Imam Munandar

    2016-01-01

    A soil and rock slope assessment survey was conducted along Bireun – Takengon main road in Aceh Province, Indonesia. The slope assessment survey was carried out to determine the geological condition, verify and identify the potential areas of slope failure and to study what type of slope stability and protection method could be applied to the road. Several research methodologies were conducted in the field such as rock and soil identification, and slope assessment. The survey was conducted in...

  14. The assessment of slope stability and rock excavatability in a limestone quarry

    Karaman, Kadir; Ercikdi, Bayram; Kesimal, Ayhan

    2014-01-01

    The aim of this study is to evaluate the stability and excavatability of newly stripped rock slopes (slope 1 (SN–1), slope 2 (SN–2), and slope 3 (SN–3)) in a limestone quarry. These are new production sites with comparable geological formations along the southern part of the quarry where three planar failures were previously observed. For this reason, detailed fieldwork was performed to determine the properties (spacing, roughness, etc.) of the discontinuities of the rock slopes in the study ...

  15. Some new pre-warning criteria for creep slope failure

    HACK; Robert

    2011-01-01

    The forecasting of the failure time of a slope remains a worldwide problem because of many different possibilities of geological conditions in combination with many varying external factors such as climate and vegetation,and not well-defined or unknown time effects in deformation and failure models.The aim of this paper is to suggest a new method to carry out the phase division and to explore tangential angular features of the displacement-time curve of creep slopes as well as the acceleration characteristics in the process of slope deformation and the pre-warning criteria for critical failure.An imminent failure is pro-ceeded with usually three basic deformation phases,namely primary creep("decelerated") ,secondary creep("steadystate") and tertiary creep("accelerated") .Mostly,only during the accelerated phase the imminence of a possible slope failure is rec-ognized.The analysis of displacement data from a series of landslides allowed to recognize different evolutionary patterns of displacement.A quantitative approach was proposed to describe the tangential angle of the displacement-time curve and a new criterion based on the angle was put forward to divide the accelerated phase into three sub-phases:initial acceleration,medium acceleration,and the critical failure.A pre-warning criterion for critical failure is also proposed consequently. Changes of acceleration showed completely different characteristics from those of cumulative displacement and displacement in the process of slope deformation.The values of acceleration usually oscillate around 0 prior to the critical failure phase,whereas the acceleration increases abruptly when the deformation moves into the critical failure phase.This allows,therefore,for a method to forecast the time of the failure.So it is possible to define different alert acceleration threshold values to be used for emergency management.

  16. Parallel processing for efficient 3D slope stability modelling

    Marchesini, Ivan; Mergili, Martin; Alvioli, Massimiliano; Metz, Markus; Schneider-Muntau, Barbara; Rossi, Mauro; Guzzetti, Fausto

    2014-05-01

    We test the performance of the GIS-based, three-dimensional slope stability model r.slope.stability. The model was developed as a C- and python-based raster module of the GRASS GIS software. It considers the three-dimensional geometry of the sliding surface, adopting a modification of the model proposed by Hovland (1977), and revised and extended by Xie and co-workers (2006). Given a terrain elevation map and a set of relevant thematic layers, the model evaluates the stability of slopes for a large number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Any single raster cell may be intersected by multiple sliding surfaces, each associated with a value of the factor of safety, FS. For each pixel, the minimum value of FS and the depth of the associated slip surface are stored. This information is used to obtain a spatial overview of the potentially unstable slopes in the study area. We test the model in the Collazzone area, Umbria, central Italy, an area known to be susceptible to landslides of different type and size. Availability of a comprehensive and detailed landslide inventory map allowed for a critical evaluation of the model results. The r.slope.stability code automatically splits the study area into a defined number of tiles, with proper overlap in order to provide the same statistical significance for the entire study area. The tiles are then processed in parallel by a given number of processors, exploiting a multi-purpose computing environment at CNR IRPI, Perugia. The map of the FS is obtained collecting the individual results, taking the minimum values on the overlapping cells. This procedure significantly reduces the processing time. We show how the gain in terms of processing time depends on the tile dimensions and on the number of cores.

  17. HIRESSS: a physically based slope stability simulator for HPC applications

    G. Rossi

    2013-01-01

    Full Text Available HIRESSS (HIgh REsolution Slope Stability Simulator is a physically based distributed slope stability simulator for analyzing shallow landslide triggering conditions in real time and on large areas using parallel computational techniques. The physical model proposed is composed of two parts: hydrological and geotechnical. The hydrological model receives the rainfall data as dynamical input and provides the pressure head as perturbation to the geotechnical stability model that computes the factor of safety (FS in probabilistic terms. The hydrological model is based on an analytical solution of an approximated form of the Richards equation under the wet condition hypothesis and it is introduced as a modeled form of hydraulic diffusivity to improve the hydrological response. The geotechnical stability model is based on an infinite slope model that takes into account the unsaturated soil condition. During the slope stability analysis the proposed model takes into account the increase in strength and cohesion due to matric suction in unsaturated soil, where the pressure head is negative. Moreover, the soil mass variation on partially saturated soil caused by water infiltration is modeled.

    The model is then inserted into a Monte Carlo simulation, to manage the typical uncertainty in the values of the input geotechnical and hydrological parameters, which is a common weak point of deterministic models. The Monte Carlo simulation manages a probability distribution of input parameters providing results in terms of slope failure probability. The developed software uses the computational power offered by multicore and multiprocessor hardware, from modern workstations to supercomputing facilities (HPC, to achieve the simulation in reasonable runtimes, compatible with civil protection real time monitoring.

    A first test of HIRESSS in three different areas is presented to evaluate the reliability of the results and the runtime performance on

  18. Multi-factor sensitivity analysis of shallow unsaturated clay slope stability

    Zhuoying Tan; Meifeng Cai

    2005-01-01

    An unsaturated clay slope, with various sloping angles and a thickness of 14 m, consists of backfill, slope soil and residual soil. Slide interfaces were determined by geophysical approaches and the original slope was reconstructed. Sub-slope masses were classified based on the varieties of sloping angle. A force recursive principle was proposed to calculate the stability coefficient of the sub-slope masses. The influencing factors such as sloping angle, water content, hydrostatic pressure, seismic force as well as train load were analyzed. The range and correlation of the above-mentioned factors were discussed and coupled wave equations were established to reflect the relationships between unit weight, cohesion, internal frictional angle, and water content, as well as between internal frictional angle and cohesion. The sensitivity analysis of slope stability was carried out and susceptive factors were determined when the factors were taken as independent and dependent variables respectively. The results show that sloping angle, water content and earthquake are the principal susceptive factors influencing slope stability. The impact of hydrostatic pressure on slope stability is similar to the seismic force in quantity. Train load plays a small role in slope stability and its influencing only reaches the roadbed and its neighboring slope segment. If the factors are taken as independent variables, the influencing extent of water content and cohesion on slope stability can be weakened and train load can be magnified.

  19. Model slope infiltration experiments for shallow landslides early warning

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    Occurrence of fast landslides has become more and more dangerous during the last decades, due to the increased density of settlements, industrial plants and infrastructures. Such problem is particularly worrying in Campania (Southern Italy), where the fast population growth led a diffuse building activity without planning: indeed, recent flowslides caused hundreds of victims and heavy damages to buildings, roads and other infrastructures. Large mountainous areas in Campania are mantled by loose pyroclastic granular soils up to a depth of a few meters from top soil surface. These soils have usually a grain size that falls in the domain of silty sands, including pumice interbeds (gravelly sands), with saturated hydraulic conductivities up to the order of 10-1 cm/min. Such deposits often cover steep slopes, which stability is guaranteed by the apparent cohesion due to suction under unsaturated conditions, that are the most common conditions for these slopes [Olivares and Picarelli, 2001]. Whereas rainfall infiltration causes soil to approach saturation, suction vanishes and slope failure may occur. Besides soil physical properties, landslide triggering is influenced by several factors, such as rainfall intensity, soil initial moisture and suction, slope inclination, boundary conditions. Whereas slope failure occurs with soil close to being saturated, landslide may develop in form of fast and destructive flowslide. Calibration of reliable mathematical models of such a complex phenomenon requires availability of experimental observations of the major variables of interest, such as soil moisture and suction, soil deformation and displacements, pore water pressure, during the entire process of infiltration until slope failure. Due to the sudden trigger and extremely rapid propagation of such type of landslides, such data sets are rarely available for natural slopes where flowslides occurred. As a consequence landslide risk assessment and early warning in Campania rely on

  20. Recurring Slope Lineae and Future Exploration of Mars

    McEwen, Alfred; Byrne, Shane; Chevrier, Vincent; Chojnacki, Matt; Dundas, Colin; Masse, Marion; Mattson, Sarah; Ojha, Lujendra; Pommerol, Antoine; Toigo, Anthony; Wray, James

    2014-05-01

    Recurring slope lineae (RSL) on Mars may be evidence for the seasonal flow or seepage of water on relatively warm slopes. RSL are narrow (McEwen et al., 2011, Science]. RSL often follow small gullies, but no topographic changes have been detected via 30 cm/pixel images from HiRISE on MRO. The fans on which RSL terminate have distinctive color and spectral properties in MRO/CRISM, but lack distinctive water absorption bands [Ojha et al., 2013, GRL]. The first group of confirmed RSL appear and lengthen in the late southern spring through summer from 48° - 32°S latitude, favoring equator-facing slopes—times and places with peak surface temperatures ranging from >250 K to >300 K. Over the past Martian year we have monitored active RSL in equatorial (0°-15°S) regions of Mars, especially in the deep canyons of Valles Marineris [McEwen et al., 2014, Nature Geoscience]. These equatorial RSL are especially active on north-facing slopes in northern summer and spring and on south-facing slopes in southern spring and summer, following the most normal solar incidence angles on these steep slopes. More recently we have confirmed RSL near 35°N in the low-albedo and low-altitude Acidalia Planitia. All RSL locations have warm peak daily temperatures (typically >273 K at the surface) in the seasons when RSL are active, and occur on steep, rocky, low-albedo slopes. However, most times and places with these properties lack apparent RSL, so there are additional, unseen requirements. We do not know what time of day RSL are actively flowing. Seasonal variation in the atmospheric column abundance of water vapor does not match the RSL activity. Seasonal melting of shallow ice best explains the RSL observations, but the origin and replenishment of such ice is not understood, especially in the tropics. Laboratory experiments are consistent with two key MRO observations: (1) that seeping water darkens basaltic soils but may only produce weak water absorption bands undetectable in ratio

  1. Dynamic and Static Combination Analysis Method of Slope Stability Analysis during Earthquake

    Liang Lu

    2014-01-01

    Full Text Available The results of laboratory model tests for simulating the slope failure due to vibration, including unreinforced slope and the slope reinforced by using geotextile, show that the slope failure occurs when a cumulative plastic displacement exceeds a certain critical value. To overcome the defects of conventional stability analysis, which evaluates the slope characteristics only by its strength parameters, a numerical procedure considering the stiffness and deformation of materials and geosynthetics is proposed to evaluate the seismic slope stability. In the proposed procedure, the failure of slope is defined when the cumulative plastic displacement calculated by a dynamic response analysis using actual seismic wave exceeds the critical value of displacement estimated by a static stability analysis considering seismic coefficient. The proposed procedure is applied to the laboratory model tests and an actual failure of slope in earthquake. The case study shows the possibility that the proposed procedure gives the realistic evaluation of seismic slope stability.

  2. Area utilization efficiency of a sloping heliostat system for solar concentration

    Wei, L. Y.

    1983-02-01

    Area utilization efficiency (AUE) is formulated for a sloping heliostat system facing any direction. The effects of slope shading, incidence factor, sun shading, and tower blocking by the mirrors are all taken into account. The results show that annually averaged AUEs calculated for heliostat systems (1) increase with tower height at low slope angles but less rapidly at high slopes, (2) increase monotonically with slope angle and saturate at large slopes for systems facing due south, (3) reach a maximum at a certain slope for systems facing other directions than due south, and (4) drop sharply at slopes greater than a certain value for systems facing due east or west due to slope shading effect. The results are useful for solar energy collection on non-flat terrains.

  3. Hydraulic Characteristics of a Stepped-slope Floating Breakwater

    A stepped-slope floating breakwater is developed to provide wave protection to small ports and harbours. The width of the structure can be enhanced by increasing the number of breakwater units that are placed side-by-side to each other. This produces three types of test model, i.e. single-row, double-row and triple-row breakwaters. The test models have been tested in monochromatic waves in a wave flume to determine their hydraulic performance in various wave conditions. The incident and reflected wave profiles in the vicinity of the test models are recorded and analysed by using moving-probe method. The hydraulic performance of the test models are quantified by the coefficients of transmission, reflection and energy loss. The experimental results showed that the stepped-slope floating breakwater is an effective anti-reflection structure and a reasonably good wave attenuator.

  4. Speckle correlation method used to detect an object's surface slope

    Smíd, Petr; Horváth, Pavel; Hrabovský, Miroslav

    2006-09-01

    We present a technique employing a speckle pattern correlation method for detection of the slope of an object's surface. Controlled translation of an object under investigation and numerical correlation of speckle patterns recorded during its motion give information used to evaluate the tilt of the object. The proposed optical setup uses a symmetrical arrangement of detection planes in the image field and enables one to detect the tilt of an object's surface within the interval (10°-30°). Simulation analysis shows how to control the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment by measurement of the slope of a surface of a cube made out of steel.

  5. Integration of Indoor Ski Slopes into the Urban Recreation System

    Inga Urbonaitė

    2011-03-01

    Full Text Available Indoor ski slope is an innovative type of active indoor recreation. This new urban character is simulating the concept of mountain ski resort and is considered to be a strong attraction point all year-round. Due to a big scale and complexity, sustainable integration into an urban context should be very carefully considered. Economical, social, environmental and aesthetic impact on surrounding territories is an important factor to be evaluated. International practice shows that the appropriate integration of the above mentioned typology into urban parks increase their popularity and use of the recreation zone. On the other hand, the alien architecture and egocentric dominance of complexes can cause conflict with the existing urban territories and natural environment. Having indoor ski slopes in mind at the stages of regional and town territorial planning is an important point. Only complex development can bring positive results for sustainable town development, town economy, tourism and social life. Article in Lithuanian

  6. Inverse problem of bottom slope design for aerator devices

    吴建华; 樊博; 许唯临

    2013-01-01

    Air entrainment is an effective approach to protect release works from cavitation damage. The traditional method of aera-tor device designs is that, for given flow conditions, the geometries of the aerator device are designed and then the effects are experi-mentally tested for cavitation damage control. The present paper proposes an inverse problem method of determining the bottom slopes in front of and behind an aerator if the requirements of air entrainment, flow conditions and some of aerator geometric para-meters are given. An RBF neural network model is developed and the relevant bottom slopes are calculated in different conditions of flow and geometry on the basis of the data of 19 aerator devices from different discharge tunnels with safe operation. The case study shows that the methodology provides an effective way to design aerator devices under given target conditions.

  7. Oscillating Nocturnal Slope Flow in a Coastal Valley

    Gryning, Sven-Erik; Larsen, Søren Ejling; Mahrt, Larry

    1985-01-01

    over the sloping valley floor was studied during a special observing campaign. A downslope gravity flow interacts with even colder surface air at the valley floor. The latter originates as cold marine air or previous drainage of cold air. Regular oscillations which appear to be trapped, terrain-related...... internal gravity waves, exert a major influence on the downslope flow and its interaction with pre-existing cold air at the floor of the valley......Observations of slope flows in a coastal valley are analyzed. The diurnal variation of upslope and downslope flows depends on season in a systematic way which appears to be related to the high latitude of the observational site and the presence of a nearby layer of marine air. Summer nocturnal flow...

  8. Prehispanic agriculture and climate on the Pacific slope of Guatemala

    Connolly, Elizabeth Wilcut

    The relationship between agriculture and social complexity is a complicated one through both time and space; this is no less true in prehispanic Mesoamerica. Human occupation of the Pacific Coast of Gualtemala prior to Spanish contact was affected by humans' relationship with their physical environment, including the vegetation and climate. I examined multiple lines of evidence, including phytolith, pollen, and settlement data, seeking to detect changes within the paleoenviromental, paleoclimatic, and socio-cultural records from the Middle and Late Formative (1000 BC to AD 150) through the Classic (AD 150 to 600) and Post-Classic (ca. AD 1000) periods. This work reveals that social complexity on the Pacific Slope of Gualtemala developed alongside agricultural intensification. More significantly, however, it also reveals that while there was a population "collapse" on the Pacific Slope at the end of the Late Formative period, there was not the correlating drought or decline in agriculture seen in other areas of the Maya homeland.

  9. Unitarity lower bounds on logarithmic slope of diffraction peak

    Via Lagrange multipliers for equality and inequality constraints, rigorous lower bounds on the logarithmic slope of diffraction peak are derived assuming unitarity and a fixed total elastic σsub(el) and forward differential dσsub(el)/dσ (0deg) cross section. Comparison with the experimental data of antip p and pp scattering shows that the relative departure from the unitarity bound is about 11% for all Psub(LAB) > 1 GeV/c. (author)

  10. Downward-Sloping Term Structure of Lease Rates: A Puzzle

    Seko, Miki; Sumita, Kazuto; Yoshida, Jiro

    2012-01-01

    A model of the term structure of lease rates in a frictionless economy is developed and its predictions are compared with data on residential leases in Japan. The model shows that the initial lease rate for a cancellable lease must be set higher than that for a non-cancellable lease because the former rate will be repeatedly adjusted downward when the market rent decreases. More importantly, the term structure of lease rates is always upward-sloping for cancellable leases. Empirical findings ...

  11. Tolerable Time-Varying Overflow on Grass-Covered Slopes

    Steven A. Hughes; Christopher I. Thornton

    2015-01-01

    Engineers require estimates of tolerable overtopping limits for grass-covered levees, dikes, and embankments that might experience steady overflow. Realistic tolerance estimates can be used for both resilient design and risk assessment. A simple framework is developed for estimating tolerable overtopping on grass-covered slopes caused by slowly-varying (in time) overtopping discharge (e.g., events like storm surges or river flood waves). The framework adapts the well-known Hewlett curves of ...

  12. Aerial Photogrammetric Analysis of a Scree Slope and Cliff

    Saunders, Greg; Galland, Olivier; Mair, Karen

    2014-05-01

    Mapping the physical features of landslide tracks provides information about factors controlling landslide movement. The increasing availability of unmanned aerial vehicles (UAV) provides the opportunity to efficiently and cost effectively map terrain. The main goal of this field study is to create a streamlined work-flow from acquisition to interpretation for the photogrammetric analysis of landslide tracks. Here an open source software package MicMac is used for ortho-image and point-cloud creation. A series of two flights were conducted over a scree (rockfall) slope in Kolsas, Norway. The slope runs roughly 500 m north-south with a maximum width of 60 m. A cliff to the west is the source area for the scree. The cliff consists of conglomerate, basalt, and porphyry from bottom to top respectively. The grain size of boulders in the scree slope apparently varies due to lateral differences in the cliff composition. The flights were completed under cloud cover and consisted of multiple lengthwise passes over the scree field. There was a minimum of 75% overlap between images. During the first flight the altitude was roughly 100 m, the camera was positioned normal to the scree (60 degrees from horizontal), and the resolution was 2.7 cm per pixel. The second flight had an altitude of 200 m, the camera orientation was 30 degrees from horizontal, and the resolution was 4.0 cm per pixel. Using the Micmac engine, Ortho-photos and Digital Elevation Models (DEM) were created for both the scree and the cliff. This data will allow for analysis of grain-size, surface roughness, grain-shape, fracture plane orientation, as well as geological mapping. Further work will focus the quantitative assessment of the significance different camera altitudes and angles have on the results. The work-flow used in this study provides a repeatable method for aerial photogrammetric surveys of scree slopes.

  13. Stability of infinite slopes under transient partially saturated seepage conditions

    Godt, Jonathan W.; ŞEner-Kaya, BaşAk; Lu, Ning; Baum, Rex L.

    2012-05-01

    Prediction of the location and timing of rainfall-induced shallow landslides is desired by organizations responsible for hazard management and warnings. However, hydrologic and mechanical processes in the vadose zone complicate such predictions. Infiltrating rainfall must typically pass through an unsaturated layer before reaching the irregular and usually discontinuous shallow water table. This process is dynamic and a function of precipitation intensity and duration, the initial moisture conditions and hydrologic properties of the hillside materials, and the geometry, stratigraphy, and vegetation of the hillslope. As a result, pore water pressures, volumetric water content, effective stress, and thus the propensity for landsliding vary over seasonal and shorter time scales. We apply a general framework for assessing the stability of infinite slopes under transient variably saturated conditions. The framework includes profiles of pressure head and volumetric water content combined with a general effective stress for slope stability analysis. The general effective stress, or suction stress, provides a means for rigorous quantification of stress changes due to rainfall and infiltration and thus the analysis of slope stability over the range of volumetric water contents and pressure heads relevant to shallow landslide initiation. We present results using an analytical solution for transient infiltration for a range of soil texture and hydrological properties typical of landslide-prone hillslopes and show the effect of these properties on the timing and depth of slope failure. We follow by analyzing field-monitoring data acquired prior to shallow landslide failure of a hillside near Seattle, Washington, and show that the timing of the slide was predictable using measured pressure head and volumetric water content and show how the approach can be used in a forward manner using a numerical model for transient infiltration.

  14. Integration of Indoor Ski Slopes into the Urban Recreation System

    Inga Urbonaitė

    2011-01-01

    Indoor ski slope is an innovative type of active indoor recreation. This new urban character is simulating the concept of mountain ski resort and is considered to be a strong attraction point all year-round. Due to a big scale and complexity, sustainable integration into an urban context should be very carefully considered. Economical, social, environmental and aesthetic impact on surrounding territories is an important factor to be evaluated. International practice shows that the appropriate...

  15. Deformation and failure mechanism of slope in three dimensions

    Yingfa Lu

    2015-01-01

    Understanding three-dimensional (3D) slope deformation and failure mechanism and corresponding stability analyses are crucially important issues in geotechnical engineering. In this paper, the mechanisms of progressive failure with thrust-type and pull-type landslides are described in detail. It is considered that the post-failure stress state and the pre-peak stress state may occur at different regions of a landslide body with deformation development, and a critical stress state element (or ...

  16. Parameter Calibration of Mini-LEO Hill Slope Model

    Siegel, H.

    2015-12-01

    The mini-LEO hill slope, located at Biosphere 2, is a small-scale catchment model that is used to study the ways landscapes change in response to biological, chemical, and hydrological processes. Previous experiments have shown that soil heterogeneity can develop as a result of groundwater flow; changing the characteristics of the landscape. To determine whether or not flow has caused heterogeneity within the mini-LEO hill slope, numerical models were used to simulate the observed seepage flow, water table height, and storativity. To begin a numerical model of the hill slope was created using CATchment Hydrology (CATHY). The model was then brought to an initial steady state by applying a rainfall event of 5mm/day for 180 days. Then a specific rainfall experiment of alternating intensities was applied to the model. Next, a parameter calibration was conducted, to fit the model to the observed data, by changing soil parameters individually. The parameters of the best fitting calibration were taken to be the most representative of those present within the mini-LEO hill slope. Our model concluded that heterogeneities had indeed arisen as a result of the rainfall event, resulting in a lower hydraulic conductivity downslope. The lower hydraulic conductivity downslope in turn caused in an increased storage of water and a decrease in seepage flow compared to homogeneous models. This shows that the hydraulic processes acting within a landscape can change the very characteristics of the landscape itself, namely the permeability and conductivity of the soil. In the future results from the excavation of soil in mini-LEO can be compared to the models results to improve the model and validate its findings.

  17. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat

    2014-05-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. Analysing unstable rock slopes by means of ambient vibrations might be a new alternative to the already existing methods as for example geotechnical displacement measurements. A systematic measurement campaign has been initiated recently in Switzerland in order to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. First results are presented in this contribution. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. During each measurement a reference station was installed on a stable part close to the instability. The total number of stations used varies from 16 down to 2, depending on the site scope and resource availability. Instable rock slopes show a highly directional ground motion which is significantly amplified with respect to stable areas. These effects are strongest at certain frequencies which are identified as eigenfrequencies of the unstable rock mass. The eigenfrequencies and predominant directions have been estimated by frequency dependent polarization analysis. Site-to-reference spectral ratios have been calculated as well in order to estimate the relative amplification of ground motion at unstable parts. The retrieved results were compared with independent in-situ observations and other available data. The directions of maximum amplification are in most cases perpendicular to open cracks mapped on the surface and in good agreement with the deformation directions obtained by geodetic measurements. The interpretation of the observed wave field is done through numerical modelling of seismic wave propagation in fractured media with complex

  18. ASTRONOMICAL ALGORITHMS OF EGYPTIAN PYRAMIDS SLOPES AND THEIR MODULES DIVIDER

    Aboulfotouh, Hossam M. K.

    2015-01-01

    This paper is an attempt to show the astronomical design principles that are encoded in the geometrical forms of the largest five pyramids of the fourth Egyptian dynasty, in Giza and Dahshur plateaus, based on using the pyramids’ design-modules that are mentioned in the so-called Rhind Mathematical Papyrus. It shows the astronomical algorithms for quantifying the slopes of pyramids, with reference to specific range of earth’s axial tilt, within spherical co-ordinates system. Besid...

  19. Coal database for Cook Inlet and North Slope, Alaska

    Stricker, Gary D.; Spear, Brianne D.; Sprowl, Jennifer M.; Dietrich, John D.; McCauley, Michael I.; Kinney, Scott A.

    2011-01-01

    This database is a compilation of published and nonconfidential unpublished coal data from Alaska. Although coal occurs in isolated areas throughout Alaska, this study includes data only from the Cook Inlet and North Slope areas. The data include entries from and interpretations of oil and gas well logs, coal-core geophysical logs (such as density, gamma, and resistivity), seismic shot hole lithology descriptions, measured coal sections, and isolated coal outcrops.

  20. Wood-soil interactions in soil bioengineering slope stabilization works

    Moscatelli MC; Romagnoli M; Cenfi S; Lagomarsino A; Di Tizio A; Spina S; Grego S

    2009-01-01

    In this work we propose the use of soil quality indicators with the aim of assessing the environmental impact of soil bioengineering works. This study was carried out in central Italy where soil bioengineering slope stabilization works were established using chestnut wood. In particular the goal of this study was to determine the occurrence of a wood-effect, that is changes of soil properties due to the presence of decomposing logs in two sites characterized by different time span since works...

  1. Wave Run-Up on Sloping Coastal Structures

    Rouck, J. De; Troch, P.; Ronde, J. De; Frigaard, Peter

    Wave run-up is one of the main physical processes which is taken into account in the design of the crest level of sloping coastal structures. Until recently, solely physical model results were used for the crest level design. However, prototype measurements have indicated that scale models...... underestimate wave run-up. Therefore wave run-up is studied in detail comparing prototype measurements and physical modelling....

  2. Soil-water interaction in unsaturated expansive soil slopes

    ZHAN Liangtong

    2007-01-01

    The intensive soil-water interaction in unsatura- ted expansive soil is one of the major reasons for slope fail- ures. In this paper, the soil-water interaction is investigated with the full-scale field inspection of rainwater infiltration and comprehensive experiments, including wetting-induced softening tests, swelling, and shrinkage tests. It is demonstrat- ed that the soil-water interaction induced by seasonal wetting- drying cycles is very complex, and it involves coupled effects among the changes in water content, suction, stress, deforma- tion and shear strength. In addition, the abundant cracks in the expansive soil play an important role in the soil-water interaction. The cracks disintegrate the soil mass, and more importantly, provide easy pathways for rainfall infiltration. Infiltration of rainwater not only results in wetting-induced softening of the shallow unsaturated soil layers, but also leads to the increase of horizontal stress. The increase of horizontal stress may lead to a local passive failure. The seasonal wetting-drying cycles tend to result in a down-slope creeping of the shallow soil layer, which leads to progressive slope failure.

  3. Identification of exercise-induced ischemia using QRS slopes.

    Firoozabadi, Reza; Gregg, Richard E; Babaeizadeh, Saeed

    2016-01-01

    In this work we studied a computer-aided approach using QRS slopes as unconventional ECG features to identify the exercise-induced ischemia during exercise stress testing and demonstrated that the performance is comparable to the experts' manual analysis using standard criteria involving ST-segment depression. We evaluated the performance of our algorithm using a database including 927 patients undergoing exercise stress tests and simultaneously collecting the ECG recordings and SPECT results. High resolution 12-lead ECG recordings were collected continuously throughout the rest, exercise, and recovery phases. Patients in the database were classified into three categories of moderate/severe ischemia, mild ischemia, and normal according to the differences in sum of the individual segment scores for the rest and stress SPECT images. Philips DXL 16-lead diagnostic algorithm was run on all 10-s segments of 12-lead ECG recordings for each patient to acquire the representative beats, ECG fiducial points from the representative beats, and other ECG parameters. The QRS slopes were extracted for each lead from the averaged representative beats and the leads with highest classification power were selected. We employed linear discriminant analysis and measured the performance using 10-fold cross-validation. Comparable performance of this method to the conventional ST-segment analysis exhibits the classification power of QRS slopes as unconventional ECG parameters contributing to improved identification of exercise-induced ischemia. PMID:26607407

  4. Meteorological, elevation, and slope effects on surface hoar formation

    Horton, S.; Schirmer, M.; Jamieson, B.

    2015-08-01

    Failure in layers of buried surface hoar crystals (frost) can cause hazardous snow slab avalanches. Surface hoar crystals form on the snow surface and are sensitive to micro-meteorological conditions. In this study, the role of meteorological and terrain factors was investigated for three layers of surface hoar in the Columbia Mountains of Canada. The distribution of crystals over different elevations and aspects was observed on 20 days of field observations during a period of high pressure. The same layers were modelled over simplified terrain on a 2.5 km horizontal grid by forcing the snow cover model SNOWPACK with forecast weather data from a numerical weather prediction model. Modelled surface hoar growth was associated with warm air temperatures, high humidity, cold surface temperatures, and low wind speeds. Surface hoar was most developed in regions and elevation bands where these conditions existed, although strong winds at high elevations caused some model discrepancies. SNOWPACK simulations on virtual slopes systematically predicted smaller surface hoar on south-facing slopes. In the field, a complex combination of surface hoar and sun crusts were observed, suggesting the simplified model did not adequately resolve the surface energy balance on slopes. Overall, a coupled weather-snow cover model could benefit avalanche forecasters by predicting surface hoar layers on a regional scale over different elevation bands.

  5. Native plants for erosion control in urban river slopes

    Virginia Alvarado

    2014-03-01

    Full Text Available Mechanical and structural erosion of soils is produced by the loss of the vegetal cover and the action of rain on unprotected surfaces. Raindrop impact, transport and sediment deposition leads to landslides and slope instability and soil loss. In Costa Rica, water bodies have been negatively impacted by urban development and both water resources and soils have become more vulnerable. This is the case of the Pirro river micro watershed where riverbed vegetation has been replaced by constructions producing erosion problems in its slopes. In order to evaluate how native plants favor sediment control and prevent this sediment from been deposited in the river, eight experimental plots were installed. Four treatments were established: A (Costus pulverulentus Presl, B (Heliconia tortuosa (Griggs Standl., C (Vetiveria zizanioides (L. Nash and D (control. Sediments were collected weekly during the rainy and transitional seasons. A clear relation between rainfall intensity and sediment production was determined, particularly for intensities higher than 50 mm h-1. Significant differences were also determined between the treatments and the efficiency order was B >A > C >D, with the native plants being the most efficient in terms of sediment control. The use of native plants is recommended for the management and rehabilitation of slopes near urban rivers due to their ecological value and their capability for sediment control.

  6. Absolute surface reconstruction by slope metrology and photogrammetry

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  7. Effects of Topographic Slopes on Hydrological Proecsses and Climate

    2001-01-01

    Based on previous research results on river re-distribution models, a modification on the effects of topographic slopes for a runoff parameterization was proposed and implemented to the NCAR's land sur face model (LSM). This modification has two aspects: firstly, the topographic slopes cause outflows from higher topography and inflows into the lower topography points; secondly, topographic slopes also cause decrease of infiltration at higher topography and increases of infiltration at lower topography. Then changes in infiltration result in changes in soil moisture, surface fluxes and then in surface temperature, and eventual ly in the upper atmosphere and the climate. This mechanism is very clearly demonstrated in the point bud gets analysis at the Andes Mountains vicinities. Analysis from a regional scale perspective in the Mackenzie GEWEX Study (MAGS) area, the focus of the ongoing Canadian GEWEX program, shows that the modi fied runoff parameterization does bring significant changes in the regional surface climate. More important ly, detailed analysis from a global perspective shows many encouraging improvements introduced by the modified LSM over the original model in simulating basic atmospheric climate properties such as thermodynamic features (temperature and humidity). All of these improvements in the atmospheric climate simulation illustrate that the inclusion of topographic effects in the LSM can force the AGCM to produce a more realistic model climate.

  8. Mutagenic activity of heavy metals in soils of wayside slopes

    Fedorova, A. I.; Kalaev, V. N.; Prosvirina, Yu. G.; Goryainova, S. A.

    2007-08-01

    The genotoxic properties of soils polluted with heavy metals were studied on two wayside slopes covered with trees in the city of Voronezh. The nucleolar test in cells of the apical meristem of Zebrina pendula Schnizl. roots was used. The genotoxic effect of the soils was revealed according to the increased number of 2-and 3-nucleolar cells (from 41 to 54% and from 19 to 23% in the upper part of the first and second slopes, respectively; in the control, their number was 18 and 7%). The mean number of nucleoli per cell increased from 1.7 to 1.95 in the experiment and 1.31 in the control. The increased vehicle emissions, especially when cars go up the slopes (mainly in the upper and middle parts), correlated with the elevated heavy metal (Pb, Cu, Cd, and Zn) contents in the soil. The mutagenic substances may be removed to the Voronezh Reservoir, where they may be accumulated in some living organisms.

  9. North Slope Decision Support for Water Resource Planning and Management

    Schnabel, William; Brumbelow, Kelly

    2013-03-31

    The objective of this project was to enhance the water resource decision-making process with respect to oil and gas exploration/production activities on Alaska’s North Slope. To this end, a web-based software tool was developed to allow stakeholders to assemble, evaluate, and communicate relevant information between and amongst themselves. The software, termed North Slope Decision Support System (NSDSS), is a visually-referenced database that provides a platform for running complex natural system, planning, and optimization models. The NSDSS design was based upon community input garnered during a series of stakeholder workshops, and the end product software is freely available to all stakeholders via the project website. The tool now resides on servers hosted by the UAF Water and Environmental Research Center, and will remain accessible and free-of-charge for all interested stakeholders. The development of the tool fostered new advances in the area of data evaluation and decision support technologies, and the finished product is envisioned to enhance water resource planning activities on Alaska’s North Slope.

  10. Thresholds for the slope ratio in determining transition time and quantifying diffuser performance in situ

    Jeong, Cheol-Ho; Jacobsen, Finn; Brunskog, Jonas

    2012-01-01

    This study is concerned with an objective measure called the slope ratio that can detect acoustic defects due to unexpected pressure increases such as strong reflections and coincidental constructive interference. The slope ratio is the ratio of the instantaneous slope to the mean slope in a decay...... curve. The slope ratio was suggested for determining the room acoustic transition time experimentally, but its threshold criteria have not been thoroughly investigated. The thresholds for the slope ratio, particularly for applications such as determining the room acoustic transition time and quantifying...

  11. Artificial neural network based inverse design method for circular sliding slopes

    丁德馨; 张志军

    2004-01-01

    Current design method for circular sliding slopes is not so reasonable that it often results in slope sliding. As a result, artificial neural network (ANN) is used to establish an artificial neural network based inverse design method for circular sliding slopes. A sample set containing 21 successful circular sliding slopes excavated in the past is used to train the network. A test sample of 3 successful circular sliding slopes excavated in the past is used to test the trained network. The test results show that the ANN based inverse design method is valid and can be applied to the design of circular sliding slopes.

  12. Comparison of slope stability in two Brazilian municipal landfills

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability

  13. Agricultural terraces and slope instability at Cinque Terre (NW Italy)

    Brandolini, Pierluigi; Cevasco, Andrea

    2015-04-01

    Cinque Terre, located in the eastern Liguria, are one of the most representative examples of terraced coastal landscape within the Mediterranean region. They are the result of a century-old agricultural practice and constitute an outstanding example of human integration with the natural landscape. For this highly unusual man-made coastal landscape, the Cinque Terre have been recognized as a World Heritage Site by UNESCO since 1997 and became National Park in 1999. The complex network of retaining dry stone walls and drainage networks ensured through times the control of shallow water erosion and therefore, indirectly, favoured debris cover stability. The lack of maintenance of terracing due to farmer abandonment since the 1950s led to widespread slope erosion phenomena. The effects of such phenomena culminated during the 25 October 2011 storm rainfall event, when slope debris materials charged by streams gave rise to debris floods affecting both Monterosso and Vernazza villages. As the analysis of the relationships between geo-hydrological processes and land use in the Vernazza catchment highlighted, abandoned and not well maintained terraces were the most susceptible areas to shallow landsliding and erosion triggered by intense rainfall. As a consequence, the thousands of kilometres of dry stone walls retaining millions of cubic metres of debris cover at Cinque Terre currently constitute a potential menace for both villages, that are mainly located at the floor of deep cut valleys, and tourists. Given the increasing human pressure due to tourist activities, geo-hydrological risk mitigation measures are urgently needed. At the same time, restoration policies are necessary to preserve this extraordinary example of terraced coastal landscape. In this framework, the detailed knowledge of the response of terraced areas to intense rainfall in terms of slope instability is a topic issue in order to identify adequate land planning strategies as well as the areas where

  14. Quasi-stable Slope-Failure Dams in High Asia

    Shroder, J. F.

    2010-12-01

    Collapses of steep mountain slopes in the Himalaya, Karakoram, Pamir, Hindu Kush, and Tibetan Plateau are well known as a result of:(1) generally high seismicity in active tectonic areas; (2) prior deglaciation leaving undercut, unstable cliffs; (3) present-day debuttressing of rock cliffs by glacial down-wasting in conditions of global warming; and (4) degradation of permafrost cohesion and water-ice cementation in high mountain slopes. Landslide dams across mountain rivers are also well known worldwide and generally do not endure for long because of the common landslide-lake outburst floods (LLOF) whose discharge is commonly sufficiently large to remove much of the dam in a short time. A number of massive slope-failure dams in south High Asia, however, have endured for centuries and require explanations for the length of duration, whereas recent examples require robust assessment for better predictive hazard analysis. Three main factors contribute to longevity of slope-failure dams: (1) mega-rocks >15-30 m that inhibit dam failure in overflow breaches; (2) mega-porosity wherein incoming discharge to the landslide lake is balanced by subterranean water through-flow within the landslide dam; (3) impermeable clay fills caused by remobilization of prior lacustrine-dammed sediment that impart dam strength to allow lasting integrity for a time, and (4) climate-change induced lake-level lowering. Several examples of long-lived or unusually stable, slope-failure dams associated with pronounced structural/tectonic associations include: (1) Pangong Tso, Ladakh and Tibet; (2) Lake Shewa, Afghanistan; (3) Sarez Lake, Tajikistan; and (4) Lake Hunza, Pakistan. Pangong Tso and Lake Shewa were emplaced thousands of years ago and only Lake Shewa shows some instability of the dam front where percolating water maintains lake level but may be causing new slumping. Sarez Lake behind the Usoi landslide dam was emplaced by an earthquake in 1911 and maintains its level by seepage. Lake

  15. Consequence assessment of large rock slope failures in Norway

    Oppikofer, Thierry; Hermanns, Reginald L.; Horton, Pascal; Sandøy, Gro; Roberts, Nicholas J.; Jaboyedoff, Michel; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Steep glacially carved valleys and fjords in Norway are prone to many landslide types, including large rockslides, rockfalls, and debris flows. Large rockslides and their secondary effects (rockslide-triggered displacement waves, inundation behind landslide dams and outburst floods from failure of landslide dams) pose a significant hazard to the population living in the valleys and along the fjords shoreline. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected more than 230 unstable slopes with significant postglacial deformation. This large number necessitates prioritisation of follow-up activities, such as more detailed investigations, periodic displacement measurements, continuous monitoring and early-warning systems. Prioritisation is achieved through a hazard and risk classification system, which has been developed by a panel of international and Norwegian experts (www.ngu.no/en-gb/hm/Publications/Reports/2012/2012-029). The risk classification system combines a qualitative hazard assessment with a consequences assessment focusing on potential life losses. The hazard assessment is based on a series of nine geomorphological, engineering geological and structural criteria, as well as displacement rates, past events and other signs of activity. We present a method for consequence assessment comprising four main steps: 1. computation of the volume of the unstable rock slope; 2. run-out assessment based on the volume-dependent angle of reach (Fahrböschung) or detailed numerical run-out modelling; 3. assessment of possible displacement wave propagation and run-up based on empirical relations or modelling in 2D or 3D; and 4. estimation of the number of persons exposed to rock avalanches or displacement waves. Volume computation of an unstable rock slope is based on the sloping local base level technique, which uses a digital elevation model to create a second-order curved surface between the mapped extent of

  16. Carbonate slope gully system on the Westside Great Bahama Bank

    Principaud, Mélanie; Mulder, Thierry; Borgomano, Jean; Ducassou, Emmanuelle; Hanquiez, Vincent; Gillet, Hervé; Marieu, Vincent; Sorriaux, Patrick

    2013-04-01

    Gullies are commonly observed on submarine slopes along many continental margins. They are generally small, straight, shallow channels with a depth that does not exceed a few tens of meters. They form on relatively steep slopes. They are important features for downslope sediment transfer from the outer continental shelf to the continental slope and rise. Data collected during the first leg of the Carambar cruise (Nov. 1st - Nov. 15th, 2010) on the RV "Le Suroît" show that the western slope of the Great Bahamas Bank is characterized by the presence of gullies that extend about 100 km from North to South along the carbonate platform. Gullies appear on the upper slope at approximately 410 m water depth in a carbonated mud-dominated environment. Their initiation follows the presence of sediment waves. They extend over a 3° steeped slope down to 610 m water depth. The gully heads are not connected to the platform and to any significant carbonate depositional system. They are relatively linear, sub-parallel, with a symmetric to asymmetric V-shaped cross section and incision does not exceed 30 m. Average gully length and spacing are 4000 and 800 m respectively. A detailed morphometric study based on EM302 multibeam bathymetry and very-high resolution seismic data (Chirp sub bottom profiler) combined with a statistical analysis allowed the gullied slope to be divided into two distinct areas. (1) The northern area characterized by regularly-spaced gullies (spacing varies from 750 to 800 m from North to South). They are generally linear and sub-parallel with an average length of 4 km. Their depth are usually lower than 10 m. Asymmetry is greater in the central region of gullies (northern flank is steeper than southern flank) and seems to be correlated with an increase in gully depth and a decrease in gully spacing. (2) The southern area is characterized by irregularly-shaped gullies that are usually truncated by a large 40 m high N-S deformation escarpment. Gullies have

  17. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides

    Puzrin, Alexander M.; Gray, Thomas E.; Hill, Andrew J.

    2015-01-01

    A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravi...

  18. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    贾永君; 张杰; 王岩峰

    2010-01-01

    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  19. Evaluation of Seismic Performance of Buildings Constructed on Hillside Slope of Doronka Village-Egypt

    Ahmed Abdelraheem Farghaly

    2014-01-01

    Construction on the hillside slope is more challenging to the structural engineer, especially under seismic load due to the presence of a powerful earthquake in addition to the forces of sliding slope itself. Regarding the population growth and narrowness of available lands, people take hillside slopes to build their houses. One of the main sources of seismic vulnerability in Egypt is represented by the instability of slopes; therefore, this is a subject of great significance, particularly in...

  20. Slopes To Prevent Trapping of Bubbles in Microfluidic Channels

    Greer, Harold E.; Lee, Michael C.; Smith, J. Anthony; Willis, Peter A.

    2010-01-01

    The idea of designing a microfluidic channel to slope upward along the direction of flow of the liquid in the channel has been conceived to help prevent trapping of gas bubbles in the channel. In the original application that gave rise to this idea, the microfluidic channels are parts of micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. It is necessary to prevent trapping of gas bubbles in these devices because uninterrupted liquid pathways are essential for sustaining the electrical conduction and flows that are essential for CE. The idea is also applicable to microfluidic devices that may be developed for similar terrestrial microCE biotechnological applications or other terrestrial applications in which trapping of bubbles in microfluidic channels cannot be tolerated. A typical microCE device in the original application includes, among other things, multiple layers of borosilicate float glass wafers. Microfluidic channels are formed in the wafers, typically by use of wet chemical etching. The figure presents a simplified cross section of part of such a device in which the CE channel is formed in the lowermost wafer (denoted the channel wafer) and, according to the present innovation, slopes upward into a via hole in another wafer (denoted the manifold wafer) lying immediately above the channel wafer. Another feature of the present innovation is that the via hole in the manifold wafer is made to taper to a wider opening at the top to further reduce the tendency to trap bubbles. At the time of reporting the information for this article, an effort to identify an optimum technique for forming the slope and the taper was in progress. Of the techniques considered thus far, the one considered to be most promising is precision milling by use of femtosecond laser pulses. Other similar techniques that may work equally well are precision milling using a focused ion beam, or a small diamond

  1. Slope angle studies from multibeam sonar data on three seamounts in Central Indian Basin

    Kodagali, V.N.

    is presented here. The slope angle grid can be used to create the slope angle map. Morphology of three seamounts from Central Indian Basin and the slope angle data on them are described. The seamounts are of the heights 1000-1200 m and occupy area up to 300 sq...

  2. Strategies for Testing Slope Differences. Research Report. ETS RR-09-32

    Moses, Tim; Klockars, Alan

    2009-01-01

    The robustness and power of 9 strategies for testing the differences in groups' regression slopes were assessed under nonnormality and residual variance heterogeneity. For the conditions considered, the most robust strategies were the trimmed and Winsorized slope estimates used with the James second-order test, the Theil-Sen slope estimates used…

  3. Numerical modeling to investigate slopes and mass flow phenomena

    Heinz Konietzky; Lei NIE; Youhong SUN

    2006-01-01

    An overview is given about up-to-date techniques for slope stability and deformation analysis as well as mass flow phenomena simulation. The paper concentrates on a few aspects in respect to the use of numerical modeling techniques, especially in relation to the shear strength reduction techniques, discontinuum modeling, probabilistic concepts, the combination of GIS and numerical modeling as well as sophisticated hydro-mechanical coupling with time-dependent material behavior. At present these topics are preferred topics of scientific and technical research.

  4. North Slope pipeline work strong; gas pipeline project deferred

    Hale, D.

    1982-09-01

    Over 225 miles of insulated pipelines will be installed on the North Slope as part of a 5-year, $10.5 billion program by Sohio and Arco to maintain output from the field to feed the trans-Alaska oil pipeline. New lines are for waterflood supply systems, low pressure production systems, produced water handling, and gas handling. Pipeline construction is quite active at both Prudhoe Bay and at Kuparuk Field. Future projects include an oil line to the Beaufort Sea, the Polar Gas Project, the Arctic Pilot project, and the Northern Tier Pipeline.

  5. Slippery slopes in flat countries--a response.

    van Delden, J. J.

    1999-01-01

    In response to the paper by Keown and Jochemsen in which the latest empirical data concerning euthanasia and other end-of-life decisions in the Netherlands is discussed, this paper discusses three points. The use of euthanasia in cases in which palliative care was a viable alternative may be taken as proof of a slippery slope. However, it could also be interpreted as an indication of a shift towards more autonomy-based end-of-life decisions. The cases of non-voluntary euthanasia are a serious...

  6. Soilwater dynamics related to waterlogging in a sloping catchment

    Atputhanathan, C. S.; Gunawardena, E. R. N.; Rushton, K. R.

    1991-03-01

    A study to understand the factors contributing to waterlogging was conducted in a small catchment of 5.4 ha in an irrigation scheme in the Eastern Dry Zone of Sri Lanka. An analysis, based on climatological data, extensive measurements of inflows and outflows, groundwater head fluctuations, soil moisture content variations and soil properties, indicated that a single catchment water balance and the SEW index are of limited value due to the spatial nature of the waterlogging problem in this sloping catchment with surface irregularities. A distributed mathematical model was developed to represent the lateral and vertical components of flow; the agreement between the simulated and field results is satisfactory.

  7. A New Formula for Front Slope Recession of Berm Breakwaters

    Andersen, Thomas Lykke; Burcharth, Hans F.

    2010-01-01

    The front slope stability of breakwaters with a homogeneous berm was studied in a large number of two dimensional model tests at Aalborg University, Denmark. The results are presented together with a new formula for prediction of the berm recession which is the most important parameter for...... describing the reshaping. The formula has also been calibrated and validated against model test data from other researchers. The significance of the new design formula is that it predicts berm recession much better than the existing methods, especially in case of more stable structures....

  8. Cooperative Three-Robot System for Traversing Steep Slopes

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data

  9. Ratio of slopes method for quantitative analysis in ceramic bodies

    A quantitative x-ray diffraction analysis technique developed at University of Sheffield was adopted, rather than the previously widely used internal standard method, to determine the amount of the phases present in a reformulated whiteware porcelain and a BaTiO sub 3 electrochemical material. This method, although still employs an internal standard, was found to be very easy and accurate. The required weight fraction of a phase in the mixture to be analysed is determined from the ratio of slopes of two linear plots, designated as the analysis and reference lines, passing through their origins using the least squares method

  10. HDMR methods to assess reliability in slope stability analyses

    Kozubal, Janusz; Pula, Wojciech; Vessia, Giovanna

    2014-05-01

    Stability analyses of complex rock-soil deposits shall be tackled considering the complex structure of discontinuities within rock mass and embedded soil layers. These materials are characterized by a high variability in physical and mechanical properties. Thus, to calculate the slope safety factor in stability analyses two issues must be taken into account: 1) the uncertainties related to structural setting of the rock-slope mass and 2) the variability in mechanical properties of soils and rocks. High Dimensional Model Representation (HDMR) (Chowdhury et al. 2009; Chowdhury and Rao 2010) can be used to carry out the reliability index within complex rock-soil slopes when numerous random variables with high coefficient of variations are considered. HDMR implements the inverse reliability analysis, meaning that the unknown design parameters are sought provided that prescribed reliability index values are attained. Such approach uses implicit response functions according to the Response Surface Method (RSM). The simple RSM can be efficiently applied when less than four random variables are considered; as the number of variables increases, the efficiency in reliability index estimation decreases due to the great amount of calculations. Therefore, HDMR method is used to improve the computational accuracy. In this study, the sliding mechanism in Polish Flysch Carpathian Mountains have been studied by means of HDMR. The Southern part of Poland where Carpathian Mountains are placed is characterized by a rather complicated sedimentary pattern of flysh rocky-soil deposits that can be simplified into three main categories: (1) normal flysch, consisting of adjacent sandstone and shale beds of approximately equal thickness, (2) shale flysch, where shale beds are thicker than adjacent sandstone beds, and (3) sandstone flysch, where the opposite holds. Landslides occur in all flysch deposit types thus some configurations of possible unstable settings (within fractured rocky

  11. The Influence of Increasing Rain and Earthquake Activities on Landslide Slope Stability in Forest Areas

    Kubota, T.; Aditian, A.

    2014-12-01

    Deriving the analysis of rainfall data in various mountainous locations, increase in rainfall that is deemed to be induced by the global climate change is obvious in Kyushu district, western Japan. On this point of view, its long term impact on the forest slope stability is analyzed with field investigation and numerical simulation such as finite element method (FEM). On the other hand, the influence of earthquake such as cracks on the slope due to seismic vibration was also analyzed with FEM. In this case, the slope stability analysis to obtain the factor of safety "Fs" is conducted. Here, in case of the Fs > 1.0, the slope is stable. In addition, the slope stabilizing effect of the forest mainly due to the roots strength is evaluated on some unstable slopes. Simultaneously, a holistic estimation over landslide groups is conducted by comparing "Fs" on forest slopes with non- forest slopes. Therefore, the following conclusions are obtained: 1) Comparing the Fs without increased rainfall from the previous decade and the one with actual rainfall, the former case is 1.04 ~1.06 times more stable than the latter. 2) On the other hand, the forest slopes are estimated to be up to approximately 1.5 to 2.5 times more stable than the slope without forest. Therefore, the slope stabilizing effect by the forest is much higher than the increasing rainfall influence i.e. the climate change effect. These results imply that an appropriate forest existence is important under the climate change condition to prevent forest slope degradation. 3) Comparing with the destabilization of the slope by seismic activities (vibration) due to the reduction of soil strength and "cracks = slope deformation" (8~9 % to 30% reduction in Fs even after an earthquake of 490gal), the influence of the long term rainfall increase on slopes (such as 1% decrease in Fs) is relatively small in the study area.

  12. Value of magnetic resonance imaging in the mid-term follow-up of osteochondritis dissecans of the femoral condyle and talus; Die Bedeutung der Magnetresonanztomographie fuer die Verlaufskontrolle der Osteochondrosis dissecans am Knie- und Sprunggelenk

    Bachmann, G.; Rominger, M.; Rau, W.S. [Giessen Univ. (Germany). Abt. Diagnostische Radiologie; Juergensen, I. [Giessen Univ. (Germany). Orthopaedische Klinik

    1999-11-01

    Purpose: Definition of the prognostic value of clinical and morphological findings in the mid-term follow-up of OCD of the femoral condyle and talus. Demonstration of the consolidation of OCD on MRI depending on different therapies. Materials and Methods: 76 patients were examined before and at an average of 30 months after conservative or surgical therapy using T{sub 1} and T{sub 2} weighted SE and 3D-FISP sequences and contrast enhanced studies. Six clinical (age, gender, site, duration and severity of symptoms, therapy) and six morphological (size, signal intensity, fragmentation, contrast enhancement, condition of cartilage, staging) data were registered on first MRI and correlated with the degree of consolidation of OCD (partial and complete remission, no change and progression) on control MRI. Results: Patients under 17 years showed partial or complete remissions in 73%, those of 17 years or older in 33%. Conservatively treated patients had a higher remission rate (54%) than those treated with different surgical techniques (drilling 50%, refixation 43%, abrasio 38%). Small OCDs had a higher remission rate than large lesions (63% vs. 33%). OCDs covered with intact cartilage healed better than lesions with chondral defects (61% vs. 26%). Contrast enhancing fragments had a better prognosis than non-enhancing lesions (100% vs. 40%). Conclusions: Prognosis of OCD can be better estimated when size of OCD, condition of cartilage and enhancement of contrast agent is graduated with MRI and patient age is registered. The consequences for therapy planning are great. (orig.) [German] Ziel: Bewertung von MRT-Befunden und klinischen Daten als Prognoseparameter fuer den mittelfristigen Heilungsverlauf der Osteochondrosis dissecans (OCD) an Knie- und Sprunggelenk. Zudem wird die Konsolidierung der OCD unter verschiedenen Therapieformen untersucht. Material und Methoden: 76 Patienten wurden vor und durchschnittlich 30 Monaten nach konservativer bzw. chirurgischer Therapie

  13. Using airborne LIDAR to measure tides and river slope

    Talke, S. A.; Hudson, A.; Chickadel, C. C.; Farquharson, G.; Jessup, A. T.

    2014-12-01

    The spatial variability of tides and the tidally-averaged water-level is often poorly resolved in shallow waters, despite its importance in validating models and interpreting dynamics. In this contribution we explore using airborne LIDAR to remotely observe tides and along-river slope in the Columbia River estuary (CRE). Using an airplane equipped with LIDAR, differential GPS, and an infra-red camera, we flew 8 longitudinal transects over a 50km stretch of the CRE over a 14 hour period in June 2013. After correcting for airplane elevation, pitch and roll and median filtering over 1km blocks, a spatially-resolved data set of relative water level was generated. Results show the tide (amplitude 2m) propagating upstream at the expected phase velocity. A sinusoid with 2 periods (12.4 and 24 hours) was next fit to data to produce a smooth tide and extract the mean slope. Comparison with 4 tide gauges indicates first order agreement with measured tides (rms error 0.1m), and confirms that a substantial sub-tidal gradient exists in the CRE. This proof-of-concept experiment indicates that remote sensing of tides in coastal areas is feasible, with possible applications such as improving bathymetric surveys or inferring water depths.

  14. Precision Tiltmeter as a Reference for Slope Measuring Instruments

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 (micro)rad (rms)

  15. Soil-root Shear Strength Properties of Some Slope Plants

    Rapid development in hilly areas in Malaysia has become a trend that put a stress to the sloping area. It reduces the factor of safety by reducing the resistant force and therefore leads to slope failure. Vegetation plays a big role in reinforcement functions via anchoring the soils and forms a binding network within the soil layer that tied the soil masses together. In this research, three plant species namely Acacia mangium, Dillenia suffruticosa and Leucaena leucocaphala were assessed in term of their soil-root shear strength properties. Our results showed that Acacia mangium had the highest shear strength values, 30.4 kPa and 50.2 kPa at loads 13.3 kPa and 24.3 kPa, respectively. Leucaena leucocaphala showed the highest in cohesion factor, which was almost double the value in those of Dillenia suffruticosa and Acacia mangium. The root profile analysis indicated Dillenia suffruticosa exhibited the highest values in both root length density and root volume, whilst Leucaena leucocaphala had the highest average of root diameter. (author)

  16. Seismic ultimate bearing capacity of strip footings on slope

    2007-01-01

    The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo-static analysis method and taking the effect of intermediate principal stress into consideration. Based on limit equilibrium theory, the formulae for computing static bearing capacity factors, Nq, Nc, Nγ, and dynamic bearing capacity factors, Nqd, Ncd, Nγd, which are associated with surcharge, cohesion and self-weight of soils respectively, were presented. A great number of analysis calculations were carried out to obtain the relationship curves of the static and dynamic bearing capacity factors versus various calculation parameters. The curves can serve as the practical engineering design. The calculation results also show that when the values of horizontal and vertical seismic coefficients are 0.2, the dynamic bearing capacity factors Nqd, Ncd and Nγd, in which the effects of intermediate principal stress are taken into consideration, increase by 4%-42%, 3%-27% and 34%-57%, respectively.

  17. Intensity measures for seismic liquefaction hazard evaluation of sloping site

    陈志雄; 程印; 肖杨; 卢谅; 阳洋

    2015-01-01

    This work investigates the correlation between a large number of widely used ground motion intensity measures (IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to accomplish this purpose the seismic responses of 32 sloping liquefiable site models consisting of layered cohesionless soil were subjected to 139 earthquake ground motions. Two sets of ground motions, consisting of 80 ordinary records and 59 pulse-like near-fault records are used in the dynamic analyses. The liquefaction potential of the site is expressed in terms of the the mean pore pressure ratio, the maximum ground settlement, the maximum ground horizontal displacement and the maximum ground horizontal acceleration. For each individual accelerogram, the values of the aforementioned liquefaction potential measures are determined. Then, the correlation between the liquefaction potential measures and the IMs is evaluated. The results reveal that the velocity spectrum intensity (VSI) shows the strongest correlation with the liquefaction potential of sloping site. VSI is also proven to be a sufficient intensity measure with respect to earthquake magnitude and source-to-site distance, and has a good predictability, thus making it a prime candidate for the seismic liquefaction hazard evaluation.

  18. Bioengineering case studies sustainable stream bank and slope stabilization

    Goldsmith, Wendi; McCullah, John

    2014-01-01

    This unique volume describes and evaluates 30 projects from across the United States where bio-stabilization was employed to address a detrimental naturally occurring process or byproduct of the built environment. Bio-stabilization (or soil bioengineering) refers to the use of plant materials, primarily live cuttings, arranged in the ground in different arrays to reinforce soils and protect upland slopes and/or stream banks against surficial erosion and shallow slope failures. Examples included in the collection represent different regions of the country and their specific conditions and challenges. Each project is illustrated with a number of distinctive photographs to support the reader's understanding and showcase the wide scope of projects and techniques presented. This book also: ·         Presents a range of well-documented case studies on key techniques and best practices for bio-stabilization projects ·         Emphasizes evaluation and comparison of different techniques and challeng...

  19. Individualistic weight perception from motion on a slope

    Zintus-art, K.; Shin, D.; Kambara, H.; Yoshimura, N.; Koike, Y.

    2016-01-01

    Perception of an object’s weight is linked to its form and motion. Studies have shown the relationship between weight perception and motion in horizontal and vertical environments to be universally identical across subjects during passive observation. Here we show a contradicting finding in that not all humans share the same motion-weight pairing. A virtual environment where participants control the steepness of a slope was used to investigate the relationship between sliding motion and weight perception. Our findings showed that distinct, albeit subjective, motion-weight relationships in perception could be identified for slope environments. These individualistic perceptions were found when changes in environmental parameters governing motion were introduced, specifically inclination and surface texture. Differences in environmental parameters, combined with individual factors such as experience, affected participants’ weight perception. This phenomenon may offer evidence of the central nervous system’s ability to choose and combine internal models based on information from the sensory system. The results also point toward the possibility of controlling human perception by presenting strong sensory cues to manipulate the mechanisms managing internal models. PMID:27174036

  20. Sport Injuries in Iranian Skiers (Shemshak Slope 2000-2001

    M Motamedy

    2002-09-01

    Full Text Available Background: Sport medicine is a relatively new scientific branch in Iran. In order to evaluate sport injuries in Iranian skiers we examined and followed all ski players who was injured while skiing in Shemshak slope during a skiing season (January to April 2000. Materials and Methods: During a period of 3 months, a total of 32050 persons skied in Shemshak slope and 76 case of injuries were identified; the injury rate was calculated as 2.3/1000 skiers. Among the injured organs knee (32% and head and neck region (20% were respectively the most common sites of injury. Sprain of the medial collateral ligament was the most frequent knee injury (28% of the cases. 26.7% of the injured cases were amateurs and 21% of them used hired ski instruments. Results: In this study such factors as lack of exercise before skiing, fatigue and time of skiing (beginning or end of the season were not found to be related to the injury rate. However, head and neck injuries in contrast to knee injuries were most frequent in the end of the season (P<0.01. Conclusion: This study confirms the necessity of greater care of knee joints during skiing and probable need of wearing helmet for head protection in the end of skiing season. More studies are necessary to clarify other details regarding sport injuries in skiers.

  1. Tolerable Time-Varying Overflow on Grass-Covered Slopes

    Steven A. Hughes

    2015-03-01

    Full Text Available Engineers require estimates of tolerable overtopping limits for grass-covered levees, dikes, and embankments that might experience steady overflow. Realistic tolerance estimates can be used for both resilient design and risk assessment. A simple framework is developed for estimating tolerable overtopping on grass-covered slopes caused by slowly-varying (in time overtopping discharge (e.g., events like storm surges or river flood waves. The framework adapts the well-known Hewlett curves of tolerable limiting velocity as a function of overflow duration. It has been hypothesized that the form of the Hewlett curves suggests that the grass erosion process is governed by the flow work on the slope above a critical threshold velocity (referred to as excess work, and the tolerable erosional limit is reached when the cumulative excess work exceeds a given value determined from the time-dependent Hewlett curves. The cumulative excess work is expressed in terms of overflow discharge above a critical discharge that slowly varies in time, similar to a discharge hydrograph. The methodology is easily applied using forecast storm surge hydrographs at specific locations where wave action is minimal. For preliminary planning purposes, when storm surge hydrographs are unavailable, hypothetical equations for the water level and overflow discharge hydrographs are proposed in terms of the values at maximum overflow and the total duration of overflow. An example application is given to illustrate use of the methodology.

  2. Effects of equipment loadings on geosynthetic-lined slope behaviour.

    Park, Hyun I; Lee, Seung R

    2005-06-01

    When combined in the lining and covering of waste-containment facilities, soil and geosynthetic components protect the environment by acting as a hydraulic barrier. Equipment loading may significantly increase the tensile stress induced in geosynthetic components, leading to a potential stability problem. Large equipment loadings may also result in a localized circular slip surface during construction operations. New analytical method based on discrete element modelling is proposed for estimating the distribution of tensile force developed in the individual geosynthetic components of the lining system and for evaluating the safety factor of slope failure due to equipment loading. The analytical results of an example are presented to demonstrate the applicability of the analytical method for the lining system of a waste landfill. The analyses of the example show that equipment loading provide a substantial increase in the tensile forces of the geosynthetic components of a lining system and that the possibility of shallow failure due to equipment loading increases as the slope becomes steeper. This method is a useful tool for analysing the lining system of waste landfills with complex lining components. PMID:15988943

  3. Estimating significances of differences between slopes: A new methodology and software

    Vasco M. N. C. S. Vieira

    2013-09-01

    Full Text Available Determining the significance of slope differences is a common requirement in studies of self-thinning, ontogeny and sexual dimorphism, among others. This has long been carried out testing for the overlap of the bootstrapped 95% confidence intervals of the slopes. However, the numerical random re-sampling with repetition favours the occurrence of re-combinations yielding largely diverging slopes, widening the confidence intervals and thus increasing the chances of overlooking significant differences. To overcome this problem a permutation test simulating the null hypothesis of no differences between slopes is proposed. This new methodology, when applied both to artificial and factual data, showed an enhanced ability to differentiate slopes.

  4. Variance-in-Mean Effects of the Long Forward-Rate Slope

    Christiansen, Charlotte

    2005-01-01

    This paper contains an empirical analysis of the dependence of the long forward-rate slope on the long-rate variance. The long forward-rate slope and the long rate are described by a bivariate GARCH-in-mean model. In accordance with theory, a negative long-rate variance-in-mean effect for the long...... forward-rate slope is documented. Thus, the greater the long-rate variance, the steeper the long forward-rate curve slopes downward (the long forward-rate slope is negative). The variance-in-mean effect is both statistically and economically significant....

  5. Spatial Coupling Among Landslides, Geological Structures, Cataclinal Slopes, and Fluvial Knick Zones in Nepal Himalayas

    Ojha, T. P.; DeCelles, P. G.

    2014-12-01

    This work aims to identify potential landslide hazard zones in the event of heavy precipitation and seismic activity by examining spatial relationships among existing landslides, earthquake epicenters, fault zones, cataclinal (dip) slopes, anaclinal (escarp) slopes, and river steepness index in the Nepal Himalaya. In order to understand this relationship we have mapped existing landslides on Google Earth images and ESRI base maps, assembled high-resolution digital topographic data by digitizing Nepal Government published topographic maps, and gathered geological data from detailed field mapping and compilation of published geological maps. Slope angle and aspect, and dip direction and angle were extracted from GIS-based digital topographical and geological datasets to develop the new slope maps with cataclinal (dip) and anaclinal (escarp) slope distributions. Longitudinal river profiles were also extracted from high resolution DEM's derived from manually digitized contours. The slope maps with cataclinal and anaclinal slope distributions, earthquake epicenters, major geological structures, longitudinal river profiles, and landslide inventories were visualized in ESRI ArcMap 10.2 to examine the spatial correlation among landslides, fault zones, cataclinal slopes and river steepness index. We have found that landslides are spatially correlated with cataclinal slopes and fluvial knick zones with high steepness index in certain thrust boundaries. The main finding of this work is that the topographic slope threshold alone is a crude measure of landslide susceptibility. The analysis of slope using the geometric relationship among topography and geological bedding is crucial for determining landslide susceptibility in the Himalayan region.

  6. Research on the Slope Green and Environment Protection Using Dynamical Game Theory

    Juan Wan

    2013-10-01

    Full Text Available This study aims to investigate the slope green and environment protection in China. In ecological slope protection, the plant roots can achieve the ecological vegetation restoration of the slope surface. Hence the slope environment can be protected significantly. However, there is still lack of efficient policy to support the implementation of nationwide slope green program to facilitate the development of slope green and environment protection technologies. Hence, the reasonable relationship between the slope green and environment protection and the national policy is very important. Literature review indicates that very little work has been done to address this issue. In order to investigate the relationship between the slope green and environment protection and the national policy, this study presents a new analysis method based on the dynamical Game theory. The game between the slope green and environment protection and the national policy can be regarded as a dynamical economic process, the optimized implementation strategy for the slope green and environment protection under the national support can be obtained by the use of dynamical game analysis. The stability analysis and the balance analysis have been discussed for the proposed game model. The analysis result shows that the government should increase financial support as well as establish corresponding punishment mechanism to encourage different policies and practices for slope green and environment protection and hence a win-win situation can be achieved.

  7. Stability Analysis for Loosened Rock Slope of Jinyang Grand Buddha in Taiyuan, China

    SUN, Jinzhong; TIAN, Xiaofu; GUAN, Xudong; YU, Yonggui; YANG, Xiusheng

    On the basis of the status quo of Jinyang Grand Buddha in Taiyuan, some factors such as topography, geological structures, climate, hydrology, and engineering geology that influence the stability of the Buddha slope are considered, and several working situations of the slope that possibly suffered are presented in this article. The Buddha slope stands upright and the rock masses are composed of thick Permian sandstone, which dips slightly inward to the slope. Affected by both the incision of regional joints and the load relief to the free surface, the rock mass of the Buddha slope has turned into loosened blocks. Numerical stability analysis by FLAC-2D on the basis of the strength reduction method reveals that the localized deformation of the rock masses near the vertical surface of the slope may trigger reversing of rock beddings making the back dip slope convert into a dip slope with the possibility of plane sliding failure. Furthermore, the pseudostatic method for the dynamic process and limit equilibrium method for the static process are applied to different working situations of the Buddha slope. The analytical results illustrate that plane sliding failure will not occur when the slope is affected only by seism. However, water filling in the cracks of the loosened rock mass may greatly contribute to the potential plane sliding failure. When horizontal seism-force and hydrostatic pressure are coupled, the Buddha slope can hardly keep stable. Additionally, the loosened rock masses are prone to block toppling failure when influenced by the seism force.

  8. Laws and mechanisms of slope movement due to shallowly buried coal seam mining under ground gully

    FAN Gang-wei; ZHANG Dong-sheng; ZHAI De-yuan; WANG Xu-feng; LU Xin

    2009-01-01

    Based on the results of similar material simulation, the laws of slope movement due to mining under a gully were analyzed. Selected a slope rock as objective, the mechanisms of slope movement influence upon underground mining were proposed, and respective structural models were built by means of numerical modeling and physical simulation. It holds the point that the influence of slope movement on underground mining could be controlled to some extent by appropriate measures. The results indicate that, for gully-ward mining, which mines toward a gully, the slope rock slides horizontally and rotates in layers; for gully-away mining, which mines away from the gully, the slope rock rotates in a reversed polygon. The slope movement associated with mining under a gully is attributed to pre-existing free faces in the ground gully and underground mining-induced free faces.

  9. Primary Investigations on Yangtze River Bank Slope Stability in Wanzhou for the Three Gorges Reservoir Project

    Jian Wenxing; Yin Kunlong; Xu Yixian

    2005-01-01

    This paper investigates the main factors contributing to bank slope failures, such as the structure of rock and soil, water level change, bank slope gradient, vegetation, weathering and human activities. Based on these investigations, the bank slope failure models are analyzed. The stability of bank slopes in Wanzhou is investigated using geological surveying, 2D resistivity imaging surveying, excavated trenches and other methods. Finally, the disasters of bank slope failures in Wanzhou were investigated in detail. The results show that instability problems might occur in 60.38 km of bank slopes when the water level rises to 175 m. It is suggested that 37.8 km of unstable bank slopes should be stabilized, and 14.2 km of unstable banks should be moved or avoided after further geological surveying and reconnaissance. These results provide scientific basis and reliable data for the government to develop the third geodisaster prevention plan for the Three Gorges reservoir.

  10. A study on dynamic response of slopes under wave action using simulation tests

    2003-01-01

    After the erection of the Three Gorges Dam, the water level of Yangtze River will reach 175 m, and the average wave crest will be up to 1 m. Therefore the wave action cannot be neglected for the slope stability. Through simulation tests, the waveinduced dynamic response of the slope is analyzed. The soil body is taken as linear elastic body when it has a small deformation under the small wave action. Based on tests, the excess pore pressure and slope displacement under the loading in different wave period are analyzed. The ratio of dynamic strength and static strength to the breaking process of the slope is discussed. It is demonstrated that smaller wave period gives rise to a larger strain of the slope under the same stress. At different depth of water, different weakness effect on the stability of the soil slope is observed and the slope has an adaptability to the wave action to some extent.

  11. Comparison of rill flow velocity over frozen and thawed slopes with electrolyte tracer method

    Ban, Yunyun; Lei, Tingwu; Liu, Zhiqiang; Chen, Chao

    2016-03-01

    Freeze-thaw erosion is the primary soil water erosion form in high altitude and/or high latitude regions. The water flow velocity along an eroding rill over frozen and thawed slopes is vital to understanding of rill erosion hydrodynamics. This study experimentally measured rill flow velocity over frozen and thawed slopes using electrolyte trace method under Pulse Boundary Model. The experiments used three flow rates of 1, 2, and 4 L min-1, three slope gradients of 5°, 10°, and 15°. The temperature of the rill flow water was supplied at 0 °C as controlled with ice-water mixture. Seven sensors were used to measure flow velocity by tracing the solute transport process at 10, 110, 210, 310, 410, 510, and 610 cm distances from the electrolyte injection position. The measured velocity became steady at a distance of about 3 m from the electrolyte injection location, where the effect of the pulse boundary condition on the analytic solution to the partial differential equation becomes negligible. Results showed that flow velocity increased with slope gradient and flow rate on frozen slopes. A significant effect was observed on the steepest slope or at the highest flow rate over the thawed slope, which changed slightly on the gentle slopes and low flow rates. Flow velocity was about 25%, 30%, and 40% higher on the frozen soil than on the thawed slope at 5°, 10°, and 15° slopes and about 30% higher over the frozen slope at all flow rates. This study demonstrates that water over a frozen slope flows much faster than over a thawed slope. This study helps in the study and further understanding of the hydrodynamics of soil erosion and sediment transport behaviors of frozen and thawed slopes.

  12. Mechanism analysis of landslide of a layered slope induced by drawdown of water level

    ZHANG Junfeng; LI Zhengguo; QI Tao

    2005-01-01

    The frequent drawdown of water level of Yangtze River will greatly influence the stability of the widely existing slopes in the Three Gorges reservoir zone, especially those layered ones. Apart from the fluctuating speed of water level, the different geological materials will also play important roles in the failure of slopes. Thus, it must be first to study the mechanism of such a landslide caused by drawdown of water level.A new experimental setup is designed to study the performance of a layered slope under the drawdown of water level. The pattern of landslide of a layered slope induced by drawdown of water level has been explored by means of simulating experiments. The influence of fluctuating speed of water level on the stability of the layered slope is probed,especially the whole process of deformation and development of landslide of the slope versus time. The experimental results show that the slope is stable during the water level rising, and the sliding body occurs in the upper layer of the slope under a certain drawdown speed of water level. In the process of slope failure, some new small sliding body will develop on the main sliding body, and the result is that they speed up the disassembly of the whole slope.Based on the simulating experiment on landslide of a layered slope induced by drawdown of water level, the stress and displacement field of the slope are calculated.The seepage velocity, the pore water pressure, and the gradient of pore water head are also calculated for the whole process of drawdown of water level. The computing results are in good agreement with the experimental results. Accordingly, the mechanism of deformation and landslide of the layered slope induced by drawdown of water level is analyzed. It may provide basis for treating this kind of layered slopes in practical engineering.

  13. Deformation and failure mechanism of slope in three dimensions

    Yingfa Lu

    2015-04-01

    Full Text Available Understanding three-dimensional (3D slope deformation and failure mechanism and corresponding stability analyses are crucially important issues in geotechnical engineering. In this paper, the mechanisms of progressive failure with thrust-type and pull-type landslides are described in detail. It is considered that the post-failure stress state and the pre-peak stress state may occur at different regions of a landslide body with deformation development, and a critical stress state element (or the soil slice block exists between the post-failure stress state and the pre-peak stress state regions. In this regard, two sorts of failure modes are suggested for the thrust-type and three sorts for pull-type landslides, based on the characteristics of shear stress and strain (or tensile stress and strain. Accordingly, a new joint constitutive model (JCM is proposed based on the current stability analytical theories, and it can be used to describe the mechanical behaviors of geo-materials with softening properties. Five methods, i.e. CSRM (comprehensive sliding resistance method, MTM (main thrust method, CDM (comprehensive displacement method, SDM (surplus displacement method, and MPM (main pull method, for slope stability calculation are proposed. The S-shaped curve of monitored displacement vs. time is presented for different points on the sliding surface during progressive failure process of landslide, and the relationship between the displacement of different points on the sliding surface and height of landslide body is regarded as the parabolic curve. The comparisons between the predicted and observed load–displacement and displacement–time relations of the points on the sliding surface are conducted. The classification of stable/unstable displacement–time curves is proposed. The definition of the main sliding direction of a landslide is also suggested in such a way that the failure body of landslide (simplified as “collapse body” is only

  14. Check dams effects on sediment transport in steep slope flume

    Piton, Guillaume; Recking, Alain

    2014-05-01

    Depending on many influences (geology, relief, hydrology, land use, etc.) some mountainous watershed are prone to cause casualties and facilities damages. Large amounts of sediments episodically released by torrents are often the biggest problem in torrent related hazard mitigation. Series of transversal structures as check dams and ground sills are often used in the panel of risk mitigation technics. A large literature exits on check dams and it mainly concerns engineering design, e.g. toe scouring, stability stress diagram, changes in upper and lower reaches equilibrium slopes. Check dams in steep slope rivers constitute fixed points in the bed profile and prevent general bed incision. However their influence on sediment transport once they are filled is not yet clear. Two flume test campaigns, synthetize in Table 1, were performed to investigate this question: Table 1 : experiment plan Run (duration) Ref1 (50h)CD1a (30h)CD1b (30h)Ref2 (92h)CD2 (18h) Solid feeding discharge (g.s^-1) 44 44 44 60 60 Number of check dams none 1 3 none 2 A nearly 5-m-long, 10-cm-wide and 12%-steep flume was used. The water discharge was set to 0,55 l/s in all runs. A mixture of poorly sorted natural sediments with diameters between 0.8 and 40 mm was used. An open solid-discharge-feeding circuit kept the inlet sediment flux constant during all experiments. As both feeding rates did not present variation, changes in outlet solid discharge were assumed to be due to bed variations in the bed storage. We observed strong fluctuations of solid flux and slope in each reaches of all runs between: (i) steep aggradating armoured bed and (ii) less steep and finer bed releasing bedload sheets during erosion events and inducing bedload pulses. All experiments showed consistent results: transported volume associated with erosion event decreased with the length between two subsequent check dams. Solid transversal structures shorten the upstream erosion-propagation and avoid downstream change in the

  15. Predictive Index for slope instabilities in open pit mining

    Ortega, J H; Lecaros, R; Medel, F; Padilla, F; García, A

    2016-01-01

    In this paper we study the stability and deformation of structures, in particular the wall of an open pit mine is studied by using information obtained from a variety of remote sensors and some extra data, with a novelty approach considering the use of mathematical models and data mining techniques. In particular we present two models to help the study the slope stability of pit and the possible occurrence of movements. Primarily we present an static model for slow movements, which will help us identify areas of possible risks areas with time horizons of several months or years, depends on the available information, before the wall start moving, and secondly a dynamic short-term model, which help us to determine risks of collapse zones with several days in advance. We remark that this methodology can be a powerful tool to plain future actions in order to simulate possible scenarios considering the production plans.

  16. Shallow Water Turbulent Surface Wave Striking an Adverse Slope

    Bose Sujit K.

    2015-08-01

    Full Text Available The problem of a sinusoidal wave crest striking an adverse slope due to gradual elevation of the bed is relevant for coastal sea waves. Turbulence based RANS equations are used here under turbulence closure assumptions. Depth-averaging the equations of continuity and momentum, yield two differential equations for the surface elevation and the average forward velocity. After nondimensionalization, the two equations are converted in terms of elevation over the inclined bed and the discharge, where the latter is a function of the former satisfying a first order differential equation, while the elevation is given by a first order evolution equation which is treated by Lax-Wendroff discretization. Starting initially with a single sinusoidal crest, it is shown that as time progresses, the crest leans forwards, causing a jump in the crest upfront resulting in its roll over as a jet. Three cases show that jump becomes more prominent with increasing bed inclination

  17. Slope Hazard and Risk Assessment in the Tropics: Malaysia' Experience

    Mohamad, Zakaria; Azahari Razak, Khamarrul; Ahmad, Ferdaus; Manap, Mohamad Abdul; Ramli, Zamri; Ahmad, Azhari; Mohamed, Zainab

    2015-04-01

    The increasing number of geological hazards in Malaysia has often resulted in casualties and extensive devastation with high mitigation cost. Given the destructive capacity and high frequency of disaster, Malaysia has taken a step forward to address the multi-scale landslide risk reduction emphasizing pre-disaster action rather than post-disaster reaction. Slope hazard and risk assessment in a quantitative manner at regional and national scales remains challenging in Malaysia. This paper presents the comprehensive methodology framework and operational needs driven by modern and advanced geospatial technology to address the aforementioned issues in the tropics. The Slope Hazard and Risk Mapping, the first national project in Malaysia utilizing the multi-sensor LIDAR has been critically implemented with the support of multi- and trans-disciplinary partners. The methodological model has been formulated and evaluated given the complexity of risk scenarios in this knowledge driven project. Instability slope problems in the urban, mountainous and tectonic landscape are amongst them, and their spatial information is of crucial for regional landslide assessment. We develop standard procedures with optimal parameterization for susceptibility, hazard and risk assessment in the selected regions. Remarkably, we are aiming at producing an utmost complete landslide inventory in both space and time. With the updated reliable terrain and landscape models, the landslide conditioning factor maps can be accurately derived depending on the landslide types and failure mechanisms which crucial for hazard and risk assessment. We also aim to improve the generation of elements at risk for landslide and promote integrated approaches for a better disaster risk analysis. As a result, a new tool, notably multi-sensor LIDAR technology is a very promising tool for an old geological problem and its derivative data for hazard and risk analysis is an effective preventive measure in Malaysia

  18. DISSIPATION OF WAVE ENERGY ON VERY MILD SLOPE

    2000-01-01

    This paper presents the analysis and calculation of wave attenuation when waves travel on sand bed, sand ripple bed and muddy bed, respectively. The study shows that (1) The dissipation of wave energy due to bottom percolation may be neglected on sand bed; (2) The wave attenuation due to the friction of sand ripples is one order higher than that of flat sand bed and (3) The energy loss of waves propagating on muddy bed is the largest. Then, the equivalent coefficients of friction are calculated in order to compare with the solution by the bottom-friction model. Wave attenuation are also computed by the Bingham-model and the principle of conservation of wave energy flux on very mild muddy slope. The results coincide well with the wave information from the Lianyungang Wave Observation Station. Theoretical prediction proves that the equivalent coefficients of friction strongly rely on water depth, which inerease with decreasing depth.

  19. Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors

    F. Francini

    2012-01-01

    Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.

  20. End depth in steeply sloping rough rectangular channels

    Subhasish Dey

    2000-02-01

    The paper presents a theoretical model to compute the end depth of a free overfall in steeply sloping rough rectangular channels. A momentum equation based on the Boussinesq approximation is applied to obtain the equation of the end depth. The effect ofstreamline curvature at the free surface is utilized to develop the differential equation for the flow profile upstream of the free overfall of a wide rectangular channel. As direct solutions for the end depth and flow profile cannot be obtained owing to implicit forms of the developed equations, an auto-recursive search scheme is evolved to solve these equations simultaneously. A method for estimation of discharge from the known end depth and Nikuradse equivalent sand roughness is also presented. Results from the present model correspond satisfactorily with experimental observations except for some higher roughnesses.

  1. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

    2009-09-16

    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

  2. Runoff production on a slope with randomly distributed infiltrabilities

    Mouche, E.; Harel, M.

    2013-12-01

    Runoff generated on one- and two-dimensional slopes with randomly distributed infiltrability is studied in the queuing theory and connectivity frameworks. The equivalence between the runoff-runon equation and the customers waiting time in a single server queue provides a theoretical link between the statistical descriptions of infiltrability and that of runoff flow rate. Different distributions of infiltrability, representing soil heterogeneities at different scales, are considered. Numerical simulations validate these results and improve our understanding of runoff-runon process. All of the quantities describing the generation of runoff (runoff one-point statistics) and its organization into patterns (patterns statistics and connectivity) are studied as functions of rainfall rate and runoff dimensionality.

  3. SOIL SEQUENCES ALONG A SLOPE OF THE OPALENICA PLAIN

    Michał Kozłowski

    2016-01-01

    Full Text Available The paper presents the results of a study on differentiation of the morphological structure of soil and selected physical and chemical properties of soils in toposequence of the Opalenica Plain. The study was conducted in a 1200 m long transect running through a typical soil toposequence for the Polish Lowland, and therefore the results presented in this study can be extrapolated to similar geomorphological conditions of the area. On the basis of pedological cross-section, the following soil units were distinguished: PWspgl – Albic Luvisols (Arenic with glossic properties, PAt – Albic Glossic Retisols (Loamic, PAsp – Albic Glossic Retisols (Aric, Arenic, PAspgg – Albic Glossic Retisols (Aric, Arenic, Oxyaquic, PWsggl – Albic Luvisols (Aric, Arenic, Stagnic with glossic properties, PWgggl – Albic Luvisols (Aric, Loamic, Stagnic with glossic properties, CZgg – Mollic Reductigleyic Eutric Gleysols (Aric, Loamic, CFt – Fluvic Phaeozems (Aric, Arenic. Each of these units has its own specific position in toposequence but the occurrence of Fluvic Phaeozems (Aric, Arenic are associated with geogenetic processes of Mogilnica river. In this work, using a multiple regression analysis a statistically significant relationships between the position of the soils in relief and the terrain slopes and the organic carbon content in Ap horizon, the cation exchangeable capacity, the sum of exchangeable bases and the pH were obtained. Systematic variability of most soil properties of Ap horizon have shown two distances of spatial variation. The first concerns the systematic changes in shorter distance (from 132 to 344 m and can be associated with differences in soil properties between separate soil units. The second distance of spatial correlation ranges from 431 m to 792 m, which testify to the fact that quantitative changes in the properties of soils are realized gradually and distinctly, together with the differentiation of the slope, over several

  4. Permanent monitoring of alpine slope instabilities with L1-GPS

    Limpach, Philippe; Geiger, Alain; Su, Zhenzhong; Beutel, Jan; Gruber, Stephan

    2013-04-01

    Since winter 2010/2011, a network of permanent GPS stations is being set up in the Matter Valley (Swiss Alps). The aim is to monitor the time variable movement of potentially instable rock glaciers. The network has been established in the framework of the X-Sense project, currently totaling more than 20 stations. X-Sense is an interdisciplinary project for monitoring alpine mass movements at multiple scales, funded by the Swiss federal program Nano-Tera within the Swiss Science Foundation. The X-Sense stations consist of low-cost L1 GPS receivers coupled with inclinometers. A part of the stations allow for on-line data transmission. The data of the X-Sense L1 GPS network is operationally processed on a daily basis with Bernese GPS software, in a fully automated processing chain. In addition, real-time solutions are computed for the on-line stations. The geodetic potential of low-cost GPS receivers for the precise monitoring of slope instabilities in mountain areas was previously investigated in a feasibility study. It is shown that low-cost GPS units are able to provide reliable and continuous time series of surface displacements at cm-level accuracy in harsh environment, using adequate differential processing techniques. Enhanced algorithms were developed to derive accurate time series of surface velocities based on the GPS displacements. It was shown that the low-cost GPS receivers allow to reliably observe surface velocities even below 1 cm/day, as well as to detect small and short-term velocity changes. In addition, the time series of more than 2 years obtained reveal the capability to detect seasonal velocity variations, as well as inter-annual variations of the velocity pattern. By providing continuous observations of surface motion, the GPS-based permanent monitoring contributes to the understanding of processes linked to permafrost-related slope instabilities.

  5. The Dynamic Evaluation of Rock Slope Stability Considering the Effects of Microseismic Damage

    Xu, N. W.; Dai, F.; Liang, Z. Z.; Zhou, Z.; Sha, C.; Tang, C. A.

    2014-03-01

    A state-of-the-art microseismic monitoring system has been implemented at the left bank slope of the Jinping first stage hydropower station since June 2009. The main objectives are to ensure slope safety under continuous excavation at the left slope, and, very recently, the safety of the concrete arch dam. The safety of the excavated slope is investigated through the development of fast and accurate real-time event location techniques aimed at assessing the evolution and migration of the seismic activity, as well as through the development of prediction capabilities for rock slope instability. Myriads of seismic events at the slope have been recorded by the microseismic monitoring system. Regions of damaged rock mass have been identified and delineated on the basis of the tempo-spatial distribution analysis of microseismic activity during the periods of excavation and consolidation grouting. However, how to effectively utilize the abundant microseismic data in order to quantify the stability of the slope remains a challenge. In this paper, a rock mass damage evolutional model based on microseismic data is proposed, combined with a 3D finite element method (FEM) model for feedback analysis of the left bank slope stability. The model elements with microseismic damage are interrogated and the deteriorated mechanical parameters determined accordingly. The relationship between microseismic activities induced by rock mass damage during slope instability, strength degradation, and dynamic instability of the slope are explored, and the slope stability is quantitatively evaluated. The results indicate that a constitutive relation considering microseismic damage is concordant with the simulation results and the influence of rock mass damage can be allowed for its feedback analysis of 3D slope stability. In addition, the safety coefficient of the rock slope considering microseismic damage is reduced by a value of 0.11, in comparison to the virgin rock slope model. Our results

  6. Soils of sinkholes: effects of slope aspect and lateral transport of sediments on soil variation

    Smirnova, Maria; Tsibart, Anna; Abramova, Anna; Koshovskii, Timur; Gennadiev, Alexander

    2015-04-01

    Karst landscapes are highly fragile and particularly vulnerable to subsidence and soil erosion. In karst region there may be hundreds or even thousands of sinkholes and other karst landforms in a small area so that the flat surface is actually absent. The effect of slope aspect on karst landscapes are resulted in different amount of solar radiation and increase of moisture along slopes. In European Russia semiarid landscapes the wind transport of the snow resulted in addition moistening of the soil situated on the eastern slope of depressions. Our research is devoted to the investigation of soil catenas on the slopes of subsidence sinkhole in "Bogdo-Baskuntschak" natural reserve (semiarid landscape). It based on field research of 4 soil catenas situated on the slopes of eastern, northern, western and south exposures. The profile of the sinkhole is an inverted cone (elongated from west to east), slope length varies from 8 to 12 meters, slope gradient - between 40-55% (eastern slope is the shortest and steepest). The short slope length and soil diversity that the sinkholes provided are beneficial for investigation of slope aspect and effect of lateral transport on soil formation. The main feature of sinkhole soil cover is a considerable variety and their high complexity. The lateral transport of sediments resulted in dramatic changes of soil within catenas. Haplic calcisols and arenosols calcaric, situated on the inter-sinkhole flat surface and upper parts of the slopes are substituted by cambisols and leptosols in the middle part of the slopes and colluvic regosols humic in the lower part of the slopes and sinkhole bottom. Soil formation and accumulation of sediments occur simultaneously and lead to the weak soil formation at the middle and lower sections of sinkhole side slopes. The thickness of humus horizon increases from the top to the bottom of sinkhole notably - from 8-12 cm on the upper and middle part of the slopes to 240 cm on the bottom of the sinkhole

  7. Large slope instabilities in Northern Chile and Southern Peru

    Crosta, Giovanni B.; Hermanns, Reginald L.; Valbuzzi, Elena; Frattini, Paolo; Valagussa, Andrea

    2014-05-01

    Deep canyon incision into Tertiary paleosurfaces and large slope instabilities along the canyon flanks characterize the landscape of western slope of the Andes of northern Chile and South Peru. This area belongs to the Coastal Escarpment and Precordillera and is formed by coarse-grained clastic and volcanoclastic formations. The area is characterized by intense seismicity and long-term hyperaridity (Atacama Desert). Landslides along the canyon flanks affect volumes generally up to 1 km3 and locally evolved in large rock avalanches. We prepared a landslide inventory covering an area of about 30,000 km2, extending from Iquique (Chile) to the South and Tacna (Peru) to the North. A total of 606 landslides have been mapped in the area by use of satellite images and direct field surveys, prevalently including large phenomena. The landslides range from 1 10-3 km2 to 464 km2 (Lluta landslide). The total landslide area, inclusive of the landslide scarp and of the deposit, amounts to about 2,130 km2 (about 7% of the area). The mega landslides can be classified as large block slides that can evolve in large rock avalanches (e.g. Minimini landslide). Their initiation seems to be strongly associated to the presence of secondary faults and large fractures transversal to the slope. These landslides show evidence suggesting a re-incision by the main canyon network. This seems particularly true for the Lluta collapse where the main 'landslide' mass is masked or deleted by the successive erosion. Other landslides have been mapped along the Coastal Escarpment and some of the major tectonic escarpments with an E-W trend. We examined area-frequency distributions of landslides by developing logarithmically binned, non-cumulative size frequency distributions that report frequency density as a function of landslide planar area A. The size frequency distribution presents a strong undersampling for smaller landslides, due to the extremely old age of the inventory. For landslides larger than

  8. Short-term vegetation recovery after a spring grassland fire in Lithuania. Effect of time and slope position

    P. Pereira

    2013-01-01

    Full Text Available The aim of this work is study the effects of a grassland fire in vegetation recuperation according to fire severity, slope exposition and position. We designed two experimental plots, one located in an east faced slope (Slope A and other in a west faced (Slope B. Vegetation recuperation was assessed 10, 17, 31 and 46 days after the fire. The results showed that fire severity was higher in slope B, than in slope A. In both slopes vegetation recuperation was different according position. Bottom positions recovered faster than slope and upslope positions, that it is attributed to fire severity (higher in slope and upslope areas and ash and soil transport and deposition in bottom areas. The vegetation recuperated faster in slope B and 46 days after the fire, 100% of the plot was covered. This was attributed to higher severity, more complex topography, and inclination of Slope A, that delayed the vegetation recover.

  9. Experimental study on slope sliding and debris flow evolution with and without barrier

    Ji-kun Zhao; Dan Wang; Jia-hong Chen

    2015-01-01

    A constitutive model on the evolution of debris flow with and without a barrier was established based on the theory of the Bingham model. A certain area of the Laoshan Mountain in Nanjing, Jiangsu Province, in China was chosen for experimental study, and the slope sliding and debris flow detection system was utilized. The change curve of the soil moisture content was attained, demonstrating that the moisture content of the shallow soil layer increases faster than that of the deep soil layer, and that the growth rate of the soil moisture content of the steep slope is large under the first weak rainfall, and that of the gentle slope is significantly affected by the second heavy rainfall. For the steep slope, slope sliding first occurs on the upper slope surface under heavy rainfall and further develops along the top platform and lower slope surface, while under weak rainfall the soil moisture content at the lower part of the slope first increases because of the high runoff velocity, meaning that failure occurring there is more serious. When a barrier was placed at a high position on a slope, debris flow was separated and distributed early and had less ability to carry solids, and the variation of the greatest depth of erosion pits on soil slopes was not significant.

  10. Weathering Characteristics of Sloping Fields in the Three Gorges Reservoir Area, China

    JIANG Hong-Tao; XU Fei-Fei; CAI Yi; YANG Da-Yuan

    2006-01-01

    For the purpose of understanding the weathering characteristics of surface layers in purple mudstone sloping fields of the Three Gorges Reservoir area of China, oxide content of major elements, composition of clay minerals, magnetic susceptibility, and difference in weathering characteristics of surface layers under different slope gradients were determined.The results showed that the oxide content of Si, Al, and Fe ranged from 60% to 75% and the weathering coefficient with depth showed no trend along the slope gradient. Also, for gentle (10° and 15°) and intermediate (25° and 40°) slopes the clay relative diffraction peak for kaolinite at the surface between 0-10 cm and 10-20 cm declined with an increase in slope gradient, while the relative diffraction peak for kaolinite in weathered layers on steep slopes (50° and 60°) disappeared altogether. Magnetic susceptibility decreased with increasing depth and, for a given depth layer, decreased with an increase in slope gradient. Analysis of the oxide content, weathering coefficients, clay minerals, and magnetic susceptibility showed that in the Three Gorges Reservoir area, the pedogenesis of the weathering layer in purple mudstone sloping fields was weak with weaker soil formation going from gentle slope to steep slope.

  11. Increased seed set in down slope-facing flowers of Lilium duchartrei

    Shi-Guo SUN; Chi-Yuan YAO

    2013-01-01

    Flower orientation has been considered one aspect of floral attraction.Plants growing on slopes should orientate their flowers facing down slope towards greater open space to enhance reproduction by attracting more pollinators.Flower angle and floral symmetry may affect this pattern; for example,this trend would be overshadowed in vertical/pendent flowers with radial symmetry because the flowers can attract pollinators and provide landing platforms from many directions.We investigated this hypothesis in Lilium duchartrei,a herb with pendent and actinomorphic flowers,in the Hengduan Mountains region of China by measuring flower direction for individuals growing on fiat ground and on slopes.We also changed flower direction from facing down to up slope to test the effects on pollinator visitation frequency and subsequent plant reproduction.Plants growing on flat ground orientate their flowers equally towards the four geomagnetic directions,whereas the flowers on individuals growing on slopes preferentially face down slope.This pattern was more pronounced for individuals growing on steeper slopes.There was a positive correlation between slope angle and the seed set of flowers facing down slope (control),but a negative correlation between seed set and flowers facing up slope.The visitation frequency also tended to be higher for control flowers on steeper slopes and lower for those flowers changed to face up slope.Unexpectedly,floral direction was not affected by flower angle or floral symmetry.The results suggest that a down slope orientation of flowers could function to improve pollination in heterogeneous pollination environments.

  12. The slope-background for the near-peak regimen of photoemission spectra

    Highlights: •We propose a method that accounts for the change in the background slope of XPS data. •The slope-background can be derived from Tougaard–Sigmund's transport theory. •The total background is composed by Shirley–Sherwood and Tougaard type backgrounds. •The slope-background employs one parameter that can be related to REELS spectra. •The slope, in conjunction with the Shirley–Sherwood background, provides better fits. -- Abstract: Photoemission data typically exhibits a change on the intensity of the background between the two sides of the peaks. This step is usually very well reproduced by the Shirley–Sherwood background. Yet, the change on the slope of the background in the near-peak regime, although usually present, is not always as obvious to the eye. However, the intensity of the background signal associated with the evolution of its slope can be appreciable. The slope-background is designed to empirically reproduce the change on the slope. Resembling the non-iterative Shirley method, the proposed functional form relates the slope of the background to the integrated signal at higher electron kinetic energies. This form can be predicted under Tougaard–Sigmund's electron transport theory in the near-peak regime. To reproduce both the step and slope changes on the background, it is necessary to employ the slope-background in conjunction with the Shirley–Sherwood background under the active-background method. As it is shown for a series of materials, the application of the slope-background provides excellent fits, is transparent to the operator, and is much more independent of the fitting range than other background methods. The total area assessed through the combination of the slope and the Shirley–Sherwood backgrounds is larger than when only the Shirley–Sherwood background is employed, and smaller than when the Tougaard background is employed

  13. The slope-background for the near-peak regimen of photoemission spectra

    Herrera-Gomez, A., E-mail: aherrera@qro.cinvestav.mx [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Bravo-Sanchez, M. [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Chihuahua, Chihuahua 31109 (Mexico); Vazquez-Lepe, M.O. [Departamento de Ingeniería de Proyectos, Universidad de Guadalajara, Jalisco 44430 (Mexico)

    2013-08-15

    Highlights: •We propose a method that accounts for the change in the background slope of XPS data. •The slope-background can be derived from Tougaard–Sigmund's transport theory. •The total background is composed by Shirley–Sherwood and Tougaard type backgrounds. •The slope-background employs one parameter that can be related to REELS spectra. •The slope, in conjunction with the Shirley–Sherwood background, provides better fits. -- Abstract: Photoemission data typically exhibits a change on the intensity of the background between the two sides of the peaks. This step is usually very well reproduced by the Shirley–Sherwood background. Yet, the change on the slope of the background in the near-peak regime, although usually present, is not always as obvious to the eye. However, the intensity of the background signal associated with the evolution of its slope can be appreciable. The slope-background is designed to empirically reproduce the change on the slope. Resembling the non-iterative Shirley method, the proposed functional form relates the slope of the background to the integrated signal at higher electron kinetic energies. This form can be predicted under Tougaard–Sigmund's electron transport theory in the near-peak regime. To reproduce both the step and slope changes on the background, it is necessary to employ the slope-background in conjunction with the Shirley–Sherwood background under the active-background method. As it is shown for a series of materials, the application of the slope-background provides excellent fits, is transparent to the operator, and is much more independent of the fitting range than other background methods. The total area assessed through the combination of the slope and the Shirley–Sherwood backgrounds is larger than when only the Shirley–Sherwood background is employed, and smaller than when the Tougaard background is employed.

  14. A study of the surface energy balance on slopes in a tallgrass prairie

    Nie, D.; Demetriades-Shah, T.; Kanemasu, E. T.

    1990-01-01

    Four slopes (north, south, east, and west) were selected on the Konza Prairie Research Natural Area to study the effect of topography on surface energy balance and other micrometeorological variables. Energy fluxes, air temperature, and vapor pressure were measured on the sloped throughout the 1988 growing season. Net radiation was the highest on the south-facing slope and lowest on the north-facing slope, and the difference was more than 150 W/sq m (20 to 30 percent) at solar noon. For daily averages, the difference was 25 W/sq m (15 percent) early in the season and increased to 60 W/sq m (30 to 50 percent) in September. The east-facing and west-facing slopes had the same daily average net radiation, but the time of day when maximum net radiation occurred was one hour earlier for the east-facing slope and one hour later for the west-facing slope relative to solar noon. Soil heat fluxes were similar for all the slopes. The absolute values of sensible heat flux (h) was consistently lower on the north-facing slope compared with other slopes. Typical difference in the values of H between the north-facing and the south-facing slopes was 15 to 30 W/sq m. The south-facing slope had the greatest day to day fluctuation in latent heat flux as a result of interaction of net radiation, soil moisture, and green leaf area. The north-facing slope had higher air temperatures during the day and higher vapor pressures both during the day and at night when the wind was from the south.

  15. Research on the Relationship between Landslide of Farming Terraces and the Intensity of Rainfall and Slope Angle Based on the Indoor Rainfall Slide Slope Model

    Dongqin Chen

    2016-03-01

    Full Text Available Due to the increase of geographical disaster in China, it is necessary to study the formation mechanism to make a preparation for the future prevention of geological disasters and effectively reduce the unnecessary financial loss and casualties. We found there is a powerful connection between heavy rainfall and landslide slope. Thus, this article takes the accumulation of gravel soil as the research material to set up indoor rainfall and landslide model test. By comparing the rules of pore water pressure and soil pressure responding to different rainfall intensity and slope angle, we discussed over the effects of rainfall intensity and slope angle on the sliding of accumulation gravelly soil.

  16. Determination of the Stable Slope Configuration of Oval-Shaped Furrow Pits

    ZHU Nai-long; ZHANG Shi-xiong

    2004-01-01

    The space effects of oval-shaped furrow pit slopes were analyzed by the elastic mechanics principle. The interaction of limit equilibrium slope angle, friction coefficient, cohesion and horizontal radius of oval-shaped furrow pits has been derived. The oval trumpet-like rock mass is homogeneous and elastic while only loadedby its dead weight. The interaction indicates that the deeper an oval-shaped furrow pit is excavated, the greater thelimit equilibrium slope angle. Both the theory base for reducing stripping waste rock in an oval- shaped furrow pitand the basic way to determine the configuration of a stable slope were developed from the mentioned interaction.The theory includes the preceding principles of stability analysis of slopes. Compared with the configuration deter-mined by traditional theory of slope stability, a great quantity of stripping waste rock can be reduced by that deter-mined in this paper under stable conditions.

  17. Buoyant Turbulent Kinetic Energy Production in Steep-Slope Katabatic Flow

    Oldroyd, Holly J.; Pardyjak, Eric R.; Higgins, Chad W.; Parlange, Marc B.

    2016-07-01

    We develop several critical concepts that should be considered when interpreting, modelling and designing future experiments for flows over sloping terrain. Vertical buoyancy fluxes in katabatic flows can be positive and a source of turbulent kinetic energy (TKE) despite the statically stable, thermal stratification that drives these flows. This phenomenon occurs when the ratio of along-slope to slope-normal kinematic heat fluxes is greater than the cotangent of the slope angle, suggesting a critical value of slope-angle steepness found in earlier studies. We provide field-data-based evidence that the along-slope heat flux may dominate the variables in this inequality, and therefore in generating buoyant TKE production or suppression over a steep slope. These data show the along-slope heat flux can be more variable and significantly larger in magnitude than the slope-normal component. The gradient Richardson number does not include the effects of the along-slope buoyancy; furthermore, none of the canonical stability parameters can properly reflect the TKE redistribution from turbulent transport divergence and the sink of TKE in cases of counter-gradient momentum fluxes, which we frequently observe near the peak of the katabatic jet. In such cases, canonical stability parameters inadequately represent the physical mechanisms associated with stability. These results have broad implications related to accurately modelling turbulence and surface exchanges over sloping terrain and illustrate the need to more thoroughly investigate the along-slope heat flux and its drivers, the meaning and definitions of stability, and the effects of non-local turbulent transport.

  18. Spoke Model for Calculating Reliability Index and Safety Factor of Slopes

    Ping Wang; Dongyan Liu; Haibin Huang; Dongsheng Liu

    2013-01-01

    Considering the disadvantages of the slice method commonly employed in reliability analysis of slopes, a novel method (Spoke model) was proposed for reliability analysis and safety factor calculation of slopes in this work based on geometrical relationship among slices. The safety factor and the coefficients of limit state function of slopes could be achieved with the Gaussian integral method. The minimum safety factor and the minimum reliability index, as well as their corresponding coordina...

  19. Recent and future warm extreme events and high-mountain slope stability

    C. Huggel; Salzmann, Nadine; Allen, S.; Caplan-Auerbach, J; Fischer, L.; Haeberli, W.; Larsen, C; Schneider, D.; Wessels, R.

    2010-01-01

    The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mount...

  20. Slope instabilities on perennially frozen and glacierised rock walls: multi-scale observations, analyses and modelling

    Fischer, L.

    2009-01-01

    Slope failures from steep bedrock slopes have occurred in mountain areas throughout time. This is a consequence of the topography, geological characteristics, intense freeze-thaw activity and oversteepened slopes from glacier erosion. However, during the past decades, an increased number of periglacial rock avalanche events have been recorded in the European Alps and other high mountain ranges which are thought to be related to permafrost degradation and glacier shrinkage, indi...

  1. Estimating velocity from noisy GPS data for investigating the temporal variability of slope movements

    V. Wirz; Gruber, S.; S. Gubler; R. S. Purves

    2014-01-01

    Knowledge of processes and factors affecting slope instability is essential for detecting and monitoring potentially hazardous slopes. Knowing the timing of acceleration or deceleration of slope movements can help to identify important controls and hence to increase our process understanding. For this methods to derive reliable velocity estimations are important. The aim of this study was to develop and test a method to derive velocities based on noisy GPS data of v...

  2. Study of Real-Time Slope Stability Monitoring System Using Wireless Sensor Network(WSN)

    Dave Ta Teh Chang; Yuh-Show Tsai; Kai-Chun Yang

    2013-01-01

    Traditional monitoring instruments have been found difficult to meet the requirement for real-time monitoring. This study applied Wireless Sensor Network (WSN) to slope stability monitoring, In recent years, the slopes in Taiwan have frequently caused disasters after heavy rains, and traand understand the process of slope instability from the characterization variation of new concepts. In the first stage, the Mems Sensors were selected and calibrated, and the accuracy was selected as 0.1 。...

  3. Problems of definitive slopes mining at Doly Nástup Tušimice

    Martin Vrubel; Dana Sládková

    2007-01-01

    The instability of slopes influents mining business in many aspects at opencast mining. The temporary decrease of intended mined volumes due to landslips is common and sometimes there is necessary to change origin-mining plans. It has impact to economy and other essential costs for rehabilitation are required. In case of definitive slopes formation in contact to traffic and communication networks, watercourses and infrastructures of seats stability of slope security there is even more importa...

  4. Slope analysis for elastic proton-proton and proton-antiproton scattering

    Okorokov, V. A.

    2008-01-01

    The diffraction slope parameter is investigated for elastic proton-proton and proton-antiproton scattering based on the all available experimental data at intermediate square of momentum transfer in the main. Energy dependence of the elastic diffraction slope is approximated by various analytic functions in a model-independent fashion. The expanded standard logarithmic approximations allow to describe experimental slopes in all available energy range at qualitative level reasonably. Various f...

  5. Diffraction slopes for elastic proton-proton and proton-antiproton scattering

    Okorokov, V. A.

    2008-01-01

    The diffraction slope parameter is investigated for elastic proton-proton and proton-antiproton scattering based on the all available experimental data at low momentum transfer values. Energy dependence of the elastic diffraction slopes is approximated by various analytic functions. The expanded "standard" logarithmic approximations allow to describe experimental slopes in all available energy range reasonably. Various approximations differ from each other both in the low energy and very high...

  6. An approach using multi-factor combination to evaluate high rocky slope safety

    Su, Huaizhi; Meng YANG; Wen, Zhiping

    2016-01-01

    A high rocky slope is an open complex giant system for which there is contradiction among different influencing factors and coexistence of qualitative and quantitative information. This study presents a comprehensive intelligent evaluation method of high rocky slope safety through an integrated analytic hierarchy process, extension matter element model and entropy weight to assess the safety behavior of the high rocky slope. The proposed intelligent evaluation integrates subjec...

  7. Net radiation balance for two forested slopes on opposite sides of a valley.

    Holst, T; Rost, J; Mayer, H

    2005-05-01

    Measurements of the net radiation balance of two forested sites on the opposite slopes of a valley in south-western Germany, made over 3 years, are presented in this study. Radiation sensors were mounted horizontally on two measurement towers above two beech stands. The direct part of the measured short-wave incoming radiation was adjusted according to the slope's angle to convert horizontally measured radiation data into surface-parallel radiation fluxes. During periods when contemporaneous measurements of slope-parallel and horizontal radiation fluxes were available, the calculation of surface-parallel radiation fluxes from the horizontally recorded net radiation components were compared with measured values. The net radiative fluxes parallel to the slopes were calculated for a period of 36 months and analysed. Results show that the different aspects of both sites cause significant differences of the net radiation balance. In June, when the elevation of the sun is highest, incoming solar radiation K downward arrow received on the NE-slope was 9% lower than K downward arrow received on the SW-slope. During the winter months, the differences were much greater and incoming solar radiation to the NE-slope was 50% of that to the SW-slope. Due to the differing solar irradiance, net radiation fluxes were significantly higher on the SW-slope than on the NE-slope. For long-wave radiation only small differences between both slopes could be found. Since radiative fluxes determine the energy balance and hence the microclimate and water balance of a forest stand, these differences in the net radiation balance between the slopes are important for the vegetation. PMID:15630573

  8. Landslide trigger factors on populated, unstable slopes, Tusion, Tajikistan.

    Domej, Gisela

    2015-04-01

    The Pamir region close to the Tajik-Afghan border is regularly affected by severe landslides threatening local population, their livelihood and infrastructure. In addition to landslides appearing as immediate consequence of earthquake, a high number of ground movements without previous seismic activity are also observed. The number of reported events and problem areas has strongly increased within the last ten to fifteen years. Consequently, a study was conducted to determine the triggering factors of these landslides without seismic cause. For accessibility reasons, the community of Tusion, southeast of Khorog, Gorno-Badakhshan, southern Tajikistan, where the capital township is located on a slowly moving slope, was chosen for the pilot project, and geologic mapping as well as seismic refraction and Schlumberger geoelectrics were applied. The geologic survey showed that the valley flanks around Tusion are covered with large amounts of postglacial and fluvial debris as well as moraine deposits. The absence of glacial ice and the retreat of remaining glaciers caused unstable valley flanks at many sites and, in consequence, extensive gravitational mass movements in the past, which are responsible for the today's layered ground structure as well as many secondary slumps. The latter often damage irrigation lines, which tends to further destabilize the slope. To obtain an accurate image of the superposed layers, the geophysical survey was conducted on three inhabited flanks. Arguments in favour for those three locations were not only the possibility of direct risk estimation for the region, but also the fact that the number of landslides increases constantly with population growth. Seismic and electric methods were applied in parallel to distinguish soil types and structural properties as well as to estimate the degree of water saturation. Despite of the methods' simplicity, they revealed precise explanations on triggering factors of landslides. The geophysical survey

  9. Long term monitoring of landslide: observation gravitational slope cycles

    Palis, Edouard; Lebourg, Thomas; Vidal, Maurin

    2016-04-01

    Since several years of studies on landslides, we realized the role and subtle interactions that existed between the structural complexity, masses dynamics and complex internal circulation of fluids. Thus, to gain a better understanding of the processes taking place during the evolution of an unstable slope, an observational study is necessary. In this perspective, our team currently monitors slow moving landslide zones. The aim of such a monitoring is to gain a better knowledge of the links between external forcing (meteorological, seismological) and signals going out of the slope (kinematic, vibrations, electrical resistivity). In December 2000, a dramatic event affected the sandy/clayey landslide in the Southern Alpes Maritimes (France). A 10 meters high scarp appeared at the foot of the landslide and affected private yards nearby. This area then became a major concern for local authorities and understand the processes taking place, a scientific challenge. In order to understand the land-sliding reactivations and to quantify the natural cycles of deformations, we analyse the main factors of this complex system. After 10 years of observation we are now able to highlight some of the complex behaviours by the measurement of physical parameters (geophysical monitoring). A permanent 115 m ERT line (5 meters electrode spacing) has been installed and provides an acquisition daily since 2006. The daily acquisitions are now accompanied by continuous measurements from boreholes (thermometers, piezometers, tiltmeters) and pluviometry. We are able to control the whole monitoring from the lab, and all these data are transmitted in real time. The analysis of these large amounts of data over large time series allows the detection of seasonal cycles of surface activity. The deformation taking place can be assimilated to a near-elastic deformation and show a lateral decoupling on both sides of the fault cutting the landslide. These deformation cycles can be associated with the

  10. Alaska North Slope regional gas hydrate production modeling forecasts

    Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.

    2011-01-01

    A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside

  11. Slope Gradient and Vegetation Cover Effects on The Runoff and Sediment Yield in Hillslope Agriculture

    Obaid ur Rehman; Muhammad Rashid; Rahina Kausar; Sarosh Alvi; Riaz Hussain

    2015-01-01

    Cultivation of field crops is a challenge and risky business in sloping areas. A study was conducted as a demonstration model for the sloppy lands of Fateh Jang, Pakistan. The objectives of this study were to monitor the runoff water and soil sediment loss under different vegetative covers and slope gradients in comparison with bare fallow on each slope gradient. Three artificial slope gradients i.e., 1%, 5% and 10% were established and three crops i.e., Wheat, Gram and Lentil were cultivated...

  12. Interaction of dipole eddies with the western continental slope of the Mozambique Channel

    Roberts, M J; Ternon, Jean-François; Morris, T.

    2014-01-01

    Sea Level Anomaly (SLA) data were used to track a southward propagating eddy dipole along the western slope of the Mozambique Channel over some 6 months. In April 2005, this dipole (with the cyclone to the south) was close to the continental slope off southern Mozambique. The contact zone between the contra-rotating vortices and the slope was surveyed by ship using onboard (S-)ADCP and CTD lines. The data showed strong ( > 1.4 m s(-1)) southward (geostrophic) currents over the slope adjacent ...

  13. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Roohollah Kalatehjari

    2014-01-01

    Full Text Available Over the last few years, particle swarm optimization (PSO has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D slope stability analysis. This paper applied PSO in three-dimensional (3D slope stability problem to determine the critical slip surface (CSS of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  14. Case-Based Reasoning for Slope Stability Evaluation and Its Application

    2001-01-01

    Slope is a non-linear and uncertain kinetic system affected by many factors. In view of the incompleteness and uncertainty of the information of slope stability evaluation, a new method of slope stability evaluation by using case-based reasoning is presented. Considering the sensitivity of attribute weights to the environment, the algorithm of attribute weights is set up on the basis of the concept of changeable weights. Calculating the similarity between target case of the slope and base case, the stability of target case is evaluated. It is shown from examples that the method is simple, visual, practical, and convenient for use.

  15. Effects of basin bottom slope on jet hydrodynamics and river mouth bar formation

    Jiménez-Robles, A. M.; Ortega-Sánchez, M.; Losada, M. A.

    2016-06-01

    River mouth bars are strategic morphological units primarily responsible for the development of entire deltaic systems. This paper addresses the role of receiving basin slope in the hydrodynamics of an exiting sediment-laden turbulent jet and in resulting mouth bar morphodynamics. We use Delft3D, a coupled hydrodynamic and morphodynamic numerical model, along with a theoretical formulation to reproduce the physics of the problem, characterized by a fluvially dominated inlet free of waves and tides. We propose an updated theoretical model with a slope-dependent entrainment coefficient, showing that the rate at which ambient fluid is incorporated into a jet increases with higher basin slopes. Transient results reveal that the magnitude of a basin slope can alter the stability of a jet, favoring the formation of an unstable meandering jet. While a stable jet gives rise to "middle-ground" bars accompanied by diverging channels, a "lunate" mouth bar results from unstable jets. Additional morphodynamic simulations demonstrate that the time required for mouth bar stagnation in its final position increases linearly with the basin slope. In contrast, the distance at which the mouth bar eventually forms decreases until reaching an asymptotic value for slopes higher than 2%. Moreover, the basin slope highly influences sedimentary processes responsible for bar formation: for milder slopes, progradation processes prevail, while in steeper basins aggradation is more relevant. Finally, the minimum relative water depth over a bar crest that forces the flow to bifurcate around a fully developed bar decreases with the basin slope.

  16. Commercial possibilities for stranded conventional gas from Alaska's North Slope

    Attanasi, E.D.; Freeman, P.A.

    2014-01-01

    Stranded gas resources are defined for this study as gas resources in discrete accumulations that are not currently commercially producible, or producible at full potential, for either physical or economic reasons. Approximately 35 trillion cubic feet (TCF) of stranded gas was identified on Alaska’s North Slope. The commercialization of this resource requires facilities to transport gas to markets where sales revenue will be sufficient to offset the cost of constructing and operating a gas delivery system. With the advent of the shale gas revolution, plans for a gas pipeline to the conterminous US have been shelved (at least temporarily) and the State and resource owners are considering a liquefied natural gas (LNG) export project that targets Asian markets. This paper focuses on competitive conditions for Asian gas import markets by estimating delivered costs of competing supplies from central Asia, Russia, Indonesia, Malaysia, and Australia in the context of a range of import gas demand projections for the period from 2020 to 2040. These suppliers’ costs are based on the cost of developing, producing, and delivering to markets tranches of the nearly 600 TCF of recoverable gas from their own conventional stranded gas fields. The results of these analyses imply that Alaska’s gas exports to Asia will likely encounter substantial competitive challenges. The sustainability of Asia’s oil-indexed LNG pricing is also discussed in light of a potentially intense level of competition.

  17. Parenchymal mechanics, gas mixing, and the slope of phase III.

    Wilson, Theodore A

    2013-07-01

    A model of parenchymal mechanics is revisited with the objective of investigating the differences in parenchymal microstructure that underlie the differences in regional compliance that are inferred from gas-mixing studies. The stiffness of the elastic line elements that lie along the free edges of alveoli and form the boundary of the lumen of the alveolar duct is the dominant determinant of parenchymal compliance. Differences in alveolar size cause parallel shifts of the pressure-volume curve, but have little effect on compliance. However, alveolar size also affects the relation between surface tension and pressure during the breathing cycle. Thus regional differences in alveolar size generate regional differences in surface tension, and these drive Marangoni surface flows that equilibrate surface tension between neighboring acini. Surface tension relaxation introduces phase differences in regional volume oscillations and a dependence of expired gas concentration on expired volume. A particular example of different parenchymal properties in two neighboring acini is described, and gas exchange in this model is calculated. The efficiency of mixing and slope of phase III for the model agree well with published data. This model constitutes a new hypothesis concerning the origin of phase III. PMID:23599394

  18. Defining hyperinflation as 'dynamic': moving toward the slope.

    Dolmage, Thomas E; Evans, Rachael A; Goldstein, Roger S

    2013-07-01

    Measuring the severity of dynamic hyperinflation is a useful clinical approach to assess the effect of therapeutic interventions and explain their impact on exercise tolerance. Dynamic hyperinflation is typically quantified by the change in end expiratory lung volume from rest to the end of exercise. The result may be inconsistent with disease severity and does not clearly explain how exercise tolerance improves with therapy. Using a re-examination of selected studies, we suggest an operational definition of dynamic hyperinflation using the slope derived from serial measures of inspiratory capacity expressed as a linear function of ventilation that clearly differentiates whether therapies affect static or dynamic hyperinflation or affect lung volume only as a consequence of reducing ventilation. With this approach, the magnitude of the result is consistent with disease severity and is a more reliable outcome as it uses serial measures rather than a single time point estimate. The therapies re-evaluated are breathing helium or hyperoxic gas mixtures, bronchodilation and exercise training. A clear definition of dynamic hyperinflation will assist clinicians in assessing the impact of therapeutic interventions. PMID:23478191

  19. Slope instability related to permafrost changes on Mexican volcanoes

    Delgado Granados, Hugo; Molina, Victor Soto

    2015-04-01

    Permafrost is present above 4,500 meters at the three highest Mexican mountains, Citlaltépetl, Popocatépetl and Iztaccihuatl (5,675, 5,452 and 5,286m asl, respectively), all active volcanoes. During the rainy season in the central region of Mexico, the occurrence of small debris-flows in the ice-free parts of the mountains, as well as small lanslides is frequent. At Popocatépetl volcano, flows are mostly related to a combination of the eruptive activity and climatic factors. However, the volcanic activity is different at Citlaltépetl and Iztaccihuatl where there is no eruptive activity, but landslides have occurred in recent years on their steep slopes because its stability has been altered as a result of an increase in the air temperature which in turn has caused variations in the thickness of the active layer of permafrost, causing as a consequence, the increase of an even more unstable soil. Additionally, cracks in the rock walls are subject to an increasing hydrostatic pressure due to continuous daily freezing and thawing of seasonal water produced by a warmer and less solid precipitation accumulating in the cracks over time and in the unconsolidated potentially unstable material.

  20. STABILIZATION OF A FAILED SLOPE WITH PILED STRUCTURES

    M. Rifat KAHYAOĞLU

    2008-01-01

    Full Text Available Neogene aged units of a densely populated region of Western Turkey along the Aegean Sea coastline is susceptible to landslides causing frequent economic loss especially following raining seasons. Several landslides took place in the area covering a narrow band of the coastline between Izmir and Söke (Aydın. Countermeasures against these relatively small-scale slope failures in the region often involve construction of either reinforced concrete retaining walls or stabilizing piles, which can be easily constructed by local contractors. In this study borings, in-situ and laboratory soil mechanics tests, geophysical and geological investigations have been performed in order to investigate the landslide occurred in the yard of an elementary school in Söke township. The analysis of two rows of piled retaining system constructed to reuse the school building against a potential slides are presented. Three inclinometer measurements have been performed after completion of the bored pile system. It has been concluded that the measured and the calculated displacement values are both small. There is no problem of the built project by means of moments and displacements.

  1. Site Scientist for the North Slope of Alaska Site

    Verlinde, Johannes [Pennsylvania State Univ., State College, PA (United States)

    2016-03-11

    Under this grant our team contributed scientific support to the Department of Energy Atmospheric Radiation Program’s (DOE-ARM) Infrastructure team to maintain high quality research data at the DOE-ARM North Slope of Alaska with special emphasis on the radars. Under our guidance two major field campaigns focusing on mixed-phase Arctic clouds were conducted that greatly increased the community’s understanding of the many processes working together to control the evolution of single-layer cloud mixed-phase clouds. A series of modeling and observational studies revealed that the longevity of the radiatively important liquid phase is strongly dependent on how the ice phase develops in mixed-phase clouds. A new ice microphysics parameterization was developed to capture better the natural evolution of ice particle growth in evolving environments. An ice particle scattering database was developed for all ARM radar frequencies. This database was used in a radar simulator (Doppler spectrum and polarimetric variables) to aid in the interpretation of the advanced ARM radars. At the conclusion of this project our team was poised to develop a complete radar simulator consistent with the new microphysical parameterization, taking advantage of parameterization’s advanced characterization of the ice shape and ice density.

  2. Root architecture characteristics of plant inlay in live slope grating

    Gao Jia-rong; Wang Fang; Gao Yang; Rosemarie Stangl

    2007-01-01

    In the experimental garden of the Department of Soil Bioengineering and Landscape Construction, University of Applied Life Sciences in Vienna, Austria, coarse root systems of three different brush species were completely excavated and semi-automatically digitized. The species were Lonicera xylosteum, Ligustrum vulgare and Euonymus europaeus. The 3-D root architectures reveal different growth strategies between species, which are related to ecological characteristics and physical soil properties. The root architecture of Lonicera xylosteum and Ligustrum vulgare, planted in the under layer of the live slope grading, where the soil is very tight and the soil water content and fertility are relatively low, is shallow. However, the root distribution of E. europaeus, planted in the middle layer, where environmental conditions are better, is deeper. Most of the root biomass of the three species is concentrated in the 0-30 cm soil layer. A quarter of the root biomass ofLigustrum vulgare is distributed in the upper layer of the plant inlay. E. europaeus has a relatively even distribution in the 30-60 cm and 60-90 cm soil layer.

  3. Temperature statistics above a deep-ocean sloping boundary

    Cimatoribus, Andrea A

    2015-01-01

    We present a detailed analysis of the statistics of temperature in an oceanographic observational dataset. The data is collected using a moored array of thermistors, 100m tall and starting 5m above the bottom, deployed during four months above the slopes of a seamount in the North Eastern Atlantic Ocean. Turbulence at this location is strongly affected by the semidiurnal tidal wave. Mean stratification is stable in the entire dataset. We compute structure functions, of order up to 10, of the distributions of temperature increments. Strong intermittency is observed in particular during the downslope phase of the tide, and farther from the solid bottom. In the lower half of the mooring during the upslope phase, the statistics of temperature are consistent with those of a passive scalar. In the upper half of the mooring, the statistics of temperature deviate from those of a passive scalar, and evidence of turbulent convective activity is found. The downslope phase is generally thought to be more shear dominated,...

  4. Constraining slope parameter of symmetry energy from nuclear structure

    Inakura, T

    2015-01-01

    Four quantities deducible from nuclear structure experiments have been claimed to correlate to the slope parameter $L$ of the symmetry energy; the neutron skin thickness, the cross section of low-energy dipole (LED) mode, dipole polarizability $\\alpha_D$, and $\\alpha_D S_0$ (i.e. product of $\\alpha_D$ and the symmetry energy $S_0$). By the calculations in the Hartree-Fock plus random-phase approximation with various effective interactions, we compare the correlations between $L$ and these four quantities. The correlation derived from different interactions and the correlation from a class of interactions that are identical in the symmetric matter as well as in $S_0$ are simultaneously examined. These two types of correlations may behave differently, as exemplified in the correlation of $\\alpha_D$ to $L$. It is found that the neutron skin thickness and $\\alpha_DS_0$ correlate well to $L$, and therefore are suitable for narrowing down the value of $L$ via experiments. The LED emergence and upgrowth makes the $\\...

  5. Estimated prospective tanker rates for Alaska North Slope crude oil

    Within the next ten years, three significant events will affect the structure of tankering costs for the Alaska North Slope (ANS) oil fields. These are: the double hulling requirement of the Oil Spill Pollution Act of 1990 (OPA90); the ageing of the tanker fleet; and the decline in ANS and West Coast oil production, which will eliminate more costly shipments to the Gulf Coast. The purpose of this paper is to estimate how these will affect tankering costs over the next twenty years. As baseline, the existing fleet is described, followed by a detailed discussion of the above factors. Company specific shipping requirements are calculated as compared to ship-by-ship tonnage availability (based on the current fleet) pursuant to these events, and the resultant tonnage deficit. A model is presented that derives a hypothetical reconstruction scheme to eliminate the deficits on a company specific ship-by-ship basis. The resulting costs are then translated into a weighted average per barrel ANS cost. The specific double hull costs are segregated. (author)

  6. Water surface slope spectra in nearshore and river mouth environments

    Laxague, N. J. M.; Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.

    2016-05-01

    With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes that can affect sea surface topography. Here we present connections made between ocean wave spectral shape and wind forcing in coastal waters using polarimetric slope sensing and eddy covariance methods; this is based on data collected in the vicinity of the mouth of the Columbia River (MCR) on the Oregon-Washington border. These results provide insights into the behavior of short waves in coastal environments under variable wind forcing; this characterization of wave spectra is an important step towards improving the use of radar remote sensing to sample these dynamic coastal waters. High wavenumber spectral peaks are found to appear for U 10 > 6 m/s but vanish for τ > 0.1 N/m2, indicating a stark difference between how wind speed and wind stress are related to the short-scale structure of the ocean surface. Near-capillary regime spectral shape is found to be less steep than in past observations and to show no discernable sensitivity to wind forcing.

  7. Geomorphological research of large-scale slope instability at Machu Picchu, Peru

    Vilímek, Vít; Zvelebil, Jiří; Klimeš, Jan; Patzelt, Zdeněk; Astete, Fernando; Kachlík, Václav; Hartvich, Filip

    2007-09-01

    A multidisciplinary approach has been adopted to study the slope movements and landscape evolution at the archaeological site of Machu Picchu and its immediate surroundings. The basic event in the paleogeomorphological evolution of the area was the large-scale slope movement, which destroyed the originally higher ridge between Mt. Machupicchu and Mt. Huaynapicchu. Within remnants of that primary deformation, several younger generations of slope movements occurred. The laboratory analyses of granitoids revealed highly-strained zones on the slopes of Mt. Machupicchu, which strongly affect the largest slope deformation. The borders of the largest slope deformation are structurally predisposed by the existence of fault zones. The majority of various types of slope movements on the so-called Front Slope (E facing) and Back Slope (W facing) are influenced by the alignment between topography and joints. Along with slope movements, fluvial erosion and tectonic disturbance of the rocks have been affecting the evolution of the landscape. A monitoring network for dilatometric and extensometric measurements was used to detect the present-day activity of rock displacements within the archaeological site. In addition to standard mapping of surface hydrogeological phenomena, eleven express slug tests were conducted to verify the infiltration potential of precipitation. The results of these surveys indicate that recent large-scale slope movement as suggested by some previous studies is doubtful, and the detected movements can be explained by individual movements of rock blocks or several other mechanisms including sinking of archaeological structures, subsurface erosion and annual changes in the water content of the soils.

  8. Impact of vegetation on stability of slopes subjected to rainfall - numerical aspect

    Switala, Barbara Maria; Tamagnini, Roberto; Sudan Acharya, Madhu; Wu, Wei

    2015-04-01

    Recent years brought a significant development of soil bioengineering methods, considered as an ecological and economically effective measure for slope stabilization. This work aims to show the advantages of the soil bioengineering solutions for a slope subjected to a heavy rainfall, with the help of a numerical model, which integrates most of the significant plant and slope features. There are basically two different ways in which vegetation can affect stability of a slope: root reinforcement (mechanical impact) and root water uptake (evapotranspiration). In the numerical model, the first factor is modelled using the Cam-Clay model extended for unsaturated conditions by Tamagnini (2004). The original formulation of a constitutive model is modified by introducing an additional constitutive parameter, which causes an expansion of the yield surface as a consequence of an increase in root mass in a representative soil element. The second factor is the root water uptake, which is defined as a volumetric sink term in the continuity equation of groundwater flow. Water removal from the soil mass causes an increase in suction in the vicinity of the root zone, which leads to an increase in the soil cohesion and provides additional strength to the soil-root composite. The developed numerical model takes into account the above mentioned effects of plants and thus considers the multi-phase nature of the soil-plant-water relationship. Using the developed method, stability of some vegetated and non-vegetated slopes subjected to rainfall are investigated. The performance of each slope is evaluated by the time at which slope failure occurs. Different slope geometries and soil mechanical and hydrological properties are considered. Comparison of the results obtained from the analyses of vegetated and non-vegetated slopes leads to the conclusion, that the use of soil bioengineering methods for slope stabilization can be effective and can significantly delay the occurrence of a

  9. Static Linear and Nonlinear Analysis of R.C Building on Sloping Ground with Varying Hill Slopes

    K.S.L.Nikhila

    2014-11-01

    Full Text Available Earthquake field investigations repeatedly confirm that irregular structures suffer more damage than their regular counterparts. This is recognized in seismic design codes, and restrictions on abrupt changes in mass and stiffness are imposed. Irregularities in dimensions affect the distribution of stiffness, and in turn affect capacity, while mass irregularities tend to influence the imposed demand. Elevation irregularities have been observed to cause story failures due to non-uniform distribution of demand-to-supply ratios along the height. Plan irregularities, on the other hand, cause non-uniform demand-to-capacity ratios amongst the columns. In this paper the structure chosen for study is a 4, 5 storied commercial complex building. The building is located in seismic zone IV on a rock soil site. Three dimensional mathematical models for the same are generated in ETABS software. The structural elements, M40 grade of concrete, floor diaphragms are assumed to be rigid. Seismic loads were considered acting in the horizontal direction along either of the two principal directions and the ground slope choosen in between 0° and 25° and building that which produce less torsion effect for setback - stepback with irregular configuration in horizontal and vertical direction is modeled and analyzed.

  10. Slope stability improvement using low intensity field electrosmosis

    Armillotta, Pasquale

    2014-05-01

    The electrosmosis technique has been introduced in the past for slope stabilization. However, its application to real cases has been scarce due to several drawbacks mostly related to the high intensity electric field needed (1.0 V/cm or higher): the rapid degradation of the electrodes, the high system management cost, the heating and cracking of the soil and the reduction of its colloidal fraction. Thanks to the introduction of new materials, the technique is currently applied to decrease the consolidation time of saturated clay soils (forcing the elimination of water), consequently improving its mechanical strength. In clay soils, the volume variation is influenced by the presence of smectites. The clay compressibility decreases with the increasing of electrolytes concentration. Soil containing smectites that have interacted with calcium showed a reduction or the absence of swelling during hydration with distilled water and a positive increase of their shear strength. The different values of pH between the anode (acid) and the cathode (basic), induced by the electrosmosis create the conditions for the precipitation of CaCO3 near the cathode. The injection of solutions containing calcium in soils and their diffusion induced by the electrosmosis, lead to calcium precipitation and consequential increase of the shear strength. The material technological advances and the laboratory experiences described in this paper, demonstrate that the use low electric field (0.1 V/cm or lower) intensity electrosmosis (LEFE in acronym) can be effective for soil dewatering and shear strength increase while reducing its adverse effect. The LEFE can be used to: reduce the potential for swelling of active clay minerals through the introduction of ions and the precipitation of hardening substances; induce the "dewatering" in cohesive soils. Several Lab activities were carried out, using custom made electrosmosis equipment. These activities can be divided in two phases: Phase 1

  11. Exporting Alaskan North Slope crude oil: Benefits and costs

    The Department of Energy study examines the effects of lifting the current prohibitions against the export of Alaskan North Slope (ANS) crude. The study concludes that permitting exports would benefit the US economy. First, lifting the ban would expand the markets in which ANS oil can be sold, thereby increasing its value. ANS oil producers, the States of California and Alaska, and some of their local governments all would benefit from increased revenues. Permitting exports also would generate new economic activity and employment in California and Alaska. The study concludes that these economic benefits would be achieved without increasing gasoline prices (either in California or in the nation as a whole). Lifting the export ban could have important implications for US maritime interests. The Merchant Marine Act of 1970 (known as the Jones Act) requires all inter-coastal shipments to be carried on vessels that are US-owned, US-crewed, and US-built. By limiting the shipment of ANS crude to US ports only, the export ban creates jobs for the seafarers and the builders of Jones Act vessels. Because the Jones Act does not apply to exports, however, lifting the ban without also changing US maritime law would jeopardize the jobs associated with the current fleet of Jones Act tankers. Therefore the report analyzes selected economic impacts of several maritime policy alternatives, including: Maintaining current law, which allows foreign tankers to carry oil where export is allowed; requiring exports of ANS crude to be carried on Jones Act vessels; and requiring exports of ANS crude to be carried on vessels that are US-owned and US-crewed, but not necessarily US-built. Under each of these options, lifting the export ban would generate economic benefits

  12. Large gravitational rock slope deformation in Romsdalen Valley (Western Norway

    Aline Saintot

    2012-09-01

    Full Text Available Large gravitational rock slope deformation affects Precambrian gneisses at four localities of the Romsdalen valley of Western Norway. At each locality, detailed studies have allowed to determine the mechanism of deformation and to assess the degree of susceptibility for failure. 1 Svarttinden is a 4.3 Mm³ translational rockslide. Its single basal detachment developed along a foliation-parallel cataclastic fault. Although a rockslide occurred along the same detachment and the deposits reached the edge of the plateau, no displacement of the current instability is detected. 2 At Flatmark distinct 2-25 Mm³ blocks detached from the edge of the plateau by an opening along the steep foliation. The collapse of the blocks is explained by a complex mechanism of sliding and toppling. No displacement is actually detected on the instabilities. 3 At Børa blocks located at the edge of the plateau deformed by the same mechanism as at Flatmark. They have a maximum volume of 0.5 Mm3 and displacement rates of 0.2-2 cm/year. The deformation at Børa has affected a large part of the plateau and the entire deformed volume would be of 50-200 Mm³ but it is currently inactive. 4 A wedge failure at the edge of Mannen plateau is inferred to allow the 4-5 cm/year downward displacement of a 2-3.5 Mm³ instability. The high susceptibility of failure led to a permanent monitoring of the site since 2009.

  13. Risk assessment of debris flow hazards in natural slope

    Choi, Junghae; Chae, Byung-gon; Liu, Kofei; Wu, Yinghsin

    2016-04-01

    The study area is located at north-east part of South Korea. Referring to the map of landslide sus-ceptibility (KIGAM, 2009) from Korea Institute of Geoscience and Mineral Resources (KIGAM for short), there are large areas of potential landslide in high probability on slope land of mountain near the study area. Besides, recently some severe landslide-induced debris flow hazards occurred in this area. So this site is convinced to be prone to debris flow haz-ards. In order to mitigate the influence of hazards, the assessment of potential debris flow hazards is very important and essential. In this assessment, we use Debris-2D, debris flow numerical program, to assess the potential debris flow hazards. The worst scenario is considered for simulation. The input mass sources are determined using landslide susceptibility map. The water input is referred to the daily accumulative rainfall in the past debris flow event in study area. The only one input material property, i.e. yield stress, is obtained using calibration test. The simulation results show that the study area has po-tential to be impacted by debris flow. Therefore, based on simulation results, to mitigate debris flow hazards, we can propose countermeasures, including building check dams, constructing a protection wall in study area, and installing instruments for active monitoring of debris flow hazards. Acknowledgements:This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012M3A2A1050983)

  14. Economics of Alaska North Slope gas utilization options

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables

  15. Seismic stratigraphy of shelf and slope, northeastern Gulf of Mexico

    Addy, S.K.; Buffler, R.T.

    1984-11-01

    A seismic stratigraphic framework of the shelf in the northeastern Gulf of Mexico near Destin dome is established by correlating multifold seismic lines with deep wells that penetrate to the Middle Jurassic Louann Salt and with a previously published seismic stratigraphic study based on shallow core holes. Nine depositional sequences or seismic units are recognized and are designated A through I in the order of increasing age. During the Middle Jurassic to middle Cretaceous, shallow-water deposition prevailed in the area. This deposition was followed by a period of general transgression until middle Oligocene, during which deeper water deposition took place. After the middle Oligocene, a shallow-water regime returned to the area. Thinning of seismic units and onlap of reflectors of post-middle Cretaceous age on the Destin dome suggest that the dome was uplifted in Late Cretaceous and into the early Tertiary. Six previously established seismic stratigraphic units from the deep Gulf of Mexico are traced into the lower slope near De Soto Canyon. Although several units thin and pinch out, two key boundaries can be traced onto the shelf. The important Challenger-Campeche boundary, which is recognized as a marker horizon and unconformity throughout the abyssal Gulf, is correlated to the F-E boundary, the middle Cretaceous (97 Ma) unconformity on the shelf. The base of the Sigsbee-Cinco de Mayo unit is correlated to an 8-Ma reflector on the shelf. These correlations confirm previous age estimates for the deep Gulf units. Absence of coherent reflections in the Lower Cretaceous carbonate margin indicates possible reef growth. This margin is the southeastward subsurface extension of the Stuart City reef trend in Texas and Louisiana. This trend extends farther to the southeast where the carbonate margin crops out along the Florida Escarpment.

  16. Economics of Alaska North Slope gas utilization options

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  17. The Relationship Between Lithology and Slope Morphology in the Tucson Mountains, Arizona.

    Kamel Khanchoul

    2008-05-01

    Full Text Available The relationship between lithology and slope morphology is investigated at eight sites on granitic, andesitic, andsedimentary hillslopes in the Tucson Mountains, Arizona. Several methods are used in the study. Topographic profi lesare constructed. Skewness indices, slope length, and mean slope angles of the different slope profi les are computed andcompared with each other. Debris size analysis has permitted for some profi les, the determination of hillfront/piedmontjunctions. The nature and structural characteristics of the bedrock are the ones that determine the hillslope morphologyin this semi-arid region. There are, as a matter of fact, variations in profi les on the same bedrock nature but differentlyexposed. More precise morphologic studies have been also done in comparing the different lithologic pairs. They havepermitted to show some similarities in shapes. The granitic-andesitic slopes and andesiic-sedimentary slopes are thebest comparisons which show the relationship between lithology and slope morphology. The granitic-sedimentary sloperelationship is shown in the hillfront concavities, mountain front and piedmont mean slope angles.

  18. Bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability

    This paper aims to propose a bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability. The procedure for a traditional slope reliability analysis with fixed distributions of shear strength parameters is presented first. Then, the variations of the mean and standard deviation of shear strength parameters and the Akaike Information Criterion values associated with various distributions are studied to characterize the uncertainties in distribution parameters and types of shear strength parameters. The reliability of an infinite slope is presented to demonstrate the validity of the proposed method. The results indicate that the bootstrap method can effectively model the uncertain probability distributions of shear strength parameters. The uncertain distributions of shear strength parameters have a significant influence on slope reliability. With the bootstrap method, the slope reliability index is represented by a confidence interval instead of a single fixed index. The confidence interval increases with increasing factor of slope safety. Considering both the uncertainties in distribution parameters and distribution types of shear strength parameters leads to a higher variation and a wider confidence interval of reliability index. - Highlights: • A bootstrap method is proposed to characterize effect of uncertainty on reliability. • An infinite slope is studied to demonstrate validity of bootstrap method. • The bootstrap method can effectively model uncertain probability distributions. • Slope reliability index is a confidence interval instead of a single fixed index. • Confidence interval of reliability index increases with increasing factor of safety

  19. Wave Energy Dissipation of Waves Breaking on a Reef with a Steep Front Slope

    Jensen, M.S.; Burcharth, Hans F.; Brorsen, Michael

    2005-01-01

    The Transformation of waves propagating over a steep bottom slope is of great importance regarding the coastal processes in the near-shore area.This study will contribute with tools to predict the dissipated wave energy for irregular waves passing a steep submerged slope. An extensive number of t...

  20. Monitoring System for Slope Stability under Rainfall by using MEMS Acceleration Sensor IC tags

    Real-time warning system for slope failure under rainfall is available to disaster prevention and mitigation. Monitoring of multi-point and wireless measurements is effective because it is difficult to conclude the most dangerous part in a slope. The purpose of this study is to propose a method of monitoring system with multi-point and wireless measurements for a slope stability using MEMS acceleration sensor IC tags. MEMS acceleration sensor IC tag is an acceleration sensor microminiaturized by a technology of Micro Electro Mechanical Systems on board IC tag. Especially, low cost of the sensor will yield to the realization of the system. In order to investigate the applicability of the proposed system, a large-scale model test of artificial slope subjected to rainfall has been performed. MEMS acceleration sensor IC tags has been located on the slope and ground acceleration caused by forced vibration has been measured until the model slope collapses. The experimental results show that the MEMS acceleration sensor IC tag is comfortably available under rainfall, the characteristics of ground accelerations varies with changing the condition of the slope subjected to rainfall, and the proposed method can be applied to a real-time monitoring system for slope failure under rainfall.

  1. Toe clearance and velocity profiles of young and elderly during walking on sloped surfaces

    Begg Rezaul K

    2010-04-01

    Full Text Available Abstract Background Most falls in older adults are reported during locomotion and tripping has been identified as a major cause of falls. Challenging environments (e.g., walking on slopes are potential interventions for maintaining balance and gait skills. The aims of this study were: 1 to investigate whether or not distributions of two important gait variables [minimum toe clearance (MTC and foot velocity at MTC (VelMTC] and locomotor control strategies are altered during walking on sloped surfaces, and 2 if altered, are they maintained at two groups (young and elderly female groups. Methods MTC and VelMTC data during walking on a treadmill at sloped surfaces (+3°, 0° and -3° were analysed for 9 young (Y and 8 elderly (E female subjects. Results MTC distributions were found to be positively skewed whereas VelMTC distributions were negatively skewed for both groups on all slopes. Median MTC values increased (Y = 33%, E = 7% at negative slope but decreased (Y = 25%, E = 15% while walking on the positive slope surface compared to their MTC values at the flat surface (0°. Analysis of VelMTC distributions also indicated significantly (p th percentile (Q1 values in the elderly at all slopes. Conclusion The young displayed a strong positive correlation between MTC median changes and IQR (interquartile range changes due to walking on both slopes; however, such correlation was weak in the older adults suggesting differences in control strategies being employed to minimize the risk of tripping.

  2. A GLE multi-block model for the evaluation of seismic displacements of slopes

    The paper describes a multi-block displacement model for the evaluation of seismic permanent displacements of natural slopes with slip surface of general shape. A rigorous limit equilibrium method of stability analysis is considered and an application to an ideal clay slope is presented including the effect of excess pore pressure build-up on the displacement response

  3. Efficiency of scalar and vector intensity measures for seismic slope displacements

    2012-01-01

    Ground motion intensity measures are usually used to predict the earthquake-induced displacements in earth dams,soil slopes and soil structures.In this study,the efficiency of various single ground motion intensity measures (scalar IMs) or a combination of them (vector IMs) are investigated using the PEER-NGA strong motion database and an equivalent-linear sliding-mass model.Although no single intensity measure is efficient enough for all slope conditions,the spectral acceleration at 1.5 times of the initial slope period and Arias intensity of the input motion are found to be the most efficient scalar IMs for flexible slopes and stiff slopes respectively.Vector IMs can incorporate different characteristics of the ground motion and thus significantly improve the efficiency over a wide range of slope conditions.Among various vector IMs considered,the spectral accelerations at multiple spectral periods achieve high efficiency for a wide range of slope conditions.This study provides useful guidance to the development of more efficient empirical prediction models as well as the ground motion selection criteria for time domain analysis of seismic slope displacements.

  4. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    N. Li

    2014-09-01

    Full Text Available Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  5. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat...

  6. Effects of the symmetry energy slope on the axial oscillations of neutron stars

    Wen De-Hua; Zhou Ying

    2013-01-01

    The impact of symmetry energy slope L on the axial w-mode oscillations is explored,where the range of the constrained slope L of symmetry energy at saturation density is adopted from 25 MeV to 115 MeV while keeping the equation of state (EOS) of symmetric nuclear matter fixed.Based on the range of the symmetry energy slope,a constraint on the frequency and damping time of the wI-mode of the neutron star is given.It is found that there is a perfect linear relation between the frequency and the stellar mass for a fixed slope L,and the softer symmetry energy corresponds to a higher frequency.Moreover,it is confirmed that both the frequencies and damping times have a perfect universal scaling behavior for the EOSs with different symmetry energy slopes at saturation density.

  7. Stability evaluation and optimal excavated design of rock slope at Antaibao open pit coal mine, China

    He, M.C.; Feng, J.L.; Sun, X.M. [China University of Mining & Technology, Beijing (China)

    2008-03-15

    Rock slope deformation stability for Antaibao open pit coal mine under mining was analyzed using finite difference technique ( FLAC3D). Optimal excavated scheme with relatively steeper slope angle of 47{sup o} instead of 30{sup o} was successfully implemented at the west wall on the geological section 73200 of the mine area, where the three-dimensional (3D) effect of nonlinear large deformation of the slope was taken into account. Physico-mechanical properties of the rock materials were obtained by laboratory tests conducted on samples cored from exploration drilling and rock blocks taken directly from the mine. A nonlinear Mohr-Coulomb material model with a tension cutoff was used in all present simulations. Nonlinear effect on excavated sequence was also discussed. It is demonstrated by dynamical response analysis that the action of earthquake magnitude VII (Richter) upon the relatively steeper excavated slope could not be more than that slope could bear.

  8. Stability analysis of sandy slope considering anisotropy effect in friction angle

    Hamed Farshbaf Aghajani; Hossein Salehzadeh; Habib Shahnazari

    2015-09-01

    This paper aims to investigate the effect of anisotropy of shear strength parameter on the stability of a sandy slope by performing the limit equilibrium analysis. Because of scarcity of mathematical equation for anisotropic friction angle of sand, at first, all results of principal stress rotation tests are processed by artificial neural network and a computational procedure is developed for determining sand friction angle subjected to various loading directions. By implementing this procedure, slope stability analysis is performed in both isotropic and anisotropic conditions. The results indicate that while isotropic slope stability overestimates the factor of safety between 5 and 25% which the deviation is more for flatter slope, the location of critical slip surface is coincident in both conditions. Also in specific slip surface, the parameters of face angle, geometry of slip surface and soil properties relating to anisotropy are the main factors governing the result of anisotropic slope stability.

  9. Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow

    L. Merino-Martín

    2012-05-01

    Full Text Available Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment source patches and sinks are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted field research to study the hydrological role of patches and slopes along an "overland flow gradient" (gradient of overland flow routing through the slopes caused by different amounts of run-on coming from upslope in three reclaimed mining slopes of Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated with seven vegetation patches (characterized by plant community types and cover. Two types of sink patches were identified: shrub Genista scorpius patches could be considered as "deep sinks", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata. Finally, we identified the volume of overland flow routing along the slope as a major controlling factor of "hydrological diversity" (heterogeneity of hydrological behaviours quantified as Shannon diversity index: when overland flow increases at the slope scale hydrological diversity diminishes.

  10. A continental slope stability evaluation in the Zhujiang River Mouth Basin in the South China Sea

    LIU Ke; WANG Jianhua

    2014-01-01

    In nature, a slope stability is determined by the ratio of a sliding resistance to a slide force. The slide force of a marine deep-water continental slope is mainly affected by sediment mechanics properties, a topography, and a marine seismic. However, the sliding resistance is mainly affected by sedimentary patterns and a sedi-mentary stress history. Both of these are different from case to case, and their impact can be addressed when the data are organized in a geographic information system (GIS). The study area on the continental slope in Zhujiang River Mouth Basin in South China Sea provides an excellent opportunity to apply GIS spatial analysis technology for the evaluation of the slope stability. In this area, a continental slope topography and a three-dimension (3-D) topography mapping show a sea-floor morphology and the distribution of a slope steepness in good detail, and the sediment analysis of seabed samples and an indoor appraisal reveals the variability of a sediment density near the sea-floor surface. On the basis of the results of nine geotechnical studies of submarine study areas, it has worked out that an equivalent cyclic shear stress ratio is roughly between 0.158 and 0.933, which is mainly depending on the initial water content of sediment. A regional density, slope and level of anticipated seismic shaking information are combined in a GIS framework to yield a map that illustrates a continental slope stability zoning under the influencing factors in Zhujiang River Mouth Basin in the South China Sea. The continental slope stability evaluation can contribute to north resources development in the South China Sea, the marine functional zoning, the marine engineering con-struction and adjust measures to local conditions, at the same time also can provide references for other deep-water slope stability analysis.

  11. Links among Slope Morphology, Canyon Types and Tectonics on Passive and Active Margins in the Northernmost South China Sea

    Ho-Shing Yu; Emmy T Y Chang

    2009-01-01

    We examine slope profile types and variations in slope gradient and slope relief with depth for both passive and active margins in the northern most South China Sea.The passive South China margin is characterized by an exponential slope profile,mainly assodated with clustered slope-confined canyons.The active Taiwan margin shows a linear-like shape with great variations along the lower slope.Fewer eanyom occur on the Taiwau margin,and hence the influence of canyon incision on slope morphology is relatively less significant.Quantitative analyses of slope curvature,slope gradleut and square root of relief variance are useful statistical parameters to explain characteristics and variability of morphology of the slope of the South China margin,but not for the Kaoping slope on the Talwan side.On the active Taiwan margin,tectonic activities are dominant over sediment deposition and surface erosion,producing a slope profile quite different from those of passive margins of the Middle Atlantic,KwaZulu-Natal,South Africa where failure on slope and accompanying canyon incision are the dominant processes shaping the slope morphology.

  12. Comparing Potential Unstable Sites and Stable Sites on Revegetated Cut-Slopes of Mountainous Terrain in Korea

    Sung-Ho Kil

    2015-11-01

    Full Text Available This study employs a diverse set of variables to explain slope stabilization on stable versus failure-prone revegetated cut-slopes in Korea. A field survey was conducted at potential unstable sites and stable sites using 23 variables. Through a non-parametric test of the field survey results, 15 variables were identified as primary determinants of slope failure. Of these variables, one described physical characteristics (elapsed year; four variables described vegetation properties (plant community, vegetation coverage rate, number of trees, and number of herbs; and 10 variables represented soil properties (porosity, soil hardness, water content, sand ratio and silt ratio of soil texture, tensile strength, permeability coefficient, soil depth, soil acidity, salt concentration, and organic matter. Slope angle, which was mainly considered in previous studies, of variables in physical characteristics was not statistically selected as one of the 15 variables because most of sites were located on steep slopes. The vegetation community, vegetation coverage, and number of trees influence slope stabilization. Vegetation coverage is highly correlated with other soil and vegetation variables, making it a major indicator of slope stabilization. All soil variables were related to slope failure such that subsequent slope failure was related to the method of slope revegetation rather than the environmental condition of the slope. Slope failure did not occur in revegetated slopes that matched the characteristics of the surrounding landscape and contained a large number of native trees. Most soil and vegetation variables showed differing values for whether a revegetated slope is potentially unstable or stable.

  13. Minimal Power Latch for Single-Slope ADCs

    Hancock, Bruce R.

    2013-01-01

    Column-parallel analog-to-digital converters (ADCs) for imagers involve simultaneous operation of many ADCs. Single-slope ADCs are well adapted to this use because of their simplicity. Each ADC contains a comparator, comparing its input signal level to an increasing reference signal (ramp). When the ramp is equal to the input, the comparator triggers a latch that captures an encoded counter value (code). Knowing the captured code, the ramp value and hence the input signal are determined. In a column-parallel ADC, each column contains only the comparator and the latches; the ramp and code generation are shared. In conventional latch or flip-flop circuits, there is an input stage that tracks the input signal, and this stage consumes switching current every time the input changes. With many columns, many bits, and high code rates, this switching current can be substantial. It will also generate noise that may corrupt the analog signals. A latch was designed that does not track the input, and consumes power only at the instant of latching the data value. The circuit consists of two S-R (set-reset) latches, gated by the comparator. One is set by high data values and the other by low data values. The latches are cross-coupled so that the first one to set blocks the other. In order that the input data not need an inversion, which would consume power, the two latches are made in complementary polarity. This requires complementary gates from the comparator, instead of complementary data values, but the comparator only triggers once per conversion, and usually has complementary outputs to begin with. An efficient CMOS (complementary metal oxide semiconductor) implementation of this circuit is shown in the figure, where C is the comparator output, D is the data (code), and Q0 and Q1 are the outputs indicating the capture of a zero or one value. The latch for Q0 has a negative-true set signal and output, and is implemented using OR-AND-INVERT logic, while the latch for Q1 uses

  14. Erosion protection Phytoreinforcement of SCARP steep slopes of the holy virgin’s DITCH

    Darchiya Valentina Ivanovna

    2015-09-01

    Full Text Available Erosion protection landscaping embedment of steep subsoil slopes is a time-sensitive issue of road construction and planning of recreational area that are often fit on a challenging picturesque terrain unsuitable for site development. The article provides the results of a 4-year experiment on landscaping and plant fixing of up to 4.5 m soil slopes with 1:1 and 2:1 grades; the experiment was carried out by the MGSU on the territory of a convent in the south of the Nizhniy Novgorod region. The site has slopes oriented towards all cardinals. At some places the slopes are bedimmed by trees. All these factors create a wide range of geo-ecological conditions for lawns. All the slopes are fixed with geo-fibrefill grids; slopes with 2:1 grade are strengthened by auxiliary grids made of reinforced metal bars, anchors and braces on the bottom of the Holy Moat. The paper recommends composition of grass plants as well as techniques to build up lawns suitable for various micro-climate conditions. It also advises the structure of multi-tier plant entity. The suggested methods are tested during a 3-year maintenance of slopes built for constant use.

  15. The Influence of Localized Slumping on Groundwater Seepage and Slope Stability

    Hongyue Sun; Jie Zhong; Yu Zhao; Shuijin Shen; Yuequan Shang

    2013-01-01

    Transverse cracks and localized slumps frequently occur within loose deposits slopes when the slope base is removed either from natural or manmade processes.Although the contribution of rainfall to the slope failures was intensely discussed,the influence of localized slumps on hydrogeological conditions has received less attention.Usually,loose deposits slopes are composed of soil layers with different permeability; localized slumps may cause flow paths partly blocked in the permeable layer that is adversely confined between impermeable layers.In this study,a case history of such failure,Xiaodan (小旦) landslide,is introduced in detail.The localized slump caused the pressure head in the permeable layer to increase substantially,which reduced the stability of the slope.To quantify the influence,Bernoulli equations are used to analytically study the increase of the pressure head with a hydrogeological model simplified from the slope.The factor of safety assessed by limit equilibrium methods may decrease up to 20% when the 80% of flow path is blocked.Thus,we should pay attention not only to changes of stress filed due to localized slumps but also to the influence of seepage variation on the slope stability.

  16. Application of dynamic analysis of strength reduction in the slope engineering under earthquake

    Ye Hailin; Zheng Yingren; Huang Runqiu; Li Anhong; Du Xiuli

    2010-01-01

    At present,the methods of analyzing the stability of slope under earthquake are not accurate and reasonable because of some limitations.Based on the real dynamic tensile-shear failure mechanism of slope,the paper proposes dynamic analysis of strength reduction FEM(finite element method)and takes the reduction of shear strength parameters and tensile strength parameters into consideration.And it comprehensively takes the transfixion of the failure surface,the non-convergence of calculation and mutation of displacement as the criterion of dynamic instability and failure of the slope.The strength reduction factor under limit state is regarded as the dynamic safety factor of the slope under earthquake effect and its advantages are introduced.Finally,the method is applied in the seismic design of anchors supporting and anti-slide pile supporting of the slope.Calculation examples show that the application of dynamic analysis of strength reduction is feasible in the seismic design of slope engineering,which can consider dynamic interaction of supporting structure and rock-soil mass.Owing to its preciseness and great advantages,it is a new method in the seismic design of slope supporting.

  17. Confined gravity flow sedimentary process and its impact on the lower continental slope,Niger Delta

    2010-01-01

    There is active gravity flow sedimentation on the lower continental slope of Niger Delta. High-resolution 3-D seismic data enable a detailed study on the gravity flow deposition process and its impact. The lower continental slope of Niger Delta is characterized by a stepped complex topography, which resulted from gravity sliding and spreading during Miocene and Pliocene. Two types of accommodations are identified on the slope: ponded accommodation as isolated sub-basins and healed slope accommodation as connected tortuous corridors, where multi-scale submarine fans and submarine channels developed. Gravity flow deposition process is affected by the characteristics of gravity flows and the receiving basin. At the early stage, gravity flow deposition process was dominated by "fill and spill" pattern in the ponded accommodation, whereas it was confined to the healed slope accommodation during the late stage. On the lower continental slope of Niger Delta, complex slope topography controlled the distribution and evolution of the gravity flow, producing complicated gravity depositional patterns.

  18. Geological Aspect of Slope Failure and Mitigation Approach in Bireun - Takengon Main Road, Aceh Province, Indonesia

    Ibnu Rusydy

    2016-04-01

    Full Text Available A soil and rock slope assessment survey was conducted along Bireun – Takengon main road in Aceh Province, Indonesia. The slope assessment survey was carried out to determine the geological condition, verify and identify the potential areas of slope failure and to study what type of slope stability and protection method could be applied to the road. Several research methodologies were conducted in the field such as rock and soil identification, and slope assessment. The survey was conducted in four selected areas along Bireun – Takengon main road. In study area I, soil creep occurred because of a presence of montmorillonite clay. The mitigation methods to reduce soil creeping in this area are building a retaining wall and pile. The shotcrete, wire mesh, net rock bolting, and rock removal method is suitable to apply in study area II. The shotcrete and soil nails were used because the type of rocks in those areas is sedimentary rock such as shale, sandstone, siltstone, and a boulder of a volcanic rock. The same approach shall be applied in study area IV. study area III was the best spot to learn about the mitigation approach for slope stability and provides many lessons learned. Aceh Province experience active tectonic movement, high intensity of rain, geological structures, a high degree of weathering, and high intensity of earthquake,as primary factors which trigger landslides. The techonology of slope stabilizing and protection methods can be applied to mitigate landslides.

  19. Ramp Slope Built-in-Self-Calibration Scheme for Single-Slope Column Analog-to-Digital Converter Complementary Metal-Oxide-Semiconductor Image Sensor

    Ham, Seogheon; Jung, Wunki; Lee, Dongmyung; Lee, Yonghee; Han, Gunhee

    2006-02-01

    The conversion gain of a single-slope analog-to-digital converter (ADC) suffers from the process and frequency variations. This ADC gain variation eventually limits the performance of image signal processing (ISP) in a complementary metal-oxide-semiconductor (CMOS) image sensor (CIS). This paper proposes a ramp slope built-in-self-calibration (BISC) scheme for a CIS. The CIS with the proposed BISC was fabricated with a 0.35-μm CMOS process. The measurement results show that the proposed architecture effectively calibrates the ramp slope against the process and the clock frequency variation. The silicon area overhead is less than 0.7% of the full chip area.

  20. Interaction of along-slope and down-slope sedimentation processes on the Argentina/Uruguayan slope - First seismo-acoustic results from the Meteor cruise M78/3

    Schwenk, T.; Preu, B.; Krastel, S.; Fekete, N.; Meyer, M.; Lindhorst, K.; Anasetti, A.; Domnina, Y.

    2009-12-01

    Down-slope and along-slope sediment transport processes play a prominent role by shaping of passive continental margins. Mass wasting phenomena at continental margins have become a hot topic in recent time because of their coastal geo-hazard potential. In addition, deposition (and erosion) related to along-slope transport processes documents the impact of bottom currents in time and space. The Argentina/Uruguay margin forms a setting that is well suited to study the interaction of both processes. First, the area is characterized by the huge sediment discharge of the Rio de la Plata draining an extensive hinterland, which leads to a high potential of sedimentary instability and finally favors mass wasting phenomena. Additionally, several canyons deeply incised into the slope contribute to down-slope sediment transport. Second, the area is not only influenced by the Malvinas-Brazil Current confluence, a prominent element in global surface water circulation, but forms also a key location in the intermediate and deep water global conveyor belt, with both the latter having a major impact on lateral sediment transport by strong contour currents. Therefore, the area has been chosen to be one major target of a new project “Slope architecture and evolution of sedimentary regimes” at the MARUM (Center for Marine Environmental Sciences) at the University of Bremen, Germany. During RV Meteor Cruise M78/3 in May-July 2009 (carried out in cooperation between the MARUM, Bremen and the IFM-GEOMAR, Kiel) sediment transport and depositional patterns from the coast to the deep-sea were be investigated offshore Argentina and Uruguay by means of bathymetric swath-sounder, sediment echosounder, high-resolution multichannel seismic as well as coring. On the slope, the work concentrated one two study areas. North of the Rio de la Plata Mouth, slides, scarps and drift features were be imaged and mapped. In front of and south of the Rio de la Plate Mouth, the Mar del Plate canyon was

  1. E24 profile slope stability analysis in Haizhou Opencast Coal Mine of Fuxin

    Simplice F. BOBY; Jianping CHEN

    2007-01-01

    The E24 profile slope analyzed belongs to a series of excavated slopes of the Haizhou Opencast Coal Mine. It seems to be divided into Downslope Part and Upslope Part. Its profile comprises two noticeable coal seams, called the 8# and 9# weak layers, considered as the potential failure surfaces. In consideration of the actual configuration as in the perspective of any modification, assessing the stability of this slope with various profile forms under given conditions, and assessing the risk of instability and quantifying the influence of earthworks or other modifications to the stability of this slope, have constituted the primordial objectives carried out. From assumed potential failure surfaces, any specific profiles and specified slip surfaces are defined. A factor of safety (FoS) is computed for each specified slip surface; the smallest FoS found corresponds to the least favorable slip surface. The safety factor values obtained are compared to the suggested safety factor. Limit equilibrium methods of vertical slices implemented in Slope/W, computer program for slope stability analyses, have been adopted to perform the E24 slope stability analysis. The safety factor values computed with 9# weak layer are lower than for 8#; the factors of safety obtained with Sarma's method are the smallest; more, without groundwater (long term) overall values are greater than those determined under groundwater condition (short term). The lowest safety factor value is found for a profile depending on an adopted earthwork sequence. The E24 profile slope stability analysis shows the instability risk for the deepest weak layer, and also shows the short and long term stability of this slope for the envisaged earth movements. However it demonstrates the existence of instability risk for any earthwork firstly affecting the downslope part.

  2. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Jie; Zhang, Cheng-Cheng; Wang, Bao-Jun

    2014-09-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  3. Examining the influence of vegetation on slope hydrology in Hong Kong using the capacitive resistivity technique

    Niu, Qifei; Zhao, Kairan; Wang, Yu-Hsing; Wu, Yuxin

    2016-06-01

    Vegetation essentially has both beneficial and detrimental hydrological effects on slope stability, and the balance between these effects changes throughout the year. For engineers considering vegetation as an ecotechnological solution to slope instability, it is therefore necessary to understand how the net hydrological effect varies with local weather conditions. In this study, year-round field monitoring was carried out to examine the influence of a native plant on slope hydrology in Hong Kong using the capacitive resistivity technique and a newly developed line-electrode resistivity array. The measured soil resistivity was used to infer the soil moisture conditions on the slopes. The results show that vegetation generally has a strong influence on soil moisture although this effect varies among seasons. During the summer time, vegetation increases the soil moisture if compared with the bare slope. This is mainly due to the high precipitation, most of which enters the vegetated slope because of the increased permeability and infiltration rate caused by the vegetation. During the autumn time, the influence of vegetation evapotranspiration on slope hydrology becomes noticeable mainly because of the low precipitation (monthly less than 100 mm) and the relatively high potential evapotranspiration (monthly around 100 mm). In dry and cold winter, resistivity measurements suggest that the vegetation helps retain the soil water. In the following spring, difference in the soil moisture in bare and vegetated slopes is gradually wiped out because of the frequent rainfall. When the monthly rainfall reaches ~ 400 mm in early summer, the influence of vegetation on slope hydrology (soil moisture) completely disappears.

  4. Influence of Lithology and Slope Gradient to Infiltration of the Mount Malabar, West Java

    Pratama, A.; Irawan, D. E.; Susanto, A.; Ardi, R. D. W.

    2016-01-01

    Volcano is an area which serves as a catchment area for the lowlands. Ability of rock or weathered-soil to absorb the rain water depends on several things, such as lithology and large of slope. Different lithology has different characteristics, including in terms of porosity which is directly related to the ability of rock to store water. Characteristics of lithology in volcanic area can change rapidly, both vertically and laterally. Large of slope in volcanic area that change significantly also can affect the infiltration rate (the seepage of rain) in rock or weathered-soil. Therefore, the influence of lithology and large of slope to the infiltration rate should be proven to predict the infiltration zone in volcanic area. Observations has been conducted on the eastern slopes of Mount Malabar with an area 78 km2, at coordinates 7003'28.04" LS - 7010'32.05" LS and 107038'37.64" BT - 107041'50.6" BT. The infiltration rate observed on the weathered-soil using simple single infiltrometer made of PVC pipe 50 cm long, on March-April 2015. The measurement is carried out at several points where the weathered-rock result has been known, as much two times for different slope in each point. 26 measurement points have been obtained from different slopes and weathered-soil of different five-lithology. The results showed that the infiltration rate proportional to the percentage of rock porosity and large of slope. Infiltration rate sequence from the smallest to the greatest are weathered-soil andesites, basaltic andesite, laharic breccias, alteration of dacite, and pyroclastic breccias. The greatest infiltration rate obtained is 10.11 cm/minute in pyroclastic breccia with 25o slope, while the smallest is 0.0437 cm/minute in pyroclastic breccias with 4o slope.

  5. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  6. Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow

    L. Merino-Martín

    2011-11-01

    Full Text Available Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment sinks and source patches are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted a field research to study the hydrological role of patches and slopes along an overland flow gradient in three reclaimed slopes coming from mining reclamation in a Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated to seven vegetation patches (characterized by plant community types and cover. Two types of sink patches were identified: shrub Genista scorpius patches could be considered as a "deep sink", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata. Finally, we identified the volume of overland flow routing along the slope as a controlling major factor of hydrological diversity: when overland flow increases at the slope scale hydrological diversity diminishes.

  7. Influence of rainfall intensity on infiltration and deformation of unsaturated soil slopes

    In order to improve the understanding of the influence of rainfall intensity on infiltration and deformation behavior of unsaturated soil slopes, numerical 2D analyses are carried out by a three-phase elasto-viscoplastic seepage-deformation coupled method. From the numerical results, it is shown that regardless of the saturated permeability of the soil slope, the increase in the pore water pressure (reduction in suction) during rainfall infiltration is localized close to the slope surface. In addition, the generation of the pore water pressure and the lateral displacement are mainly controlled by the ratio of the rainfall intensity to the saturated permeability of the soil.

  8. 3-D Biped Robot Walking along Slope with Dual Length Linear Inverted Pendulum Method (DLLIPM)

    Fariz Ali; Ahmad Zaki Hj. Shukor; Muhammad Fahmi Miskon; Mohd Khairi Mohamed Nor; Sani Irwan Md Salim

    2013-01-01

    A new design method to obtain walking parameters for a three-dimensional (3D) biped walking along a slope is proposed in this paper. Most research is focused on the walking directions when climbing up or down a slope only. This paper investigates a strategy to realize biped walking along a slope. In conventional methods, the centre of mass (CoM) is moved up or down during walking in this situation. This is because the height of the pendulum is kept at the same length on the left and right leg...

  9. Evidence for pre-Messinian submarine canyons on the Gulf of Lions slope (Western Mediterranean)

    Lofi, J.; Berne, Serge

    2008-01-01

    On the Gulf of Lions margin, the Messinian Salinity Crisis (MSC) event led to a significant and widespread erosion of the Miocene shelf and slope. It is thus difficult nowadays to restore the morphology of the margin at the beginning of the crisis, and to study the Middle-Upper Miocene series rarely preserved from erosion. In this study, thanks to the use of multichannel seismic reflection data from the Gulf of Lions western slope, it has been possible to image the Miocene slope deposits. Int...

  10. Study on determination of the stable slope configuration for deep open pit mine

    Nai-long ZHU; Shi-xiong ZHANG; Shu-yu YUE

    2008-01-01

    The space effects of deep pit slope are analyzed by an elastic mechanics principle.The interaction among the critical slide angle,the friction coefficient,the cohesion,and the horizontal radius of the deep pits is derived in this paper.It indicates that the deeper the pit is excavated,the greater the critical slide angle is.Both the theory for reducing stripping waste rock in deep pit and the approach to determining the configuration of the stable slope are developed from the interaction.The theory in this paper comprises the preceding principles of stability analysis of slopes and is suitable for analyzing that of deep pit.

  11. The empirical slippery slope from voluntary to non-voluntary euthanasia.

    Lewis, Penney

    2007-01-01

    This article examines the evidence for the empirical argument that there is a slippery slope between the legalization of voluntary and non-voluntary euthanasia. The main source of evidence in relation to this argument comes from the Netherlands. The argument is only effective against legalization if it is legalization which causes the slippery slope. Moreover, it is only effective if it is used comparatively-to show that the slope is more slippery in jurisdictions which have legalized voluntary euthanasia than it is in jurisdictions which have not done so. Both of these elements are examined comparatively. PMID:17341228

  12. Split Quaternions and Spacelike Constant Slope Surfaces in Minkowski 3-Space

    Babaarslan, Murat

    2012-01-01

    A spacelike surface in the Minkowski 3-space is called a constant slope surface if its position vector makes a constant angle with the normal at each point on the surface. These surfaces completely classified in [J. Math. Anal. Appl. 385 (1) (2012) 208-220]. In this study, we give some relations between split quaternions and spacelike constant slope surfaces in Minkowski 3-space. We show that spacelike constant slope surfaces can be reparametrized by using rotation matrices corresponding to unit timelike quaternions with the spacelike vector parts and homothetic motions. Subsequently we give some examples to illustrate our main results.

  13. Pulling up the runaway: the effect of new evidence on euthanasia's slippery slope.

    Ryan, C. J.

    1998-01-01

    The slippery slope argument has been the mainstay of many of those opposed to the legalisation of physician-assisted suicide and euthanasia. In this paper I re-examine the slippery slope in the light of two recent studies that examined the prevalence of medical decisions concerning the end of life in the Netherlands and in Australia. I argue that these two studies have robbed the slippery slope of the source of its power--its intuitive obviousness. Finally I propose that, contrary to the warn...

  14. Linking North Slope Climate, Hydrology, and Fish Migration

    Betts, E.; Kane, D. L.

    2010-12-01

    Fish and wildlife species in the Arctic have developed life history strategies to deal with the extreme climate of the North. In the case of Arctic grayling, these strategies include long life, yearly spawning, and migration. In order to understand how such a species will be affected by a changing climate, we must determine how these adaptive strategies may be at odds with the changing Arctic landscape. Arctic grayling migrate in the spring and early summer to spawning and feeding sites and then in the fall migrate back to overwintering sites. Migration to spawning sites occurs just after break up when rivers are quite swollen from the melting of an entire winter’s worth of snow. Low precipitation and high evapotranspiration rates early in the summer can lead to low water levels and a fragmentation of the hydrologic landscape. This fragmentation creates a barrier to fish migration. As the summer progresses, precipitation tends to increase and evapotranspiration decreases. Hydrologic connectivity is generally restored by the end of summer and soils are wet prior to freeze-up. Increased temperatures associated with climate change lead to greater evapotranspiration. This may lead to increased drying in the summer in the Arctic. Although annual precipitation rates are expected to increase, the direction and magnitude of the change in summer precipitation is less clear. Another possible change in precipitation may be in the form of increased variability or in the probability of extreme events. The research to be presented here details an attempt to recreate the occurrence of hydrologic barriers to fish migration in the Upper Kuparuk River on the North Slope of Alaska. Locations along the Upper Kuparuk which become barriers to migration during low flows were identified and monitored during the summer of 2010. These locations were chosen because during previous low flow events, these stretches run dry even though water is seen flowing both up and downstream of these

  15. Alaska North Slope Tundra Travel Model and Validation Study

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a

  16. Data acquisition system for soil degradation measurements in sloping vineyard

    Bidoccu, Marcella; Opsi, Francesca; Cavallo, Eugenio

    2013-04-01

    The agricultural management techniques and mechanization adopted in sloping areas under temperate and sub-continental climate can affect the physical and hydrological characteristics of the soil with an increase of the soil erosion rates. Vineyards have been reported among the land uses most prone to erosion. Agricultural operations can be conducted to enhance the soil conservation, it is therefore important to know the site-specific characteristics and conditions of adopted practices. A long-term monitoring to evaluate the influence of management systems in hilly vineyard on erosion and runoff and soil properties has been carried out in the north-western Italy since 2000. Three different inter-rows tillage systems were compared: conventional tillage (CT), reduced tillage (RT) and controlled grass cover (GC). To record the rainfall amount and duration, an agro-meteorological station was located near experimental plots. The three plots are hydraulically isolated, thus runoff and sediment have been collected at the bottom by a drain, connected with a tipping bucket device to measure the discharge of runoff. The system was implemented with electromagnetic counters that allow the automatic accounting with data capture by a control unit, powered by a photovoltaic panel and transmitted to a data collection center for remote viewing via web page. A portion of the runoff-sediment mixture was usually sampled and analyzed for soil and nutrients losses. In order to analyze with more detail the erosion process by means of predictive models, a micro-plot system was placed in the experimental site in 2012. Splash cups have been installed in each plot since 2011 to evaluate how the soil management affects the in-field splash erosion process. Rapid measurement of soil moisture content and temperature were performed starting from August 2011 to allow continuous monitoring of parameters that can provide an evaluation of space-time hydrological processes, determining the surface

  17. Alterações radiográficas do tálus no pé torto congênito após liberação cirúrgica pela técnica de McKay Radiographic changes of the talus in congenital clubfoot after surgical release using the mckay procedure

    José Antonio Pinto

    2010-12-01

    Full Text Available OBJETIVO: Analisar as alterações morfológicas do tálus após o tratamento cirúrgico do pé torto congênito pela técnica de McKay. MÉTODOS: Foram analisadas, retrospectivamente, radiografias em perfil com carga dos pés de 14 pacientes com pé torto congênito unilateral submetidos ao tratamento pela técnica de McKay por dupla incisão. Todos os pacientes foram operados pelo mesmo cirurgião, com média de 6,53 anos entre a cirurgia e a radiografia. Comparamos as características do tálus dos pés operados com os parâmetros radiográficos dos pés contralaterais. Avaliamos a presença de deformidade do dômus e da cabeça do tálus (avaliação da esfericidade, a altura e o comprimento do tálus, a presença e grau de subluxação do navicular, a alteração do ângulo de Gissane e o padrão do trabeculado ósseo. RESULTADOS: Alterações da cabeça do tálus ocorreram em 92,8% dos casos; do dômus, em 92,8%; e do trabeculado, em 100%. A relação entre o comprimento do tálus do pé operado sobre o contralateral variou de 0,61 a 0,88 (média de 0,79; DP = 0,09, e da altura de 0,57 a 0,98 (média de 0,82; DP = 0,12. O ângulo de Gissane aumentou em todos os pés operados, e todos apresentaram subluxação do navicular, com índice variando de 6,43 a 59,75% (média de 26,34%; DP = 16,66%. CONCLUSÕES: Alterações talares ocorreram em 100% dos pés tratados pela técnica de McKay. Estabelecer parâmetros radiográficos para descrever e quantificar essas deformidades mostrou-se viável através de técnicas simples e de fácil execução.OBJECTIVE: To analyze the morphologic changes of the talus after surgical treatment of congenital clubfoot using the McKay procedure. METHODS: We retrospectively analyzed lateral standing radiographs of the feet in 14 patients with unilateral clubfoot treated by the McKay procedure. All patients were operated on by the same surgeon, with an average of 6.53 years between surgery and the radiograph. We

  18. Slope stability FEM analysis and retaining wall design: a case study of clinker in Benxi of Liaoning

    Aref M. O. AL-JABALI; Lei NIE; Jianlei LIU; Huangping DING; Nengjuan ZHOU; Mohammed HAZAEA

    2008-01-01

    Stability is always the most important problem after high slope was excavated. The study analyzed the stress and strain inside the slope by Finite Element Method (FEM) and carried through stress distribution and failure zone, then analyzed the stability of the slope using three different methods and came to the conclusion that it is in unstable condition, so the designed retaining wall was put forward which makes the slope stable.

  19. Effect of Soil Erosion on Soil Properties and Crop Yields on Slopes in the Sichuan Basin, China

    SU Zheng-An; ZHANG Jian-Hui; NIE Xiao-Jun

    2010-01-01

    Roles of tillage erosion and water erosion in the development of within-field spatial variation of surface soil properties and soil degradation and their contributions to the reduction of crop yields were studied on three linear slopes in the Sichuan Basin,southwestern China.Tillage erosion was found to be the dominant erosion process at upper slope positions of each linear slope and on the whole short slope (20 m).On the long slope (110 m) and medium slope (40 m),watererosion was the dominant erosion process.Soil organic matter and soil nutrients in the tillage layer were significantly related to slope length and 137Cs inventories on the long slope;however,there was no significant correlation among themon the short slope,suggesting that water erosion lowered soil quality by transporting SOM and surface soil nutrients selectively from the upper to lower slope positions,while tillage erosion transported soil materials unselectively.On the medium slope,SOM,total N,and available N in the tillage layer were correlated with slope length and the other properties were distributed evenly on the slope,indicating that water erosion on this slope was still the dominant soil redistribution process.Similar patterns were found for the responses of grain yield,aboveground biomaas,and harvest index for slopes.These results indicated that tillage erosion was a major cause for soil degradation and grain yield reduction on the linear slopes because it resulted in displacement of the tillage layer soil required for maintaining soil quality and plant growth.

  20. Influence of respiration in the very low frequency modulation of QRS slopes and heart rate variability in cardiomyopathy patients

    Hernando, David; Alcaine, A; Pueyo, Esther; Laguna, Pablo; Arcentales, Andrés; Giraldo Giraldo, Beatriz; Voss, Andreas; Bayés-Genís, Antoni; Bailón, Raquel

    2013-01-01

    This work investigates the very low frequency (VLF) modulation of QRS slopes and heart rate variability (HRV). Electrocardiogram (ECG) and respiratory flow signal were acquired from patients with dilated cardiomyopathy and ischemic cardiomyopathy. HRV as well as the upward QRS slope (IUS) and downward QRS slope (IDS) were extracted from the ECG. The relation between HRV and QRS slopes in the VLF band was measured using ordinary coherence in 5-minute segments. Partial coherence was then use...

  1. Evaluation of Slope Assessment System in Predicting Landslides along Roads Underlain by Granitic Formation

    Bujang B.K. Huat

    2005-01-01

    Full Text Available A slope assessment is to estimate the probability of occurrence and likely severity of landslides in a given area. This study evaluates two existing Slope Assessment Systems (SAS for predicting landslide at the micro level of assessment developed by the Public Works Department of Malaysia, namely the Slope Information Management System (SIMS and the Slope Management and Risk Tracking System (SMART. From the results of this study, it appears that none of the existing SAS is satisfactory for predicting landslide in granitic formation, for various reasons such as the use of hazard score developed from another country and use of data-base derived from different rock formation. A new SAS was developed using nine-parameters equation that was based on the stepwise discriminant analysis. The new SAS appears to show a good capability in predicting landslides in granitic formations.

  2. Surficial Stability Analysis of Unsaturated Loess Slopes Subjected to Rainfall Infiltration Effects

    LI Xinpo; WANG Chenghua; XU Jun

    2006-01-01

    According to theory of unsaturated soil strength and Green-Ampt model, an analysis method based on limit equilibrium theory is introduced to consider rainfall infiltration effects in loess slope stability analysis. The relationships between wetting band depth and surficial stability of slopes are analyzed. It is found that the infiltration adds to the weight of the soil and at the same time reduces the shear strength provided by matric suction of the soil. The wetting band depth plays a key role in the stability of slopes. The minimum rainfall intensity and the minimum rainfall duration needed to infiltrate to the wetting front depth are calculated based on the Green-Ampt model. The method in this paper will contribute to the predication of slope stability considering rainfall characteristics.

  3. Coupled Numerical Analysis of the Stability Behaviour of Unsaturated Soil Slopes Under Rainfall Conditions

    WANG Cheng-hua(王成华); THOMAS H R

    2003-01-01

    The stability behaviour of unsaturated soil slopes under rainfall conditions is investigated via a parametric finite element analysis, which is a fully coupled flow and deformation approach linked to a dynamic programming technique for determining the minimum factor of safety as well as its corresponding critical slip surface based on the stress fields from the numerical computation. The effects of rainfall features, soil strength parameters and permeability properties on slope stability are studied. The analyses revealed that the soil matric suction decreased during rainfall, especially in slopes with high permeability and/or with high suction angles of unsaturated soils. The influence of rainfall conditions on such slopes is quite obvious, and soil suction drops rapidly, which leads to a consequent quick reduction in the factor of safety.

  4. Local slope analysis: a new tool to study hard photon spectra

    A simple method of analysis of hard photon spectra based on the evaluation of local slope parameters is presented. The method has been applied to the experimental photon spectra from heavy ion collisions. (K.A.)

  5. Slope grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  6. Slope grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, and IKONOS derived depth values. Cell values...

  7. North Slope Moose Surveys Within and Adjacent to the Arctic National Wildlife Refuge, Fall 1988

    US Fish and Wildlife Service, Department of the Interior — Aerial moose surveys were conducted on the north slope from the Sagavanirktok River to the Canning River during 17-19 October 1988. Two aircraft based from...

  8. Drifter observations of the Hebrides slope current and nearby circulation patterns

    M. Burrows

    Full Text Available The mean flow at and around the Hebrides and Shetland Shelf slope is measured with ARGOS tracked drifters. Forty-two drifters drogued at 50 m were deployed in three circles over the Hebrides slope at 56.15°N in two releases, one on 5th December, 1995 and the second on 5-9th May, 1996. The circles span a distance of some 20 km from water depths of 200 m to 1200 m. Drifters are initially advected poleward along-slope by the Hebrides slope current at between 0.05 and 0.70 m s-1 in a laterally constrained (25-50 km wide jet-like flow. Drifters released in winter remained in the slope current for over 2000 km whilst summer drifters were lost from the slope current beyond the Wyville-Thomson Ridge, a major topographic feature at 60°N. Dispersion from the slope region into deeper waters occurs at bathymetric irregularities, particularly at the Anton Dohrn Seamount close to which the slope current is found to bifurcate, both in summer and winter, and at the Wyville-Thomson Ridge where drifters move into the Faeroe Shetland Channel. Dispersion onto the continental shelf occurs sporadically along the Hebrides slope. The initial dispersion around the Hebrides slope is remarkably sensitive to initial position, most of the drifters released in shallower water moving onto the shelf, whilst those in 1000 m or more are mostly carried away from the slope into deeper water near the Anton Dohrn Seamount. The dispersion coefficients estimated in directions parallel and normal to the local direction of the 500 m contour, approximately the position of the slope current core, are approximately 8.8 × 103 m2 s-1 and 0.36 × 103 m2 s-1, respectively, during winter, and 11.4 × 103 m2 s-1 and 0.36 × 103 m2 s-1, respectively, during summer. At the slope there is a minimum in across-slope mean velocity, Reynolds stress, and

  9. Interpreting lineaments in the southern slope of the greater Caucasus (within the Azerbaijan SSR)

    Budagov, B.A.; Aliyev, A.S.; Mikailov, A.Ya.

    1982-01-01

    Faults and block morphostructures of the southern slope of the greater Caucasus are revealed by interpreting space photographs. A plan of lineaments is compiled. Interpretation signs of the most important faults are described.

  10. Slope grid (5 m) derived from gridded bathymetry of Saipan Island, Commonwealth of the Northern Marianas

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) bathymetry from two sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI, and...

  11. Geomorphology and surficial geology of the western continental shelf and slope of India: A review

    Rao, V.P.; Wagle, B.G.

    and slope of the central and southwestern margin of India. Systematic sampling/radiocarbon dating is lacking on many geomorphic features. Some coastal bays in Maharashtra are least explored for heavy minerals. Phosphorites at places could prove economic...

  12. Slope 5m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI. Cell values reflect the maximum rate of...

  13. Slope grid derived from gridded bathymetry of Ta'u Island, Territory of American Samoa, USA

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery....

  14. Slope grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI. Cell values reflect the maximum rate of...

  15. Slope grid derived from gridded bathymetry of Rose Atoll, Territory of American Samoa, USA

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery....

  16. Slope grid derived from gridded bathymetry of Apra Harbor, Guam U.S. Territory

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (1 m cell size) multibeam bathymetry, collected aboard the Survey Vessel Swamp Fox. Cell values reflect the maximum rate of change (in...

  17. 10 m Slope grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI. Cell values reflect the maximum rate of...

  18. Slope grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery....

  19. Slope grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  20. Slope grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  1. Slope grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  2. Some considerations on the seismic stability of large slopes surrounding the nuclear power plant

    As a series of the research on the seismic stabilities of a large scale slope surrounding the Nuclear Power Plant, the numerical simulation and analytical stability calculation are conducted in order to clarify the applicability of static stability evaluation method (conventional circular arc slip method, static non-linear F.E. analysis) and dynamic one (2-dimensional dynamic F.E. analysis). The discussions on these slope stability methods are done and the followings are clarified, i) The results of numerical simulation by dynamic F.E. analysis concerning the response property and the failure mode are qualitatively corresponded with the behaviour of dynamic failure test. ii) From the results of static and dynamic stability analysis, it is concluded that the conventional circular arc slip method gives the severest evaluation for slope stability. iii) It is proposed that the seismic coefficient for static slope stability analysis should be used the value of the equivalent instant acceleration. (author)

  3. Comparisons of Limit Analysis Solutions and Random Search Solutions on Slope Critical Slip SUrface

    JianfengWANG

    1998-01-01

    The object of this paper is twofold:to present a kinematics limit analysis for assessing the safety of slope or its critical slip surface,and to compare the searched slip surface with that by limit analysis.

  4. AFSC/RACE/GAP/Orr: Bering Sea Slope groundfish surveys Identification Confidence

    National Oceanic and Atmospheric Administration, Department of Commerce — This report includes an identification confidence matrix for all fishes and invertebrates identified from the EBS slope triennial and biennial surveys from 1976...

  5. Effects of triggering mechanism on snow avalanche slope angles and slab depths from field data

    McClung, David M.

    2013-04-01

    Field data from snow avalanche fracture lines for slope angle and slab depth (measured perpendicular to the weak layer) were analyzed for different triggering mechanisms. For slope angle, the results showed that the same probability density function (pdf) (of log-logistic type) and range (25 - 55 degrees) apply independent of triggering mechanism. For slab depth, the same pdf (generalized extreme value) applies independent of triggering mechanism. For both slope angle and slab depth, the data skewness differentiated between triggering mechanism and increased with applied triggering load. For slope angle, skewness is lowest for natural triggering by snow loads and highest for triggering from human intervention. For slab depth, the skewness is lowest for natural triggering and highest for a mix of triggers including explosive control with skier triggering being intermediate. The results reveal the effects of triggering mechanism which are important for risk analyses and to guide avalanche forecasting.

  6. Aggregate breakdown and surface seal development influenced by rain intensity, slope gradient and soil particle size

    S. Arjmand Sajjadi

    2014-12-01

    Dmax 4.75 mm were in the finest size classes of 0.02 and 0.043 mm, respectively for all slope gradients and rain intensities. The soil containing finer aggregates exhibited higher transportability of pre-detached material than the soil containing larger aggregates. Also, IR increased with increasing slope gradient, rain intensity and aggregate size under unsteady state conditions because of less development of surface seal. But under steady state conditions, no significant relationship was found between slope and IR. The finding of this study revealed the importance of rain intensity, slope steepness and soil aggregate size on aggregate breakdown and seal formation, which can control infiltration rate and the consequent runoff and erosion rates.

  7. Microstructural and Statistical Study of Semisolid Casting of 6061 Alloy Using a Miniature Cooling Slope

    Hajihashemi, Mahdi; Niroumand, Behzad; Shamanian, Morteza

    2014-10-01

    Preparation of metallic semisolid slurries using the cooling slope method is increasingly becoming popular because of the simplicity of design and control of the process. Microstructural features of the resultant semisolid castings such as size and sphericity of the primary particles are affected by several processing parameters such as pouring rate, cooling slope surface angle and length as well as the melt superheat. In this work, a miniature cooling slope for semisolid casting of small parts was built and attempts were made to develop an empirical relationship showing the correlation between the sphericity of the microstructure of semisolid cast 6061-aluminum alloy and the processing variables. The relationships were developed by a two-level factorial method. The results showed that the interaction of cooling slope length and pouring rate factors had the most effect on the sphericity of the final semisolid cast microstructure.

  8. Study of Wave and Tide Influence on Slope Stability of the Navigation Channel of Tianjin Port

    2007-01-01

    The Tianjin Port is the largest man-made port in China. Since the navigation channel of the Tianjin Port is constructed by dredging, a very important problem, as many people concerned, is the submarine slope stability. As the environment on land is different from that in submarine, it is necessary to evaluate the influence of the environmental loading, such as wave and tide, on the stability of navigation channel slope. In the present study, based on the observed results, the characteristics of the navigation channel slope are summarized, and the causes of creating the special slope shape are analyzed. The roles of waves and tides are evaluated, and failure mechanics are discussed to helq us predict what will happen in the future.

  9. Parameter-elevation Regressions on Independent Slopes Model Monthly Climate Data for the Continental United States.

    U.S. Geological Survey, Department of the Interior — This dataset was created using the PRISM (Parameter-elevation Regressions on Independent Slopes Model) climate mapping system, developed by Dr. Christopher Daly,...

  10. Calculation of slope-cover height under price fluctuation in open-pit mines

    Ma Jinyan; Cai Qingxiang; Liu Fuming; Chen Shuzhao

    2014-01-01

    Leaving ditches between adjacent mining areas can effectively reduce re-stripping in the latter mining area and simultaneously lead to an increment in internal dumping costs in the former mining area. This paper establishes calculation models for these two marginal costs. The optimizing model for slope cover height can be determined by including marginal cost models in the objective function. The paper has two main contributions:(a) it fully considers redistribution of dumping space in the model;(b) it introduces price fluctuations and cash discounts in the model. We use the typical open-pit mine as an example to test and prove the model. We conclude that a completely covered slope is reasonable in Haerwusu open pit mine;in addition to an increasing price index, the slope cover height can be reduced;and that price changes are one of the most important influencing factors of slope cover height optimization in an open-pit mine.

  11. Slope Safety Calculation With A Non-Linear Mohr Criterion Using Finite Element Method

    Clausen, Johan; Damkilde, Lars

    Safety factors for soil slopes are calculated using a non-linear Mohr envelope. The often used linear Mohr-Coulomb envelope tends to overestimate the safety as the material parameters are usually determined at much higher stress levels, than those present at slope failure. Experimental data indic...... indicates that this leads to overestimation of the soil strength at low stress levels. The calculations are performed with the finite element method, and the plastic integration is carried out in principal stress space which simplifies the computations considerably.......Safety factors for soil slopes are calculated using a non-linear Mohr envelope. The often used linear Mohr-Coulomb envelope tends to overestimate the safety as the material parameters are usually determined at much higher stress levels, than those present at slope failure. Experimental data...

  12. Physical and theoretical modeling of rock slopes against block-flexure toppling failure

    Mehdi Amini

    2015-12-01

    Full Text Available Block-flexure is the most common mode of toppling failure in natural and excavated rock slopes. In such failure, some rock blocks break due to tensile stresses and some overturn under their own weights and then all of them topple together. In this paper, first, a brief review of previous studies on toppling failures is presented. Then, the physical and mechanical properties of experimental modeling materials are summarized. Next, the physical modeling results of rock slopes with the potential of block-flexural toppling failures are explained and a new analytical solution is proposed for the stability analysis of such slopes. The results of this method are compared with the outcomes of the experiments. The comparative studies show that the proposed analytical approach is appropriate for the stability analysis of rock slopes against block-flexure toppling failure. Finally, a real case study is used for the practical verification of the suggested method.

  13. Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran)

    Investigations of failures of soil masses are subjects touching both geology and engineering. These investigations call the joint efforts of engineering geologists and geotechnical engineers. Geotechnical engineers have to pay particular attention to geology, ground water, and shear strength of soils in assessing slope stability. Artificial neural networks (ANNs) are very sophisticated modeling techniques, capable of modeling extremely complex functions. In particular, neural networks are nonlinear. In this research, with respect to the above advantages, ANN systems consisting of multilayer perceptron networks are developed to predict slope stability in a specified location, based on the available site investigation data from Noabad, Mazandaran, Iran. Several important parameters, including total stress, effective stress, angle of slope, coefficient of cohesion, internal friction angle, and horizontal coefficient of earthquake, were used as the input parameters, while the slope stability was the output parameter. The results are compared with the classical methods of limit equilibrium to check the ANN model's validity. (author)

  14. Crucial problems on security assessment of a building site adjacent to an excavated high slope

    文海家; ZHANG; Jialan; 等

    2002-01-01

    The subject of this work is the assessment on the stability of an excavated high slope in order to insure the security of the building site adjacent to the slope,which is frequently encountered in town construction in mountainous areas due to terrain limit.On the base of some typical engineering cases in Chongqing,several crucial problems on security assessment of building site adjacent to an excavated high slope,including the natural geological conditions and man-destroyed degree,engineering environment,potential failure pattern of the high slope,calculation parameters and analysis methods,are roundly discussed.It is demonstrated that the conclusion of security assessment can be determined according to the aspects above-mentioned,and the security assessment is one of the fundamental data to insure the safety of the related construction,site and buildings.

  15. Dive Activities for Expedition to the Deep Slope 2007 - Office of Ocean Exploration

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded by personnel during the "Expedition to the Deep Slope 2007" expedition, June 4 through July 6, 2007. Additional...

  16. Dive Activities for Expedition to the Deep Slope 2006 - Office of Ocean Exploration

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded by personnel during the "Expedition to the Deep Slope 2006" expedition, May 7 through June 2, 2006. Additional...

  17. Pulling up the runaway: the effect of new evidence on euthanasia's slippery slope.

    Ryan, C J

    1998-10-01

    The slippery slope argument has been the mainstay of many of those opposed to the legalisation of physician-assisted suicide and euthanasia. In this paper I re-examine the slippery slope in the light of two recent studies that examined the prevalence of medical decisions concerning the end of life in the Netherlands and in Australia. I argue that these two studies have robbed the slippery slope of the source of its power--its intuitive obviousness. Finally I propose that, contrary to the warnings of the slippery slope, the available evidence suggests that the legalisation of physician-assisted suicide might actually decrease the prevalence of non-voluntary and involuntary euthanasia. PMID:9800591

  18. Slope 60 m grid derived from gridded bathymetry of Guam Island, Mariana Islands, USA

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  19. Slope 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  20. Slope grid (5 m) derived from gridded bathymetry of US Territory of Guam

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) bathymetry from four sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI, and...