WorldWideScience

Sample records for tafel extrapolation method

  1. Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions - Experimental and theoretical studies

    The protection influence of glycine (Gly) and a one of its derivatives, namely 2-(bis(2-aminoethyl)amino) acetic acid, designated here as GlyD; where GlyD stands for 'glycine derivative', against cold rolled steel (CRS) corrosion was studied in aerated stagnant 1.0 M HCl solutions at 25 deg. C. Measurements were conducted under various experimental conditions using Tafel polarization, linear polarization and impedance techniques. These studies have shown that Gly and GlyD are very good 'green', mixed-type inhibitors. GlyD is more effective than Gly itself in inhibiting the acid corrosion of CRS. Electrochemical frequency modulation (EFM) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) method of analysis are also presented here for monitoring corrosion. Corrosion rates obtained from both EFM and ICP-AES methods are comparable with those recorded using Tafel extrapolation method, confirming validation of corrosion rates measured by the latter. Adsorption via H-bond is discussed here, based on the presence of oxide film on the electrode surface as well as the number of NH linkages in the inhibitor molecule. Quantum chemical method was also employed to explore the relationship between the inhibitor molecular properties and its protection efficiency. The density function theory (DFT) is used to study the structural properties of Gly and GlyD in aqueous phase in an attempt to understand their inhibition mechanism. The protection efficiencies of these compounds showed a certain relationship to highest occupied molecular orbital (HOMO) energy, Mulliken atomic charges and Fukui indices.

  2. Electrochemical frequency modulation and inductively coupled plasma atomic emission spectroscopy methods for monitoring corrosion rates and inhibition of low alloy steel corrosion in HCl solutions and a test for validity of the Tafel extrapolation method

    The inhibition effect of glycine (Gly) towards the corrosion of low alloy steel ASTM A213 grade T22 boiler steel was studied in aerated stagnant 0.50 M HCl solutions in the temperature range 20-60 deg. C using potentiodynamic polarization (Tafel polarization and linear polarization) and impedance techniques, complemented with scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Electrochemical frequency modulation (EFM), a non-destructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is also presented here. Experimental corrosion rates determined by the Tafel extrapolation method are compared with corrosion rates obtained by electrochemical, namely EFM technique, and chemical (i.e., non-electrochemical) method for steel in HCl. The chemical method of confirmation of the corrosion rates involved determination of the dissolved cation, using ICP-AES (inductively coupled plasma atomic emission spectrometry) method of analysis. Corrosion rates (in mm y-1) obtained from the electrochemical (Tafel extrapolation and EFM) and the chemical method, ICP, are in a good agreement. Polarization studies have shown that Gly is a good 'green', mixed-type inhibitor with cathodic predominance. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive agents. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) examinations of the electrode surface confirmed the existence of such an adsorbed film. The inhibition efficiency increases with increase in Gly concentration, while it decreases with solution temperature. Temkin isotherm is successfully applied to describe the adsorption process. Thermodynamic functions for the adsorption process were determined.

  3. Extrapolation methods theory and practice

    Brezinski, C

    1991-01-01

    This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided - including some never before published results and applicat

  4. Effects of scan rate on the corrosion behavior SS 304 stainless steel in the nanofluid measured by Tafel polarization methods

    The Effects of scan rate on the Tafel polarization curve that is obtained to determine corrosion rate are conducted. The tafel polarization curves are obtained at different scan rates for Stainless Steel 304 in nanofluids contain 0.01 gpl nano particle ZrO2. The corrosion stainless steel in nanofluid contains adm+0.01 gpl ZrO2 nanoparticles at different scan rate was performed by Tafel polarization. The results show that according corrosion potential examination of the stainless steel in nanofluid media 0.01gpl ZrO2 nanoparticle was actively corroded. The value of cathodic Tafel slope stainless steel in nanofluid at different scan rate relatively unchanged after polarization testing. Mean while the value of anodic Tafel slope stainless steel in nanofluid increase at different scan rate. The results of Tafel polarization technique show that corrosion rate of stainless steel in nanofluid increase with increasing scan rate. X ray diffraction examination of stainless steel after Tafel polarization depict that γ Fe phase is major phase in the surface of alloy

  5. The optimizied expansion method for wavefield extrapolation

    Wu, Zedong

    2013-01-01

    Spectral methods are fast becoming an indispensable tool for wave-field extrapolation, especially in anisotropic media, because of its dispersion and artifact free, as well as highly accurate, solutions of the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain operator.In this abstract, we propose an optimized expansion method that can approximate this operator with its low rank representation. The rank defines the number of inverse FFT required per time extrapolation step, and thus, a lower rank admits faster extrapolations. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its low rank representation.Thus,we obtain more accurate wave-fields using lower rank representation, and thus cheaper extrapolations. The optimization operation to define the low rank representation depends only on the velocity model, and this is done only once, and valid for a full reverse time migration (many shots) or one iteration of full waveform inversion. Applications on the BP model yielded superior results than those obtained using the decomposition approach. For transversely isotopic media, the solutions were free of the shear wave artifacts, and does not require that eta>0.

  6. ON THE OPTIMIZATION OF EXTRAPOLATION METHODS FOR SINGULAR LINEAR SYSTEMS

    Li Wang; Yongzhong Song

    2008-01-01

    We discuss semiconvergence of the extrapolated iterative methods for solving singular linear systems.We obtain the upper bounds and the optimum convergence factor of the ex-trapolation method as well as its associated optimum extrapolation parameter.Numerical examples are given to illustrate the theoretical results.

  7. Extrapolation Method for System Reliability Assessment

    Qin, Jianjun; Nishijima, Kazuyoshi; Faber, Michael Havbro

    2012-01-01

    integrals with scaled domains. The performance of this class of approximation depends on the approach applied for the scaling and the functional form utilized for the extrapolation. A scheme for this task is derived here taking basis in the theory of asymptotic solutions to multinormal probability integrals...

  8. On the Extrapolation with the Denton Proportional Benchmarking Method

    Marco Marini; Tommaso Di Fonzo

    2012-01-01

    Statistical offices have often recourse to benchmarking methods for compiling quarterly national accounts (QNA). Benchmarking methods employ quarterly indicator series (i) to distribute annual, more reliable series of national accounts and (ii) to extrapolate the most recent quarters not yet covered by annual benchmarks. The Proportional First Differences (PFD) benchmarking method proposed by Denton (1971) is a widely used solution for distribution, but in extrapolation it may suffer when the...

  9. Implicit extrapolation methods for multilevel finite element computations

    Jung, M.; Ruede, U. [Technische Universitaet Chemnitz-Zwickau (Germany)

    1994-12-31

    The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.

  10. Submarine Magnetic Field Extrapolation Based on Boundary Element Method

    GAO Jun-ji; LIU Da-ming; YAO Qiong-hui; ZHOU Guo-hua; YAN Hui

    2007-01-01

    In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine, a mathematic model of submarine magnetic field extrapolation is built based on the boundary element method (BEM). An experiment is designed to measure three components of magnetic field on the envelope surface surrounding a model submarine. The data in differentheights above the model submarine are obtained by use of tri-axial magnetometers. The results show that this extrapolation model has good stabilities and high accuracies compared the measured data with the extrapolated data. Moreover, the model can reflect the submarine magnetic field distribution in the air exactly, and is valuable in practical engineering.

  11. Assessment of Load Extrapolation Methods for Wind Turbines

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima and the peak over...... considering Gaussian processes for twelve mean wind speeds the ‘fitting before aggregation’ and ‘aggregation before fitting’ approaches are studied. The results show that the ‘fitting before aggregation’ approach gives the best results.......In the present paper methods for statistical load extrapolation of wind turbine response are studied using a stationary Gaussian process model which has approximately the same spectral properties as the response for the flap bending moment of a wind turbine blade. For a Gaussian process an...

  12. Assessment of Load Extrapolation Methods for Wind Turbines

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Veldkamp, Dick

    2011-01-01

    , an approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper, three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima, and the...... best results. By considering Gaussian processes for 12 mean wind speeds, the "fitting before aggregation" and "aggregation before fitting" approaches are studied. The results show that the fitting before aggregation approach gives the best results. [DOI: 10.1115/1.4003416]......In the present paper, methods for statistical load extrapolation of wind-turbine response are studied using a stationary Gaussian process model, which has approximately the same spectral properties as the response for the out-of-plane bending moment of a wind-turbine blade. For a Gaussian process...

  13. Extrapolative Projections of Mortality: Towards a More Consistent Method

    Ediev, Dalkhat M.

    2009-01-01

    After a comparative study of the Lee-Carter forecasting method and looking into the direct extrapolation of mortality by age and sex, this paper advocates the use of the latter method. The method is, however, supplemented by additional procedures in order to improve its efficiency in the short run and preclude implausible mortality patterns in the long run. The short-run efficiency is improved by building the forecast on data from the most recent periods of age/sex-specific duration, when the...

  14. Comparison of methods for extrapolating breaking creep results

    Among all the methods of extrapolation, the following have been selected: - parametric methods (Larson-Miller, Dorn, Manson-Haferd); - digital and parametric method (minimum commitment); - digital method (finite differences); - descriptive method (Givar). The Larson-Miller, Dorn and Manson-Haferd methods are commonly used for analyzing the breaking creep results of materials for which the master curves can be described simply. The other methods have been developed in order to analyze the breaking creep results of materials where the structural changes over time modify the creep behaviour. In each case the assessment of the parameters is achieved by the least squares method. These methods were compared with each other on two steels, namely: Z6 CND 17-12 (316) and Z4 CND 35-20 (800 alloy). The various analyses performed show that (a) the predictions made as from the different methods are in good agreement between each other when there is a sufficient number of experimental values and (b) the predictions of the breaking times in the case of the 800 alloy differ from one method to the next. This result is due to the limited sampling data and to the complex behaviour of this alloy, the properties of which change with ageing

  15. The absolute determination of activity by the efficiency extrapolation method

    As agent for the Commonwealth Scientific and Industrial Research Organisation, the Australian Atomic Energy Commission is responsible for the maintenance of the Australian standard of activity. The standard comprises activity measurement procedures involving the operation of 4 π β-γ coincidence counting equipment. The coincidence method requires the application of correction factors which depend on detection efficiency, such as arise for complex decay schemes and internal conversion. These corrections approach unity as the detection efficiency in the β-channel approaches 100 per cent. By performing activity determinations for a range of β detection efficiencies, an 'efficiency extrapolation' analysis can be applied which eliminates the need to determine the absolute detection efficiency for each channel

  16. A Time-domain incident field extrapolation technique based on the singularity expansion method

    Klaasen, J.J.A.

    1991-01-01

    In this report, a method is presented to extrapolate measurements from Nuclear Electromagnetic Pulse (NEMP) assessments directly in the time domain. This method is based on a time-domain extrapolation function which is obtained from the Singularity Expansion Method representation of the measured incident field of the NEMP simulator. Once the time-domain extrapolation function is determined, the responses recorded during an assessment can be extrapolated simply by convolving them with the time...

  17. Efficient implementation of minimal polynomial and reduced rank extrapolation methods

    Sidi, Avram

    1990-01-01

    The minimal polynomial extrapolation (MPE) and reduced rank extrapolation (RRE) are two effective techniques that have been used in accelerating the convergence of vector sequences, such as those that are obtained from iterative solution of linear and nonlinear systems of equation. Their definitions involve some linear least squares problems, and this causes difficulties in their numerical implementation. Timewise efficient and numerically stable implementations for MPE and RRE are developed. A computer program written in FORTRAN 77 is also appended and applied to some model problems.

  18. Mean error of prediction for a method of empirical growth extrapolation

    Boguslaw Guzik

    2006-01-01

    The objective of this paper is to formulate a standard set of stochastic assumptions for a prediction method which consists in a linear extrapolation of the mean empirical growth. The author shows how to derive formulas for the mean error of prediction (the ex ante prediction error). These formulas are then compared to the prediction errors of the following methods: the status quo method, the mean extrapolation method and the extrapolation of the linear trend function estimated by the least-s...

  19. An efficient wave extrapolation method for anisotropic media with tilt

    Waheed, Umair bin

    2015-03-23

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  20. Definition of static magnetic characteristics of ferromagnetic specimens with extrapolation methods

    The problem of definition of static magnetic characteristics of ferromagnetic specimens on the basis of extrapolation treatment of the totality of dynamic characteristics recorded in low-frequency (1-25 Hz) magnetic fields is considered. The application of the extrapolation methods ensures a considerable increase in the productivity of control of the studied specimen magnetic properties

  1. Video Extrapolation Method Based on Time-Varying Energy Optimization and CIP.

    Sakaino, Hidetomo

    2016-09-01

    Video extrapolation/prediction methods are often used to synthesize new videos from images. For fluid-like images and dynamic textures as well as moving rigid objects, most state-of-the-art video extrapolation methods use non-physics-based models that learn orthogonal bases from a number of images but at high computation cost. Unfortunately, data truncation can cause image degradation, i.e., blur, artifact, and insufficient motion changes. To extrapolate videos that more strictly follow physical rules, this paper proposes a physics-based method that needs only a few images and is truncation-free. We utilize physics-based equations with image intensity and velocity: optical flow, Navier-Stokes, continuity, and advection equations. These allow us to use partial difference equations to deal with the local image feature changes. Image degradation during extrapolation is minimized by updating model parameters, where a novel time-varying energy balancer model that uses energy based image features, i.e., texture, velocity, and edge. Moreover, the advection equation is discretized by high-order constrained interpolation profile for lower quantization error than can be achieved by the previous finite difference method in long-term videos. Experiments show that the proposed energy based video extrapolation method outperforms the state-of-the-art video extrapolation methods in terms of image quality and computation cost. PMID:27305677

  2. The optimized expansion based low-rank method for wavefield extrapolation

    Wu, Zedong

    2014-03-01

    Spectral methods are fast becoming an indispensable tool for wavefield extrapolation, especially in anisotropic media because it tends to be dispersion and artifact free as well as highly accurate when solving the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain extrapolation operator efficiently. To solve this problem, we evaluated an optimized expansion method that can approximate this operator with a low-rank variable separation representation. The rank defines the number of inverse Fourier transforms for each time extrapolation step, and thus, the lower the rank, the faster the extrapolation. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its explicit low-rank representation. As a result, we obtain lower rank representations compared with the standard low-rank method within reasonable accuracy and thus cheaper extrapolations. Additional bounds set on the range of propagated wavenumbers to adhere to the physical wave limits yield unconditionally stable extrapolations regardless of the time step. An application on the BP model provided superior results compared to those obtained using the decomposition approach. For transversely isotopic media, because we used the pure P-wave dispersion relation, we obtained solutions that were free of the shear wave artifacts, and the algorithm does not require that n > 0. In addition, the required rank for the optimization approach to obtain high accuracy in anisotropic media was lower than that obtained by the decomposition approach, and thus, it was more efficient. A reverse time migration result for the BP tilted transverse isotropy model using this method as a wave propagator demonstrated the ability of the algorithm.

  3. Combining linear interpolation with extrapolation methods in range-separated ensemble density-functional theory

    Senjean, Bruno; Alam, Md Mehboob; Knecht, Stefan; Fromager, Emmanuel

    2015-01-01

    The combination of a recently proposed linear interpolation method (LIM) [Senjean et al., Phys. Rev. A 92, 012518 (2015)], which enables the calculation of weight-independent excitation energies in range-separated ensemble density-functional approximations, with the extrapolation scheme of Savin [J. Chem. Phys. 140, 18A509 (2014)] is presented in this work. It is shown that LIM excitation energies vary quadratically with the inverse of the range-separation parameter mu when the latter is large. As a result, the extrapolation scheme, which is usually applied to long-range interacting energies, can be adapted straightforwardly to LIM. This extrapolated LIM (ELIM) has been tested on a small test set consisting of He, Be, H2 and HeH+. Relatively accurate results have been obtained for the first singlet excitation energies with the typical mu=0.4 value. The improvement of LIM after extrapolation is remarkable, in particular for the doubly-excited 2^1Sigma+g state in the stretched H2 molecule. Three-state ensemble ...

  4. Evaluation of Extrapolative Forecasting Methods: Results of a Survey of Academicians and Practitioners

    Robert Carbone; JS Armstrong

    2004-01-01

    There exists a large number of quantitative extrapolative forecasting methods which may be applied in research work or implemented in an organizational setting. For instance, the lead article of this issue of the Journal of Forecasting compares the ability to forecast the future of over twenty univariate forecasting methods. Forecasting researchers in various academic disciplines as well as practitioners in private or public organizations are commonly faced with the problem of evaluating fore...

  5. Standardization of electron-capture and complex beta-gamma radionuclides by the efficiency extrapolation method

    The efficiency extrapolation method was improved by establishing ''linearity conditions'' for the discrimination on the gamma channel of the coincidence equipment. These conditions were proved to eliminate the systematic error of the method. A control procedure for the fulfilment of linearity conditions and estimation of residual systematic error was given. For law-energy gamma transitions an ''equivalent scheme principle'' was established, which allow for a correct application of the method. Solutions of Cs-134, Co-57, Ba-133 and Zn-65 were standardized with an ''effective standard deviation'' of 0.3-0.7 per cent. For Zn-65 ''special linearity conditions'' were applied. (author)

  6. Extrapolative projections of mortality: Towards a more consistent method part I: the central scenario

    Ediev, Dalkhat M.

    2008-01-01

    After a comparative study of the Lee-Carter forecasting method and looking into the direct extrapolation of mortality by age and sex, this paper advocates the use of the latter method. The method is, however, supplemented by additional procedures in order to improve its efficiency in the short run and preclude implausible mortality patterns in the long run. The short-run efficiency is improved by building the forecast on data from the most recent periods of age/sex-specific duration, when the...

  7. Multi-state extrapolation of UV/Vis absorption spectra with QM/QM hybrid methods

    Ren, Sijin; Caricato, Marco

    2016-05-01

    In this work, we present a simple approach to simulate absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated efficiently at a high level of theory. The present approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g., band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory.

  8. Evaluation of functioning of an extrapolation chamber using Monte Carlo method

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Braff-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents a simulation for evaluating the functioning of an extrapolation chamber type 23392 of PTW, using the MCNPX Monte Carlo method. In the simulation, the fluence in the air collector cavity of the chamber was obtained. The influence of the materials that compose the camera on its response against beta radiation beam was also analysed. A comparison of the contribution of primary and secondary radiation was performed. The energy deposition in the air collector cavity for different depths was calculated. The component with the higher energy deposition is the Polymethyl methacrylate block. The energy deposition in the air collector cavity for chamber depth 2500 μm is greater with a value of 9.708E-07 MeV. The fluence in the air collector cavity decreases with depth. It's value is 1.758E-04 1/cm2 for chamber depth 500 μm. The values reported are for individual electron and photon histories. The graphics of simulated parameters are presented in the paper. (Author)

  9. Multi-state extrapolation of UV/Vis absorption spectra with QM/QM hybrid methods.

    Ren, Sijin; Caricato, Marco

    2016-05-14

    In this work, we present a simple approach to simulate absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated efficiently at a high level of theory. The present approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g., band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory. PMID:27179466

  10. Counter-extrapolation method for conjugate interfaces in computational heat and mass transfer.

    Le, Guigao; Oulaid, Othmane; Zhang, Junfeng

    2015-03-01

    In this paper a conjugate interface method is developed by performing extrapolations along the normal direction. Compared to other existing conjugate models, our method has several technical advantages, including the simple and straightforward algorithm, accurate representation of the interface geometry, applicability to any interface-lattice relative orientation, and availability of the normal gradient. The model is validated by simulating the steady and unsteady convection-diffusion system with a flat interface and the steady diffusion system with a circular interface, and good agreement is observed when comparing the lattice Boltzmann results with respective analytical solutions. A more general system with unsteady convection-diffusion process and a curved interface, i.e., the cooling process of a hot cylinder in a cold flow, is also simulated as an example to illustrate the practical usefulness of our model, and the effects of the cylinder heat capacity and thermal diffusivity on the cooling process are examined. Results show that the cylinder with a larger heat capacity can release more heat energy into the fluid and the cylinder temperature cools down slower, while the enhanced heat conduction inside the cylinder can facilitate the cooling process of the system. Although these findings appear obvious from physical principles, the confirming results demonstrates the application potential of our method in more complex systems. In addition, the basic idea and algorithm of the counter-extrapolation procedure presented here can be readily extended to other lattice Boltzmann models and even other computational technologies for heat and mass transfer systems. PMID:25871245

  11. An Efficient Method of Reweighting and Reconstructing Monte Carlo Molecular Simulation Data for Extrapolation to Different Temperature and Density Conditions

    Sun, Shuyu

    2013-06-01

    This paper introduces an efficient technique to generate new molecular simulation Markov chains for different temperature and density conditions, which allow for rapid extrapolation of canonical ensemble averages at a range of temperatures and densities different from the original conditions where a single simulation is conducted. Obtained information from the original simulation are reweighted and even reconstructed in order to extrapolate our knowledge to the new conditions. Our technique allows not only the extrapolation to a new temperature or density, but also the double extrapolation to both new temperature and density. The method was implemented for Lennard-Jones fluid with structureless particles in single-gas phase region. Extrapolation behaviors as functions of extrapolation ranges were studied. Limits of extrapolation ranges showed a remarkable capability especially along isochors where only reweighting is required. Various factors that could affect the limits of extrapolation ranges were investigated and compared. In particular, these limits were shown to be sensitive to the number of particles used and starting point where the simulation was originally conducted.

  12. Low-cost extrapolation method for maximal lte radio base station exposure estimation: Test and validation

    An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on down-link band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2x2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders. (authors)

  13. Comparison of precipitation nowcasting by extrapolation and statistical-advection methods

    Sokol, Zbynek; Kitzmiller, David; Pesice, Petr; Mejsnar, Jan

    2013-04-01

    Two models for nowcasting of 1-h, 2-h and 3-h precipitation in the warm part of the year were evaluated. The first model was based on the extrapolation of observed radar reflectivity (COTREC-IPA) and the second one combined the extrapolation with the application of a statistical model (SAMR). The accuracy of the model forecasts was evaluated on independent data using the standard measures of root-mean-squared-error, absolute error, bias and correlation coefficient as well as by spatial verification methods Fractions Skill Score and SAL technique. The results show that SAMR yields slightly better forecasts during the afternoon period. On the other hand very small or no improvement is realized at night and in the very early morning. COTREC-IPA and SAMR forecast a very similar horizontal structure of precipitation patterns but the model forecasts differ in values. SAMR, similarly as COTREC-IPA, is not able to develop new storms or significantly intensify already existing storms. This is caused by a large uncertainty regarding future development. On the other hand, the SAMR model can reliably predict decreases in precipitation intensity.

  14. A two-grid method with Richardson extrapolation for a semilinear convection-diffusion problem

    Tikhovskaya, S. V.; Zadorin, A. I.

    2015-10-01

    A boundary value problem for a second-order semilinear singularly perturbed ordinary differential equation is considered. We use Newton and Picard iterations for a linearization. To solve the problem at each iteration we apply the difference scheme with the property of uniform with respect to the singular perturbation parameter convergence. A modified Samarskii and central difference schemes on Shishkin mesh are considered. It is known that these schemes are almost second order accuracy uniformly with respect to the singular perturbation parameter. To decrease the required number of arithmetical operations for resolving the difference scheme, a two-grid method is proposed. To increase the accuracy of difference scheme, we investigate the possibility to apply Richardson extrapolation using known solutions of the difference scheme on both meshes. The comparison of modified Samarskii and central difference schemes is carried out. The results of some numerical experiments are discussed.

  15. Usage of Empirical-Statical-Dynamical (ESD) method for data extrapolation in Tunnel Construction

    Zafirovski Zlatko

    2016-01-01

    This article describes a methodology that shows how it is possible to integrate all these approaches in a problem for extrapolation of the parameters for hydrotechical tunnels. During the design process for tunnels in hydrotechics, one of the main problems is how to extrapolate the deformability and shear strentgh rock mass parameters from the zone of testing to the whole area (volume) of interes for interaction analyses between structure abd natural environments. Computers development in rec...

  16. Propagation of internal errors in explicit Runge–Kutta methods and internal stability of SSP and extrapolation methods

    Ketcheson, David I.

    2014-04-11

    In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.

  17. Simple Extrapolation Method to Predict the Electronic Structure of Conjugated Polymers from Calculations on Oligomers

    Larsen, Ross E.

    2016-05-12

    We introduce two simple tight-binding models, which we call fragment frontier orbital extrapolations (FFOE), to extrapolate important electronic properties to the polymer limit using electronic structure calculations on only a few small oligomers. In particular, we demonstrate by comparison to explicit density functional theory calculations that for long oligomers the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and of the first electronic excited state are accurately described as a function of number of repeat units by a simple effective Hamiltonian parameterized from electronic structure calculations on monomers, dimers and, optionally, tetramers. For the alternating copolymer materials that currently comprise some of the most efficient polymer organic photovoltaic devices one can use these simple but rigorous models to extrapolate computed properties to the polymer limit based on calculations on a small number of low-molecular-weight oligomers.

  18. Comparison of precipitation nowcasting by extrapolation and statistical-advection methods

    Sokol, Zbyněk; Kitzmiller, D.; Pešice, Petr; Mejsnar, Jan

    2013-01-01

    Roč. 123, 1 April (2013), s. 17-30. ISSN 0169-8095 R&D Projects: GA MŠk ME09033 Institutional support: RVO:68378289 Keywords : Precipitation forecast * Statistical models * Regression * Quantitative precipitation forecast * Extrapolation forecast Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.421, year: 2013 http://www.sciencedirect.com/science/article/pii/S0169809512003390

  19. Quantitative expression of uncertainty in nowcasting heavy convective precipitation in central Europe by extrapolation methods

    Mejsnar, Jan; Sokol, Zbyněk; Pešice, Petr

    Toulouse : Météo France, 2012. [ERAD 2012 - European Conference on Radar in Meteorology and Hydrology /7./. Toulouse (FR), 24.06.2012-29.06.2012] R&D Projects: GA MŠk ME09033 Institutional support: RVO:68378289 Keywords : precipitation nowcasting * Lagrangien extrapolation * uncertainty in precipitation Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/NOW_250_ext_abs.pdf

  20. Principal components analysis and polynomials as methods for the track extrapolation/interpolation for SAPHIR

    A program to investigate the possibility of track extrapolation and interpolation for drift chambers with the Principal Components Analysis and polynoms was written for SAPHIR. The results for the most significant configurations at SAPHIR were pointed out. It was shown that the Principal Components Analysis is a good basis to write a fast track reconstruction program for a drift chamber using a global track model in an inhomogeneous magnetic field. A data input/output package was written, too. (orig.)

  1. [Determination of Ni and Pd in white karat gold jewellery by the EDXRF extrapolate-regression method].

    Zheng, R; Zhang, W; Li, Y; Huang, J; Yang, D

    1998-02-01

    The EDXRF extrapolate-regression method described in this paper combines regression method with the fundamental formula of fluorescence intensity. The contents of Ni and Pd in white karat gold jewellery were calculated theoretically according to the spectrum of the sample. The content of gold was deternined without standards. The precision was 0.1% and the deviation was 0.3% compared with AA. PMID:15810348

  2. Correction method for critical extrapolation of control-rods-rising during physical start-up of reactor with spatial effect

    Reasons why the extrapolated critical curve obtained by lifting control rods is cambered during the physical start-up of a reactor are analyzed. Spatial flux deformation factor is introduced, and a new method, by which influences of spatial effect in the reactor are avoided additionally, is proposed based on what is achieved by removing source neutrons. The new method is employed to a real example. Comparing the new results with those of real physical start-up and achieved only by removing source neutrons, it is shown that the new method avoids cambering phenomenon of the extrapolated curve much better, and obtains more precise critical position of control rods, so the reactor will reach the criticality more safely. (authors)

  3. A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and parallel

    Ketcheson, David I.

    2014-06-13

    We compare the three main types of high-order one-step initial value solvers: extrapolation, spectral deferred correction, and embedded Runge–Kutta pairs. We consider orders four through twelve, including both serial and parallel implementations. We cast extrapolation and deferred correction methods as fixed-order Runge–Kutta methods, providing a natural framework for the comparison. The stability and accuracy properties of the methods are analyzed by theoretical measures, and these are compared with the results of numerical tests. In serial, the eighth-order pair of Prince and Dormand (DOP8) is most efficient. But other high-order methods can be more efficient than DOP8 when implemented in parallel. This is demonstrated by comparing a parallelized version of the wellknown ODEX code with the (serial) DOP853 code. For an N-body problem with N = 400, the experimental extrapolation code is as fast as the tuned Runge–Kutta pair at loose tolerances, and is up to two times as fast at tight tolerances.

  4. An efficient wave extrapolation method for tilted orthorhombic media using effective ellipsoidal models

    Waheed, Umair bin

    2014-08-01

    The wavefield extrapolation operator for ellipsoidally anisotropic (EA) media offers significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate focusing for media of orthorhombic anisotropy. Therefore, we develop effective EA models that correctly capture the kinematic behavior of the wavefield for tilted orthorhombic (TOR) media. Specifically, we compute effective source-dependent velocities for the EA model using kinematic high-frequency representation of the TOR wavefield. The effective model allows us to use the cheaper EA wavefield extrapolation operator to obtain approximate wavefield solutions for a TOR model. Despite the fact that the effective EA models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TOR media, particularly for media of low to moderate complexity. We demonstrate applicability of the proposed approach on a layered TOR model.

  5. Comparison among creep rupture strength extrapolation methods with application to data for AISI 316 SS from Italy, France, U.K. and F.R.G

    Inside Activity 3 ''Materials'' of WGCS, the member states UK and FRG have developed a work regarding extrapolation methods for creep data. This work has been done by comparising extrapolation methods in use in their countries by applying them to creep rupture strength data on AISI 316 SS obtained in UK and FRG. This work has been issued on April 1978 and the Community has dealed it to all Activity 3 Members. Italy, in the figure of NIRA S.p.A., has received, from the European Community a contract to extend the work to Italian and French data, using extrapolation methods currently in use in Italy. The work should deal with the following points: - Collect of Italian experimental data; - Chemical analysis on Italian Specimen; - Comparison among Italian experimental data with French, FRG and UK data; - Description of extrapolation methods in use in Italy; - Application of these extrapolation methods to Italian, French, British and Germany data; - Extensions of a Final Report

  6. Comparison of Coronal Extrapolation Methods for Cycle 24 Using HMI Data

    Arden, William M.; Norton, Aimee A.; Sun, Xudong; Zhao, Xuepu

    2016-05-01

    Two extrapolation models of the solar coronal magnetic field are compared using magnetogram data from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager instrument. The two models, a horizontal current–current sheet–source surface (HCCSSS) model and a potential field–source surface (PFSS) model, differ in their treatment of coronal currents. Each model has its own critical variable, respectively, the radius of a cusp surface and a source surface, and it is found that adjusting these heights over the period studied allows for a better fit between the models and the solar open flux at 1 au as calculated from the Interplanetary Magnetic Field (IMF). The HCCSSS model provides the better fit for the overall period from 2010 November to 2015 May as well as for two subsets of the period: the minimum/rising part of the solar cycle and the recently identified peak in the IMF from mid-2014 to mid-2015 just after solar maximum. It is found that an HCCSSS cusp surface height of 1.7 R ⊙ provides the best fit to the IMF for the overall period, while 1.7 and 1.9 R ⊙ give the best fits for the two subsets. The corresponding values for the PFSS source surface height are 2.1, 2.2, and 2.0 R ⊙ respectively. This means that the HCCSSS cusp surface rises as the solar cycle progresses while the PFSS source surface falls.

  7. Comparison of Coronal Extrapolation Methods for Cycle 24 Using HMI Data

    Arden, William M; Sun, Xudong; Zhao, Xuepu

    2016-01-01

    Two extrapolation models of the solar coronal magnetic field are compared using magnetogram data from the SDO/HMI instrument. The two models, a horizontal current-current sheet-source surface (HCCSSS) model and a potential field-source surface (PFSS) model differ in their treatment of coronal currents. Each model has its own critical variable, respectively the radius of a cusp surface and a source surface, and it is found that adjusting these heights over the period studied allows better fit between the models and the solar open flux at 1 AU as calculated from the Interplanetary Magnetic Field (IMF). The HCCSSS model provides the better fit for the overall period from 2010 November to 2015 May as well as for two subsets of the period - the minimum/rising part of the solar cycle, and the recently-identified peak in the IMF from mid-2014 to mid-2015 just after solar maximum. It is found that a HCCSSS cusp surface height of 1.7 Rsun provides the best fit to the IMF for the overall period, while 1.7 & 1.9 Rsu...

  8. Improvement of flux distribution calculation using the extrapolation method of Richardson

    Richardson have advanced a method for increasing the accuracy in numerical solving of linear differential equations. So, he proposed several schemes for performing algorythms, in which various approximtion parameters are used. It has been proved that a linear combination of this solution under certain circumstances gives a higher accuracy. Starting from these facts the present paper descpibes the application of the Richardson's method in improving the neutron flux calculation by using the EXTERMINATOR-2-INPR code. The considered benchmark problem has been conceived by D.R.Vondy from ORNL-USA. It consists of solving the multigroup diffusion equations for homogeneous two-dimensional slab. The results obtained show the efficiency of the Richardson method in improving the neutron flux calculation and constitutes a basis for achieving algorythms for other categories of problems. (authors)

  9. Application of the EXtrapolated Efficiency Method (EXEM) to infer the gamma-cascade detection efficiency in the actinide region

    Ducasse, Q; Mathieu, L; Marini, P; Morillon, B; Aiche, M; Tsekhanovich, I

    2015-01-01

    The study of transfer-induced gamma-decay probabilities is very useful for understanding the surrogate-reaction method and, more generally, for constraining statistical-model calculations. One of the main difficulties in the measurement of gamma-decay probabilities is the determination of the gamma-cascade detection efficiency. In [Nucl. Instrum. Meth. A 700, 59 (2013)] we developed the Extrapolated Efficiency Method (EXEM), a new method to measure this quantity. In this work, we have applied, for the first time, the EXEM to infer the gamma-cascade detection efficiency in the actinide region. In particular, we have considered the 238U(d,p)239U and 238U(3He,d)239Np reactions. We have performed Hauser-Feshbach calculations to interpret our results and to verify the hypothesis on which the EXEM is based. The determination of fission and gamma-decay probabilities of 239Np below the neutron separation energy allowed us to validate the EXEM.

  10. Activity determination of 41Ar using efficiency extrapolation method and 4πβ(PS)–4πγ(NaI) coincidence system

    Noble gas 41Ar was measured with a 4πβ–4πγ coincidence system, in which gamma- and beta-rays were respectively detected with a well-type NaI(Tl) and plastic scintillator (PS) detector. The activity of 41Ar was determined from an efficiency extrapolation method, in which the beta detector efficiency was varied by electronic discrimination using the software developed under Visual basic. In addition, high resolution gamma spectroscopy with HPGe detector was also used for activity determination of 41Ar, and the result was satisfactory in agreement with that obtain by the efficiency extrapolation method. This work demonstrated that the activity of 41Ar can be accurately measured by efficiency extrapolation method. - Highlights: • The gaseous 41Ar was measured with a 4πβ(PS)–4πγ(NaI) coincidence system. • The activity of 41Ar was determined by the efficiency extrapolation method. • The beta detector efficiency was changed using a program and extrapolating to 100% efficiency

  11. An approach to estimating and extrapolating model error based on inverse problem methods: towards accurate numerical weather prediction

    Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP. (geophysics, astronomy, and astrophysics)

  12. A two-dimensional extrapolation for the standardization of 201Tl by the 4πβ-τ coincidence method

    201TL has been standardized by 4πβ-τ coincidence measurements using one- and two-dimensional extrapolation. An analysis of the various contributions to the count rate of the β channel is made and it is shown that due to low-energy conversion electrons two-dimensional extrapolation is preferable. Several measurements have been performed under various conditions with a coincidence system consisting of a Ge detector or a NaI crystal for the detection of τ rays and a pressurized proportional counter for the detection of the x rays and Auger electrons from electron capture. (author)

  13. Two-dimensional extrapolation for the standardization of /sup 201/Tl by the 4. pi beta. -tau coincidence method

    Funck, E.

    1987-01-01

    /sup 201/TL has been standardized by 4..pi beta..-tau coincidence measurements using one- and two-dimensional extrapolation. An analysis of the various contributions to the count rate of the ..beta.. channel is made and it is shown that due to low-energy conversion electrons two-dimensional extrapolation is preferable. Several measurements have been performed under various conditions with a coincidence system consisting of a Ge detector or a NaI crystal for the detection of tau rays and a pressurized proportional counter for the detection of the x rays and Auger electrons from electron capture.

  14. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion

    Shinagawa, Tatsuya; Garcia-Esparza, Angel T.; Takanabe, Kazuhiro

    2015-09-01

    Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report.

  15. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion.

    Shinagawa, Tatsuya; Garcia-Esparza, Angel T; Takanabe, Kazuhiro

    2015-01-01

    Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ≈0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report. PMID:26348156

  16. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion

    Shinagawa, Tatsuya

    2015-09-08

    Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report.

  17. Synthesis of Dipeptide Benzoylalanylglycine Methyl Ester and Corrosion Inhibitor Evaluation by Tafel Equation

    Corrosion is one of the major problems in petroleum mining and processing industry. The pipelines used to transport crude oil from reservoir to the processing installation were made from carbon steel that is susceptible towards corrosion. One of the best methods to prevent corrosion that occurred at the inner parts of carbon steel pipelines is to use organic corrosion inhibitor. One of the potent organic corrosion inhibitors is amino acids derivatives. In this study, dipeptide compound namely benzoylalanylglycine methyl ester and benzoylalanylglycine have been synthesized. The structure elucidation of the products was performed by IR, MS and NMR spectroscopy. The determination of corrosion inhibition activity utilized the Tafel method. The corrosion inhibition efficiency of glycine methyl ester, benzoyl alanine, dipeptide benzoylalanylglycine methyl ester and dipeptide benzoylalanylglycine were 63.34 %, 35.86 %, 68.40 % and 27.72 %, respectively. These results showed that the formation of dipeptide benzoylalanylglycine methyl ester, derived from carboxylic protected glycine and amine protected alanine, increased the corrosion inhibition activity due to the loss of acidity center in the structure of glycine and L-alanine that would induce the corrosive environment towards carbon steel. (author)

  18. Extraordinarily small Tafel slope for oxide formation reaction on Pt (1 1 1) surface

    Oxide formation reaction current density on Pt (1 1 1) was estimated by time-differentiating oxide growth curves during a potential hold as a function of the potential and the coverage with the oxide below 0.35 ML (monolayer). The Tafel slope was 18–24 mV decade−1 in the condition where the Tafel plot is on a straight line. The reaction mechanism accounting for this small slope was proposed, in which the oxide formation process is assumed as a combination of a fast electron transfer step and a following slow step.

  19. Infrared extrapolations for atomic nuclei

    Furnstahl, R J; Papenbrock, T; Wendt, K A

    2014-01-01

    Harmonic oscillator model-space truncations introduce systematic errors to the calculation of binding energies and other observables. We identify the relevant infrared scaling variable and give values for this nucleus-dependent quantity. We consider isotopes of oxygen computed with the coupled-cluster method from chiral nucleon-nucleon interactions at next-to-next-to-leading order and show that the infrared component of the error is sufficiently understood to permit controlled extrapolations. By employing oscillator spaces with relatively large frequencies, well above the energy minimum, the ultraviolet corrections can be suppressed while infrared extrapolations over tens of MeVs are accurate for ground-state energies. However, robust uncertainty quantification for extrapolated quantities that fully accounts for systematic errors is not yet developed.

  20. 外推法在高中物理教学中的应用%The Application on Extrapolation Method in Sen ior High School Physics Teachin g

    张栖宁; 冯杰

    2013-01-01

    The new curriculum reform has been carried out throughout China ,the curriculum standard explicitly put forward improving students′ scientific literacy is high school physics curriculum task .The study of scientific methods to improve the scientific literacy of students has important significance .This paper briefly introduces an important method to form a physical hypothesis---the extrapolation method .Giving examples is illustrated to show the physicist is how to use extrapolation method to build hypothesis and establish the theory ,and how will the extrapolation method is applied to the physics teaching of high school ,in order to make the students master the knowledge of physics ,and to be keenly aware of the superiority of physics scientific method .%新课程改革已在全国范围内普遍展开,在课程标准中明确提出,高中阶段物理课程的任务是进一步提高学生的科学素养,深入研究科学方法对于提高学生的科学素养有着重要意义,本文简要介绍了形成物理假说的一种重要的科学方法---外推法。举例说明了物理学家是如何运用外推法建立假说进而确立理论,以及如何将外推法应用到高中物理教学中的,以使学生更好地掌握物理知识,并切身体会到物理科学方法的优越性。

  1. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion

    Tatsuya Shinagawa; Garcia-Esparza, Angel T.; Kazuhiro Takanabe

    2015-01-01

    Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-depe...

  2. Biosimilars: Extrapolation for oncology.

    Curigliano, Giuseppe; O'Connor, Darran P; Rosenberg, Julie A; Jacobs, Ira

    2016-08-01

    A biosimilar is a biologic that is highly similar to a licensed biologic (the reference product) in terms of purity, safety and efficacy. If the reference product is licensed to treat multiple therapeutic indications, extrapolation of indications, i.e., approval of a biosimilar for use in an indication held by the reference product but not directly studied in a comparative clinical trial with the biosimilar, may be possible but has to be scientifically justified. Here, we describe the data required to establish biosimilarity and emphasize that indication extrapolation is based on scientific principles and known mechanism of action. PMID:27354233

  3. On the Extrapolation Estimates

    Gogatishvili, Amiran; Sobukawa, T.

    2003-01-01

    Roč. 6, č. 1 (2003), s. 97-104. ISSN 1331-4343 R&D Projects: GA ČR GA201/01/0333 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : extrapolation theorem * Orlicz class Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2003

  4. Builtin vs. auxiliary detection of extrapolation risk.

    Munson, Miles Arthur; Kegelmeyer, W. Philip,

    2013-02-01

    A key assumption in supervised machine learning is that future data will be similar to historical data. This assumption is often false in real world applications, and as a result, prediction models often return predictions that are extrapolations. We compare four approaches to estimating extrapolation risk for machine learning predictions. Two builtin methods use information available from the classification model to decide if the model would be extrapolating for an input data point. The other two build auxiliary models to supplement the classification model and explicitly model extrapolation risk. Experiments with synthetic and real data sets show that the auxiliary models are more reliable risk detectors. To best safeguard against extrapolating predictions, however, we recommend combining builtin and auxiliary diagnostics.

  5. Efficient Wavefield Extrapolation In Anisotropic Media

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  6. Beam Based Measurements of Field Multipoles in the RHIC Low Beta Insertions and Extrapolation of the Method to the LHC

    Koutchouk, Jean-Pierre; Ptitsyn, V I

    2001-01-01

    The multipolar content of the dipoles and quadrupoles is known to limit the stability of the beam dynamics in super-conducting machines like RHIC and even more in LHC. The low-beta quadrupoles are thus equipped with correcting coils up to the dodecapole order. The correction is planned to rely on magnetic measurements. We show that a relatively simple method allows an accurate measurement of the multipolar field aberrations using the beam. The principle is to displace the beam in the non-linear fields by local closed orbit bumps and to measure the variation of sensitive beam observable. The resolution and robustness of the method are found appropriate. Experimentation at RHIC showed clearly the presence of normal and skew sextupolar field components in addition to a skew quadrupolar component in the interaction regions. Higher-order components up to decapole order appear as well.

  7. One-step lowrank wave extrapolation

    Sindi, Ghada Atif

    2014-01-01

    Wavefield extrapolation is at the heart of modeling, imaging, and Full waveform inversion. Spectral methods gained well deserved attention due to their dispersion free solutions and their natural handling of anisotropic media. We propose a scheme a modified one-step lowrank wave extrapolation using Shanks transform in isotropic, and anisotropic media. Specifically, we utilize a velocity gradient term to add to the accuracy of the phase approximation function in the spectral implementation. With the higher accuracy, we can utilize larger time steps and make the extrapolation more efficient. Applications to models with strong inhomogeneity and considerable anisotropy demonstrates the utility of the approach.

  8. Simulation-extrapolation method to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates, 1950-2003.

    Allodji, Rodrigue S; Schwartz, Boris; Diallo, Ibrahima; Agbovon, Césaire; Laurier, Dominique; de Vathaire, Florent

    2015-08-01

    Analyses of the Life Span Study (LSS) of Japanese atomic bombing survivors have routinely incorporated corrections for additive classical measurement errors using regression calibration. Recently, several studies reported that the efficiency of the simulation-extrapolation method (SIMEX) is slightly more accurate than the simple regression calibration method (RCAL). In the present paper, the SIMEX and RCAL methods have been used to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates. For instance, it is shown that using the SIMEX method, the ERR/Gy is increased by an amount of about 29 % for all solid cancer deaths using a linear model compared to the RCAL method, and the corrected EAR 10(-4) person-years at 1 Gy (the linear terms) is decreased by about 8 %, while the corrected quadratic term (EAR 10(-4) person-years/Gy(2)) is increased by about 65 % for leukaemia deaths based on a linear-quadratic model. The results with SIMEX method are slightly higher than published values. The observed differences were probably due to the fact that with the RCAL method the dosimetric data were partially corrected, while all doses were considered with the SIMEX method. Therefore, one should be careful when comparing the estimated risks and it may be useful to use several correction techniques in order to obtain a range of corrected estimates, rather than to rely on a single technique. This work will enable to improve the risk estimates derived from LSS data, and help to make more reliable the development of radiation protection standards. PMID:25894839

  9. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics

    Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)

    2007-09-27

    An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)

  10. Wavefield extrapolation in pseudodepth domain

    Ma, Xuxin

    2013-02-01

    Wavefields are commonly computed in the Cartesian coordinate frame. Its efficiency is inherently limited due to spatial oversampling in deep layers, where the velocity is high and wavelengths are long. To alleviate this computational waste due to uneven wavelength sampling, we convert the vertical axis of the conventional domain from depth to vertical time or pseudodepth. This creates a nonorthognal Riemannian coordinate system. Isotropic and anisotropic wavefields can be extrapolated in the new coordinate frame with improved efficiency and good consistency with Cartesian domain extrapolation results. Prestack depth migrations are also evaluated based on the wavefield extrapolation in the pseudodepth domain.© 2013 Society of Exploration Geophysicists. All rights reserved.

  11. The extrapolated-efficiency method, a new technique to determine the γ-cascade detection efficiency in experiments based on the surrogate-reaction method

    Boutoux, G., E-mail: guillaume.boutoux@cea.fr [CNRS, IN2P3, CENBG, UMR 5797, F-33175 Gradignan (France); University Bordeaux, CENBG, UMR 5797, F-33175 Gradignan (France); CEA DAM DIF, F-91297 Arpajon (France); Jurado, B.; Mathieu, L. [CNRS, IN2P3, CENBG, UMR 5797, F-33175 Gradignan (France); University Bordeaux, CENBG, UMR 5797, F-33175 Gradignan (France); Méot, V. [CEA DAM DIF, F-91297 Arpajon (France); Aïche, M.; Barreau, G. [CNRS, IN2P3, CENBG, UMR 5797, F-33175 Gradignan (France); University Bordeaux, CENBG, UMR 5797, F-33175 Gradignan (France); Blanc, A. [CEA DAM DIF, F-91297 Arpajon (France); Companis, I. [CNRS, IN2P3, CENBG, UMR 5797, F-33175 Gradignan (France); University Bordeaux, CENBG, UMR 5797, F-33175 Gradignan (France); Roig, O.; Théroine, C. [CEA DAM DIF, F-91297 Arpajon (France)

    2013-02-01

    The surrogate-reaction method is an indirect technique to extract neutron-induced cross-sections of short-lived nuclei. In the last years several experiments have been performed to investigate whether this technique can be applied to infer radiative-capture cross-sections. A major difficulty in this type of measurements is the determination of the gamma-cascade detection efficiency. The pulse-height weighting technique (PHWT) has been previously used to determine this quantity in surrogate experiments. In this work, we present a new method to determine the gamma-cascade detection efficiency in the vicinity of the neutron-separation energy that is much simpler than the PHWT. We also investigate the possibility to apply this new technique in standard experiments using neutron beams.

  12. The extrapolated-efficiency method, a new technique to determine the γ-cascade detection efficiency in experiments based on the surrogate-reaction method

    The surrogate-reaction method is an indirect technique to extract neutron-induced cross-sections of short-lived nuclei. In the last years several experiments have been performed to investigate whether this technique can be applied to infer radiative-capture cross-sections. A major difficulty in this type of measurements is the determination of the gamma-cascade detection efficiency. The pulse-height weighting technique (PHWT) has been previously used to determine this quantity in surrogate experiments. In this work, we present a new method to determine the gamma-cascade detection efficiency in the vicinity of the neutron-separation energy that is much simpler than the PHWT. We also investigate the possibility to apply this new technique in standard experiments using neutron beams.

  13. Efficient and stable extrapolation of prestack wavefields

    Wu, Zedong

    2013-09-22

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers and the image point, or in other words, prestack wavefields. Extrapolating such wavefields in time, nevertheless, is a big challenge because the radicand can be negative, thus reduce to a complex phase velocity, which will make the rank of the mixed domain matrix very high. Using the vertical offset between the sources and receivers, we introduce a method for deriving the DSR formulation, which gives us the opportunity to derive approximations for the mixed domain operator. The method extrapolates prestack wavefields by combining all data into one wave extrapolation procedure, allowing both upgoing and downgoing wavefields since the extrapolation is done in time, and doesn’t have the v(z) assumption in the offset axis of the media. Thus, the imaging condition is imposed by taking the zero-time and zero-offset slice from the multi-dimensional prestack wavefield. Unlike reverse time migration (RTM), no crosscorrelation is needed and we also have access to the subsurface offset information, which is important for migration velocity analysis. Numerical examples show the capability of this approach in dealing with complex velocity models and can provide a better quality image compared to RTM more efficiently.

  14. Statistical modeling and extrapolation of carcinogenesis data

    Mathematical models of carcinogenesis are reviewed, including pharmacokinetic models for metabolic activation of carcinogenic substances. Maximum likelihood procedures for fitting these models to epidemiological data are discussed, including situations where the time to tumor occurrence is unobservable. The plausibility of different possible shapes of the dose response curve at low doses is examined, and a robust method for linear extrapolation to low doses is proposed and applied to epidemiological data on radiation carcinogenesis

  15. Extrapolating Satellite Winds to Turbine Operating Heights

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.; Mouche, Alexis; Hasager, Charlotte Bay

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed...

  16. Seismic wave extrapolation using lowrank symbol approximation

    Fomel, Sergey

    2012-04-30

    We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.

  17. Extrapolating phosphorus production to estimate resource reserves.

    Vaccari, David A; Strigul, Nikolay

    2011-08-01

    Various indicators of resource scarcity and methods for extrapolating resource availability are examined for phosphorus. These include resource lifetime, and trends in resource price, ore grade and discovery rates, and Hubbert curve extrapolation. Several of these indicate increasing scarcity of phosphate resources. Calculated resource lifetime is subject to a number of caveats such as unanticipated future changes in resource discovery, mining and beneficiation technology, population growth or per-capita demand. Thus it should be used only as a rough planning index or as a relative indicator of potential scarcity. This paper examines the uncertainty in one method for estimating available resources from historical production data. The confidence intervals for the parameters and predictions of the Hubbert curves are computed as they relate to the amount of information available. These show that Hubbert-type extrapolations are not robust for predicting the ultimately recoverable reserves or year of peak production of phosphate rock. Previous successes of the Hubbert curve are for cases in which there exist alternative resources, which is not the situation for phosphate. It is suggested that data other than historical production, such as population growth, identified resources and economic factors, should be included in making such forecasts. PMID:21440285

  18. Residual extrapolation operators for efficient wavefield construction

    Alkhalifah, Tariq Ali

    2013-02-27

    Solving the wave equation using finite-difference approximations allows for fast extrapolation of the wavefield for modelling, imaging and inversion in complex media. It, however, suffers from dispersion and stability-related limitations that might hamper its efficient or proper application to high frequencies. Spectral-based time extrapolation methods tend to mitigate these problems, but at an additional cost to the extrapolation. I investigate the prospective of using a residual formulation of the spectral approach, along with utilizing Shanks transform-based expansions, that adheres to the residual requirements, to improve accuracy and reduce the cost. Utilizing the fact that spectral methods excel (time steps are allowed to be large) in homogeneous and smooth media, the residual implementation based on velocity perturbation optimizes the use of this feature. Most of the other implementations based on the spectral approach are focussed on reducing cost by reducing the number of inverse Fourier transforms required in every step of the spectral-based implementation. The approach here fixes that by improving the accuracy of each, potentially longer, time step.

  19. Extrapolation limitations of multilayer feedforward neural networks

    Haley, Pamela J.; Soloway, Donald

    1992-01-01

    The limitations of backpropagation used as a function extrapolator were investigated. Four common functions were used to investigate the network's extrapolation capability. The purpose of the experiment was to determine whether neural networks are capable of extrapolation and, if so, to determine the range for which networks can extrapolate. The authors show that neural networks cannot extrapolate and offer an explanation to support this result.

  20. UFOs: Observations, Studies and Extrapolations

    Baer, T; Barnes, M J; Bartmann, W; Bracco, C; Carlier, E; Cerutti, F; Dehning, B; Ducimetière, L; Ferrari, A; Ferro-Luzzi, M; Garrel, N; Gerardin, A; Goddard, B; Holzer, E B; Jackson, S; Jimenez, J M; Kain, V; Zimmermann, F; Lechner, A; Mertens, V; Misiowiec, M; Nebot Del Busto, E; Morón Ballester, R; Norderhaug Drosdal, L; Nordt, A; Papotti, G; Redaelli, S; Uythoven, J; Velghe, B; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zerlauth, M; Fuster Martinez, N

    2012-01-01

    UFOs (“ Unidentified Falling Objects”) could be one of the major performance limitations for nominal LHC operation. Therefore, in 2011, the diagnostics for UFO events were significantly improved, dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge is summarized and extrapolations for LHC operation in 2012 and beyond are presented. Mitigation strategies are proposed and related tests and measures for 2012 are specified.

  1. Renyi extrapolation of Shannon entropy

    Zyczkowski, K

    2003-01-01

    Relations between Shannon entropy and Renyi entropies of integer order are discussed. For any N-point discrete probability distribution for which the Renyi entropies of order two and three are known, we provide an lower and an upper bound for the Shannon entropy. The average of both bounds provide an explicit extrapolation for this quantity. These results imply relations between the von Neumann entropy of a mixed quantum state, its linear entropy and traces.

  2. Extrapolating future Arctic ozone losses

    Knudsen, B. M.; Harris, N. R. P.; S. B. Andersen; Christiansen, B.; N. Larsen; Rex, M.; B. Naujokat

    2004-01-01

    Future increases in the concentration of greenhouse gases and water vapour may cool the stratosphere further and increase the amount of polar stratospheric clouds (PSCs). Future Arctic PSC areas have been extrapolated from the highly significant trends 1958-2001. Using a tight correlation between PSC area and the total vortex ozone depletion and taking the decreasing amounts of ozone depleting substances into account we make empirical estimates of future ozone. The result...

  3. Effective orthorhombic anisotropic models for wavefield extrapolation

    Ibanez-Jacome, W.

    2014-07-18

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  4. 3D Hail Size Distribution Interpolation/Extrapolation Algorithm

    Lane, John

    2013-01-01

    Radar data can usually detect hail; however, it is difficult for present day radar to accurately discriminate between hail and rain. Local ground-based hail sensors are much better at detecting hail against a rain background, and when incorporated with radar data, provide a much better local picture of a severe rain or hail event. The previous disdrometer interpolation/ extrapolation algorithm described a method to interpolate horizontally between multiple ground sensors (a minimum of three) and extrapolate vertically. This work is a modification to that approach that generates a purely extrapolated 3D spatial distribution when using a single sensor.

  5. In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish - I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models

    Nichols, John W.; Schultz, Irv R.; Fitzsimmons, Patrick N..

    2006-06-10

    Mammalian researchers have developed a stepwise approach to predict in vivo hepatic clearance from measurements of in vitro hepatic metabolism. The resulting clearance estimates have been used to screen drug candidates, identify potential drug-drug interactions, investigate idiosyncratic drug responses, and support toxicology risk assessments. In this report we review these methods, discuss their potential application to studies with fish, and describe how extrapolated values could be incorporated into well-known compartmental kinetic models. Empirical equations that relate extrapolation factors to chemical log Kow are given to facilitate the incorporation of metabolism data into bioconcentration and bioaccumulation models. Because they explicitly incorporate the concept of clearance, compartmental clearance volume models are particularly well suited for incorporating hepatic clearance estimates. The manner in which these clearance values are incorporated into a given model depends, however, on the measurement frame of reference. Procedures for the incorporation of in vitro metabolism data into physiologically based toxicokinetic (PBTK) models are also described. Unlike most compartmental models, PBTK models are developed to describe the effects of metabolism in the tissue where it occurs. In addition, PBTK models are well suited to modeling metabolism in more than one tissue.

  6. Lowrank seismic-wave extrapolation on a staggered grid

    Fang, Gang

    2014-05-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  7. Extrapolation from occupational studies: a substitute for environmental epidemiology.

    Enterline, P E

    1981-01-01

    Extrapolation from occupational data to general environmental exposures gives some interesting results, and these results might be useful in our decision-making process. These results could never be observed by environmental epidemiology and this method probably represents the only way of quantifying the health effects of low-exposure levels. Three linear models for extrapolating to low levels are presented--one from Canadian data, one from American data and one from British data. One or more...

  8. Interpolation and extrapolation of creep rupture data by the Minimum Commitment Method. I - Focal-point convergence. II - Oblique translation. III - Analysis of multiheats

    Manson, S. S.; Ensign, C. R.

    1978-01-01

    The framework in which minimum-commitment analyses of creep-rupture data can be implemented is outlined. The approach is termed the focal point convergence method (FPCM) because the basic parameter A, also known as stability factor, is geometrically the (imaginary) focal point of convergence of all isothermals when extended to the very long or very short times necessary for such convergence to occur. The method can be implemented either by manual-graphical analysis or by computer code. The method is illustrated in detail for the nickel-base alloy Astroloy, as well as for steels, other nickel-base alloys, and aluminum alloys. The minimum-commitment concept is extended to the analysis of creep-rupture data where each isothermal is generated by an oblique translation of the 'master curve' when plotted on log rupture time and log stress axes. The oblique translation method uses the same types of functions in the FPCM. Approaches for treating multiheats on the basis of the FPCM are discussed in detail.

  9. The Magnetic Field of Active Region 11158 During the 2011 February 12-17 Flares : Differences between Photospheric Extrapolation and Coronal Forward-Fitting Methods

    Aschwanden, Markus J; Liu, Yang

    2014-01-01

    We developed a {\\sl coronal non-linear force-free field (COR-NLFFF)} forward-fitting code that fits an approximate {\\sl non-linear force-free field (NLFFF)} solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-forcefreeness in the lower chromosphere. In this study we applied the COR-NLFFF code to active region NOAA 11158, during the time interval of 2011 Feb 12 to 17, which includes an X2.2 GOES-class flare plus 35 M and C-class flares. We calcuated the free magnetic energy with a 6-minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential $E_N$ and potential energy $E_P$, but find up to a factor of 4 discrepancy in the free ...

  10. Chiral extrapolation beyond the power-counting regime

    Hall, J M M; Leinweber, D B; Liu, K F; Mathur, N; Young, R D; Zhang, J B

    2011-01-01

    Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately i...

  11. A new approach for stress rupture data extrapolation

    The common feature of stress rupture lines in the usual log σ/log tsub(f) - plot is that their curvature is always d2log σ/d(logtsub(f)2<0. Hence, a linear extrapolation from these graphs leads to non-conservative estimates. In the present investigation it is shown that stress rupture functions F(σ,tsub(f)) can be derived which are more suitable for life time extrapolations as the usual one mentioned above. Best results were obtained with a function of the type tsub(f) approx.sinh βσ. Besides a better extrapolation, the functions examined allow a better understanding about the nature of the life time determining mechanisms. The new method is applied to stress rupture data of SS AISI 304. (author)

  12. Extrapolations of nuclear binding energies from new linear mass relations

    Hove, D.; Jensen, A. S.; Riisager, K.

    2013-01-01

    We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...

  13. Infrared extrapolations of quadrupole moments and transitions

    Odell, D; Platter, L

    2015-01-01

    We study the convergence of bound-state quadrupole moments in finite harmonic oscillator spaces. We derive an expression for the infrared extrapolation for the quadrupole moment of a nucleus and benchmark our results using different model interactions for the deuteron. We find good agreement between the analytically derived and numerically obtained convergence behavior. We also derive an extrapolation formula for electric quadrupole transitions and find good agreement with the numerical calculation of a simple system.

  14. Design and building of an extrapolation ionization chamber for beta dosimetry

    An extrapolation chamber was designed and built to be used in beta dosimetry. The basic characteristics of an extrapolation chamber are discussed, together with fundamental principle of the dosimetric method used. Details of the chamber's design and properties of materials employed are presented. A full evaluation of extrapolation chamber under irradiation from two 90Sr + 90Y beta sources is done. The geometric parameters of the chamber, leakage current and ion collection efficiency are determined. (Author)

  15. Properties of infrared extrapolations in a harmonic oscillator basis

    Coon, Sidney A.; Kruse, Michael K. G.

    2016-02-01

    The success and utility of effective field theory (EFT) in explaining the structure and reactions of few-nucleon systems has prompted the initiation of EFT-inspired extrapolations to larger model spaces in ab initio methods such as the no-core shell model (NCSM). In this contribution, we review and continue our studies of infrared (ir) and ultraviolet (uv) regulators of NCSM calculations in which the input is phenomenological NN and NNN interactions fitted to data. We extend our previous findings that an extrapolation in the ir cutoff with the uv cutoff above the intrinsic uv scale of the interaction is quite successful, not only for the eigenstates of the Hamiltonian but also for expectation values of operators, such as r2, considered long range. The latter results are obtained with Hamiltonians transformed by the similarity renormalization group (SRG) evolution. On the other hand, a possible extrapolation of ground state energies in the uv cutoff when the ir cutoff is below the intrinsic ir scale is not robust and does not agree with the ir extrapolation of the same data or with independent calculations using other methods.

  16. Response Load Extrapolation for Wind Turbines during Operation Based on Average Conditional Exceedance Rates

    Toft, Henrik Stensgaard; Naess, Arvid; Saha, Nilanjan;

    2011-01-01

    within a hierarchical model where the variables that influence the loading are divided into ergodic variables and time-invariant non-ergodic variables. The presented method for statistical response load extrapolation was compared with the existing methods based on peak extrapolation for the blade out......The paper explores a recently developed method for statistical response load (load effect) extrapolation for application to extreme response of wind turbines during operation. The extrapolation method is based on average conditional exceedance rates and is in the present implementation restricted......-of-plane bending moment and the tower mudline bending moment of a pitch-controlled wind turbine. In general, the results show that the method based on average conditional exceedance rates predicts the extrapolated characteristic response loads at the individual mean wind speeds well and results in more consistent...

  17. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    Alkhalifah, Tariq Ali

    2014-04-30

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  18. Wavefield extrapolation in pseudo-depth domain

    Ma, Xuxin

    2012-01-01

    Extrapolating seismic waves in Cartesian coordinate is prone to uneven spatial sampling, because the seismic wavelength tends to grow with depth, as velocity increase. We transform the vertical depth axis to a pseudo one using a velocity weighted mapping, which can effectively mitigate this wavelength variation. We derive acoustic wave equations in this new domain based on the direct transformation of the Laplacian derivatives, which admits solutions that are more accurate and stable than those derived from the kinematic transformation. The anisotropic versions of these equations allow us to isolate the vertical velocity influence and reduce its impact on modeling and imaging. The major benefit of extrapolating wavefields in pseudo-depth space is its near uniform wavelength as opposed to the normally dramatic change of wavelength with the conventional approach. Time wavefield extrapolation on a complex velocity shows some of the features of this approach.

  19. Methodology for extrapolation of rock mass deformability parameters in tunneling

    Zafirovski Zlatko

    2012-01-01

    Full Text Available This article proposes one approach for extrapolation of necessary parameters for numerical analyses in tunnelling. The approach is named as an empirical - statical - dynamical method for extrapolation. The proposed methodology is based on combination of empirical classification rock mass methods, geophysical measurements and direct dilatometer deformability testing on a field. The analyses are prepared for purposes of investigation and design for several tunnels in Republic of Macedonia. One example for dividing of tunnel length in quasi-homogenous zones, as a basis for forming of geotechnical and numerical model that can be a basis for interaction analyses of rock - structures system and stress-strain behaviour of rock massif, is also given. The several original regressive models between rock mass quality, deformability and velocity of longitudinal seismic waves are shown.

  20. Interpolation and Extrapolation of Precipitation Quantities in Serbia

    Rastislav Stojsavljević

    2013-01-01

    Full Text Available The aim of this paper is to indicate the problems with filling the missing data in precipitation database using interpolation and extrapolation methods. Investigated periods were from 1981 to 2010 for Northern (Autonomous Province of Vojvodina and Proper Serbia and from 1971 to 2000 for Southern Serbia (Autonomous Province of Kosovo and Metohia. Database included time series from 78 meteorological stations that had less than 20% of missing data. Interpolation was performed if station had missing data for five consecutive months or less. If station had missing data for six consecutive months or more, extrapolation was performed. For every station with mising data correlation with at least three surrounding stations was performed. The lowest acceptable value of correlation coefficient for precipitation was set at 0,300

  1. Survival extrapolation using the poly-Weibull model.

    Demiris, Nikolaos; Lunn, David; Sharples, Linda D

    2015-04-01

    Recent studies of (cost-) effectiveness in cardiothoracic transplantation have required estimation of mean survival over the lifetime of the recipients. In order to calculate mean survival, the complete survivor curve is required but is often not fully observed, so that survival extrapolation is necessary. After transplantation, the hazard function is bathtub-shaped, reflecting latent competing risks which operate additively in overlapping time periods. The poly-Weibull distribution is a flexible parametric model that may be used to extrapolate survival and has a natural competing risks interpretation. In addition, treatment effects and subgroups can be modelled separately for each component of risk. We describe the model and develop inference procedures using freely available software. The methods are applied to two problems from cardiothoracic transplantation. PMID:21937472

  2. Extrapolation from occupational studies: a substitute for environmental epidemiology.

    Enterline, P E

    1981-01-01

    Extrapolation from occupational data to general environmental exposures gives some interesting results, and these results might be useful in our decision-making process. These results could never be observed by environmental epidemiology and this method probably represents the only way of quantifying the health effects of low-exposure levels. Three linear models for extrapolating to low levels are presented--one from Canadian data, one from American data and one from British data. One or more of these is applied to two recently publicized asbestos exposures; exposures resulting from asbestos heat shields in hair dryers and exposures in public school buildings. Predictions are derived as to the effects of asbestos exposures on cancer mortality. A comparison is made between predictions made on the basis of a linear and nonlinear model. PMID:7333259

  3. Extrapolated HPGe efficiency estimates based on a single calibration measurement

    Gamma spectroscopists often must analyze samples with geometries for which their detectors are not calibrated. The effort to experimentally recalibrate a detector for a new geometry can be quite time consuming, causing delay in reporting useful results. Such concerns have motivated development of a method for extrapolating HPGe efficiency estimates from an existing single measured efficiency. Overall, the method provides useful preliminary results for analyses that do not require exceptional accuracy, while reliably bracketing the credible range. The estimated efficiency element-of for a uniform sample in a geometry with volume V is extrapolated from the measured element-of 0 of the base sample of volume V0. Assuming all samples are centered atop the detector for maximum efficiency, element-of decreases monotonically as V increases about V0, and vice versa. Extrapolation of high and low efficiency estimates element-of h and element-of L provides an average estimate of element-of = 1/2 [element-of h + element-of L] ± 1/2 [element-of h - element-of L] (general) where an uncertainty D element-of = 1/2 (element-of h - element-of L] brackets limits for a maximum possible error. The element-of h and element-of L both diverge from element-of 0 as V deviates from V0, causing D element-of to increase accordingly. The above concepts guided development of both conservative and refined estimates for element-of

  4. National pattern for the realization of the unit of the dose speed absorbed in air for beta radiation. (Method: Ionometer, cavity of Bragg-Gray implemented in an extrapolation chamber with electrodes of variable separation, exposed to a field of beta radiation of 90Sr/90Y)

    From the year of 1987 the Department of Metrology of the ININ, in their Secondary Laboratory of Calibration Dosimetric, has a patron group of sources of radiation beta and an extrapolation chamber of electrodes of variable separation.Their objective is to carry out of the unit of the dose speed absorbed in air for radiation beta. It uses the ionometric method, cavity Bragg-Gray in the extrapolation chamber with which it counts. The services that offers are: i) it Calibration : Radioactive Fuentes of radiation beta, isotopes: 90Sr/90Y; Ophthalmic applicators 90Sr/90Y; Instruments for detection of beta radiation with to the radiological protection: Ionization chambers, Geiger-Muller, etc.; Personal Dosemeters. ii) Irradiation with beta radiation of materials to the investigation. (Author)

  5. Issues and current applications of interspecies extrapolation of carcinogenic potency as a component of risk assessment.

    Visek, W. J.

    1988-01-01

    The Life Sciences Research Office (LSRO) of the Federation of American Societies for Experimental Biology (FASEB) is conducting this symposium under contract with the Center for Food Safety and Applied Nutrition (CFSAN) of the Food and Drug Administration (FDA). The FDA has requested information on the strengths and weaknesses of current interspecies extrapolation methods using metabolic and pharmacokinetic data, identity of data for these methods, bases for choice of extrapolation method and...

  6. Knowledge-based antenna pattern extrapolation

    Robinson, Michael

    2012-01-01

    We describe a theoretically-motivated algorithm for extrapolation of antenna radiation patterns from a small number of measurements. This algorithm exploits constraints on the antenna's underlying design to avoid ambiguities, but is sufficiently general to address many different antenna types. A theoretical basis for the robustness of this algorithm is developed, and its performance is verified in simulation using a number of popular antenna designs.

  7. Extrapolation of toxic indices among test objects

    Tichý, Miloň; Rucki, Marián; Roth, Zdeněk; Hanzlíková, Iveta; Vlková, Alena; Tumová, Jana; Uzlová, Rút

    2010-01-01

    Oligochaeta Tubifex tubifex, fish fathead minnow (Pimephales promelas), hepatocytes isolated from rat liver and ciliated protozoan are absolutely different organisms and yet their acute toxicity indices correlate. Correlation equations for special effects were developed for a large heterogeneous series of compounds (QSAR, quantitative structure-activity relationships). Knowing those correlation equations and their statistic evaluation, one can extrapolate the toxic indices. The reason is that...

  8. Surface dose extrapolation measurements with radiographic film

    Butson, Martin J [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Cheung Tsang [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Yu, Peter K N [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Currie, Michael [Illawarra Cancer Care Centre, Department of Medical Physics, Crown St, Wollongong, NSW 2500 (Australia)

    2004-07-07

    Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within {+-}3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% {+-} 2%, 29% {+-} 3% and 38% {+-} 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. (note)

  9. Whole blood viscosity extrapolation formula: Note on appropriateness of units

    Ezekiel Uba Nwose

    2011-01-01

    Full Text Available Background : A series has recently been done on whole blood viscosity. The first on the series proposed extrapolation chart with conventional reference range. Since the publication, two concerns have been received in personal communications. The first expressed concern over the use of serum proteins values in ′g/L′ instead of ′g/dL′ that was contained in the referenced material. The second enquired on suitability of the formula for determination of blood viscosity at low shear rate. Aim : This work sets out to compare different units-converted-modifications of the extrapolation with a view to develop a statement of comparison and suitability of units. Materials and Methods : The values of haematocrit and serum proteins were used in different unit-conversions on the mathematical formula to derive four modifications, which were compared. Five clinical cases that were specifically tested for whole blood viscosity, and had results for haematocrit and serum proteins were evaluated. The appropriateness of modifications for determination of viscosity at low shear rate was reviewed. Results : Except as modified and used in the series, determination of whole blood viscosity at low shear rate using other unit conversions on the formula yields negative values for all five cases. Conclusion : Given that it is unexpected for blood viscosity level to be zero let alone less, it is logical that negative values are invalid. A formula that gives the least invalid results may be most appropriate. Therefore, extrapolation modification used in the series is most appropriate.

  10. Effective Orthorhombic Anisotropic Models for Wave field Extrapolation

    Ibanez Jacome, Wilson

    2013-05-01

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the

  11. Dioxin equivalency: Challenge to dose extrapolation

    Brown, J.F. Jr.; Silkworth, J.B. [GE Corporate Research and Development, Schenectady, NY (United States)

    1995-12-31

    Extensive research has shown that all biological effects of dioxin-like agents are mediated via a single biochemical target, the Ah receptor (AhR), and that the relative biologic potencies of such agents in any given system, coupled with their exposure levels, may be described in terms of toxic equivalents (TEQ). It has also shown that the TEQ sources include not only chlorinated species such as the dioxins (PCDDs), PCDFs, and coplanar PCBs, but also non-chlorinated substances such as the PAHs of wood smoke, the AhR agonists of cooked meat, and the indolocarbazol (ICZ) derived from cruciferous vegetables. Humans have probably had elevated exposures to these non-chlorinated TEQ sources ever since the discoveries of fire, cooking, and the culinary use of Brassica spp. Recent assays of CYP1A2 induction show that these ``natural`` or ``traditional`` AhR agonists are contributing 50--100 times as much to average human TEQ exposures as do the chlorinated xenobiotics. Currently, the safe doses of the xenobiotic TEQ sources are estimated from their NOAELs and large extrapolation factors, derived from arbitrary mathematical models, whereas the NOAELs themselves are regarded as the safe doses for the TEQs of traditional dietary components. Available scientific data can neither support nor refute either approach to assessing the health risk of an individual chemical substance. However, if two substances be toxicologically equivalent, then their TEQ-adjusted health risks must also be equivalent, and the same dose extrapolation procedure should be used for both.

  12. Experiences and extrapolations from Hiroshima and Nagasaki

    This paper examines the events following the atomic bombings of Hiroshima and Nagasaki in 1945 and extrapolates from these experiences to further understand the possible consequences of detonations on a local area from weapons in the current world nuclear arsenal. The first section deals with a report of the events that occurred in Hiroshima and Nagasaki just after the 1945 bombings with respect to the physical conditions of the affected areas, the immediate effects on humans, the psychological response of the victims, and the nature of outside assistance. Because there can be no experimental data to validate the effects on cities and their populations of detonations from current weapons, the data from the actual explosions on Hiroshima and Nagasaki provide a point of departure. The second section examines possible extrapolations from and comparisons with the Hiroshima and Nagasaki experiences. The limitations of drawing upon the Hiroshima and Nagasaki experiences are discussed. A comparison is made of the scale of effects from other major disasters for urban systems, such as damages from the conventional bombings of cities during World War II, the consequences of major earthquakes, the historical effects of the Black Plague and widespread famines, and other extreme natural events. The potential effects of detonating a modern 1 MT warhead on the city of Hiroshima as it exists today are simulated. This is extended to the local effects on a targeted city from a global nuclear war, and attention is directed to problems of estimating the societal effects from such a war

  13. Cosmological extrapolation of modified Newtonian dynamics

    The regime of modified Newtonian dynamics (MOND), which is used in astronomy to describe gravitating systems of the island type without the need to postulate the existence of a hypothetical dark matter, is generalized to the case of homogeneous distribution of usual matter by introducing a linear dependence of the critical acceleration on the size of the region under consideration. We show that such an extrapolation of MOND in cosmology is consistent with both the observed dependence of brightness on the redshift for type Ia supernovae and the parameters of large-scale structure of the evolving Universe, that are determined by the presence of a cosmological constant, the ordinary matter of baryons and electrons, and photon and neutrino radiation, without any dark matter. (paper)

  14. Extrapolation of toxic indices among test objects.

    Tichý, Miloň; Rucki, Marián; Roth, Zdeněk; Hanzlíková, Iveta; Vlková, Alena; Tumová, Jana; Uzlová, Rút

    2010-12-01

    Oligochaeta Tubifex tubifex, fish fathead minnow (Pimephales promelas), hepatocytes isolated from rat liver and ciliated protozoan are absolutely different organisms and yet their acute toxicity indices correlate. Correlation equations for special effects were developed for a large heterogeneous series of compounds (QSAR, quantitative structure-activity relationships). Knowing those correlation equations and their statistic evaluation, one can extrapolate the toxic indices. The reason is that a common physicochemical property governs the biological effect, namely the partition coefficient between two unmissible phases, simulated generally by n-octanol and water. This may mean that the transport of chemicals towards a target is responsible for the magnitude of the effect, rather than reactivity, as one would assume suppose. PMID:21331180

  15. Irradiated food: validity of extrapolating wholesomeness data

    Criteria are considered for validly extrapolating the conclusions reached on the wholesomeness of an irradiated food receiving high doses to the same food receiving a lower dose. A consideration first is made of the possible chemical mechanisms that could give rise to different functional dependences of radiolytic products on dose. It is shown that such products should increase linearly with dose and the ratio of products should be constant throughout the dose range considered. The assumption, generally accepted in pharmacology, then is made that if any adverse effects related to the food are discerned in the test animals, then the intensity of these effects would increase with the concentration of radiolytic products in the food. Lastly, the need to compare data from animal studies with foods irradiated to several doses against chemical evidence obtained over a comparable dose range is considered. It is concluded that if the products depend linearly on dose and if feeding studies indicate no adverse effects, then an extrapolation to lower doses is clearly valid. This approach is illustrated for irradiated codfish. The formation of selected volatile products in samples receiving between 0.1 and 3 Mrads was examined, and their concentrations were found to increase linearly at least up to 1 Mrad. These data were compared with results from animal feeding studies establishing the wholesomeness of codfish and haddock irradiated to 0.2, 0.6 and 2.8 Mrads. It is stated, therefore, that if ocean fish, currently under consideration for onboard processing, were irradiated to 0.1 Mrad, it would be correspondingly wholesome

  16. Calibration of the 90Sr+90Y ophthalmic and dermatological applicators with an extrapolation ionization minichamber

    90Sr+90Y clinical applicators are used for brachytherapy in Brazilian clinics even though they are not manufactured anymore. Such sources must be calibrated periodically, and one of the calibration methods in use is ionometry with extrapolation ionization chambers. 90Sr+90Y clinical applicators were calibrated using an extrapolation minichamber developed at the Calibration Laboratory at IPEN. The obtained results agree satisfactorily with the data provided in calibration certificates of the sources. - Highlights: • 90Sr+90Y clinical applicators were calibrated using a mini-extrapolation chamber. • An extrapolation curve was obtained for each applicator during its calibration. • The results were compared with those provided by the calibration certificates. • All results of the dermatological applicators presented lower differences than 5%

  17. The extrapolation of creep rupture data by PD6605 - An independent case study

    Bolton, J., E-mail: john.bolton@uwclub.net [65 Fisher Avenue, Rugby, Warks CV22 5HW (United Kingdom)

    2011-04-15

    The worked example presented in BSI document PD6605-1:1998, to illustrate the selection, validation and extrapolation of a creep rupture model using statistical analysis, was independently examined. Alternative rupture models were formulated and analysed by the same statistical methods, and were shown to represent the test data more accurately than the original model. Median rupture lives extrapolated from the original and alternative models were found to diverge widely under some conditions of practical interest. The tests prescribed in PD6605 and employed to validate the original model were applied to the better of the alternative models. But the tests were unable to discriminate between the two, demonstrating that these tests fail to ensure reliability in extrapolation. The difficulties of determining when a model is sufficiently reliable for use in extrapolation are discussed and some proposals are made.

  18. Extrapolation from experimental systems to man. A review of the problems and the possibilities

    Various species of experimental animals, but in particular the mouse, have proved to be good model systems for predicting qualitatively the human response to irradiation. While extrapolations of genetic risks from mice to humans have a long history and a record of considerable success, there have been few attempts to extrapolate quantitatively the findings for somatic effects. An ability to extrapolate risks from exposures to various carcinogenic agents from experimental animal systems and from in vitro systems is an urgent need, and radiation studies provide the model for the development of suitable methods of extrapolation. Accurate measurement of dose, a remarkable store of knowledge about radiobiological responses at the molecular, cellular, and whole-organism level, and the body of data on radiation effects in both man and experimental animals make radiation studies the sensible choice of a model for the development of methods of extrapolation. The principles derived from such studies will make the much more difficult task of extrapolating risks from exposures to chemical carcinogens an easier one

  19. Estimation of macro velocity models by wave field extrapolation

    Cox, Hendricus Lambertus Hubertus

    A method to estimate accurate macro velocity models for prediction of traveltimes of seismic waves in the earth's subsurface is developed. The sensitivity of prestack migration is used to estimate the model and since model errors are expressed in the quality of the migration result, the migration process itself can be used to determine these errors. Using an initial model, shot records are downward extrapolated to grid points (depth points) in the subsurface. The extrapolated data can be reordered into so called common depth point (CDP) gathers, image gathers and focus panels. The deviation from horizontal alignment is used to quantify the errors in the model and to apply update corrections accordingly. The analysis can be done before or after stacking over all shot records (CDP stacking). the previously mentioned focus panels are generated by CDP stacking. The alignment analysis reduces then to a simple focusing analysis. The examples discussed show that horizontal alignment gives accurate macro velocity models for prestack depth migration. Focus panels can be difficult to interpret in complicated situations, where it is impossible to converge to the correct solution with focus panels only. The process should be guided by macrogeologic models of the area. In complicated situations, a layer stripping strategy is preferred.

  20. The Extrapolation of High Altitude Solar Cell I(V) Characteristics to AM0

    Snyder, David B.; Scheiman, David A.; Jenkins, Phillip P.; Reinke, William; Blankenship, Kurt; Demers, James

    2007-01-01

    The high altitude aircraft method has been used at NASA GRC since the early 1960's to calibrate solar cell short circuit current, ISC, to Air Mass Zero (AMO). This method extrapolates ISC to AM0 via the Langley plot method, a logarithmic extrapolation to 0 air mass, and includes corrections for the varying Earth-Sun distance to 1.0 AU and compensating for the non-uniform ozone distribution in the atmosphere. However, other characteristics of the solar cell I(V) curve do not extrapolate in the same way. Another approach is needed to extrapolate VOC and the maximum power point (PMAX) to AM0 illumination. As part of the high altitude aircraft method, VOC and PMAX can be obtained as ISC changes during the flight. These values can then the extrapolated, sometimes interpolated, to the ISC(AM0) value. This approach should be valid as long as the shape of the solar spectra in the stratosphere does not change too much from AMO. As a feasibility check, the results are compared to AMO I(V) curves obtained using the NASA GRC X25 based multi-source simulator. This paper investigates the approach on both multi-junction solar cells and sub-cells.

  1. APPLICATION OF SECOND KIND MODEL OF AUTOREGRESSION FOR EXTRAPOLATION ECONOMIC TIME SEQUENCE

    Odnolko, A.V.; National Aviation University, Kyiv

    2012-01-01

     For extrapolation of economic time sequence we can use the method of autoregression. Originally given method of autoregression is used for prediction of the time series values. We must know: the first few points of sequence and time interval.

  2. 40 CFR 86.435-78 - Extrapolated emission values.

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Extrapolated emission values. 86.435-78 Section 86.435-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Regulations for 1978 and Later New Motorcycles, General Provisions § 86.435-78 Extrapolated emission...

  3. Dose rates from a C-14 source using extrapolation chamber and MC calculations

    The extrapolation chamber technique and the Monte Carlo (MC) calculation technique based on the EGS4 system have been studied for application for determination of dose rates in a low-energy β radiation field e.g., that from a 14C source. The extrapolation chamber measurement method is the basic method for determination of dose rates in β radiation fields. Applying a number of correction factors and the stopping power ratio, tissue to air, the measured dose rate in an air volume surrounded by tissue equivalent material is converted into dose to tissue. Various details of the extrapolation chamber measurement method and evaluation procedure have been studied and further developed, and a complete procedure for the experimental determination of dose rates from a14C source is presented. A number of correction factors and other parameters used in the evaluation procedure for the measured data have been obtained by MC calculations. The whole extrapolation chamber measurement procedure was simulated using the MC method. The measured dose rates showed an increasing deviation from the MC calculated dose rates as the absorber thickness increased. This indicates that the EGS4 code may have some limitations for transport of very low-energy electrons. i.e., electrons with estimated energies less than 10 - 20 keV. MC calculations of dose to tissue were performed using two models: a cylindrical tissue phantom and a computer model of the extrapolation chamber. The dose to tissue in the extrapolation chamber model showed an additional buildup dose compared to the dose in the tissue model. (au) 10 tabs., 11 ills., 18 refs

  4. Comparing gravitational waveform extrapolation to Cauchy-characteristic extraction in binary black hole simulations

    Taylor, Nicholas W.; Boyle, Michael; Reisswig, Christian; Scheel, Mark A.; Chu, Tony; Kidder, Lawrence E.; Szilágyi, Béla

    2013-12-01

    We extract gravitational waveforms from numerical simulations of black hole binaries computed using the Spectral Einstein Code. We compare two extraction methods: direct construction of the Newman-Penrose (NP) scalar Ψ4 at a finite distance from the source and Cauchy-characteristic extraction (CCE). The direct NP approach is simpler than CCE, but NP waveforms can be contaminated by near-zone effects—unless the waves are extracted at several distances from the source and extrapolated to infinity. Even then, the resulting waveforms can in principle be contaminated by gauge effects. In contrast, CCE directly provides, by construction, gauge-invariant waveforms at future null infinity. We verify the gauge invariance of CCE by running the same physical simulation using two different gauge conditions. We find that these two gauge conditions produce the same CCE waveforms but show differences in extrapolated-Ψ4 waveforms. We examine data from several different binary configurations and measure the dominant sources of error in the extrapolated-Ψ4 and CCE waveforms. In some cases, we find that NP waveforms extrapolated to infinity agree with the corresponding CCE waveforms to within the estimated error bars. However, we find that in other cases extrapolated and CCE waveforms disagree, most notably for m=0 “memory” modes.

  5. Molecular Target Homology as a Basis for Species Extrapolation to Assess the Ecological Risk of Veterinary Drugs

    Increased identification of veterinary pharmaceutical contaminants in aquatic environments has raised concerns regarding potential adverse effects of these chemicals on non-target organisms. The purpose of this work was to develop a method for predictive species extrapolation ut...

  6. Non-linearity correction of control rods worth for critical extrapolation during start-up

    Distant extrapolation is usually used during the startup of the research reactor, by lifting the control rods step by step to reach the critical state. Due to the non-linearity of the integral worth of the control rods, this process was risky or conservative, especially when the rods were positioned in the non-linear region. A formula could be derived from the point reactor model. in which the reciprocal of the count rate was proportional to Δkeff. Together with the integral worth curve of the control rods, the effect of the non-linearity could be corrected. This method was validated by critical extrapolation data. (authors)

  7. Extrapolation of neutron-rich isotope cross-sections from projectile fragmentation

    Mocko, M.; Tsang, M. B.; Z.Y. Sun; Andronenko, L.; Andronenko, M.; Delaunay, F.; Famiano, M.; Friedman, W. A.; Henzl, V.; Henzlova, D.; Hui, H.; Liu, X. D.; Lukyanov, S.; Lynch, W.G.; Rogers, A. M.

    2007-01-01

    Using the measured fragmentation cross sections produced from the 48Ca and 64Ni beams at 140 MeV per nucleon on 9Be and 181Ta targets, we find that the cross sections of unmeasured neutron rich nuclei can be extrapolated using a systematic trend involving the average binding energy. The extrapolated cross-sections will be very useful in planning experiments with neutron rich isotopes produced from projectile fragmentation. The proposed method is general and could be applied to other fragmenta...

  8. Slow neutron flux extrapolation distances in R-5 and CIRUS reactors

    In order to calculate the core reactivity, fuel channel power outputs and neutron flux levels in the R-5 reactor at Trombay, axial flux extrapolation distances are required. For this, an analysis is carried out considering the reactor core as a two region neutron multiplying system in axial direction. The slow neutron diffusion equations for both the regions are solved analytically by applying suitable boundary conditions. Application of this method for the estimation of top extrapolation distances in CIRUS, has given results which agree well with accepted values for the reactor. (author)

  9. Analysis of π-p → π-p, π-p → π-π0p et π-p → π+π-n reactions at 2,77 GeV/c and study of the ππ elastic scattering by the Chew-Low extrapolation method applied to π-p → π-π0p and π-p → π+π-n reactions

    180000 pictures taken in the 2 m CERN hydrogen bubble chamber with an incident beam of 2.77 GeV/e were examined. High statistics obtained in the whole angular production range allowed to study the dσ/dt differential cross section behaviour, the mass and width of the ρ meson, and the multipole parameters of this resonance. Nevertheless, the aim of this experiment was the application of the CHEW - LOW extrapolation method. Different types of extrapolation procedures were compared. Phase shift analysis of the elastic ππ scattering between 500 and 1100 MeV, performed with conformal mappings, allowed to determine the values of the S0, S2, P1, D0, D2 waves. Forward dispersion relations were used to obtain scattering length values of the S2 and P1 phase shifts. (author)

  10. Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values

    In this study, six extrapolation methods have been compared for their ability to estimate daily crop evapotranspiration (ETd) from instantaneous latent heat flux estimates derived from digital airborne multispectral remote sensing imagery. Data used in this study were collected during an experiment...

  11. Imaging outside the box: Resolution enhancement in X-ray coherent diffraction imaging by extrapolation of diffraction patterns

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed

  12. Resolution enhancement by extrapolation of coherent diffraction images: a quantitative study about the limits and a numerical study of non-binary and phase objects

    Latychevskaia, Tatiana

    2015-01-01

    In coherent diffractive imaging (CDI) the resolution with which the reconstructed object can be obtained is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by post-extrapolation of coherent diffraction images, such as diffraction patterns or holograms. We proof that a diffraction pattern can unambiguously be extrapolated from just a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal, is linearly proportional to the oversampling ratio. While there could be in principle other methods to achieve extrapolation, we devote our discussion to employing phase retrieval methods and demonstrate their limits. We present two numerical studies; namely the extrapolation of diffraction patterns of non-binary and that of phase objects together with a discussion of the optimal extrapolation procedure.

  13. Biosimilar monoclonal antibodies : The scientific basis for extrapolation

    Schellekens, Huub; Lietzan, Erika; Faccin, Freddy; Venema, Jaap

    2015-01-01

    Introduction: Biosimilars are biologic products that receive authorization based on an abbreviated regulatory application containing comparative quality and nonclinical and clinical data that demonstrate similarity to a licensed biologic product. Extrapolation of safety and efficacy has emerged as a

  14. Wind Velocity Vertical Extrapolation by Extended Power Law

    Zekai Şen; Abdüsselam Altunkaynak; Tarkan Erdik

    2012-01-01

    Wind energy gains more attention day by day as one of the clean renewable energy resources. We predicted wind speed vertical extrapolation by using extended power law. In this study, an extended vertical wind velocity extrapolation formulation is derived on the basis of perturbation theory by considering power law and Weibull wind speed probability distribution function. In the proposed methodology not only the mean values of the wind speeds at different elevations but also their standard dev...

  15. Role of animal studies in low-dose extrapolation

    Current data indicate that in the case of low-LET radiation linear, extrapolation from data obtained at high doses appears to overestimate the risk at low doses to a varying degree. In the case of high-LET radiation, extrapolation from data obtained at doses as low as 40 rad (0.4 Gy) is inappropriate and likely to result in an underestimate of the risk

  16. Extrapolation of mean-field models to superheavy nuclei

    The extrapolation of self-consistent nuclear mean-field models to the region of superheavy elements is discussed with emphasis on the extrapolating power of the models. The predictions of modern mean-field models are confronted with recent experimental data. It is shown that a final conclusion about the location of the expected island of spherical doubly-magic superheavy nuclei cannot be drawn on the basis of the available data. (orig.)

  17. Application of Curve Fitting Extrapolation in Measuring Transient Surface Temperature

    Xiaojian Hao; Lina Hao; Hanchang Zhou; Sanping Jiang; Yanfeng Li

    2013-01-01

    The engine inner wall surface temperature was measured by the plug blind-hole extrapolation, and multiple thermocouples were installed at different depths in the substrate. The engine wall extrapolation model of transient high temperature was established according to the basic principles of heat transfer. The transient temperatures were measured by thermocouples buried at different depths of the engine wall and fitting curve was got. The transient temperature field which was generated by the ...

  18. X-CAPM: An Extrapolative Capital Asset Pricing Model

    Barberis, Nicholas; Greenwood, Robin Marc; Jin, Lawrence; Shleifer, Andrei

    2013-01-01

    Survey evidence suggests that many investors form beliefs about future stock market returns by extrapolating past returns: they expect the stock market to perform well (poorly) in the near future if it performed well (poorly) in the recent past. Such beliefs are hard to reconcile with existing models of the aggregate stock market. We study a consumption-based asset pricing model in which some investors form beliefs about future price changes in the stock market by extrapolating past price cha...

  19. Extrapolating Satellite Winds to Turbine Operating Heights

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.;

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... nearshore areas where most offshore wind farms are built....

  20. -Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

    Lee HyunYoung

    2010-01-01

    Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

  1. Source-receiver two-way wave extrapolation for prestack exploding-reflector modelling and migration

    Alkhalifah, Tariq Ali

    2014-10-08

    Most modern seismic imaging methods separate input data into parts (shot gathers). We develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield forward or backward in time. This approach has the potential for generating accurate images free of artiefacts associated with conventional approaches. We derive novel high-order partial differential equations in the source-receiver time domain. The fourth-order nature of the extrapolation in time leads to four solutions, two of which correspond to the incoming and outgoing P-waves and reduce to the zero-offset exploding-reflector solutions when the source coincides with the receiver. A challenge for implementing two-way time extrapolation is an essential singularity for horizontally travelling waves. This singularity can be avoided by limiting the range of wavenumbers treated in a spectral-based extrapolation. Using spectral methods based on the low-rank approximation of the propagation symbol, we extrapolate only the desired solutions in an accurate and efficient manner with reduced dispersion artiefacts. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach.

  2. Line-of-Sight Extrapolation Noise in Dust Polarization

    Poh, Jason

    2016-01-01

    The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g., 350 GHz) is due solely to dust and then extrapolate the signal down to lower frequency (e.g., 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typical Galactic thermal dust temperatures of about 20K, these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight po...

  3. Full waveform inversion with extrapolated low frequency data

    Li, Yunyue Elita

    2016-01-01

    The availability of low frequency data is an important factor in the success of full waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data below 2 or 3 Hz from the field is a challenging and expensive task. In this paper we explore the possibility of synthesizing the low frequencies computationally from high-frequency data, and use the resulting prediction of the missing data to seed the frequency sweep of FWI. As a signal processing problem, bandwidth extension is a very nonlinear and delicate operation. It requires a high-level interpretation of bandlimited seismic records into individual events, each of which is extrapolable to a lower (or higher) frequency band from the non-dispersive nature of the wave propagation model. We propose to use the phase tracking method for the event separation task. The...

  4. Statistical atlas based extrapolation of CT data

    Chintalapani, Gouthami; Murphy, Ryan; Armiger, Robert S.; Lepisto, Jyri; Otake, Yoshito; Sugano, Nobuhiko; Taylor, Russell H.; Armand, Mehran

    2010-02-01

    We present a framework to estimate the missing anatomical details from a partial CT scan with the help of statistical shape models. The motivating application is periacetabular osteotomy (PAO), a technique for treating developmental hip dysplasia, an abnormal condition of the hip socket that, if untreated, may lead to osteoarthritis. The common goals of PAO are to reduce pain, joint subluxation and improve contact pressure distribution by increasing the coverage of the femoral head by the hip socket. While current diagnosis and planning is based on radiological measurements, because of significant structural variations in dysplastic hips, a computer-assisted geometrical and biomechanical planning based on CT data is desirable to help the surgeon achieve optimal joint realignments. Most of the patients undergoing PAO are young females, hence it is usually desirable to minimize the radiation dose by scanning only the joint portion of the hip anatomy. These partial scans, however, do not provide enough information for biomechanical analysis due to missing iliac region. A statistical shape model of full pelvis anatomy is constructed from a database of CT scans. The partial volume is first aligned with the statistical atlas using an iterative affine registration, followed by a deformable registration step and the missing information is inferred from the atlas. The atlas inferences are further enhanced by the use of X-ray images of the patient, which are very common in an osteotomy procedure. The proposed method is validated with a leave-one-out analysis method. Osteotomy cuts are simulated and the effect of atlas predicted models on the actual procedure is evaluated.

  5. Determination of transmission factors in tissue using a standard extrapolation chamber

    A commercial ionization chamber, Böhm extrapolation chamber, PTW, model 23392, recommended for measurements in low energy X-rays and beta radiation fields, was tested in three different 90Sr+90Y beams to verify its performance as a primary standard system for the calibration and dosimetry of beta radiation sources and detectors. Characterization tests were performed, as determination of the chamber null depth using two methods (the results presented a difference of only 0.9%), transmission factors in tissue, in comparison with those of the certificate (the maximum difference was 2.1%), and absorbed dose rates of the 90Sr+90Y sources, in comparison with the values provided by the calibration certificates (the maximum difference was 4.90%). The results obtained confirmed that this extrapolation chamber presents a very good behavior in beta radiation fields as a primary standard system. - Highlights: • Böhm extrapolation chamber was tested to be used as a primary standard system. • The chamber was exposed to the three 90Sr+90Y secondary standard sources. • Transmission factors were obtained. • Absorbed dose rates were determined using the sources at certificate conditions. • The results showed the good performance of the extrapolation chamber

  6. Accelerating Monte Carlo Molecular Simulations Using Novel Extrapolation Schemes Combined with Fast Database Generation on Massively Parallel Machines

    Amir, Sahar Z.

    2013-05-01

    We introduce an efficient thermodynamically consistent technique to extrapolate and interpolate normalized Canonical NVT ensemble averages like pressure and energy for Lennard-Jones (L-J) fluids. Preliminary results show promising applicability in oil and gas modeling, where accurate determination of thermodynamic properties in reservoirs is challenging. The thermodynamic interpolation and thermodynamic extrapolation schemes predict ensemble averages at different thermodynamic conditions from expensively simulated data points. The methods reweight and reconstruct previously generated database values of Markov chains at neighboring temperature and density conditions. To investigate the efficiency of these methods, two databases corresponding to different combinations of normalized density and temperature are generated. One contains 175 Markov chains with 10,000,000 MC cycles each and the other contains 3000 Markov chains with 61,000,000 MC cycles each. For such massive database creation, two algorithms to parallelize the computations have been investigated. The accuracy of the thermodynamic extrapolation scheme is investigated with respect to classical interpolation and extrapolation. Finally, thermodynamic interpolation benefiting from four neighboring Markov chains points is implemented and compared with previous schemes. The thermodynamic interpolation scheme using knowledge from the four neighboring points proves to be more accurate than the thermodynamic extrapolation from the closest point only, while both thermodynamic extrapolation and thermodynamic interpolation are more accurate than the classical interpolation and extrapolation. The investigated extrapolation scheme has great potential in oil and gas reservoir modeling.That is, such a scheme has the potential to speed up the MCMC thermodynamic computation to be comparable with conventional Equation of State approaches in efficiency. In particular, this makes it applicable to large-scale optimization of L

  7. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au [School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009 (Australia)

    2015-05-15

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.

  8. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol–1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol–1

  9. Analytic Approximations for the Extrapolation of Lattice Data

    Masjuan, Pere

    2010-01-01

    We present analytic approximations of chiral SU(3) amplitudes for the extrapolation of lattice data to the physical masses and the determination of Next-to-Next-to-Leading-Order low-energy constants. Lattice data for the ratio F_K/F_pi is used to test the approximation proposed.

  10. Comparing Gravitational Waveform Extrapolation to Cauchy-Characteristic Extraction in Binary Black Hole Simulations

    Taylor, Nicholas W; Reisswig, Christian; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Szilagyi, Bela

    2013-01-01

    We extract gravitational waveforms from numerical simulations of black hole binaries computed using the Spectral Einstein Code. We compare two extraction methods: direct construction of the Newman-Penrose (NP) scalar $\\Psi_4$ at a finite distance from the source and Cauchy-characteristic extraction (CCE). The direct NP approach is simpler than CCE, but NP waveforms can be contaminated by near-zone effects---unless the waves are extracted at several distances from the source and extrapolated to infinity. Even then, the resulting waveforms can in principle be contaminated by gauge effects. In contrast, CCE directly provides, by construction, gauge-invariant waveforms at future null infinity. We verify the gauge invariance of CCE by running the same physical simulation using two different gauge conditions. We find that these two gauge conditions produce the same CCE waveforms but show differences in extrapolated-$\\Psi_4$ waveforms. We examine data from several different binary configurations and measure the domi...

  11. Atomically resolved structural determination of graphene and its point defects via extrapolation assisted phase retrieval

    Previously reported crystalline structures obtained by an iterative phase retrieval reconstruction of their diffraction patterns seem to be free from displaying any irregularities or defects in the lattice, which appears to be unrealistic. We demonstrate here that the structure of a nanocrystal including its atomic defects can unambiguously be recovered from its diffraction pattern alone by applying a direct phase retrieval procedure not relying on prior information of the object shape. Individual point defects in the atomic lattice are clearly apparent. Conventional phase retrieval routines assume isotropic scattering. We show that when dealing with electrons, the quantitatively correct transmission function of the sample cannot be retrieved due to anisotropic, strong forward scattering specific to electrons. We summarize the conditions for this phase retrieval method and show that the diffraction pattern can be extrapolated beyond the original record to even reveal formerly not visible Bragg peaks. Such extrapolated wave field pattern leads to enhanced spatial resolution in the reconstruction

  12. Source‐receiver two‐way wave extrapolation for prestack exploding‐reflector modeling and migration

    Alkhalifah, Tariq Ali

    2010-10-17

    While most of the modern seismic imaging methods perform imaging by separating input data into parts (shot gathers), we develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield backward in time. While computationally extensive, this approach has the potential of generating accurate images, free of artifacts associated with conventional approaches. We derive novel high‐order partial differential equations in source‐receiver‐time domain. The fourth order nature of the extrapolation in time has four solutions two of which correspond to the ingoing and outgoing P‐waves and reduces to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. Using asymptotic approximations, we develop an approach to extrapolating the full prestack wavefield forward or backward in time.

  13. Wind Velocity Vertical Extrapolation by Extended Power Law

    Zekai Şen

    2012-01-01

    Full Text Available Wind energy gains more attention day by day as one of the clean renewable energy resources. We predicted wind speed vertical extrapolation by using extended power law. In this study, an extended vertical wind velocity extrapolation formulation is derived on the basis of perturbation theory by considering power law and Weibull wind speed probability distribution function. In the proposed methodology not only the mean values of the wind speeds at different elevations but also their standard deviations and the cross-correlation coefficient between different elevations are taken into consideration. The application of the presented methodology is performed for wind speed measurements at Karaburun/Istanbul, Turkey. At this location, hourly wind speed measurements are available for three different heights above the earth surface.

  14. Low-energy particle physics and chiral extrapolations

    Wittig, Hartmut

    2012-01-01

    In this review I discuss the role of chiral extrapolations for the determination of several phenomenologically relevant quantities, including light quark masses, meson decay constants and the axial charge of the nucleon. In particular, I investigate whether chiral extrapolations are sufficiently controlled in order to rightfully claim the accuracy which is quoted in recent compilations of these quantities. While this is the case for the masses of the light quarks and the ratio fK/fpi of decay constants, small inconsistencies in the chiral and continuum behaviour of individual decay constants fK and fpi, as well as the hadronic radii r0, r1 remain and must be clarified. In the case of the nucleon axial charge, gA, the chiral behaviour is still poorly understood due to the presence of other systematic effects.

  15. Survival extrapolation using the poly-Weibull model.

    Demiris, N.; Lunn, D; Sharples, LD

    2015-01-01

    Recent studies of (cost-) effectiveness in cardiothoracic transplantation have required estimation of mean survival over the lifetime of the recipients. In order to calculate mean survival, the complete survivor curve is required but is often not fully observed, so that survival extrapolation is necessary. After transplantation, the hazard function is bathtub-shaped, reflecting latent competing risks which operate additively in overlapping time periods. The poly-Weibull distribution is a flex...

  16. Properties of a commercial extrapolation chamber in β radiation fields

    A commercial extrapolation chamber was tested in different β radiation fields and its properties investigated. Its usefulness for β radiation calibration and dosimetry was verified. Experiments were performed in order to obtain the main characteristics such as the calibration factors (and consequently the energy dependence) for all chamber collecting electrodes (between 10 and 40 mm diameter), the transmission factors in tissue and the useful source-detector distance range

  17. An efficient extrapolation to the (T)/CBS limit

    Ranasinghe, Duminda S.; Barnes, Ericka C.

    2014-05-01

    We extrapolate to the perturbative triples (T)/complete basis set (CBS) limit using double ζ basis sets without polarization functions (Wesleyan-1-Triples-2ζ or "Wes1T-2Z") and triple ζ basis sets with a single level of polarization functions (Wesleyan-1-Triples-3ζ or "Wes1T-3Z"). These basis sets were optimized for 102 species representing the first two rows of the Periodic Table. The species include the entire set of neutral atoms, positive and negative atomic ions, as well as several homonuclear diatomic molecules, hydrides, rare gas dimers, polar molecules, such as oxides and fluorides, and a few transition states. The extrapolated Wes1T-(2,3)Z triples energies agree with (T)/CBS benchmarks to within ±0.65 mEh, while the rms deviations of comparable model chemistries W1, CBS-APNO, and CBS-QB3 for the same test set are ±0.23 mEh, ±2.37 mEh, and ±5.80 mEh, respectively. The Wes1T-(2,3)Z triples calculation time for the largest hydrocarbon in the G2/97 test set, C6H5Me+, is reduced by a factor of 25 when compared to W1. The cost-effectiveness of the Wes1T-(2,3)Z extrapolation validates the usefulness of the Wes1T-2Z and Wes1T-3Z basis sets which are now available for a more efficient extrapolation of the (T) component of any composite model chemistry.

  18. Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator

    ZHANG Yan-Bin; SUN Wei-Min; L(U) Xiao-Fu; ZONG Hong-Shi

    2009-01-01

    The quark propagator in the Landau gauge is studied on the lattice,including the quenched and the unquenched results.No obvious unquenched effects are found by comparing the quenched quark propagator with the dynamical one.For the quenched and unquenched configurations,the results with different quark masses have been computed.For the quark mass function,a nonlinear chiral extrapolating behavior is found in the in/tared region for both the quenched and dynamical results.

  19. Whole blood viscosity extrapolation formula: Note on appropriateness of units

    Ezekiel Uba Nwose; Ross Stuart Richards

    2011-01-01

    Background : A series has recently been done on whole blood viscosity. The first on the series proposed extrapolation chart with conventional reference range. Since the publication, two concerns have been received in personal communications. The first expressed concern over the use of serum proteins values in ′g/L′ instead of ′g/dL′ that was contained in the referenced material. The second enquired on suitability of the formula for determination of blood viscosity at low shear rate. Aim : Thi...

  20. A variational principle for the Milne problem linear extrapolation length

    Highlights: • Bilinear functional F is both null and stationary at true flux and adjoint. • Null F gives best discrete mode amplitudes without differentiation. • Optimum amplitude ratio gotten as a solution to a simple quadratic. • All subcritical canonical lengths numerically matched to within 0.5%. - Abstract: A simple bilinear functional F is introduced on behalf of the Milne subcritical problem with replication parameter 0⩽c⩽1. This functional depends upon two arguments, respectively intended to be the neutron flux and its adjoint, and is stationary about the true solution pair where, in addition, it vanishes. The stationarity and null value can then be united as a basis for the demand that F continue to vanish even when flux and adjoint are both approximated by just the two modes from the discrete eigenvalue spectrum, a representation akin to what is known as the asymptotic portion of the neutron flux, and one which is clearly incapable of matching interface boundary conditions. The stationarity of F, however, renders it tolerant of such boundary defect, as a result of which one can expect the persisting null demand, F=0, to yield the best possible value for the ratio of the two discrete mode amplitudes. We go on to implement this program, and find as its outcome that the optimum amplitude ratio is determined as one preferred solution of a simple quadratic equation. With that solution in hand, it is an easy step then to a computation of the linear extrapolation length λ. We follow through with a numerical embodiment of these ideas, obtaining the discrete, real and positive eigenvalue ν0 on the run via a Newton–Raphson tangent encroachment root hunt. With sufficient start-up care the Newton–Raphson root hunt proves here to be exceedingly rapid, and it, together with the quadratic underpinning, provides for λ a string of values that differ by less than 0.5% from those found in the classic compendium on neutron transport from the pens of Case

  1. Efficient anisotropic wavefield extrapolation using effective isotropic models

    Alkhalifah, Tariq Ali

    2013-06-10

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.

  2. Extrapolation of zircon fission-track annealing models

    One of the purposes of this study is to give further constraints on the temperature range of the zircon partial annealing zone over a geological time scale using data from borehole zircon samples, which have experienced stable temperatures for ∼1 Ma. In this way, the extrapolation problem is explicitly addressed by fitting the zircon annealing models with geological timescale data. Several empirical model formulations have been proposed to perform these calibrations and have been compared in this work. The basic form proposed for annealing models is the Arrhenius-type model. There are other annealing models, that are based on the same general formulation. These empirical model equations have been preferred due to the great number of phenomena from track formation to chemical etching that are not well understood. However, there are two other models, which try to establish a direct correlation between their parameters and the related phenomena. To compare the response of the different annealing models, thermal indexes, such as closure temperature, total annealing temperature and the partial annealing zone, have been calculated and compared with field evidence. After comparing the different models, it was concluded that the fanning curvilinear models yield the best agreement between predicted index temperatures and field evidence. - Highlights: ► Geological data were used along with lab data for improving model extrapolation. ► Index temperatures were simulated for testing model extrapolation. ► Curvilinear Arrhenius models produced better geological temperature predictions

  3. The 3D structure of an active region filament as extrapolated from photospheric and chromospheric observations

    Chaouche, L Yelles; Pillet, V Martínez; Moreno-Insertis, F

    2012-01-01

    The 3D structure of an active region (AR) filament is studied using nonlinear force-free field (NLFFF) extrapolations based on simultaneous observations at a photospheric and a chromospheric height. To that end, we used the Si I 10827 \\AA\\ line and the He I 10830 \\AA\\ triplet obtained with the Tenerife Infrared Polarimeter (TIP) at the VTT (Tenerife). The two extrapolations have been carried out independently from each other and their respective spatial domains overlap in a considerable height range. This opens up new possibilities for diagnostics in addition to the usual ones obtained through a single extrapolation from, typically, a photospheric layer. Among those possibilities, this method allows the determination of an average formation height of the He I 10830 \\AA\\ signal of \\approx 2 Mm above the surface of the sun. It allows, as well, to cross-check the obtained 3D magnetic structures in view of verifying a possible deviation from the force- free condition especially at the photosphere. The extrapolati...

  4. Establishing a new marketplace for biologic therapy with biosimilar agents: importance of extrapolation of data

    Bressler B

    2015-06-01

    Full Text Available Brian Bressler,1 Theo Dingermann2 1St Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada; 2Institute of Pharmaceutical Biology, Frankfurt, Germany Abstract: Despite their enormous value for our health care system, biopharmaceuticals have become a serious threat to the system itself due to their high cost. Costs may be warranted if the medicine is new and innovative; however, it is no longer an innovation when its patent protection expires. As patents and exclusivities expire on biological drugs, biosimilar products defined as highly similar to reference biologics are being marketed. The goal of biosimilar development is to establish a high degree of biosimilarity, not to reestablish clinical efficacy and safety. Current sophisticated analytical methods allow the detection of even small changes in quality attributes and can therefore enable sensitive monitoring of the batch-to-batch consistency and variability of the manufacturing process. The European Medicines Agency (EMA, US Food and Drug Administration (FDA, and Health Canada have determined that a reduced number of nonclinical and clinical comparative studies can be sufficient for approval with clinical data from the most sensitive indication extrapolated to other indications. Extrapolation of data is a scientifically based principle, guided by specific criteria, and if approved by the EMA, FDA, and/or Health Canada is appropriate. Enablement of extrapolation of data is a core principle of biosimilar development, based on principles of comparability and necessary to fully realize cost savings for these drugs. Keywords: biosimilars, Inflectra, infliximab, pharmacoeconomics, Canada, Europe 

  5. Properties of a commercial extrapolation chamber in beta radiation fields

    A commercial extrapolation chamber (PTW, Germany) was tested in different beta radiation fields and its properties investigated. Its usefulness for beta radiation calibration and dosimetry was demonstrated. The Beta Secondary Standard setup of the IPEN calibration laboratory was utilized. This system, developed by the Physikalisch-Tecknische Bundesanstalt, Brunswick (Germany) and manufactured by Buchler and Co., consists of a source stand, a control unit with timer and four interchangeable beta sources: 90Sr-90Y (1850 and 74 MBq), 204Tl (18,5 MBq) ionization current detection. The variable volume ionization chamber of cylindrical form is provided with different collecting electrodes of tissue equivalent material and Mylar entrance windows of different thickesses

  6. Assessing ecological effects of radionuclides: data gaps and extrapolation issues

    By inspection of the FASSET database on radiation effects on non-human biota, one of the major difficulties in the implementation of ecological risk assessments for radioactive pollutants is found to be the lack of data for chronic low-level exposure. A critical review is provided of a number of extrapolation issues that arise in undertaking an ecological risk assessment: acute versus chronic exposure regime; radiation quality including relative biological effectiveness and radiation weighting factors; biological effects from an individual to a population level, including radiosensitivity and lifestyle variations throughout the life cycle; single radionuclide versus multi-contaminants. The specificities of the environmental situations of interest (mainly chronic low-level exposure regimes) emphasise the importance of reproductive parameters governing the demography of the population within a given ecosystem and, as a consequence, the structure and functioning of that ecosystem. As an operational conclusion to keep in mind for any site-specific risk assessment, the present state-of-the-art on extrapolation issues allows us to grade the magnitude of the uncertainties as follows: one species to another > acute to chronic = external to internal = mixture of stressors> individual to population> ecosystem structure to function

  7. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    Waheed, Umair bin

    2014-05-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  8. Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations.

    Wouters, Sebastian; Limacher, Peter A; Van Neck, Dimitri; Ayers, Paul W

    2012-04-01

    We have implemented the sweep algorithm for the variational optimization of SU(2) U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit. PMID:22482543

  9. L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

    Hyun Young Lee

    2010-01-01

    Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ℓ∞(L2 error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

  10. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe

    2016-02-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  11. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe

    2016-08-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity ( K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  12. Visualization and Nowcasting for Aviation using online verified ensemble weather radar extrapolation.

    Kaltenboeck, Rudolf; Kerschbaum, Markus; Hennermann, Karin; Mayer, Stefan

    2013-04-01

    Nowcasting of precipitation events, especially thunderstorm events or winter storms, has high impact on flight safety and efficiency for air traffic management. Future strategic planning by air traffic control will result in circumnavigation of potential hazardous areas, reduction of load around efficiency hot spots by offering alternatives, increase of handling capacity, anticipation of avoidance manoeuvres and increase of awareness before dangerous areas are entered by aircraft. To facilitate this rapid update forecasts of location, intensity, size, movement and development of local storms are necessary. Weather radar data deliver precipitation analysis of high temporal and spatial resolution close to real time by using clever scanning strategies. These data are the basis to generate rapid update forecasts in a time frame up to 2 hours and more for applications in aviation meteorological service provision, such as optimizing safety and economic impact in the context of sub-scale phenomena. On the basis of tracking radar echoes by correlation the movement vectors of successive weather radar images are calculated. For every new successive radar image a set of ensemble precipitation fields is collected by using different parameter sets like pattern match size, different time steps, filter methods and an implementation of history of tracking vectors and plausibility checks. This method considers the uncertainty in rain field displacement and different scales in time and space. By validating manually a set of case studies, the best verification method and skill score is defined and implemented into an online-verification scheme which calculates the optimized forecasts for different time steps and different areas by using different extrapolation ensemble members. To get information about the quality and reliability of the extrapolation process additional information of data quality (e.g. shielding in Alpine areas) is extrapolated and combined with an extrapolation

  13. Determination of the true null electrode spacing of an extrapolation chamber for X-ray dosimetry

    An accurate determination of the actual null distance is critical for the establishment of primary measurement method for absorbed dose in tissue, since the concept of the true null electrode spacing is used to define the sensitive volume of an extrapolation chamber. In this paper, a critical analysis of two methodologies for determining the true null electrode spacing of an extrapolation chamber was done. Firstly, the ionization current as a function of electrode spacing was measured in ISO 4037 low energy X-ray beams. In the second procedure, a LC Bridge was used to measure the capacitance between the electrodes of a 23392 Böhm model PTW ionization chamber and a reliable relationship between capacitance and relative distance was established. Results showed that the true null spacing values varied from 0.0015 to 0.38 mm. Since capacitance meters with high resolution are not always available in calibration laboratories, the second method showed values with large uncertainties. The first method proved to be highly sensitive to the quality of the X-ray beams used. (author)

  14. National pattern for the realization of the unit of the dose speed absorbed in air for beta radiation. (Method: Ionometer, cavity of Bragg-Gray implemented in an extrapolation chamber with electrodes of variable separation, exposed to a field of beta radiation of {sup 90}Sr/{sup 90}Y); Patron Nacional para la realizacion de la unidad de la rapidez de dosis absorbida en aire para radiacion beta. (Metodo: Ionometrico, cavidad de Bragg-Gray implementada en una camara de extrapolacion con electrodos de separacion variable, expuesta a un campo de radiacion beta de {sup 90}Sr/{sup 90}Y)

    Alvarez R, M. T.; Morales P, J. R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-01-15

    From the year of 1987 the Department of Metrology of the ININ, in their Secondary Laboratory of Calibration Dosimetric, has a patron group of sources of radiation beta and an extrapolation chamber of electrodes of variable separation.Their objective is to carry out of the unit of the dose speed absorbed in air for radiation beta. It uses the ionometric method, cavity Bragg-Gray in the extrapolation chamber with which it counts. The services that offers are: i) it Calibration : Radioactive Fuentes of radiation beta, isotopes: {sup 90}Sr/{sup 90}Y; Ophthalmic applicators {sup 9}0{sup S}r/{sup 90}Y; Instruments for detection of beta radiation with to the radiological protection: Ionization chambers, Geiger-Muller, etc.; Personal Dosemeters. ii) Irradiation with beta radiation of materials to the investigation. (Author)

  15. 3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer

    Lane, John

    2012-01-01

    Determining the Z-R relationship (where Z is the radar reflectivity factor and R is rainfall rate) from disdrometer data has been and is a common goal of cloud physicists and radar meteorology researchers. The usefulness of this quantity has traditionally been limited since radar represents a volume measurement, while a disdrometer corresponds to a point measurement. To solve that problem, a 3D-DSD (drop-size distribution) method of determining an equivalent 3D Z-R was developed at the University of Central Florida and tested at the Kennedy Space Center, FL. Unfortunately, that method required a minimum of three disdrometers clustered together within a microscale network (.1-km separation). Since most commercial disdrometers used by the radar meteorology/cloud physics community are high-cost instruments, three disdrometers located within a microscale area is generally not a practical strategy due to the limitations of these kinds of research budgets. A relatively simple modification to the 3D-DSD algorithm provides an estimate of the 3D-DSD and therefore, a 3D Z-R measurement using a single disdrometer. The basis of the horizontal extrapolation is mass conservation of a drop size increment, employing the mass conservation equation. For vertical extrapolation, convolution of a drop size increment using raindrop terminal velocity is used. Together, these two independent extrapolation techniques provide a complete 3DDSD estimate in a volume around and above a single disdrometer. The estimation error is lowest along a vertical plane intersecting the disdrometer position in the direction of wind advection. This work demonstrates that multiple sensors are not required for successful implementation of the 3D interpolation/extrapolation algorithm. This is a great benefit since it is seldom that multiple sensors in the required spatial arrangement are available for this type of analysis. The original software (developed at the University of Central Florida, 1998.- 2000) has

  16. UFOs in the LHC: Observations, studies and extrapolations

    Baer, T; Cerutti, F; Ferrari, A; Garrel, N; Goddard, B; Holzer, EB; Jackson, S; Lechner, A; Mertens, V; Misiowiec, M; Nebot del Busto, E; Nordt, A; Uythoven, J; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zimmermann, F; Fuster, N

    2012-01-01

    Unidentified falling objects (UFOs) are potentially a major luminosity limitation for nominal LHC operation. They are presumably micrometer sized dust particles which lead to fast beam losses when they interact with the beam. With large-scale increases and optimizations of the beam loss monitor (BLM) thresholds, their impact on LHC availability was mitigated from mid 2011 onwards. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. In 2011/12, the diagnostics for UFO events were significantly improved: dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge, extrapolations for nominal LHC operation and mitigation strategies are presented

  17. California's Proposition 65: extrapolating animal toxicity to humans.

    Kilgore, W W

    1990-01-01

    In 1986, the voters of California passed a law regarding the concept of extrapolating animal toxicity data to humans. The California Safe Drinking Water and Toxic Enforcement Act of 1986, known as Proposition 65, does five things: 1. It creates a list of chemicals (including a number of agricultural chemicals) known to cause cancer or reproductive toxicity; 2. It limits discharges of listed chemicals to drinking water sources; 3. It requires prior warning before exposure to listed chemicals by anyone in the course of doing business; 4. It creates a list of chemicals requiring testing for carcinogenicity or reproductive toxicity; and 5. It requires the Governor to consult with qualified experts (a 12-member "Scientific Advisory Panel" was appointed) as necessary to carry out his duties. This paper discusses the details and implications of this proposition. Areas of responsibility have been assigned. The definition of significant risk is being addressed. PMID:2248253

  18. Determining critical flow valve characteristics using extrapolation techniques

    This report presents the methodology and documentation of the calibration of the Loss-of-Fluid Test (LOFT) power-operated relief and safety relief valve (PORV + SRV) for the L9-3 anticipated transient without scram (ATWS) experiment. A multiposition globe valve was calibrated to produce scaled high-pressure flow rates using a low-pressure calibration facility and a simple RELAP5 critical flow model to extrapolate the calibration data to expected operating pressures. It was demonstrated that an accurate high-pressure, multiphase flow calibration can be performed without the necessity of actual high-pressure testing. This technique, when applied to large pressurized water reactor (LPWR) safety and relief valves, represents a potentially large savings in the capacity qualification procedure of full-scale pressure reduction valves

  19. Determination of dose rates in beta radiation fields using extrapolation chamber and GM counter

    Borg, J.; Christensen, P.

    1995-01-01

    The extrapolation chamber measurement method is the basic method for the determination of dose rates in beta radiation fields and the method has been used for the establishment of beta calibration fields. The paper describes important details of the method and presents results from the measurement...... of depth-dose profiles from different beta radiation fields with E(max) values down to 156 keV. Results are also presented from studies of GM counters for use as survey instruments for monitoring beta dose rates at the workplace. Advantages of GM counters are a simple measurement technique and high...... sensitivity. GM responses were measured from exposures in different beta radiation fields using different filters in front of the GM detector and the paper discusses the possibility of using the results from GM measurements with two different filters in an unknown beta radiation field to obtain a value of the...

  20. The use of extrapolation concepts to augment the Frequency Separation Technique

    Alexiou, Spiros

    2015-03-01

    The Frequency Separation Technique (FST) is a general method formulated to improve the speed and/or accuracy of lineshape calculations, including strong overlapping collisions, as is the case for ion dynamics. It should be most useful when combined with ultrafast methods, that, however have significant difficulties when the impact regime is approached. These difficulties are addressed by the Frequency Separation Technique, in which the impact limit is correctly recovered. The present work examines the possibility of combining the Frequency Separation Technique with the addition of extrapolation to improve results and minimize errors resulting from the neglect of fast-slow coupling and thus obtain the exact result with a minimum of extra effort. To this end the adequacy of one such ultrafast method, the Frequency Fluctuation Method (FFM) for treating the nonimpact part is examined. It is found that although the FFM is unable to reproduce the nonimpact profile correctly, its coupling with the FST correctly reproduces the total profile.

  1. Making the most of what we have: application of extrapolation approaches in wildlife transfer models

    Beresford, Nicholas A.; Barnett, Catherine L.; Wells, Claire [NERC Centre for Ecology and Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Wood, Michael D. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Vives i Batlle, Jordi [Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Brown, Justin E.; Hosseini, Ali [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway); Yankovich, Tamara L. [International Atomic Energy Agency, Vienna International Centre, 1400, Vienna (Austria); Bradshaw, Clare [Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-10691 (Sweden); Willey, Neil [Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom)

    2014-07-01

    Radiological environmental protection models need to predict the transfer of many radionuclides to a large number of organisms. There has been considerable development of transfer (predominantly concentration ratio) databases over the last decade. However, in reality it is unlikely we will ever have empirical data for all the species-radionuclide combinations which may need to be included in assessments. To provide default values for a number of existing models/frameworks various extrapolation approaches have been suggested (e.g. using data for a similar organism or element). This paper presents recent developments in two such extrapolation approaches, namely phylogeny and allometry. An evaluation of how extrapolation approaches have performed and the potential application of Bayesian statistics to make best use of available data will also be given. Using a Residual Maximum Likelihood (REML) mixed-model regression we initially analysed a dataset comprising 597 entries for 53 freshwater fish species from 67 sites to investigate if phylogenetic variation in transfer could be identified. The REML analysis generated an estimated mean value for each species on a common scale after taking account of the effect of the inter-site variation. Using an independent dataset, we tested the hypothesis that the REML model outputs could be used to predict radionuclide activity concentrations in other species from the results of a species which had been sampled at a specific site. The outputs of the REML analysis accurately predicted {sup 137}Cs activity concentrations in different species of fish from 27 lakes. Although initially investigated as an extrapolation approach the output of this work is a potential alternative to the highly site dependent concentration ratio model. We are currently applying this approach to a wider range of organism types and different ecosystems. An initial analysis of these results will be presented. The application of allometric, or mass

  2. Extrapolating W-Associated Jet-Production Ratios at the LHC

    Bern, Z; Cordero, F Febres; Hoeche, S; Kosower, D A; Ita, H; Maitre, D

    2014-01-01

    Electroweak vector-boson production, accompanied by multiple jets, is an important background to searches for physics beyond the Standard Model. A precise and quantitative understanding of this process is helpful in constraining deviations from known physics. We study four key ratios in $W + n$-jet production at the LHC. We compute the ratio of cross sections for $W + n$- to $W + (n-1)$-jet production as a function of the minimum jet transverse momentum. We also study the ratio differentially, as a function of the $W$-boson transverse momentum; as a function of the scalar sum of the jet transverse energy, $H_T^{\\rm jets}$; and as a function of certain jet transverse momenta. We show how to use such ratios to extrapolate differential cross sections to $W+6$-jet production at next-to-leading order, and we cross-check the method against a direct calculation at leading order. We predict the differential distribution in $H_T^{\\rm jets}$ for $W+6$ jets at next-to-leading order using such an extrapolation. We use th...

  3. Chiral extrapolation of matrix elements of BSM kaon operators

    Bailey, Jon A; Lee, Weonjong; Sharpe, Stephen R

    2012-01-01

    Models of new physics induce K_0-K_0bar mixing through operators having Dirac structures other than the "left-left" form of the Standard Model. To carry out the chiral-continuum extrapolation of results from numerical simulations, one needs to know the quark mass and lattice spacing dependence of the corresponding B-parameters in the partially quenched theory at least at next-to-leading order. For simulations using staggered fermions (such as that we are doing with HYP-smeared valence fermions on the MILC asqtad lattices) one must determine this dependence using staggered chiral perturbation theory (SChPT). We have calculated the required dependence in both SU(3) and SU(2) SChPT, working at next-to-leading order, and we give here an overview of the methodology and results. The SU(3) SChPT result turns out to be much simpler than that for the Standard Model B_K operator, due to the absence of chiral suppression for the new operators. The SU(2) SChPT result turns out to be closely related to that for B_K: the c...

  4. Detail enhancement of blurred infrared images based on frequency extrapolation

    Xu, Fuyuan; Zeng, Deguo; Zhang, Jun; Zheng, Ziyang; Wei, Fei; Wang, Tiedan

    2016-05-01

    A novel algorithm for enhancing the details of the blurred infrared images based on frequency extrapolation has been raised in this paper. Unlike other researchers' work, this algorithm mainly focuses on how to predict the higher frequency information based on the Laplacian pyramid separation of the blurred image. This algorithm uses the first level of the high frequency component of the pyramid of the blurred image to reverse-generate a higher, non-existing frequency component, and adds back to the histogram equalized input blurred image. A simple nonlinear operator is used to analyze the extracted first level high frequency component of the pyramid. Two critical parameters are participated in the calculation known as the clipping parameter C and the scaling parameter S. The detailed analysis of how these two parameters work during the procedure is figure demonstrated in this paper. The blurred image will become clear, and the detail will be enhanced due to the added higher frequency information. This algorithm has the advantages of computational simplicity and great performance, and it can definitely be deployed in the real-time industrial applications. We have done lots of experiments and gave illustrations of the algorithm's performance in this paper to convince its effectiveness.

  5. Dynamic Aperture Extrapolation in Presence of Tune Modulation

    Giovannozzi, Massimo; Todesco, Ezio

    1998-01-01

    In hadron colliders, such as the Large Hadron Collider (LHC) to be built at CERN, the long-term stability of the single-particle motion is mostly determined by the field-shape quality of the superconducting magnets. The mechanism of particle loss may be largely enhanced by modulation of betatron tunes, induced either by synchro-betatron coupling (via the residual uncorrected chromaticity), or by unavoidable power supply ripple. This harmful effect is investigated in a simple dynamical system model, the Henon map with modulated linear frequencies. Then, a realistic accelerator model describing the injection optics of the LHC lattice is analyzed. Orbital data obtained with long-term tracking simulations ($10^5$-$10^7$ turns) are post-processed to obtain the dynamic aperture. It turns out that the dynamic aperture can be interpolated using a simple mpirical formula, and it decays proportionally to a power of the inverse logarithm of the number of turns. Furthermore, the extrapolation of tracking data at $10^5$ t...

  6. Monte Carlo based approach to the LS–NaI 4πβ–γ anticoincidence extrapolation and uncertainty.

    Fitzgerald, R

    2016-03-01

    The 4πβ–γ anticoincidence method is used for the primary standardization of β−, β+, electron capture (EC), α, and mixed-mode radionuclides. Efficiency extrapolation using one or more γ ray coincidence gates is typically carried out by a low-order polynomial fit. The approach presented here is to use a Geant4-based Monte Carlo simulation of the detector system to analyze the efficiency extrapolation. New code was developed to account for detector resolution, direct γ ray interaction with the PMT, and implementation of experimental β-decay shape factors. The simulation was tuned to 57Co and 60Co data, then tested with 99mTc data, and used in measurements of 18F, 129I, and 124I. The analysis method described here offers a more realistic activity value and uncertainty than those indicated from a least-squares fit alone. PMID:27358944

  7. Characterization and application of two extrapolation chambers in standard X radiation beams

    The extrapolation chambers are ionization chambers with variable volume, and they are mainly utilized as beta radiation detectors. In this work two extrapolation chambers were characterized, a commercial PTW extrapolation chamber and another extrapolation chamber developed at the Calibration Laboratory of IPEN, for application as reference systems in mammography, conventional diagnostic radiology and radiotherapy beams. The results obtained from the characterization tests of the chamber response: leakage current, short- and medium terms stability, determination of the saturation currents and the ion collection efficiencies, angular and energy dependence, show that these extrapolation chambers may be utilized for low-energy X radiation beam dosimetry. The transmission factors in tissue and the calibration factors were also determined for all cited radiation qualities. Finally, a procedure was established for calibration of radiation detectors in standard X radiation beams, using the extrapolation chambers. (author)

  8. Extrapolative Analysis of Fast-Switching Free Energy Estimates in a Molecular System

    Zuckerman, Daniel M.; Woolf, Thomas B.

    2001-01-01

    We perform an extrapolative analysis of "fast-growth" free-energy-difference (DF) estimates of a computer-modeled, fully-solvated ethanemethanol transformation. The results suggest that extrapolation can greatly reduce the systematic error in DF estimated from a small number of very fast switches. Our extrapolation procedure uses block-averages of finite-data estimates, and appears to be particularly useful for broad, non-Gaussian distributions of data which produce substantial systematic err...

  9. Chiral extrapolation of nucleon axial charge $g_A$ in effective field theory

    Li, Hongna

    2016-01-01

    The extrapolation of nucleon axial charge $g_A$ is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated $g_A$ are all smaller than the experimental value.

  10. The extrapolation of short term observation to time periods for isolation of long lived radioactive wastes (India)

    The work presented covers different parts of a repository system such as near and far field aspects. Investigations are reported for the degradation of HLW glass, for the corrosion of container materials, for changes of geochemical environment in geological repositories, and for the thermo-mechanical behaviour of granitic host rock. Extrapolation methods are developed and applied for temperature and stress development in the host rock and for the radionuclide transport through a fractured system. (author)

  11. Test on the reactor with the intelligent extrapolation criticality device for physical startup experiment

    The Intelligent Extrapolation Criticality Device is used for automatic counting and automatic extrapolation during the criticality experiment on the reactor. Test must be performed on the zero-power reactor or other reactor before the Device is used. The paper describes the test situation and test results of the Device on the zero-power reactor. The test results show that the Device has the function of automatic counting and automatic extrapolation, the deviation of the extrapolation data is small, and it can satisfy the requirements of physical startup on the reactor. (author)

  12. Patient-bounded extrapolation using low-dose priors for volume-of-interest imaging in C-arm CT

    Xia, Y.; Maier, A.; Berger, M.; Hornegger, J. [Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany); Bauer, S. [Siemens AG, Healthcare Sector, Forchheim 91301 (Germany)

    2015-04-15

    Purpose: Three-dimensional (3D) volume-of-interest (VOI) imaging with C-arm systems provides anatomical information in a predefined 3D target region at a considerably low x-ray dose. However, VOI imaging involves laterally truncated projections from which conventional reconstruction algorithms generally yield images with severe truncation artifacts. Heuristic based extrapolation methods, e.g., water cylinder extrapolation, typically rely on techniques that complete the truncated data by means of a continuity assumption and thus appear to be ad-hoc. It is our goal to improve the image quality of VOI imaging by exploiting existing patient-specific prior information in the workflow. Methods: A necessary initial step prior to a 3D acquisition is to isocenter the patient with respect to the target to be scanned. To this end, low-dose fluoroscopic x-ray acquisitions are usually applied from anterior–posterior (AP) and medio-lateral (ML) views. Based on this, the patient is isocentered by repositioning the table. In this work, we present a patient-bounded extrapolation method that makes use of these noncollimated fluoroscopic images to improve image quality in 3D VOI reconstruction. The algorithm first extracts the 2D patient contours from the noncollimated AP and ML fluoroscopic images. These 2D contours are then combined to estimate a volumetric model of the patient. Forward-projecting the shape of the model at the eventually acquired C-arm rotation views gives the patient boundary information in the projection domain. In this manner, we are in the position to substantially improve image quality by enforcing the extrapolated line profiles to end at the known patient boundaries, derived from the 3D shape model estimate. Results: The proposed method was evaluated on eight clinical datasets with different degrees of truncation. The proposed algorithm achieved a relative root mean square error (rRMSE) of about 1.0% with respect to the reference reconstruction on

  13. CT image construction of a totally deflated lung using deformable model extrapolation

    Sadeghi Naini, Ali; Pierce, Greg; Lee, Ting-Yim [Department of Electrical and Computer Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada); and others

    2011-02-15

    Purpose: A novel technique is proposed to construct CT image of a totally deflated lung from a free-breathing 4D-CT image sequence acquired preoperatively. Such a constructed CT image is very useful in performing tumor ablative procedures such as lung brachytherapy. Tumor ablative procedures are frequently performed while the lung is totally deflated. Deflating the lung during such procedures renders preoperative images ineffective for targeting the tumor. Furthermore, the problem cannot be solved using intraoperative ultrasound (U.S.) images because U.S. images are very sensitive to small residual amount of air remaining in the deflated lung. One possible solution to address these issues is to register high quality preoperative CT images of the deflated lung with their corresponding low quality intraoperative U.S. images. However, given that such preoperative images correspond to an inflated lung, such CT images need to be processed to construct CT images pertaining to the lung's deflated state. Methods: To obtain the CT images of deflated lung, we present a novel image construction technique using extrapolated deformable registration to predict the deformation the lung undergoes during full deflation. The proposed construction technique involves estimating the lung's air volume in each preoperative image automatically in order to track the respiration phase of each 4D-CT image throughout a respiratory cycle; i.e., the technique does not need any external marker to form a respiratory signal in the process of curve fitting and extrapolation. The extrapolated deformation field is then applied on a preoperative reference image in order to construct the totally deflated lung's CT image. The technique was evaluated experimentally using ex vivo porcine lung. Results: The ex vivo lung experiments led to very encouraging results. In comparison with the CT image of the deflated lung we acquired for the purpose of validation, the constructed CT image was very

  14. Fuel cycle design for ITER and its extrapolation to DEMO

    Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Kyoto 611-0011 (Japan)], E-mail: s-konishi@iae.kyoto-u.ac.jp; Glugla, Manfred [Forschungszentrum Karlsruhe, P.O. Box 3640, D 76021 Karlsruhe (Germany); Hayashi, Takumi [Apan Atomic Energy AgencyTokai, Ibaraki 319-0015 Japan (Japan)

    2008-12-15

    future energy source. Some of the subjects cannot be expected to be within the extrapolation of ITER technology and require long term efforts paralleling ITER.

  15. Oral-to-inhalation route extrapolation in occupational health risk assessment: A critical assessment

    Rennen, M.A.J.; Bouwman, T.; Wilschut, A.; Bessems, J.G.M.; Heer, C.de

    2004-01-01

    Due to a lack of route-specific toxicity data, the health risks resulting from occupational exposure are frequently assessed by route-to-route (RtR) extrapolation based on oral toxicity data. Insight into the conditions for and the uncertainties connected with the application of RtR extrapolation ha

  16. On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics

    Fang, Jun; Gao, Xingyu; Song, Haifeng; Wang, Han

    2016-06-01

    Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn-Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choices on the extrapolation order. Another factor that may influence the extrapolation accuracy is the alignment scheme that eliminates the discontinuity in the wavefunctions with respect to the atomic or cell variables. We prove the equivalence between the two existing schemes, thus the implementation of either of them does not lead to essential difference in the extrapolation accuracy.

  17. On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics

    Fang, Jun; Song, Haifeng; Wang, Han

    2016-01-01

    Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn-Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choice...

  18. Characterization of an extrapolation chamber in a 90Sr/90Y beta radiation field

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Bragg-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents the characterization of an extrapolation chamber in a 90Sr/90Y beta radiation field. The absorbed dose rate to tissue at a depth of 0.07 mm was calculated and is (0.13206±0.0028) μGy. The extrapolation chamber null depth was determined and its value is 60 μm. The influence of temperature, pressure and humidity on the value of the corrected current was also evaluated. Temperature is the parameter that has more influence on this value and the influence of pressure and the humidity is not very significant. Extrapolation curves were obtained. (Author)

  19. A new mini-extrapolation chamber for beta source uniformity measurements

    According to recent international recommendations, beta particle sources should be specified in terms of absorbed dose rates to water at the reference point. However, because of the clinical use of these sources, additional information should be supplied in the calibration reports. This additional information include the source uniformity. A new small volume extrapolation chamber was designed and constructed at the Calibration Laboratory at Instituto de Pesquisas Energeticas e Nucleares, IPEN, Brazil, for the calibration of 90Sr+90Y ophthalmic plaques. This chamber can be used as a primary standard for the calibration of this type of source. Recent additional studies showed the feasibility of the utilization of this chamber to perform source uniformity measurements. Because of the small effective electrode area, it is possible to perform independent measurements by varying the chamber position by small steps. The aim of the present work was to study the uniformity of a 90Sr+90Y plane ophthalmic plaque utilizing the mini extrapolation chamber developed at IPEN. The uniformity measurements were performed by varying the chamber position by steps of 2 mm in the source central axis (x-and y-directions) and by varying the chamber position off-axis by 3 mm steps. The results obtained showed that this small volume chamber can be used for this purpose with a great advantage: it is a direct method, being unnecessary a previously calibration of the measurement device in relation to a reference instrument, and it provides real -time results, reducing the time necessary for the study and the determination of the uncertainties related to the measurements. (authors)

  20. Prediction of the pharmacokinetics and tissue distribution of levofloxacin in humans based on an extrapolated PBPK model.

    Zhu, Liqin; Zhang, Yuan; Yang, Jianwei; Wang, Yongming; Zhang, Jianlei; Zhao, Yuanyuan; Dong, Weilin

    2016-08-01

    This study developed a physiologically based pharmacokinetic (PBPK) model in intraabdominally infected rats and extrapolated it to humans to predict the levofloxacin pharmacokinetics and penetration into tissues. Twelve male rats with intraabdominal infections induced by Escherichia coli received a single dose of 50 mg/kg body weight of levofloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480 and 1440 min after injection, respectively. A PBPK model was developed in rats and extrapolated to humans using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration-versus-time profile of levofloxacin in rats, C max was 23.570 μg/ml at 5 min after intravenous injection, and t1/2 was 2.38 h. The plasma concentration and kinetics in humans were predicted and validated by the observed data. Levofloxacin penetrated and accumulated with high concentrations in the heart, liver, kidney, spleen, muscle and skin tissues in humans. The predicted tissue-to-plasma concentration ratios in abdominal viscera were between 1.9 and 2.3. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict the drug pharmacokinetics and penetration in humans. Levofloxacin had good penetration into the liver, kidney and spleen as well as other tissues in humans. This pathological model extrapolation may provide a reference for the study of antiinfective PK/PD. In our study, levofloxacin penetrated well into abdominal organs. Also ADR monitoring should be implemented when using levofloxacin. PMID:25753830

  1. Full-wave-equation depth extrapolation for true amplitude migration based on a dual-sensor seismic acquisition system

    You, Jiachun; Li, Guangcai; Liu, Xuewei; Han, Wengong; Zhang, Guangde

    2016-03-01

    Most depth extrapolation schemes are based on a one-way wave equation, which possesses limited ability to provide the true amplitude values of reflectors that are highly important for amplitude-versus-offset inversion. After analysing the weaknesses of current migration methods and explaining the reason why wavefields cannot be extrapolated using the full-wave equation in the depth direction, a full-wave-equation migration method based on a new seismic acquisition system is proposed to provide accurately dynamic information of reflection interfaces for migration. In this new seismic acquisition system, double sensor data are provided to solve the acoustic wave equation in the depth domain accurately. To test the performance of recovering the true amplitudes of the full-wave-equation migration, we used a single shot gather and several multiple shot gathers produced by a 2-D numerical modelling technique to demonstrate that our methodology provides better estimated true amplitudes than that of the conventional Kirchhoff and reverse time migration algorithms through comparison of the amplitudes of the target reflectors with its theoretical reflection coefficients. Because double sensors are applied to implement the full-wave-equation migration, it is necessary to study the perfect distance between the double sensors to diminish the migration error for future practical exploration. Based on the application of the full-wave-equation migration method to the first set of actual seismic data collected from our double sensor acquisition system, our proposed method yields higher imaging quality than that of conventional methods. Numerical experiments and actual seismic data show that our proposed method has built a new bridge between true amplitude common-shot migration and full-wave-equation depth extrapolation.

  2. Design and construction of an interface system for the extrapolation chamber from the beta secondary standard

    The Interface System for the Extrapolation Chamber (SICE) contains several devices handled by a personal computer (PC), it is able to get the required data to calculate the absorbed dose due to Beta radiation. The main functions of the system are: a) Measures the ionization current or charge stored in the extrapolation chamber. b) Adjusts the distance between the plates of the extrapolation chamber automatically. c) Adjust the bias voltage of the extrapolation chamber automatically. d) Acquires the data of the temperature, atmospheric pressure, relative humidity of the environment and the voltage applied between the plates of the extrapolation chamber. e) Calculates the effective area of the plates of the extrapolation chamber and the real distance between them. f) Stores all the obtained information in hard disk or diskette. A comparison between the desired distance and the distance in the dial of the extrapolation chamber, show us that the resolution of the system is of 20 μm. The voltage can be changed between -399.9 V and +399.9 V with an error of less the 3 % with a resolution of 0.1 V. These uncertainties are between the accepted limits to be used in the determination of the absolute absorbed dose due to beta radiation. (Author)

  3. Associação de cetamina S(+ e midazolam pelo método convencional de cálculo e pela extrapolação alométrica em bugios-ruivo (Alouatta guariba clamitans: resposta clínica e cardiorrespiratória S(+ ketamine and midazolam association by the conventional method of calculation and allometric extrapolation in red howler monkeys (Alouatta guariba clamitans: clinical and cardiopulmonary response

    Joana Aurora Braun Chagas

    2010-02-01

    Full Text Available O objetivo deste estudo foi avaliar o protocolo de contenção química com cetamina S(+ e midazolam em bugios-ruivos, comparando o cálculo de doses pelo método convencional e o método de extrapolação alométrica. Foram utilizados 12 macacos bugios (Alouatta guariba clamitans hígidos, com peso médio de 4,84±0,97kg, de ambos os sexos. Após jejum alimentar de 12 horas e hídrico de seis horas, realizou-se contenção física manual e aferiram-se os seguintes parâmetros: frequência cardíaca (FC, frequência respiratória (f, tempo de preenchimento capilar (TPC, temperatura retal (TR, pressão arterial sistólica não invasiva (PANI e valores de hemogasometria arterial. Posteriormente, os animais foram alocados em dois grupos: GC (Grupo Convencional, n=06, os quais receberam cetamina S(+ (5mg kg-1 e midazolam (0,5mg kg-1, pela via intramuscular, com doses calculadas pelo método convencional; e GA (Grupo Alometria, n=06, os quais receberam o mesmo protocolo, pela mesma via, utilizando-se as doses calculadas pelo método de extrapolação alométrica. Os parâmetros descritos foram mensurados novamente nos seguintes momentos: M5, M10, M20 e M30 (cinco, 10, 20 e 30 minutos após a administração dos fármacos, respectivamente. Também foram avaliados: qualidade de miorrelaxamento, reflexo podal e caudal, pinçamento interdigital, tempo para indução de decúbito, tempo hábil de sedação, qualidade de sedação, e tempo e qualidade de recuperação. O GA apresentou menor tempo para indução ao decúbito, maior grau e tempo de sedação, bem como redução significativa da FC e PANI de M5 até M30, quando comparado ao GC. Conclui-se que o grupo no qual o cálculo de dose foi realizado por meio da alometria (GA apresentou melhor grau de relaxamento muscular e sedação, sem produzir depressão cardiorrespiratória significativa.The aim of this study was to evaluate a protocol of chemical restraint comparing the conventional method of

  4. Extrapolated masses towards drip lines from the regularity of the AMC12 mass surfaces

    The new atomic mass compilation AMC12 provides a variety of potential uses. One such important application is to predict dependable estimates of unknown, poorly known or questionable masses and extrapolation toward the drip lines and also to test the theoretical models. Such an attempt has been made in this work. The procedures by which we get the extrapolated values encompass a subjective component in the form of individual judgments. So we want to study the possibilities of avoiding the personal judgment by applying objective techniques for extrapolation. Despite the complexity of nuclear interactions some simple trends in the mass surfaces can be used to obtain unknown masses

  5. Nonparametric reconstruction of the cosmic expansion with local regression smoothing and simulation extrapolation

    Montiel, Ariadna; Sendra, Irene; Escamilla-Rivera, Celia; Salzano, Vincenzo

    2014-01-01

    In this work we present a nonparametric approach, which works on minimal assumptions, to reconstruct the cosmic expansion of the Universe. We propose to combine a locally weighted scatterplot smoothing method and a simulation-extrapolation method. The first one (Loess) is a nonparametric approach that allows to obtain smoothed curves with no prior knowledge of the functional relationship between variables nor of the cosmological quantities. The second one (Simex) takes into account the effect of measurement errors on a variable via a simulation process. For the reconstructions we use as raw data the Union2.1 Type Ia Supernovae compilation, as well as recent Hubble parameter measurements. This work aims to illustrate the approach, which turns out to be a self-sufficient technique in the sense we do not have to choose anything by hand. We examine the details of the method, among them the amount of observational data needed to perform the locally weighted fit which will define the robustness of our reconstructio...

  6. Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals?

    Despite that Tauc plot extrapolation has been widely adopted for extracting bandgap energies of semiconductors, there is a lack of theoretical support for applying it to nanocrystals. In this paper, direct-allowed optical transitions in semiconductor nanocrystals have been formulated based on a purely theoretical approach. This result reveals a size-dependant transition of the power factor used in Tauc plot, increasing from one half used in the 3D bulk case to one in the 0D case. This size-dependant intermediate value of power factor allows a better extrapolation of measured absorption data. Being a material characterization technique, the generalized Tauc extrapolation gives a more reasonable and accurate acquisition of the intrinsic bandgap, while the unjustified purpose of extrapolating any elevated bandgap caused by quantum confinement is shown to be incorrect

  7. Application of a framework for extrapolating chemical effects across species in pathways controlled by estrogen receptor-á

    Cross-species extrapolation of toxicity data from limited surrogate test organisms to all wildlife with potential of chemical exposure remains a key challenge in ecological risk assessment. A number of factors affect extrapolation, including the chemical exposure, pharmacokinetic...

  8. Back-extrapolated and year-specific NO2 land use regression models for Great Britain - Do they yield different exposure assessment?

    Gulliver, John; de Hoogh, Kees; Hoek, Gerard; Vienneau, Danielle; Fecht, Daniela; Hansell, Anna

    2016-01-01

    Robust methods to estimate historic population air pollution exposures are important tools for epidemiological studies evaluating long-term health effects. We developed land use regression (LUR) models for NO2 exposure in Great Britain for 1991 and explored whether the choice of year-specific or back-extrapolated LUR yields 1) similar LUR variables and model performance, and 2) similar national and regional address-level and small-area concentrations. We constructed two LUR models for 1991using NO2 concentrations from the diffusion tube monitoring network, one using 75% of all available measurement sites (that over-represent industrial areas), and the other using 75% of a subset of sites proportionate to population by region to study the effects of monitoring site selection bias. We compared, using the remaining (hold-out) 25% of monitoring sites, the performance of the two 1991 models with back-extrapolation of a previously published 2009 model, developed using NO2 concentrations from automatic chemiluminescence monitoring sites and predictor variables from 2006/2007. The 2009 model was back-extrapolated to 1991 using the same predictors (1990 & 1995) used to develop 1991 models. The 1991 models included industrial land use variables, not present for 2009. The hold-out performance of 1991 models (mean-squared-error-based-R(2): 0.62-0.64) was up to 8% higher and ~1μg/m(3) lower in root mean squared error than the back-extrapolated 2009 model, with best performance from the subset of sites representing population exposures. Year-specific and back-extrapolated exposures for residential addresses (n=1.338,399) and small areas (n=10.518) were very highly linearly correlated for Great Britain (r>0.83). This study suggests that year-specific model for 1991 and back-extrapolation of the 2009 LUR yield similar exposure assessment. PMID:27107225

  9. Limitations of force-free magnetic field extrapolations: revisiting basic assumptions

    Peter, H; Warnecke, J.; Chitta, L. P.; Cameron, R. H.

    2015-01-01

    Force-free extrapolations are widely used to study the magnetic field in the solar corona based on surface measurements. The extrapolations assume that the ratio of internal energy of the plasma to magnetic energy, the plasma-beta is negligible. Despite the widespread use of this assumption observations, models, and theoretical considerations show that beta is of the order of a few percent to more than 10%, and thus not small. We investigate what consequences this has for the reliability of e...

  10. Question marks to the extrapolation to lower temperatures in high temperature storage life (HTSL) testing in plastic encapsulated IC's

    Schuddeboom, W.; Wübbenhorst, Michael

    1996-01-01

    A model has been constructed to describe ball-bond corrosion in HTSL stress testing. In this model ion-mobility has been believed to be the rate determining step and has been found to be non-linear for the anti-popcorn plastic. In HTSL testing an Arrhenius type extrapolation of the mean-time to failure (MTTF) at high temperature has been used, to predict the value at lower temperatures. This method proves to be correct for a low-stress plastic. However possibly it underestimates the value for...

  11. Developing and utilizing the wavefield kinematics for efficient wavefield extrapolation

    Waheed, Umair bin

    2015-08-01

    Natural gas and oil from characteristically complex unconventional reservoirs, such as organic shale, tight gas and oil, coal-bed methane; are transforming the global energy market. These conventional reserves exist in complex geologic formations where conventional seismic techniques have been challenged to successfully image the subsurface. To acquire maximum benefits from these unconventional reserves, seismic anisotropy must be at the center of our modeling and inversion workflows. I present algorithms for fast traveltime computations in anisotropic media. Both ray-based and finite-difference solvers of the anisotropic eikonal equation are developed. The proposed algorithms present novel techniques to obtain accurate traveltime solutions for anisotropic media in a cost-efficient manner. The traveltime computation algorithms are then used to invert for anisotropy parameters. Specifically, I develop inversion techniques by using diffractions and diving waves in the seismic data. The diffraction-based inversion algorithm can be combined with an isotropic full-waveform inversion (FWI) method to obtain a high-resolution model for the anellipticity anisotropy parameter. The inversion algorithm based on diving waves is useful for building initial anisotropic models for depth-migration and FWI. I also develop the idea of \\'effective elliptic models\\' for obtaining solutions of the anisotropic two-way wave equation. The proposed technique offers a viable alternative for wavefield computations in anisotropic media using a computationally cheaper wave propagation operator. The methods developed in the thesis lead to a direct cost savings for imaging and inversion projects, in addition to a reduction in turn-around time. With an eye on the next generation inversion methods, these techniques allow us to incorporate more accurate physics into our modeling and inversion framework.

  12. Richardson Extrapolation Based Error Estimation for Stochastic Kinetic Plasma Simulations

    Cartwright, Keigh

    2014-10-01

    To have a high degree of confidence in simulations one needs code verification, validation, solution verification and uncertainty qualification. This talk will focus on numerical error estimation for stochastic kinetic plasma simulations using the Particle-In-Cell (PIC) method and how it impacts the code verification and validation. A technique Is developed to determine the full converged solution with error bounds from the stochastic output of a Particle-In-Cell code with multiple convergence parameters (e.g. ?t, ?x, and macro particle weight). The core of this method is a multi parameter regression based on a second-order error convergence model with arbitrary convergence rates. Stochastic uncertainties in the data set are propagated through the model usin gstandard bootstrapping on a redundant data sets, while a suite of nine regression models introduces uncertainties in the fitting process. These techniques are demonstrated on Flasov-Poisson Child-Langmuir diode, relaxation of an electro distribution to a Maxwellian due to collisions and undriven sheaths and pre-sheaths. Sandia National Laboratories is a multie-program laboratory managed and operated by Sandia Corporation, a wholly owned subisidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  13. Extrapolation of Nitrogen Fertiliser Recommendation Zones for Maize in Kisii District Using Geographical Information Systems

    A GIS database was established for fertiliser recommendation domains in Kisii District by using FURP fertiliser trial results, KSS soils data and MDBP climatic data. These are manipulated in ESRI's (Personal Computer Environmental Systems Research Institute) ARCINFO and ARCVIEW softwares. The extrapolations were only done for the long rains season (March- August) with three to four years data. GIS technology was used to cluster fertiliser recommendation domains as a geographical area expressed in terms of variation over space and not limited to the site of experiment where a certain agronomic or economic fertiliser recommendation was made. The extrapolation over space was found to be more representative for any recommendation, the result being digital maps describing each area in the geographical space. From the results of the extrapolations, approximately 38,255 ha of the district require zero Nitrogen (N) fertilisation while 94,330 ha requires 75 kg ha-1 Nitrogen fertilisation during the (March-August) long rains. The extrapolation was made difficult since no direct relationships could be established to occur between the available-N, % Carbon (C) or any of the other soil properties with the obtained yields. Decision rules were however developed based on % C which was the soil variable with values closest to the obtained yields. 3% organic carbon was found to be the boundary between 0 application and 75 kg-N application. GIS techniques made it possible to model and extrapolates the results using the available data. The extrapolations still need to be verified with more ground data from fertiliser trials. Data gaps in the soil map left some soil mapping units with no recommendations. Elevation was observed to influence yields and it should be included in future extrapolation by clustering digital elevation models with rainfall data in a spatial model at the district scale

  14. Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting

    Highlights: ► The maximal predictive step size is determined by the largest Lyapunov exponent. ► A proper forecasting step size is applied to load demand forecasting. ► The improved approach is validated by the actual load demand data. ► Non-linear fractal extrapolation method is compared with three forecasting models. ► Performance of the models is evaluated by three different error measures. - Abstract: Precise short-term load forecasting (STLF) plays a key role in unit commitment, maintenance and economic dispatch problems. Employing a subjective and arbitrary predictive step size is one of the most important factors causing the low forecasting accuracy. To solve this problem, the largest Lyapunov exponent is adopted to estimate the maximal predictive step size so that the step size in the forecasting is no more than this maximal one. In addition, in this paper a seldom used forecasting model, which is based on the non-linear fractal extrapolation (NLFE) algorithm, is considered to develop the accuracy of predictions. The suitability and superiority of the two solutions are illustrated through an application to real load forecasting using New South Wales electricity load data from the Australian National Electricity Market. Meanwhile, three forecasting models: the gray model, the seasonal autoregressive integrated moving average approach and the support vector machine method, which received high approval in STLF, are selected to compare with the NLFE algorithm. Comparison results also show that the NLFE model is outstanding, effective, practical and feasible.

  15. Enhancement of low-quality reconstructed digital hologram images based on frequency extrapolation of large objects under the diffraction limit

    Liu, Ning; Li, Weiliang; Zhao, Dongxue

    2016-06-01

    During the reconstruction of a digital hologram, the reconstructed image is usually degraded by speckle noise, which makes it hard to observe the original object pattern. In this paper, a new reconstructed image enhancement method is proposed, which first reduces the speckle noise using an adaptive Gaussian filter, then calculates the high frequencies that belong to the object pattern based on a frequency extrapolation strategy. The proposed frequency extrapolation first calculates the frequency spectrum of the Fourier-filtered image, which is originally reconstructed from the +1 order of the hologram, and then gives the initial parameters for an iterative solution. The analytic iteration is implemented by continuous gradient threshold convergence to estimate the image level and vertical gradient information. The predicted spectrum is acquired through the analytical iteration of the original spectrum and gradient spectrum analysis. Finally, the reconstructed spectrum of the restoration image is acquired from the synthetic correction of the original spectrum using the predicted gradient spectrum. We conducted our experiment very close to the diffraction limit and used low-quality equipment to prove the feasibility of our method. Detailed analysis and figure demonstrations are presented in the paper.

  16. Enhancement of low-quality reconstructed digital hologram images based on frequency extrapolation of large objects under the diffraction limit

    Liu, Ning; Li, Weiliang; Zhao, Dongxue

    2016-03-01

    During the reconstruction of a digital hologram, the reconstructed image is usually degraded by speckle noise, which makes it hard to observe the original object pattern. In this paper, a new reconstructed image enhancement method is proposed, which first reduces the speckle noise using an adaptive Gaussian filter, then calculates the high frequencies that belong to the object pattern based on a frequency extrapolation strategy. The proposed frequency extrapolation first calculates the frequency spectrum of the Fourier-filtered image, which is originally reconstructed from the +1 order of the hologram, and then gives the initial parameters for an iterative solution. The analytic iteration is implemented by continuous gradient threshold convergence to estimate the image level and vertical gradient information. The predicted spectrum is acquired through the analytical iteration of the original spectrum and gradient spectrum analysis. Finally, the reconstructed spectrum of the restoration image is acquired from the synthetic correction of the original spectrum using the predicted gradient spectrum. We conducted our experiment very close to the diffraction limit and used low-quality equipment to prove the feasibility of our method. Detailed analysis and figure demonstrations are presented in the paper.

  17. Forced Field Extrapolation of the Magnetic Structure of the Hα fibrils in the Solar Chromosphere

    Xiaoshuai, Zhu; Huaning, Wang; Zhanle, Du; Han, He

    2016-07-01

    We present a careful assessment of forced field extrapolation using the Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetogram. We use several metrics to check the convergence property. The extrapolated field lines below 3600 km appear to be aligned with most of the Hα fibrils observed by the New Vacuum Solar Telescope. In the region where magnetic energy is far larger than potential energy, the field lines computed by forced field extrapolation are still consistent with the patterns of Hα fibrils while the nonlinear force-free field results show a large misalignment. The horizontal average of the lorentz force ratio shows that the forced region where the force-free assumption fails can reach heights of 1400–1800 km. The non-force-free state of the chromosphere is also confirmed based on recent radiation magnetohydrodynamics simulations.

  18. Forced field extrapolation of the magnetic structure of the Halpha fibrils in solar chromosphere

    Zhu, Xiaoshuai; Du, Zhanle; He, Han

    2016-01-01

    We present a careful assess of the forced field extrapolation using Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) magnetogram. The convergence property is checked by several metrics. The extrapolated field lines below 3600km appear to be aligned with most Halpha fibrils observed by New Vacuum Solar Telescope (NVST). In the region where magnetic energy far larger than potential energy, field lines computed by forced field extrapolation still consistent with the patterns of Halpha fibrils while non-linear force free field (NLFFF) results show large misalignment. The horizontal average of lorentz force ratio shows the forced region where force-free assumption is failed can reach the height of $1400-1800km$. The non-force-free state of the chromosphere is also confirmed by recent radiation magnetohydrodynamics (MHD) simulation.

  19. Characterization of low energy X-rays beams with an extrapolation chamber

    In laboratories involving Radiological Protection practices, it is usual to use reference radiations for calibrating dosimeters and to study their response in terms of energy dependence. The International Organization for Standardization (ISO) established four series of reference X-rays beams in the ISO- 4037 standard: the L and H series, as low and high air Kerma rates, respectively, the N series of narrow spectrum and W series of wide spectrum. The X-rays beams with tube potential below 30 kV, called 'low energy beams' are, in most cases, critical as far as the determination of their parameters for characterization purpose, such as half-value layer. Extrapolation chambers are parallel plate ionization chambers that have one mobile electrode that allows variation of the air volume in its interior. These detectors are commonly used to measure the quantity Absorbed Dose, mostly in the medium surface, based on the extrapolation of the linear ionization current as a function of the distance between the electrodes. In this work, a characterization of a model 23392 PTW extrapolation chamber was done in low energy X-rays beams of the ISO- 4037 standard, by determining the polarization voltage range through the saturation curves and the value of the true null electrode spacing. In addition, the metrological reliability of the extrapolation chamber was studied with measurements of the value of leakage current and repeatability tests; limit values were established for the proper use of the chamber. The PTW23392 extrapolation chamber was calibrated in terms of air Kerma in some of the ISO radiation series of low energy; the traceability of the chamber to the National Standard Dosimeter was established. The study of energy dependency of the extrapolation chamber and the assessment of the uncertainties related to the calibration coefficient were also done; it was shown that the energy dependence was reduced to 4% when the extrapolation technique was used. Finally, the first

  20. Extrapolation ionisation chamber measurements on beta-emitting sources produced for the CEGB collaborative radiobiology programme

    This report describes the structure and application of an extrapolation ionisation chamber used for measuring dose-rates from plane and point beta-emitting sources. These measurements form the basis of the dosimetry for a collaborative radiobiological study of skin to study both stochastic and non-stochastic effects. A small sample from the wide range of measurements undertaken in the programme has been selected to illustrate the procedures involved. The extrapolation chamber is currently being automated and it is intended that this report should provide a source reference to the basis of the measurements made between 1977-86. (author)

  1. Molecules-in-Molecules: An Extrapolated Fragment-Based Approach for Accurate Calculations on Large Molecules and Materials.

    Mayhall, Nicholas J; Raghavachari, Krishnan

    2011-05-10

    We present a new extrapolated fragment-based approach, termed molecules-in-molecules (MIM), for accurate energy calculations on large molecules. In this method, we use a multilevel partitioning approach coupled with electronic structure studies at multiple levels of theory to provide a hierarchical strategy for systematically improving the computed results. In particular, we use a generalized hybrid energy expression, similar in spirit to that in the popular ONIOM methodology, that can be combined easily with any fragmentation procedure. In the current work, we explore a MIM scheme which first partitions a molecule into nonoverlapping fragments and then recombines the interacting fragments to form overlapping subsystems. By including all interactions with a cheaper level of theory, the MIM approach is shown to significantly reduce the errors arising from a single level fragmentation procedure. We report the implementation of energies and gradients and the initial assessment of the MIM method using both biological and materials systems as test cases. PMID:26610128

  2. Quantitative expression of uncertainty in nowcasting heavy convective precipitation in Central Europe by extrapolation methods

    Mejsnar, Jan; Sokol, Zbyněk; Pešice, Petr

    Oberpfaffenhofen-Wessling: Institut für Physik der Atmosphäre, 2014. [ERAD 2014 - 8th European Conference on Radar in Meteorology and Hydrology. 01.09.2014-05.09.2014, Garmisch-Partenkirchen] Institutional support: RVO:68378289 Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.pa.op.dlr.de/erad2014/programme/ShortAbstracts/262_short.pdf

  3. Investigation of applicability of extrapolation method for sample field determination in single-yoke measuring setup

    Stupakov, Oleksandr

    2006-01-01

    Roč. 307, - (2006), s. 279-287. ISSN 0304-8853 R&D Projects: GA AV ČR(CZ) 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic measurement * open magnetic sample * surface field determination * single-yoke setup * magnetic non-destructive testing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.212, year: 2006

  4. Measurement of the output of ISO recommended beta sources with an extrapolation chamber

    Output measurements in terms of absorbed dose rate to tissue were carried out for the ISO (International Organization for Standardization) recommended beta sources 90Sr/90Y, 85Kr and 147Pm using an extrapolation chamber. A holder made of anodized aluminium for the extrapolation chamber for the output measurements was designed indigenously. The measured dose rates for three beta sources were compared with the corresponding values provided in the certificate by the Physikalisch-Technische Bundesanstalt (PTB), the National Standard Laboratory of Germany. Depending upon the source and source-to-chamber distance, the PTB certificate values have uncertainties in the range ±1.2–±1.5%. The measured dose rates have uncertainties of about ±0.3%. The deviations between the measured dose rates and the PTB certificate values compare well (maximum deviation is about 2%) considering the combined uncertainties associated with the measurements and the certificate values. The study suggests that the beta irradiation system comprising the above beta sources can be utilized for quality assurance programme related to personnel monitoring services in India. - Highlights: • Absorbed dose rates to tissue were measured for 90Sr/90Y, 85Kr and 147Pm ISO recommended beta sources with extrapolation chamber. • A holder made of aluminium was designed indigenously for the extrapolation chamber. • The measured dose rates agree well with the values provided in the PTB certificate. • The study suggests beta sources can be utilized for QA programme in personnel monitoring services

  5. Extrapolating toxic effects on individuals to the population level: the role of dynamic energy budgets.

    Jager, Tjalling; Klok, Chris

    2010-11-12

    The interest of environmental management is in the long-term health of populations and ecosystems. However, toxicity is usually assessed in short-term experiments with individuals. Modelling based on dynamic energy budget (DEB) theory aids the extraction of mechanistic information from the data, which in turn supports educated extrapolation to the population level. To illustrate the use of DEB models in this extrapolation, we analyse a dataset for life cycle toxicity of copper in the earthworm Dendrobaena octaedra. We compare four approaches for the analysis of the toxicity data: no model, a simple DEB model without reserves and maturation (the Kooijman-Metz formulation), a more complex one with static reserves and simplified maturation (as used in the DEBtox software) and a full-scale DEB model (DEB3) with explicit calculation of reserves and maturation. For the population prediction, we compare two simple demographic approaches (discrete time matrix model and continuous time Euler-Lotka equation). In our case, the difference between DEB approaches and population models turned out to be small. However, differences between DEB models increased when extrapolating to more field-relevant conditions. The DEB3 model allows for a completely consistent assessment of toxic effects and therefore greater confidence in extrapolating, but poses greater demands on the available data. PMID:20921051

  6. How to Extrapolate A String Model to Finite Temperature: Interpolations and Implications for the Hagedorn Transition

    Dienes, Keith R; Dienes, Keith R.; Lennek, Michael

    2005-01-01

    In this paper, we discuss the important question of how to extrapolate a given zero-temperature string model to finite temperature. It turns out that this issue is surprisingly subtle, and we show that many of the standard results require modification. For concreteness, we focus on the case of the ten-dimensional SO(32) heterotic string, and show that the usual finite-temperature extrapolation for this string is inconsistent at the level of a proper worldsheet theory. We then derive the proper extrapolation, and in the process uncover a universal Hagedorn temperature for all tachyon-free closed string theories in ten dimensions --- both Type II and heterotic. As we discuss, these results are not in conflict with the well-known exponential growth in the degeneracies of string states in such models. This writeup is a concise summary of our recent paper hep-th/0505233, here presented using a ``bottom-up'' approach based on determining self-consistent finite-temperature extrapolations of zero-temperature string m...

  7. Extrapolation of multiplicity distribution in p+p(\\bar{p}) collisions to LHC energies

    Dash, Ajay Kumar; Mohanty, Bedangadas

    2010-02-01

    The multiplicity (Nch) and pseudorapidity distribution (dNch/dη) of primary charged particles in p + p collisions at Large Hadron Collider (LHC) energies of \\sqrt{s} = 10 and 14 TeV are obtained from extrapolation of existing measurements at lower \\sqrt{s}. These distributions are then compared to calculations from PYTHIA and PHOJET models. The existing \\sqrt{s} measurements are unable to distinguish between a logarithmic and power law dependence of the average charged particle multiplicity (langNchrang) on \\sqrt{s}, and their extrapolation to energies accessible at LHC give very different values. Assuming a reasonably good description of inclusive charged particle multiplicity distributions by negative binomial distribution (NBD) at lower \\sqrt{s} to hold for LHC energies, we observe that the logarithmic \\sqrt{s} dependences of langNchrang are favored by the models at midrapidity. The dNch/dη versus η distributions for the existing measurements are found to be reasonably well described by a function with three parameters which accounts for the basic features of the distribution, height at midrapidity, central rapidity plateau and the higher rapidity fall-off. Extrapolation of these parameters as a function of \\sqrt{s} is used to predict the pseudorapidity distributions of charged particles at LHC energies. dNch/dη calculations from PYTHIA and PHOJET models are found to be lower compared to those obtained from the extrapolated dNch/dη versus η distributions for a broad η range.

  8. EVALUATION OF MINIMUM DATA REQUIREMENTS FOR ACUTE TOXICITY VALUE EXTRAPOLATION WITH AQUATIC ORGANISMS

    Buckler, Denny R., Foster L. Mayer, Mark R. Ellersieck and Amha Asfaw. 2003. Evaluation of Minimum Data Requirements for Acute Toxicity Value Extrapolation with Aquatic Organisms. EPA/600/R-03/104. U.S. Environmental Protection Agency, National Health and Environmental Effects Re...

  9. Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine

    Since the turbocharger turbine plays an important role in determining the engine performance, how to model and extrapolate mass flow characteristics of the turbocharger turbine is very important especially when only a narrow range of turbine data is provided by manufacturers. In this paper, a new mass flow model is proposed based on the physical model of a radial turbine simplified as two nozzles in series. With the ideal nozzle flow equation applied on the turbine stator, the mass flow rate through the turbine can be expressed with three fitted coefficients which have clear physical meanings. Existing empirical and partly empirical models of turbine mass flow characteristics are reviewed and compared with the deduced model in the Matlab software. The results show that considering the number of fitted coefficients and the modeling accuracy, the deduced model performs well in regression analyses conducted with experimental data tested from three radial turbines of different sizes. Also interpolating and extrapolating performances of this new model can match the turbine model in the GT-Power commercial software. Thus this new model is sufficiently robust to model and extrapolate mass flow characteristics of the radial turbocharger turbine at off design operating conditions. - Highlights: • A physical based turbine model of mass flow characteristics is proposed. • Existing turbine mass flow models are reviewed and summarized. • Comparative analyses of the deduced model and existing models are conducted. • Interpolating and extrapolating abilities of the deduced model are evaluated

  10. Nowcasting of precipitation by an NWP model using assimilation of extrapolated radar reflectivity

    Sokol, Zbyněk; Zacharov, Petr, jr.

    2012-01-01

    Roč. 138, č. 665 (2012), s. 1072-1082. ISSN 0035-9009 Institutional support: RVO:68378289 Keywords : precipitation forecast * radar extrapolation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.327, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/qj.970/abstract

  11. Corrosion allowances for sodium heated steam generators: evaluation of effects and extrapolation to component life time

    Steam generator tubes are subjected to two categories of corrosion; metal/sodium reactions and metal/water-steam interactions. Referring to these environmental conditions the relevant parameters are discussed. The influences of these parameters on the sodium corrosion and water/steam-reactions are evaluated. Extrapolations of corrosion values to steam generator design conditions are performed and discussed in detail. (author)

  12. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, (90 Sr/90 Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  13. Using composite flow laws to extrapolate lab data on ice to nature

    de Bresser, Hans; Diebold, Sabrina; Durham, William

    2013-04-01

    The progressive evolution of the grain size distribution of deforming and recrystallizing Earth materials directly affects their rheological behaviour in terms of composite grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep. After time, such microstructural evolution might result in strain progressing at a steady-state balance of mechanisms of GSS and GSI creep. In order to come to a meaningful rheological description of materials deforming by combined GSS and GSI mechanisms, composite flow laws are required that bring together individual, laboratory derived GSS and GSI flow laws, and that include full grain size distributions rather than single mean values representing the grain size. A composite flow law approach including grain size distributions has proven to be very useful in solving discrepancies between microstructural observations in natural calcite mylonites and extrapolations of relatively simple laboratory flow laws (Herwegh et al., 2005, J. Struct Geol., 27, 503-521). In the current study, we used previous and new laboratory data on the creep behavior of water ice to investigate if a composite flow law approach also results in better extrapolation of lab data to nature for ice. The new lab data resulted from static grain-growth experiments and from deformation experiments performed on samples with a starting grain size of either image analysis techniques. We also investigated natural microstructures in EPICA drilling ice core samples of Dronning Maud Land in Antartica. The temperature of the core ranges from 228 K at the surface to 272 K close to the bedrock. Grain size distributions (in 2D) were determined for all 41 samples studied. Combining the experimental grain-growth results with the results of the fine-grained and coarse-grained samples allows us to describe the experimental deformation of ice in terms of composite flow and to speculate about the evolution towards a balance between

  14. Imaging outside the box: Resolution enhancement in X-ray coherent diffraction imaging by extrapolation of diffraction patterns

    Latychevskaia, Tatiana; Zontone, Federico; Fink, Hans-Werner

    2015-01-01

    We demonstrate enhancement in resolution of a noncrystalline object reconstructed from an experimental X-ray diffraction pattern by extrapolating the measured diffraction intensities beyond the detector area. The experimental record contains about 10% missing information, including the pixels in the center of the diffraction pattern. The extrapolation is done by applying an iterative routine. The optimal parameters for implementing the iterative routine, including initial padding distribution and an object support, are studied. Extrapolation results in resolution enhancement and better matching between the recovered and experimental amplitudes in the Fourier domain. The limits of the extrapolation procedure are discussed.

  15. Extrapolate well logs based on the constrained interpolation algorithm%基于约束插值算法的井资料外推

    刘红伟; 刘洪; 秦月霜; 首皓

    2008-01-01

    Based on a detailed analysis of differences between seismic data and well logs, we discuss the problem of matching seismic traces and well logs and present a new matching method based on event search in instantaneous phase which greatly improves seismic resolution. The method is based on flattening events in instantaneous phase to compare the seismic traces to the well log traces with the same phase. We calculate the coefficients using the singular value decomposition method to extrapolate the well logs. As a result, the events in the seismic profile are continuous and match well with well logs. We apply this method to the Mao-2 well in Daqing Oilfield with good results.

  16. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation

    Rong, Lu; Wang, Dayong; Zhou, Xun; Huang, Haochong; Li, Zeyu; Wang, Yunxin

    2014-01-01

    We report here on terahertz (THz) digital holography on a biological specimen. A continuous-wave (CW) THz in-line holographic setup was built based on a 2.52 THz CO2 pumped THz laser and a pyroelectric array detector. We introduced novel statistical method of obtaining true intensity values for the pyroelectric array detector's pixels. Absorption and phase-shifting images of a dragonfly's hind wing were reconstructed simultaneously from single in-line hologram. Furthermore, we applied phase retrieval routines to eliminate twin image and enhanced the resolution of the reconstructions by hologram extrapolation beyond the detector area. The finest observed features are 35 {\\mu}m width cross veins.

  17. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q2 in the range 0.2-1.3 GeV2. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μpGEp/GMp. This quantity decreases with Q2 in a way qualitatively consistent with recent experimental results.

  18. Understanding the biosimilar approval and extrapolation process-A case study of an epoetin biosimilar.

    Agarwal, Amit B; McBride, Ali

    2016-08-01

    The World Health Organization defines a biosimilar as "a biotherapeutic product which is similar in terms of quality, safety and efficacy to an already licensed reference biotherapeutic product." Biosimilars are biologic medical products that are very distinct from small-molecule generics, as their active substance is a biological agent derived from a living organism. Approval processes are highly regulated, with guidance issued by the European Medicines Agency and US Food and Drug Administration. Approval requires a comparability exercise consisting of extensive analytical and preclinical in vitro and in vivo studies, and confirmatory clinical studies. Extrapolation of biosimilars from their original indication to another is a feasible but highly stringent process reliant on rigorous scientific justification. This review focuses on the processes involved in gaining biosimilar approval and extrapolation and details the comparability exercise undertaken in the European Union between originator erythropoietin-stimulating agent, Eprex(®), and biosimilar, Retacrit™. PMID:27317353

  19. Neutron spectroscopy results of JET high-performance plasmas and extrapolations to DT performance

    In a fusion reactor with high energy gain, the fusion power will be mainly thermonuclear (THN). Measurements of the THN neutron rate are a good performance indicator of a fusion plasma, requiring neutron emission spectroscopy (NES) measurements to distinguish thermal and nonthermal contributions. We report here on recent NES results from JET high-performance plasmas with high fractions (about 65%) of THN emission. The analysis is made with a framework for analyzing NES data, taking into account THN reactions and beam-target reactions. The results are used to extrapolate to the equivalent DT rates. Finally, we discuss the applicability of using NES in the deuterium phase of ITER, both for the extrapolations to ITER's future DT performance as well as for the measurements of confined energetic ions.

  20. Neutron spectroscopy results of JET high-performance plasmas and extrapolations to DT performance.

    Hellesen, C; Andersson Sundén, E; Conroy, S; Ericsson, G; Eriksson, J; Gatu Johnson, M; Weiszflog, M

    2010-10-01

    In a fusion reactor with high energy gain, the fusion power will be mainly thermonuclear (THN). Measurements of the THN neutron rate are a good performance indicator of a fusion plasma, requiring neutron emission spectroscopy (NES) measurements to distinguish thermal and nonthermal contributions. We report here on recent NES results from JET high-performance plasmas with high fractions (about 65%) of THN emission. The analysis is made with a framework for analyzing NES data, taking into account THN reactions and beam-target reactions. The results are used to extrapolate to the equivalent DT rates. Finally, we discuss the applicability of using NES in the deuterium phase of ITER, both for the extrapolations to ITER’s future DT performance as well as for the measurements of confined energetic ions. PMID:21058461

  1. Infrared length scale and extrapolations for the no-core shell model

    Wendt, K A; Papenbrock, T; Sääf, D

    2015-01-01

    We precisely determine the infrared (IR) length scale of the no-core shell model (NCSM). In the NCSM, the $A$-body Hilbert space is truncated by the total energy, and the IR length can be determined by equating the intrinsic kinetic energy of $A$ nucleons in the NCSM space to that of $A$ nucleons in a $3(A-1)$-dimensional hyper-radial well with a Dirichlet boundary condition for the hyper radius. We demonstrate that this procedure indeed yields a very precise IR length by performing large-scale NCSM calculations for $^{6}$Li. We apply our result and perform accurate IR extrapolations for bound states of $^{4}$He, $^{6}$He, $^{6}$Li, $^{7}$Li. We also attempt to extrapolate NCSM results for $^{10}$B and $^{16}$O with bare interactions from chiral effective field theory over tens of MeV.

  2. Infrared length scale and extrapolations for the no-core shell model

    Wendt, K. A.; Forssén, C.; Papenbrock, T.; Sääf, D.

    2015-06-01

    We precisely determine the infrared (IR) length scale of the no-core shell model (NCSM). In the NCSM, the A -body Hilbert space is truncated by the total energy, and the IR length can be determined by equating the intrinsic kinetic energy of A nucleons in the NCSM space to that of A nucleons in a 3 (A -1 ) -dimensional hyper-radial well with a Dirichlet boundary condition for the hyper radius. We demonstrate that this procedure indeed yields a very precise IR length by performing large-scale NCSM calculations for 6Li. We apply our result and perform accurate IR extrapolations for bound states of 4He,6He,6Li , and 7Li . We also attempt to extrapolate NCSM results for 10B and 16O with bare interactions from chiral effective field theory over tens of MeV.

  3. 131I-SPGP internal dosimetry: animal model and human extrapolation

    Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's 125ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the 131I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131I were considered. (author)

  4. 131I-CRTX internal dosimetry: animal model and human extrapolation

    Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumor cells but also in the processes of tumor cell adhesion, migration and angiogenesis. 125I-Crtx, a radiolabeled version of a peptide derived from Crotalus durissus terrificus snake venom, specifically binds to tumor and triggers apoptotic signalling. At the present work, 125I-Crtx biokinetic data (evaluated in mice bearing Erlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for 131I-Crtx. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131I in the tissue were considered in dose calculations. (author)

  5. Improving Predictions with Reliable Extrapolation Schemes and Better Understanding of Factorization

    More, Sushant N

    2016-01-01

    We investigate two distinct sources of uncertainty in low-energy nuclear physics calculations and develop ways to account for them. Harmonic oscillator basis expansions are widely used in ab-initio nuclear structure calculations. Finite computational resources usually require that the basis be truncated before observables are fully converged, necessitating reliable extrapolation schemes. We show that a finite oscillator basis effectively imposes a hard-wall boundary condition. We accurately determine the position of the hard-wall as a function of oscillator space parameters, derive extrapolation formulas for the energy and other observables, and discuss the extension of this approach to higher angular momentum. Nucleon knockout reactions have been widely used to study and understand nuclear properties. Such an analysis implicitly assumes that the effects of the probe can be separated from the physics of the target nucleus. This factorization between nuclear structure and reaction components depends on the ren...

  6. {sup 131}I-SPGP internal dosimetry: animal model and human extrapolation

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soprani, Juliana; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: hma@cdtn.br; Figueiredo, Suely Gomes de [Universidade Federal do Espirito Santo, (UFES), Vitoria, ES (Brazil). Dept. de Ciencias Fisiologicas. Lab. de Quimica de Proteinas

    2009-07-01

    Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's {sup 125}ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the {sup 131}I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I were considered. (author)

  7. Molecular Dynamics/Order Parameter eXtrapolation (MD/OPX) for Bionanosystem Simulations

    Miao, Yinglong; Ortoleva, Peter J.

    2009-01-01

    A multiscale approach, Molecular Dynamics/Order Parameter eXtrapolation (MD/OPX), to the all-atom simulation of large bionanosystems is presented. The approach starts with the introduction of a set of order parameters (OPs) automatically generated with orthogonal polynomials to characterize the nanoscale features of bionanosystems. The OPs are shown to evolve slowly via Newton’s equations and the all-atom multiscale analysis (AMA) developed earlier1 demonstrates the existence of their stochas...

  8. Charge symmetry breaking from a chiral extrapolation of moments of quark distribution functions

    Shanahan, P. E.; Thomas, A. W.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia)

    2013-01-01

    We present a determination, from lattice QCD, of charge symmetry violation in the spin- independent and spin-dependent parton distribution functions of the nucleon. This is done by chirally extrapolating recent QCDSF/UKQCD Collaboration lattice simulations of the first several Mellin moments of the parton distribution functions of octet baryons to the physical point. We find small chiral corrections for the polarized moments, while the corrections are quantitatively significant in the unpolar...

  9. A Spatial Extrapolation Approach to Assess the Impact of Climate Change on Water Resource Systems

    Pina, J.; Tilmant, A.; Anctil, F.

    2015-12-01

    The typical approach to assess climate change impacts on water resources systems is based on a vertical integration/coupling of models: GCM models are run to project future precipitations and temperatures, which are then downscaled and used as inputs to hydrologic models whose outputs are processed by water systems models. From a decision-making point of view, this top-down vertical approach presents some challenges. For example, since the range of uncertainty that can be explored with GCM is limited, researchers are relying on ensembles to enlarge the spread, making the modeling approach even more demanding in terms of computation time and resource. When a particular water system must be analyzed, the question is to know whether this computationally intensive vertical approach is necessary in the first place or if we could extrapolate projections available in neighboring systems to feed the water system model? This would be equivalent to a horizontal approach. The proposed study addresses this question by comparing the performance of a water resource system under future climate conditions using the vertical and horizontal approaches. The methodology is illustrated with the hydropower system of the Gatineau River Basin in Quebec, Canada. Vertically obtained hydrologic projections available in those river basins are extrapolated and used as inputs to a stochastic multireservoir optimization model. Two different extrapolation techniques are tested. The first one simply relies on the ratios between the drainage areas. The second exploits the covariance structure found in historical flow data throughout the region. The analysis of the simulation results reveals that the annual and weekly energy productions of the system derived from the horizontal approach are statistically equivalent to those obtained with the vertical one, regardless of the extrapolation technique used.

  10. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner

    Schwahofer, Andrea [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Clinical Center Vivantes, Neukoelln (Germany). Dept. of Radiotherapy and Oncology; Baer, Esther [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Kuchenbecker, Stefan; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiology; Grossmann, J. Guenter [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Ortenau Klinikum Offenburg-Gengenbach (Germany). Dept. of Radiooncology; Sterzing, Florian [Heidelberg Univ. (Germany). Dept. of Radiation Oncology; German Cancer Research Center, Heidelberg (Germany). Dept. of Radiotherapy

    2015-07-01

    V. However, the dose uncertainty remains of the order of 10% to 20%. Thus, the improvement is not significant for radiotherapy planning. For amalgam with a density between steel and tungsten, monoenergetic data sets of a patient do not show substantial artifact reduction. The local dose uncertainties around the metal artifact determined for a static field are of the order of 5%. Although dental fillings are smaller than the phantom inserts, metal artifacts could not be reduced effectively. In conclusion, the image based monoenergetic extrapolation method does not provide efficient reduction of the consequences of CT-generated metal artifacts for radiation therapy planning, but the suitability of other MAR methods will be subsequently studied.

  11. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner.

    Schwahofer, Andrea; Bär, Esther; Kuchenbecker, Stefan; Grossmann, J Günter; Kachelrieß, Marc; Sterzing, Florian

    2015-12-01

    % to 20%. Thus, the improvement is not significant for radiotherapy planning. For amalgam with a density between steel and tungsten, monoenergetic data sets of a patient do not show substantial artifact reduction. The local dose uncertainties around the metal artifact determined for a static field are of the order of 5%. Although dental fillings are smaller than the phantom inserts, metal artifacts could not be reduced effectively. In conclusion, the image based monoenergetic extrapolation method does not provide efficient reduction of the consequences of CT-generated metal artifacts for radiation therapy planning, but the suitability of other MAR methods will be subsequently studied. PMID:26144602

  12. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner

    20%. Thus, the improvement is not significant for radiotherapy planning. For amalgam with a density between steel and tungsten, monoenergetic data sets of a patient do not show substantial artifact reduction. The local dose uncertainties around the metal artifact determined for a static field are of the order of 5%. Although dental fillings are smaller than the phantom inserts, metal artifacts could not be reduced effectively. In conclusion, the image based monoenergetic extrapolation method does not provide efficient reduction of the consequences of CT-generated metal artifacts for radiation therapy planning, but the suitability of other MAR methods will be subsequently studied.

  13. Determination of the effective volume of an extrapolation chamber for x-ray dosimetry

    The measurement of air kerma in low energy x-rays is performed at primary calibration laboratories with free-in-air ionization chamber. Although an extrapolation chamber is designed to be used for beta radiation dosimetry it may also be feasible for low energy x-ray since its small changeable volume makes possible to comply the Bragg-Gray cavity principle. An inherent capacitance is associated with any parallel-plate ionization chamber; therefore, there should be a well-defined relationship among the capacitance, the effective collecting area and the electrode spacing of an extrapolation chamber. In this work, a critical analysis of the methodology for determining the air sensitive volume of an extrapolation chamber through its capacitance in standardized condition was done. Low energy filtered x-rays were used with different tube currents and potentials; the relationship between the capacitance and the effective volume of a 23392 Boehm model PTW ionization chamber was analyzed within 0.4 to 5.0 mm electrode distances. (authors)

  14. Limitations of force-free magnetic field extrapolations: revisiting basic assumptions

    Peter, H; Chitta, L P; Cameron, R H

    2015-01-01

    Force-free extrapolations are widely used to study the magnetic field in the solar corona based on surface measurements. The extrapolations assume that the ratio of internal energy of the plasma to magnetic energy, the plasma-beta is negligible. Despite the widespread use of this assumption observations, models, and theoretical considerations show that beta is of the order of a few percent to more than 10%, and thus not small. We investigate what consequences this has for the reliability of extrapolation results. We use basic concepts starting with the force and the energy balance to infer relations between plasma-beta and free magnetic energy, to study the direction of currents in the corona with respect to the magnetic field, and to estimate the errors in the free magnetic energy by neglecting effects of the plasma (beta<<1). A comparison with a 3D MHD model supports our basic considerations. If plasma-beta is of the order of the relative free energy (the ratio of the free magnetic energy to the total...

  15. A model for the data extrapolation of greenhouse gas emissions in the Brazilian hydroelectric system

    Pinguelli Rosa, Luiz; Aurélio dos Santos, Marco; Gesteira, Claudio; Elias Xavier, Adilson

    2016-06-01

    Hydropower reservoirs are artificial water systems and comprise a small proportion of the Earth’s continental territory. However, they play an important role in the aquatic biogeochemistry and may affect the environment negatively. Since the 90s, as a result of research on organic matter decay in manmade flooded areas, some reports have associated greenhouse gas emissions with dam construction. Pioneering work carried out in the early period challenged the view that hydroelectric plants generate completely clean energy. Those estimates suggested that GHG emissions into the atmosphere from some hydroelectric dams may be significant when measured per unit of energy generated and should be compared to GHG emissions from fossil fuels used for power generation. The contribution to global warming of greenhouse gases emitted by hydropower reservoirs is currently the subject of various international discussions and debates. One of the most controversial issues is the extrapolation of data from different sites. In this study, the extrapolation from a site sample where measurements were made to the complete set of 251 reservoirs in Brazil, comprising a total flooded area of 32 485 square kilometers, was derived from the theory of self-organized criticality. We employed a power law for its statistical representation. The present article reviews the data generated at that time in order to demonstrate how, with the help of mathematical tools, we can extrapolate values from one reservoir to another without compromising the reliability of the results.

  16. Parallel difference schemes with interface extrapolation terms for quasi-linear parabolic systems

    Guang-wei YUAN; Xu-deng HANG; Zhi-qiang SHENG

    2007-01-01

    In this paper some new parallel difference schemes with interface extrapolation terms for a quasi-linear parabolic system of equations are constructed. Two types of time extrapolations are proposed to give the interface values on the interface of sub-domains or the values adjacent to the interface points, so that the unconditional stable parallel schemes with the second accuracy are formed.Without assuming heuristically that the original boundary value problem has the unique smooth vector solution, the existence and uniqueness of the discrete vector solutions of the parallel difference schemes constructed are proved. Moreover the unconditional stability of the parallel difference schemes is justified in the sense of the continuous dependence of the discrete vector solution of the schemes on the discrete known data of the original problems in the discrete W2(2,1) (Q△) norms. Finally the convergence of the discrete vector solutions of the parallel difference schemes with interface extrapolation terms to the unique generalized solution of the original quasi-linear parabolic problem is proved. Numerical results are presented to show the good performance of the parallel schemes, including the unconditional stability, the second accuracy and the high parallelism.

  17. Measured and modeled toxicokinetics in cultured fish cells and application to in vitro-in vivo toxicity extrapolation.

    Julita Stadnicka-Michalak

    Full Text Available Effect concentrations in the toxicity assessment of chemicals with fish and fish cells are generally based on external exposure concentrations. External concentrations as dose metrics, may, however, hamper interpretation and extrapolation of toxicological effects because it is the internal concentration that gives rise to the biological effective dose. Thus, we need to understand the relationship between the external and internal concentrations of chemicals. The objectives of this study were to: (i elucidate the time-course of the concentration of chemicals with a wide range of physicochemical properties in the compartments of an in vitro test system, (ii derive a predictive model for toxicokinetics in the in vitro test system, (iii test the hypothesis that internal effect concentrations in fish (in vivo and fish cell lines (in vitro correlate, and (iv develop a quantitative in vitro to in vivo toxicity extrapolation method for fish acute toxicity. To achieve these goals, time-dependent amounts of organic chemicals were measured in medium, cells (RTgill-W1 and the plastic of exposure wells. Then, the relation between uptake, elimination rate constants, and log KOW was investigated for cells in order to develop a toxicokinetic model. This model was used to predict internal effect concentrations in cells, which were compared with internal effect concentrations in fish gills predicted by a Physiologically Based Toxicokinetic model. Our model could predict concentrations of non-volatile organic chemicals with log KOW between 0.5 and 7 in cells. The correlation of the log ratio of internal effect concentrations in fish gills and the fish gill cell line with the log KOW was significant (r>0.85, p = 0.0008, F-test. This ratio can be predicted from the log KOW of the chemical (77% of variance explained, comprising a promising model to predict lethal effects on fish based on in vitro data.

  18. J-85 jet engine noise measured in the ONERA S1 wind tunnel and extrapolated to far field

    Soderman, Paul T.; Julienne, Alain; Atencio, Adolph, Jr.

    1991-01-01

    Noise from a J-85 turbojet with a conical, convergent nozzle was measured in simulated flight in the ONERA S1 Wind Tunnel. Data are presented for several flight speeds up to 130 m/sec and for radiation angles of 40 to 160 degrees relative to the upstream direction. The jet was operated with subsonic and sonic exhaust speeds. A moving microphone on a 2 m sideline was used to survey the radiated sound field in the acoustically treated, closed test section. The data were extrapolated to a 122 m sideline by means of a multiple-sideline source-location method, which was used to identify the acoustic source regions, directivity patterns, and near field effects. The source-location method is described along with its advantages and disadvantages. Results indicate that the effects of simulated flight on J-85 noise are significant. At the maximum forward speed of 130 m/sec, the peak overall sound levels in the aft quadrant were attentuated approximately 10 dB relative to sound levels of the engine operated statically. As expected, the simulated flight and static data tended to merge in the forward quadrant as the radiation angle approached 40 degrees. There is evidence that internal engine or shock noise was important in the forward quadrant. The data are compared with published predictions for flight effects on pure jet noise and internal engine noise. A new empirical prediction is presented that relates the variation of internally generated engine noise or broadband shock noise to forward speed. Measured near field noise extrapolated to far field agrees reasonably well with data from similar engines tested statically outdoors, in flyover, in a wind tunnel, and on the Bertin Aerotrain. Anomalies in the results for the forward quadrant and for angles above 140 degrees are discussed. The multiple-sideline method proved to be cumbersome in this application, and it did not resolve all of the uncertainties associated with measurements of jet noise close to the jet. The

  19. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework

    Vélez, J. J.; Puricelli, M.; López Unzu, F.; Francés, F.

    2009-01-01

    A Regional Water Resources study was performed at basins within and draining to the Basque Country Region (N of Spain), with a total area of approximately 8500 km2. The objective was to obtain daily and monthly long-term discharges in 567 points, most of them ungauged, with basin areas ranging from 0.25 to 1850 km2. In order to extrapolate the calibrations at gauged points to the ungauged ones, a distributed and conceptually based model called TET...

  20. Magnetic form factors of the octet baryons from lattice QCD and chiral extrapolation

    We present a 2+1-flavor lattice QCD calculation of the electromagnetic Dirac and Pauli form factors of the octet baryons. The magnetic Sachs form factor is extrapolated at six fixed values of Q2 to physical pseudoscalar masses and infinite volume using a formulation based on heavy baryon chiral perturbation theory with finite-range regularization. We properly account for omitted disconnected quark contractions using a partially-quenched effective field theory formalism. The results compare well with the experimental form factors of the nucleon and the magnetic moments of the octet baryons.

  1. QSAR analysis and data extrapolation among mammals in a series of aliphatic alcohols.

    Tichý, M.; Trcka, V; Roth, Z; Krivucová, M

    1985-01-01

    Concepts of QSAR analysis and biological similarity models are combined for use in extrapolation of LD50 values after IP application of a series of aliphatic alcohols (C1-C5) to mouse, hamster, rat, and guinea pig and rabbit. It has been found that although close correlation exists between LD50 values after IP and IV applications for mouse and rat, the QSARs obtained with LD50 after IV application are not suitable for a prediction of LD50 values after IP application for rabbit. Different tran...

  2. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results.

    Barettin, Daniele; De Angelis, Roberta; Prosposito, Paolo; Auf der Maur, Matthias; Casalboni, Mauro; Pecchia, Alessandro

    2014-05-16

    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on In₀.₄₈Ga₀.₅₂ buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, [Formula: see text] bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband [Formula: see text] approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further verifications, which have clarified some aspects of the experimental

  3. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results

    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on In0.48Ga0.52P buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, k-vector ⋅ p-vector bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband k-vector ⋅ p-vector approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further verifications, which have clarified some aspects of the experimental

  4. Challenges for In vitro to in Vivo Extrapolation of Nanomaterial Dosimetry for Human Risk Assessment

    Smith, Jordan N.

    2013-11-01

    The proliferation in types and uses of nanomaterials in consumer products has led to rapid application of conventional in vitro approaches for hazard identification. Unfortunately, assumptions pertaining to experimental design and interpretation for studies with chemicals are not generally appropriate for nanomaterials. The fate of nanomaterials in cell culture media, cellular dose to nanomaterials, cellular dose to nanomaterial byproducts, and intracellular fate of nanomaterials at the target site of toxicity all must be considered in order to accurately extrapolate in vitro results to reliable predictions of human risk.

  5. TOP-DOWN WORKFORCE DEMAND EXTRAPOLATION BASED ON AN EC ENERGY ROADMAP SCENARIO

    ROELOFS Ferry; VON ESTORFF Ulrik

    2014-01-01

    The EHRO-N team of JRC-IET provides the EC with essential data related to supply and demand for nuclear experts based on bottom-up information from the nuclear industry. The current paper deals with an alternative approach to derive figures for the demand side information of the nuclear workforce. Complementary to the bottom-up approach, a top-down modelling approach extrapolation of an EC Energy Roadmap nuclear energy demand scenario is followed here in addition to the survey information. ...

  6. CHARACTERISTICS OF THE H-MODE PEDESTAL AND EXTRAPOLATION TO ITER

    A271 CHARACTERISTICS OF THE H-MODE PEDESTAL AND EXTRAPOLATION TO ITER. The peeling-ballooning mode model for edge stability along with a model for the H-mode transport barrier width is used as an approach to estimating the H-mode pedestal conditions in ITER. Scalings of the barrier width based on ion-orbit loss, neutral penetration, and turbulence suppression are examined and empirical scalings of the barrier width are presented. An empirical scaling for the pedestal β is derived based on ideas from stability and the empirical width scaling. The impact of the stability model and other factors on ELM size is discussed

  7. Two photon decay of the pseudoscalars, the extrapolation to the mass-shell

    Nasrallah, N F

    2001-01-01

    The extrapolation of the decay amplitude of the pseudoscalar mesons into two photons from the soft meson limit where it is obtained from the axial anomaly to the mass-shell involves the contribution of the 0 minus continuum. The corrections to the soft-meson limit is estimated and turns out to be very large for the eta and eta'. The results, however, remain consistent with the values of the singlet-octet mixing angle theta =-19.5 degree and the ratio f8/fpi=1.25 obtained from the chiral perturbation theory.

  8. Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100

    Huss, M.

    2012-01-01

    This study addresses the extrapolation of in-situ glacier mass balance measurements to the mountain-range scale and aims at deriving time series of area-averaged mass balance and ice volume change for all glaciers in the European Alps for the period 1900–2100. Long-term mass balance series for 50 Swiss glaciers based on a combination of field data and modelling, and WGMS data for glaciers in Austria, France and Italy are used. A complete glacier inventory is available for the year 2003. Mass ...

  9. The utility of many-body decompositions for the accurate basis set extrapolation of ab initio data

    We present a powerful new technique for the extrapolation of ab initio data based on many-body decompositions. Using the new methodology and subtle modifications of the standard correlation consistent basis sets, the H+H2 barrier height is estimated at 9.603 kcal/mol with a precision of about 0.003 kcal/mol; this extremely accurate result is all the more striking as it can be obtained using basis sets no larger than aug-cc-pVQZ. The method is also used to yield highly accurate energies for the H+H2 system on a grid of points previously calculated by quantum Monte Carlo. The three-body energy, summed with exact one- and two-body energies, is observed to yield a useful approximate lower bound for the total energy. The highly accurate energies afforded by this method can also be used to assess the accuracy of previously calculated data that has been used to construct potential energy surfaces. As an example, we make a detailed comparison between the new results and the quantum Monte Carlo results for H+H2. copyright 1999 American Institute of Physics

  10. Testing magnetofrictional extrapolation with the Titov-D\\'emoulin model of solar active regions

    Valori, G; Török, T; Titov, V S

    2010-01-01

    We examine the nonlinear magnetofrictional extrapolation scheme using the solar active region model by Titov and D\\'emoulin as test field. This model consists of an arched, line-tied current channel held in force-free equilibrium by the potential field of a bipolar flux distribution in the bottom boundary. A modified version, having a parabolic current density profile, is employed here. We find that the equilibrium is reconstructed with very high accuracy in a representative range of parameter space, using only the vector field in the bottom boundary as input. Structural features formed in the interface between the flux rope and the surrounding arcade-"hyperbolic flux tube" and "bald patch separatrix surface"-are reliably reproduced, as are the flux rope twist and the energy and helicity of the configuration. This demonstrates that force-free fields containing these basic structural elements of solar active regions can be obtained by extrapolation. The influence of the chosen initial condition on the accuracy...

  11. On Extrapolating Past the Range of Observed Data When Making Statistical Predictions in Ecology.

    Paul B Conn

    Full Text Available Ecologists are increasingly using statistical models to predict animal abundance and occurrence in unsampled locations. The reliability of such predictions depends on a number of factors, including sample size, how far prediction locations are from the observed data, and similarity of predictive covariates in locations where data are gathered to locations where predictions are desired. In this paper, we propose extending Cook's notion of an independent variable hull (IVH, developed originally for application with linear regression models, to generalized regression models as a way to help assess the potential reliability of predictions in unsampled areas. Predictions occurring inside the generalized independent variable hull (gIVH can be regarded as interpolations, while predictions occurring outside the gIVH can be regarded as extrapolations worthy of additional investigation or skepticism. We conduct a simulation study to demonstrate the usefulness of this metric for limiting the scope of spatial inference when conducting model-based abundance estimation from survey counts. In this case, limiting inference to the gIVH substantially reduces bias, especially when survey designs are spatially imbalanced. We also demonstrate the utility of the gIVH in diagnosing problematic extrapolations when estimating the relative abundance of ribbon seals in the Bering Sea as a function of predictive covariates. We suggest that ecologists routinely use diagnostics such as the gIVH to help gauge the reliability of predictions from statistical models (such as generalized linear, generalized additive, and spatio-temporal regression models.

  12. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). ARC Centre of Excellence in Particle Physics at the Terascale and CSSM; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). JSC; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: CSSM and QCDSF/UKQCD Collaborations

    2014-03-15

    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q{sup 2} in the range 0.2-1.3 GeV{sup 2}. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}. This quantity decreases with Q{sup 2} in a way qualitatively consistent with recent experimental results.

  13. A prototype of an extrapolation chamber for beta radiation beams of 90Sr+90Y

    Extrapolation chamber is the only primary standard dosimeter for beta radiation. With the aim to test new configurations and materials using easily-available and low-cost materials and fulfill the need of a chamber for scientific metrological purposes, in this paper the prototype of an extrapolation chamber has been built and its performance has been investigated in the beta radiation field of 90Sr+90Y. The main differences between the chamber and commercially available chambers are the geometry, constituent material and configuration. The obtained results were compared with those of the calibration certificate of the source and an agreement within 4 % was verified. The depth-dose curve was also obtained and compared with the curve published in ISO 6980, showing a good agreement. Moreover, Monte Carlo simulation was undertaken using MCNP4C code and the relative difference of 0.3 % was observed compared to the experiment. All of the results proved the suitability of the chamber in the beta radiation field of 90Sr+90Y. (author)

  14. $$ Uncertainty from Extrapolation of Cosmic Ray Air Shower Parameters

    Abbasi, R U

    2016-01-01

    Recent measurements at the LHC of the p-p total cross section have reduced the uncertainty in simulations of cosmic ray air showers. In particular of the depth of shower maximum, called $X_{max}$. However, uncertainties of other important parameters, in particular the multiplicity and elasticity of high energy interactions, have not improved, and there is a remaining uncertainty due to the total cross section. Uncertainties due to extrapolations from accelerator data, at a maximum energy of $\\sim$ one TeV in the p-p center of mass, to 250 TeV ($3\\times10^{19}$ eV in a cosmic ray proton's lab frame) introduce significant uncertainties in predictions of $$. In this paper we estimate a lower limit on these uncertainties. The result is that the uncertainty in $$ is larger than the difference among the modern models being used in the field. At the full energy of the LHC, which is equivalent to $\\sim 1\\times10^{17}$ eV in the cosmic ray lab frame, the extrapolation is not as extreme, and the uncertainty is approxim...

  15. WE-A-17A-01: Absorbed Dose Rate-To-Water at the Surface of a Beta-Emitting Planar Ophthalmic Applicator with a Planar, Windowless Extrapolation Chamber

    Purpose: Currently there is no primary calibration standard for determining the absorbed dose rate-to-water at the surface of β-emitting concave ophthalmic applicators and plaques. Machining tolerances involved in the design of concave window extrapolation chambers are a limiting factor for development of such a standard. Use of a windowless extrapolation chamber avoids these window-machining tolerance issues. As a windowless extrapolation chamber has never been attempted, this work focuses on proof of principle measurements with a planar, windowless extrapolation chamber to verify the accuracy in comparison to initial calibration, which could be extended to the design of a hemispherical, windowless extrapolation chamber. Methods: The window of an extrapolation chamber defines the electrical field, aids in aligning the source parallel to the collector-guard assembly, and decreases the backscatter due to attenuation of lower electron energy. To create a uniform and parallel electric field in this research, the source was made common to the collector-guard assembly. A precise positioning protocol was designed to enhance the parallelism of the source and collector-guard assembly. Additionally, MCNP5 was used to determine a backscatter correction factor to apply to the calibration. With these issues addressed, the absorbed dose rate-to-water of a Tracerlab 90Sr planar ophthalmic applicator was determined using National Institute of Standards and Technology's (NIST) calibration formalism, and the results of five trials with this source were compared to measurements at NIST with a traditional extrapolation chamber. Results: The absorbed dose rate-to-water of the planar applicator was determined to be 0.473 Gy/s ±0.6%. Comparing these results to NIST's determination of 0.474 Gy/s yields a −0.6% difference. Conclusion: The feasibility of a planar, windowless extrapolation chamber has been demonstrated. A similar principle will be applied to developing a

  16. WE-A-17A-01: Absorbed Dose Rate-To-Water at the Surface of a Beta-Emitting Planar Ophthalmic Applicator with a Planar, Windowless Extrapolation Chamber

    Riley, A [of Wisconsin Medical Radiation Research Center, Madison, WI (United States); Soares, C [NIST (Retired), Gaithersburg, MD (United States); Micka, J; Culberson, W [University of Wisconsin Medical Radiation Research Center, Madison, WI (United States); DeWerd, L [University of WIMadison/ ADCL, Madison, WI (United States)

    2014-06-15

    Purpose: Currently there is no primary calibration standard for determining the absorbed dose rate-to-water at the surface of β-emitting concave ophthalmic applicators and plaques. Machining tolerances involved in the design of concave window extrapolation chambers are a limiting factor for development of such a standard. Use of a windowless extrapolation chamber avoids these window-machining tolerance issues. As a windowless extrapolation chamber has never been attempted, this work focuses on proof of principle measurements with a planar, windowless extrapolation chamber to verify the accuracy in comparison to initial calibration, which could be extended to the design of a hemispherical, windowless extrapolation chamber. Methods: The window of an extrapolation chamber defines the electrical field, aids in aligning the source parallel to the collector-guard assembly, and decreases the backscatter due to attenuation of lower electron energy. To create a uniform and parallel electric field in this research, the source was made common to the collector-guard assembly. A precise positioning protocol was designed to enhance the parallelism of the source and collector-guard assembly. Additionally, MCNP5 was used to determine a backscatter correction factor to apply to the calibration. With these issues addressed, the absorbed dose rate-to-water of a Tracerlab 90Sr planar ophthalmic applicator was determined using National Institute of Standards and Technology's (NIST) calibration formalism, and the results of five trials with this source were compared to measurements at NIST with a traditional extrapolation chamber. Results: The absorbed dose rate-to-water of the planar applicator was determined to be 0.473 Gy/s ±0.6%. Comparing these results to NIST's determination of 0.474 Gy/s yields a −0.6% difference. Conclusion: The feasibility of a planar, windowless extrapolation chamber has been demonstrated. A similar principle will be applied to developing a

  17. Top Background Extrapolation for $H \\to WW$ Searches at the LHC

    Kauer, N

    2004-01-01

    A leading order (LO) analysis is presented that demonstrates that key top backgrounds to H -> W^+W^- -> l^\\pm l^\\mp \\sla{p}_T decays in weak boson fusion (WBF) and gluon fusion (GF) at the CERN Large Hadron Collider can be extrapolated from experimental data with an accuracy of order 5% to 10%. If LO scale variation is accepted as proxy for the theoretical error, parton level results indicate that the tt~j background to the H -> WW search in WBF can be determined with a theoretical error of about 5%, while the tt~ background to the H -> WW search in GF can be determined with a theoretical error of better than 1%. Uncertainties in the parton distribution functions contribute an estimated 3% to 10% to the total error.

  18. Extrapolated neutron activation cross sections for dosimetry to 44 MeV

    Thirty-one neutron activation cross sections have been extrapolated to 44 MeV for dosimetry applications at high-energy, accelerator-based neutron sources. All cross sections have undergone integral testing in Be(d,n) fields at E/sub d/ = 14, 16, and 40 MeV. The integral activities for most of the reactions agree within 10% with calculations based on time-of-flight measurements of the flux spectra. Tests show that at least 25 of the cross sections can be used with the SAND II code to unfold neutron spectra with differential errors of 10 to 30% in the neutron energy range from 2 to 30 MeV

  19. Interpolation/extrapolation technique with application to hypervelocity impact of space debris

    Rule, William K.

    1992-01-01

    A new technique for the interpolation/extrapolation of engineering data is described. The technique easily allows for the incorporation of additional independent variables, and the most suitable data in the data base is automatically used for each prediction. The technique provides diagnostics for assessing the reliability of the prediction. Two sets of predictions made for known 5-degree-of-freedom, 15-parameter functions using the new technique produced an average coefficient of determination of 0.949. Here, the technique is applied to the prediction of damage to the Space Station from hypervelocity impact of space debris. A new set of impact data is presented for this purpose. Reasonable predictions for bumper damage were obtained, but predictions of pressure wall and multilayer insulation damage were poor.

  20. Extrapolation of short-term creep rupture data-The potential risk of over-estimation

    Dimmler, G. [Institute for Materials Science, Welding and Forming, Graz University of Technology (Austria)], E-mail: Gerhard.dimmler@engel.at; Weinert, P.; Cerjak, H. [Institute for Materials Science, Welding and Forming, Graz University of Technology (Austria)

    2008-01-15

    This work deals with the creep behaviour of 9-12% Cr steels in the steady-state (secondary) creep regime in order to enable a more detailed and exact description of the creep rupture strength on the basis of the Monkman-Grant relation. The stationary creep behaviour has been investigated by evaluating the creep rate and the change of stress exponent of established grades of high temperature creep resistant steels using the so-called back-stress concept. A change in creep mechanism with applied stress is clearly identified in the creep rupture curves. The impact of this change is discussed and the huge potential for over-estimation of creep strengths from extrapolated short-term creep rupture data is emphasized.

  1. Extrapolation of short-term creep rupture data-The potential risk of over-estimation

    This work deals with the creep behaviour of 9-12% Cr steels in the steady-state (secondary) creep regime in order to enable a more detailed and exact description of the creep rupture strength on the basis of the Monkman-Grant relation. The stationary creep behaviour has been investigated by evaluating the creep rate and the change of stress exponent of established grades of high temperature creep resistant steels using the so-called back-stress concept. A change in creep mechanism with applied stress is clearly identified in the creep rupture curves. The impact of this change is discussed and the huge potential for over-estimation of creep strengths from extrapolated short-term creep rupture data is emphasized

  2. Transient heat loads in current fusion experiments, extrapolation to ITER and consequences for its operation

    New experimental results on transient loads during ELMs and disruptions in present divertor tokamaks are described and used to carry out a extrapolation to ITER reference conditions and to draw consequences for its operation. In particular, the achievement of low energy/convective type I edge localized modes (ELMs) in ITER-like plasma conditions seems the only way to obtain transient loads which may be compatible with an acceptable erosion lifetime of plasma facing components (PFCs) in ITER. Power loads during disruptions, on the contrary, seem to lead in most cases to an acceptable divertor lifetime because of the relatively small plasma thermal energy remaining at the thermal quench and the large broadening of the power flux footprint during this phase. These conclusions are reinforced by calculations of the expected erosion lifetime, under these load conditions, which take into account a realistic temporal dependence of the power fluxes on PFCs during ELMs and disruptions

  3. Modeling of systematic retention of beryllium in rats. Extrapolation to humans

    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and other animal species. Furchner's work includes the obtained model for whole body retention in rats but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with other previously published

  4. Extrapolation of lattice QCD results beyond the power-counting regime

    Leinweber, D B; Young, R D

    2005-01-01

    Resummation of the chiral expansion is necessary to make accurate contact with current lattice simulation results of full QCD. Resummation techniques including relativistic formulations of chiral effective field theory and finite-range regularization (FRR) techniques are reviewed, with an emphasis on using lattice simulation results to constrain the parameters of the chiral expansion. We illustrate how the chiral extrapolation problem has been solved and use FRR techniques to identify the power-counting regime (PCR) of chiral perturbation theory. To fourth-order in the expansion at the 1% tolerance level, we find $0 \\le m_\\pi \\le 0.18$ GeV for the PCR, extending only a small distance beyond the physical pion mass.

  5. Modeling the systemic retention of beryllium in rat. Extrapolation to human

    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and others animal species. Furchner's work includes the obtained model for whole body retention in rats, but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with others previously published. (Author) 12 refs

  6. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide

    Kissling, W. Daniel; Dalby, Lars; Fløjgaard, Camilla;

    2014-01-01

    ”, “Invertebrate”, “Plant”, “Seed”, “Fruit”, and “Leaf”) had high proportions of correctly predicted diet ranks; and (3) the potential of correctly extrapolating specific diet categories varied both within and among clades. Global maps of species richness and proportion showed congruence among trophic levels, but......Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of species’ evolutionary adaptations, ecological and functional roles, and trophic interactions. However, the...... importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals (“MammalDIET”). Diet information was digitized from two global and...

  7. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.; Schaarup-Jensen, Kjeld

    2011-01-01

    Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels....... in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto...

  8. Benchmark Solution for a Three-Dimensional Mixed-Convection Flow, Part 2: Analysis of Richardson Extrapolation in the Presence of a Singularity

    A reference solution to a benchmark problem for a three-dimensional mixed-convection flow in a horizontal rectangular channel differentially heated (Poiseuille-Rayleigh-Benard flow) has been proposed in Part 1 of the present article (Numer. Heat Transfer B, vol. 60, pp. 325-345, 2011). Since mixed Dirichlet and Neumann thermal boundary conditions are used on the horizontal walls of the channel, a temperature gradient discontinuity is generated. The aim of this article is to analyze the consequences of this singularity on Richardson extrapolation (RE) of the numerical solutions. The convergence orders of the numerical methods used (finite difference, finite volume, finite element), observed from RE of local and integral quantities are discussed with an emphasis on singularity influence. With the grids used, it is shown that RE can increase the accuracy of the discrete solutions preferentially with the discretization methods of low space accuracy order, but only in some part of the channel and for a restricted range of the extrapolation coefficient. A correction to the Taylor expansion involved in the RE formalism is proposed to take into account the singularity and to explain the majority of the RE behaviors observed. (authors)

  9. Extrapolated experimental critical parameters of unreflected and steel-reflected massive enriched uranium metal spherical and hemispherical assemblies

    Sixty-nine critical configurations of up to 186 kg of uranium are reported from very early experiments (1960s) performed at the Rocky Flats Critical Mass Laboratory near Denver, Colorado. Enriched (93%) uranium metal spherical and hemispherical configurations were studied. All were thick-walled shells except for two solid hemispheres. Experiments were essentially unreflected; or they included central and/or external regions of mild steel. No liquids were involved. Critical parameters are derived from extrapolations beyond subcritical data. Extrapolations, rather than more precise interpolations between slightly supercritical and slightly subcritical configurations, were necessary because experiments involved manually assembled configurations. Many extrapolations were quite long; but the general lack of curvature in the subcritical region lends credibility to their validity. In addition to delayed critical parameters, a procedure is offered which might permit the determination of prompt critical parameters as well for the same cases. This conjectured procedure is not based on any strong physical arguments

  10. Comparison of various state equations for approximation and extrapolation of experimental hydrogen molar volumes in wide temperature and pressure intervals

    The numerical analysis of practically all existing formulae such as expansion series, Tait, logarithm, Van der Waals and virial equations for interpolation of experimental molar volumes versus high pressure was carried out. One can conclude that extrapolating dependences of molar volumes versus pressure and temperature can be valid. It was shown that virial equations can be used for fitting experimental data at relatively low pressures P<3 kbar too in distinction to other equations. Direct solving of a linear equation of the third order relatively to volume using extrapolated virial coefficients allows us to obtain good agreement between existing experimental data for high pressure and calculated values

  11. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide

  12. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    Kadoura, Ahmad; Sun, Shuyu; Salama, Amgad

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide.

  13. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    Kadoura, Ahmad Salim

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system\\'s potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide. © 2014 Elsevier Inc.

  14. Top-down workforce demand extrapolation based on an EC energy road-map scenario

    The EHRO-N team of JRC-IET provides the EC with essential data related to supply and demand for nuclear experts based on bottom-up information from the nuclear industry. The current paper deals with an alternative approach to derive figures for the demand side information of the nuclear workforce. Complementary to the bottom-up approach, a top-down modelling approach extrapolation of an EC Energy road-map nuclear energy demand scenario is followed here in addition to the survey information. In this top-down modelling approach, the number of nuclear power plants that are in operation and under construction is derived as a function of time from 2010 up to 2050 assuming that the current reactor park will be replaced by generic third generation reactors of 1400 MWe or 1000 MWe. Depending on the size of new build reactors, the analysis shows the number of new reactors required to fulfil the demand for nuclear energy. Based on workforce models for operation and construction of nuclear power plants, the model allows an extrapolation of these respective work-forces. Using the nuclear skills pyramid, the total workforce employed at a plant is broken down in a nuclear (experts), nuclearized, and nuclear aware workforce. With retirement profiles for nuclear power plants derived from the bottom-up EHRO-N survey, the replacement of the current workforce is taken into account. The peak of the new workforce (partly replacing the retiring workforce and additionally keeping up with the growing total workforce demand) for nuclear experts and nuclearized employees is to be expected at the end of the considered period (2050). However, the peak workforce for nuclear aware employees is to be expected around 2020. When comparing to historical data for the nuclear capacity being installed at the same time in Europe, it is clear that the expected future capacity to be installed at the same time in Europe is significantly lower (factor of 2) than in the early 1980's. However, it should

  15. Beagle: an appropriate experimental animal for extrapolating the organ distribution pattern of Th in humans

    The concentrations and the organ distribution patterns of 228Th, 230Th and 232Th in two 9-y-old dogs of our beagle colony were determined. The dogs were exposed only to background environmental levels of Th isotopes through ingestion (food and water) and inhalation as are humans. The organ distribution patterns of the isotopes in the beagles were compared to the organ distribution patterns in humans to determine if it is appropriate to extrapolate the beagle organ burden data to humans. Among soft tissues, only the lungs, lymph nodes, kidney and liver, and skeleton contained measurable amounts of Th isotopes. The organ distribution pattern of Th isotopes in humans and dog are similar, the majority of Th being in the skeleton of both species. The average skeletal concentrations of 228Th in dogs were 30 to 40 times higher than the average skeletal concentrations of the parent 232Th, whereas the concentration of 228Th in human skeleton was only four to five times higher than 232Th. This suggests that dogs have a higher intake of 228Ra through food than humans. There is a similar trend in the accumulations of 232Th, 230Th and 228Th in the lungs of dog and humans. The percentages of 232Th, 230Th and 228Th in human lungs are 26, 9.7 and 4.8, respectively, compared to 4.2, 2.6 and 0.48, respectively, in dog lungs. The larger percentages of Th isotopes in human lungs may be due simply to the longer life span of humans. If the burdens of Th isotopes in human lungs are normalized to an exposure time of 9.2 y (mean age of dogs at the time of sacrifice), the percent burden of 232Th, 230Th and 228Th in human lungs are estimated to be 3.6, 1.3 and 0.66, respectively. These results suggest that the beagle may be an appropriate experimental animal for extrapolating the organ distribution pattern of Th in humans

  16. Gaussian Process Model for Extrapolation of Scattering Observables for Complex Molecules: from Benzene to Benzonitrile

    Cui, Jie; Krems, Roman V

    2015-01-01

    We consider a problem of extrapolating the collision properties of a large polyatomic molecule A-H to make predictions of the dynamical properties for another molecule related to A-H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A-X. We assume that the effect of the $-$H $\\rightarrow$ $-$X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can be used to produce an interval of the observable values that corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C$_6$H$_5$CN with He on the unknown parameters describing the interaction of the H...

  17. Gaussian process model for extrapolation of scattering observables for complex molecules: From benzene to benzonitrile

    We consider a problem of extrapolating the collision properties of a large polyatomic molecule A–H to make predictions of the dynamical properties for another molecule related to A–H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A–X. We assume that the effect of the −H →−X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can be used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C6H5CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He — C6H6 collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C6H5CN with He

  18. Extrapolative capability of two models that estimating soil water retention curve between saturation and oven dryness.

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Sun, Shiyou

    2014-01-01

    Accurate estimation of soil water retention curve (SWRC) at the dry region is required to describe the relation between soil water content and matric suction from saturation to oven dryness. In this study, the extrapolative capability of two models for predicting the complete SWRC from limited ranges of soil water retention data was evaluated. When the model parameters were obtained from SWRC data in the 0-1500 kPa range, the FX model (Fredlund and Xing, 1994) estimations agreed well with measurements from saturation to oven dryness with RMSEs less than 0.01. The GG model (Groenevelt and Grant, 2004) produced larger errors at the dry region, with significantly larger RMSEs and MEs than the FX model. Further evaluations indicated that when SWRC measurements in the 0-100 kPa suction range was applied for model establishment, the FX model was capable of producing acceptable SWRCs across the entire water content range. For a higher accuracy, the FX model requires soil water retention data at least in the 0- to 300-kPa range to extend the SWRC to oven dryness. Comparing with the Khlosi et al. (2006) model, which requires measurements in the 0-500 kPa range to reproduce the complete SWRCs, the FX model has the advantage of requiring less SWRC measurements. Thus the FX modeling approach has the potential to eliminate the processes for measuring soil water retention in the dry range. PMID:25464503

  19. Cross-Species Extrapolation of Models for Predicting Lead Transfer from Soil to Wheat Grain.

    Liu, Ke; Lv, Jialong; Dai, Yunchao; Zhang, Hong; Cao, Yingfei

    2016-01-01

    The transfer of Pb from the soil to crops is a serious food hygiene security problem in China because of industrial, agricultural, and historical contamination. In this study, the characteristics of exogenous Pb transfer from 17 Chinese soils to a popular wheat variety (Xiaoyan 22) were investigated. In addition, bioaccumulation prediction models of Pb in grain were obtained based on soil properties. The results of the analysis showed that pH and OC were the most important factors contributing to Pb uptake by wheat grain. Using a cross-species extrapolation approach, the Pb uptake prediction models for cultivar Xiaoyan 22 in different soil Pb levels were satisfactorily applied to six additional non-modeled wheat varieties to develop a prediction model for each variety. Normalization of the bioaccumulation factor (BAF) to specific soil physico-chemistry is essential, because doing so could significantly reduce the intra-species variation of different wheat cultivars in predicted Pb transfer and eliminate the influence of soil properties on ecotoxicity parameters for organisms of interest. Finally, the prediction models were successfully verified against published data (including other wheat varieties and crops) and used to evaluate the ecological risk of Pb for wheat in contaminated agricultural soils. PMID:27518712

  20. Extrapolation of experimental data on late effects of low-dose radionuclides in man

    The situation of living of population on radionuclide contamination areas was simulated in the experimental study using white strainless rats of different ages. The significance of age for late stochastic effects of internal radionuclide contamination with low doses of 131I, 137Cs, 144Ce and 106Ru was studied. Some common regularities and differences in late effects formation depending on age were found. Results of the study showed that the number of tumors developed increased in groups of animals exposed at the youngest age. The younger animal at the moment of internal radionuclide contamination, the higher percentage of malignant tumors appeared. It was especially so for tumors of endocrine glands (pituitary, suprarenal,- and thyroid). Differences in late effects formation related to different type of radionuclide distribution within the body were estimated. On the base of extrapolation the conclusion was made that human organism being exposed at early postnatal or pubertal period could be the most radiosensitive (1.5-2.0 or sometimes even 3-5 times higher than adults). Data confirmed the opinion that children are the most critical part of population even in case of low dose radiation exposure. (author)

  1. Employing Measures of Heterogeneity and an Object-Based Approach to Extrapolate Tree Species Distribution Data

    Trevor G. Jones

    2014-07-01

    Full Text Available Information derived from high spatial resolution remotely sensed data is critical for the effective management of forested ecosystems. However, high spatial resolution data-sets are typically costly to acquire and process and usually provide limited geographic coverage. In contrast, moderate spatial resolution remotely sensed data, while not able to provide the spectral or spatial detail required for certain types of products and applications, offer inexpensive, comprehensive landscape-level coverage. This study assessed using an object-based approach to extrapolate detailed tree species heterogeneity beyond the extent of hyperspectral/LiDAR flightlines to the broader area covered by a Landsat scene. Using image segments, regression trees established ecologically decipherable relationships between tree species heterogeneity and the spectral properties of Landsat segments. The spectral properties of Landsat bands 4 (i.e., NIR: 0.76–0.90 µm, 5 (i.e., SWIR: 1.55–1.75 µm and 7 (SWIR: 2.08–2.35 µm were consistently selected as predictor variables, explaining approximately 50% of variance in richness and diversity. Results have important ramifications for ongoing management initiatives in the study area and are applicable to wide range of applications.

  2. Physiological modeling and extrapolation of pharmacokinetic interactions from binary to more complex chemical mixtures.

    Krishnan, Kannan; Haddad, Sami; Béliveau, Martin; Tardif, Robert

    2002-12-01

    The available data on binary interactions are yet to be considered within the context of mixture risk assessment because of our inability to predict the effect of a third or a fourth chemical in the mixture on the interacting binary pairs. Physiologically based pharmacokinetic (PBPK) models represent a potentially useful framework for predicting the consequences of interactions in mixtures of increasing complexity. This article highlights the conceptual basis and validity of PBPK models for extrapolating the occurrence and magnitude of interactions from binary to more complex chemical mixtures. The methodology involves the development of PBPK models for all mixture components and interconnecting them at the level of the tissue where the interaction is occurring. Once all component models are interconnected at the binary level, the PBPK framework simulates the kinetics of all mixture components, accounting for the interactions occurring at various levels in more complex mixtures. This aspect was validated by comparing the simulations of a binary interaction-based PBPK model with experimental data on the inhalation kinetics of m-xylene, toluene, ethyl benzene, dichloromethane, and benzene in mixtures of varying composition and complexity. The ability to predict the kinetics of chemicals in complex mixtures by accounting for binary interactions alone within a PBPK model is a significant step toward the development of interaction-based risk assessment for chemical mixtures. PMID:12634130

  3. Extrapolative capability of two models that estimating soil water retention curve between saturation and oven dryness.

    Sen Lu

    Full Text Available Accurate estimation of soil water retention curve (SWRC at the dry region is required to describe the relation between soil water content and matric suction from saturation to oven dryness. In this study, the extrapolative capability of two models for predicting the complete SWRC from limited ranges of soil water retention data was evaluated. When the model parameters were obtained from SWRC data in the 0-1500 kPa range, the FX model (Fredlund and Xing, 1994 estimations agreed well with measurements from saturation to oven dryness with RMSEs less than 0.01. The GG model (Groenevelt and Grant, 2004 produced larger errors at the dry region, with significantly larger RMSEs and MEs than the FX model. Further evaluations indicated that when SWRC measurements in the 0-100 kPa suction range was applied for model establishment, the FX model was capable of producing acceptable SWRCs across the entire water content range. For a higher accuracy, the FX model requires soil water retention data at least in the 0- to 300-kPa range to extend the SWRC to oven dryness. Comparing with the Khlosi et al. (2006 model, which requires measurements in the 0-500 kPa range to reproduce the complete SWRCs, the FX model has the advantage of requiring less SWRC measurements. Thus the FX modeling approach has the potential to eliminate the processes for measuring soil water retention in the dry range.

  4. Extrapolated renormalization group calculation of the surface tension in square-lattice Ising model

    By using self-dual clusters (whose sizes are characterized by the numbers b=2, 3, 4, 5) within a real space renormalization group framework, the longitudinal surface tension of the square-lattice first-neighbour 1/2-spin ferromagnetic Ising model is calculated. The exact critical temperature T sub(c) is recovered for any value of b; the exact assymptotic behaviour of the surface tension in the limit of low temperatures is analytically recovered; the approximate correlation length critical exponents monotonically tend towards the exact value ν=1 (which, at two dimensions, coincides with the surface tension critical exponent μ) for increasingly large cells; the same behaviour is remarked in what concerns the approximate values for the surface tension amplitude in the limit T→T sub(c). Four different numerical procedures are developed for extrapolating to b→infinite the renormalization group results for the surface tension, and quite satisfactory agreement is obtained with Onsager's exact expression (error varying from zero to a few percent on the whole temperature domain). Furthermore the set of RG surface tensions is compared with a set of biased surface tensions (associated to appropriate misfit seams), and find only fortuitous coincidence among them. (Author)

  5. The risk of extrapolation in neuroanatomy: the case of the mammalian vomeronasal system

    Ignacio Salazar

    2009-10-01

    Full Text Available The sense of smell plays a crucial role in mammalian social and sexual behaviour, identification of food, and detection of predators. Nevertheless, mammals vary in their olfactory ability. One reason for this concerns the degree of development of their pars basalis rhinencephali, an anatomical feature that has has been considered in classifying this group of animals as macrosmatic, microsmatic or anosmatic. In mammals, different structures are involved in detecting odours: the main olfactory system, the vomeronasal system (VNS, and two subsystems, namely the ganglion of Grüneberg and the septal organ. Here, we review and summarise some aspects of the comparative anatomy of the VNS and its putative relationship to other olfactory structures. Even in the macrosmatic group, morphological diversity is an important characteristic of the VNS, specifically of the vomeronasal organ and the accessory olfactory bulb. We conclude that it is a big mistake to extrapolate anatomical data of the VNS from species to species, even in the case of relatively close evolutionary proximity between them. We propose to study other mammalian VNS than those of rodents in depth as a way to clarify its exact role in olfaction. Our experience in this field leads us to hypothesise that the VNS, considered for all mammalian species, could be a system undergoing involution or regression, and could serve as one more integrated olfactory subsystem.

  6. Spatial extrapolation of light use efficiency model parameters to predict gross primary production

    Karsten Schulz

    2011-12-01

    Full Text Available To capture the spatial and temporal variability of the gross primary production as a key component of the global carbon cycle, the light use efficiency modeling approach in combination with remote sensing data has shown to be well suited. Typically, the model parameters, such as the maximum light use efficiency, are either set to a universal constant or to land class dependent values stored in look-up tables. In this study, we employ the machine learning technique support vector regression to explicitly relate the model parameters of a light use efficiency model calibrated at several FLUXNET sites to site-specific characteristics obtained by meteorological measurements, ecological estimations and remote sensing data. A feature selection algorithm extracts the relevant site characteristics in a cross-validation, and leads to an individual set of characteristic attributes for each parameter. With this set of attributes, the model parameters can be estimated at sites where a parameter calibration is not possible due to the absence of eddy covariance flux measurement data. This will finally allow a spatially continuous model application. The performance of the spatial extrapolation scheme is evaluated with a cross-validation approach, which shows the methodology to be well suited to recapture the variability of gross primary production across the study sites.

  7. Enhancing resolution properties of array antennas via field extrapolation: application to MIMO systems

    Reggiannini, Ruggero

    2015-12-01

    This paper is concerned with spatial properties of linear arrays of antennas spaced less than half wavelength. Possible applications are in multiple-input multiple-output (MIMO) wireless links for the purpose of increasing the spatial multiplexing gain in a scattering environment, as well as in other areas such as sonar and radar. With reference to a receiving array, we show that knowledge of the received field can be extrapolated beyond the actual array size by exploiting the finiteness of the interval of real directions from which the field components impinge on the array. This property permits to increase the performance of the array in terms of angular resolution. A simple signal processing technique is proposed allowing formation of a set of beams capable to cover uniformly the entire horizon with an angular resolution better than that achievable by a classical uniform-weighing half-wavelength-spaced linear array. Results are also applicable to active arrays. As the above approach leads to arrays operating in super-directive regime, we discuss all related critical aspects, such as sensitivity to external and internal noises and to array imperfections, and bandwidth, so as to identify the basic design criteria ensuring the array feasibility.

  8. Generation of Co3O4 microparticles by solution combustion method and its Zn–Co3O4 composite thin films for corrosion protection

    Graphical abstract: The pseudo-cubic cobalt oxide microparticles have been successfully synthesized by a solution combustion method using Co(NO3)2·6H2O (oxidizer) and dextrose (sugar; fuel). The as-synthesized Co3O4 microparticles are crystalline and Rietveld refinement of calcined samples exhibited cubic structure with space group of Fm3m (No. 227). The generated Co3O4 microparticles were used to fabricate Zn–Co3O4 composite thin films for corrosion protection. Highlights: ► Synthesis of pseudo-cubic Co3O4 microparticles by solution combustion method. ► As-prepared Co3O4 compounds are calcined and structurally characterized. ► Prepared Co3O4 are utilized for the fabrication of Zn–Co3O4 composite thin films. - Abstract: Microcrystalline cobalt oxide (Co3O4) powder was successfully synthesized by a simple, fast, economical and eco-friendly solution-combustion method. The as-synthesized powder was calcined for an hour at temperatures ranging from 100 to 900 °C. The crystallite size, morphology, and chemical state of synthesized powders were characterized by powder XRD, TG-DTA, XPS, SEM/EDAX, TEM and FT-IR spectral methods. The as-synthesized Co3O4 powder was single-crystalline and Rietveld refinement of calcined samples exhibited cubic structure with space group of Fm3m (No. 227). The effect of calcination temperature on crystallite size and morphology was assessed. Scanning electron micrographs show a uniform, randomly oriented pseudo-cubic particle with porous like morphology and EDAX measurement showed its chemical composition. Thermal behavior of as-synthesized compound was examined. The TEM result revealed that, the particles are pseudo-cubic in nature with diameter of 0.2–0.6 μm and a length of 0.9–1.2 μm. The crystallite size increased with increase of calcination temperature. The synthesized Co3O4 powder was used to fabricate Zn–Co3O4 composite thin films and its corrosion behavior was analyzed by anodic polarization, tafel extrapolation

  9. SPECIES DIFFERENCES IN ANDROGEN AND ESTROGEN RECEPTOR STRUCTURE AND FUNCTION AMONG VERTEBRATES AND INVERTEBRATES: INTERSPECIES EXTRAPOLATIONS REGARDING ENDOCRINE DISRUPTING CHEMICALS

    Species Differences in Androgen and Estrogen Receptor Structure and Function Among Vertebrates and Invertebrates: Interspecies Extrapolations regarding Endocrine Disrupting Chemicals VS Wilson1, GT Ankley2, M Gooding 1,3, PD Reynolds 1,4, NC Noriega 1, M Cardon 1, P Hartig1,...

  10. Estimation of absorbed doses in high energy photon and electron beams from a clinical linear accelerator using extrapolation chamber

    Calibration of photon and electron beams from a medical linear accelerator is carried out using absorbed dose calibrated gas cavity chambers in water phantoms and applying different international protocols. Bohm and Schneider developed extrapolation chamber (EC), which are specially designed parallel plate ionization chambers capable of measuring accurately the differential specific charge (dq/dm) by varying air mass in cavity by precise control of electrode separation. Zankowski and Podgorsak reported the efficacy of specially built extrapolation chambers as an integral part of po-lystyrene and solid water phantom to measure absorbed in cobalt-60 gamma beam, 4 to 18 MV x-rays and for 6 to 22 MeV electron beams. Mehenna Arib3 reported their experience in performing absolute dosimetry with high energy photon beams using a commercially available Perspex embedded extrapolation chamber and compared with water measurements. If realization of absorbed dose using these chambers is achieved from first principles, this chamber could become a departmental standard. In our institution we do not have standard cobalt-60 machine for determination of Nd, water factors for thimble chambers and no secondary standards laboratory in this country for traceability of our beam level dosimeters. Therefore we investigated the role of extrapolation chamber (EC) for measurement of absorbed doses with clinical radiotherapy beams

  11. Deposition of inhaled radionuclides in bronchial airways: Implications for extrapolation modeling

    The laboratory rat has frequently been used as a human surrogate to estimate potential health effects following the inhalation of radioactive aerosol particles. Interspecies differences in biological response are commonly related to interspecies differences in particle deposition efficiencies. In addition, the documented site selectivity of bronchial carcinomas suggests that localized particle deposition patterns within bronchial airway bifurcations may have important implications for inhalation risk assessments. Interspecies differences in particle deposition patterns may be related primarily to differences in airway morphometries. Thus the validity of extrapolating rat deposition data to human inhalation conditions depends on their morphometric similarities and differences. It is well known that there are significant structural differences between the human - rather symmetric - and the rat - monopodial - airway systems. In the present approach, we focus on localized deposition patterns and deposition efficiencies in selected asymmetric bronchial airway bifurcations, whose diameters, lengths and branching angles were derived from the stochastic airway models of human and rat lungs (Koblinger and Hofmann, 1985;1988), which are based on the morphometric data of Raabe et al. (1976). The effects of interspecies differences in particle deposition patterns are explored in this study for two asymmetric bifurcation geometries in segmental bronchi and terminal bronchioles of both the human and rat lungs at different particle sizes. In order to examine the effect of flow rate on particle deposition in the human lung, we selected two different minute volumes, i.e., 10 and 60 1 min-1 , which are representative of low and heavy physical activity breathing conditions. In the case of the rat we used a minute volume of 0.234 1 min-1 (Hofmann et al., 1993)

  12. Mangrove litter fall: Extrapolation from traps to a large tropical macrotidal harbour

    Metcalfe, Kristin N.; Franklin, Donald C.; McGuinness, Keith A.

    2011-11-01

    Mangrove litter is a major source of organic matter for detrital food chains in many tropical coastal ecosystems, but scant attention has been paid to the substantial challenges in sampling and extrapolation of rates of litter fall. The challenges arise due to within-stand heterogeneity including incomplete canopy cover, and canopy that is below the high tide mark. We sampled litter monthly for three years at 35 sites across eight mapped communities in the macrotidal Darwin Harbour, northern Australia. Totals were adjusted for mean community canopy cover and the occurrence of canopy below the high tide mark. The mangroves of Darwin Harbour generate an estimated average of 5.0 t ha -1 yr -1 of litter. This amount would have been overestimated by 32% had we not corrected for limited canopy cover and underestimated by 11% had we not corrected for foliage that is below the high tide mark. Had we made neither correction, we would have overestimated litter fall by 17%. Among communities, rates varied 2.6-fold per unit area of canopy, and 3.9-fold among unit area of community. Seaward fringe mangroves were the most productive per unit of canopy area but the canopy was relatively open; Tidal creek forest was the most productive per unit area of community. Litter fall varied 1.1-fold among years and 2.0-fold among months though communities exhibited a range of seasonalities. Our study may be the most extensively stratified and sampled evaluation of mangrove litter fall in a tropical estuary. We believe our study is also the first such assessment to explicitly deal with canopy discontinuities and demonstrates that failure to do so can result in considerable overestimation of mangrove productivity.

  13. Investigative and extrapolative role of microRNAs’ genetic expression in breast carcinoma

    Usmani, Ambreen; Shoro, Amir Ali; Shirazi, Bushra; Memon, Zahida

    2016-01-01

    MicroRNAs (miRs) are non-coding ribonucleic acids consisting of about 18-22 nucleotide bases. Expression of several miRs can be altered in breast carcinomas in comparison to healthy breast tissue, or between various subtypes of breast cancer. These are regulated as either oncogene or tumor suppressors, this shows that their expression is misrepresented in cancers. Some miRs are specifically associated with breast cancer and are affected by cancer-restricted signaling pathways e.g. downstream of estrogen receptor-α or HER2/neu. Connection of multiple miRs with breast cancer, and the fact that most of these post transcript structures may transform complex functional networks of mRNAs, identify them as potential investigative, extrapolative and predictive tumor markers, as well as possible targets for treatment. Investigative tools that are currently available are RNA-based molecular techniques. An additional advantage related to miRs in oncology is that they are remarkably stable and are notably detectable in serum and plasma. Literature search was performed by using database of PubMed, the keywords used were microRNA (52 searches) AND breast cancer (169 searches). PERN was used by database of Bahria University, this included literature and articles from international sources; 2 articles from Pakistan on this topic were consulted (one in international journal and one in a local journal). Of these, 49 articles were shortlisted which discussed relation of microRNA genetic expression in breast cancer. These articles were consulted for this review.

  14. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  15. Accelerated aging embrittlement of cast duplex stainless steel: Activation energy for extrapolation

    Cast duplex stainless steels, used extensively in LWR systems for primary pressure boundary components such as primary coolant pipes, valves, and pumps, are susceptible to thermal aging embrittlement at reactor operating or higher temperatures. Since a realistic aging embrittlement for end-of-life or life-extension conditions (i.e., 32--50 yr of aging at 280--320 degree C) cannot be produced, it is customary to simulate the metallurgical structure by accelerated aging at ∼400 degree C. Over the past several years, extensive data on accelerated aging have been reported from a number of laboratories. The most important information from these studies is the activation energy, namely, the temperature dependence of the aging kinetics between 280 and 400 degree C, which is used to extrapolate the aging characteristics to reactor operating conditions. The activation energies (in the range of 18--50 kcal/mole) are, in general, sensitive to material grade, chemical composition, and fabrication process, and a few empirical correlations, obtained as a function of bulk chemical composition, have been reported. In this paper, a mechanistic understanding of the activation energy is described on the basis of the results of microstructural characterization of various heats of CF-3, -8, and -8M grades that were used in aging studies at different laboratories. The primary mechanism of aging embrittlement at temperatures between 280 and 400 degree C is the spinodal decomposition of the ferrite phase, and M23C6 carbide precipitation on the ferrite/austenite boundaries is the secondary mechanism for high-carbon CF-8 grade. 20 refs., 10 figs., 3 tabs

  16. Extrapolation of short term observations to time periods relevant to the isolation of long lived radioactive waste. Results of a co-ordinated research project 1995-2000

    This report addresses safety analysis of the whole repository life-cycle that may require long term performance assessment of its components and evaluation of potential impacts of the facility on the environment. Generic consideration of procedures for the development of predictive tools are completed by detailed characterization of selected principles and methods that were applied and presented within the co-ordinated research project (CRP). The project focused on different approaches to extrapolation, considering radionuclide migration/sorption, physical, geochemical and geotechnical characteristics of engineered barriers, irradiated rock and backfill performance, and on corrosion of metallic and vitreous materials. This document contains a comprehensive discussion of the overall problem and the practical results of the individual projects preformed within the CRP. Each of the papers on the individual projects has been indexed separately

  17. A fish of many scales: extrapolating sublethal pesticide exposures to the productivity of wild salmon populations.

    Baldwin, David H; Spromberg, Julann A; Collier, Tracy K; Scholz, Nathaniel L

    2009-12-01

    growth and size at ocean entry of juvenile chinook. The consequent reduction in individual survival over successive years reduces the intrinsic productivity (lambda) of a modeled ocean-type chinook population. Overall, we show that exposures to common pesticides may place important constraints on the recovery of ESA-listed salmon species, and that simple models can be used to extrapolate toxicological impacts across several scales of biological complexity. PMID:20014574

  18. Characterization of a extrapolation chamber in standard X-ray beam, radiodiagnosis level; Caracterizacao de uma camara de extrapolacao em feixes padroes de raios X, nivel radiodiagnostico

    Silva, Eric A.B. da; Caldas, Linda V.E., E-mail: ebrito@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    The extrapolation chamber is a ionization chamber used for detection low energy radiation and can be used as an standard instrument for beta radiation beams. This type of ionization chamber have as main characteristic the variation of sensible volume. This paper performs a study of characterization of a PTW commercial extrapolation chamber, in the energy interval of the qualities of conventional radiodiagnostic

  19. Generation of Co{sub 3}O{sub 4} microparticles by solution combustion method and its Zn-Co{sub 3}O{sub 4} composite thin films for corrosion protection

    Chandrappa, K.G. [Department of P.G. Studies and Research in Chemistry, School of Chemical Sciences, Jnana Sahyadri Campus, Kuvempu University, Shankaraghatta 577451, Karnataka (India); Venkatesha, T.V., E-mail: drtvvenkatesha@yahoo.co.uk [Department of P.G. Studies and Research in Chemistry, School of Chemical Sciences, Jnana Sahyadri Campus, Kuvempu University, Shankaraghatta 577451, Karnataka (India)

    2012-11-25

    increased with increase of calcination temperature. The synthesized Co{sub 3}O{sub 4} powder was used to fabricate Zn-Co{sub 3}O{sub 4} composite thin films and its corrosion behavior was analyzed by anodic polarization, tafel extrapolation and electrochemical impedance spectroscopy. The results indicate that the Zn-Co{sub 3}O{sub 4} composite thin films have potential applications to corrosion protection.

  20. Measured and Modeled Toxicokinetics in Cultured Fish Cells and Application to In Vitro - In Vivo Toxicity Extrapolation

    Julita Stadnicka-Michalak; Katrin Tanneberger; Kristin Schirmer; Roman Ashauer

    2014-01-01

    Effect concentrations in the toxicity assessment of chemicals with fish and fish cells are generally based on external exposure concentrations. External concentrations as dose metrics, may, however, hamper interpretation and extrapolation of toxicological effects because it is the internal concentration that gives rise to the biological effective dose. Thus, we need to understand the relationship between the external and internal concentrations of chemicals. The objectives of this study were ...

  1. Testing a solar coronal magnetic field extrapolation code with the Titov-Démoulin magnetic flux rope model

    Jiang, Chao-Wei; Feng, Xue-Shang

    2016-01-01

    In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov & Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE-MHD-NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints.

  2. Testing a Solar Coronal Magnetic Field Extrapolation Code with the Titov-Demoulin Magnetic Flux Rope Model

    Jiang, Chaowei

    2015-01-01

    In the solar corona, magnetic flux rope is believed to be a fundamental structure accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of magnetic field from boundary data is the primary way to obtain fully three-dimensional magnetic information of the corona. As a result, the ability of reliable recovering coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code (CESE-MHD-NLFFF, Jiang & Feng 2012) is examined with an analytical magnetic flux rope model proposed by Titov & Demoulin (1999), which consists of a bipolar magnetic configuration holding an semi-circular line-tied flux rope in force-free equilibrium. By using only the vector field in the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field is reconstructed with high accuracy. Especially, the magnetic topological interfaces formed between the flux rop...

  3. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    Reynaldo, S. R. [Development Centre of Nuclear Technology, Posgraduate Course in Science and Technology of Radiations, Minerals and Materials / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Benavente C, J. A.; Da Silva, T. A., E-mail: sirr@cdtn.br [Development Centre of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the {sup 90}Sr/{sup 90}Y and {sup 85}Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the {sup 90}Sr/{sup 90}Y and -0.3% for the {sup 85}Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  4. Testing a solar coronal magnetic field extrapolation code with the Titov–Démoulin magnetic flux rope model

    In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov and Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE–MHD–NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints. (paper)

  5. Improving in vitro to in vivo extrapolation by incorporating toxicokinetic measurements: A case study of lindane-induced neurotoxicity

    Croom, Edward L.; Shafer, Timothy J.; Evans, Marina V.; Mundy, William R.; Eklund, Chris R.; Johnstone, Andrew F.M.; Mack, Cina M.; Pegram, Rex A., E-mail: pegram.rex@epa.gov

    2015-02-15

    Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicity. Lindane cell and media concentrations in vitro, together with in vitro concentration-response data for lindane effects on neuronal network firing rates, were compared to in vivo data and model simulations as an exercise in extrapolation for chemical-induced neurotoxicity in rodents and humans. Time- and concentration-dependent lindane dosimetry was determined in primary cultures of rat cortical neurons in vitro using “faux” (without electrodes) microelectrode arrays (MEAs). In vivo data were derived from literature values, and physiologically based pharmacokinetic (PBPK) modeling was used to extrapolate from rat to human. The previously determined EC{sub 50} for increased firing rates in primary cultures of cortical neurons was 0.6 μg/ml. Media and cell lindane concentrations at the EC{sub 50} were 0.4 μg/ml and 7.1 μg/ml, respectively, and cellular lindane accumulation was time- and concentration-dependent. Rat blood and brain lindane levels during seizures were 1.7–1.9 μg/ml and 5–11 μg/ml, respectively. Brain lindane levels associated with seizures in rats and those predicted for humans (average = 7 μg/ml) by PBPK modeling were very similar to in vitro concentrations detected in cortical cells at the EC{sub 50} dose. PBPK model predictions matched literature data and timing. These findings indicate that in vitro MEA results are predictive of in vivo responses to lindane and demonstrate a successful modeling approach for IVIVE of rat and human neurotoxicity. - Highlights: • In vitro to in vivo extrapolation for lindane neurotoxicity was performed. • Dosimetry of lindane in a micro-electrode array (MEA) test system was assessed. • Cell concentrations at the MEA EC

  6. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework

    J. J. Vélez

    2007-04-01

    Full Text Available A Regional Water Resources study was performed at basins within and draining to the Basque Country Region (N of Spain, with a total area of approximately 8500 km2. The objective was to obtain daily and monthly long-term discharges in 567 points, most of them ungauged, with basin areas ranging from 0.25 to 1850 km2. In order to extrapolate the calibrations at gauged points to the ungauged ones, a distributed and conceptually based model called TETIS was used. In TETIS the runoff production is modelled using five linked tanks at each cell with different outflow relationships at each tank, which represents the main hydrological processes as snowmelt, evapotranspiration, surface runoff, interflow and base flow. The routing along the channels' network couples its geomorphologic characteristics with the kinematic wave approach. The parameter estimation methodology tries to distinguish between the effective parameter used in the model at cell scale, and the watershed characteristic estimated from the available information, being the best estimation without losing its physical meaning. The relationship between them can be considered as a correction function or, in its simple form, a correction factor. The correction factor can take into account the model input errors, the temporal and spatial scale effects and the watershed characteristics. Therefore, it is reasonable to assume the correction factor is the same for each parameter to all cells within the watershed. This approach reduces dramatically the number of parameter to be calibrated, because only the common correction factors are calibrated instead of parameter maps (number of parameters times the number of cells. In this way, the calibration can be performed using automatic methodologies. In this work, the Shuffled Complex Evolution – University of Arizona, SCE-UA algorithm was used. The available recent year's data was used to calibrate the model in 20 of the

  7. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework

    J. J. Vélez

    2009-02-01

    Full Text Available A Regional Water Resources study was performed at basins within and draining to the Basque Country Region (N of Spain, with a total area of approximately 8500 km2. The objective was to obtain daily and monthly long-term discharges in 567 points, most of them ungauged, with basin areas ranging from 0.25 to 1850 km2. In order to extrapolate the calibrations at gauged points to the ungauged ones, a distributed and conceptually based model called TETIS was used. In TETIS the runoff production is modelled using five linked tanks at the each cell with different outflow relationships at each tank, which represents the main hydrological processes as snowmelt, evapotranspiration, overland flow, interflow and base flow. The routing along the channels' network couples its geomorphologic characteristics with the kinematic wave approach. The parameter estimation methodology tries to distinguish between the effective parameter used in the model at the cell scale, and the watershed characteristic estimated from the available information, being the best estimation without losing its physical meaning. The relationship between them can be considered as a correction function or, in its simple form, a correction factor. The correction factor can take into account the model input errors, the temporal and spatial scale effects and the watershed characteristics. Therefore, it is reasonable to assume the correction factor is the same for each parameter to all cells within the watershed. This approach reduces drastically the number of parameter to be calibrated, because only the common correction factors are calibrated instead of parameter maps (number of parameters times the number of cells. In this way, the calibration can be performed using automatic methodologies. In this work, the Shuffled Complex Evolution – University of Arizona, SCE-UA algorithm was used. The available recent year's data was used to calibrate the model in 20 of

  8. Interpolation Method Needed for Numerical Uncertainty

    Groves, Curtis E.; Ilie, Marcel; Schallhorn, Paul A.

    2014-01-01

    Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors.

  9. Extrapolation chamber mounted on perspex for calibration of high energy photon and electron beams from a clinical linear accelerator

    Ravichandran R

    2009-01-01

    Full Text Available The objective of the present study is to establish radiation standards for absorbed doses, for clinical high energy linear accelerator beams. In the nonavailability of a cobalt-60 beam for arriving at Nd, water values for thimble chambers, we investigated the efficacy of perspex mounted extrapolation chamber (EC used earlier for low energy x-rays and beta dosimetry. Extrapolation chamber with facility for achieving variable electrode separations 10.5mm to 0.5mm using micrometer screw was used for calibrations. Photon beams 6 MV and 15 MV and electron beams 6 MeV and 15 MeV from Varian Clinac linacs were calibrated. Absorbed Dose estimates to Perspex were converted into dose to solid water for comparison with FC 65 ionisation chamber measurements in water. Measurements made during the period December 2006 to June 2008 are considered for evaluation. Uncorrected ionization readings of EC for all the radiation beams over the entire period were within 2% showing the consistency of measurements. Absorbed doses estimated by EC were in good agreement with in-water calibrations within 2% for photons and electron beams. The present results suggest that extrapolation chambers can be considered as an independent measuring system for absorbed dose in addition to Farmer type ion chambers. In the absence of standard beam quality (Co-60 radiations as reference Quality for Nd,water the possibility of keeping EC as Primary Standards for absorbed dose calibrations in high energy radiation beams from linacs should be explored. As there are neither Standard Laboratories nor SSDL available in our country, we look forward to keep EC as Local Standard for hospital chamber calibrations. We are also participating in the IAEA mailed TLD intercomparison programme for quality audit of existing status of radiation dosimetry in high energy linac beams. The performance of EC has to be confirmed with cobalt-60 beams by a separate study, as linacs are susceptible for minor

  10. Is the climate right for pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents.

    Orien M W Richmond

    Full Text Available Species distribution models (SDMs are increasingly used for extrapolation, or predicting suitable regions for species under new geographic or temporal scenarios. However, SDM predictions may be prone to errors if species are not at equilibrium with climatic conditions in the current range and if training samples are not representative. Here the controversial "Pleistocene rewilding" proposal was used as a novel example to address some of the challenges of extrapolating modeled species-climate relationships outside of current ranges. Climatic suitability for three proposed proxy species (Asian elephant, African cheetah and African lion was extrapolated to the American southwest and Great Plains using Maxent, a machine-learning species distribution model. Similar models were fit for Oryx gazella, a species native to Africa that has naturalized in North America, to test model predictions. To overcome biases introduced by contracted modern ranges and limited occurrence data, random pseudo-presence points generated from modern and historical ranges were used for model training. For all species except the oryx, models of climatic suitability fit to training data from historical ranges produced larger areas of predicted suitability in North America than models fit to training data from modern ranges. Four naturalized oryx populations in the American southwest were correctly predicted with a generous model threshold, but none of these locations were predicted with a more stringent threshold. In general, the northern Great Plains had low climatic suitability for all focal species and scenarios considered, while portions of the southern Great Plains and American southwest had low to intermediate suitability for some species in some scenarios. The results suggest that the use of historical, in addition to modern, range information and randomly sampled pseudo-presence points may improve model accuracy. This has implications for modeling range shifts of

  11. Diagnostic, Explanatory, and Detection Models of Munchausen by Proxy: Extrapolations from Malingering and Deception

    Rogers, Richard

    2004-01-01

    Objective: The overriding objective is a critical examination of Munchausen syndrome by proxy (MSBP) and its closely-related alternative, factitious disorder by proxy (FDBP). Beyond issues of diagnostic validity, assessment methods and potential detection strategies are explored. Methods: A painstaking analysis was conducted of the MSBP and FDBP…

  12. Extrapolation of contrail investigations by LIDAR to larger scale measurements. Analysis and calibration of CCD camera and satellite images

    Sussmann, R.; Homburg, F.; Freudenthaler, V.; Jaeger, H. [Frauenhofer Inst. fuer Atmosphaerische Umweltforschung, Garmisch-Partenkirchen (Germany)

    1997-12-31

    The CCD image of a persistent contrail and the coincident LIDAR measurement are presented. To extrapolate the LIDAR derived optical thickness to the video field of view an anisotropy correction and calibration has to be performed. Observed bright halo components result from highly regular oriented hexagonal crystals with sizes of 200 {mu}m-2 mm. This explained by measured ambient humidities below the formation threshold of natural cirrus. Optical thickness from LIDAR shows significant discrepancies to the result from coincident NOAA-14 data. Errors result from anisotropy correction and parameterized relations between AVHRR channels and optical properties. (author) 28 refs.

  13. Neural Network Model for Survival and Growth of Salmonella enterica Serotype 8,20:-:z6 in Ground Chicken Thigh Meat during Cold Storage: Extrapolation to Other Serotypes.

    Oscar, T P

    2015-10-01

    Mathematical models that predict the behavior of human bacterial pathogens in food are valuable tools for assessing and managing this risk to public health. A study was undertaken to develop a model for predicting the behavior of Salmonella enterica serotype 8,20:-:z6 in chicken meat during cold storage and to determine how well the model would predict the behavior of other serotypes of Salmonella stored under the same conditions. To develop the model, ground chicken thigh meat (0.75 cm(3)) was inoculated with 1.7 log Salmonella 8,20:-:z6 and then stored for 0 to 8 -8 to 16°C. An automated miniaturized most-probable-number (MPN) method was developed and used for the enumeration of Salmonella. Commercial software (Excel and the add-in program NeuralTools) was used to develop a multilayer feedforward neural network model with one hidden layer of two nodes. The performance of the model was evaluated using the acceptable prediction zone (APZ) method. The number of Salmonella in ground chicken thigh meat stayed the same (P > 0.05) during 8 days of storage at -8 to 8°C but increased (P < 0.05) during storage at 9°C (+0.6 log) to 16°C (+5.1 log). The proportion of residual values (observed minus predicted values) in an APZ (pAPZ) from -1 log (fail-safe) to 0.5 log (fail-dangerous) was 0.939 for the data (n = 426 log MPN values) used in the development of the model. The model had a pAPZ of 0.944 or 0.954 when it was extrapolated to test data (n = 108 log MPN per serotype) for other serotypes (S. enterica serotype Typhimurium var 5-, Kentucky, Typhimurium, and Thompson) of Salmonella in ground chicken thigh meat stored for 0 to 8 days at -4, 4, 12, or 16°C under the same experimental conditions. A pAPZ of ≥0.7 indicates that a model provides predictions with acceptable bias and accuracy. Thus, the results indicated that the model provided valid predictions of the survival and growth of Salmonella 8,20:-:z6 in ground chicken thigh meat stored for 0 to 8 days at -8 to

  14. The effect of surface roughness on extrapolation from thickness C-scan data using extreme value theory

    Benstock, Daniel; Cegla, Frederic

    2015-03-01

    Ultrasonic thickness C-scans are a key tool in the assessment of the condition of engineering components. C-scans provide information of the wall thickness over the entire inspected area. Full inspection of a component is time consuming, costly and sometimes impossible due to obstacles. Therefore, the condition of the whole structure is often estimated by extrapolation of data from a small sample where C-scan information is available. Extreme value theory (EVT) provides a framework by which one can extrapolate to the size of the worst case defect from a small inspected sample area of a component. The framework and assumptions of EVT are discussed, with experimental and simulated examples. The influence of both the surface roughness and the timing algorithm, used to extract thickness measurements from the collected ultrasonic signals, is also analyzed. It can be shown that for uniformly rough surfaces the C-scan data can lead to conservative estimates of the size of the worst case defect.

  15. EVOLUTION OF A MAGNETIC FLUX ROPE AND ITS OVERLYING ARCADE BASED ON NONLINEAR FORCE-FREE FIELD EXTRAPOLATIONS

    Dynamic phenomena indicative of slipping reconnection and magnetic implosion were found in a time series of nonlinear force-free field (NLFFF) extrapolations for the active region 11515, which underwent significant changes in the photospheric fields and produced five C-class flares and one M-class flare over five hours on 2012 July 2. NLFFF extrapolation was performed for the uninterrupted 5 hour period from the 12 minute cadence vector magnetograms of the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory. According to the time-dependent NLFFF model, there was an elongated, highly sheared magnetic flux rope structure that aligns well with an Hα filament. This long filament splits sideways into two shorter segments, which further separate from each other over time at a speed of 1-4 km s–1, much faster than that of the footpoint motion of the magnetic field. During the separation, the magnetic arcade arching over the initial flux rope significantly decreases in height from ∼4.5 Mm to less than 0.5 Mm. We discuss the reality of this modeled magnetic restructuring by relating it to the observations of the magnetic cancellation, flares, a filament eruption, a penumbra formation, and magnetic flows around the magnetic polarity inversion line

  16. Investigation into the validity of extrapolation in setting maximum residue levels for pesticides in crops of similar morphology.

    Reynolds, S L; Fussell, R J; MacArthur, R

    2005-01-01

    Field trials were initiated to investigate if extrapolation procedures, which were adopted to limit costs of pesticide registration for minor crops, are valid. Three pairs of crops of similar morphology; carrots/swedes, cauliflower/calabrese (broccoli) and French beans/edible-podded peas; were grown in parallel at four different geographical locations within the UK. The crops were treated with both systemic and non-systemic pesticides under maximum registered use conditions, i.e. the maximum permitted application rates and the minimum harvest intervals. Once mature, the crops were harvested and analysed for residues of the applied pesticides. The limits of quantification were in the range 0.005-0.02 mg kg(-1). Analysis of variance and bootstrap estimates showed that in general, the mean residue concentrations for the individual pesticides were significantly different between crop pairs grown on each site. Similarly, the mean residue concentrations of most of the pesticides in each crop across sites were significantly different. These findings demonstrate that the extrapolations of residue levels for most of the selected pesticide/crop combinations investigated; chlorfenvinphos and iprodione from carrots to swedes; carbendazim, chlorpyrifos, diflubenzuron and dimethoate from cauliflower to calabrese; and malathion, metalaxyl and pirimicarb from French beans to edible-podded peas; appear invalid. PMID:15895609

  17. Chiral Extrapolations of light resonances from dispersion relations and Chiral Perturbation Theory

    Ríos, Guillermo; Nicola, Ángel Gómez; Hanhart, Christoph; Peláez, José Ramón

    2009-01-01

    We review our recent study of the pion mass dependence of the rho and sigma resonances generated from one-loop SU(2) Chiral Perturbation Theory (ChPT) with the Inverse Amplitude Method (IAM) which was modified to properly account for the Adler zero. The method is based on analyticity, elastic unitarity and ChPT at low energies, thus yielding the pion mass dependence of the resonance pole positions from the ChPT series up to a given order. We find that the rho-pi-pi coupling constant is almost...

  18. Simulation-Extrapolation for Estimating Means and Causal Effects with Mismeasured Covariates

    Lockwood, J. R.; McCaffrey, Daniel F.

    2015-01-01

    Regression, weighting and related approaches to estimating a population mean from a sample with nonrandom missing data often rely on the assumption that conditional on covariates, observed samples can be treated as random. Standard methods using this assumption generally will fail to yield consistent estimators when covariates are measured with…

  19. Predictive Toxicology and In Vitro to In Vivo Extrapolation (AsiaTox2015)

    A significant challenge in toxicology is the “too many chemicals” problem. Humans and environmental species are exposed to as many as tens of thousands of chemicals, few of which have been thoroughly tested using standard in vivo test methods. This talk will discuss several appro...

  20. Transcript markers of herbicide stress in Arabidopsis and their cross-species extrapolation to Brassica

    Low concentrations and short environmental persistence times of some herbicides make it difficult to develop analytical methods to detect herbicide residues in plants or soils. In contrast, genomics may provide tools to identify herbicide exposure to plants in field settings. Usi...

  1. MOORE´S LAW EVALUATION AND PROPOSAL OF AN ALTERNATIVE FORECASTING MODEL BASED ON TREND EXTRAPOLATION

    Marcelo D'Emidio

    2010-06-01

    Full Text Available This study´s core objective is to validate whether the model proposed by Moore (1975 - also known as Moore’s Law – adequately describes the technological evolution of microprocessors. It further poses to verify whether this model is a feasible predictive tool and, finally, present an alternative model. To this extent, the forecasting technique method, based on historical data projections, will be applied. Statistical tests employed presented strong indications that the method proposed by Moore (1975 adequately described the evolution of processor component numbers during the 70s, 80s and 90s. As to the 2000s, however, the same cannot be affirmed and consequently the present study encountered grounding for the need to adapt the model to enable its application as a predictive tool.Key-words: Moore’s Law. Forecast. Technological evolution.  

  2. Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau

    T. Gerken

    2012-04-01

    Full Text Available This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference.

  3. Accurate ab initio-based adiabatic global potential energy surface for the 22A″ state of NH2 by extrapolation to the complete basis set limit

    Li, Y. Q.; Ma, F. C.; Sun, M. T.

    2013-10-01

    A full three-dimensional global potential energy surface is reported first time for the title system, which is important for the photodissociation processes. It is obtained using double many-body expansion theory and an extensive set of accurate ab initio energies extrapolated to the complete basis set limit. Such a work can be recommended for dynamics studies of the N(2D) + H2 reaction, a reliable theoretical treatment of the photodissociation dynamics and as building blocks for constructing the double many-body expansion potential energy surface of larger nitrogen/hydrogen containing systems. In turn, a preliminary theoretical study of the reaction N(^2D)+H_2(X^1Σ _g^+)(ν =0,j=0)rArr NH(a^1Δ )+H(^2S) has been carried out with the method of quasi-classical trajectory on the new potential energy surface. Integral cross sections and thermal rate constants have been calculated, providing perhaps the most reliable estimate of the integral cross sections and the rate constants known thus far for such a reaction.

  4. Extrapolating ecological risks of ionizing radiation from individuals to populations to ecosystems

    Approaches for protecting ecosystems from ionizing radiation are quite different from those used for protecting ecosystems from adverse effects of toxic chemicals. The methods used for chemicals are conceptually similar to those used to assess risks of chemicals to human health in that they focus on the protection of the most sensitive or most highly exposed individuals. The assumption is that if sensitive or maximally exposed species and life stages are protected, then ecosystems will be protected. Radiological protection standards, on the other hand, are explicitly premised on the assumption that organisms, populations and ecosystems all possess compensatory capabilities to allow them to survive in the face of unpredictable natural variation in their environments. These capabilities are assumed to persist in the face of at least some exposure to ionizing radiation. The prevailing approach to radiological protection was developed more than 30 years ago, at a time when the terms risk assessment and risk management were rarely used. The expert review approach used to derive radiological protection standards is widely perceived to be inconsistent with the open, participatory approach that prevails today for the regulation of toxic chemicals. The available data for environmental radionuclides vastly exceeds that available for any chemical. Therefore, given an understanding of dose-response relationships for radiation effects and exposures for individual organisms, it should be possible to develop methods for quantifying effects of radiation on populations. A tiered assessment scheme as well as available population models that could be used for the ecological risk assessment of radionuclides is presented. (author)

  5. Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis

    Zarrouk, N.; Bennaceur, R.

    2009-07-01

    Exposure to cosmic rays may have both a direct and indirect effect on Earth's organisms. The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which may cool the planet by blocking out more of the Sun's rays, is also associated with cosmic rays. They also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our planet's ozone layer, which protects us from the Sun's harmful ultraviolet rays. On the ground, humans are protected from cosmic particles by the planet's atmosphere. In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray variation, and we have better depicted periods or harmonics other than the 11-year solar modulation cycles.

  6. Direct visualization and measurement of the extrapolation length on cooling toward the nematic-smectic-A phase transition temperature.

    Choi, Yoonseuk; Rosenblatt, Charles

    2010-05-01

    A herringbone "easy axis" pattern is scribed into a polyimide alignment layer for liquid-crystal orientation using the stylus of an atomic force microscope. Owing to the liquid crystal's bend elasticity K33 , the nematic director is unable to follow the sharp turn in the scribed easy axis, but instead relaxes over an extrapolation length L=K33/W2φ, where W2φ is the quadratic azimuthal anchoring strength coefficient. By immersing a tapered optical fiber into the liquid crystal, illuminating the fiber with polarized light, and scanning the fiber close to the substrate, a visualization and direct measurement of L are obtained on approaching the nematic-smectic- A phase transition temperature T NA from above. L is found to exhibit a sharp pretransitional increase near T NA, consistent with a diverging bend elastic constant. PMID:20866248

  7. Ionization current measurements using and extrapolation chamber for the determination of the absorbed dose from β emitters

    In order to obtain the beta response of survey instruments, the working group no.5 of the C.E.A. Radiation Offices has studied an extrapolation chamber as reference apparatus. The value of the different correcting factors which modify the number of ions pairs collected per mass of air, in other words, the absorbed dose in the air of the cavity is reported. Then, the physical constants (transmission, back-scattering...) which are necessary to pass from the absorbed dose in the air of the cavity, to the absorbed dose in the tissue for a semi-infinite medium below a thickness of 7.5mg/cm2 are given. The absorbed dose in tissue, to within an error of about 4%, can be estimated

  8. Hematological responses after inhaling {sup 238}PuO{sub 2}: An extrapolation from beagle dogs to humans

    Scott, B.R.; Muggenburg, B.A.; Welsh, C.A.; Angerstein, D.A.

    1994-11-01

    The alpha emitter plutonium-238 ({sup 238}Pu), which is produced in uranium-fueled, light-water reactors, is used as a thermoelectric power source for space applications. Inhalation of a mixed oxide form of Pu is the most likely mode of exposure of workers and the general public. Occupational exposures to {sup 238}PuO{sub 2} have occurred in association with the fabrication of radioisotope thermoelectric generators. Organs and tissue at risk for deterministic and stochastic effects of {sup 238}Pu-alpha irradiation include the lung, liver, skeleton, and lymphatic tissue. Little has been reported about the effects of inhaled {sup 238}PuO{sub 2} on peripheral blood cell counts in humans. The purpose of this study was to investigate hematological responses after a single inhalation exposure of Beagle dogs to alpha-emitting {sup 238}PuO{sub 2} particles and to extrapolate results to humans.

  9. Extrapolation of Urn Models via Poissonization: Accurate Measurements of the Microbial Unknown

    Lladser, Manuel; Reeder, Jens; 10.1371/journal.pone.0021105

    2011-01-01

    The availability of high-throughput parallel methods for sequencing microbial communities is increasing our knowledge of the microbial world at an unprecedented rate. Though most attention has focused on determining lower-bounds on the alpha-diversity i.e. the total number of different species present in the environment, tight bounds on this quantity may be highly uncertain because a small fraction of the environment could be composed of a vast number of different species. To better assess what remains unknown, we propose instead to predict the fraction of the environment that belongs to unsampled classes. Modeling samples as draws with replacement of colored balls from an urn with an unknown composition, and under the sole assumption that there are still undiscovered species, we show that conditionally unbiased predictors and exact prediction intervals (of constant length in logarithmic scale) are possible for the fraction of the environment that belongs to unsampled classes. Our predictions are based on a P...

  10. Extrapolating population size from the occupancy-abundance relationship and the scaling pattern of occupancy

    Hui, Cang; McGeoch, Melodie A.; Reyers, Belinda;

    2009-01-01

    The estimation of species abundances at regional scales requires a cost-efficient method that can be applied to existing broadscale data. We compared the performance of eight models for estimating species abundance and community structure from presence-absence maps of the southern African avifauna....... Six models were based on the intraspecific occupancy-abundance relationship (OAR); the other two on the scaling pattern of species occupancy (SPO), which quantifies the decline in species range size when measured across progressively finer scales. The performance of these models was examined using...... five tests: the first three compared the predicted community structure against well-documented macroecological patterns; the final two compared published abundance estimates for rare species and the total regional abundance estimate against predicted abundances. Approximately two billion birds were...

  11. Accuracy and efficiency considerations for wide-angle wavefield extrapolators and scattering operators

    Thomson, C. J.

    2005-10-01

    Several observations are made concerning the numerical implementation of wide-angle one-way wave equations, using for illustration scalar waves obeying the Helmholtz equation in two space dimensions. This simple case permits clear identification of a sequence of physically motivated approximations of use when the mathematically exact pseudo-differential operator (PSDO) one-way method is applied. As intuition suggests, these approximations largely depend on the medium gradients in the direction transverse to the main propagation direction. A key point is that narrow-angle approximations are to be avoided in the interests of accuracy. Another key consideration stems from the fact that the so-called `standard-ordering' PSDO indicates how lateral interpolation of the velocity structure can significantly reduce computational costs associated with the Fourier or plane-wave synthesis lying at the heart of the calculations. A third important point is that the PSDO theory shows what approximations are necessary in order to generate an exponential one-way propagator for the laterally varying case, representing the intuitive extension of classical integral-transform solutions for a laterally homogeneous medium. This exponential propagator permits larger forward stepsizes. Numerical comparisons with Helmholtz (i.e. full) wave-equation finite-difference solutions are presented for various canonical problems. These include propagation along an interfacial gradient, the effects of a compact inclusion and the formation of extended transmitted and backscattered wave trains by model roughness. The ideas extend to the 3-D, generally anisotropic case and to multiple scattering by invariant embedding. It is concluded that the method is very competitive, striking a new balance between simplifying approximations and computational labour. Complicated wave-scattering effects are retained without the need for expensive global solutions, providing a robust and flexible modelling tool.

  12. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro.

    Manwaring, John; Rothe, Helga; Obringer, Cindy; Foltz, David J; Baker, Timothy R; Troutman, John A; Hewitt, Nicola J; Goebel, Carsten

    2015-09-01

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis-Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte Km and Vmax values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and Cmax was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. PMID:26028483

  13. Minimising uncertainty induced by temperature extrapolations of thermodynamic data: a pragmatic view on the integration of thermodynamic databases into geochemical computer codes

    Incorporation of temperature corrections is gaining priority regarding geochemical modelling computer codes with built-in thermodynamic databases related to performance assessment in nuclear waste management. As no experimental data at elevated temperatures are available e.g. for many actinide and lanthanide species, the simplest one-term extrapolations of equilibrium constants are usually assumed in practice. Such extrapolations, if set inappropriately, may accumulate large additional uncertainty at temperatures above 100 deg C. Such errors can be avoided because one-, two- and three-term extrapolations have great predictive potential for isoelectric/iso-coulombic reactions which has to be explored and extensively used in geochemical modelling by LMA and/or GEM algorithm. This can be done efficiently and consistently via implementing a built-in 'hybrid' database combining 'kernel' thermochemical/EoS data for substances with the 'extension' reaction-defined data for other species. (author)

  14. Time extrapolation aspects in the performance assessment of high and medium level radioactive waste disposal in the Boom Clay at Mol (Belgium)

    SCK-CEN is studying the disposal of high and long-lived medium level waste in the Boom Clay at Mol, Belgium. In the performance assessment for such a repository time extrapolation is an inherent problem due to the extremely long half-life of some important radionuclides. To increase the confidence in these time extrapolations SCK-CEN applies a combination of different experimental and modelling approaches including laboratory and in situ experiments, natural analogue studies, deterministic (or mechanistic) models and stochastical models. An overview is given of these approaches and some examples of applications to the different repository system components are given. (author)

  15. Characterization of low energy X-rays beams with an extrapolation chamber; Caracterizacao de feixes de raios-X de baixa energia com uma camara de extrapolacao

    Bastos, Fernanda Martins

    2015-04-01

    In laboratories involving Radiological Protection practices, it is usual to use reference radiations for calibrating dosimeters and to study their response in terms of energy dependence. The International Organization for Standardization (ISO) established four series of reference X-rays beams in the ISO- 4037 standard: the L and H series, as low and high air Kerma rates, respectively, the N series of narrow spectrum and W series of wide spectrum. The X-rays beams with tube potential below 30 kV, called 'low energy beams' are, in most cases, critical as far as the determination of their parameters for characterization purpose, such as half-value layer. Extrapolation chambers are parallel plate ionization chambers that have one mobile electrode that allows variation of the air volume in its interior. These detectors are commonly used to measure the quantity Absorbed Dose, mostly in the medium surface, based on the extrapolation of the linear ionization current as a function of the distance between the electrodes. In this work, a characterization of a model 23392 PTW extrapolation chamber was done in low energy X-rays beams of the ISO- 4037 standard, by determining the polarization voltage range through the saturation curves and the value of the true null electrode spacing. In addition, the metrological reliability of the extrapolation chamber was studied with measurements of the value of leakage current and repeatability tests; limit values were established for the proper use of the chamber. The PTW23392 extrapolation chamber was calibrated in terms of air Kerma in some of the ISO radiation series of low energy; the traceability of the chamber to the National Standard Dosimeter was established. The study of energy dependency of the extrapolation chamber and the assessment of the uncertainties related to the calibration coefficient were also done; it was shown that the energy dependence was reduced to 4% when the extrapolation technique was used. Finally

  16. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    Manwaring, John, E-mail: manwaring.jd@pg.com [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Rothe, Helga [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany); Obringer, Cindy; Foltz, David J.; Baker, Timothy R.; Troutman, John A. [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Hewitt, Nicola J. [SWS, Erzhausen (Germany); Goebel, Carsten [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany)

    2015-09-01

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K{sub m} and V{sub max} values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C{sub max} was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human

  17. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte Km and Vmax values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and Cmax was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human skin explants and Ha

  18. Quantitative cross-species extrapolation between humans and fish: the case of the anti-depressant fluoxetine.

    Luigi Margiotta-Casaluci

    Full Text Available Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis. To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 µg/L to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (H(TPCs. Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the H(TPC range, whereas no effects were observed at plasma concentrations below the H(TPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool

  19. A case study on quantitative in vitro to in vivo extrapolation for environmental esters: Methyl-, propyl- and butylparaben.

    Campbell, Jerry L; Yoon, Miyoung; Clewell, Harvey J

    2015-06-01

    Parabens have been reported as potential endocrine disrupters and are widely used in consumer projects including cosmetics, foods and pharmaceuticals. We report on the development of a PBPK model for methyl-, propyl-, and butylparaben. The model was parameterized through a combination of QSAR for tissue solubility and quantitative in vitro to in vivo extrapolation (IVIVE) for hydrolysis in portals of entry including intestine and skin as well as in the primary site of metabolism, the liver. Overall, the model provided very good agreement with published time-course data in blood and urine from controlled dosing studies in rat and human, and demonstrates the potential value of quantitative IVIVE in expanding the use of human biomonitoring data in safety assessment. An in vitro based cumulative margin of safety (MOS) was calculated by comparing the effective concentrations from an in vitro assay of estrogenicity to the free paraben concentrations predicted by the model to be associated with the 95th percentile urine concentrations reported in NHANES (2009-2010 collection period). The calculated MOS for adult females was 108, whereas the MOS for males was 444. PMID:25839974

  20. Enhanced confinement scenarios without large edge localized modes in tokamaks: control, performance, and extrapolability issues for ITER

    Large edge localized modes (ELMs) typically accompany good H-mode confinement in fusion devices, but can present problems for plasma facing components because of high transient heat loads. Here the range of techniques for ELM control deployed in fusion devices is reviewed. Two strategies in the ITER baseline design are emphasized: rapid ELM triggering and peak heat flux control via pellet injection, and the use of magnetic perturbations to suppress or mitigate ELMs. While both of these techniques are moderately well developed, with reasonable physical bases for projecting to ITER, differing observations between multiple devices are also discussed to highlight the needed community R and D. In addition, recent progress in ELM-free regimes, namely quiescent H-mode, I-mode, and enhanced pedestal H-mode is reviewed, and open questions for extrapolability are discussed. Finally progress and outstanding issues in alternate ELM control techniques are reviewed: supersonic molecular beam injection, edge electron cyclotron heating, lower hybrid heating and/or current drive, controlled periodic jogs of the vertical centroid position, ELM pace-making via periodic magnetic perturbations, ELM elimination with lithium wall conditioning, and naturally occurring small ELM regimes. (paper)

  1. Solar flare distribution relative to the sector boundaries of the interplanetary magnetic field extrapolated to the Sun

    The distributions of approximately 7000 flares of importance >= 1 were plotted relative to the sector-structure boundaries of the interplanetary magnetic field (+-) and (-+) extrapolated to the Sun. The data obtained for the time period July 1955 - December 1961 were used. The distributions obtained were analy ed jointly with the same distributions for 1964-1974. It is shown that stable concentration of the flares is observed only near the boundaries (-+) for both hemispheres of the Sun during the increase of the activity and near the maxima cycles No 19 and 20. There are no difference between ''Hale'' and ''non-Hale'' boundaries for these flares. The decrease of the flares was revealed even near the boundary type (+-). For activity decrease phase, after the Sun's general field polarity inversion the concentration of the flares to the boundaries is absent. The difference between Hale and non-Hale boundaries for flares is revealed only in some increase of the flare concentration near the Hale boundaries. The results obtained are likely to give additional evidence in favour of solar magnetic field and flare activity connection

  2. A case study on quantitative in vitro to in vivo extrapolation for environmental esters: Methyl-, propyl- and butylparaben

    Parabens have been reported as potential endocrine disrupters and are widely used in consumer projects including cosmetics, foods and pharmaceuticals. We report on the development of a PBPK model for methyl-, propyl-, and butylparaben. The model was parameterized through a combination of QSAR for tissue solubility and quantitative in vitro to in vivo extrapolation (IVIVE) for hydrolysis in portals of entry including intestine and skin as well as in the primary site of metabolism, the liver. Overall, the model provided very good agreement with published time-course data in blood and urine from controlled dosing studies in rat and human, and demonstrates the potential value of quantitative IVIVE in expanding the use of human biomonitoring data in safety assessment. An in vitro based cumulative margin of safety (MOS) was calculated by comparing the effective concentrations from an in vitro assay of estrogenicity to the free paraben concentrations predicted by the model to be associated with the 95th percentile urine concentrations reported in NHANES (2009–2010 collection period). The calculated MOS for adult females was 108, whereas the MOS for males was 444

  3. Enhanced Confinement Scenarios Without Large Edge Localized Modes in Tokamaks: Control, Performance, and Extrapolability Issues for ITER

    Maingi, R [PPPL

    2014-07-01

    Large edge localized modes (ELMs) typically accompany good H-mode confinement in fusion devices, but can present problems for plasma facing components because of high transient heat loads. Here the range of techniques for ELM control deployed in fusion devices is reviewed. The two baseline strategies in the ITER baseline design are emphasized: rapid ELM triggering and peak heat flux control via pellet injection, and the use of magnetic perturbations to suppress or mitigate ELMs. While both of these techniques are moderately well developed, with reasonable physical bases for projecting to ITER, differing observations between multiple devices are also discussed to highlight the needed community R & D. In addition, recent progress in ELM-free regimes, namely Quiescent H-mode, I-mode, and Enhanced Pedestal H-mode is reviewed, and open questions for extrapolability are discussed. Finally progress and outstanding issues in alternate ELM control techniques are reviewed: supersonic molecular beam injection, edge electron cyclotron heating, lower hybrid heating and/or current drive, controlled periodic jogs of the vertical centroid position, ELM pace-making via periodic magnetic perturbations, ELM elimination with lithium wall conditioning, and naturally occurring small ELM regimes.

  4. Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades - Rates and extrapolation using remote sensing

    Hines, Mark E.; Pelletier, Ramona E.; Crill, Patrick M.

    1993-01-01

    Rates of emissions of the biogenic sulfur (S) gases carbonyl sulfide (COS), methyl mercaptan (MSH), dimethyl sulfide (DMS), and carbon disulfide (CS2) were measured in a variety of marine and freshwater wetland habitats in the Florida Everglades during a short duration period in October using dynamic chambers, cryotrapping techniques, and gas chromatography. The most rapid emissions of over 500 nmol/sq m/h occurred in red mangrove-dominated sites that were adjacent to open seawater and contained numerous crab burrows. Poorly drained red mangrove sites exhibited lower fluxes of about 60 nmol/sq m/h, which were similar to fluxes from the black mangrove areas which dominated the marine-influenced wetland sites in the Everglades. DMS was the dominant organo-S gas emitted especially in the freshwater areas. Spectral data from a scene from the Landsat TM were used to map habitats in the Everglades. Six vegetation categories were delineated using geographical information system software and S gas emissions were extrapolated for the entire Everglades National Park. The black mangrove-dominated areas accounted for the largest portion of S gas emissions to the area. The large area extent of the saw grass communities accounted for about 24 percent of the total S emissions.

  5. Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades: Rates and extrapolation using remote sensing

    Hines, Mark E.; Pelletier, Ramona E.; Crill, Patrick M.

    1992-01-01

    Rates of emissions of the biogenic sulfur (S) gases carbonyl sulfide (COS), methyl mercaptan (MSH), dimethyl sulfide (DMS), and carbon disulfide (CS2) were measured in a variety of marine and freshwater wetland habitats in the Florida Everglades during a short duration period in October using dynamic chambers, cryotrapping techniques, and gas chromatography. The most rapid emissions of greater than 500 nmol/m(sup -2)h(sup -1) occurred in red mangrove-dominated sites that were adjacent to open seawater and contained numerous crab burrows. Poorly drained red mangrove sites exhibited lower fluxes of approximately 60 nmol/m(sup -2)h(sup -1) which were similar to fluxes from the black mangrove areas which dominated the marine-influenced wetland sites in the Everglades. DMS was the dominant organo-S gas emitted especially in the freshwater areas. Spectral data from a scene from the Landsat thematic mapper were used to map habitats in the Everglades. Six vegetation categories were delineated using geographical information system software and S gas emission were extrapolated for the entire Everglades National Park. The black mangrove-dominated areas accounted for the largest portion of S gas emissions to the area. The large area extent of the saw grass communities (42 percent) accounted for approximately 24 percent of the total S emissions.

  6. Including higher energy data in the R-matrix extrapolation of 12C(α , γ) 16O

    Deboer, R.; Uberseder, E.; Azuma, R. E.; Best, A.; Brune, C.; Goerres, J.; Sayre, D.; Smith, K.; Wiescher, M.

    2015-10-01

    The phenomenological R-matrix technique has proved to be very successful in describing the cross sections of interest to nuclear astrophysics. One of the key reactions is 12C(α , γ) 16O, which has frequently been analyzed using R-matrix but usually over a limited energy range. This talk will present an analysis that, for the first time, extends above the proton and α1 separation energies taking advantage of a large amount of additional data. The analysis uses the new publicly released JINA R-matrix code AZURE2. The traditional reaction channels of 12C(α , γ) 16O, 12C(α ,α0) 12, and 16N(βα) 12C are included but are now accompanied by the higher energy reactions. By explicitly including higher energy levels, the uncertainty in the extrapolation of the cross section is significantly reduced. This is accomplished by more stringent constraints on interference combination and background poles by the additional higher energy data and by considering new information about subthresold states from transfer reactions. The result is the most comprehensive R-matrix analysis of the 12C(α , γ) 16O reaction to date. This research was supported in part by the ND CRC and funded by the NSF through Grant No. Phys-0758100, and JINA through Grant No. Phys-0822648.

  7. Calibration of {sup 90}Sr+{sup 90}Y chemical applicators using a mini extrapolation chamber as reference system;Calibracao de aplicadores clinicos de {sup 90}Sr+{sup 90}Y utilizando uma mini-camera de extrapolacao como sistema de referencia

    Antonio, Patricia L.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oliveira, Mercia L. [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2009-07-01

    {sup 90}Sr + {sup 90}Y clinical applicators are beta radiation sources utilized in several radiotherapy Brazilian clinics, although don't be more manufactured. These sources are employed in brachytherapy procedures for the treatment of superficial lesions of skin and eyes. International recommendations and previous works determine that dermatological and ophthalmic applicators shall be calibrated periodically, and one of the methods for their calibration consists of the use of an extrapolation chamber. In this work, a method of calibration of {sup 90}Sr + {sup 90}Y clinical applicators was applied using a mini-extrapolation chamber of plane window, developed at the Calibration Laboratory at IPEN, as a reference system. The results obtained were considered satisfactory, when compared with the results given in the calibration certificates of the sources. (author)

  8. Method

    Xixin Wang

    2012-01-01

    Full Text Available ZrO2 nanotube arrays were prepared by anodization method in aqueous electrolyte containing (NH42SO4 and NH4F. The morphology and structure of nanotube arrays were characterized through scanning electron microscope, X-ray diffraction, and infrared spectra analysis. The zirconia nanotube arrays were used as catalyst in esterification reaction. The effects of calcination temperature and electrolyte concentration on catalytic esterification activity have been investigated in detail. Experiments indicate that nanotube arrays have highest catalytic activity when the concentration of (NH42SO4 is 1 mol/L, the concentration of NH4F is 1 wt%, and the calcination temperature is 400°C. Esterification reaction yield of as much as 97% could be obtained under optimal conditions.

  9. CDNA CLONING OF FATHEAD MINNOW (PIMEPHALES PROMELAS) ESTROGEN AND ANDROGEN RECEPTORS FOR USE IN STEROID RECEPTOR EXTRAPOLATION STUDIES FOR ENDOCRINE DISRUPTING CHEMICALS

    cDNA Cloning of Fathead minnow (Pimephales promelas) Estrogen and Androgen Receptors for Use in Steroid Receptor Extrapolation Studies for Endocrine Disrupting Chemicals. Wilson, V.S.1,, Korte, J.2, Hartig P. 1, Ankley, G.T.2, Gray, L.E., Jr 1, , and Welch, J.E.1. 1U.S...

  10. Feasibility of Multiple Examinations Using 68Ga-Labelled Collagelin Analogues: Organ Distribution in Rat for Extrapolation to Human Organ and Whole-Body Radiation Dosimetry

    Irina Velikyan

    2016-06-01

    Full Text Available Objectives: Fibrosis is involved in many chronic diseases. It affects the functionality of vital organs, such as liver, lung, heart and kidney. Two novel imaging agents for positron emission tomography (PET imaging of fibrosis have previously pre-clinically demonstrated promising target binding and organ distribution characteristics. However, the relevant disease monitoring in the clinical setup would require multiple repetitive examinations per year. Thus, it is of paramount importance to investigate the absorbed doses and total effective doses and thus, the potential maximum number of examinations per year. Methods: Two cyclic peptide (c[CPGRVMHGLHLGDDEGPC] analogues coupled via an ethylene glycol linker (EG2 to either 2-(4,7-bis(2-(tert-butoxy-2-oxoethyl-1,4,7-triazonan-1-ylacetic acid (NO2A-Col or 4-(4,7-bis(2-(tert-butoxy-2-oxoethyl-1,4,7-triazacyclononan-1-yl-5-(tert-butoxy-5-oxopentanoic acid (NODAGA-Col were labelled with 68Ga. The resulting agents, [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col, were administered in the tail vein of male and female Sprague–Dawley rats (N = 24. An ex vivo organ distribution study was performed at the 5-, 10-, 20-, 40-, 60- and 120-min time points. The resulting data were extrapolated for the estimation of human organ and total body absorbed and total effective doses using Organ Level Internal Dose Assessment Code software (OLINDA/EXM 1.1 assuming a similar organ distribution pattern between the species. Time-integrated radioactivity in each organ was calculated by trapezoidal integration followed by a single-exponential fit to the data points extrapolated to infinity. The resulting values were used for the residence time calculation. Results: Ex vivo organ distribution data revealed fast blood clearance and washout from most of the organs. Although the highest organ absorbed dose was found for kidneys (0.1 mGy/MBq, this organ was not the dose-limiting one and would allow for the administration of over 1460

  11. Transport equation solving methods

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method

  12. Extrapolation of creep behavior of high-density polyethylene liner in the Catch Basin of grout vaults

    Testing was performed to determine if gravel particles will creep into and puncture the high-density polyethylene (HDPE) liner in the catch basin of a grout vault over a nominal 30-year period. Testing was performed to support a design without a protective geotextile cover after the geotextile was removed from the design. Recently, a protective geotextile cover over the liner was put back into the design. The data indicate that the geotextile has an insignificant effect on the creep of gravel into the liner. However, the geotextile may help to protect the liner during construction. Two types of tests were performed to evaluate the potential for creep-related puncture. In the first type of test, a very sensitive instrument measured the rate at which a probe crept into HDPE over a 20-minute period at temperatures of 176 degrees F to 212 degrees F (80 degrees C to 100 degrees C). The second type of test consisted of placing the liner between gravel and mortar at 194 degrees F (90 degrees C) and 45.1 psi overburden pressure for periods up to 1 year. By combining data from the two tests, the long-term behavior of the creep was extrapolated to 30 years of service. After 30 years of service, the liner will be in a nearly steady condition and further creep will be extremely small. The results indicate that the creep of gravel into the liner will not create a puncture during service at 194 degrees F (90 degrees C). The estimated creep over 30 years is expected to be less than 25 mils out of the total initial thickness of 60 mils. The test temperature of 194 degrees F (90 degrees C) corresponds to the design basis temperature of the vault. Lower temperatures are expected at the liner, which makes the test conservative. Only the potential for failure of the liner resulting from creep of gravel is addressed in this report

  13. Spectral Irradiance Calibration in the Infrared. Part 7; New Composite Spectra, Comparison with Model Atmospheres, and Far-Infrared Extrapolations

    Cohen, Martin; Witteborn, Fred C.; Carbon, Duane F.; Davies, John K.; Wooden, Diane H.; Bregman, Jesse D.

    1996-01-01

    We present five new absolutely calibrated continuous stellar spectra constructed as far as possible from spectral fragments observed from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer. These stars-alpha Boo, gamma Dra, alpha Cet, gamma Cru, and mu UMa-augment our six, published, absolutely calibrated spectra of K and early-M giants. All spectra have a common calibration pedigree. A revised composite for alpha Boo has been constructed from higher quality spectral fragments than our previously published one. The spectrum of gamma Dra was created in direct response to the needs of instruments aboard the Infrared Space Observatory (ISO); this star's location near the north ecliptic pole renders it highly visible throughout the mission. We compare all our low-resolution composite spectra with Kurucz model atmospheres and find good agreement in shape, with the obvious exception of the SiO fundamental, still lacking in current grids of model atmospheres. The CO fundamental seems slightly too deep in these models, but this could reflect our use of generic models with solar metal abundances rather than models specific to the metallicities of the individual stars. Angular diameters derived from these spectra and models are in excellent agreement with the best observed diameters. The ratio of our adopted Sirius and Vega models is vindicated by spectral observations. We compare IRAS fluxes predicted from our cool stellar spectra with those observed and conclude that, at 12 and 25 microns, flux densities measured by IRAS should be revised downwards by about 4.1% and 5.7%, respectively, for consistency with our absolute calibration. We have provided extrapolated continuum versions of these spectra to 300 microns, in direct support of ISO (PHT and LWS instruments). These spectra are consistent with IRAS flux densities at 60 and 100 microns.

  14. 末端弹道雷达信号的滤波及弹道外推研究%Research on Filter of Radar Data and Extrapolation Traj ectory

    王庭辉; 任辉启; 徐流恩; 易治; 高超

    2014-01-01

    基于末端弹道小机动、平稳特点,采用质点弹道模型描述目标的运动,结合非线性不敏卡尔曼滤波算法(Unscented Kalman Filter,UKF)对雷达量测数据进行滤波及弹道参数估计。根据现实需要,由某一时刻滤波得到的目标位置、速度和弹道系数进行外推计算。计算结果表明,对于飞行马赫数为1~3的来袭目标,外推2s 目标空间位置绝对误差可以稳定控制在10 m左右。考虑到雷达对目标的径向速度测量数据较为精确的特点,提出了一种基于最小二乘拟合和充分利用径向速度数据的计算方法,确定了目标外推初始边界条件。计算过程和结果表明,该方法具有更快的计算速度和更好的计算精度。%Based on the non-maneuvering characteristics of the terminal traj ectory missiles,the particle ballistic model was used to describe the motion properties of target.Combined with nonlinear unscented Kalman filter algorithms,the ballistic parameters were estimated by filtering the radar data.According to needs,the extrapolation of traj ectory was carried out by the data of target location,velocity and traj ectory coefficient at a certain time.The calculation results show that,for a target with Mach number of 1~3,2 s extrapolation of the spatial position of absolute error was stabilized at around 10 m.Considering the properties that the radical velocity of target is measured accurately by radar,a new calculation method was proposed to determine the target initial conditions of extrapolation.The calculation process and results show that the new method has faster computation and better accuracy.

  15. Methodological Analysis of Extrapolating Input-Output Tables of China%中国投入产出序列表外推方法研究

    马向前; 任若恩

    2004-01-01

    This paper compared the estimating precision and applicability for extrapolating China's Input-Output tables series based on Kuroda and RAS approach, respectively. The statistic results showed that Kuroda approach was slightly prior to RAS methlod and both estimates had large errorsin the case that time periods were longer than five years,which ascrbed to significant continued changes in China's industry structure. However, the modified Kuroela approach will be applicable for updating Input-Output tables of China.

  16. Assessment of the hepatic veins in poor contrast conditions using dual energy CT. Evaluation of a novel monoenergetic extrapolation software algorithm

    Purpose: To evaluate a novel monoenergetic post-processing algorithm (MEI+) in patients with poor intrahepatic contrast enhancement. Materials and Methods: 25 patients were retrospectively included in this study. Late-phase imaging of the upper abdomen, which was acquired in dual-energy mode (100/140 kV), was used as a model for poor intrahepatic contrast enhancement. Traditional monoenergetic images (MEI), linearly weighted mixed images with different mixing ratios (MI), sole 100 and 140 kV and MEI+ images were calculated. MEI+ is a novel technique which applies frequency-based mixing of the low keV images and an image of optimal keV from a noise perspective to combine the benefits of both image stacks. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the intrahepatic vasculature (IHV) and liver parenchyma (LP) were objectively measured and depiction of IHV was subjectively rated and correlated with portal venous imaging by two readers in consensus. Results: MEI+ was able to increase the SNR of the IHV (5.7 ± 0.4 at 40 keV) and LP (4.9 ± 1.0 at 90 keV) and CNR (2.1 ± 0.6 at 40 keV) greatly compared to MEI (5.1 ± 1.1 at 80 keV, 4.7 ± 1.0 at 80 keV, 1.0 ± 0.4 at 70 keV), MI (5.2 ± 1.1 M5:5, 4.8 ± 1.0 M5:5, 1.0 ± 3.5 M9:1), sole 100 kV images (4.4 ± 1.0, 3.7 ± 0.8, 1.0 ± 0.3) and 140 kV images (2.8 ± 0.5, 3.1 ± 0.6, 0.1 ± 0.2). Subjective assessment rated MEI+ of virtual 40 keV superior to all other images. Conclusion: MEI+ is a very promising algorithm for monoenergetic extrapolation which is able to overcome noise limitations associated with traditional monoenergetic techniques at low virtual keV levels and consequently does not suffer from a decline of SNR and CNR at low keV values. This algorithm allows an improvement of IHV depiction in the presence of poor contrast. (orig.)

  17. Species Extrapolation of Life-Stage Physiologically-Based Pharmacokinetic (PBPK) Models to Investigate the Developmental Toxicology of Ethanol Using In vitro to In vivo (IVIVE) Methods

    To provide useful alternatives to in vivo animal studies, in vitro assays for dose-response assessments of xenobiotic chemicals must use concentrations in media and target tissues that are within biologically-plausible limits. Determining these concentrations is a complex matter,...

  18. Measurement of very low oxygen tensions in liquids: does the extrapolation number for mammalian survival curves decrease after x-irradiation under anoxic conditions

    Measurements of very low partial pressures of oxygen show that a vacuum degassing system combined with an oxygen consuming agent (sodium dithionite) and/or radiochemical oxygen consumption removes all of the oxygen from cells plated on glass dishes. When these cells are x-irradiated, the extrapolation number n remains the same under both aerobic and anoxic conditions, and an oxygen enhancement ratio of 3.0 is observed. Several other physical and chemical factors tested also have no effect on n. (author)

  19. Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau

    T. Gerken; W. Babel; Hoffmann, A.; Biermann, T.; M. Herzog.; Friend, A. D.; Li, M; Ma, Y.; T. Foken; Graf, H.-F.

    2012-01-01

    This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In compar...

  20. Creep-rupture-tests on thestainless steel X6 CrNi1811 (DIN 1.4948) in the frame of the ''Extrapolation-Program'' Pt. 2

    The austenitic stainless steel X6 CrNi 1811 (DIN 1.4948) that is used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 deg under base material condition as well as welded material condition. The main point of this program (''Extrapolation-Program'') lies in the knowledge of the cree-rupture-strength and creep-behaviour up to 3X10-4 hours at higher temperatures in order to extrapolate up to (>=)105 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out over temperature range 550 deg - 750 deg C. The present report describes the state in the running program with test-time up to 35.000 hours. Besides the cree-rupture behaviour it is possible to make a distinct quantitative statement for the creep-behaviour and ductility. Extensive metallographic examinations show the fracture behaviour and changes in structure. (author)

  1. Creep-rupture-test on the stainless steel X6CRNI1811 (DIN 1.4948) in the frame of the ''Extrapolation-Program''. (Part III)

    The austenitic stainless steel X6CrNi1811 (DIN 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 deg under base material condition as well as welded material condition. The main point of this program (''Extrapolation-Program'') lies in the knowledge of the creep-rupture-strength and creepbehaviour up to 3 x 104 hours at higher temperatures in order to extrapolate up to >=105 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 deg - 750 deg C. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 deg C. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (author)

  2. Measured Copper Toxicity to Cnesterodon decemmaculatus (Pisces: Poeciliidae and Predicted by Biotic Ligand Model in Pilcomayo River Water: A Step for a Cross-Fish-Species Extrapolation

    María Victoria Casares

    2012-01-01

    Full Text Available In order to determine copper toxicity (LC50 to a local species (Cnesterodon decemmaculatus in the South American Pilcomayo River water and evaluate a cross-fish-species extrapolation of Biotic Ligand Model, a 96 h acute copper toxicity test was performed. The dissolved copper concentrations tested were 0.05, 0.19, 0.39, 0.61, 0.73, 1.01, and 1.42 mg Cu L-1. The 96 h Cu LC50 calculated was 0.655 mg L-1 (0.823-0.488. 96-h Cu LC50 predicted by BLM for Pimephales promelas was 0.722 mg L-1. Analysis of the inter-seasonal variation of the main water quality parameters indicates that a higher protective effect of calcium, magnesium, sodium, sulphate, and chloride is expected during the dry season. The very high load of total suspended solids in this river might be a key factor in determining copper distribution between solid and solution phases. A cross-fish-species extrapolation of copper BLM is valid within the water quality parameters and experimental conditions of this toxicity test.

  3. Geological predictions for the long-term isolation of radioactive waste based on extrapolating uniform mode and rate of crustal movements

    Long-term predictions of geological and tectonic disturbances are key issues for the safety assessment of radioactive waste disposal, especially on the Japanese Islands. Geological predictions of disturbances should be performed by extrapolating uniform mode and rate of crustal movements under the current framework. Multiple lines of geological evidence in Japan strongly suggest that the present mode of tectonics began during the late Pliocene to early Quaternary, and was fully developed by the middle Pleistocene. The uplift rates of mountains in Japan are determined to have been approximately constant until the middle Pleistocene based on simulations of temporal changes in mean altitude developed under concurrent tectonics and denudation processes. The onset of the neotectonic mode of deformation was probably triggered by the initiation of the eastward movement of the Amur Plate and the collision of the Izu block with central Honshu. The uncertainty of predictions beyond steady-state crustal deformation would, in general, increase for long-term predictions using the extrapolation procedure. Consequently, future geological and tectonic disturbances in Japan can be estimated with relatively high reliability for the next 100,000 years. (author)

  4. Copper complex N(4)-ortho-toluyl-2-acetylpyridine thiosemicarbazone - (64Cu)(H2Ac4oT)Cl - internal dosimetry: animal model and human extrapolation

    Thiosemicarbazones have attracted great pharmacological interest because of their biological properties, such as cytotoxic activity against multiple strains of human tumors. Due to the excellent properties of 64Cu, the copper complex N(4)-ortho-toluyl-2-acetylpyridine thiosemicarbazone ( (64Cu)(H2Ac4oT)Cl) was developed for tumor detection by positron emission tomography. The radiopharmaceuticals were produced in the nuclear reactor TRIGA-IPR-R1 from CDTN. At the present work, (64Cu)(H2Ac4oT)Cl biokinetic data (evaluated in mice bearing Ehrlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for (64Cu)(H2Ac4oT)Cl. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 64Cu in the tissue were considered in dose calculations. (author)

  5. Irradiation dose assessment in persons exposed to ionizing radiation through extrapolation of data from clinic-chemical changes in irradiated laboratory animals

    An attempt is made to determine the dose within 24,48 and 72 hours of eventual exposure of healthy individuals to ionizing radiation through extrapolation of data retrieved from rats exposed to irradiation with 1, 3, 6 and 9 Gy X-rays. Seven clinic-chemical parameters are used: urea in the urine, taurine in the urine, urea in the serum, serum alkaline phosphatase, total serum lipids, sialic acid and thromboxane in the serum. A special formula is worked out and used for extrapolation of the experimental data, retrieved from irradiated rats, with due consideration to differences in the intensity of metabolic processes and species' radiosensitivity of rats and humans. The values of the aforementioned parameters that could be obtained upon eventual exposure of persons to ionizing irradiation are determined through computerization of the experimental data. It is believed that an accessible model for radiation dose assessment in the first three days after accidental exposure of human beings to ionizing irradiation is created. 5 refs., 4 figs. (author)

  6. Creep-rupture-tests on the stainless steel X6CrNi 1811 (DIN 1.4948) in the frame of the Extrapolation-program. Pt. 3

    The austenitic stainless steel X6CrNi1811 (DIN 1.4948) that is used as a structure material for the German Fast Breeder Reactor SNR 300 was creep-tested in a temperature range of 550-6500C under base material condition as well as welded material condition. The main point of this program ( Extrapolation Program ) lies in the knowledge of the creep-rupture-strength and creep-behaviour up to 3 x 104 hours at higher temperatures in order to extrapolate up to >= 105 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out over temperature range of 550-7500C. The present report describes the state in the total running program with test-times up to 55 000 hours. Besides the creep-rupture behaviour it is possible to make a distinct quantitativ statement for the creep-behaviour and ductility. Extensive metallographic and electronmicroscopic examinations show the fracture behaviour and changes in structure. (orig.)

  7. Creep-rupture-test on the stainless steel X6crni1811 (Din 1.494.8) in the frame of the Extrapolation-Program. (Part III)

    The austenitic stainless steel X6crni1811 (Din 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 degree centigree material condition as well as welded material condition. The main point of this program (Extrapolation-Program) lies in the knowledge of the creep-rupture-strength and creep-behaviour up to 3 x 104 hours higher temperatures in order to extrapolated up to ≥105 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 degree centigree - 750 degree centigree. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 degree centigree. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (Author)

  8. Study of energy dependence of a extrapolation chamber in low energy X-rays beams; Estudo da dependencia energetica de uma camara de extrapolacao em feixes de raios-X de baixa energia

    Bastos, Fernanda M.; Silva, Teogenes A. da, E-mail: fernanda_mbastos@yahoo.com.br, E-mail: silvata@cdtn.br [Centro de Desenvolvimeto da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2014-07-01

    This work was with the main objective to study the energy dependence of extrapolation chamber in low energy X-rays to determine the value of the uncertainty associated with the variation of the incident radiation energy in the measures in which it is used. For studying the dependence of energy, were conducted comparative ionization current measurements between the extrapolation chamber and two ionization chambers: a chamber mammography, RC6M model, Radcal with energy dependence less than 5% and a 2575 model radioprotection chamber NE Technology; both chambers have very thin windows, allowing its application in low power beams. Measurements were made at four different depths of 1.0 to 4.0 mm extrapolation chamber, 1.0 mm interval, for each reference radiation. The study showed that there is a variable energy dependence on the volume of the extrapolation chamber. In other analysis, it is concluded that the energy dependence of extrapolation chamber becomes smaller when using the slope of the ionization current versus depth for the different radiation reference; this shows that the extrapolation technique, used for the absorbed dose calculation, reduces the uncertainty associated with the influence of the response variation with energy radiation.

  9. Mathematical methods for physical and analytical chemistry

    Goodson, David Z

    2011-01-01

    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  10. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation

    Rong, Lu; Latychevskaia, Tatiana; Wang, Dayong; Zhou, Xun; Huang, Haochong; Li, Zeyu; Wang, Yunxin

    2014-01-01

    We report here on terahertz (THz) digital holography on a biological specimen. A continuous-wave (CW) THz in-line holographic setup was built based on a 2.52 THz CO2 pumped THz laser and a pyroelectric array detector. We introduced novel statistical method of obtaining true intensity values for the pyroelectric array detector's pixels. Absorption and phase-shifting images of a dragonfly's hind wing were reconstructed simultaneously from single in-line hologram. Furthermore, we applied phase r...

  11. The method of analysis and calculation of switching overvoltages at presence of nonlinear overvoltage limiter in the circuit

    Full text : It is offered a mathematical model of overvoltage limiter and multi-step extrapolation method for solution of ordinary differential equations with the purposes of calculation of wave processes with presence of elements of high voltage networks

  12. De vier rationaliteiten in Bestuurskundige Argumentatie: De Praxeologische tafel als integratieve methodologie

    A.R. Edwards (Arthur)

    1998-01-01

    textabstractAls toepassingsgericht en multidisciplinaire wetenschap behoeft de bestuurskunde een eigen methodologie, naast de algemene sociaalwetenschappelijke methodologie voor het doen van empirisch onderzoek. Deze eigen bestuurskundige methodologie zou kunnen uitgaan van een argumentatieve benade

  13. EU - which kind of future? / Erik Terk, Külliki Tafel

    Terk, Erik

    2003-01-01

    Autorid analüüsivad Euroopa Liidu võimalikke arengusuundi kolmest institutsionaalsest tulevikuvisioonist lähtuvalt - riigistuv Euroopa, isamaade Euroopa/minimaalne Euroopa ja kodanike Euroopa. Skeem

  14. Eco-label - simple environmental choice / Andres Viia, Külliki Tafel

    Viia, Andres

    2003-01-01

    Autorid selgitavad ökomärgistuse olemust ja vajalikkust tarbijate teavitamisel vähem keskkonda kahjustavatest toodetest ning teenustest. Lisatud näiteid regionaalsetest ja rahvuslikest ökomärkidest EL-is, tuntumatest ökomärkidest väljaspool Euroopat, hoiatavatest ja informatiivsetest keskkonnamärkidest ning libaökomärkidest. Vt. samas: North-East Estonia - a seat of an environment-friendly batteries' recycling

  15. Aan tafel! Hoe de aanwezigheid van anderen ons eetgedrag beïnvloedt

    Hermans, R.C.J.

    2015-01-01

    Voedsel en eten spelen een belangrijke rol in ons sociale leven. Tijdens sociale gelegenheden letten we sterk op wat anderen om ons heen eten. Herkent u dat moment dat er heftige discussies ontstaan over het wel of niet nemen van een dessert? Of dat tijdens de vrijdagmiddagborrel nog één bitterbal o

  16. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation

    Rong, Lu; Latychevskaia, Tatiana; Wang, Dayong; Zhou, Xun; Huang, Haochong; Li, Zeyu; Wang, Yunxin

    2014-01-01

    We report here on terahertz (THz) digital holography on a biological specimen. A continuous-wave (CW) THz in-line holographic setup was built based on a 2.52 THz CO2 pumped THz laser and a pyroelectric array detector. We introduced novel statistical method of obtaining true intensity values for the pyroelectric array detector’s pixels. Absorption and phase-shifting images of a dragonfly’s hindwing were reconstructed simultaneously from single in-line hologram. Furthermore, we applied phase re...

  17. Dose metric considerations in in vitro assays to improve quantitative in vitro-in vivo dose extrapolations.

    Groothuis, Floris A; Heringa, Minne B; Nicol, Beate; Hermens, Joop L M; Blaauboer, Bas J; Kramer, Nynke I

    2015-06-01

    Challenges to improve toxicological risk assessment to meet the demands of the EU chemical's legislation, REACH, and the EU 7th Amendment of the Cosmetics Directive have accelerated the development of non-animal based methods. Unfortunately, uncertainties remain surrounding the power of alternative methods such as in vitro assays to predict in vivo dose-response relationships, which impedes their use in regulatory toxicology. One issue reviewed here, is the lack of a well-defined dose metric for use in concentration-effect relationships obtained from in vitro cell assays. Traditionally, the nominal concentration has been used to define in vitro concentration-effect relationships. However, chemicals may differentially and non-specifically bind to medium constituents, well plate plastic and cells. They may also evaporate, degrade or be metabolized over the exposure period at different rates. Studies have shown that these processes may reduce the bioavailable and biologically effective dose of test chemicals in in vitro assays to levels far below their nominal concentration. This subsequently hampers the interpretation of in vitro data to predict and compare the true toxic potency of test chemicals. Therefore, this review discusses a number of dose metrics and their dependency on in vitro assay setup. Recommendations are given on when to consider alternative dose metrics instead of nominal concentrations, in order to reduce effect concentration variability between in vitro assays and between in vitro and in vivo assays in toxicology. PMID:23978460

  18. Introduction to Numerical Methods

    Schoonover, Joseph A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-14

    These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.

  19. On parallel multisplitting block iterative methods for linear systems arising in the numerical solution of Euler equations

    Zhang, Cheng-Yi; Luo, Shuanghua; Xu, Zongben

    2014-01-01

    The paper studies the convergence of some parallel multisplitting block iterative methods for the solution of linear systems arising in the numerical solution of Euler equations. Some sufficient conditions for convergence are proposed. As special cases the convergence of the parallel block generalized AOR (BGAOR), the parallel block AOR (BAOR), the parallel block generalized SOR (BGSOR), the parallel block SOR (BSOR), the extrapolated parallel BAOR and the extrapolated parallel BSOR methods a...

  20. Modeling the systemic retention of beryllium in rat. Extrapolation to human; Modelizacion de la retencion sistemica del berilio en la rata. Extrapolacion al Hombre

    Montero Prieto, M.; Vidania Munoz, R. de

    1994-07-01

    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and others animal species. Furchner's work includes the obtained model for whole body retention in rats, but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with others previously published. (Author) 12 refs.

  1. Static $\\bar{Q}Q$ pair free energy and screening masses from correlators of Polyakov loops: continuum extrapolated lattice results at the QCD physical point

    Borsányi, Szabolcs; Katz, Sándor D; Pásztor, Attila; Szabó, Kálmán K; Török, Csaba

    2015-01-01

    We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correlators are extrapolated to the continuum limit. For the free energies we use a two step renormalization procedure that only uses data at finite temperature. We also measure correlators with definite Euclidean time reversal and charge conjugation symmetry to extract two different screening masses, one in the magnetic, and one in the electric sector, to distinguish two different correlation lengths in the full Polyakov loop correlator.

  2. High-resolution spectroscopy of He2+ using Rydberg-series extrapolation and Zeeman-decelerated supersonic beams of metastable He2

    Jansen, Paul; Semeria, Luca; Merkt, Frédéric

    2016-04-01

    Recently, high-resolution spectroscopy of slow beams of metastable helium molecules (He2∗) generated by multistage Zeeman deceleration was used in combination with Rydberg-series extrapolation techniques to obtain the lowest rotational interval in the molecular helium ion at a precision of 18 MHz (Jansen et al., 2015), limited by the temporal width of the Fourier-transform-limited laser pulses used to record the spectra. We present here an extension of these measurements in which we have (1) measured higher rotational intervals of He2+, (2) replaced the pulsed UV laser by a cw UV laser and improved the resolution of the spectra by a factor of more than five, and (3) studied MJ redistribution processes in regions of low magnetic fields of the Zeeman decelerator and shown how these processes can be exploited to assign transitions originating from specific spin-rotational levels (N″,J″) of He2∗ .

  3. Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic

    Walker, D. A.; Epstein, H. E.; Jia, G. J.; Balser, A.; Copass, C.; Edwards, E. J.; Gould, W. A.; Hollingsworth, J.; Knudson, J.; Maier, H. A.; Moody, A.; Raynolds, M. K.

    2003-01-01

    We examined the effects of summer warmth on leaf area index (LAI), total aboveground phytomass (TAP), and normalized difference vegetation index (NDVI) across the Arctic bioclimate zone in Alaska and extrapolated our results to the circumpolar Arctic. Phytomass, LAI, and within homogeneous areas of vegetation on acidic and nonacidic soils were regressed against the total summer warmth index (SWI) at 12 climate stations in northern Alaska (SWI = sum of mean monthly temperatures greater than 0°C). SWI varies from 9°C at Barrow to 37°C at Happy Valley. A 5°C increase in the SWI is correlated with about a 120 g m-2 increase in the aboveground phytomass for zonal vegetation on acidic sites and about 60 g m-2 on nonacidic sites. Shrubs account for most of the increase on acidic substrates, whereas mosses account for most of the increase on nonacidic soils. LAI is positively correlated with SWI on acidic sites but not on nonacidic sites. The NDVI is positively correlated with SWI on both acidic and nonacidic soils, but the NDVI on nonacidic parent material is consistently lower than the NDVI on acidic substrates. Extrapolation to the whole Arctic using a five-subzone zonation approach to stratify the circumpolar NDVI and phytomass data showed that 60% of the aboveground phytomass is concentrated in the low-shrub tundra (subzone 5), whereas the high Arctic (subzones 1-3) has only 9% of the total. Estimated phytomass densities in subzones 1-5 are 47, 256, 102, 454, and 791 g m-2, respectively. Climate warming will likely result in increased phytomass, LAI, and NDVI on zonal sites. These changes will be most noticeable in acidic areas with abundant shrub phytomass.

  4. Extrapolative Estimation of Benthic Diatoms (Bacillariophyta Species Diversity in Different Marine Habitats of the Crimea (Black Sea

    A. N. Petrov

    2013-01-01

    Full Text Available Benthic diatoms species richness was analyzed based on 93 samples collected at 8 areas of Crimea (Black Sea on sandy/muddy bottoms within depth range 6–48 m. Totally 433 species were found. Expected species richness Sexp was estimated by application of Jack-knife -1 and -2, Chao-2, and Karakassis-S∞ estimators. Magnitude of Sexp, resulted from S∞, displayed the most similar values to the observed species number (Sobs. Overestimation of Sobs (10–13% occurred for small number of samples (<12, and slight underestimation (3–5% occurred when sample numbers exceeded 40–43. The other estimators gave large overestimated results (Chao—from 21 to 70% higher than Sobs, Jack-knife—23–58%. The relationship between number of samples (X and number of observed species (Y was calculated considering all 93 samples: Y=79.01lnx+34.95. Accordingly, not less than 10 samples are required for disclosing about 50% of the total species richness (433; to detect 80% (347 species not less than 46 samples should be considered. Different configurations of S∞ method were applied to optimize its performance. The most precise results can be achieved when the calculation of the Sexp is based on sequences of randomized samples with sampling lags of 10 to 15.

  5. Phase shift analysis of ππ system at energies between 500 and 1370 MeV with Chew-Low extrapolation results from reactions π-p→pπ-π0 and π-p→nπ+π- at 3.92 GeV/c

    Experimental data (12 evts/μN→ππN reactions) were derived from the analysis of 450000 pictures obtained with the 2 meter hydrogen bubble chamber at CERN. The Chew-Low extrapolation method was used to obtain total and differential cross-sections of π+0π-→π+0π- reactions. Pseudo-peripherism hypothesis, in agreement with data at energy less 1 GeV, was modified to take into account the non-vanishing reactions amplitude at t=0, observed above 1 GeV. Several phase shift analyses were done, either with energy parametrisation of phase shifts, or at fixed energy. Main results concern the parameters of S* (Jsup(P)=0+) resonance which come out from a meromorphic parametrisation of the S0 wave amplitude in the region of the KantiK channel threshold (987 MeV) and the dynamical wave structures in the f0 (Jsup(P)=2+) resonance region. The agreement observed between these results and those of main previous experiments is a proof of the usefulness of the extrapolation method above 1 GeV

  6. Vasectomy as a proxy: extrapolating health system lessons to male circumcision as an HIV prevention strategy in Papua New Guinea

    Tynan Anna

    2012-09-01

    Full Text Available Abstract Background Male circumcision (MC has been shown to reduce the risk of HIV acquisition among heterosexual men, with WHO recommending MC as an essential component of comprehensive HIV prevention programs in high prevalence settings since 2007. While Papua New Guinea (PNG has a current prevalence of only 1%, the high rates of sexually transmissible diseases and the extensive, but unregulated, practice of penile cutting in PNG have led the National Department of Health (NDoH to consider introducing a MC program. Given public interest in circumcision even without active promotion by the NDoH, examining the potential health systems implications for MC without raising unrealistic expectations presents a number of methodological issues. In this study we examined health systems lessons learned from a national no-scalpel vasectomy (NSV program, and their implications for a future MC program in PNG. Methods Fourteen in-depth interviews were conducted with frontline health workers and key government officials involved in NSV programs in PNG over a 3-week period in February and March 2011. Documentary, organizational and policy analysis of HIV and vasectomy services was conducted and triangulated with the interviews. All interviews were digitally recorded and later transcribed. Application of the WHO six building blocks of a health system was applied and further thematic analysis was conducted on the data with assistance from the analysis software MAXQDA. Results Obstacles in funding pathways, inconsistent support by government departments, difficulties with staff retention and erratic delivery of training programs have resulted in mixed success of the national NSV program. Conclusions In an already vulnerable health system significant investment in training, resources and negotiation of clinical space will be required for an effective MC program. Focused leadership and open communication between provincial and national government, NGOs and

  7. Corrosion inhibition of brass by aliphatic amines

    Aliphatic amines hexylamine (HCA), octylamine (OCA) and decylamine (DCA) have been used as corrosion inhibitors for (70/30) brass in 0.I M HCIO4. The inhibitor efficiency (%P) calculated using weight loss, Tafel extrapolation, linear polarization and impedance methods was found to be in the order DCA> OCA> HCA. These adsorb on brass surface following bockris-swinkels' isotherm. DCA, OCA and HCA displaced 4, 3 and 2 molecules of water from interface respectively. Displacement of water molecules brought a great reorganization of double layer at the interface. These amines during corrosion form complexes with dissolved zinc and copper ions.(Author)

  8. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  9. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-701) 2: Extrapolation of wind-tunnel data to full-scale conditions

    Peterson, J. B., Jr.; Mann, M. J.; Sorrells, R. B., III; Sawyer, W. C.; Fuller, D. E.

    1980-01-01

    The results of calculations necessary to extrapolate performance data on an XB-70-1 wind tunnel model to full scale at Mach numbers from 0.76 to 2.53 are presented. The extrapolation was part of a joint program to evaluate performance prediction techniques for large flexible supersonic airplanes similar to a supersonic transport. The extrapolation procedure included: interpolation of the wind tunnel data at the specific conditions of the flight test points; determination of the drag increments to be applied to the wind tunnel data, such as spillage drag, boundary layer trip drag, and skin friction increments; and estimates of the drag items not represented on the wind tunnel model, such as bypass doors, roughness, protuberances, and leakage drag. In addition, estimates of the effects of flexibility of the airplane were determined.

  10. Local initiative extrapolated to nation

    Wittchen, Kim Bjarne; Kragh, Jesper; Brøgger, Morten

    to investigate the possible energy reduction in Denmark if the same approach was made for the entire Danish building stock. Deployment of this methodology on national scale will not be straight forward as it requires strong local support. In Sønderborg the local business and clean-tech companies have...

  11. The efficiency variation method for 4πβ-γ coincidence counting by ink-jet printing

    In order to vary the counting efficiencies in the 4πβ-γ coincidence extrapolation technique, a radioactive source was coated directly with varying amounts of an electrical conducting pigment using an ink-jet printer. This method can be used to efficiently prepare the multiple sources needed to generate efficiency extrapolation curves, and was successfully applied to the standardization of a 54Mn source

  12. Mortality risk coefficients for radiation-induced cancer at high doses and dose-rates, and extrapolation to the low dose domain.

    Liniecki, J

    1989-01-01

    Risk coefficients for life-long excessive mortality due to radiation-induced cancers are presented, as derived in 1988 by the U.N. Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), principally on the basis of follow-up from A-bomb survivors in Japan, over the period from 1950 through 1985. The data are based on the new, revised dosimetry (DS 86) in the two cities, and reflect the effects of high and intermediate doses of basically low LET radiation delivered instantaneously. The author presents arguments relevant to the extrapolation of the risk to the low dose (dose rate) domain, as outlined by UNSCEAR in its 1986, and the NCRP (USA) in its 1980, (no 64), reports. The arguments are based on models and dose-response relationships for radiation action, derived from data on cellular radiobiology, animal experiments on radiation-induced cancers and life shortening, as well as the available limited human epidemiological evidence. The available information points to the lower effectiveness of sparsely ionizing radiation at low doses and low dose-rates, as compared with that observed for high, acutely delivered doses. The possible range of the reduction values (DREF) is presented. For high LET radiations, the evidence is less extensive and sometimes contradictory; however, it does not point to a reduction of the effectiveness at low doses/dose-rates, relative to the high dose domain. Practical consequences of these facts are considered. PMID:2489419

  13. Out-of-Sample Extrapolation utilizing Semi-Supervised Manifold Learning (OSE-SSL): Content Based Image Retrieval for Histopathology Images.

    Sparks, Rachel; Madabhushi, Anant

    2016-01-01

    Content-based image retrieval (CBIR) retrieves database images most similar to the query image by (1) extracting quantitative image descriptors and (2) calculating similarity between database and query image descriptors. Recently, manifold learning (ML) has been used to perform CBIR in a low dimensional representation of the high dimensional image descriptor space to avoid the curse of dimensionality. ML schemes are computationally expensive, requiring an eigenvalue decomposition (EVD) for every new query image to learn its low dimensional representation. We present out-of-sample extrapolation utilizing semi-supervised ML (OSE-SSL) to learn the low dimensional representation without recomputing the EVD for each query image. OSE-SSL incorporates semantic information, partial class label, into a ML scheme such that the low dimensional representation co-localizes semantically similar images. In the context of prostate histopathology, gland morphology is an integral component of the Gleason score which enables discrimination between prostate cancer aggressiveness. Images are represented by shape features extracted from the prostate gland. CBIR with OSE-SSL for prostate histology obtained from 58 patient studies, yielded an area under the precision recall curve (AUPRC) of 0.53 ± 0.03 comparatively a CBIR with Principal Component Analysis (PCA) to learn a low dimensional space yielded an AUPRC of 0.44 ± 0.01. PMID:27264985

  14. Human plasma concentrations of five cytochrome P450 probes extrapolated from pharmacokinetics in dogs and minipigs using physiologically based pharmacokinetic modeling.

    Shida, Satomi; Yamazaki, Hiroshi

    2016-09-01

    The pharmacokinetics of cytochrome P450 probes in humans can be extrapolated from corresponding data in cynomolgus monkeys using simplified physiologically based pharmacokinetic (PBPK) modeling. In the current study, despite some species difference in drug clearances, this modeling methodology was adapted to estimate human plasma concentrations of P450 probes based on data from commonly used medium-sized experimental animals, namely dogs and minipigs. Using known species allometric scaling factors and in vitro metabolic clearance data, the observed plasma concentrations of slowly eliminated caffeine and warfarin and rapidly eliminated omeprazole, metoprolol and midazolam in two young dogs were scaled to human oral monitoring equivalents. Using the same approach, the previously reported pharmacokinetics of the five P450 probes in minipigs was also scaled to human monitoring equivalents. The human plasma concentration profiles of the five P450 probes estimated by the simplified human PBPK models based on observed/reported pharmacokinetics in dogs/minipigs were consistent with previously published pharmacokinetic data in humans. These results suggest that dogs and minipigs, in addition to monkeys, could be suitable models for humans during research into new drugs, especially when used in combination with simple PBPK models. PMID:26652678

  15. Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR.

    Kar, Supratik; Gajewicz, Agnieszka; Roy, Kunal; Leszczynski, Jerzy; Puzyn, Tomasz

    2016-04-01

    Synthesis of novel nanoparticles should always be accompanied by a comprehensive assessment of risk to human health and to ecosystem. Application of in silico models is encouraged by regulatory authorities to fill the data gaps related to the properties of nanoparticles affecting the environment and human health. Interspecies toxicity correlations provide a tool for estimation of contaminant's sensitivity with known levels of uncertainty for a diverse pool of species. We propose here first interspecies cytotoxicity correlation models between Escherichia coli (prokaryotic system) and human keratinocyte cell line (HaCaT) (eukaryotic system) to assess the discriminatory features for cytotoxicity of metal oxide nanoparticles. The nano-QTTR models can be employed for extrapolating cytotoxicity to E. coli and human keratinocyte cell line (HaCaT) for metal nanoparticles when the data for the other species are available. Informative illustrations of the contributing mechanisms of toxic action of the metal oxide nanoparticles to the HaCaT cell line as well as to the E. coli are identified from the developed nano quantitative toxicity-toxicity relationship (nano-QTTR) models. PMID:26773833

  16. Development of a PBPK model of thiocyanate in rats with an extrapolation to humans: A computational study to quantify the mechanism of action of thiocyanate kinetics in thyroid.

    Willemin, Marie-Emilie; Lumen, Annie

    2016-09-15

    Thyroid homeostasis can be disturbed due to thiocyanate exposure from the diet or tobacco smoke. Thiocyanate inhibits both thyroidal uptake of iodide, via the sodium-iodide symporter (NIS), and thyroid hormone (TH) synthesis in the thyroid, via thyroid peroxidase (TPO), but the mode of action of thiocyanate is poorly quantified in the literature. The characterization of the link between intra-thyroidal thiocyanate concentrations and dose of exposure is crucial for assessing the risk of thyroid perturbations due to thiocyanate exposure. We developed a PBPK model for thiocyanate that describes its kinetics in the whole-body up to daily doses of 0.15mmol/kg, with a mechanistic description of the thyroidal kinetics including NIS, passive diffusion, and TPO. The model was calibrated in a Bayesian framework using published studies in rats. Goodness-of-fit was satisfactory, especially for intra-thyroidal thiocyanate concentrations. Thiocyanate kinetic processes were quantified in vivo, including the metabolic clearance by TPO. The passive diffusion rate was found to be greater than NIS-mediated uptake rate. The model captured the dose-dependent kinetics of thiocyanate after acute and chronic exposures. Model behavior was evaluated using a Morris screening test. The distribution of thiocyanate into the thyroid was found to be determined primarily by the partition coefficient, followed by NIS and passive diffusion; the impact of the latter two mechanisms appears to increase at very low doses. Extrapolation to humans resulted in good predictions of thiocyanate kinetics during chronic exposure. The developed PBPK model can be used in risk assessment to quantify dose-response effects of thiocyanate on TH. PMID:27445130

  17. Extrapolation of in situ data from 1-km squares to adjacent squares using remote sensed imagery and airborne lidar data for the assessment of habitat diversity and extent.

    Lang, M; Vain, A; Bunce, R G H; Jongman, R H G; Raet, J; Sepp, K; Kuusemets, V; Kikas, T; Liba, N

    2015-03-01

    Habitat surveillance and subsequent monitoring at a national level is usually carried out by recording data from in situ sample sites located according to predefined strata. This paper describes the application of remote sensing to the extension of such field data recorded in 1-km squares to adjacent squares, in order to increase sample number without further field visits. Habitats were mapped in eight central squares in northeast Estonia in 2010 using a standardized recording procedure. Around one of the squares, a special study site was established which consisted of the central square and eight surrounding squares. A Landsat-7 Enhanced Thematic Mapper Plus (ETM+) image was used for correlation with in situ data. An airborne light detection and ranging (lidar) vegetation height map was also included in the classification. A series of tests were carried out by including the lidar data and contrasting analytical techniques, which are described in detail in the paper. Training accuracy in the central square varied from 75 to 100 %. In the extrapolation procedure to the surrounding squares, accuracy varied from 53.1 to 63.1 %, which improved by 10 % with the inclusion of lidar data. The reasons for this relatively low classification accuracy were mainly inherent variability in the spectral signatures of habitats but also differences between the dates of imagery acquisition and field sampling. Improvements could therefore be made by better synchronization of the field survey and image acquisition as well as by dividing general habitat categories (GHCs) into units which are more likely to have similar spectral signatures. However, the increase in the number of sample kilometre squares compensates for the loss of accuracy in the measurements of individual squares. The methodology can be applied in other studies as the procedures used are readily available. PMID:25648761

  18. Detectors for LEP: methods and techniques

    This note surveys detection methods and techniques of relevance for the LEP physics programme. The basic principles of the detector physics are sketched, as recent improvement in understanding points towards improvements and also limitations in performance. Development and present status of large detector systems is presented and permits some conservative extrapolations. State-of-the-art techniques and technologies are presented and their potential use in the LEP physics programme assessed. (Auth.)

  19. Methods for measuring arctic and alpine shrub growth

    Myers-Smith, Isla; Hallinger, Martin; Blok, Daan;

    2015-01-01

    of tundra vegetation dynamics and environmental changes. However, dendrochronological methods developed for trees, need to be adapted for the morphology and growth eccentricity of shrubs. Here, we review current and developing methods to measure radial and axial growth, estimate age, and assess growth...... dynamics in relation to environmental variables. Recent advances in sampling methods, analysis and applications have improved our ability to investigate growth and recruitment dynamics of shrubs. However, to extrapolate findings to the biome scale, future dendroecologicalwork will require improved...

  20. The factorization method for Monte Carlo simulations of systems with a complex with

    Ambjørn, J.; Anagnostopoulos, K. N.; Nishimura, J.; Verbaarschot, J. J. M.

    2004-03-01

    We propose a method for Monte Carlo simulations of systems with a complex action. The method has the advantages of being in principle applicable to any such system and provides a solution to the overlap problem. In some cases, like in the IKKT matrix model, a finite size scaling extrapolation can provide results for systems whose size would make it prohibitive to simulate directly.

  1. Integration of CO2 flux and remotely-sensed data for primary production and ecosystem respiration analyses in the Northern Great Plains: potential for quantitative spatial extrapolation

    Gilmanov, Tagir G.; Tieszen, Larry L.; Wylie, Bruce K.; Flanagan, Larry B.; Frank, Albert B.; Haferkamp, Marshall R.; Meyers, Tilden P.; Morgan, Jack A.

    2005-01-01

    Aim  Extrapolation of tower CO2 fluxes will be greatly facilitated if robust relationships between flux components and remotely sensed factors are established. Long-term measurements at five Northern Great Plains locations were used to obtain relationships between CO2fluxes and photosynthetically active radiation (Q), other on-site factors, and Normalized Difference Vegetation Index (NDVI) from the SPOT VEGETATION data set. Location  CO2 flux data from the following stations and years were analysed: Lethbridge, Alberta 1998–2001; Fort Peck, MT 2000, 2002; Miles City, MT 2000–01; Mandan, ND 1999–2001; and Cheyenne, WY 1997–98. Results  Analyses based on light-response functions allowed partitioning net CO2 flux (F) into gross primary productivity (Pg) and ecosystem respiration (Re). Weekly averages of daytime respiration, γday, estimated from light responses were closely correlated with weekly averages of measured night-time respiration, γnight (R2 0.64 to 0.95). Daytime respiration tended to be higher than night-time respiration, and regressions of γday on γnight for all sites were different from 1 : 1 relationships. Over 13 site-years, gross primary production varied from 459 to 2491 g CO2 m−2 year−1, ecosystem respiration from 996 to 1881 g CO2 m−2 year−1, and net ecosystem exchange from −537 (source) to +610 g CO2 m−2 year−1 (sink). Maximum daily ecological light-use efficiencies, ɛd,max = Pg/Q, were in the range 0.014 to 0.032 mol CO2 (mol incident quanta)−1. Main conclusions  Ten-day average Pg was significantly more highly correlated with NDVI than 10-day average daytime flux, Pd (R2 = 0.46 to 0.77 for Pg-NDVI and 0.05 to 0.58 for Pd-NDVI relationships). Ten-day average Re was also positively correlated with NDVI, with R2values from 0.57 to 0.77. Patterns of the relationships of Pg and Re with NDVI and other factors indicate possibilities for establishing multivariate

  2. Methods of estimating nuclear power costs

    An international panel of experts appointed by the Agency's Director General, after examining costing methods in detail, has recently produced a report entitled 'Introduction to Methods of Estimating Nuclear Power Generating Costs'. The report is intended to help the Agency's Member States, particularly those which are less-developed in nuclear technology, in making a preliminary economic assessment before the construction of a nuclear power station. It gives a description of the different cost items involved in a nuclear power project, some suggestions as to the extrapolation of available data, and an evaluation of different methods of allocating the costs to the units of energy produced

  3. Do Forecasting Methods Reduce Avoidable Error? Evidence from Forecasting Competitions

    Steve Morlidge

    2014-01-01

    The set of M-competitions Ð comparing the forecasting accuracy of two dozen common time series methods Ð is a landmark in our understanding of how different methods fare on a variety of data types. For example, one common procedure, the trend line extrapolation available in Excel, emerged as the least accurate of all, and probably should be considered a must to avoid. Yet, as Steve Morlidge tells us here, the implications for practitioners, especially demand forecasters, are not widely unders...

  4. A Method for Specific Activity Measurement of 241Am Solution

    According to the principle of coincidence theory, the specific activity of 241Am solution was determined on 4πα+4πγ counting standard device by γ efficiency extrapolation, and the problems of constant correction coefficients of self-absorption and scattering in α ionization chamber method were solved. The method was based on the alteration of detection efficiency when the height of elevator was altered, and the activity was obtained by γ fitting extrapolation according to detection efficiency. The results of more than 20 alpha radioactive sources by this method in our work are accordant with those of 2πα ionization chamber, and their uncertainties are improved to 0.4%. (authors)

  5. Spectral method and its high performance implementation

    Wu, Zedong

    2014-01-01

    We have presented a new method that can be dispersion free and unconditionally stable. Thus the computational cost and memory requirement will be reduced a lot. Based on this feature, we have implemented this algorithm on GPU based CUDA for the anisotropic Reverse time migration. There is almost no communication between CPU and GPU. For the prestack wavefield extrapolation, it can combine all the shots together to migration. However, it requires to solve a bigger dimensional problem and more meory which can\\'t fit into one GPU cards. In this situation, we implement it based on domain decomposition method and MPI for distributed memory system.

  6. Characterization of an extrapolation chamber and radiochromic films for verifying the metrological coherence among beta radiation fields; Caracterizacao de uma camara de extrapolacao e filmes radiocromicos para verificacao da coerencia metrologica entre campos padroes de radiacao beta

    Castillo, Jhonny Antonio Benavente

    2011-07-01

    The metrological coherence among standard systems is a requirement for assuring the reliability of dosimetric quantities measurements in ionizing radiation field. Scientific and technologic improvements happened in beta radiation metrology with the installment of the new beta secondary standard BSS2 in Brazil and with the adoption of the internationally recommended beta reference radiations. The Dosimeter Calibration Laboratory of the Development Center for Nuclear Technology (LCD/CDTN), in Belo Horizonte, implemented the BSS2 and methodologies are investigated for characterizing the beta radiation fields by determining the field homogeneity, the accuracy and uncertainties in the absorbed dose in air measurements. In this work, a methodology to be used for verifying the metrological coherence among beta radiation fields in standard systems was investigated; an extrapolation chamber and radiochromic films were used and measurements were done in terms of absorbed dose in air. The reliability of both the extrapolation chamber and the radiochromic film was confirmed and their calibrations were done in the LCD/CDTN in {sup 90}Sr/{sup 90}Y, {sup 85}Kr and {sup 147}Pm beta radiation fields. The angular coefficients of the extrapolation curves were determined with the chamber; the field mapping and homogeneity were obtained from dose profiles and isodose with the radiochromic films. A preliminary comparison between the LCD/CDTN and the Instrument Calibration Laboratory of the Nuclear and Energy Research Institute / Sao Paulo (LCI/IPEN) was carried out. Results with the extrapolation chamber measurements showed in terms of absorbed dose in air rates showed differences between both laboratories up to de -I % e 3%, for {sup 90}Sr/{sup 90}Y, {sup 85}Kr and {sup 147}Pm beta radiation fields, respectively. Results with the EBT radiochromic films for 0.1, 0.3 and 0.15 Gy absorbed dose in air, for the same beta radiation fields, showed differences up to 3%, -9% and -53%. The beta

  7. A new method to estimate input-output tables by means of structural lags, tested on Spanish regions

    Oosterhaven, J.; Escobedo, F.

    2011-01-01

    The RAS method extrapolates a single matrix to conform to new row and column totals. This paper proposes a cell-correction of RAS (CRAS) that uses the deviations of multiple RAS projections, to improve the projection of the input-output table (IOT) of a specific country or region. The new method is

  8. The Trojan Horse Method as a tool for investigating astrophysically relevant fusion reactions

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Prada Moroni, P. G.

    2016-05-01

    The Trojan Horse Method (THM) has been largely adopted for investigating astrophysically relevant charged-particle induced reactions at Gamow energies. Indeed, THM allows one to by pass extrapolation procedures, thus overcoming this source of uncertainty. Here, the recent THM results and their impact in astrophysics are going to be discussed.

  9. The Trojan Horse Method as a tool for investigating astrophysically relevant fusion reactions

    Lamia L.; Spitaleri C.; Tognelli E.; Degl’Innocenti S.; Pizzone R.G.; Prada Moroni P.G.

    2016-01-01

    The Trojan Horse Method (THM) has been largely adopted for investigating astrophysically relevant charged-particle induced reactions at Gamow energies. Indeed, THM allows one to by pass extrapolation procedures, thus overcoming this source of uncertainty. Here, the recent THM results and their impact in astrophysics are going to be discussed.

  10. The Trojan Horse Method as a tool for investigating astrophysically relevant fusion reactions

    Lamia L.

    2016-01-01

    Full Text Available The Trojan Horse Method (THM has been largely adopted for investigating astrophysically relevant charged-particle induced reactions at Gamow energies. Indeed, THM allows one to by pass extrapolation procedures, thus overcoming this source of uncertainty. Here, the recent THM results and their impact in astrophysics are going to be discussed.

  11. Automatic numerical integration methods for Feynman integrals through 3-loop

    de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Olagbemi, O.

    2015-05-01

    We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities.

  12. Copper complex N(4)-ortho-toluyl-2-acetylpyridine thiosemicarbazone - ({sup 64}Cu)(H2Ac4oT)Cl - internal dosimetry: animal model and human extrapolation

    Rodrigues, Josianne L.; Silva, Paulo R.O.; Santos, Raquel G.; Ferreira, Andrea V., E-mail: jlr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Thiosemicarbazones have attracted great pharmacological interest because of their biological properties, such as cytotoxic activity against multiple strains of human tumors. Due to the excellent properties of {sup 64}Cu, the copper complex N(4)-ortho-toluyl-2-acetylpyridine thiosemicarbazone (({sup 64}Cu)(H2Ac4oT)Cl) was developed for tumor detection by positron emission tomography. The radiopharmaceuticals were produced in the nuclear reactor TRIGA-IPR-R1 from CDTN. At the present work, ({sup 64}Cu)(H2Ac4oT)Cl biokinetic data (evaluated in mice bearing Ehrlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for ({sup 64}Cu)(H2Ac4oT)Cl. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 64}Cu in the tissue were considered in dose calculations. (author)

  13. Human plasma concentrations of tolbutamide and acetaminophen extrapolated from in vivo animal pharmacokinetics using in vitro human hepatic clearances and simple physiologically based pharmacokinetic modeling for radio-labeled microdose clinical studies

    The aim of the current study was to extrapolate the pharmacokinetics of drug substances orally administered in humans from rat pharmacokinetic data using tolbutamide and acetaminophen as model compounds. Adjusted animal biomonitoring equivalents from rat studies based on reported plasma concentrations were scaled to human biomonitoring equivalents using known species allometric scaling factors. In this extrapolation, in vitro metabolic clearance data were obtained using liver preparations. Rates of tolbutamide elimination were roughly similar in rat and human liver microsome experiments, but acetaminophen elimination by rat liver microsomes and cytosolic preparations showed a tendency to be faster than those in humans. Using a simple physiologically based pharmacokinetic (PBPK) model, estimated human plasma concentrations of tolbutamide and acetaminophen were consistent with reported concentrations. Tolbutamide cleared in a roughly similar manner in humans and rats, but medical-dose levels of acetaminophen cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in rats. The data presented here illustrate how pharmacokinetic data in combination with a simple PBPK model can be used to assist evaluations of the pharmacological/toxicological potential of new drug substances and for estimating human radiation exposures from radio-labeled drugs when planning human studies. (author)

  14. Corporate Governance in Post-Socialist Countries - Theoretical Dilemmas, Peculiarities, Research Opportunities / Külliki Tafel, Erik Terk, Alari Purju

    Tafel, Külliki

    2006-01-01

    Äriühingute valitsemine postsotsialistlikes riikides - teoreetilised dilemmad, eripärad, uurimisvõimalused. Skeemid: Internal and external relations of corporate governanace; The changing context of corporate governance

  15. Grafting of HEMA onto dopamine coated stainless steel by 60Co-γ irradiation method

    A novel method for grafting of 2-hydroxyethyl methacrylate (HEMA) onto the surface of stainless steel (SS) was explored by using 60Co-γ irradiation. The surface of SS was modified by coating of dopamine before radiation grafting. The grafting reaction was performed in a simultaneous irradiation condition. The chemical structures change of the surface before and after grafting was demonstrated by Fourier transform infrared (FTIR) spectrometer. The hydrophilicity of the samples was determined by water contact angle measurement in the comparison of the stainless steel in the conditions of pristine, dopamine coated and HEMA grafted. Surface morphology of the samples was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The corrosion resistance properties of the samples were evaluated by Tafel polarization curve. The hemocompatibility of the samples were tested by platelet adhesion assay. - Highlights: • Poly-HEMA was grafted onto the surface of SS by 60Co-γ-ray irradiation. • Pristine SS was coated by dopamine to form a dense poly-dopamine film before radiation grafting. • The biocompatibility and hydrophility of SS were improved after the grafting of HEMA

  16. Production and characterization of TI/PbO2 electrodes by a thermal-electrochemical method

    Laurindo Edison A.

    2000-01-01

    Full Text Available Looking for electrodes with a high overpotential for the oxygen evolution reaction (OER, useful for the oxidation of organic pollutants, Ti/PbO2 electrodes were prepared by a thermal-electrochemical method and their performance was compared with that of electrodeposited electrodes. The open-circuit potential for these electrodes in 0.5 mol L-1 H2SO4 presented quite stable similar values. X-ray diffraction analyses showed the thermal-electrochemical oxide to be a mixture of ort-PbO, tetr-PbO and ort-PbO2. On the other hand, the electrodes obtained by electrodeposition were in the tetr-PbO2 form. Analyses by scanning electron microscopy showed that the basic morphology of the thermal-electrochemical PbO2 is determined in the thermal step, being quite distinct from that of the electrodeposited electrodes. Polarization curves in 0.5 mol L-1 H2SO4 showed that in the case of the thermal-electrochemical PbO2 electrodes the OER was shifted to more positive potentials. However, the values of the Tafel slopes, quite high, indicate that passivating films were possibly formed on the Ti substrates, which could eventually explain the somewhat low current values for OER.

  17. Report on the uncertainty methods study

    The Uncertainty Methods Study (UMS) Group, following a mandate from CSNI, has compared five methods for calculating the uncertainty in the predictions of advanced 'best estimate' thermal-hydraulic codes: the Pisa method (based on extrapolation from integral experiments) and four methods identifying and combining input uncertainties. Three of these, the GRS, IPSN and ENUSA methods, use subjective probability distributions, and one, the AEAT method, performs a bounding analysis. Each method has been used to calculate the uncertainty in specified parameters for the LSTF SB-CL-18 5% cold leg small break LOCA experiment in the ROSA-IV Large Scale Test Facility (LSTF). The uncertainty analysis was conducted essentially blind and the participants did not use experimental measurements from the test as input apart from initial and boundary conditions. Participants calculated uncertainty ranges for experimental parameters including pressurizer pressure, primary circuit inventory and clad temperature (at a specified position) as functions of time

  18. Capacity for work researching method in animal experiment

    The existing methods of examining the work capacity of animals are discussed with reference to extrapolation of animal data to man. A modified procedure for measuring maximal physical strength is proposed, whereby static endurance of animals at a given exercise rate can be measured. For an integrated evaluation of work capacity, a formula of absolute work capacity is suggested. The proposed procedure may be used to study the working capacity of animals exposed to unfavorable factors of radiation or nonradiation nature

  19. Composition between mecd and runge-Kutta algorithm method for large system of second order differential equations

    NECD Method and runge-Kutta method for large system of second order ordinary differential equations in comparing algorithm. The paper introduce a extrapolation method used for solving the large system of second order ordinary differential equation. We call this method the modified extrapolated central difference (MECD) method. for the accuracy and efficiency MECD method. we compare the method with 4-th order runge-Kutta method. The comparison results show that, this method has almost the same accuracy as the 4-th order runge-Kutta method, but the computation time is about half of runge-Kutta. The MECD was declare by the author and Tetsuhiko Miyoshi of the Dept. Applied Science Yamaguchi University Japan

  20. Quick Method for Determining Plant Available Water

    For the first few days after heavy rain or irrigations, water drains from the soil profile until its water content approaches a relatively stable value called the drained upper limit or field capacity. When plants have extracted all of the water available to them, the root zone water content approaches a lower limit of available water, or permanent wilting water content. The water held by the soil between these two limits is called plant available water. These two limits are often associated with water content values at specific soil water potentials, (a measure of pressure at soil water is extracted). Field capacity is often taken as the water content of a soil at -33 kPa water potential. Permanent wilt is taken as the water content at -1500 kPa. The methods typically used to determine plant available water are slow and inaccurate. We present here (1) a method for measuring field capacity using a tensiometer and an extrapolation technique, and (2) a method for measuring permanent wilting water content with a dew point potentiameter and an extrapolation method which are much faster and more accurate than traditional methods. (author)

  1. In vivo doses of butadiene epoxides as estimated from in vitro enzyme kinetics by using cob(I)alamin and measured hemoglobin adducts: An inter-species extrapolation approach

    Motwani, Hitesh V., E-mail: hitesh.motwani@mmk.su.se; Törnqvist, Margareta

    2014-12-15

    1,3-Butadiene (BD) is a rodent and human carcinogen. In the cancer tests, mice have been much more susceptible than rats with regard to BD-induced carcinogenicity. The species-differences are dependent on metabolic formation/disappearance of the genotoxic BD epoxy-metabolites that lead to variations in the respective in vivo doses, i.e. “area under the concentration-time curve” (AUC). Differences in AUC of the most gentoxic BD epoxy-metabolite, diepoxybutane (DEB), are considered important with regard to cancer susceptibility. The present work describes: the application of cob(I)alamin for accurate measurements of in vitro enzyme kinetic parameters associated with BD epoxy-metabolites in human, mouse and rat; the use of published data on hemoglobin (Hb) adduct levels of BD epoxides from BD exposure studies on the three species to calculate the corresponding AUCs in blood; and a parallelogram approach for extrapolation of AUC of DEB based on the in vitro metabolism studies and adduct data from in vivo measurements. The predicted value of AUC of DEB for humans from the parallelogram approach was 0.078 nM · h for 1 ppm · h of BD exposure compared to 0.023 nM · h/ppm · h as calculated from Hb adduct levels observed in occupational exposure. The corresponding values in nM · h/ppm · h were for mice 41 vs. 38 and for rats 1.26 vs. 1.37 from the parallelogram approach vs. experimental exposures, respectively, showing a good agreement. This quantitative inter-species extrapolation approach will be further explored for the clarification of metabolic rates/pharmacokinetics and the AUC of other genotoxic electrophilic compounds/metabolites, and has a potential to reduce and refine animal experiments. - Highlights: • In vitro metabolism to in vivo dose extrapolation of butadiene metabolites was proposed. • A parallelogram approach was introduced to estimate dose (AUC) in humans and rodents. • AUC of diepoxybutane predicted in humans was 0.078 nM h/ppm h

  2. In vivo doses of butadiene epoxides as estimated from in vitro enzyme kinetics by using cob(I)alamin and measured hemoglobin adducts: An inter-species extrapolation approach

    1,3-Butadiene (BD) is a rodent and human carcinogen. In the cancer tests, mice have been much more susceptible than rats with regard to BD-induced carcinogenicity. The species-differences are dependent on metabolic formation/disappearance of the genotoxic BD epoxy-metabolites that lead to variations in the respective in vivo doses, i.e. “area under the concentration-time curve” (AUC). Differences in AUC of the most gentoxic BD epoxy-metabolite, diepoxybutane (DEB), are considered important with regard to cancer susceptibility. The present work describes: the application of cob(I)alamin for accurate measurements of in vitro enzyme kinetic parameters associated with BD epoxy-metabolites in human, mouse and rat; the use of published data on hemoglobin (Hb) adduct levels of BD epoxides from BD exposure studies on the three species to calculate the corresponding AUCs in blood; and a parallelogram approach for extrapolation of AUC of DEB based on the in vitro metabolism studies and adduct data from in vivo measurements. The predicted value of AUC of DEB for humans from the parallelogram approach was 0.078 nM · h for 1 ppm · h of BD exposure compared to 0.023 nM · h/ppm · h as calculated from Hb adduct levels observed in occupational exposure. The corresponding values in nM · h/ppm · h were for mice 41 vs. 38 and for rats 1.26 vs. 1.37 from the parallelogram approach vs. experimental exposures, respectively, showing a good agreement. This quantitative inter-species extrapolation approach will be further explored for the clarification of metabolic rates/pharmacokinetics and the AUC of other genotoxic electrophilic compounds/metabolites, and has a potential to reduce and refine animal experiments. - Highlights: • In vitro metabolism to in vivo dose extrapolation of butadiene metabolites was proposed. • A parallelogram approach was introduced to estimate dose (AUC) in humans and rodents. • AUC of diepoxybutane predicted in humans was 0.078 nM h/ppm h

  3. Use of aerial survey and aerophotogrammetry methods in monitoring manatee populations

    Miller, Karl E.; Ackerman, Bruce B.; Lefebvre, Lynn W.; Clifton, Kari B.

    1996-01-01

    We evaluated the use of strip-transect survey methods for manatees through a series of replicate aerial surveys in the Banana River, Brevard County, Florida, during summer 1993 and summer 1994. Transect methods sample a representative portion of the total study area, thus allowing for statistical extrapolation to the total area. Other advantages of transect methods are less flight time and less cost than total coverage, ease of navigation, and reduced likelihood of double-count...

  4. Application of the Normalized Full Gradient (NFG) Method to Resistivity Data

    AYDIN, ALİ

    2010-01-01

    This paper proposes the application of the normalized full gradient (NFG) method to resistivity studies and illustrates that the method can greatly reduce the time and work load needed in detecting buried bodies using resistivity measurement. The NFG method calculates resistivity values at desired electrode offsets by extrapolation of a function of resistivity measurements (i.e. the gradient) to other depth levels using resistivity measurements done at one electrode offset only. The performan...

  5. A comparison of methods of determining the 100 percent survival of preserved red cells

    Studies were done to compare three methods to determine the 100 percent survival value from which to estimate the 24-hour posttransfusion survival of preserved red cells. The following methods using small aliquots of 51Cr-labeled autologous preserved red cells were evaluated: First, the 125I-albumin method, which is an indirect measurement of the recipient's red cell volume derived from the plasma volume measured using 125I-labeled albumin and the total body hematocrit. Second, the body surface area method (BSA) in which the recipient's red cell volume is derived from a body surface area nomogram. Third, an extrapolation method, which extrapolates to zero time the radioactivity associated with the red cells in the recipient's circulation from 10 to 20 or 15 to 30 minutes after transfusion. The three methods gave similar results in all studies in which less than 20 percent of the transfused red cells were nonviable (24-hour posttransfusion survival values of between 80-100%), but not when more than 20 percent of the red cells were nonviable. When 21 to 35 percent of the transfused red cells were nonviable (24-hour posttransfusion survivals of 65 to 79%), values with the 125I-albumin method and the body surface area method were about 5 percent lower (p less than 0.001) than values with the extrapolation method. When greater than 35 percent of the red cells were nonviable (24-hour posttransfusion survival values of less than 65%), values with the 125I-albumin method and the body surface area method were about 10 percent lower (p less than 0.001) than those obtained by the extrapolation method

  6. Alternative curved-boundary treatment for the lattice Boltzmann method and its application in simulation of flow and potential fields.

    Mohammadipoor, O R; Niazmand, H; Mirbozorgi, S A

    2014-01-01

    Since the lattice Boltzmann method originally carries out the simulations on the regular Cartesian lattices, curved boundaries are often approximated as a series of stair steps. The most commonly employed technique for resolving curved-boundary problems is extrapolating or interpolating macroscopic properties of boundary nodes. Previous investigations have indicated that using more than one equation for extrapolation or interpolation in boundary conditions potentially causes abrupt changes in particle distributions. Therefore, a curved-boundary treatment is introduced to improve computational accuracy of the conventional stair-shaped approximation used in lattice Boltzmann simulations by using a unified equation for extrapolation of macroscopic variables. This boundary condition is not limited to fluid flow and can be extended to potential fields. The proposed treatment is tested against several well-established problems and the solutions order of accuracy is evaluated. Numerical results show that the present treatment is of second-order accuracy and has reliable stability characteristics. PMID:24580362

  7. Comparative study among calibration methods of clinical applicators of beta radiation

    90Sr+90Y clinical applicators are instruments used in brachytherapy procedures and they have to be periodically calibrated, according to international standards and recommendations. In this work, four calibration methods of dermatological and ophthalmic applicators were studied, comparing the results with those given by the calibration certificates of the manufacturers. The methods included the use of the standard applicator of the Calibration Laboratory (LCI), calibrated by the National Institute of Standards and Technology; an Amersham applicator (LCI) as reference; a mini-extrapolation chamber developed at LCI as an absolute standard; and thermoluminescent dosimetry. The mini-extrapolation chamber and a PTW commercial extrapolation chamber were studied in relation to their performance through quality control tests of their response, as leakage current, repeatability and reproducibility. The distribution of the depth dose in water, that presents high importance in dosimetry of clinical applicators, was determined using the mini extrapolation chamber and the thermoluminescent dosimeters. The results obtained were considered satisfactory for the both cases, and comparable to the data of the IAEA (2002) standard. Furthermore, a dosimetry postal kit was developed for the calibration of clinical applicators using the thermoluminescent technique, to be sent to clinics and hospitals, without the need of the transport of the sources to IPEN for calibration. (author)

  8. Methods for measurement of electron emission yield under low energy electron-irradiation by collector method and Kelvin probe method

    Secondary electron emission yield of gold under electron impact at normal incidence below 50 eV was investigated by the classical collector method and by the Kelvin probe method. The authors show that biasing a collector to ensure secondary electron collection while keeping the target grounded can lead to primary electron beam perturbations. Thus reliable secondary electron emission yield at low primary electron energy cannot be obtained with a biased collector. The authors present two collector-free methods based on current measurement and on electron pulse surface potential buildup (Kelvin probe method). These methods are consistent, but at very low energy, measurements become sensitive to the earth magnetic field (below 10 eV). For gold, the authors can extrapolate total emission yield at 0 eV to 0.5, while a total electron emission yield of 1 is obtained at 40±1 eV.

  9. Development of a multi-electrode extrapolation chamber as a prototype of a primary standard for the realization of the unit of the absorbed dose to water for beta brachytherapy sources

    Bambynek, M

    2002-01-01

    The prototype of a primary standard has been developed, built and tested, which enables the realization of the unit of the absorbed dose to water for beta brachytherapy sources. In the course of the development of the prototype, the recommendations of the American Association of Physicists in Medicine (AAPM) Task Group 60 (TG60) and the Deutsche Gesellschaft fuer Medizinische Physik (DGMP) Arbeitskreis 18 (AK18) were taken into account. The prototype is based on a new multi-electrode extrapolation chamber (MEC) which meets, in particular, the requirements on high spatial resolution and small uncertainty. The central part of the MEC is a segmented collecting electrode which was manufactured in the clean room center of PTB by means of electron beam lithography on a wafer. A precise displacement device consisting of three piezoelectric macrotranslators has been incorporated to move the wafer collecting electrode against the entrance window. For adjustment of the wafer collecting electrode parallel to the entranc...

  10. The slope, curvature, and higher parameters in $pp$ and $\\bar{p}p$ scattering, and the extrapolation of measurements of $d\\sigma(s,t)/dt$ to $t=0$

    Block, Martin M; Ha, Phuoc; Halzen, Francis

    2016-01-01

    We study the effects of curvature in the expansion of the logarithm of the differential elastic scattering cross section near $t=0$ as $d\\sigma(s,t)/dt=d\\sigma(s,0)/dt\\,\\times\\exp(Bt+Ct^2+Dt^3\\cdots)$ in an eikonal model for $pp$ and $\\bar{p}p$ scattering, and use the results to discuss the extrapolation of measured differential cross sections and the slope parameters $B$ to $t=-q^2=0$. We find that the curvature effects represented by the parameters $C$ and $D$, while small, lead to significant changes in the forward slope parameter relative to that determined in a purely exponential fit, and to smaller but still significant changes in the forward elastic scattering and total cross sections. Curvature effects should therefore be considered in future analyses or reanalyses of the elastic scattering data.

  11. Slope, curvature, and higher parameters in p p and p ¯p scattering, and the extrapolation of measurements of d σ (s ,t )/d t to t =0

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; Halzen, Francis

    2016-06-01

    We study the effects of curvature in the expansion of the logarithm of the differential elastic scattering cross section near t =0 as d σ (s ,t )/d t =d σ (s ,0 )/d t ×exp (B t +C t2+D t3⋯) in an eikonal model for p p and p ¯p scattering, and use the results to discuss the extrapolation of measured differential cross sections and the slope parameters B to t =-q2=0 . We find that the curvature effects represented by the parameters C and D , while small, lead to significant changes in the forward slope parameter relative to that determined in a purely exponential fit, and to smaller but still significant changes in the forward elastic scattering and total cross sections. Curvature effects should therefore be considered in future analyses or reanalyses of the elastic scattering data.

  12. The S(E) factor of 7Li(p,γ)8Be and consequences for S(E) extrapolation in 7Be(p,γ0)8B

    Excitation functions and forward-backward anisotropies have been measured for the 7Li(p, γ)8Be capture reaction over the proton energy range Ep = 100 to 1500 keV, using a 4π summing crystal and Ge(Li) detectors, respectively. The data show at all energies the presence of E1 and M1 capture amplitudes arising from the direct capture (DC) process and the ER = 441 and 1030 keV resonances, respectively. Due to the observed DC process, the present data increase significantly the reaction rates (up to a factor of 110) compared to values given in the compilation. The data and their analyses remove the recent criticism on DC model calculations, which had implied a significant reduction in the extrapolated S(E) factor for 7Be(p, γ)8B and thus in the predicted flux of high-energy solar neutrinos; thus, the solar neutrino problem is still with us. (orig.)

  13. Quantifying soil evaporation and transpiration at the scale of a remote sensing pixel by extrapolating mini-lysimeter results with the aid of remote sensed surface temperatures

    Voortman, B.; Bartholomeus, R.; Witte, J. M.

    2012-12-01

    developed a method to overcome the drawbacks of lysimeters by combining mini-lysimeters with ground-based remote sensing techniques. By comparison of the surface energy balance of the environment under study with the energy balance of mini-lysimeters we are able to derive the latent heat flux of the area outside the mini-lysimeters. The advantages of this method are that (1) measurements of evapotranspiration can be derived for much larger areas than most conventional lysimeters, (2) the measurements are not affected by the lysimeter design and (3) Et can be split into soil evaporation and transpiration, which allows us to study the effects of the vegetation structure on the water balance.

  14. In vitro methods for the determination of test chemicals metabolism utilizing fish liver subcellular fractions and hepatocytes

    The purpose of this one-day short course is to train students on methods used to measure in vitro metabolism in fish and extrapolate this information to the intact animal. This talk is one of four presentations given by course instructors. The first part of this talk provides a...

  15. Large Deviations and Asymptotic Methods in Finance

    Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef

    2015-01-01

    Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...

  16. Indirect methods of determination of the asymptotic normalization coefficients and their application for nuclear astrophysics

    Yarmukhamedov, R. [Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, 100214 Tashkent (Uzbekistan)

    2014-05-09

    The basic methods of the determination of asymptotic normalization coefficient for A+a→B of astrophysical interest are briefly presented. The results of the application of the specific asymptotic normalization coefficients derived within these methods for the extrapolation of the astrophysical S factors to experimentally inaccessible energy regions (E ≤ 25 keV) for the some specific radiative capture A(a,γ)B reactions of the pp-chain and the CNO cycle are presented.

  17. Effects Of Aluminum Sputtering On The Corrosion Resistance Of AZ91 Alloy

    Ishibashi Y.

    2015-06-01

    Full Text Available The corrosion resistance of a Magnesium alloy is low and needs to be improved. This research aimed at corrosion-resistance improvement by supatterd deposition aluminium film, which is formed on the surface of AZ91 Magnesium-alloy. Corrosion resistance performed polarization curve measurement, was evaluated in quest of the corrosion rate using the Tafel extrapolation method, and conducted surface observation and EDS analysis by SEM. Although corrosion resistance is not improved only by film forming because of defects in film, corrosion resistance is improved by heat treatment for 3 hours by 553K after sputtering. In the case of heat treated at 623K and 673K for 3 hours, magnesium diffuses through the alminium film and reached the surface of the film. Thus, heat treatment at high temperature degrade the corrosion resistance of the film. The optimization of heat treatment after sputtering is important in this method.

  18. An Easy Method for Calculating Kinetic Parameters of Electrochemical Mechanisms: Temkin’s Formalism

    Vidal-Iglesias, Francisco J.; Solla-Gullón, José; Montiel Leguey, Vicente; Aldaz Riera, Antonio

    2015-01-01

    One of the typical problems addressed in electrochemical textbooks is how to define the theoretical kinetic law of an electrochemical reaction and how to propose a plausible mechanism for this reaction from its kinetic parameters, usually the Tafel slope and reaction orders.

  19. Mechanical Properties and Corrosion Behavior of Low Carbon Steel Weldments

    Mohamed Mahdy

    2013-01-01

    Full Text Available This research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current density and anodic Tafel slop, while decrease the polarization resistance compared with unwelded low carbon steel. Cyclic polarization were measured to show resistance of specimens to pitting corrosion and to calculate the forward and reveres potentials. The results show shifting the forward, reverse and pitting potentials toward active direction for weldments samples compared with unwelded sample.

  20. Extrapolating Subjectivity Research to Other Languages

    Banea, Carmen

    2013-01-01

    Socrates articulated it best, "Speak, so I may see you." Indeed, language represents an invisible probe into the mind. It is the medium through which we express our deepest thoughts, our aspirations, our views, our feelings, our inner reality. From the beginning of artificial intelligence, researchers have sought to impart human like…

  1. The extrapolation of animal data to humans

    With few exceptions, human epidemiological surveys do not provide statistically significant data on the dose-response relationship for radiation-induced cancers at doses and dose rates of relevance in radiological protection. An alternative source of information is provided by the extensive body of published data on radiogenic tumours in experimental animals. Such studies provide a basis for the mechanisms involved, but great care is needed in using the dose-response relationships from studies on site specific tumours to predict relationships for similar site specific cancers in man. (author)

  2. Wavefield Extrapolation in Pseudo-depth Domain

    Ma, Xuxin

    2011-12-11

    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential of seismic imaging in the pseudo-depth domain, examples of zero-offset migration are implemented in pseudo-depth domain and compared with conventional space domain imaging results.

  3. An effective method for terrestrial arthropod euthanasia.

    Bennie, Neil A C; Loaring, Christopher D; Bennie, Mikaella M G; Trim, Steven A

    2012-12-15

    As scientific understanding of invertebrate life increases, so does the concern for how to end that life in an effective way that minimises (potential) suffering and is also safe for those carrying out the procedure. There is increasing debate on the most appropriate euthanasia methods for invertebrates as their use in experimental research and zoological institutions grows. Their popularity as pet species has also led to an increase in the need for greater veterinary understanding. Through the use of a local injection of potassium chloride (KCl) initially developed for use in American lobsters, this paper describes a safe and effective method for euthanasia in terrestrial invertebrates. Initial work focused on empirically determining the dose for cockroaches, which was then extrapolated to other arthropod species. For this method of euthanasia, we propose the term 'targeted hyperkalosis' to describe death through terminal depolarisation of the thoracic ganglia as a result of high potassium concentration. PMID:22996446

  4. Projection and conservation methods for neutron transport

    The solution of problems for large three-dimensional systems by conventional finite element methods is slow, even with the super-computer such as the CRAY. Projection and conservation methods can be used in conjunction to synthesis from a crude approximation a succession of more and more accurate approximations. The conservation method uses an extremum principle with two trial functions; but only one of these, the frame trial function, has to satisfy continuity conditions. When optimised the two trial functions ensure the satisfaction of the neutron conservation condition for each element. Having found a frame trial function the other trial function can be determined element by element. It is then transformed to provide another frame trial function. Extrapolation of these frame functions yields an improved frame trial function to initiate a fresh cycle of approximation. (author). 5 refs., 2 figs., 1 tab

  5. Determination of surface dose rate of indigenous 32P patch brachytherapy source by experimental and Monte Carlo methods

    Isotope production and Application Division of Bhabha Atomic Research Center developed 32P patch sources for treatment of superficial tumors. Surface dose rate of a newly developed 32P patch source of nominal diameter 25 mm was measured experimentally using standard extrapolation ionization chamber and Gafchromic EBT film. Monte Carlo model of the 32P patch source along with the extrapolation chamber was also developed to estimate the surface dose rates from these sources. The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and radiochromic films are 82.03±4.18 (k=2) and 79.13±2.53 (k=2) respectively. The two values of the surface dose rates measured using the two independent experimental methods are in good agreement to each other within a variation of 3.5%. The surface dose rate to tissue (cGy/min) estimated using the MCNP Monte Carlo code works out to be 77.78±1.16 (k=2). The maximum deviation between the surface dose rates to tissue obtained by Monte Carlo and the extrapolation chamber method is 5.2% whereas the difference between the surface dose rates obtained by radiochromic film measurement and the Monte Carlo simulation is 1.7%. The three values of the surface dose rates of the 32P patch source obtained by three independent methods are in good agreement to one another within the uncertainties associated with their measurements and calculation. This work has demonstrated that MCNP based electron transport simulations are accurate enough for determining the dosimetry parameters of the indigenously developed 32P patch sources for contact brachytherapy applications. - Highlights: • Surface dose rates of 25 mm nominal diameter newly developed 32P patch sources were measured experimentally using extrapolation chamber and Gafchromic EBT2 film. Monte Carlo model of the 32P patch source along with the extrapolation chamber was also developed. • The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and

  6. Elements of a pragmatic approach for dealing with bias and uncertainty in experiments through predictions : experiment design and data conditioning; %22real space%22 model validation and conditioning; hierarchical modeling and extrapolative prediction.

    Romero, Vicente Jose

    2011-11-01

    This report explores some important considerations in devising a practical and consistent framework and methodology for utilizing experiments and experimental data to support modeling and prediction. A pragmatic and versatile 'Real Space' approach is outlined for confronting experimental and modeling bias and uncertainty to mitigate risk in modeling and prediction. The elements of experiment design and data analysis, data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. Rationale is given for the various choices underlying the Real Space end-to-end approach. The approach adopts and refines some elements and constructs from the literature and adds pivotal new elements and constructs. Crucially, the approach reflects a pragmatism and versatility derived from working many industrial-scale problems involving complex physics and constitutive models, steady-state and time-varying nonlinear behavior and boundary conditions, and various types of uncertainty in experiments and models. The framework benefits from a broad exposure to integrated experimental and modeling activities in the areas of heat transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids and solids.

  7. Creep rupture tests and microstructure investigations on the SNR-300 structural material X6CrNi 1811 (DIN 1.4948) in the frame of the 'Extrapolation Program'

    The austenitic stainless steel X6CrNi 1811 (DIN 1.4948) which is used as a structural material for the German Fast Breeder Reactor SNR 300 was creep-tested in a temperature range of 550-7500 under base material condition and as welded material. The results of the creep rupture strength and creep behaviour up to >= 30 000 hrs support experimentally the extrapolation up to operating times >= 105 hours. The microstructure in the basic material of the broken test-specimens was studied by light and transmission electron microscopy and partly evaluated in a quantitative form. All precipitates found at the grain boundaries and inside the grains belong to the type M23C6. Their nucleation is bound to the defects of the crystal lattice and hence depends on the configuration and movement of the dislocations. Therefore a mutual correlation between the creep process and the nucleation of precipitates exists. This explains the divergence of the plot log epsilonsub(min) vs. log sigmasub(o) from a straight line and influences the ductility values. The precipitates at the grain boundaries, which nucleate in competition with the matrix precipitates favour the intercrystalline rupture. (orig.)

  8. Lattice quantum chromodynamics equation of state: A better differential method

    Rajiv V Gavai; Sourendu Gupta; Swagato Mukherjee

    2008-09-01

    We propose a better differential method for the computation of the equation of state of QCD from lattice simulations. In contrast to the earlier differential method, our technique yields positive pressure for all temperatures including the temperatures in the transition region. Employing it on temporal lattices of 8, 10 and 12 sites and by extrapolating to zero lattice spacing we obtained the pressure, energy density, entropy density, specific heat and speed of sound in quenched QCD for 0.9 ≤ /c ≤ 3. At high temperatures comparisons of our results are made with those from the dimensional reduction approach and also with those from a conformal symmetric theory.

  9. Methods for wave equation prestack depth migration and numerical experiments

    ZHANG Guanquan; ZHANG Wensheng

    2004-01-01

    In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical schemes are presented. The numerical tests for SEG/EAEG model with MPI are performed on the PC-cluster. The numerical results show that the methods of single-shot (common-shot) migration and synthesized-shot migration are of practical values and can be applied to field data processing of 3D prestack depth migration.

  10. Construction of IMEX methods with inherent Runge-Kutta stability

    Braś, Michał; Izzo, Giuseppe; Jackiewicz, Zdzislaw

    2016-06-01

    We describe construction of implicit-explicit (IMEX) general linear methods (GLMs) with inherent Runge-Kutta stability (IRKS) for differential systems with non-stiff and stiff processes. We will use the extrapolation approach to remove implicitness in the non-stiff terms to compute unknown stage values in terms of stage derivatives at the previous step and those already computed in the current step. Highly stable IMEX GLMs of stage order equal to the order were derived up to the order four. These methods do not suffer from order reduction phenomenon which is confirmed by numerical experiments.

  11. Wear and Corrosion Behavior of CoNiCrAlY Bond Coats

    Rathod, W. S.; Khanna, A. S.; Rathod, R. C.; Sapate, S. G.

    2014-07-01

    The present study focusses on the wear and microstructural properties of CoNiCrAlY coatings fabricated on AISI 316L stainless steel substrate by using the (HVOF) and (CGDS) methods. A triobiological test was performed on the samples in order to understand the wear behaviour of thermally sprayed coatings. The microstructures of as-sprayed and worn out coatings were investigated by scanning electron microscopy. Coating hardness measurements were performed with nanoindentation. HVOF coating revealed lower hardness value in comparison with CGDS. Studies depicted better wear resistance of the CGDS sprayed with He, when compared to CGDS N2 and HVOF processing. Potentiodynamic polarization curves and tafel extrapolation experiments were carried at 7.5 pH value using 3.5 % NaCl as an electrolyte. Electrochemical studies depicted better corrosion resistance of the He processed coating when compared to N2 and HVOF processing.

  12. Effect of chromium on the corrosion behaviour of powder-processed Fe–0·45 wt% P alloys

    Yashwant Mehta; Shefali Trivedi; K Chandra; P S Mishra

    2010-08-01

    The corrosion behaviour of Fe–0·45P with/without addition of chromium, prepared by powder forging route was studied in different environments. The corrosion studies in acidic (0·25 M H2SO4 solution of pH 0·6) and neutral/marine (3·5% NaCl solution of pH 6·8) solutions were conducted using Tafel Extrapolation method. The rate of corrosion in alkaline medium (0·5 M Na2CO3 + 1·0 M NaHCO3 solution of pH 9·4) was measured using linear polarization technique. The studies compare electrolytic Armco iron with Fe–P alloys. It was observed that, chromium improved the resistance to corrosion in acidic and marine environments. The corrosion rates were minimal in alkaline medium and low in neutral solution.

  13. A Study of Electrochemical Protection of Carbon Steels in Sulfuric Acid Solutions - Electrochemical Protection Diagrams of Metals (1) -

    Electrochemical protection of carbon steels was studied in sulfuric acid solutions. The main results obtained are as follows: 1) Electrochemical protection diagrams of carbon steels in sulfuric acid solutions can be drawn with the data from Jeon's determination method of the optimum cathodic protection potential, the Tafel extrapolation and the characteristics of anodic polarization curves, and the diagram also represent various practical protection data. 2) Corrosion rates of carbon steels in the more concentration than 45% solutions are very low because they are on sulfaction or passivation in the solution, but the rates in the less concentration than the solutions are very high since they are on activation. 3) SS 41 steel is suitable in the more concentration than 45% solutions but SM 50 steel is relatively good in the less concentration than the solutions from the economical view

  14. Depth dose distribution in the water for clinical applicators of {sup 90}Sr + {sup 90}Y, with a extrapolation mini chamber; Distribuicao de dose em profundidade na agua para aplicadores clinicos de {sup 90}Sr + {sup 90}Y, com uma mini-camara de extrapolacao

    Antonio, Patricia de Lara; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oliveira, Mercia L., E-mail: mercial@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2009-07-01

    This work determines the depth dose in the water for clinical applicators of {sup 90}Sr + {sup 90}Y, using a extrapolation mini chamber developed at the IPEN, Sao Paulo, Brazil, and different thickness acrylic plates. The obtained results were compared with the international recommendations and were considered satisfactory

  15. Developing a Theory of Digitally-Enabled Trial-Based Problem Solving through Simulation Methods: The Case of Direct-Response Marketing

    Clark, Joseph Warren

    2012-01-01

    In turbulent business environments, change is rapid, continuous, and unpredictable. Turbulence undermines those adaptive problem solving methods that generate solutions by extrapolating from what worked (or did not work) in the past. To cope with this challenge, organizations utilize trial-based problem solving (TBPS) approaches in which they…

  16. Perturbation method for experimental determination of neutron spatial distribution in the reactor cell

    The method is based on perturbation of the reactor cell from a few up to few tens of percent. Measurements were performed for square lattice calls of zero power reactors Anna, NORA and RB, with metal uranium and uranium oxide fuel elements, water, heavy water and graphite moderators. Character and functional dependence of perturbations were obtained from the experimental results. Zero perturbation was determined by extrapolation thus obtaining the real physical neutron flux distribution in the reactor cell. Simple diffusion theory for partial plate cell perturbation was developed for verification of the perturbation method. The results of these calculation proved that introducing the perturbation sample in the fuel results in flattening the thermal neutron density dependent on the amplitude of the applied perturbation. Extrapolation applied for perturbed distributions was found to be justified

  17. An improved formula for determination of the activity via the sum-peak method.

    Nemes, T; Mrda, D; Bikit, I; Grujic, S

    2016-08-01

    The sum-peak method principally enables determination of the absolute activity of gamma cascade emitting sources based only on the use of spectral data, without knowledge of the detector efficiencies. However, to achieve better accuracy of the activity results, corrections due to pile-up, accidental coincidences, electronic noise and angular correlations must be introduced into the proposed method. Such corrections usually require the collection of a few gamma spectra and additional extrapolations, thereby further complicating the experimental procedures. In this paper, it is shown that by using pile-up peaks for corrections of accidental coincidences, Monte Carlo techniques for angular correlation, and LLD corrections, the source activity can be measured with accuracy and reproducibility below 1% using only one gamma spectrum, without any additional extrapolations. PMID:27236834

  18. Wavefield reconstruction methods for reverse time migration

    During pre-stack reverse time migration (RTM), the shot and receiver wavefields are extrapolated separately along opposite directions, which means the shot wavefield should be saved and it is a bottleneck of RTM. The random boundary condition (RBC) method could be used to reconstruct the shot wavefield to solve this problem. The disadvantage of RBC is that the free surface boundary condition (FSBC) should be used because the RBC at the surface boundary will induce severe noise all through the imaging profile. The use of FSBC is also harmful because the reflections from the surface will generate imaging illusions. In this paper, we use two different boundary conditions, which use an absorbing boundary condition on the upper boundary, to perfectly reconstruct the shot wavefield. The new schemes could solve the free surface boundary problem and would not demand much memory. The numerical examples prove the efficiency of these methods. (paper)

  19. Internal Error Propagation in Explicit Runge--Kutta Methods

    Ketcheson, David I.

    2014-09-11

    In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.

  20. ADAPTIVE INTERVAL WAVELET PRECISE INTEGRATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS

    MEI Shu-li; LU Qi-shao; ZHANG Sen-wen; JIN Li

    2005-01-01

    The quasi-Shannon interval wavelet is constructed based on the interpolation wavelet theory, and an adaptive precise integration method, which is based on extrapolation method is presented for nonlinear ordinary differential equations (ODEs). And then, an adaptive interval wavelet precise integration method (AIWPIM) for nonlinear partial differential equations(PDEs) is proposed. The numerical results show that the computational precision of AIWPIM is higher than that of the method constructed by combining the wavelet and the 4th Runge-Kutta method, and the computational amounts of these two methods are almost equal. For convenience, the Burgers equation is taken as an example in introducing this method, which is also valid for more general cases.

  1. Interpolation methods and their use in radiation protection

    The presentation summarizes results of using various interpolation methods for getting spatial data from point measurements. These methods were evaluated within the State Office for Nuclear Safety (SONS) Science and Research Project No. 2/2008 'Methods and Measures to Limit Generation and Liquidation of Consequences of Radioactive Matter Misuse by Terrorists'. Several field tests in which the short life-time radioactive matter was released by explosion were realized and the measured data were processed. The essential goal is to find the most realistic method for radiation events assessment. Within the research project, three methods were used: Multilevel B-Spline, Triangulation and Kriging, using freely available SAGA GIS software. The best solution for this sort of radiation events appears to be the Multilevel B-Spline method. It is quick and produces good quality output data comparable with the much slower Kriging method and allows extrapolation in contrast to Triangulation. (author)

  2. Fano factor in gaseous argon measured by the proportional scintillation method

    It is found that the apparent Fano factor in argon obtained by using 5.90 keV X-rays with the proportional scintillation method depends on the gas pressure and that the true Fano factor can be obtained by extrapolating the linear relation between the apparent Fano factor and the reciprocal of the gas pressure. The Fano factor thus obtained gives good agreement, within experimental errors, with the value recently obtained by using a gridded ionization chamber. (orig.)

  3. Blending a probabilistic nowcasting method with a high-resolution numerical weather prediction ensemble for convective precipitation forecasts

    Kober, K.; Craig, C; Keil, C.; A. Dörnbrack

    2012-01-01

    A seamless prediction of convective precipitation for a continuous range of lead times from 0�8 h requires the application of different approaches. Here, a nowcasting method and a high-resolution numerical weather prediction ensemble are combined to provide probabilistic precipitation forecasts. For the nowcast, an existing deterministic extrapolation technique was modified by the local Lagrangian method to calculate the probability of exceeding a threshold value in radar reflectivity...

  4. Lits fluidisés pour l'industrie chimique. Extrapolation et amélioration des catalyseurs. Première partie : Etudes et modèles. Enseignements issus des pilotes Fluidized Beds in Chemical Industry. Scale Up and Catalysts Improvement. First Part: Studies, Models, Learning from Pilot Plants

    Botton R.

    2006-12-01

    Full Text Available Les unités de production en lits fluidisés catalytiques sont apparues vers 1942 dans l'industrie pétrolière et vers 1960 dans l'industrie chimique. On se limitera ici au problème de l'extrapolation des lits fluidisés catalytiques pour l'industrie chimique, qui exigent de très hautes performances (> 99 % de conversion. Leur mise au point a, dans le passé, nécessité l'exploitation sur des sites industriels de coûteux pilotes de 0,5 m de diamètre et de plus de 10 m de hauteur. Nous montrerons que ces pilotes peuvent être évités et que le passage direct du laboratoire à l'échelle industrielle est réalisable. Cette possibilité offre en plus une méthode simple pour améliorer les catalyseurs des unités industrielles. Elle ouvre aussi cette technique, très appréciée en production, aux produits de petits tonnages. La présentation de cet article sera faite en trois parties : - La première, présentée ci-après, expose les problèmes majeurs posés par l'extrapolation, puis résume les études effectuées. Les travaux d'extrapolation relatifs à deux procédés effectués avec des pilotes sont ensuite présentés, à titre d'exemples. De ces travaux sont déduites les performances que l'on peut espérer obtenir avec un réacteur catalytique à lit fluidisé, ainsi que les règles de tendances à suivre pour y parvenir. - La deuxième partie, intitulée Stratégie n'utilisant que des expériences de laboratoire , propose une stratégie expérimentale permettant d'obtenir en laboratoire les informations nécessaires pour passer directement à l'échelle industrielle avec des expériences suggérées en partie par les résultats exposés dans le premier article. Les relations expérimentales établies lors de ces études montrent que les propriétés d'un lit fluidisé ne dépendent (mis à part quelquefois le diamètre du réacteur que d'un paramètre appelé vitesse minimum de fluidisation de comportement . - La troisième partie

  5. The discrete ordinates method compared to Carlvik's method for monoenergetic neutrons in infinite slabs

    In order to check the accuracy of previous calculations a simple discrete ordinates method has been used to determine the criticality factor of homogeneous, infininite slabs with monoenergetic neutrons. Linearly anisotropic scattering was assumed. The calculations were made for slabs with thickness 1, 4 and 8 mean free paths and were extended up to the S24 approximation. It was found that extrapolation using the S12, S16 and S24 results leads to values which agree within +- 6 units in the 6th decimal with the results by Dahl and Sjoestrand using Carlvik's method. However, agreement was not obtained with the results of Syros and Theocharopoulos. Alternative computation schemes were tested in the S16 approximation, but the method used was found to be the fastest of those of comparable accuracy

  6. A method for measuring light ion reaction cross-sections

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle

  7. The present state of research into plasma heating and injection methods

    The advantages and disadvantages recognized by the Advisory Group on Heating and injection for twelve plasma heating and injection methods currently under investigation in Europe are related. The heating and injection requirements of four reference reactor designs are previously defined. The problems which arise when one attempts to extrapolate existing work towards the reactor goal are emphasized. Two refuelling methods not directly linked with the heating problem are discussed. The experiments in operation or under construction in Europe in which each method is investigated are listed. Sixteen working papers which served as a basis for the Advisory Group discussion and which cover all the heating and injection methods examined are included

  8. Alternating Anderson-Richardson method: An efficient alternative to preconditioned Krylov methods for large, sparse linear systems

    Suryanarayana, Phanish; Pask, John E

    2016-01-01

    We generalize the recently proposed Alternating Anderson-Jacobi (AAJ) method (Pratapa et al., J. Comput. Phys. (2016), 306, 43--54) to include preconditioning, and demonstrate its efficiency and scaling in the solution of large, sparse linear systems on parallel computers. The resulting preconditioned Alternating Anderson-Richardson (AAR) method reduces to the AAJ method for a particular choice of preconditioner. The AAR method employs Anderson extrapolation at periodic intervals within a preconditioned Richardson iteration to accelerate convergence. In this work, we develop a version of the method that is particularly well suited for scalable high-performance computing. In applications to Helmholtz and Poisson equations, we show that the strong and weak parallel scaling of AAR is superior to both Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) methods, using the same preconditioning, in large-scale parallel calculations employing up to 110,592 computational cores. Moreover, we find that the ...

  9. Development of a 1D neutron transport code employing the method of characteristics

    To investigate the 2D/1D fusion core analysis method, a 1D neutron transport problem solver, PEACH-ID, is developed. It is a code of method of characteristics (MOC), both the usual fiat-source step characteristics (SC) scheme and linear source (LS) approximation scheme are adopted for tracking calculation along the neutron flying trajectory. Exponential function interpolation table and fission source extrapolation are adopted as two major methods to accelerate the computational process. Numerical results demonstrate that PEACH-1D is accurate and efficient, and the proposed LS scheme is able to handle quite larger mesh division and deserves much more application in the MOC codes. (authors)

  10. Geophysical methods for fracture characterization in and around potential sites for nuclear waste disposal

    Historically, geophysical methods have been used extensively to successfully explore the subsurface for petroleum, gas, mineral, and geothermal resources. Their application, however, for site characterization, and monitoring the performance of near surface waste sites or repositories has been somewhat limited. Presented here is an overview of the geophysical methods that could contribute to defining the subsurface heterogeneity and extrapolating point measurements at the surface and in boreholes to volumetric descriptions in a fractured rock. In addition to site characterization a significant application of geophysical methods may be in performance assessment and in monitoring the repository to determine if the performance is as expected

  11. A method for using the purely leptonic channels for W physics measurements at LEP

    Chierici, R

    2002-01-01

    A new method for the analysis of W pair production at LEP2 in fully leptonic final states is presented. The method is based on the reconstruction of the W boost probability density function under simple kinematic assumptions and allows a straightforward inclusion of the detector resolution. The reliability and performance of the method are tested at generator level with a simplified detector response in the case of the determination of the W mass. The results are discussed and extrapolated to LEP2 final statistics. (7 refs).

  12. On the equivalence of LIST and DIIS methods for convergence acceleration

    Self-consistent field extrapolation methods play a pivotal role in quantum chemistry and electronic structure theory. We, here, demonstrate the mathematical equivalence between the recently proposed family of LIST methods [Wang et al., J. Chem. Phys. 134, 241103 (2011); Y. K. Chen and Y. A. Wang, J. Chem. Theory Comput. 7, 3045 (2011)] and the general form of Pulay’s DIIS [Chem. Phys. Lett. 73, 393 (1980); J. Comput. Chem. 3, 556 (1982)] with specific error vectors. Our results also explain the differences in performance among the various LIST methods

  13. On the equivalence of LIST and DIIS methods for convergence acceleration

    Garza, Alejandro J. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Scuseria, Gustavo E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-04-28

    Self-consistent field extrapolation methods play a pivotal role in quantum chemistry and electronic structure theory. We, here, demonstrate the mathematical equivalence between the recently proposed family of LIST methods [Wang et al., J. Chem. Phys. 134, 241103 (2011); Y. K. Chen and Y. A. Wang, J. Chem. Theory Comput. 7, 3045 (2011)] and the general form of Pulay’s DIIS [Chem. Phys. Lett. 73, 393 (1980); J. Comput. Chem. 3, 556 (1982)] with specific error vectors. Our results also explain the differences in performance among the various LIST methods.

  14. Track parameter propagation through the application of a new adaptive Runge-Kutta-Nystroem method in the ATLAS experiment

    In this paper we study several fixed step and adaptive Runge-Kutta methods suitable for transporting track parameters through an inhomogeneous magnetic field. Moreover, we present a new adaptive Runge-Kutta-Nystroem method which estimates the local error of the extrapolation without introducing extra stages to the original Runge-Kutta-Nystroem method. Furthermore, these methods are compared for propagation accuracy and computing cost efficiency in the simultaneous track and error propagation (STEP) algorithm of the common ATLAS tracking software. The tests show the new adaptive Runge-Kutta-Nystroem method to be the most computing cost efficient.

  15. Estimation of bycatch in shrimp trawl fisheries: a comparison of estimation methods using field data and simulated data

    Diamond, Sandra L.

    2003-01-01

    Bycatch, or the incidental catch of nontarget organisms during fi shing operations, is a major issue in U.S. shrimp trawl fisheries. Because bycatch is typically discarded at sea, total bycatch is usually estimated by extrapolating from an observed bycatch sample to the entire fleet with either mean-per-unit or ratio estimators. Using both field observations of commercial shrimp trawlers and computer simulations, I compared five methods for generating bycatch estimates that were used in pa...

  16. Improving Spring Maize Yield Estimation at Field Scale by Assimilating Time-Series HJ-1 CCD Data into the WOFOST Model Using a New Method with Fast Algorithms

    Zhiqiang Cheng; Jihua Meng; Yiming Wang

    2016-01-01

    Field crop yield prediction is crucial to grain storage, agricultural field management, and national agricultural decision-making. Currently, crop models are widely used for crop yield prediction. However, they are hampered by the uncertainty or similarity of input parameters when extrapolated to field scale. Data assimilation methods that combine crop models and remote sensing are the most effective methods for field yield estimation. In this study, the World Food Studies (WOFOST) model is u...

  17. Studying the Transient Thermal Contact Conductance Between the Exhaust Valve and Its Seat Using the Inverse Method

    Nezhad, Mohsen Motahari; Shojaeefard, Mohammad Hassan; Shahraki, Saeid

    2016-02-01

    In this study, the experiments aimed at analyzing thermally the exhaust valve in an air-cooled internal combustion engine and estimating the thermal contact conductance in fixed and periodic contacts. Due to the nature of internal combustion engines, the duration of contact between the valve and its seat is too short, and much time is needed to reach the quasi-steady state in the periodic contact between the exhaust valve and its seat. Using the methods of linear extrapolation and the inverse solution, the surface contact temperatures and the fixed and periodic thermal contact conductance were calculated. The results of linear extrapolation and inverse methods have similar trends, and based on the error analysis, they are accurate enough to estimate the thermal contact conductance. Moreover, due to the error analysis, a linear extrapolation method using inverse ratio is preferred. The effects of pressure, contact frequency, heat flux, and cooling air speed on thermal contact conductance have been investigated. The results show that by increasing the contact pressure the thermal contact conductance increases substantially. In addition, by increasing the engine speed the thermal contact conductance decreases. On the other hand, by boosting the air speed the thermal contact conductance increases, and by raising the heat flux the thermal contact conductance reduces. The average calculated error equals to 12.9 %.

  18. Determination of surface dose rate of indigenous (32)P patch brachytherapy source by experimental and Monte Carlo methods.

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Saxena, Sanjay Kumar; Bakshi, A K; Dash, Ashutosh; Babu, D A R; Sharma, D N

    2015-09-01

    Isotope production and Application Division of Bhabha Atomic Research Center developed (32)P patch sources for treatment of superficial tumors. Surface dose rate of a newly developed (32)P patch source of nominal diameter 25 mm was measured experimentally using standard extrapolation ionization chamber and Gafchromic EBT film. Monte Carlo model of the (32)P patch source along with the extrapolation chamber was also developed to estimate the surface dose rates from these sources. The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and radiochromic films are 82.03±4.18 (k=2) and 79.13±2.53 (k=2) respectively. The two values of the surface dose rates measured using the two independent experimental methods are in good agreement to each other within a variation of 3.5%. The surface dose rate to tissue (cGy/min) estimated using the MCNP Monte Carlo code works out to be 77.78±1.16 (k=2). The maximum deviation between the surface dose rates to tissue obtained by Monte Carlo and the extrapolation chamber method is 5.2% whereas the difference between the surface dose rates obtained by radiochromic film measurement and the Monte Carlo simulation is 1.7%. The three values of the surface dose rates of the (32)P patch source obtained by three independent methods are in good agreement to one another within the uncertainties associated with their measurements and calculation. This work has demonstrated that MCNP based electron transport simulations are accurate enough for determining the dosimetry parameters of the indigenously developed (32)P patch sources for contact brachytherapy applications. PMID:26086681

  19. Forecasting Ex-Vessel Prices for Hard Blue Crabs in the Chesapeake Bay Region: Individual and Composite Methods

    Michael A. Hudson; Capps, Oral, Jr.

    1984-01-01

    Given the relative importance of the Chesapeake Bay hard blue crab fishery to the U.S. blue crab fishery , this paper analyzes ex-vessel prices for hard blue crabs landed in this region. The purpose is to evaluate alternative methods of forecasting ex-vessel prices for hard blue crabs in the Bay; both individual methods (trend extrapolation, econometric, and time-series) and composite methods. Examining the mean squared errors for the individual methods, the time-series model performs the bes...

  20. Alternating proximal gradient method for nonnegative matrix factorization

    Xu, Yangyang

    2011-01-01

    Nonnegative matrix factorization has been widely applied in face recognition, text mining, as well as spectral analysis. This paper proposes an alternating proximal gradient method for solving this problem. With a uniformly positive lower bound assumption on the iterates, any limit point can be proved to satisfy the first-order optimality conditions. A Nesterov-type extrapolation technique is then applied to accelerate the algorithm. Though this technique is at first used for convex program, it turns out to work very well for the non-convex nonnegative matrix factorization problem. Extensive numerical experiments illustrate the efficiency of the alternating proximal gradient method and the accleration technique. Especially for real data tests, the accelerated method reveals high superiority to state-of-the-art algorithms in speed with comparable solution qualities.