The protection influence of glycine (Gly) and a one of its derivatives, namely 2-(bis(2-aminoethyl)amino) acetic acid, designated here as GlyD; where GlyD stands for 'glycine derivative', against cold rolled steel (CRS) corrosion was studied in aerated stagnant 1.0 M HCl solutions at 25 deg. C. Measurements were conducted under various experimental conditions using Tafel polarization, linear polarization and impedance techniques. These studies have shown that Gly and GlyD are very good 'green', mixed-type inhibitors. GlyD is more effective than Gly itself in inhibiting the acid corrosion of CRS. Electrochemical frequency modulation (EFM) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) method of analysis are also presented here for monitoring corrosion. Corrosion rates obtained from both EFM and ICP-AES methods are comparable with those recorded using Tafel extrapolation method, confirming validation of corrosion rates measured by the latter. Adsorption via H-bond is discussed here, based on the presence of oxide film on the electrode surface as well as the number of NH linkages in the inhibitor molecule. Quantum chemical method was also employed to explore the relationship between the inhibitor molecular properties and its protection efficiency. The density function theory (DFT) is used to study the structural properties of Gly and GlyD in aqueous phase in an attempt to understand their inhibition mechanism. The protection efficiencies of these compounds showed a certain relationship to highest occupied molecular orbital (HOMO) energy, Mulliken atomic charges and Fukui indices.
The inhibition effect of glycine (Gly) towards the corrosion of low alloy steel ASTM A213 grade T22 boiler steel was studied in aerated stagnant 0.50 M HCl solutions in the temperature range 20-60 deg. C using potentiodynamic polarization (Tafel polarization and linear polarization) and impedance techniques, complemented with scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Electrochemical frequency modulation (EFM), a non-destructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is also presented here. Experimental corrosion rates determined by the Tafel extrapolation method are compared with corrosion rates obtained by electrochemical, namely EFM technique, and chemical (i.e., non-electrochemical) method for steel in HCl. The chemical method of confirmation of the corrosion rates involved determination of the dissolved cation, using ICP-AES (inductively coupled plasma atomic emission spectrometry) method of analysis. Corrosion rates (in mm y-1) obtained from the electrochemical (Tafel extrapolation and EFM) and the chemical method, ICP, are in a good agreement. Polarization studies have shown that Gly is a good 'green', mixed-type inhibitor with cathodic predominance. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive agents. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) examinations of the electrode surface confirmed the existence of such an adsorbed film. The inhibition efficiency increases with increase in Gly concentration, while it decreases with solution temperature. Temkin isotherm is successfully applied to describe the adsorption process. Thermodynamic functions for the adsorption process were determined.
Extrapolation methods theory and practice
Brezinski, C
1991-01-01
This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided - including some never before published results and applicat
The Effects of scan rate on the Tafel polarization curve that is obtained to determine corrosion rate are conducted. The tafel polarization curves are obtained at different scan rates for Stainless Steel 304 in nanofluids contain 0.01 gpl nano particle ZrO2. The corrosion stainless steel in nanofluid contains adm+0.01 gpl ZrO2 nanoparticles at different scan rate was performed by Tafel polarization. The results show that according corrosion potential examination of the stainless steel in nanofluid media 0.01gpl ZrO2 nanoparticle was actively corroded. The value of cathodic Tafel slope stainless steel in nanofluid at different scan rate relatively unchanged after polarization testing. Mean while the value of anodic Tafel slope stainless steel in nanofluid increase at different scan rate. The results of Tafel polarization technique show that corrosion rate of stainless steel in nanofluid increase with increasing scan rate. X ray diffraction examination of stainless steel after Tafel polarization depict that γ Fe phase is major phase in the surface of alloy
The optimizied expansion method for wavefield extrapolation
Wu, Zedong
2013-01-01
Spectral methods are fast becoming an indispensable tool for wave-field extrapolation, especially in anisotropic media, because of its dispersion and artifact free, as well as highly accurate, solutions of the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain operator.In this abstract, we propose an optimized expansion method that can approximate this operator with its low rank representation. The rank defines the number of inverse FFT required per time extrapolation step, and thus, a lower rank admits faster extrapolations. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its low rank representation.Thus,we obtain more accurate wave-fields using lower rank representation, and thus cheaper extrapolations. The optimization operation to define the low rank representation depends only on the velocity model, and this is done only once, and valid for a full reverse time migration (many shots) or one iteration of full waveform inversion. Applications on the BP model yielded superior results than those obtained using the decomposition approach. For transversely isotopic media, the solutions were free of the shear wave artifacts, and does not require that eta>0.
ON THE OPTIMIZATION OF EXTRAPOLATION METHODS FOR SINGULAR LINEAR SYSTEMS
Li Wang; Yongzhong Song
2008-01-01
We discuss semiconvergence of the extrapolated iterative methods for solving singular linear systems.We obtain the upper bounds and the optimum convergence factor of the ex-trapolation method as well as its associated optimum extrapolation parameter.Numerical examples are given to illustrate the theoretical results.
Extrapolation Method for System Reliability Assessment
Qin, Jianjun; Nishijima, Kazuyoshi; Faber, Michael Havbro
2012-01-01
integrals with scaled domains. The performance of this class of approximation depends on the approach applied for the scaling and the functional form utilized for the extrapolation. A scheme for this task is derived here taking basis in the theory of asymptotic solutions to multinormal probability integrals...
On the Extrapolation with the Denton Proportional Benchmarking Method
Marco Marini; Tommaso Di Fonzo
2012-01-01
Statistical offices have often recourse to benchmarking methods for compiling quarterly national accounts (QNA). Benchmarking methods employ quarterly indicator series (i) to distribute annual, more reliable series of national accounts and (ii) to extrapolate the most recent quarters not yet covered by annual benchmarks. The Proportional First Differences (PFD) benchmarking method proposed by Denton (1971) is a widely used solution for distribution, but in extrapolation it may suffer when the...
Implicit extrapolation methods for multilevel finite element computations
Jung, M.; Ruede, U. [Technische Universitaet Chemnitz-Zwickau (Germany)
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
Submarine Magnetic Field Extrapolation Based on Boundary Element Method
GAO Jun-ji; LIU Da-ming; YAO Qiong-hui; ZHOU Guo-hua; YAN Hui
2007-01-01
In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine, a mathematic model of submarine magnetic field extrapolation is built based on the boundary element method (BEM). An experiment is designed to measure three components of magnetic field on the envelope surface surrounding a model submarine. The data in differentheights above the model submarine are obtained by use of tri-axial magnetometers. The results show that this extrapolation model has good stabilities and high accuracies compared the measured data with the extrapolated data. Moreover, the model can reflect the submarine magnetic field distribution in the air exactly, and is valuable in practical engineering.
Assessment of Load Extrapolation Methods for Wind Turbines
Toft, Henrik Stensgaard; Sørensen, John Dalsgaard
2010-01-01
approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima and the peak over...... considering Gaussian processes for twelve mean wind speeds the ‘fitting before aggregation’ and ‘aggregation before fitting’ approaches are studied. The results show that the ‘fitting before aggregation’ approach gives the best results.......In the present paper methods for statistical load extrapolation of wind turbine response are studied using a stationary Gaussian process model which has approximately the same spectral properties as the response for the flap bending moment of a wind turbine blade. For a Gaussian process an...
Assessment of Load Extrapolation Methods for Wind Turbines
Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Veldkamp, Dick
2011-01-01
, an approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper, three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima, and the...... best results. By considering Gaussian processes for 12 mean wind speeds, the "fitting before aggregation" and "aggregation before fitting" approaches are studied. The results show that the fitting before aggregation approach gives the best results. [DOI: 10.1115/1.4003416]......In the present paper, methods for statistical load extrapolation of wind-turbine response are studied using a stationary Gaussian process model, which has approximately the same spectral properties as the response for the out-of-plane bending moment of a wind-turbine blade. For a Gaussian process...
Extrapolative Projections of Mortality: Towards a More Consistent Method
Ediev, Dalkhat M.
2009-01-01
After a comparative study of the Lee-Carter forecasting method and looking into the direct extrapolation of mortality by age and sex, this paper advocates the use of the latter method. The method is, however, supplemented by additional procedures in order to improve its efficiency in the short run and preclude implausible mortality patterns in the long run. The short-run efficiency is improved by building the forecast on data from the most recent periods of age/sex-specific duration, when the...
Comparison of methods for extrapolating breaking creep results
Among all the methods of extrapolation, the following have been selected: - parametric methods (Larson-Miller, Dorn, Manson-Haferd); - digital and parametric method (minimum commitment); - digital method (finite differences); - descriptive method (Givar). The Larson-Miller, Dorn and Manson-Haferd methods are commonly used for analyzing the breaking creep results of materials for which the master curves can be described simply. The other methods have been developed in order to analyze the breaking creep results of materials where the structural changes over time modify the creep behaviour. In each case the assessment of the parameters is achieved by the least squares method. These methods were compared with each other on two steels, namely: Z6 CND 17-12 (316) and Z4 CND 35-20 (800 alloy). The various analyses performed show that (a) the predictions made as from the different methods are in good agreement between each other when there is a sufficient number of experimental values and (b) the predictions of the breaking times in the case of the 800 alloy differ from one method to the next. This result is due to the limited sampling data and to the complex behaviour of this alloy, the properties of which change with ageing
The absolute determination of activity by the efficiency extrapolation method
As agent for the Commonwealth Scientific and Industrial Research Organisation, the Australian Atomic Energy Commission is responsible for the maintenance of the Australian standard of activity. The standard comprises activity measurement procedures involving the operation of 4 π β-γ coincidence counting equipment. The coincidence method requires the application of correction factors which depend on detection efficiency, such as arise for complex decay schemes and internal conversion. These corrections approach unity as the detection efficiency in the β-channel approaches 100 per cent. By performing activity determinations for a range of β detection efficiencies, an 'efficiency extrapolation' analysis can be applied which eliminates the need to determine the absolute detection efficiency for each channel
A Time-domain incident field extrapolation technique based on the singularity expansion method
Klaasen, J.J.A.
1991-01-01
In this report, a method is presented to extrapolate measurements from Nuclear Electromagnetic Pulse (NEMP) assessments directly in the time domain. This method is based on a time-domain extrapolation function which is obtained from the Singularity Expansion Method representation of the measured incident field of the NEMP simulator. Once the time-domain extrapolation function is determined, the responses recorded during an assessment can be extrapolated simply by convolving them with the time...
Efficient implementation of minimal polynomial and reduced rank extrapolation methods
Sidi, Avram
1990-01-01
The minimal polynomial extrapolation (MPE) and reduced rank extrapolation (RRE) are two effective techniques that have been used in accelerating the convergence of vector sequences, such as those that are obtained from iterative solution of linear and nonlinear systems of equation. Their definitions involve some linear least squares problems, and this causes difficulties in their numerical implementation. Timewise efficient and numerically stable implementations for MPE and RRE are developed. A computer program written in FORTRAN 77 is also appended and applied to some model problems.
Mean error of prediction for a method of empirical growth extrapolation
Boguslaw Guzik
2006-01-01
The objective of this paper is to formulate a standard set of stochastic assumptions for a prediction method which consists in a linear extrapolation of the mean empirical growth. The author shows how to derive formulas for the mean error of prediction (the ex ante prediction error). These formulas are then compared to the prediction errors of the following methods: the status quo method, the mean extrapolation method and the extrapolation of the linear trend function estimated by the least-s...
An efficient wave extrapolation method for anisotropic media with tilt
Waheed, Umair bin
2015-03-23
Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.
Definition of static magnetic characteristics of ferromagnetic specimens with extrapolation methods
The problem of definition of static magnetic characteristics of ferromagnetic specimens on the basis of extrapolation treatment of the totality of dynamic characteristics recorded in low-frequency (1-25 Hz) magnetic fields is considered. The application of the extrapolation methods ensures a considerable increase in the productivity of control of the studied specimen magnetic properties
Video Extrapolation Method Based on Time-Varying Energy Optimization and CIP.
Sakaino, Hidetomo
2016-09-01
Video extrapolation/prediction methods are often used to synthesize new videos from images. For fluid-like images and dynamic textures as well as moving rigid objects, most state-of-the-art video extrapolation methods use non-physics-based models that learn orthogonal bases from a number of images but at high computation cost. Unfortunately, data truncation can cause image degradation, i.e., blur, artifact, and insufficient motion changes. To extrapolate videos that more strictly follow physical rules, this paper proposes a physics-based method that needs only a few images and is truncation-free. We utilize physics-based equations with image intensity and velocity: optical flow, Navier-Stokes, continuity, and advection equations. These allow us to use partial difference equations to deal with the local image feature changes. Image degradation during extrapolation is minimized by updating model parameters, where a novel time-varying energy balancer model that uses energy based image features, i.e., texture, velocity, and edge. Moreover, the advection equation is discretized by high-order constrained interpolation profile for lower quantization error than can be achieved by the previous finite difference method in long-term videos. Experiments show that the proposed energy based video extrapolation method outperforms the state-of-the-art video extrapolation methods in terms of image quality and computation cost. PMID:27305677
The optimized expansion based low-rank method for wavefield extrapolation
Wu, Zedong
2014-03-01
Spectral methods are fast becoming an indispensable tool for wavefield extrapolation, especially in anisotropic media because it tends to be dispersion and artifact free as well as highly accurate when solving the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain extrapolation operator efficiently. To solve this problem, we evaluated an optimized expansion method that can approximate this operator with a low-rank variable separation representation. The rank defines the number of inverse Fourier transforms for each time extrapolation step, and thus, the lower the rank, the faster the extrapolation. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its explicit low-rank representation. As a result, we obtain lower rank representations compared with the standard low-rank method within reasonable accuracy and thus cheaper extrapolations. Additional bounds set on the range of propagated wavenumbers to adhere to the physical wave limits yield unconditionally stable extrapolations regardless of the time step. An application on the BP model provided superior results compared to those obtained using the decomposition approach. For transversely isotopic media, because we used the pure P-wave dispersion relation, we obtained solutions that were free of the shear wave artifacts, and the algorithm does not require that n > 0. In addition, the required rank for the optimization approach to obtain high accuracy in anisotropic media was lower than that obtained by the decomposition approach, and thus, it was more efficient. A reverse time migration result for the BP tilted transverse isotropy model using this method as a wave propagator demonstrated the ability of the algorithm.
Senjean, Bruno; Alam, Md Mehboob; Knecht, Stefan; Fromager, Emmanuel
2015-01-01
The combination of a recently proposed linear interpolation method (LIM) [Senjean et al., Phys. Rev. A 92, 012518 (2015)], which enables the calculation of weight-independent excitation energies in range-separated ensemble density-functional approximations, with the extrapolation scheme of Savin [J. Chem. Phys. 140, 18A509 (2014)] is presented in this work. It is shown that LIM excitation energies vary quadratically with the inverse of the range-separation parameter mu when the latter is large. As a result, the extrapolation scheme, which is usually applied to long-range interacting energies, can be adapted straightforwardly to LIM. This extrapolated LIM (ELIM) has been tested on a small test set consisting of He, Be, H2 and HeH+. Relatively accurate results have been obtained for the first singlet excitation energies with the typical mu=0.4 value. The improvement of LIM after extrapolation is remarkable, in particular for the doubly-excited 2^1Sigma+g state in the stretched H2 molecule. Three-state ensemble ...
Robert Carbone; JS Armstrong
2004-01-01
There exists a large number of quantitative extrapolative forecasting methods which may be applied in research work or implemented in an organizational setting. For instance, the lead article of this issue of the Journal of Forecasting compares the ability to forecast the future of over twenty univariate forecasting methods. Forecasting researchers in various academic disciplines as well as practitioners in private or public organizations are commonly faced with the problem of evaluating fore...
The efficiency extrapolation method was improved by establishing ''linearity conditions'' for the discrimination on the gamma channel of the coincidence equipment. These conditions were proved to eliminate the systematic error of the method. A control procedure for the fulfilment of linearity conditions and estimation of residual systematic error was given. For law-energy gamma transitions an ''equivalent scheme principle'' was established, which allow for a correct application of the method. Solutions of Cs-134, Co-57, Ba-133 and Zn-65 were standardized with an ''effective standard deviation'' of 0.3-0.7 per cent. For Zn-65 ''special linearity conditions'' were applied. (author)
Ediev, Dalkhat M.
2008-01-01
After a comparative study of the Lee-Carter forecasting method and looking into the direct extrapolation of mortality by age and sex, this paper advocates the use of the latter method. The method is, however, supplemented by additional procedures in order to improve its efficiency in the short run and preclude implausible mortality patterns in the long run. The short-run efficiency is improved by building the forecast on data from the most recent periods of age/sex-specific duration, when the...
Multi-state extrapolation of UV/Vis absorption spectra with QM/QM hybrid methods
Ren, Sijin; Caricato, Marco
2016-05-01
In this work, we present a simple approach to simulate absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated efficiently at a high level of theory. The present approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g., band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory.
Evaluation of functioning of an extrapolation chamber using Monte Carlo method
The extrapolation chamber is a parallel plate chamber and variable volume based on the Braff-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents a simulation for evaluating the functioning of an extrapolation chamber type 23392 of PTW, using the MCNPX Monte Carlo method. In the simulation, the fluence in the air collector cavity of the chamber was obtained. The influence of the materials that compose the camera on its response against beta radiation beam was also analysed. A comparison of the contribution of primary and secondary radiation was performed. The energy deposition in the air collector cavity for different depths was calculated. The component with the higher energy deposition is the Polymethyl methacrylate block. The energy deposition in the air collector cavity for chamber depth 2500 μm is greater with a value of 9.708E-07 MeV. The fluence in the air collector cavity decreases with depth. It's value is 1.758E-04 1/cm2 for chamber depth 500 μm. The values reported are for individual electron and photon histories. The graphics of simulated parameters are presented in the paper. (Author)
Multi-state extrapolation of UV/Vis absorption spectra with QM/QM hybrid methods.
Ren, Sijin; Caricato, Marco
2016-05-14
In this work, we present a simple approach to simulate absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated efficiently at a high level of theory. The present approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g., band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory. PMID:27179466
Counter-extrapolation method for conjugate interfaces in computational heat and mass transfer.
Le, Guigao; Oulaid, Othmane; Zhang, Junfeng
2015-03-01
In this paper a conjugate interface method is developed by performing extrapolations along the normal direction. Compared to other existing conjugate models, our method has several technical advantages, including the simple and straightforward algorithm, accurate representation of the interface geometry, applicability to any interface-lattice relative orientation, and availability of the normal gradient. The model is validated by simulating the steady and unsteady convection-diffusion system with a flat interface and the steady diffusion system with a circular interface, and good agreement is observed when comparing the lattice Boltzmann results with respective analytical solutions. A more general system with unsteady convection-diffusion process and a curved interface, i.e., the cooling process of a hot cylinder in a cold flow, is also simulated as an example to illustrate the practical usefulness of our model, and the effects of the cylinder heat capacity and thermal diffusivity on the cooling process are examined. Results show that the cylinder with a larger heat capacity can release more heat energy into the fluid and the cylinder temperature cools down slower, while the enhanced heat conduction inside the cylinder can facilitate the cooling process of the system. Although these findings appear obvious from physical principles, the confirming results demonstrates the application potential of our method in more complex systems. In addition, the basic idea and algorithm of the counter-extrapolation procedure presented here can be readily extended to other lattice Boltzmann models and even other computational technologies for heat and mass transfer systems. PMID:25871245
Sun, Shuyu
2013-06-01
This paper introduces an efficient technique to generate new molecular simulation Markov chains for different temperature and density conditions, which allow for rapid extrapolation of canonical ensemble averages at a range of temperatures and densities different from the original conditions where a single simulation is conducted. Obtained information from the original simulation are reweighted and even reconstructed in order to extrapolate our knowledge to the new conditions. Our technique allows not only the extrapolation to a new temperature or density, but also the double extrapolation to both new temperature and density. The method was implemented for Lennard-Jones fluid with structureless particles in single-gas phase region. Extrapolation behaviors as functions of extrapolation ranges were studied. Limits of extrapolation ranges showed a remarkable capability especially along isochors where only reweighting is required. Various factors that could affect the limits of extrapolation ranges were investigated and compared. In particular, these limits were shown to be sensitive to the number of particles used and starting point where the simulation was originally conducted.
An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on down-link band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2x2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders. (authors)
Comparison of precipitation nowcasting by extrapolation and statistical-advection methods
Sokol, Zbynek; Kitzmiller, David; Pesice, Petr; Mejsnar, Jan
2013-04-01
Two models for nowcasting of 1-h, 2-h and 3-h precipitation in the warm part of the year were evaluated. The first model was based on the extrapolation of observed radar reflectivity (COTREC-IPA) and the second one combined the extrapolation with the application of a statistical model (SAMR). The accuracy of the model forecasts was evaluated on independent data using the standard measures of root-mean-squared-error, absolute error, bias and correlation coefficient as well as by spatial verification methods Fractions Skill Score and SAL technique. The results show that SAMR yields slightly better forecasts during the afternoon period. On the other hand very small or no improvement is realized at night and in the very early morning. COTREC-IPA and SAMR forecast a very similar horizontal structure of precipitation patterns but the model forecasts differ in values. SAMR, similarly as COTREC-IPA, is not able to develop new storms or significantly intensify already existing storms. This is caused by a large uncertainty regarding future development. On the other hand, the SAMR model can reliably predict decreases in precipitation intensity.
A two-grid method with Richardson extrapolation for a semilinear convection-diffusion problem
Tikhovskaya, S. V.; Zadorin, A. I.
2015-10-01
A boundary value problem for a second-order semilinear singularly perturbed ordinary differential equation is considered. We use Newton and Picard iterations for a linearization. To solve the problem at each iteration we apply the difference scheme with the property of uniform with respect to the singular perturbation parameter convergence. A modified Samarskii and central difference schemes on Shishkin mesh are considered. It is known that these schemes are almost second order accuracy uniformly with respect to the singular perturbation parameter. To decrease the required number of arithmetical operations for resolving the difference scheme, a two-grid method is proposed. To increase the accuracy of difference scheme, we investigate the possibility to apply Richardson extrapolation using known solutions of the difference scheme on both meshes. The comparison of modified Samarskii and central difference schemes is carried out. The results of some numerical experiments are discussed.
Usage of Empirical-Statical-Dynamical (ESD) method for data extrapolation in Tunnel Construction
Zafirovski Zlatko
2016-01-01
This article describes a methodology that shows how it is possible to integrate all these approaches in a problem for extrapolation of the parameters for hydrotechical tunnels. During the design process for tunnels in hydrotechics, one of the main problems is how to extrapolate the deformability and shear strentgh rock mass parameters from the zone of testing to the whole area (volume) of interes for interaction analyses between structure abd natural environments. Computers development in rec...
Ketcheson, David I.
2014-04-11
In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.
Larsen, Ross E.
2016-05-12
We introduce two simple tight-binding models, which we call fragment frontier orbital extrapolations (FFOE), to extrapolate important electronic properties to the polymer limit using electronic structure calculations on only a few small oligomers. In particular, we demonstrate by comparison to explicit density functional theory calculations that for long oligomers the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and of the first electronic excited state are accurately described as a function of number of repeat units by a simple effective Hamiltonian parameterized from electronic structure calculations on monomers, dimers and, optionally, tetramers. For the alternating copolymer materials that currently comprise some of the most efficient polymer organic photovoltaic devices one can use these simple but rigorous models to extrapolate computed properties to the polymer limit based on calculations on a small number of low-molecular-weight oligomers.
Comparison of precipitation nowcasting by extrapolation and statistical-advection methods
Sokol, Zbyněk; Kitzmiller, D.; Pešice, Petr; Mejsnar, Jan
2013-01-01
Roč. 123, 1 April (2013), s. 17-30. ISSN 0169-8095 R&D Projects: GA MŠk ME09033 Institutional support: RVO:68378289 Keywords : Precipitation forecast * Statistical models * Regression * Quantitative precipitation forecast * Extrapolation forecast Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.421, year: 2013 http://www.sciencedirect.com/science/article/pii/S0169809512003390
Mejsnar, Jan; Sokol, Zbyněk; Pešice, Petr
Toulouse : Météo France, 2012. [ERAD 2012 - European Conference on Radar in Meteorology and Hydrology /7./. Toulouse (FR), 24.06.2012-29.06.2012] R&D Projects: GA MŠk ME09033 Institutional support: RVO:68378289 Keywords : precipitation nowcasting * Lagrangien extrapolation * uncertainty in precipitation Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/NOW_250_ext_abs.pdf
A program to investigate the possibility of track extrapolation and interpolation for drift chambers with the Principal Components Analysis and polynoms was written for SAPHIR. The results for the most significant configurations at SAPHIR were pointed out. It was shown that the Principal Components Analysis is a good basis to write a fast track reconstruction program for a drift chamber using a global track model in an inhomogeneous magnetic field. A data input/output package was written, too. (orig.)
Zheng, R; Zhang, W; Li, Y; Huang, J; Yang, D
1998-02-01
The EDXRF extrapolate-regression method described in this paper combines regression method with the fundamental formula of fluorescence intensity. The contents of Ni and Pd in white karat gold jewellery were calculated theoretically according to the spectrum of the sample. The content of gold was deternined without standards. The precision was 0.1% and the deviation was 0.3% compared with AA. PMID:15810348
Reasons why the extrapolated critical curve obtained by lifting control rods is cambered during the physical start-up of a reactor are analyzed. Spatial flux deformation factor is introduced, and a new method, by which influences of spatial effect in the reactor are avoided additionally, is proposed based on what is achieved by removing source neutrons. The new method is employed to a real example. Comparing the new results with those of real physical start-up and achieved only by removing source neutrons, it is shown that the new method avoids cambering phenomenon of the extrapolated curve much better, and obtains more precise critical position of control rods, so the reactor will reach the criticality more safely. (authors)
Ketcheson, David I.
2014-06-13
We compare the three main types of high-order one-step initial value solvers: extrapolation, spectral deferred correction, and embedded Runge–Kutta pairs. We consider orders four through twelve, including both serial and parallel implementations. We cast extrapolation and deferred correction methods as fixed-order Runge–Kutta methods, providing a natural framework for the comparison. The stability and accuracy properties of the methods are analyzed by theoretical measures, and these are compared with the results of numerical tests. In serial, the eighth-order pair of Prince and Dormand (DOP8) is most efficient. But other high-order methods can be more efficient than DOP8 when implemented in parallel. This is demonstrated by comparing a parallelized version of the wellknown ODEX code with the (serial) DOP853 code. For an N-body problem with N = 400, the experimental extrapolation code is as fast as the tuned Runge–Kutta pair at loose tolerances, and is up to two times as fast at tight tolerances.
Waheed, Umair bin
2014-08-01
The wavefield extrapolation operator for ellipsoidally anisotropic (EA) media offers significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate focusing for media of orthorhombic anisotropy. Therefore, we develop effective EA models that correctly capture the kinematic behavior of the wavefield for tilted orthorhombic (TOR) media. Specifically, we compute effective source-dependent velocities for the EA model using kinematic high-frequency representation of the TOR wavefield. The effective model allows us to use the cheaper EA wavefield extrapolation operator to obtain approximate wavefield solutions for a TOR model. Despite the fact that the effective EA models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TOR media, particularly for media of low to moderate complexity. We demonstrate applicability of the proposed approach on a layered TOR model.
Inside Activity 3 ''Materials'' of WGCS, the member states UK and FRG have developed a work regarding extrapolation methods for creep data. This work has been done by comparising extrapolation methods in use in their countries by applying them to creep rupture strength data on AISI 316 SS obtained in UK and FRG. This work has been issued on April 1978 and the Community has dealed it to all Activity 3 Members. Italy, in the figure of NIRA S.p.A., has received, from the European Community a contract to extend the work to Italian and French data, using extrapolation methods currently in use in Italy. The work should deal with the following points: - Collect of Italian experimental data; - Chemical analysis on Italian Specimen; - Comparison among Italian experimental data with French, FRG and UK data; - Description of extrapolation methods in use in Italy; - Application of these extrapolation methods to Italian, French, British and Germany data; - Extensions of a Final Report
Comparison of Coronal Extrapolation Methods for Cycle 24 Using HMI Data
Arden, William M.; Norton, Aimee A.; Sun, Xudong; Zhao, Xuepu
2016-05-01
Two extrapolation models of the solar coronal magnetic field are compared using magnetogram data from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager instrument. The two models, a horizontal current–current sheet–source surface (HCCSSS) model and a potential field–source surface (PFSS) model, differ in their treatment of coronal currents. Each model has its own critical variable, respectively, the radius of a cusp surface and a source surface, and it is found that adjusting these heights over the period studied allows for a better fit between the models and the solar open flux at 1 au as calculated from the Interplanetary Magnetic Field (IMF). The HCCSSS model provides the better fit for the overall period from 2010 November to 2015 May as well as for two subsets of the period: the minimum/rising part of the solar cycle and the recently identified peak in the IMF from mid-2014 to mid-2015 just after solar maximum. It is found that an HCCSSS cusp surface height of 1.7 R ⊙ provides the best fit to the IMF for the overall period, while 1.7 and 1.9 R ⊙ give the best fits for the two subsets. The corresponding values for the PFSS source surface height are 2.1, 2.2, and 2.0 R ⊙ respectively. This means that the HCCSSS cusp surface rises as the solar cycle progresses while the PFSS source surface falls.
Comparison of Coronal Extrapolation Methods for Cycle 24 Using HMI Data
Arden, William M; Sun, Xudong; Zhao, Xuepu
2016-01-01
Two extrapolation models of the solar coronal magnetic field are compared using magnetogram data from the SDO/HMI instrument. The two models, a horizontal current-current sheet-source surface (HCCSSS) model and a potential field-source surface (PFSS) model differ in their treatment of coronal currents. Each model has its own critical variable, respectively the radius of a cusp surface and a source surface, and it is found that adjusting these heights over the period studied allows better fit between the models and the solar open flux at 1 AU as calculated from the Interplanetary Magnetic Field (IMF). The HCCSSS model provides the better fit for the overall period from 2010 November to 2015 May as well as for two subsets of the period - the minimum/rising part of the solar cycle, and the recently-identified peak in the IMF from mid-2014 to mid-2015 just after solar maximum. It is found that a HCCSSS cusp surface height of 1.7 Rsun provides the best fit to the IMF for the overall period, while 1.7 & 1.9 Rsu...
Improvement of flux distribution calculation using the extrapolation method of Richardson
Richardson have advanced a method for increasing the accuracy in numerical solving of linear differential equations. So, he proposed several schemes for performing algorythms, in which various approximtion parameters are used. It has been proved that a linear combination of this solution under certain circumstances gives a higher accuracy. Starting from these facts the present paper descpibes the application of the Richardson's method in improving the neutron flux calculation by using the EXTERMINATOR-2-INPR code. The considered benchmark problem has been conceived by D.R.Vondy from ORNL-USA. It consists of solving the multigroup diffusion equations for homogeneous two-dimensional slab. The results obtained show the efficiency of the Richardson method in improving the neutron flux calculation and constitutes a basis for achieving algorythms for other categories of problems. (authors)
Ducasse, Q; Mathieu, L; Marini, P; Morillon, B; Aiche, M; Tsekhanovich, I
2015-01-01
The study of transfer-induced gamma-decay probabilities is very useful for understanding the surrogate-reaction method and, more generally, for constraining statistical-model calculations. One of the main difficulties in the measurement of gamma-decay probabilities is the determination of the gamma-cascade detection efficiency. In [Nucl. Instrum. Meth. A 700, 59 (2013)] we developed the Extrapolated Efficiency Method (EXEM), a new method to measure this quantity. In this work, we have applied, for the first time, the EXEM to infer the gamma-cascade detection efficiency in the actinide region. In particular, we have considered the 238U(d,p)239U and 238U(3He,d)239Np reactions. We have performed Hauser-Feshbach calculations to interpret our results and to verify the hypothesis on which the EXEM is based. The determination of fission and gamma-decay probabilities of 239Np below the neutron separation energy allowed us to validate the EXEM.
Noble gas 41Ar was measured with a 4πβ–4πγ coincidence system, in which gamma- and beta-rays were respectively detected with a well-type NaI(Tl) and plastic scintillator (PS) detector. The activity of 41Ar was determined from an efficiency extrapolation method, in which the beta detector efficiency was varied by electronic discrimination using the software developed under Visual basic. In addition, high resolution gamma spectroscopy with HPGe detector was also used for activity determination of 41Ar, and the result was satisfactory in agreement with that obtain by the efficiency extrapolation method. This work demonstrated that the activity of 41Ar can be accurately measured by efficiency extrapolation method. - Highlights: • The gaseous 41Ar was measured with a 4πβ(PS)–4πγ(NaI) coincidence system. • The activity of 41Ar was determined by the efficiency extrapolation method. • The beta detector efficiency was changed using a program and extrapolating to 100% efficiency
Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP. (geophysics, astronomy, and astrophysics)
A two-dimensional extrapolation for the standardization of 201Tl by the 4πβ-τ coincidence method
201TL has been standardized by 4πβ-τ coincidence measurements using one- and two-dimensional extrapolation. An analysis of the various contributions to the count rate of the β channel is made and it is shown that due to low-energy conversion electrons two-dimensional extrapolation is preferable. Several measurements have been performed under various conditions with a coincidence system consisting of a Ge detector or a NaI crystal for the detection of τ rays and a pressurized proportional counter for the detection of the x rays and Auger electrons from electron capture. (author)
Funck, E.
1987-01-01
/sup 201/TL has been standardized by 4..pi beta..-tau coincidence measurements using one- and two-dimensional extrapolation. An analysis of the various contributions to the count rate of the ..beta.. channel is made and it is shown that due to low-energy conversion electrons two-dimensional extrapolation is preferable. Several measurements have been performed under various conditions with a coincidence system consisting of a Ge detector or a NaI crystal for the detection of tau rays and a pressurized proportional counter for the detection of the x rays and Auger electrons from electron capture.
Shinagawa, Tatsuya; Garcia-Esparza, Angel T.; Takanabe, Kazuhiro
2015-09-01
Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report.
Shinagawa, Tatsuya; Garcia-Esparza, Angel T; Takanabe, Kazuhiro
2015-01-01
Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ≈0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report. PMID:26348156
Shinagawa, Tatsuya
2015-09-08
Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report.
Corrosion is one of the major problems in petroleum mining and processing industry. The pipelines used to transport crude oil from reservoir to the processing installation were made from carbon steel that is susceptible towards corrosion. One of the best methods to prevent corrosion that occurred at the inner parts of carbon steel pipelines is to use organic corrosion inhibitor. One of the potent organic corrosion inhibitors is amino acids derivatives. In this study, dipeptide compound namely benzoylalanylglycine methyl ester and benzoylalanylglycine have been synthesized. The structure elucidation of the products was performed by IR, MS and NMR spectroscopy. The determination of corrosion inhibition activity utilized the Tafel method. The corrosion inhibition efficiency of glycine methyl ester, benzoyl alanine, dipeptide benzoylalanylglycine methyl ester and dipeptide benzoylalanylglycine were 63.34 %, 35.86 %, 68.40 % and 27.72 %, respectively. These results showed that the formation of dipeptide benzoylalanylglycine methyl ester, derived from carboxylic protected glycine and amine protected alanine, increased the corrosion inhibition activity due to the loss of acidity center in the structure of glycine and L-alanine that would induce the corrosive environment towards carbon steel. (author)
Extraordinarily small Tafel slope for oxide formation reaction on Pt (1 1 1) surface
Oxide formation reaction current density on Pt (1 1 1) was estimated by time-differentiating oxide growth curves during a potential hold as a function of the potential and the coverage with the oxide below 0.35 ML (monolayer). The Tafel slope was 18–24 mV decade−1 in the condition where the Tafel plot is on a straight line. The reaction mechanism accounting for this small slope was proposed, in which the oxide formation process is assumed as a combination of a fast electron transfer step and a following slow step.
Infrared extrapolations for atomic nuclei
Furnstahl, R J; Papenbrock, T; Wendt, K A
2014-01-01
Harmonic oscillator model-space truncations introduce systematic errors to the calculation of binding energies and other observables. We identify the relevant infrared scaling variable and give values for this nucleus-dependent quantity. We consider isotopes of oxygen computed with the coupled-cluster method from chiral nucleon-nucleon interactions at next-to-next-to-leading order and show that the infrared component of the error is sufficiently understood to permit controlled extrapolations. By employing oscillator spaces with relatively large frequencies, well above the energy minimum, the ultraviolet corrections can be suppressed while infrared extrapolations over tens of MeVs are accurate for ground-state energies. However, robust uncertainty quantification for extrapolated quantities that fully accounts for systematic errors is not yet developed.
外推法在高中物理教学中的应用%The Application on Extrapolation Method in Sen ior High School Physics Teachin g
张栖宁; 冯杰
2013-01-01
The new curriculum reform has been carried out throughout China ,the curriculum standard explicitly put forward improving students′ scientific literacy is high school physics curriculum task .The study of scientific methods to improve the scientific literacy of students has important significance .This paper briefly introduces an important method to form a physical hypothesis---the extrapolation method .Giving examples is illustrated to show the physicist is how to use extrapolation method to build hypothesis and establish the theory ,and how will the extrapolation method is applied to the physics teaching of high school ,in order to make the students master the knowledge of physics ,and to be keenly aware of the superiority of physics scientific method .%新课程改革已在全国范围内普遍展开，在课程标准中明确提出，高中阶段物理课程的任务是进一步提高学生的科学素养，深入研究科学方法对于提高学生的科学素养有着重要意义，本文简要介绍了形成物理假说的一种重要的科学方法---外推法。举例说明了物理学家是如何运用外推法建立假说进而确立理论，以及如何将外推法应用到高中物理教学中的，以使学生更好地掌握物理知识，并切身体会到物理科学方法的优越性。
Tatsuya Shinagawa; Garcia-Esparza, Angel T.; Kazuhiro Takanabe
2015-01-01
Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-depe...
Biosimilars: Extrapolation for oncology.
Curigliano, Giuseppe; O'Connor, Darran P; Rosenberg, Julie A; Jacobs, Ira
2016-08-01
A biosimilar is a biologic that is highly similar to a licensed biologic (the reference product) in terms of purity, safety and efficacy. If the reference product is licensed to treat multiple therapeutic indications, extrapolation of indications, i.e., approval of a biosimilar for use in an indication held by the reference product but not directly studied in a comparative clinical trial with the biosimilar, may be possible but has to be scientifically justified. Here, we describe the data required to establish biosimilarity and emphasize that indication extrapolation is based on scientific principles and known mechanism of action. PMID:27354233
On the Extrapolation Estimates
Gogatishvili, Amiran; Sobukawa, T.
2003-01-01
Roč. 6, č. 1 (2003), s. 97-104. ISSN 1331-4343 R&D Projects: GA ČR GA201/01/0333 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : extrapolation theorem * Orlicz class Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2003
Builtin vs. auxiliary detection of extrapolation risk.
Munson, Miles Arthur; Kegelmeyer, W. Philip,
2013-02-01
A key assumption in supervised machine learning is that future data will be similar to historical data. This assumption is often false in real world applications, and as a result, prediction models often return predictions that are extrapolations. We compare four approaches to estimating extrapolation risk for machine learning predictions. Two builtin methods use information available from the classification model to decide if the model would be extrapolating for an input data point. The other two build auxiliary models to supplement the classification model and explicitly model extrapolation risk. Experiments with synthetic and real data sets show that the auxiliary models are more reliable risk detectors. To best safeguard against extrapolating predictions, however, we recommend combining builtin and auxiliary diagnostics.
Efficient Wavefield Extrapolation In Anisotropic Media
Alkhalifah, Tariq
2014-07-03
Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.
Koutchouk, Jean-Pierre; Ptitsyn, V I
2001-01-01
The multipolar content of the dipoles and quadrupoles is known to limit the stability of the beam dynamics in super-conducting machines like RHIC and even more in LHC. The low-beta quadrupoles are thus equipped with correcting coils up to the dodecapole order. The correction is planned to rely on magnetic measurements. We show that a relatively simple method allows an accurate measurement of the multipolar field aberrations using the beam. The principle is to displace the beam in the non-linear fields by local closed orbit bumps and to measure the variation of sensitive beam observable. The resolution and robustness of the method are found appropriate. Experimentation at RHIC showed clearly the presence of normal and skew sextupolar field components in addition to a skew quadrupolar component in the interaction regions. Higher-order components up to decapole order appear as well.
One-step lowrank wave extrapolation
Sindi, Ghada Atif
2014-01-01
Wavefield extrapolation is at the heart of modeling, imaging, and Full waveform inversion. Spectral methods gained well deserved attention due to their dispersion free solutions and their natural handling of anisotropic media. We propose a scheme a modified one-step lowrank wave extrapolation using Shanks transform in isotropic, and anisotropic media. Specifically, we utilize a velocity gradient term to add to the accuracy of the phase approximation function in the spectral implementation. With the higher accuracy, we can utilize larger time steps and make the extrapolation more efficient. Applications to models with strong inhomogeneity and considerable anisotropy demonstrates the utility of the approach.
Allodji, Rodrigue S; Schwartz, Boris; Diallo, Ibrahima; Agbovon, Césaire; Laurier, Dominique; de Vathaire, Florent
2015-08-01
Analyses of the Life Span Study (LSS) of Japanese atomic bombing survivors have routinely incorporated corrections for additive classical measurement errors using regression calibration. Recently, several studies reported that the efficiency of the simulation-extrapolation method (SIMEX) is slightly more accurate than the simple regression calibration method (RCAL). In the present paper, the SIMEX and RCAL methods have been used to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates. For instance, it is shown that using the SIMEX method, the ERR/Gy is increased by an amount of about 29 % for all solid cancer deaths using a linear model compared to the RCAL method, and the corrected EAR 10(-4) person-years at 1 Gy (the linear terms) is decreased by about 8 %, while the corrected quadratic term (EAR 10(-4) person-years/Gy(2)) is increased by about 65 % for leukaemia deaths based on a linear-quadratic model. The results with SIMEX method are slightly higher than published values. The observed differences were probably due to the fact that with the RCAL method the dosimetric data were partially corrected, while all doses were considered with the SIMEX method. Therefore, one should be careful when comparing the estimated risks and it may be useful to use several correction techniques in order to obtain a range of corrected estimates, rather than to rely on a single technique. This work will enable to improve the risk estimates derived from LSS data, and help to make more reliable the development of radiation protection standards. PMID:25894839
A single-phase model for liquid-feed DMFCs with non-Tafel kinetics
Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)
2007-09-27
An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)
Wavefield extrapolation in pseudodepth domain
Ma, Xuxin
2013-02-01
Wavefields are commonly computed in the Cartesian coordinate frame. Its efficiency is inherently limited due to spatial oversampling in deep layers, where the velocity is high and wavelengths are long. To alleviate this computational waste due to uneven wavelength sampling, we convert the vertical axis of the conventional domain from depth to vertical time or pseudodepth. This creates a nonorthognal Riemannian coordinate system. Isotropic and anisotropic wavefields can be extrapolated in the new coordinate frame with improved efficiency and good consistency with Cartesian domain extrapolation results. Prestack depth migrations are also evaluated based on the wavefield extrapolation in the pseudodepth domain.© 2013 Society of Exploration Geophysicists. All rights reserved.
Boutoux, G., E-mail: guillaume.boutoux@cea.fr [CNRS, IN2P3, CENBG, UMR 5797, F-33175 Gradignan (France); University Bordeaux, CENBG, UMR 5797, F-33175 Gradignan (France); CEA DAM DIF, F-91297 Arpajon (France); Jurado, B.; Mathieu, L. [CNRS, IN2P3, CENBG, UMR 5797, F-33175 Gradignan (France); University Bordeaux, CENBG, UMR 5797, F-33175 Gradignan (France); Méot, V. [CEA DAM DIF, F-91297 Arpajon (France); Aïche, M.; Barreau, G. [CNRS, IN2P3, CENBG, UMR 5797, F-33175 Gradignan (France); University Bordeaux, CENBG, UMR 5797, F-33175 Gradignan (France); Blanc, A. [CEA DAM DIF, F-91297 Arpajon (France); Companis, I. [CNRS, IN2P3, CENBG, UMR 5797, F-33175 Gradignan (France); University Bordeaux, CENBG, UMR 5797, F-33175 Gradignan (France); Roig, O.; Théroine, C. [CEA DAM DIF, F-91297 Arpajon (France)
2013-02-01
The surrogate-reaction method is an indirect technique to extract neutron-induced cross-sections of short-lived nuclei. In the last years several experiments have been performed to investigate whether this technique can be applied to infer radiative-capture cross-sections. A major difficulty in this type of measurements is the determination of the gamma-cascade detection efficiency. The pulse-height weighting technique (PHWT) has been previously used to determine this quantity in surrogate experiments. In this work, we present a new method to determine the gamma-cascade detection efficiency in the vicinity of the neutron-separation energy that is much simpler than the PHWT. We also investigate the possibility to apply this new technique in standard experiments using neutron beams.
The surrogate-reaction method is an indirect technique to extract neutron-induced cross-sections of short-lived nuclei. In the last years several experiments have been performed to investigate whether this technique can be applied to infer radiative-capture cross-sections. A major difficulty in this type of measurements is the determination of the gamma-cascade detection efficiency. The pulse-height weighting technique (PHWT) has been previously used to determine this quantity in surrogate experiments. In this work, we present a new method to determine the gamma-cascade detection efficiency in the vicinity of the neutron-separation energy that is much simpler than the PHWT. We also investigate the possibility to apply this new technique in standard experiments using neutron beams.
Efficient and stable extrapolation of prestack wavefields
Wu, Zedong
2013-09-22
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers and the image point, or in other words, prestack wavefields. Extrapolating such wavefields in time, nevertheless, is a big challenge because the radicand can be negative, thus reduce to a complex phase velocity, which will make the rank of the mixed domain matrix very high. Using the vertical offset between the sources and receivers, we introduce a method for deriving the DSR formulation, which gives us the opportunity to derive approximations for the mixed domain operator. The method extrapolates prestack wavefields by combining all data into one wave extrapolation procedure, allowing both upgoing and downgoing wavefields since the extrapolation is done in time, and doesn’t have the v(z) assumption in the offset axis of the media. Thus, the imaging condition is imposed by taking the zero-time and zero-offset slice from the multi-dimensional prestack wavefield. Unlike reverse time migration (RTM), no crosscorrelation is needed and we also have access to the subsurface offset information, which is important for migration velocity analysis. Numerical examples show the capability of this approach in dealing with complex velocity models and can provide a better quality image compared to RTM more efficiently.
Statistical modeling and extrapolation of carcinogenesis data
Mathematical models of carcinogenesis are reviewed, including pharmacokinetic models for metabolic activation of carcinogenic substances. Maximum likelihood procedures for fitting these models to epidemiological data are discussed, including situations where the time to tumor occurrence is unobservable. The plausibility of different possible shapes of the dose response curve at low doses is examined, and a robust method for linear extrapolation to low doses is proposed and applied to epidemiological data on radiation carcinogenesis
Extrapolating Satellite Winds to Turbine Operating Heights
Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.; Mouche, Alexis; Hasager, Charlotte Bay
2016-01-01
Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed...
Seismic wave extrapolation using lowrank symbol approximation
Fomel, Sergey
2012-04-30
We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.
Extrapolating phosphorus production to estimate resource reserves.
Vaccari, David A; Strigul, Nikolay
2011-08-01
Various indicators of resource scarcity and methods for extrapolating resource availability are examined for phosphorus. These include resource lifetime, and trends in resource price, ore grade and discovery rates, and Hubbert curve extrapolation. Several of these indicate increasing scarcity of phosphate resources. Calculated resource lifetime is subject to a number of caveats such as unanticipated future changes in resource discovery, mining and beneficiation technology, population growth or per-capita demand. Thus it should be used only as a rough planning index or as a relative indicator of potential scarcity. This paper examines the uncertainty in one method for estimating available resources from historical production data. The confidence intervals for the parameters and predictions of the Hubbert curves are computed as they relate to the amount of information available. These show that Hubbert-type extrapolations are not robust for predicting the ultimately recoverable reserves or year of peak production of phosphate rock. Previous successes of the Hubbert curve are for cases in which there exist alternative resources, which is not the situation for phosphate. It is suggested that data other than historical production, such as population growth, identified resources and economic factors, should be included in making such forecasts. PMID:21440285
Residual extrapolation operators for efficient wavefield construction
Alkhalifah, Tariq Ali
2013-02-27
Solving the wave equation using finite-difference approximations allows for fast extrapolation of the wavefield for modelling, imaging and inversion in complex media. It, however, suffers from dispersion and stability-related limitations that might hamper its efficient or proper application to high frequencies. Spectral-based time extrapolation methods tend to mitigate these problems, but at an additional cost to the extrapolation. I investigate the prospective of using a residual formulation of the spectral approach, along with utilizing Shanks transform-based expansions, that adheres to the residual requirements, to improve accuracy and reduce the cost. Utilizing the fact that spectral methods excel (time steps are allowed to be large) in homogeneous and smooth media, the residual implementation based on velocity perturbation optimizes the use of this feature. Most of the other implementations based on the spectral approach are focussed on reducing cost by reducing the number of inverse Fourier transforms required in every step of the spectral-based implementation. The approach here fixes that by improving the accuracy of each, potentially longer, time step.
Extrapolation limitations of multilayer feedforward neural networks
Haley, Pamela J.; Soloway, Donald
1992-01-01
The limitations of backpropagation used as a function extrapolator were investigated. Four common functions were used to investigate the network's extrapolation capability. The purpose of the experiment was to determine whether neural networks are capable of extrapolation and, if so, to determine the range for which networks can extrapolate. The authors show that neural networks cannot extrapolate and offer an explanation to support this result.
UFOs: Observations, Studies and Extrapolations
Baer, T; Barnes, M J; Bartmann, W; Bracco, C; Carlier, E; Cerutti, F; Dehning, B; Ducimetière, L; Ferrari, A; Ferro-Luzzi, M; Garrel, N; Gerardin, A; Goddard, B; Holzer, E B; Jackson, S; Jimenez, J M; Kain, V; Zimmermann, F; Lechner, A; Mertens, V; Misiowiec, M; Nebot Del Busto, E; Morón Ballester, R; Norderhaug Drosdal, L; Nordt, A; Papotti, G; Redaelli, S; Uythoven, J; Velghe, B; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zerlauth, M; Fuster Martinez, N
2012-01-01
UFOs (“ Unidentified Falling Objects”) could be one of the major performance limitations for nominal LHC operation. Therefore, in 2011, the diagnostics for UFO events were significantly improved, dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge is summarized and extrapolations for LHC operation in 2012 and beyond are presented. Mitigation strategies are proposed and related tests and measures for 2012 are specified.
Renyi extrapolation of Shannon entropy
Zyczkowski, K
2003-01-01
Relations between Shannon entropy and Renyi entropies of integer order are discussed. For any N-point discrete probability distribution for which the Renyi entropies of order two and three are known, we provide an lower and an upper bound for the Shannon entropy. The average of both bounds provide an explicit extrapolation for this quantity. These results imply relations between the von Neumann entropy of a mixed quantum state, its linear entropy and traces.
Extrapolating future Arctic ozone losses
Knudsen, B. M.; Harris, N. R. P.; S. B. Andersen; Christiansen, B.; N. Larsen; Rex, M.; B. Naujokat
2004-01-01
Future increases in the concentration of greenhouse gases and water vapour may cool the stratosphere further and increase the amount of polar stratospheric clouds (PSCs). Future Arctic PSC areas have been extrapolated from the highly significant trends 1958-2001. Using a tight correlation between PSC area and the total vortex ozone depletion and taking the decreasing amounts of ozone depleting substances into account we make empirical estimates of future ozone. The result...
Effective orthorhombic anisotropic models for wavefield extrapolation
Ibanez-Jacome, W.
2014-07-18
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.
3D Hail Size Distribution Interpolation/Extrapolation Algorithm
Lane, John
2013-01-01
Radar data can usually detect hail; however, it is difficult for present day radar to accurately discriminate between hail and rain. Local ground-based hail sensors are much better at detecting hail against a rain background, and when incorporated with radar data, provide a much better local picture of a severe rain or hail event. The previous disdrometer interpolation/ extrapolation algorithm described a method to interpolate horizontally between multiple ground sensors (a minimum of three) and extrapolate vertically. This work is a modification to that approach that generates a purely extrapolated 3D spatial distribution when using a single sensor.
Nichols, John W.; Schultz, Irv R.; Fitzsimmons, Patrick N..
2006-06-10
Mammalian researchers have developed a stepwise approach to predict in vivo hepatic clearance from measurements of in vitro hepatic metabolism. The resulting clearance estimates have been used to screen drug candidates, identify potential drug-drug interactions, investigate idiosyncratic drug responses, and support toxicology risk assessments. In this report we review these methods, discuss their potential application to studies with fish, and describe how extrapolated values could be incorporated into well-known compartmental kinetic models. Empirical equations that relate extrapolation factors to chemical log Kow are given to facilitate the incorporation of metabolism data into bioconcentration and bioaccumulation models. Because they explicitly incorporate the concept of clearance, compartmental clearance volume models are particularly well suited for incorporating hepatic clearance estimates. The manner in which these clearance values are incorporated into a given model depends, however, on the measurement frame of reference. Procedures for the incorporation of in vitro metabolism data into physiologically based toxicokinetic (PBTK) models are also described. Unlike most compartmental models, PBTK models are developed to describe the effects of metabolism in the tissue where it occurs. In addition, PBTK models are well suited to modeling metabolism in more than one tissue.
Lowrank seismic-wave extrapolation on a staggered grid
Fang, Gang
2014-05-01
© 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.
Extrapolation from occupational studies: a substitute for environmental epidemiology.
Enterline, P E
1981-01-01
Extrapolation from occupational data to general environmental exposures gives some interesting results, and these results might be useful in our decision-making process. These results could never be observed by environmental epidemiology and this method probably represents the only way of quantifying the health effects of low-exposure levels. Three linear models for extrapolating to low levels are presented--one from Canadian data, one from American data and one from British data. One or more...
Manson, S. S.; Ensign, C. R.
1978-01-01
The framework in which minimum-commitment analyses of creep-rupture data can be implemented is outlined. The approach is termed the focal point convergence method (FPCM) because the basic parameter A, also known as stability factor, is geometrically the (imaginary) focal point of convergence of all isothermals when extended to the very long or very short times necessary for such convergence to occur. The method can be implemented either by manual-graphical analysis or by computer code. The method is illustrated in detail for the nickel-base alloy Astroloy, as well as for steels, other nickel-base alloys, and aluminum alloys. The minimum-commitment concept is extended to the analysis of creep-rupture data where each isothermal is generated by an oblique translation of the 'master curve' when plotted on log rupture time and log stress axes. The oblique translation method uses the same types of functions in the FPCM. Approaches for treating multiheats on the basis of the FPCM are discussed in detail.
Aschwanden, Markus J; Liu, Yang
2014-01-01
We developed a {\\sl coronal non-linear force-free field (COR-NLFFF)} forward-fitting code that fits an approximate {\\sl non-linear force-free field (NLFFF)} solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-forcefreeness in the lower chromosphere. In this study we applied the COR-NLFFF code to active region NOAA 11158, during the time interval of 2011 Feb 12 to 17, which includes an X2.2 GOES-class flare plus 35 M and C-class flares. We calcuated the free magnetic energy with a 6-minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential $E_N$ and potential energy $E_P$, but find up to a factor of 4 discrepancy in the free ...
Chiral extrapolation beyond the power-counting regime
Hall, J M M; Leinweber, D B; Liu, K F; Mathur, N; Young, R D; Zhang, J B
2011-01-01
Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately i...
A new approach for stress rupture data extrapolation
The common feature of stress rupture lines in the usual log σ/log tsub(f) - plot is that their curvature is always d2log σ/d(logtsub(f)2<0. Hence, a linear extrapolation from these graphs leads to non-conservative estimates. In the present investigation it is shown that stress rupture functions F(σ,tsub(f)) can be derived which are more suitable for life time extrapolations as the usual one mentioned above. Best results were obtained with a function of the type tsub(f) approx.sinh βσ. Besides a better extrapolation, the functions examined allow a better understanding about the nature of the life time determining mechanisms. The new method is applied to stress rupture data of SS AISI 304. (author)
Extrapolations of nuclear binding energies from new linear mass relations
Hove, D.; Jensen, A. S.; Riisager, K.
2013-01-01
We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...
Infrared extrapolations of quadrupole moments and transitions
Odell, D; Platter, L
2015-01-01
We study the convergence of bound-state quadrupole moments in finite harmonic oscillator spaces. We derive an expression for the infrared extrapolation for the quadrupole moment of a nucleus and benchmark our results using different model interactions for the deuteron. We find good agreement between the analytically derived and numerically obtained convergence behavior. We also derive an extrapolation formula for electric quadrupole transitions and find good agreement with the numerical calculation of a simple system.
Design and building of an extrapolation ionization chamber for beta dosimetry
An extrapolation chamber was designed and built to be used in beta dosimetry. The basic characteristics of an extrapolation chamber are discussed, together with fundamental principle of the dosimetric method used. Details of the chamber's design and properties of materials employed are presented. A full evaluation of extrapolation chamber under irradiation from two 90Sr + 90Y beta sources is done. The geometric parameters of the chamber, leakage current and ion collection efficiency are determined. (Author)
Properties of infrared extrapolations in a harmonic oscillator basis
Coon, Sidney A.; Kruse, Michael K. G.
2016-02-01
The success and utility of effective field theory (EFT) in explaining the structure and reactions of few-nucleon systems has prompted the initiation of EFT-inspired extrapolations to larger model spaces in ab initio methods such as the no-core shell model (NCSM). In this contribution, we review and continue our studies of infrared (ir) and ultraviolet (uv) regulators of NCSM calculations in which the input is phenomenological NN and NNN interactions fitted to data. We extend our previous findings that an extrapolation in the ir cutoff with the uv cutoff above the intrinsic uv scale of the interaction is quite successful, not only for the eigenstates of the Hamiltonian but also for expectation values of operators, such as r2, considered long range. The latter results are obtained with Hamiltonians transformed by the similarity renormalization group (SRG) evolution. On the other hand, a possible extrapolation of ground state energies in the uv cutoff when the ir cutoff is below the intrinsic ir scale is not robust and does not agree with the ir extrapolation of the same data or with independent calculations using other methods.
Toft, Henrik Stensgaard; Naess, Arvid; Saha, Nilanjan;
2011-01-01
within a hierarchical model where the variables that influence the loading are divided into ergodic variables and time-invariant non-ergodic variables. The presented method for statistical response load extrapolation was compared with the existing methods based on peak extrapolation for the blade out......The paper explores a recently developed method for statistical response load (load effect) extrapolation for application to extreme response of wind turbines during operation. The extrapolation method is based on average conditional exceedance rates and is in the present implementation restricted......-of-plane bending moment and the tower mudline bending moment of a pitch-controlled wind turbine. In general, the results show that the method based on average conditional exceedance rates predicts the extrapolated characteristic response loads at the individual mean wind speeds well and results in more consistent...
Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy
Alkhalifah, Tariq Ali
2014-04-30
Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.
Wavefield extrapolation in pseudo-depth domain
Ma, Xuxin
2012-01-01
Extrapolating seismic waves in Cartesian coordinate is prone to uneven spatial sampling, because the seismic wavelength tends to grow with depth, as velocity increase. We transform the vertical depth axis to a pseudo one using a velocity weighted mapping, which can effectively mitigate this wavelength variation. We derive acoustic wave equations in this new domain based on the direct transformation of the Laplacian derivatives, which admits solutions that are more accurate and stable than those derived from the kinematic transformation. The anisotropic versions of these equations allow us to isolate the vertical velocity influence and reduce its impact on modeling and imaging. The major benefit of extrapolating wavefields in pseudo-depth space is its near uniform wavelength as opposed to the normally dramatic change of wavelength with the conventional approach. Time wavefield extrapolation on a complex velocity shows some of the features of this approach.
Methodology for extrapolation of rock mass deformability parameters in tunneling
Zafirovski Zlatko
2012-01-01
Full Text Available This article proposes one approach for extrapolation of necessary parameters for numerical analyses in tunnelling. The approach is named as an empirical - statical - dynamical method for extrapolation. The proposed methodology is based on combination of empirical classification rock mass methods, geophysical measurements and direct dilatometer deformability testing on a field. The analyses are prepared for purposes of investigation and design for several tunnels in Republic of Macedonia. One example for dividing of tunnel length in quasi-homogenous zones, as a basis for forming of geotechnical and numerical model that can be a basis for interaction analyses of rock - structures system and stress-strain behaviour of rock massif, is also given. The several original regressive models between rock mass quality, deformability and velocity of longitudinal seismic waves are shown.
Interpolation and Extrapolation of Precipitation Quantities in Serbia
Rastislav Stojsavljević
2013-01-01
Full Text Available The aim of this paper is to indicate the problems with filling the missing data in precipitation database using interpolation and extrapolation methods. Investigated periods were from 1981 to 2010 for Northern (Autonomous Province of Vojvodina and Proper Serbia and from 1971 to 2000 for Southern Serbia (Autonomous Province of Kosovo and Metohia. Database included time series from 78 meteorological stations that had less than 20% of missing data. Interpolation was performed if station had missing data for five consecutive months or less. If station had missing data for six consecutive months or more, extrapolation was performed. For every station with mising data correlation with at least three surrounding stations was performed. The lowest acceptable value of correlation coefficient for precipitation was set at 0,300
Survival extrapolation using the poly-Weibull model.
Demiris, Nikolaos; Lunn, David; Sharples, Linda D
2015-04-01
Recent studies of (cost-) effectiveness in cardiothoracic transplantation have required estimation of mean survival over the lifetime of the recipients. In order to calculate mean survival, the complete survivor curve is required but is often not fully observed, so that survival extrapolation is necessary. After transplantation, the hazard function is bathtub-shaped, reflecting latent competing risks which operate additively in overlapping time periods. The poly-Weibull distribution is a flexible parametric model that may be used to extrapolate survival and has a natural competing risks interpretation. In addition, treatment effects and subgroups can be modelled separately for each component of risk. We describe the model and develop inference procedures using freely available software. The methods are applied to two problems from cardiothoracic transplantation. PMID:21937472
Extrapolation from occupational studies: a substitute for environmental epidemiology.
Enterline, P E
1981-01-01
Extrapolation from occupational data to general environmental exposures gives some interesting results, and these results might be useful in our decision-making process. These results could never be observed by environmental epidemiology and this method probably represents the only way of quantifying the health effects of low-exposure levels. Three linear models for extrapolating to low levels are presented--one from Canadian data, one from American data and one from British data. One or more of these is applied to two recently publicized asbestos exposures; exposures resulting from asbestos heat shields in hair dryers and exposures in public school buildings. Predictions are derived as to the effects of asbestos exposures on cancer mortality. A comparison is made between predictions made on the basis of a linear and nonlinear model. PMID:7333259
Extrapolated HPGe efficiency estimates based on a single calibration measurement
Gamma spectroscopists often must analyze samples with geometries for which their detectors are not calibrated. The effort to experimentally recalibrate a detector for a new geometry can be quite time consuming, causing delay in reporting useful results. Such concerns have motivated development of a method for extrapolating HPGe efficiency estimates from an existing single measured efficiency. Overall, the method provides useful preliminary results for analyses that do not require exceptional accuracy, while reliably bracketing the credible range. The estimated efficiency element-of for a uniform sample in a geometry with volume V is extrapolated from the measured element-of 0 of the base sample of volume V0. Assuming all samples are centered atop the detector for maximum efficiency, element-of decreases monotonically as V increases about V0, and vice versa. Extrapolation of high and low efficiency estimates element-of h and element-of L provides an average estimate of element-of = 1/2 [element-of h + element-of L] ± 1/2 [element-of h - element-of L] (general) where an uncertainty D element-of = 1/2 (element-of h - element-of L] brackets limits for a maximum possible error. The element-of h and element-of L both diverge from element-of 0 as V deviates from V0, causing D element-of to increase accordingly. The above concepts guided development of both conservative and refined estimates for element-of
From the year of 1987 the Department of Metrology of the ININ, in their Secondary Laboratory of Calibration Dosimetric, has a patron group of sources of radiation beta and an extrapolation chamber of electrodes of variable separation.Their objective is to carry out of the unit of the dose speed absorbed in air for radiation beta. It uses the ionometric method, cavity Bragg-Gray in the extrapolation chamber with which it counts. The services that offers are: i) it Calibration : Radioactive Fuentes of radiation beta, isotopes: 90Sr/90Y; Ophthalmic applicators 90Sr/90Y; Instruments for detection of beta radiation with to the radiological protection: Ionization chambers, Geiger-Muller, etc.; Personal Dosemeters. ii) Irradiation with beta radiation of materials to the investigation. (Author)
Visek, W. J.
1988-01-01
The Life Sciences Research Office (LSRO) of the Federation of American Societies for Experimental Biology (FASEB) is conducting this symposium under contract with the Center for Food Safety and Applied Nutrition (CFSAN) of the Food and Drug Administration (FDA). The FDA has requested information on the strengths and weaknesses of current interspecies extrapolation methods using metabolic and pharmacokinetic data, identity of data for these methods, bases for choice of extrapolation method and...
Knowledge-based antenna pattern extrapolation
Robinson, Michael
2012-01-01
We describe a theoretically-motivated algorithm for extrapolation of antenna radiation patterns from a small number of measurements. This algorithm exploits constraints on the antenna's underlying design to avoid ambiguities, but is sufficiently general to address many different antenna types. A theoretical basis for the robustness of this algorithm is developed, and its performance is verified in simulation using a number of popular antenna designs.
Extrapolation of toxic indices among test objects
Tichý, Miloň; Rucki, Marián; Roth, Zdeněk; Hanzlíková, Iveta; Vlková, Alena; Tumová, Jana; Uzlová, Rút
2010-01-01
Oligochaeta Tubifex tubifex, fish fathead minnow (Pimephales promelas), hepatocytes isolated from rat liver and ciliated protozoan are absolutely different organisms and yet their acute toxicity indices correlate. Correlation equations for special effects were developed for a large heterogeneous series of compounds (QSAR, quantitative structure-activity relationships). Knowing those correlation equations and their statistic evaluation, one can extrapolate the toxic indices. The reason is that...
Surface dose extrapolation measurements with radiographic film
Butson, Martin J [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Cheung Tsang [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Yu, Peter K N [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Currie, Michael [Illawarra Cancer Care Centre, Department of Medical Physics, Crown St, Wollongong, NSW 2500 (Australia)
2004-07-07
Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within {+-}3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% {+-} 2%, 29% {+-} 3% and 38% {+-} 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. (note)
Whole blood viscosity extrapolation formula: Note on appropriateness of units
Ezekiel Uba Nwose
2011-01-01
Full Text Available Background : A series has recently been done on whole blood viscosity. The first on the series proposed extrapolation chart with conventional reference range. Since the publication, two concerns have been received in personal communications. The first expressed concern over the use of serum proteins values in ′g/L′ instead of ′g/dL′ that was contained in the referenced material. The second enquired on suitability of the formula for determination of blood viscosity at low shear rate. Aim : This work sets out to compare different units-converted-modifications of the extrapolation with a view to develop a statement of comparison and suitability of units. Materials and Methods : The values of haematocrit and serum proteins were used in different unit-conversions on the mathematical formula to derive four modifications, which were compared. Five clinical cases that were specifically tested for whole blood viscosity, and had results for haematocrit and serum proteins were evaluated. The appropriateness of modifications for determination of viscosity at low shear rate was reviewed. Results : Except as modified and used in the series, determination of whole blood viscosity at low shear rate using other unit conversions on the formula yields negative values for all five cases. Conclusion : Given that it is unexpected for blood viscosity level to be zero let alone less, it is logical that negative values are invalid. A formula that gives the least invalid results may be most appropriate. Therefore, extrapolation modification used in the series is most appropriate.
Effective Orthorhombic Anisotropic Models for Wave field Extrapolation
Ibanez Jacome, Wilson
2013-05-01
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the
Dioxin equivalency: Challenge to dose extrapolation
Brown, J.F. Jr.; Silkworth, J.B. [GE Corporate Research and Development, Schenectady, NY (United States)
1995-12-31
Extensive research has shown that all biological effects of dioxin-like agents are mediated via a single biochemical target, the Ah receptor (AhR), and that the relative biologic potencies of such agents in any given system, coupled with their exposure levels, may be described in terms of toxic equivalents (TEQ). It has also shown that the TEQ sources include not only chlorinated species such as the dioxins (PCDDs), PCDFs, and coplanar PCBs, but also non-chlorinated substances such as the PAHs of wood smoke, the AhR agonists of cooked meat, and the indolocarbazol (ICZ) derived from cruciferous vegetables. Humans have probably had elevated exposures to these non-chlorinated TEQ sources ever since the discoveries of fire, cooking, and the culinary use of Brassica spp. Recent assays of CYP1A2 induction show that these ``natural`` or ``traditional`` AhR agonists are contributing 50--100 times as much to average human TEQ exposures as do the chlorinated xenobiotics. Currently, the safe doses of the xenobiotic TEQ sources are estimated from their NOAELs and large extrapolation factors, derived from arbitrary mathematical models, whereas the NOAELs themselves are regarded as the safe doses for the TEQs of traditional dietary components. Available scientific data can neither support nor refute either approach to assessing the health risk of an individual chemical substance. However, if two substances be toxicologically equivalent, then their TEQ-adjusted health risks must also be equivalent, and the same dose extrapolation procedure should be used for both.
Experiences and extrapolations from Hiroshima and Nagasaki
This paper examines the events following the atomic bombings of Hiroshima and Nagasaki in 1945 and extrapolates from these experiences to further understand the possible consequences of detonations on a local area from weapons in the current world nuclear arsenal. The first section deals with a report of the events that occurred in Hiroshima and Nagasaki just after the 1945 bombings with respect to the physical conditions of the affected areas, the immediate effects on humans, the psychological response of the victims, and the nature of outside assistance. Because there can be no experimental data to validate the effects on cities and their populations of detonations from current weapons, the data from the actual explosions on Hiroshima and Nagasaki provide a point of departure. The second section examines possible extrapolations from and comparisons with the Hiroshima and Nagasaki experiences. The limitations of drawing upon the Hiroshima and Nagasaki experiences are discussed. A comparison is made of the scale of effects from other major disasters for urban systems, such as damages from the conventional bombings of cities during World War II, the consequences of major earthquakes, the historical effects of the Black Plague and widespread famines, and other extreme natural events. The potential effects of detonating a modern 1 MT warhead on the city of Hiroshima as it exists today are simulated. This is extended to the local effects on a targeted city from a global nuclear war, and attention is directed to problems of estimating the societal effects from such a war
Cosmological extrapolation of modified Newtonian dynamics
The regime of modified Newtonian dynamics (MOND), which is used in astronomy to describe gravitating systems of the island type without the need to postulate the existence of a hypothetical dark matter, is generalized to the case of homogeneous distribution of usual matter by introducing a linear dependence of the critical acceleration on the size of the region under consideration. We show that such an extrapolation of MOND in cosmology is consistent with both the observed dependence of brightness on the redshift for type Ia supernovae and the parameters of large-scale structure of the evolving Universe, that are determined by the presence of a cosmological constant, the ordinary matter of baryons and electrons, and photon and neutrino radiation, without any dark matter. (paper)
Extrapolation of toxic indices among test objects.
Tichý, Miloň; Rucki, Marián; Roth, Zdeněk; Hanzlíková, Iveta; Vlková, Alena; Tumová, Jana; Uzlová, Rút
2010-12-01
Oligochaeta Tubifex tubifex, fish fathead minnow (Pimephales promelas), hepatocytes isolated from rat liver and ciliated protozoan are absolutely different organisms and yet their acute toxicity indices correlate. Correlation equations for special effects were developed for a large heterogeneous series of compounds (QSAR, quantitative structure-activity relationships). Knowing those correlation equations and their statistic evaluation, one can extrapolate the toxic indices. The reason is that a common physicochemical property governs the biological effect, namely the partition coefficient between two unmissible phases, simulated generally by n-octanol and water. This may mean that the transport of chemicals towards a target is responsible for the magnitude of the effect, rather than reactivity, as one would assume suppose. PMID:21331180
Irradiated food: validity of extrapolating wholesomeness data
Criteria are considered for validly extrapolating the conclusions reached on the wholesomeness of an irradiated food receiving high doses to the same food receiving a lower dose. A consideration first is made of the possible chemical mechanisms that could give rise to different functional dependences of radiolytic products on dose. It is shown that such products should increase linearly with dose and the ratio of products should be constant throughout the dose range considered. The assumption, generally accepted in pharmacology, then is made that if any adverse effects related to the food are discerned in the test animals, then the intensity of these effects would increase with the concentration of radiolytic products in the food. Lastly, the need to compare data from animal studies with foods irradiated to several doses against chemical evidence obtained over a comparable dose range is considered. It is concluded that if the products depend linearly on dose and if feeding studies indicate no adverse effects, then an extrapolation to lower doses is clearly valid. This approach is illustrated for irradiated codfish. The formation of selected volatile products in samples receiving between 0.1 and 3 Mrads was examined, and their concentrations were found to increase linearly at least up to 1 Mrad. These data were compared with results from animal feeding studies establishing the wholesomeness of codfish and haddock irradiated to 0.2, 0.6 and 2.8 Mrads. It is stated, therefore, that if ocean fish, currently under consideration for onboard processing, were irradiated to 0.1 Mrad, it would be correspondingly wholesome
90Sr+90Y clinical applicators are used for brachytherapy in Brazilian clinics even though they are not manufactured anymore. Such sources must be calibrated periodically, and one of the calibration methods in use is ionometry with extrapolation ionization chambers. 90Sr+90Y clinical applicators were calibrated using an extrapolation minichamber developed at the Calibration Laboratory at IPEN. The obtained results agree satisfactorily with the data provided in calibration certificates of the sources. - Highlights: • 90Sr+90Y clinical applicators were calibrated using a mini-extrapolation chamber. • An extrapolation curve was obtained for each applicator during its calibration. • The results were compared with those provided by the calibration certificates. • All results of the dermatological applicators presented lower differences than 5%
The extrapolation of creep rupture data by PD6605 - An independent case study
Bolton, J., E-mail: john.bolton@uwclub.net [65 Fisher Avenue, Rugby, Warks CV22 5HW (United Kingdom)
2011-04-15
The worked example presented in BSI document PD6605-1:1998, to illustrate the selection, validation and extrapolation of a creep rupture model using statistical analysis, was independently examined. Alternative rupture models were formulated and analysed by the same statistical methods, and were shown to represent the test data more accurately than the original model. Median rupture lives extrapolated from the original and alternative models were found to diverge widely under some conditions of practical interest. The tests prescribed in PD6605 and employed to validate the original model were applied to the better of the alternative models. But the tests were unable to discriminate between the two, demonstrating that these tests fail to ensure reliability in extrapolation. The difficulties of determining when a model is sufficiently reliable for use in extrapolation are discussed and some proposals are made.
Extrapolation from experimental systems to man. A review of the problems and the possibilities
Various species of experimental animals, but in particular the mouse, have proved to be good model systems for predicting qualitatively the human response to irradiation. While extrapolations of genetic risks from mice to humans have a long history and a record of considerable success, there have been few attempts to extrapolate quantitatively the findings for somatic effects. An ability to extrapolate risks from exposures to various carcinogenic agents from experimental animal systems and from in vitro systems is an urgent need, and radiation studies provide the model for the development of suitable methods of extrapolation. Accurate measurement of dose, a remarkable store of knowledge about radiobiological responses at the molecular, cellular, and whole-organism level, and the body of data on radiation effects in both man and experimental animals make radiation studies the sensible choice of a model for the development of methods of extrapolation. The principles derived from such studies will make the much more difficult task of extrapolating risks from exposures to chemical carcinogens an easier one
Estimation of macro velocity models by wave field extrapolation
Cox, Hendricus Lambertus Hubertus
A method to estimate accurate macro velocity models for prediction of traveltimes of seismic waves in the earth's subsurface is developed. The sensitivity of prestack migration is used to estimate the model and since model errors are expressed in the quality of the migration result, the migration process itself can be used to determine these errors. Using an initial model, shot records are downward extrapolated to grid points (depth points) in the subsurface. The extrapolated data can be reordered into so called common depth point (CDP) gathers, image gathers and focus panels. The deviation from horizontal alignment is used to quantify the errors in the model and to apply update corrections accordingly. The analysis can be done before or after stacking over all shot records (CDP stacking). the previously mentioned focus panels are generated by CDP stacking. The alignment analysis reduces then to a simple focusing analysis. The examples discussed show that horizontal alignment gives accurate macro velocity models for prestack depth migration. Focus panels can be difficult to interpret in complicated situations, where it is impossible to converge to the correct solution with focus panels only. The process should be guided by macrogeologic models of the area. In complicated situations, a layer stripping strategy is preferred.
The Extrapolation of High Altitude Solar Cell I(V) Characteristics to AM0
Snyder, David B.; Scheiman, David A.; Jenkins, Phillip P.; Reinke, William; Blankenship, Kurt; Demers, James
2007-01-01
The high altitude aircraft method has been used at NASA GRC since the early 1960's to calibrate solar cell short circuit current, ISC, to Air Mass Zero (AMO). This method extrapolates ISC to AM0 via the Langley plot method, a logarithmic extrapolation to 0 air mass, and includes corrections for the varying Earth-Sun distance to 1.0 AU and compensating for the non-uniform ozone distribution in the atmosphere. However, other characteristics of the solar cell I(V) curve do not extrapolate in the same way. Another approach is needed to extrapolate VOC and the maximum power point (PMAX) to AM0 illumination. As part of the high altitude aircraft method, VOC and PMAX can be obtained as ISC changes during the flight. These values can then the extrapolated, sometimes interpolated, to the ISC(AM0) value. This approach should be valid as long as the shape of the solar spectra in the stratosphere does not change too much from AMO. As a feasibility check, the results are compared to AMO I(V) curves obtained using the NASA GRC X25 based multi-source simulator. This paper investigates the approach on both multi-junction solar cells and sub-cells.
APPLICATION OF SECOND KIND MODEL OF AUTOREGRESSION FOR EXTRAPOLATION ECONOMIC TIME SEQUENCE
Odnolko, A.V.; National Aviation University, Kyiv
2012-01-01
For extrapolation of economic time sequence we can use the method of autoregression. Originally given method of autoregression is used for prediction of the time series values. We must know: the first few points of sequence and time interval.
40 CFR 86.435-78 - Extrapolated emission values.
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Extrapolated emission values. 86.435-78 Section 86.435-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Regulations for 1978 and Later New Motorcycles, General Provisions § 86.435-78 Extrapolated emission...
Dose rates from a C-14 source using extrapolation chamber and MC calculations
The extrapolation chamber technique and the Monte Carlo (MC) calculation technique based on the EGS4 system have been studied for application for determination of dose rates in a low-energy β radiation field e.g., that from a 14C source. The extrapolation chamber measurement method is the basic method for determination of dose rates in β radiation fields. Applying a number of correction factors and the stopping power ratio, tissue to air, the measured dose rate in an air volume surrounded by tissue equivalent material is converted into dose to tissue. Various details of the extrapolation chamber measurement method and evaluation procedure have been studied and further developed, and a complete procedure for the experimental determination of dose rates from a14C source is presented. A number of correction factors and other parameters used in the evaluation procedure for the measured data have been obtained by MC calculations. The whole extrapolation chamber measurement procedure was simulated using the MC method. The measured dose rates showed an increasing deviation from the MC calculated dose rates as the absorber thickness increased. This indicates that the EGS4 code may have some limitations for transport of very low-energy electrons. i.e., electrons with estimated energies less than 10 - 20 keV. MC calculations of dose to tissue were performed using two models: a cylindrical tissue phantom and a computer model of the extrapolation chamber. The dose to tissue in the extrapolation chamber model showed an additional buildup dose compared to the dose in the tissue model. (au) 10 tabs., 11 ills., 18 refs
Taylor, Nicholas W.; Boyle, Michael; Reisswig, Christian; Scheel, Mark A.; Chu, Tony; Kidder, Lawrence E.; Szilágyi, Béla
2013-12-01
We extract gravitational waveforms from numerical simulations of black hole binaries computed using the Spectral Einstein Code. We compare two extraction methods: direct construction of the Newman-Penrose (NP) scalar Ψ4 at a finite distance from the source and Cauchy-characteristic extraction (CCE). The direct NP approach is simpler than CCE, but NP waveforms can be contaminated by near-zone effects—unless the waves are extracted at several distances from the source and extrapolated to infinity. Even then, the resulting waveforms can in principle be contaminated by gauge effects. In contrast, CCE directly provides, by construction, gauge-invariant waveforms at future null infinity. We verify the gauge invariance of CCE by running the same physical simulation using two different gauge conditions. We find that these two gauge conditions produce the same CCE waveforms but show differences in extrapolated-Ψ4 waveforms. We examine data from several different binary configurations and measure the dominant sources of error in the extrapolated-Ψ4 and CCE waveforms. In some cases, we find that NP waveforms extrapolated to infinity agree with the corresponding CCE waveforms to within the estimated error bars. However, we find that in other cases extrapolated and CCE waveforms disagree, most notably for m=0 “memory” modes.
Increased identification of veterinary pharmaceutical contaminants in aquatic environments has raised concerns regarding potential adverse effects of these chemicals on non-target organisms. The purpose of this work was to develop a method for predictive species extrapolation ut...
Non-linearity correction of control rods worth for critical extrapolation during start-up
Distant extrapolation is usually used during the startup of the research reactor, by lifting the control rods step by step to reach the critical state. Due to the non-linearity of the integral worth of the control rods, this process was risky or conservative, especially when the rods were positioned in the non-linear region. A formula could be derived from the point reactor model. in which the reciprocal of the count rate was proportional to Δkeff. Together with the integral worth curve of the control rods, the effect of the non-linearity could be corrected. This method was validated by critical extrapolation data. (authors)
Extrapolation of neutron-rich isotope cross-sections from projectile fragmentation
Mocko, M.; Tsang, M. B.; Z.Y. Sun; Andronenko, L.; Andronenko, M.; Delaunay, F.; Famiano, M.; Friedman, W. A.; Henzl, V.; Henzlova, D.; Hui, H.; Liu, X. D.; Lukyanov, S.; Lynch, W.G.; Rogers, A. M.
2007-01-01
Using the measured fragmentation cross sections produced from the 48Ca and 64Ni beams at 140 MeV per nucleon on 9Be and 181Ta targets, we find that the cross sections of unmeasured neutron rich nuclei can be extrapolated using a systematic trend involving the average binding energy. The extrapolated cross-sections will be very useful in planning experiments with neutron rich isotopes produced from projectile fragmentation. The proposed method is general and could be applied to other fragmenta...
Slow neutron flux extrapolation distances in R-5 and CIRUS reactors
In order to calculate the core reactivity, fuel channel power outputs and neutron flux levels in the R-5 reactor at Trombay, axial flux extrapolation distances are required. For this, an analysis is carried out considering the reactor core as a two region neutron multiplying system in axial direction. The slow neutron diffusion equations for both the regions are solved analytically by applying suitable boundary conditions. Application of this method for the estimation of top extrapolation distances in CIRUS, has given results which agree well with accepted values for the reactor. (author)
180000 pictures taken in the 2 m CERN hydrogen bubble chamber with an incident beam of 2.77 GeV/e were examined. High statistics obtained in the whole angular production range allowed to study the dσ/dt differential cross section behaviour, the mass and width of the ρ meson, and the multipole parameters of this resonance. Nevertheless, the aim of this experiment was the application of the CHEW - LOW extrapolation method. Different types of extrapolation procedures were compared. Phase shift analysis of the elastic ππ scattering between 500 and 1100 MeV, performed with conformal mappings, allowed to determine the values of the S0, S2, P1, D0, D2 waves. Forward dispersion relations were used to obtain scattering length values of the S2 and P1 phase shifts. (author)
In this study, six extrapolation methods have been compared for their ability to estimate daily crop evapotranspiration (ETd) from instantaneous latent heat flux estimates derived from digital airborne multispectral remote sensing imagery. Data used in this study were collected during an experiment...
Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed
Latychevskaia, Tatiana
2015-01-01
In coherent diffractive imaging (CDI) the resolution with which the reconstructed object can be obtained is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by post-extrapolation of coherent diffraction images, such as diffraction patterns or holograms. We proof that a diffraction pattern can unambiguously be extrapolated from just a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal, is linearly proportional to the oversampling ratio. While there could be in principle other methods to achieve extrapolation, we devote our discussion to employing phase retrieval methods and demonstrate their limits. We present two numerical studies; namely the extrapolation of diffraction patterns of non-binary and that of phase objects together with a discussion of the optimal extrapolation procedure.
Biosimilar monoclonal antibodies : The scientific basis for extrapolation
Schellekens, Huub; Lietzan, Erika; Faccin, Freddy; Venema, Jaap
2015-01-01
Introduction: Biosimilars are biologic products that receive authorization based on an abbreviated regulatory application containing comparative quality and nonclinical and clinical data that demonstrate similarity to a licensed biologic product. Extrapolation of safety and efficacy has emerged as a
Wind Velocity Vertical Extrapolation by Extended Power Law
Zekai Şen; Abdüsselam Altunkaynak; Tarkan Erdik
2012-01-01
Wind energy gains more attention day by day as one of the clean renewable energy resources. We predicted wind speed vertical extrapolation by using extended power law. In this study, an extended vertical wind velocity extrapolation formulation is derived on the basis of perturbation theory by considering power law and Weibull wind speed probability distribution function. In the proposed methodology not only the mean values of the wind speeds at different elevations but also their standard dev...
Role of animal studies in low-dose extrapolation
Current data indicate that in the case of low-LET radiation linear, extrapolation from data obtained at high doses appears to overestimate the risk at low doses to a varying degree. In the case of high-LET radiation, extrapolation from data obtained at doses as low as 40 rad (0.4 Gy) is inappropriate and likely to result in an underestimate of the risk
Extrapolation of mean-field models to superheavy nuclei
The extrapolation of self-consistent nuclear mean-field models to the region of superheavy elements is discussed with emphasis on the extrapolating power of the models. The predictions of modern mean-field models are confronted with recent experimental data. It is shown that a final conclusion about the location of the expected island of spherical doubly-magic superheavy nuclei cannot be drawn on the basis of the available data. (orig.)
Application of Curve Fitting Extrapolation in Measuring Transient Surface Temperature
Xiaojian Hao; Lina Hao; Hanchang Zhou; Sanping Jiang; Yanfeng Li
2013-01-01
The engine inner wall surface temperature was measured by the plug blind-hole extrapolation, and multiple thermocouples were installed at different depths in the substrate. The engine wall extrapolation model of transient high temperature was established according to the basic principles of heat transfer. The transient temperatures were measured by thermocouples buried at different depths of the engine wall and fitting curve was got. The transient temperature field which was generated by the ...
X-CAPM: An Extrapolative Capital Asset Pricing Model
Barberis, Nicholas; Greenwood, Robin Marc; Jin, Lawrence; Shleifer, Andrei
2013-01-01
Survey evidence suggests that many investors form beliefs about future stock market returns by extrapolating past returns: they expect the stock market to perform well (poorly) in the near future if it performed well (poorly) in the recent past. Such beliefs are hard to reconcile with existing models of the aggregate stock market. We study a consumption-based asset pricing model in which some investors form beliefs about future price changes in the stock market by extrapolating past price cha...
Extrapolating Satellite Winds to Turbine Operating Heights
Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.;
2016-01-01
Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... nearshore areas where most offshore wind farms are built....
Lee HyunYoung
2010-01-01
Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.
Source-receiver two-way wave extrapolation for prestack exploding-reflector modelling and migration
Alkhalifah, Tariq Ali
2014-10-08
Most modern seismic imaging methods separate input data into parts (shot gathers). We develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield forward or backward in time. This approach has the potential for generating accurate images free of artiefacts associated with conventional approaches. We derive novel high-order partial differential equations in the source-receiver time domain. The fourth-order nature of the extrapolation in time leads to four solutions, two of which correspond to the incoming and outgoing P-waves and reduce to the zero-offset exploding-reflector solutions when the source coincides with the receiver. A challenge for implementing two-way time extrapolation is an essential singularity for horizontally travelling waves. This singularity can be avoided by limiting the range of wavenumbers treated in a spectral-based extrapolation. Using spectral methods based on the low-rank approximation of the propagation symbol, we extrapolate only the desired solutions in an accurate and efficient manner with reduced dispersion artiefacts. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach.
Line-of-Sight Extrapolation Noise in Dust Polarization
Poh, Jason
2016-01-01
The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g., 350 GHz) is due solely to dust and then extrapolate the signal down to lower frequency (e.g., 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typical Galactic thermal dust temperatures of about 20K, these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight po...
Full waveform inversion with extrapolated low frequency data
Li, Yunyue Elita
2016-01-01
The availability of low frequency data is an important factor in the success of full waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data below 2 or 3 Hz from the field is a challenging and expensive task. In this paper we explore the possibility of synthesizing the low frequencies computationally from high-frequency data, and use the resulting prediction of the missing data to seed the frequency sweep of FWI. As a signal processing problem, bandwidth extension is a very nonlinear and delicate operation. It requires a high-level interpretation of bandlimited seismic records into individual events, each of which is extrapolable to a lower (or higher) frequency band from the non-dispersive nature of the wave propagation model. We propose to use the phase tracking method for the event separation task. The...
Statistical atlas based extrapolation of CT data
Chintalapani, Gouthami; Murphy, Ryan; Armiger, Robert S.; Lepisto, Jyri; Otake, Yoshito; Sugano, Nobuhiko; Taylor, Russell H.; Armand, Mehran
2010-02-01
We present a framework to estimate the missing anatomical details from a partial CT scan with the help of statistical shape models. The motivating application is periacetabular osteotomy (PAO), a technique for treating developmental hip dysplasia, an abnormal condition of the hip socket that, if untreated, may lead to osteoarthritis. The common goals of PAO are to reduce pain, joint subluxation and improve contact pressure distribution by increasing the coverage of the femoral head by the hip socket. While current diagnosis and planning is based on radiological measurements, because of significant structural variations in dysplastic hips, a computer-assisted geometrical and biomechanical planning based on CT data is desirable to help the surgeon achieve optimal joint realignments. Most of the patients undergoing PAO are young females, hence it is usually desirable to minimize the radiation dose by scanning only the joint portion of the hip anatomy. These partial scans, however, do not provide enough information for biomechanical analysis due to missing iliac region. A statistical shape model of full pelvis anatomy is constructed from a database of CT scans. The partial volume is first aligned with the statistical atlas using an iterative affine registration, followed by a deformable registration step and the missing information is inferred from the atlas. The atlas inferences are further enhanced by the use of X-ray images of the patient, which are very common in an osteotomy procedure. The proposed method is validated with a leave-one-out analysis method. Osteotomy cuts are simulated and the effect of atlas predicted models on the actual procedure is evaluated.
Determination of transmission factors in tissue using a standard extrapolation chamber
A commercial ionization chamber, Böhm extrapolation chamber, PTW, model 23392, recommended for measurements in low energy X-rays and beta radiation fields, was tested in three different 90Sr+90Y beams to verify its performance as a primary standard system for the calibration and dosimetry of beta radiation sources and detectors. Characterization tests were performed, as determination of the chamber null depth using two methods (the results presented a difference of only 0.9%), transmission factors in tissue, in comparison with those of the certificate (the maximum difference was 2.1%), and absorbed dose rates of the 90Sr+90Y sources, in comparison with the values provided by the calibration certificates (the maximum difference was 4.90%). The results obtained confirmed that this extrapolation chamber presents a very good behavior in beta radiation fields as a primary standard system. - Highlights: • Böhm extrapolation chamber was tested to be used as a primary standard system. • The chamber was exposed to the three 90Sr+90Y secondary standard sources. • Transmission factors were obtained. • Absorbed dose rates were determined using the sources at certificate conditions. • The results showed the good performance of the extrapolation chamber
Amir, Sahar Z.
2013-05-01
We introduce an efficient thermodynamically consistent technique to extrapolate and interpolate normalized Canonical NVT ensemble averages like pressure and energy for Lennard-Jones (L-J) fluids. Preliminary results show promising applicability in oil and gas modeling, where accurate determination of thermodynamic properties in reservoirs is challenging. The thermodynamic interpolation and thermodynamic extrapolation schemes predict ensemble averages at different thermodynamic conditions from expensively simulated data points. The methods reweight and reconstruct previously generated database values of Markov chains at neighboring temperature and density conditions. To investigate the efficiency of these methods, two databases corresponding to different combinations of normalized density and temperature are generated. One contains 175 Markov chains with 10,000,000 MC cycles each and the other contains 3000 Markov chains with 61,000,000 MC cycles each. For such massive database creation, two algorithms to parallelize the computations have been investigated. The accuracy of the thermodynamic extrapolation scheme is investigated with respect to classical interpolation and extrapolation. Finally, thermodynamic interpolation benefiting from four neighboring Markov chains points is implemented and compared with previous schemes. The thermodynamic interpolation scheme using knowledge from the four neighboring points proves to be more accurate than the thermodynamic extrapolation from the closest point only, while both thermodynamic extrapolation and thermodynamic interpolation are more accurate than the classical interpolation and extrapolation. The investigated extrapolation scheme has great potential in oil and gas reservoir modeling.That is, such a scheme has the potential to speed up the MCMC thermodynamic computation to be comparable with conventional Equation of State approaches in efficiency. In particular, this makes it applicable to large-scale optimization of L
Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au [School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009 (Australia)
2015-05-15
Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.
Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol–1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol–1
Analytic Approximations for the Extrapolation of Lattice Data
Masjuan, Pere
2010-01-01
We present analytic approximations of chiral SU(3) amplitudes for the extrapolation of lattice data to the physical masses and the determination of Next-to-Next-to-Leading-Order low-energy constants. Lattice data for the ratio F_K/F_pi is used to test the approximation proposed.
Taylor, Nicholas W; Reisswig, Christian; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Szilagyi, Bela
2013-01-01
We extract gravitational waveforms from numerical simulations of black hole binaries computed using the Spectral Einstein Code. We compare two extraction methods: direct construction of the Newman-Penrose (NP) scalar $\\Psi_4$ at a finite distance from the source and Cauchy-characteristic extraction (CCE). The direct NP approach is simpler than CCE, but NP waveforms can be contaminated by near-zone effects---unless the waves are extracted at several distances from the source and extrapolated to infinity. Even then, the resulting waveforms can in principle be contaminated by gauge effects. In contrast, CCE directly provides, by construction, gauge-invariant waveforms at future null infinity. We verify the gauge invariance of CCE by running the same physical simulation using two different gauge conditions. We find that these two gauge conditions produce the same CCE waveforms but show differences in extrapolated-$\\Psi_4$ waveforms. We examine data from several different binary configurations and measure the domi...
Previously reported crystalline structures obtained by an iterative phase retrieval reconstruction of their diffraction patterns seem to be free from displaying any irregularities or defects in the lattice, which appears to be unrealistic. We demonstrate here that the structure of a nanocrystal including its atomic defects can unambiguously be recovered from its diffraction pattern alone by applying a direct phase retrieval procedure not relying on prior information of the object shape. Individual point defects in the atomic lattice are clearly apparent. Conventional phase retrieval routines assume isotropic scattering. We show that when dealing with electrons, the quantitatively correct transmission function of the sample cannot be retrieved due to anisotropic, strong forward scattering specific to electrons. We summarize the conditions for this phase retrieval method and show that the diffraction pattern can be extrapolated beyond the original record to even reveal formerly not visible Bragg peaks. Such extrapolated wave field pattern leads to enhanced spatial resolution in the reconstruction
Source‐receiver two‐way wave extrapolation for prestack exploding‐reflector modeling and migration
Alkhalifah, Tariq Ali
2010-10-17
While most of the modern seismic imaging methods perform imaging by separating input data into parts (shot gathers), we develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield backward in time. While computationally extensive, this approach has the potential of generating accurate images, free of artifacts associated with conventional approaches. We derive novel high‐order partial differential equations in source‐receiver‐time domain. The fourth order nature of the extrapolation in time has four solutions two of which correspond to the ingoing and outgoing P‐waves and reduces to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. Using asymptotic approximations, we develop an approach to extrapolating the full prestack wavefield forward or backward in time.
Wind Velocity Vertical Extrapolation by Extended Power Law
Zekai Şen
2012-01-01
Full Text Available Wind energy gains more attention day by day as one of the clean renewable energy resources. We predicted wind speed vertical extrapolation by using extended power law. In this study, an extended vertical wind velocity extrapolation formulation is derived on the basis of perturbation theory by considering power law and Weibull wind speed probability distribution function. In the proposed methodology not only the mean values of the wind speeds at different elevations but also their standard deviations and the cross-correlation coefficient between different elevations are taken into consideration. The application of the presented methodology is performed for wind speed measurements at Karaburun/Istanbul, Turkey. At this location, hourly wind speed measurements are available for three different heights above the earth surface.
Low-energy particle physics and chiral extrapolations
Wittig, Hartmut
2012-01-01
In this review I discuss the role of chiral extrapolations for the determination of several phenomenologically relevant quantities, including light quark masses, meson decay constants and the axial charge of the nucleon. In particular, I investigate whether chiral extrapolations are sufficiently controlled in order to rightfully claim the accuracy which is quoted in recent compilations of these quantities. While this is the case for the masses of the light quarks and the ratio fK/fpi of decay constants, small inconsistencies in the chiral and continuum behaviour of individual decay constants fK and fpi, as well as the hadronic radii r0, r1 remain and must be clarified. In the case of the nucleon axial charge, gA, the chiral behaviour is still poorly understood due to the presence of other systematic effects.
Survival extrapolation using the poly-Weibull model.
Demiris, N.; Lunn, D; Sharples, LD
2015-01-01
Recent studies of (cost-) effectiveness in cardiothoracic transplantation have required estimation of mean survival over the lifetime of the recipients. In order to calculate mean survival, the complete survivor curve is required but is often not fully observed, so that survival extrapolation is necessary. After transplantation, the hazard function is bathtub-shaped, reflecting latent competing risks which operate additively in overlapping time periods. The poly-Weibull distribution is a flex...
Properties of a commercial extrapolation chamber in β radiation fields
A commercial extrapolation chamber was tested in different β radiation fields and its properties investigated. Its usefulness for β radiation calibration and dosimetry was verified. Experiments were performed in order to obtain the main characteristics such as the calibration factors (and consequently the energy dependence) for all chamber collecting electrodes (between 10 and 40 mm diameter), the transmission factors in tissue and the useful source-detector distance range
An efficient extrapolation to the (T)/CBS limit
Ranasinghe, Duminda S.; Barnes, Ericka C.
2014-05-01
We extrapolate to the perturbative triples (T)/complete basis set (CBS) limit using double ζ basis sets without polarization functions (Wesleyan-1-Triples-2ζ or "Wes1T-2Z") and triple ζ basis sets with a single level of polarization functions (Wesleyan-1-Triples-3ζ or "Wes1T-3Z"). These basis sets were optimized for 102 species representing the first two rows of the Periodic Table. The species include the entire set of neutral atoms, positive and negative atomic ions, as well as several homonuclear diatomic molecules, hydrides, rare gas dimers, polar molecules, such as oxides and fluorides, and a few transition states. The extrapolated Wes1T-(2,3)Z triples energies agree with (T)/CBS benchmarks to within ±0.65 mEh, while the rms deviations of comparable model chemistries W1, CBS-APNO, and CBS-QB3 for the same test set are ±0.23 mEh, ±2.37 mEh, and ±5.80 mEh, respectively. The Wes1T-(2,3)Z triples calculation time for the largest hydrocarbon in the G2/97 test set, C6H5Me+, is reduced by a factor of 25 when compared to W1. The cost-effectiveness of the Wes1T-(2,3)Z extrapolation validates the usefulness of the Wes1T-2Z and Wes1T-3Z basis sets which are now available for a more efficient extrapolation of the (T) component of any composite model chemistry.
Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator
ZHANG Yan-Bin; SUN Wei-Min; L(U) Xiao-Fu; ZONG Hong-Shi
2009-01-01
The quark propagator in the Landau gauge is studied on the lattice,including the quenched and the unquenched results.No obvious unquenched effects are found by comparing the quenched quark propagator with the dynamical one.For the quenched and unquenched configurations,the results with different quark masses have been computed.For the quark mass function,a nonlinear chiral extrapolating behavior is found in the in/tared region for both the quenched and dynamical results.
Whole blood viscosity extrapolation formula: Note on appropriateness of units
Ezekiel Uba Nwose; Ross Stuart Richards
2011-01-01
Background : A series has recently been done on whole blood viscosity. The first on the series proposed extrapolation chart with conventional reference range. Since the publication, two concerns have been received in personal communications. The first expressed concern over the use of serum proteins values in ′g/L′ instead of ′g/dL′ that was contained in the referenced material. The second enquired on suitability of the formula for determination of blood viscosity at low shear rate. Aim : Thi...
A variational principle for the Milne problem linear extrapolation length
Highlights: • Bilinear functional F is both null and stationary at true flux and adjoint. • Null F gives best discrete mode amplitudes without differentiation. • Optimum amplitude ratio gotten as a solution to a simple quadratic. • All subcritical canonical lengths numerically matched to within 0.5%. - Abstract: A simple bilinear functional F is introduced on behalf of the Milne subcritical problem with replication parameter 0⩽c⩽1. This functional depends upon two arguments, respectively intended to be the neutron flux and its adjoint, and is stationary about the true solution pair where, in addition, it vanishes. The stationarity and null value can then be united as a basis for the demand that F continue to vanish even when flux and adjoint are both approximated by just the two modes from the discrete eigenvalue spectrum, a representation akin to what is known as the asymptotic portion of the neutron flux, and one which is clearly incapable of matching interface boundary conditions. The stationarity of F, however, renders it tolerant of such boundary defect, as a result of which one can expect the persisting null demand, F=0, to yield the best possible value for the ratio of the two discrete mode amplitudes. We go on to implement this program, and find as its outcome that the optimum amplitude ratio is determined as one preferred solution of a simple quadratic equation. With that solution in hand, it is an easy step then to a computation of the linear extrapolation length λ. We follow through with a numerical embodiment of these ideas, obtaining the discrete, real and positive eigenvalue ν0 on the run via a Newton–Raphson tangent encroachment root hunt. With sufficient start-up care the Newton–Raphson root hunt proves here to be exceedingly rapid, and it, together with the quadratic underpinning, provides for λ a string of values that differ by less than 0.5% from those found in the classic compendium on neutron transport from the pens of Case
Efficient anisotropic wavefield extrapolation using effective isotropic models
Alkhalifah, Tariq Ali
2013-06-10
Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.
Extrapolation of zircon fission-track annealing models
One of the purposes of this study is to give further constraints on the temperature range of the zircon partial annealing zone over a geological time scale using data from borehole zircon samples, which have experienced stable temperatures for ∼1 Ma. In this way, the extrapolation problem is explicitly addressed by fitting the zircon annealing models with geological timescale data. Several empirical model formulations have been proposed to perform these calibrations and have been compared in this work. The basic form proposed for annealing models is the Arrhenius-type model. There are other annealing models, that are based on the same general formulation. These empirical model equations have been preferred due to the great number of phenomena from track formation to chemical etching that are not well understood. However, there are two other models, which try to establish a direct correlation between their parameters and the related phenomena. To compare the response of the different annealing models, thermal indexes, such as closure temperature, total annealing temperature and the partial annealing zone, have been calculated and compared with field evidence. After comparing the different models, it was concluded that the fanning curvilinear models yield the best agreement between predicted index temperatures and field evidence. - Highlights: ► Geological data were used along with lab data for improving model extrapolation. ► Index temperatures were simulated for testing model extrapolation. ► Curvilinear Arrhenius models produced better geological temperature predictions
Chaouche, L Yelles; Pillet, V Martínez; Moreno-Insertis, F
2012-01-01
The 3D structure of an active region (AR) filament is studied using nonlinear force-free field (NLFFF) extrapolations based on simultaneous observations at a photospheric and a chromospheric height. To that end, we used the Si I 10827 \\AA\\ line and the He I 10830 \\AA\\ triplet obtained with the Tenerife Infrared Polarimeter (TIP) at the VTT (Tenerife). The two extrapolations have been carried out independently from each other and their respective spatial domains overlap in a considerable height range. This opens up new possibilities for diagnostics in addition to the usual ones obtained through a single extrapolation from, typically, a photospheric layer. Among those possibilities, this method allows the determination of an average formation height of the He I 10830 \\AA\\ signal of \\approx 2 Mm above the surface of the sun. It allows, as well, to cross-check the obtained 3D magnetic structures in view of verifying a possible deviation from the force- free condition especially at the photosphere. The extrapolati...
Bressler B
2015-06-01
Full Text Available Brian Bressler,1 Theo Dingermann2 1St Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada; 2Institute of Pharmaceutical Biology, Frankfurt, Germany Abstract: Despite their enormous value for our health care system, biopharmaceuticals have become a serious threat to the system itself due to their high cost. Costs may be warranted if the medicine is new and innovative; however, it is no longer an innovation when its patent protection expires. As patents and exclusivities expire on biological drugs, biosimilar products defined as highly similar to reference biologics are being marketed. The goal of biosimilar development is to establish a high degree of biosimilarity, not to reestablish clinical efficacy and safety. Current sophisticated analytical methods allow the detection of even small changes in quality attributes and can therefore enable sensitive monitoring of the batch-to-batch consistency and variability of the manufacturing process. The European Medicines Agency (EMA, US Food and Drug Administration (FDA, and Health Canada have determined that a reduced number of nonclinical and clinical comparative studies can be sufficient for approval with clinical data from the most sensitive indication extrapolated to other indications. Extrapolation of data is a scientifically based principle, guided by specific criteria, and if approved by the EMA, FDA, and/or Health Canada is appropriate. Enablement of extrapolation of data is a core principle of biosimilar development, based on principles of comparability and necessary to fully realize cost savings for these drugs. Keywords: biosimilars, Inflectra, infliximab, pharmacoeconomics, Canada, Europe
Properties of a commercial extrapolation chamber in beta radiation fields
A commercial extrapolation chamber (PTW, Germany) was tested in different beta radiation fields and its properties investigated. Its usefulness for beta radiation calibration and dosimetry was demonstrated. The Beta Secondary Standard setup of the IPEN calibration laboratory was utilized. This system, developed by the Physikalisch-Tecknische Bundesanstalt, Brunswick (Germany) and manufactured by Buchler and Co., consists of a source stand, a control unit with timer and four interchangeable beta sources: 90Sr-90Y (1850 and 74 MBq), 204Tl (18,5 MBq) ionization current detection. The variable volume ionization chamber of cylindrical form is provided with different collecting electrodes of tissue equivalent material and Mylar entrance windows of different thickesses
Assessing ecological effects of radionuclides: data gaps and extrapolation issues
By inspection of the FASSET database on radiation effects on non-human biota, one of the major difficulties in the implementation of ecological risk assessments for radioactive pollutants is found to be the lack of data for chronic low-level exposure. A critical review is provided of a number of extrapolation issues that arise in undertaking an ecological risk assessment: acute versus chronic exposure regime; radiation quality including relative biological effectiveness and radiation weighting factors; biological effects from an individual to a population level, including radiosensitivity and lifestyle variations throughout the life cycle; single radionuclide versus multi-contaminants. The specificities of the environmental situations of interest (mainly chronic low-level exposure regimes) emphasise the importance of reproductive parameters governing the demography of the population within a given ecosystem and, as a consequence, the structure and functioning of that ecosystem. As an operational conclusion to keep in mind for any site-specific risk assessment, the present state-of-the-art on extrapolation issues allows us to grade the magnitude of the uncertainties as follows: one species to another > acute to chronic = external to internal = mixture of stressors> individual to population> ecosystem structure to function
Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media
Waheed, Umair bin
2014-05-01
Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.
Wouters, Sebastian; Limacher, Peter A; Van Neck, Dimitri; Ayers, Paul W
2012-04-01
We have implemented the sweep algorithm for the variational optimization of SU(2) U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit. PMID:22482543
Hyun Young Lee
2010-01-01
Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ℓ∞(L2 error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.
Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe
2016-02-01
The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.
Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe
2016-08-01
The suitability of geologic frameworks for extrapolating hydraulic conductivity ( K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.
Kaltenboeck, Rudolf; Kerschbaum, Markus; Hennermann, Karin; Mayer, Stefan
2013-04-01
Nowcasting of precipitation events, especially thunderstorm events or winter storms, has high impact on flight safety and efficiency for air traffic management. Future strategic planning by air traffic control will result in circumnavigation of potential hazardous areas, reduction of load around efficiency hot spots by offering alternatives, increase of handling capacity, anticipation of avoidance manoeuvres and increase of awareness before dangerous areas are entered by aircraft. To facilitate this rapid update forecasts of location, intensity, size, movement and development of local storms are necessary. Weather radar data deliver precipitation analysis of high temporal and spatial resolution close to real time by using clever scanning strategies. These data are the basis to generate rapid update forecasts in a time frame up to 2 hours and more for applications in aviation meteorological service provision, such as optimizing safety and economic impact in the context of sub-scale phenomena. On the basis of tracking radar echoes by correlation the movement vectors of successive weather radar images are calculated. For every new successive radar image a set of ensemble precipitation fields is collected by using different parameter sets like pattern match size, different time steps, filter methods and an implementation of history of tracking vectors and plausibility checks. This method considers the uncertainty in rain field displacement and different scales in time and space. By validating manually a set of case studies, the best verification method and skill score is defined and implemented into an online-verification scheme which calculates the optimized forecasts for different time steps and different areas by using different extrapolation ensemble members. To get information about the quality and reliability of the extrapolation process additional information of data quality (e.g. shielding in Alpine areas) is extrapolated and combined with an extrapolation
Determination of the true null electrode spacing of an extrapolation chamber for X-ray dosimetry
An accurate determination of the actual null distance is critical for the establishment of primary measurement method for absorbed dose in tissue, since the concept of the true null electrode spacing is used to define the sensitive volume of an extrapolation chamber. In this paper, a critical analysis of two methodologies for determining the true null electrode spacing of an extrapolation chamber was done. Firstly, the ionization current as a function of electrode spacing was measured in ISO 4037 low energy X-ray beams. In the second procedure, a LC Bridge was used to measure the capacitance between the electrodes of a 23392 Böhm model PTW ionization chamber and a reliable relationship between capacitance and relative distance was established. Results showed that the true null spacing values varied from 0.0015 to 0.38 mm. Since capacitance meters with high resolution are not always available in calibration laboratories, the second method showed values with large uncertainties. The first method proved to be highly sensitive to the quality of the X-ray beams used. (author)
Alvarez R, M. T.; Morales P, J. R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)
2001-01-15
From the year of 1987 the Department of Metrology of the ININ, in their Secondary Laboratory of Calibration Dosimetric, has a patron group of sources of radiation beta and an extrapolation chamber of electrodes of variable separation.Their objective is to carry out of the unit of the dose speed absorbed in air for radiation beta. It uses the ionometric method, cavity Bragg-Gray in the extrapolation chamber with which it counts. The services that offers are: i) it Calibration : Radioactive Fuentes of radiation beta, isotopes: {sup 90}Sr/{sup 90}Y; Ophthalmic applicators {sup 9}0{sup S}r/{sup 90}Y; Instruments for detection of beta radiation with to the radiological protection: Ionization chambers, Geiger-Muller, etc.; Personal Dosemeters. ii) Irradiation with beta radiation of materials to the investigation. (Author)
3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer
Lane, John
2012-01-01
Determining the Z-R relationship (where Z is the radar reflectivity factor and R is rainfall rate) from disdrometer data has been and is a common goal of cloud physicists and radar meteorology researchers. The usefulness of this quantity has traditionally been limited since radar represents a volume measurement, while a disdrometer corresponds to a point measurement. To solve that problem, a 3D-DSD (drop-size distribution) method of determining an equivalent 3D Z-R was developed at the University of Central Florida and tested at the Kennedy Space Center, FL. Unfortunately, that method required a minimum of three disdrometers clustered together within a microscale network (.1-km separation). Since most commercial disdrometers used by the radar meteorology/cloud physics community are high-cost instruments, three disdrometers located within a microscale area is generally not a practical strategy due to the limitations of these kinds of research budgets. A relatively simple modification to the 3D-DSD algorithm provides an estimate of the 3D-DSD and therefore, a 3D Z-R measurement using a single disdrometer. The basis of the horizontal extrapolation is mass conservation of a drop size increment, employing the mass conservation equation. For vertical extrapolation, convolution of a drop size increment using raindrop terminal velocity is used. Together, these two independent extrapolation techniques provide a complete 3DDSD estimate in a volume around and above a single disdrometer. The estimation error is lowest along a vertical plane intersecting the disdrometer position in the direction of wind advection. This work demonstrates that multiple sensors are not required for successful implementation of the 3D interpolation/extrapolation algorithm. This is a great benefit since it is seldom that multiple sensors in the required spatial arrangement are available for this type of analysis. The original software (developed at the University of Central Florida, 1998.- 2000) has
UFOs in the LHC: Observations, studies and extrapolations
Baer, T; Cerutti, F; Ferrari, A; Garrel, N; Goddard, B; Holzer, EB; Jackson, S; Lechner, A; Mertens, V; Misiowiec, M; Nebot del Busto, E; Nordt, A; Uythoven, J; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zimmermann, F; Fuster, N
2012-01-01
Unidentified falling objects (UFOs) are potentially a major luminosity limitation for nominal LHC operation. They are presumably micrometer sized dust particles which lead to fast beam losses when they interact with the beam. With large-scale increases and optimizations of the beam loss monitor (BLM) thresholds, their impact on LHC availability was mitigated from mid 2011 onwards. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. In 2011/12, the diagnostics for UFO events were significantly improved: dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge, extrapolations for nominal LHC operation and mitigation strategies are presented
California's Proposition 65: extrapolating animal toxicity to humans.
Kilgore, W W
1990-01-01
In 1986, the voters of California passed a law regarding the concept of extrapolating animal toxicity data to humans. The California Safe Drinking Water and Toxic Enforcement Act of 1986, known as Proposition 65, does five things: 1. It creates a list of chemicals (including a number of agricultural chemicals) known to cause cancer or reproductive toxicity; 2. It limits discharges of listed chemicals to drinking water sources; 3. It requires prior warning before exposure to listed chemicals by anyone in the course of doing business; 4. It creates a list of chemicals requiring testing for carcinogenicity or reproductive toxicity; and 5. It requires the Governor to consult with qualified experts (a 12-member "Scientific Advisory Panel" was appointed) as necessary to carry out his duties. This paper discusses the details and implications of this proposition. Areas of responsibility have been assigned. The definition of significant risk is being addressed. PMID:2248253
Determining critical flow valve characteristics using extrapolation techniques
This report presents the methodology and documentation of the calibration of the Loss-of-Fluid Test (LOFT) power-operated relief and safety relief valve (PORV + SRV) for the L9-3 anticipated transient without scram (ATWS) experiment. A multiposition globe valve was calibrated to produce scaled high-pressure flow rates using a low-pressure calibration facility and a simple RELAP5 critical flow model to extrapolate the calibration data to expected operating pressures. It was demonstrated that an accurate high-pressure, multiphase flow calibration can be performed without the necessity of actual high-pressure testing. This technique, when applied to large pressurized water reactor (LPWR) safety and relief valves, represents a potentially large savings in the capacity qualification procedure of full-scale pressure reduction valves
Determination of dose rates in beta radiation fields using extrapolation chamber and GM counter
Borg, J.; Christensen, P.
1995-01-01
The extrapolation chamber measurement method is the basic method for the determination of dose rates in beta radiation fields and the method has been used for the establishment of beta calibration fields. The paper describes important details of the method and presents results from the measurement...... of depth-dose profiles from different beta radiation fields with E(max) values down to 156 keV. Results are also presented from studies of GM counters for use as survey instruments for monitoring beta dose rates at the workplace. Advantages of GM counters are a simple measurement technique and high...... sensitivity. GM responses were measured from exposures in different beta radiation fields using different filters in front of the GM detector and the paper discusses the possibility of using the results from GM measurements with two different filters in an unknown beta radiation field to obtain a value of the...
The use of extrapolation concepts to augment the Frequency Separation Technique
Alexiou, Spiros
2015-03-01
The Frequency Separation Technique (FST) is a general method formulated to improve the speed and/or accuracy of lineshape calculations, including strong overlapping collisions, as is the case for ion dynamics. It should be most useful when combined with ultrafast methods, that, however have significant difficulties when the impact regime is approached. These difficulties are addressed by the Frequency Separation Technique, in which the impact limit is correctly recovered. The present work examines the possibility of combining the Frequency Separation Technique with the addition of extrapolation to improve results and minimize errors resulting from the neglect of fast-slow coupling and thus obtain the exact result with a minimum of extra effort. To this end the adequacy of one such ultrafast method, the Frequency Fluctuation Method (FFM) for treating the nonimpact part is examined. It is found that although the FFM is unable to reproduce the nonimpact profile correctly, its coupling with the FST correctly reproduces the total profile.
Making the most of what we have: application of extrapolation approaches in wildlife transfer models
Beresford, Nicholas A.; Barnett, Catherine L.; Wells, Claire [NERC Centre for Ecology and Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Wood, Michael D. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Vives i Batlle, Jordi [Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Brown, Justin E.; Hosseini, Ali [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway); Yankovich, Tamara L. [International Atomic Energy Agency, Vienna International Centre, 1400, Vienna (Austria); Bradshaw, Clare [Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-10691 (Sweden); Willey, Neil [Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom)
2014-07-01
Radiological environmental protection models need to predict the transfer of many radionuclides to a large number of organisms. There has been considerable development of transfer (predominantly concentration ratio) databases over the last decade. However, in reality it is unlikely we will ever have empirical data for all the species-radionuclide combinations which may need to be included in assessments. To provide default values for a number of existing models/frameworks various extrapolation approaches have been suggested (e.g. using data for a similar organism or element). This paper presents recent developments in two such extrapolation approaches, namely phylogeny and allometry. An evaluation of how extrapolation approaches have performed and the potential application of Bayesian statistics to make best use of available data will also be given. Using a Residual Maximum Likelihood (REML) mixed-model regression we initially analysed a dataset comprising 597 entries for 53 freshwater fish species from 67 sites to investigate if phylogenetic variation in transfer could be identified. The REML analysis generated an estimated mean value for each species on a common scale after taking account of the effect of the inter-site variation. Using an independent dataset, we tested the hypothesis that the REML model outputs could be used to predict radionuclide activity concentrations in other species from the results of a species which had been sampled at a specific site. The outputs of the REML analysis accurately predicted {sup 137}Cs activity concentrations in different species of fish from 27 lakes. Although initially investigated as an extrapolation approach the output of this work is a potential alternative to the highly site dependent concentration ratio model. We are currently applying this approach to a wider range of organism types and different ecosystems. An initial analysis of these results will be presented. The application of allometric, or mass
Extrapolating W-Associated Jet-Production Ratios at the LHC
Bern, Z; Cordero, F Febres; Hoeche, S; Kosower, D A; Ita, H; Maitre, D
2014-01-01
Electroweak vector-boson production, accompanied by multiple jets, is an important background to searches for physics beyond the Standard Model. A precise and quantitative understanding of this process is helpful in constraining deviations from known physics. We study four key ratios in $W + n$-jet production at the LHC. We compute the ratio of cross sections for $W + n$- to $W + (n-1)$-jet production as a function of the minimum jet transverse momentum. We also study the ratio differentially, as a function of the $W$-boson transverse momentum; as a function of the scalar sum of the jet transverse energy, $H_T^{\\rm jets}$; and as a function of certain jet transverse momenta. We show how to use such ratios to extrapolate differential cross sections to $W+6$-jet production at next-to-leading order, and we cross-check the method against a direct calculation at leading order. We predict the differential distribution in $H_T^{\\rm jets}$ for $W+6$ jets at next-to-leading order using such an extrapolation. We use th...
Chiral extrapolation of matrix elements of BSM kaon operators
Bailey, Jon A; Lee, Weonjong; Sharpe, Stephen R
2012-01-01
Models of new physics induce K_0-K_0bar mixing through operators having Dirac structures other than the "left-left" form of the Standard Model. To carry out the chiral-continuum extrapolation of results from numerical simulations, one needs to know the quark mass and lattice spacing dependence of the corresponding B-parameters in the partially quenched theory at least at next-to-leading order. For simulations using staggered fermions (such as that we are doing with HYP-smeared valence fermions on the MILC asqtad lattices) one must determine this dependence using staggered chiral perturbation theory (SChPT). We have calculated the required dependence in both SU(3) and SU(2) SChPT, working at next-to-leading order, and we give here an overview of the methodology and results. The SU(3) SChPT result turns out to be much simpler than that for the Standard Model B_K operator, due to the absence of chiral suppression for the new operators. The SU(2) SChPT result turns out to be closely related to that for B_K: the c...
Detail enhancement of blurred infrared images based on frequency extrapolation
Xu, Fuyuan; Zeng, Deguo; Zhang, Jun; Zheng, Ziyang; Wei, Fei; Wang, Tiedan
2016-05-01
A novel algorithm for enhancing the details of the blurred infrared images based on frequency extrapolation has been raised in this paper. Unlike other researchers' work, this algorithm mainly focuses on how to predict the higher frequency information based on the Laplacian pyramid separation of the blurred image. This algorithm uses the first level of the high frequency component of the pyramid of the blurred image to reverse-generate a higher, non-existing frequency component, and adds back to the histogram equalized input blurred image. A simple nonlinear operator is used to analyze the extracted first level high frequency component of the pyramid. Two critical parameters are participated in the calculation known as the clipping parameter C and the scaling parameter S. The detailed analysis of how these two parameters work during the procedure is figure demonstrated in this paper. The blurred image will become clear, and the detail will be enhanced due to the added higher frequency information. This algorithm has the advantages of computational simplicity and great performance, and it can definitely be deployed in the real-time industrial applications. We have done lots of experiments and gave illustrations of the algorithm's performance in this paper to convince its effectiveness.
Dynamic Aperture Extrapolation in Presence of Tune Modulation
Giovannozzi, Massimo; Todesco, Ezio
1998-01-01
In hadron colliders, such as the Large Hadron Collider (LHC) to be built at CERN, the long-term stability of the single-particle motion is mostly determined by the field-shape quality of the superconducting magnets. The mechanism of particle loss may be largely enhanced by modulation of betatron tunes, induced either by synchro-betatron coupling (via the residual uncorrected chromaticity), or by unavoidable power supply ripple. This harmful effect is investigated in a simple dynamical system model, the Henon map with modulated linear frequencies. Then, a realistic accelerator model describing the injection optics of the LHC lattice is analyzed. Orbital data obtained with long-term tracking simulations ($10^5$-$10^7$ turns) are post-processed to obtain the dynamic aperture. It turns out that the dynamic aperture can be interpolated using a simple mpirical formula, and it decays proportionally to a power of the inverse logarithm of the number of turns. Furthermore, the extrapolation of tracking data at $10^5$ t...
Monte Carlo based approach to the LS–NaI 4πβ–γ anticoincidence extrapolation and uncertainty.
Fitzgerald, R
2016-03-01
The 4πβ–γ anticoincidence method is used for the primary standardization of β−, β+, electron capture (EC), α, and mixed-mode radionuclides. Efficiency extrapolation using one or more γ ray coincidence gates is typically carried out by a low-order polynomial fit. The approach presented here is to use a Geant4-based Monte Carlo simulation of the detector system to analyze the efficiency extrapolation. New code was developed to account for detector resolution, direct γ ray interaction with the PMT, and implementation of experimental β-decay shape factors. The simulation was tuned to 57Co and 60Co data, then tested with 99mTc data, and used in measurements of 18F, 129I, and 124I. The analysis method described here offers a more realistic activity value and uncertainty than those indicated from a least-squares fit alone. PMID:27358944
Characterization and application of two extrapolation chambers in standard X radiation beams
The extrapolation chambers are ionization chambers with variable volume, and they are mainly utilized as beta radiation detectors. In this work two extrapolation chambers were characterized, a commercial PTW extrapolation chamber and another extrapolation chamber developed at the Calibration Laboratory of IPEN, for application as reference systems in mammography, conventional diagnostic radiology and radiotherapy beams. The results obtained from the characterization tests of the chamber response: leakage current, short- and medium terms stability, determination of the saturation currents and the ion collection efficiencies, angular and energy dependence, show that these extrapolation chambers may be utilized for low-energy X radiation beam dosimetry. The transmission factors in tissue and the calibration factors were also determined for all cited radiation qualities. Finally, a procedure was established for calibration of radiation detectors in standard X radiation beams, using the extrapolation chambers. (author)
Extrapolative Analysis of Fast-Switching Free Energy Estimates in a Molecular System
Zuckerman, Daniel M.; Woolf, Thomas B.
2001-01-01
We perform an extrapolative analysis of "fast-growth" free-energy-difference (DF) estimates of a computer-modeled, fully-solvated ethanemethanol transformation. The results suggest that extrapolation can greatly reduce the systematic error in DF estimated from a small number of very fast switches. Our extrapolation procedure uses block-averages of finite-data estimates, and appears to be particularly useful for broad, non-Gaussian distributions of data which produce substantial systematic err...
Chiral extrapolation of nucleon axial charge $g_A$ in effective field theory
Li, Hongna
2016-01-01
The extrapolation of nucleon axial charge $g_A$ is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated $g_A$ are all smaller than the experimental value.
The work presented covers different parts of a repository system such as near and far field aspects. Investigations are reported for the degradation of HLW glass, for the corrosion of container materials, for changes of geochemical environment in geological repositories, and for the thermo-mechanical behaviour of granitic host rock. Extrapolation methods are developed and applied for temperature and stress development in the host rock and for the radionuclide transport through a fractured system. (author)
The Intelligent Extrapolation Criticality Device is used for automatic counting and automatic extrapolation during the criticality experiment on the reactor. Test must be performed on the zero-power reactor or other reactor before the Device is used. The paper describes the test situation and test results of the Device on the zero-power reactor. The test results show that the Device has the function of automatic counting and automatic extrapolation, the deviation of the extrapolation data is small, and it can satisfy the requirements of physical startup on the reactor. (author)
Patient-bounded extrapolation using low-dose priors for volume-of-interest imaging in C-arm CT
Xia, Y.; Maier, A.; Berger, M.; Hornegger, J. [Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany); Bauer, S. [Siemens AG, Healthcare Sector, Forchheim 91301 (Germany)
2015-04-15
Purpose: Three-dimensional (3D) volume-of-interest (VOI) imaging with C-arm systems provides anatomical information in a predefined 3D target region at a considerably low x-ray dose. However, VOI imaging involves laterally truncated projections from which conventional reconstruction algorithms generally yield images with severe truncation artifacts. Heuristic based extrapolation methods, e.g., water cylinder extrapolation, typically rely on techniques that complete the truncated data by means of a continuity assumption and thus appear to be ad-hoc. It is our goal to improve the image quality of VOI imaging by exploiting existing patient-specific prior information in the workflow. Methods: A necessary initial step prior to a 3D acquisition is to isocenter the patient with respect to the target to be scanned. To this end, low-dose fluoroscopic x-ray acquisitions are usually applied from anterior–posterior (AP) and medio-lateral (ML) views. Based on this, the patient is isocentered by repositioning the table. In this work, we present a patient-bounded extrapolation method that makes use of these noncollimated fluoroscopic images to improve image quality in 3D VOI reconstruction. The algorithm first extracts the 2D patient contours from the noncollimated AP and ML fluoroscopic images. These 2D contours are then combined to estimate a volumetric model of the patient. Forward-projecting the shape of the model at the eventually acquired C-arm rotation views gives the patient boundary information in the projection domain. In this manner, we are in the position to substantially improve image quality by enforcing the extrapolated line profiles to end at the known patient boundaries, derived from the 3D shape model estimate. Results: The proposed method was evaluated on eight clinical datasets with different degrees of truncation. The proposed algorithm achieved a relative root mean square error (rRMSE) of about 1.0% with respect to the reference reconstruction on
CT image construction of a totally deflated lung using deformable model extrapolation
Sadeghi Naini, Ali; Pierce, Greg; Lee, Ting-Yim [Department of Electrical and Computer Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada); and others
2011-02-15
Purpose: A novel technique is proposed to construct CT image of a totally deflated lung from a free-breathing 4D-CT image sequence acquired preoperatively. Such a constructed CT image is very useful in performing tumor ablative procedures such as lung brachytherapy. Tumor ablative procedures are frequently performed while the lung is totally deflated. Deflating the lung during such procedures renders preoperative images ineffective for targeting the tumor. Furthermore, the problem cannot be solved using intraoperative ultrasound (U.S.) images because U.S. images are very sensitive to small residual amount of air remaining in the deflated lung. One possible solution to address these issues is to register high quality preoperative CT images of the deflated lung with their corresponding low quality intraoperative U.S. images. However, given that such preoperative images correspond to an inflated lung, such CT images need to be processed to construct CT images pertaining to the lung's deflated state. Methods: To obtain the CT images of deflated lung, we present a novel image construction technique using extrapolated deformable registration to predict the deformation the lung undergoes during full deflation. The proposed construction technique involves estimating the lung's air volume in each preoperative image automatically in order to track the respiration phase of each 4D-CT image throughout a respiratory cycle; i.e., the technique does not need any external marker to form a respiratory signal in the process of curve fitting and extrapolation. The extrapolated deformation field is then applied on a preoperative reference image in order to construct the totally deflated lung's CT image. The technique was evaluated experimentally using ex vivo porcine lung. Results: The ex vivo lung experiments led to very encouraging results. In comparison with the CT image of the deflated lung we acquired for the purpose of validation, the constructed CT image was very
Fuel cycle design for ITER and its extrapolation to DEMO
Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Kyoto 611-0011 (Japan)], E-mail: s-konishi@iae.kyoto-u.ac.jp; Glugla, Manfred [Forschungszentrum Karlsruhe, P.O. Box 3640, D 76021 Karlsruhe (Germany); Hayashi, Takumi [Apan Atomic Energy AgencyTokai, Ibaraki 319-0015 Japan (Japan)
2008-12-15
future energy source. Some of the subjects cannot be expected to be within the extrapolation of ITER technology and require long term efforts paralleling ITER.
Oral-to-inhalation route extrapolation in occupational health risk assessment: A critical assessment
Rennen, M.A.J.; Bouwman, T.; Wilschut, A.; Bessems, J.G.M.; Heer, C.de
2004-01-01
Due to a lack of route-specific toxicity data, the health risks resulting from occupational exposure are frequently assessed by route-to-route (RtR) extrapolation based on oral toxicity data. Insight into the conditions for and the uncertainties connected with the application of RtR extrapolation ha
Fang, Jun; Gao, Xingyu; Song, Haifeng; Wang, Han
2016-06-01
Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn-Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choices on the extrapolation order. Another factor that may influence the extrapolation accuracy is the alignment scheme that eliminates the discontinuity in the wavefunctions with respect to the atomic or cell variables. We prove the equivalence between the two existing schemes, thus the implementation of either of them does not lead to essential difference in the extrapolation accuracy.
Fang, Jun; Song, Haifeng; Wang, Han
2016-01-01
Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn-Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choice...
Characterization of an extrapolation chamber in a 90Sr/90Y beta radiation field
The extrapolation chamber is a parallel plate chamber and variable volume based on the Bragg-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents the characterization of an extrapolation chamber in a 90Sr/90Y beta radiation field. The absorbed dose rate to tissue at a depth of 0.07 mm was calculated and is (0.13206±0.0028) μGy. The extrapolation chamber null depth was determined and its value is 60 μm. The influence of temperature, pressure and humidity on the value of the corrected current was also evaluated. Temperature is the parameter that has more influence on this value and the influence of pressure and the humidity is not very significant. Extrapolation curves were obtained. (Author)
A new mini-extrapolation chamber for beta source uniformity measurements
According to recent international recommendations, beta particle sources should be specified in terms of absorbed dose rates to water at the reference point. However, because of the clinical use of these sources, additional information should be supplied in the calibration reports. This additional information include the source uniformity. A new small volume extrapolation chamber was designed and constructed at the Calibration Laboratory at Instituto de Pesquisas Energeticas e Nucleares, IPEN, Brazil, for the calibration of 90Sr+90Y ophthalmic plaques. This chamber can be used as a primary standard for the calibration of this type of source. Recent additional studies showed the feasibility of the utilization of this chamber to perform source uniformity measurements. Because of the small effective electrode area, it is possible to perform independent measurements by varying the chamber position by small steps. The aim of the present work was to study the uniformity of a 90Sr+90Y plane ophthalmic plaque utilizing the mini extrapolation chamber developed at IPEN. The uniformity measurements were performed by varying the chamber position by steps of 2 mm in the source central axis (x-and y-directions) and by varying the chamber position off-axis by 3 mm steps. The results obtained showed that this small volume chamber can be used for this purpose with a great advantage: it is a direct method, being unnecessary a previously calibration of the measurement device in relation to a reference instrument, and it provides real -time results, reducing the time necessary for the study and the determination of the uncertainties related to the measurements. (authors)
Zhu, Liqin; Zhang, Yuan; Yang, Jianwei; Wang, Yongming; Zhang, Jianlei; Zhao, Yuanyuan; Dong, Weilin
2016-08-01
This study developed a physiologically based pharmacokinetic (PBPK) model in intraabdominally infected rats and extrapolated it to humans to predict the levofloxacin pharmacokinetics and penetration into tissues. Twelve male rats with intraabdominal infections induced by Escherichia coli received a single dose of 50 mg/kg body weight of levofloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480 and 1440 min after injection, respectively. A PBPK model was developed in rats and extrapolated to humans using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration-versus-time profile of levofloxacin in rats, C max was 23.570 μg/ml at 5 min after intravenous injection, and t1/2 was 2.38 h. The plasma concentration and kinetics in humans were predicted and validated by the observed data. Levofloxacin penetrated and accumulated with high concentrations in the heart, liver, kidney, spleen, muscle and skin tissues in humans. The predicted tissue-to-plasma concentration ratios in abdominal viscera were between 1.9 and 2.3. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict the drug pharmacokinetics and penetration in humans. Levofloxacin had good penetration into the liver, kidney and spleen as well as other tissues in humans. This pathological model extrapolation may provide a reference for the study of antiinfective PK/PD. In our study, levofloxacin penetrated well into abdominal organs. Also ADR monitoring should be implemented when using levofloxacin. PMID:25753830
You, Jiachun; Li, Guangcai; Liu, Xuewei; Han, Wengong; Zhang, Guangde
2016-03-01
Most depth extrapolation schemes are based on a one-way wave equation, which possesses limited ability to provide the true amplitude values of reflectors that are highly important for amplitude-versus-offset inversion. After analysing the weaknesses of current migration methods and explaining the reason why wavefields cannot be extrapolated using the full-wave equation in the depth direction, a full-wave-equation migration method based on a new seismic acquisition system is proposed to provide accurately dynamic information of reflection interfaces for migration. In this new seismic acquisition system, double sensor data are provided to solve the acoustic wave equation in the depth domain accurately. To test the performance of recovering the true amplitudes of the full-wave-equation migration, we used a single shot gather and several multiple shot gathers produced by a 2-D numerical modelling technique to demonstrate that our methodology provides better estimated true amplitudes than that of the conventional Kirchhoff and reverse time migration algorithms through comparison of the amplitudes of the target reflectors with its theoretical reflection coefficients. Because double sensors are applied to implement the full-wave-equation migration, it is necessary to study the perfect distance between the double sensors to diminish the migration error for future practical exploration. Based on the application of the full-wave-equation migration method to the first set of actual seismic data collected from our double sensor acquisition system, our proposed method yields higher imaging quality than that of conventional methods. Numerical experiments and actual seismic data show that our proposed method has built a new bridge between true amplitude common-shot migration and full-wave-equation depth extrapolation.
The Interface System for the Extrapolation Chamber (SICE) contains several devices handled by a personal computer (PC), it is able to get the required data to calculate the absorbed dose due to Beta radiation. The main functions of the system are: a) Measures the ionization current or charge stored in the extrapolation chamber. b) Adjusts the distance between the plates of the extrapolation chamber automatically. c) Adjust the bias voltage of the extrapolation chamber automatically. d) Acquires the data of the temperature, atmospheric pressure, relative humidity of the environment and the voltage applied between the plates of the extrapolation chamber. e) Calculates the effective area of the plates of the extrapolation chamber and the real distance between them. f) Stores all the obtained information in hard disk or diskette. A comparison between the desired distance and the distance in the dial of the extrapolation chamber, show us that the resolution of the system is of 20 μm. The voltage can be changed between -399.9 V and +399.9 V with an error of less the 3 % with a resolution of 0.1 V. These uncertainties are between the accepted limits to be used in the determination of the absolute absorbed dose due to beta radiation. (Author)
Joana Aurora Braun Chagas
2010-02-01
Full Text Available O objetivo deste estudo foi avaliar o protocolo de contenção química com cetamina S(+ e midazolam em bugios-ruivos, comparando o cálculo de doses pelo método convencional e o método de extrapolação alométrica. Foram utilizados 12 macacos bugios (Alouatta guariba clamitans hígidos, com peso médio de 4,84±0,97kg, de ambos os sexos. Após jejum alimentar de 12 horas e hídrico de seis horas, realizou-se contenção física manual e aferiram-se os seguintes parâmetros: frequência cardíaca (FC, frequência respiratória (f, tempo de preenchimento capilar (TPC, temperatura retal (TR, pressão arterial sistólica não invasiva (PANI e valores de hemogasometria arterial. Posteriormente, os animais foram alocados em dois grupos: GC (Grupo Convencional, n=06, os quais receberam cetamina S(+ (5mg kg-1 e midazolam (0,5mg kg-1, pela via intramuscular, com doses calculadas pelo método convencional; e GA (Grupo Alometria, n=06, os quais receberam o mesmo protocolo, pela mesma via, utilizando-se as doses calculadas pelo método de extrapolação alométrica. Os parâmetros descritos foram mensurados novamente nos seguintes momentos: M5, M10, M20 e M30 (cinco, 10, 20 e 30 minutos após a administração dos fármacos, respectivamente. Também foram avaliados: qualidade de miorrelaxamento, reflexo podal e caudal, pinçamento interdigital, tempo para indução de decúbito, tempo hábil de sedação, qualidade de sedação, e tempo e qualidade de recuperação. O GA apresentou menor tempo para indução ao decúbito, maior grau e tempo de sedação, bem como redução significativa da FC e PANI de M5 até M30, quando comparado ao GC. Conclui-se que o grupo no qual o cálculo de dose foi realizado por meio da alometria (GA apresentou melhor grau de relaxamento muscular e sedação, sem produzir depressão cardiorrespiratória significativa.The aim of this study was to evaluate a protocol of chemical restraint comparing the conventional method of
Extrapolated masses towards drip lines from the regularity of the AMC12 mass surfaces
The new atomic mass compilation AMC12 provides a variety of potential uses. One such important application is to predict dependable estimates of unknown, poorly known or questionable masses and extrapolation toward the drip lines and also to test the theoretical models. Such an attempt has been made in this work. The procedures by which we get the extrapolated values encompass a subjective component in the form of individual judgments. So we want to study the possibilities of avoiding the personal judgment by applying objective techniques for extrapolation. Despite the complexity of nuclear interactions some simple trends in the mass surfaces can be used to obtain unknown masses
Montiel, Ariadna; Sendra, Irene; Escamilla-Rivera, Celia; Salzano, Vincenzo
2014-01-01
In this work we present a nonparametric approach, which works on minimal assumptions, to reconstruct the cosmic expansion of the Universe. We propose to combine a locally weighted scatterplot smoothing method and a simulation-extrapolation method. The first one (Loess) is a nonparametric approach that allows to obtain smoothed curves with no prior knowledge of the functional relationship between variables nor of the cosmological quantities. The second one (Simex) takes into account the effect of measurement errors on a variable via a simulation process. For the reconstructions we use as raw data the Union2.1 Type Ia Supernovae compilation, as well as recent Hubble parameter measurements. This work aims to illustrate the approach, which turns out to be a self-sufficient technique in the sense we do not have to choose anything by hand. We examine the details of the method, among them the amount of observational data needed to perform the locally weighted fit which will define the robustness of our reconstructio...
Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals?
Despite that Tauc plot extrapolation has been widely adopted for extracting bandgap energies of semiconductors, there is a lack of theoretical support for applying it to nanocrystals. In this paper, direct-allowed optical transitions in semiconductor nanocrystals have been formulated based on a purely theoretical approach. This result reveals a size-dependant transition of the power factor used in Tauc plot, increasing from one half used in the 3D bulk case to one in the 0D case. This size-dependant intermediate value of power factor allows a better extrapolation of measured absorption data. Being a material characterization technique, the generalized Tauc extrapolation gives a more reasonable and accurate acquisition of the intrinsic bandgap, while the unjustified purpose of extrapolating any elevated bandgap caused by quantum confinement is shown to be incorrect
Cross-species extrapolation of toxicity data from limited surrogate test organisms to all wildlife with potential of chemical exposure remains a key challenge in ecological risk assessment. A number of factors affect extrapolation, including the chemical exposure, pharmacokinetic...
Gulliver, John; de Hoogh, Kees; Hoek, Gerard; Vienneau, Danielle; Fecht, Daniela; Hansell, Anna
2016-01-01
Robust methods to estimate historic population air pollution exposures are important tools for epidemiological studies evaluating long-term health effects. We developed land use regression (LUR) models for NO2 exposure in Great Britain for 1991 and explored whether the choice of year-specific or back-extrapolated LUR yields 1) similar LUR variables and model performance, and 2) similar national and regional address-level and small-area concentrations. We constructed two LUR models for 1991using NO2 concentrations from the diffusion tube monitoring network, one using 75% of all available measurement sites (that over-represent industrial areas), and the other using 75% of a subset of sites proportionate to population by region to study the effects of monitoring site selection bias. We compared, using the remaining (hold-out) 25% of monitoring sites, the performance of the two 1991 models with back-extrapolation of a previously published 2009 model, developed using NO2 concentrations from automatic chemiluminescence monitoring sites and predictor variables from 2006/2007. The 2009 model was back-extrapolated to 1991 using the same predictors (1990 & 1995) used to develop 1991 models. The 1991 models included industrial land use variables, not present for 2009. The hold-out performance of 1991 models (mean-squared-error-based-R(2): 0.62-0.64) was up to 8% higher and ~1μg/m(3) lower in root mean squared error than the back-extrapolated 2009 model, with best performance from the subset of sites representing population exposures. Year-specific and back-extrapolated exposures for residential addresses (n=1.338,399) and small areas (n=10.518) were very highly linearly correlated for Great Britain (r>0.83). This study suggests that year-specific model for 1991 and back-extrapolation of the 2009 LUR yield similar exposure assessment. PMID:27107225
Limitations of force-free magnetic field extrapolations: revisiting basic assumptions
Peter, H; Warnecke, J.; Chitta, L. P.; Cameron, R. H.
2015-01-01
Force-free extrapolations are widely used to study the magnetic field in the solar corona based on surface measurements. The extrapolations assume that the ratio of internal energy of the plasma to magnetic energy, the plasma-beta is negligible. Despite the widespread use of this assumption observations, models, and theoretical considerations show that beta is of the order of a few percent to more than 10%, and thus not small. We investigate what consequences this has for the reliability of e...
Schuddeboom, W.; Wübbenhorst, Michael
1996-01-01
A model has been constructed to describe ball-bond corrosion in HTSL stress testing. In this model ion-mobility has been believed to be the rate determining step and has been found to be non-linear for the anti-popcorn plastic. In HTSL testing an Arrhenius type extrapolation of the mean-time to failure (MTTF) at high temperature has been used, to predict the value at lower temperatures. This method proves to be correct for a low-stress plastic. However possibly it underestimates the value for...
Developing and utilizing the wavefield kinematics for efficient wavefield extrapolation
Waheed, Umair bin
2015-08-01
Natural gas and oil from characteristically complex unconventional reservoirs, such as organic shale, tight gas and oil, coal-bed methane; are transforming the global energy market. These conventional reserves exist in complex geologic formations where conventional seismic techniques have been challenged to successfully image the subsurface. To acquire maximum benefits from these unconventional reserves, seismic anisotropy must be at the center of our modeling and inversion workflows. I present algorithms for fast traveltime computations in anisotropic media. Both ray-based and finite-difference solvers of the anisotropic eikonal equation are developed. The proposed algorithms present novel techniques to obtain accurate traveltime solutions for anisotropic media in a cost-efficient manner. The traveltime computation algorithms are then used to invert for anisotropy parameters. Specifically, I develop inversion techniques by using diffractions and diving waves in the seismic data. The diffraction-based inversion algorithm can be combined with an isotropic full-waveform inversion (FWI) method to obtain a high-resolution model for the anellipticity anisotropy parameter. The inversion algorithm based on diving waves is useful for building initial anisotropic models for depth-migration and FWI. I also develop the idea of \\'effective elliptic models\\' for obtaining solutions of the anisotropic two-way wave equation. The proposed technique offers a viable alternative for wavefield computations in anisotropic media using a computationally cheaper wave propagation operator. The methods developed in the thesis lead to a direct cost savings for imaging and inversion projects, in addition to a reduction in turn-around time. With an eye on the next generation inversion methods, these techniques allow us to incorporate more accurate physics into our modeling and inversion framework.
Richardson Extrapolation Based Error Estimation for Stochastic Kinetic Plasma Simulations
Cartwright, Keigh
2014-10-01
To have a high degree of confidence in simulations one needs code verification, validation, solution verification and uncertainty qualification. This talk will focus on numerical error estimation for stochastic kinetic plasma simulations using the Particle-In-Cell (PIC) method and how it impacts the code verification and validation. A technique Is developed to determine the full converged solution with error bounds from the stochastic output of a Particle-In-Cell code with multiple convergence parameters (e.g. ?t, ?x, and macro particle weight). The core of this method is a multi parameter regression based on a second-order error convergence model with arbitrary convergence rates. Stochastic uncertainties in the data set are propagated through the model usin gstandard bootstrapping on a redundant data sets, while a suite of nine regression models introduces uncertainties in the fitting process. These techniques are demonstrated on Flasov-Poisson Child-Langmuir diode, relaxation of an electro distribution to a Maxwellian due to collisions and undriven sheaths and pre-sheaths. Sandia National Laboratories is a multie-program laboratory managed and operated by Sandia Corporation, a wholly owned subisidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
A GIS database was established for fertiliser recommendation domains in Kisii District by using FURP fertiliser trial results, KSS soils data and MDBP climatic data. These are manipulated in ESRI's (Personal Computer Environmental Systems Research Institute) ARCINFO and ARCVIEW softwares. The extrapolations were only done for the long rains season (March- August) with three to four years data. GIS technology was used to cluster fertiliser recommendation domains as a geographical area expressed in terms of variation over space and not limited to the site of experiment where a certain agronomic or economic fertiliser recommendation was made. The extrapolation over space was found to be more representative for any recommendation, the result being digital maps describing each area in the geographical space. From the results of the extrapolations, approximately 38,255 ha of the district require zero Nitrogen (N) fertilisation while 94,330 ha requires 75 kg ha-1 Nitrogen fertilisation during the (March-August) long rains. The extrapolation was made difficult since no direct relationships could be established to occur between the available-N, % Carbon (C) or any of the other soil properties with the obtained yields. Decision rules were however developed based on % C which was the soil variable with values closest to the obtained yields. 3% organic carbon was found to be the boundary between 0 application and 75 kg-N application. GIS techniques made it possible to model and extrapolates the results using the available data. The extrapolations still need to be verified with more ground data from fertiliser trials. Data gaps in the soil map left some soil mapping units with no recommendations. Elevation was observed to influence yields and it should be included in future extrapolation by clustering digital elevation models with rainfall data in a spatial model at the district scale
Highlights: ► The maximal predictive step size is determined by the largest Lyapunov exponent. ► A proper forecasting step size is applied to load demand forecasting. ► The improved approach is validated by the actual load demand data. ► Non-linear fractal extrapolation method is compared with three forecasting models. ► Performance of the models is evaluated by three different error measures. - Abstract: Precise short-term load forecasting (STLF) plays a key role in unit commitment, maintenance and economic dispatch problems. Employing a subjective and arbitrary predictive step size is one of the most important factors causing the low forecasting accuracy. To solve this problem, the largest Lyapunov exponent is adopted to estimate the maximal predictive step size so that the step size in the forecasting is no more than this maximal one. In addition, in this paper a seldom used forecasting model, which is based on the non-linear fractal extrapolation (NLFE) algorithm, is considered to develop the accuracy of predictions. The suitability and superiority of the two solutions are illustrated through an application to real load forecasting using New South Wales electricity load data from the Australian National Electricity Market. Meanwhile, three forecasting models: the gray model, the seasonal autoregressive integrated moving average approach and the support vector machine method, which received high approval in STLF, are selected to compare with the NLFE algorithm. Comparison results also show that the NLFE model is outstanding, effective, practical and feasible.
Liu, Ning; Li, Weiliang; Zhao, Dongxue
2016-06-01
During the reconstruction of a digital hologram, the reconstructed image is usually degraded by speckle noise, which makes it hard to observe the original object pattern. In this paper, a new reconstructed image enhancement method is proposed, which first reduces the speckle noise using an adaptive Gaussian filter, then calculates the high frequencies that belong to the object pattern based on a frequency extrapolation strategy. The proposed frequency extrapolation first calculates the frequency spectrum of the Fourier-filtered image, which is originally reconstructed from the +1 order of the hologram, and then gives the initial parameters for an iterative solution. The analytic iteration is implemented by continuous gradient threshold convergence to estimate the image level and vertical gradient information. The predicted spectrum is acquired through the analytical iteration of the original spectrum and gradient spectrum analysis. Finally, the reconstructed spectrum of the restoration image is acquired from the synthetic correction of the original spectrum using the predicted gradient spectrum. We conducted our experiment very close to the diffraction limit and used low-quality equipment to prove the feasibility of our method. Detailed analysis and figure demonstrations are presented in the paper.
Liu, Ning; Li, Weiliang; Zhao, Dongxue
2016-03-01
During the reconstruction of a digital hologram, the reconstructed image is usually degraded by speckle noise, which makes it hard to observe the original object pattern. In this paper, a new reconstructed image enhancement method is proposed, which first reduces the speckle noise using an adaptive Gaussian filter, then calculates the high frequencies that belong to the object pattern based on a frequency extrapolation strategy. The proposed frequency extrapolation first calculates the frequency spectrum of the Fourier-filtered image, which is originally reconstructed from the +1 order of the hologram, and then gives the initial parameters for an iterative solution. The analytic iteration is implemented by continuous gradient threshold convergence to estimate the image level and vertical gradient information. The predicted spectrum is acquired through the analytical iteration of the original spectrum and gradient spectrum analysis. Finally, the reconstructed spectrum of the restoration image is acquired from the synthetic correction of the original spectrum using the predicted gradient spectrum. We conducted our experiment very close to the diffraction limit and used low-quality equipment to prove the feasibility of our method. Detailed analysis and figure demonstrations are presented in the paper.
Forced Field Extrapolation of the Magnetic Structure of the Hα fibrils in the Solar Chromosphere
Xiaoshuai, Zhu; Huaning, Wang; Zhanle, Du; Han, He
2016-07-01
We present a careful assessment of forced field extrapolation using the Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetogram. We use several metrics to check the convergence property. The extrapolated field lines below 3600 km appear to be aligned with most of the Hα fibrils observed by the New Vacuum Solar Telescope. In the region where magnetic energy is far larger than potential energy, the field lines computed by forced field extrapolation are still consistent with the patterns of Hα fibrils while the nonlinear force-free field results show a large misalignment. The horizontal average of the lorentz force ratio shows that the forced region where the force-free assumption fails can reach heights of 1400–1800 km. The non-force-free state of the chromosphere is also confirmed based on recent radiation magnetohydrodynamics simulations.
Forced field extrapolation of the magnetic structure of the Halpha fibrils in solar chromosphere
Zhu, Xiaoshuai; Du, Zhanle; He, Han
2016-01-01
We present a careful assess of the forced field extrapolation using Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) magnetogram. The convergence property is checked by several metrics. The extrapolated field lines below 3600km appear to be aligned with most Halpha fibrils observed by New Vacuum Solar Telescope (NVST). In the region where magnetic energy far larger than potential energy, field lines computed by forced field extrapolation still consistent with the patterns of Halpha fibrils while non-linear force free field (NLFFF) results show large misalignment. The horizontal average of lorentz force ratio shows the forced region where force-free assumption is failed can reach the height of $1400-1800km$. The non-force-free state of the chromosphere is also confirmed by recent radiation magnetohydrodynamics (MHD) simulation.
Characterization of low energy X-rays beams with an extrapolation chamber
In laboratories involving Radiological Protection practices, it is usual to use reference radiations for calibrating dosimeters and to study their response in terms of energy dependence. The International Organization for Standardization (ISO) established four series of reference X-rays beams in the ISO- 4037 standard: the L and H series, as low and high air Kerma rates, respectively, the N series of narrow spectrum and W series of wide spectrum. The X-rays beams with tube potential below 30 kV, called 'low energy beams' are, in most cases, critical as far as the determination of their parameters for characterization purpose, such as half-value layer. Extrapolation chambers are parallel plate ionization chambers that have one mobile electrode that allows variation of the air volume in its interior. These detectors are commonly used to measure the quantity Absorbed Dose, mostly in the medium surface, based on the extrapolation of the linear ionization current as a function of the distance between the electrodes. In this work, a characterization of a model 23392 PTW extrapolation chamber was done in low energy X-rays beams of the ISO- 4037 standard, by determining the polarization voltage range through the saturation curves and the value of the true null electrode spacing. In addition, the metrological reliability of the extrapolation chamber was studied with measurements of the value of leakage current and repeatability tests; limit values were established for the proper use of the chamber. The PTW23392 extrapolation chamber was calibrated in terms of air Kerma in some of the ISO radiation series of low energy; the traceability of the chamber to the National Standard Dosimeter was established. The study of energy dependency of the extrapolation chamber and the assessment of the uncertainties related to the calibration coefficient were also done; it was shown that the energy dependence was reduced to 4% when the extrapolation technique was used. Finally, the first
This report describes the structure and application of an extrapolation ionisation chamber used for measuring dose-rates from plane and point beta-emitting sources. These measurements form the basis of the dosimetry for a collaborative radiobiological study of skin to study both stochastic and non-stochastic effects. A small sample from the wide range of measurements undertaken in the programme has been selected to illustrate the procedures involved. The extrapolation chamber is currently being automated and it is intended that this report should provide a source reference to the basis of the measurements made between 1977-86. (author)
Mayhall, Nicholas J; Raghavachari, Krishnan
2011-05-10
We present a new extrapolated fragment-based approach, termed molecules-in-molecules (MIM), for accurate energy calculations on large molecules. In this method, we use a multilevel partitioning approach coupled with electronic structure studies at multiple levels of theory to provide a hierarchical strategy for systematically improving the computed results. In particular, we use a generalized hybrid energy expression, similar in spirit to that in the popular ONIOM methodology, that can be combined easily with any fragmentation procedure. In the current work, we explore a MIM scheme which first partitions a molecule into nonoverlapping fragments and then recombines the interacting fragments to form overlapping subsystems. By including all interactions with a cheaper level of theory, the MIM approach is shown to significantly reduce the errors arising from a single level fragmentation procedure. We report the implementation of energies and gradients and the initial assessment of the MIM method using both biological and materials systems as test cases. PMID:26610128
Mejsnar, Jan; Sokol, Zbyněk; Pešice, Petr
Oberpfaffenhofen-Wessling: Institut für Physik der Atmosphäre, 2014. [ERAD 2014 - 8th European Conference on Radar in Meteorology and Hydrology. 01.09.2014-05.09.2014, Garmisch-Partenkirchen] Institutional support: RVO:68378289 Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.pa.op.dlr.de/erad2014/programme/ShortAbstracts/262_short.pdf
Stupakov, Oleksandr
2006-01-01
Roč. 307, - (2006), s. 279-287. ISSN 0304-8853 R&D Projects: GA AV ČR(CZ) 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic measurement * open magnetic sample * surface field determination * single-yoke setup * magnetic non-destructive testing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.212, year: 2006
Measurement of the output of ISO recommended beta sources with an extrapolation chamber
Output measurements in terms of absorbed dose rate to tissue were carried out for the ISO (International Organization for Standardization) recommended beta sources 90Sr/90Y, 85Kr and 147Pm using an extrapolation chamber. A holder made of anodized aluminium for the extrapolation chamber for the output measurements was designed indigenously. The measured dose rates for three beta sources were compared with the corresponding values provided in the certificate by the Physikalisch-Technische Bundesanstalt (PTB), the National Standard Laboratory of Germany. Depending upon the source and source-to-chamber distance, the PTB certificate values have uncertainties in the range ±1.2–±1.5%. The measured dose rates have uncertainties of about ±0.3%. The deviations between the measured dose rates and the PTB certificate values compare well (maximum deviation is about 2%) considering the combined uncertainties associated with the measurements and the certificate values. The study suggests that the beta irradiation system comprising the above beta sources can be utilized for quality assurance programme related to personnel monitoring services in India. - Highlights: • Absorbed dose rates to tissue were measured for 90Sr/90Y, 85Kr and 147Pm ISO recommended beta sources with extrapolation chamber. • A holder made of aluminium was designed indigenously for the extrapolation chamber. • The measured dose rates agree well with the values provided in the PTB certificate. • The study suggests beta sources can be utilized for QA programme in personnel monitoring services
Jager, Tjalling; Klok, Chris
2010-11-12
The interest of environmental management is in the long-term health of populations and ecosystems. However, toxicity is usually assessed in short-term experiments with individuals. Modelling based on dynamic energy budget (DEB) theory aids the extraction of mechanistic information from the data, which in turn supports educated extrapolation to the population level. To illustrate the use of DEB models in this extrapolation, we analyse a dataset for life cycle toxicity of copper in the earthworm Dendrobaena octaedra. We compare four approaches for the analysis of the toxicity data: no model, a simple DEB model without reserves and maturation (the Kooijman-Metz formulation), a more complex one with static reserves and simplified maturation (as used in the DEBtox software) and a full-scale DEB model (DEB3) with explicit calculation of reserves and maturation. For the population prediction, we compare two simple demographic approaches (discrete time matrix model and continuous time Euler-Lotka equation). In our case, the difference between DEB approaches and population models turned out to be small. However, differences between DEB models increased when extrapolating to more field-relevant conditions. The DEB3 model allows for a completely consistent assessment of toxic effects and therefore greater confidence in extrapolating, but poses greater demands on the available data. PMID:20921051
Dienes, Keith R; Dienes, Keith R.; Lennek, Michael
2005-01-01
In this paper, we discuss the important question of how to extrapolate a given zero-temperature string model to finite temperature. It turns out that this issue is surprisingly subtle, and we show that many of the standard results require modification. For concreteness, we focus on the case of the ten-dimensional SO(32) heterotic string, and show that the usual finite-temperature extrapolation for this string is inconsistent at the level of a proper worldsheet theory. We then derive the proper extrapolation, and in the process uncover a universal Hagedorn temperature for all tachyon-free closed string theories in ten dimensions --- both Type II and heterotic. As we discuss, these results are not in conflict with the well-known exponential growth in the degeneracies of string states in such models. This writeup is a concise summary of our recent paper hep-th/0505233, here presented using a ``bottom-up'' approach based on determining self-consistent finite-temperature extrapolations of zero-temperature string m...
Extrapolation of multiplicity distribution in p+p(\\bar{p}) collisions to LHC energies
Dash, Ajay Kumar; Mohanty, Bedangadas
2010-02-01
The multiplicity (Nch) and pseudorapidity distribution (dNch/dη) of primary charged particles in p + p collisions at Large Hadron Collider (LHC) energies of \\sqrt{s} = 10 and 14 TeV are obtained from extrapolation of existing measurements at lower \\sqrt{s}. These distributions are then compared to calculations from PYTHIA and PHOJET models. The existing \\sqrt{s} measurements are unable to distinguish between a logarithmic and power law dependence of the average charged particle multiplicity (langNchrang) on \\sqrt{s}, and their extrapolation to energies accessible at LHC give very different values. Assuming a reasonably good description of inclusive charged particle multiplicity distributions by negative binomial distribution (NBD) at lower \\sqrt{s} to hold for LHC energies, we observe that the logarithmic \\sqrt{s} dependences of langNchrang are favored by the models at midrapidity. The dNch/dη versus η distributions for the existing measurements are found to be reasonably well described by a function with three parameters which accounts for the basic features of the distribution, height at midrapidity, central rapidity plateau and the higher rapidity fall-off. Extrapolation of these parameters as a function of \\sqrt{s} is used to predict the pseudorapidity distributions of charged particles at LHC energies. dNch/dη calculations from PYTHIA and PHOJET models are found to be lower compared to those obtained from the extrapolated dNch/dη versus η distributions for a broad η range.
Buckler, Denny R., Foster L. Mayer, Mark R. Ellersieck and Amha Asfaw. 2003. Evaluation of Minimum Data Requirements for Acute Toxicity Value Extrapolation with Aquatic Organisms. EPA/600/R-03/104. U.S. Environmental Protection Agency, National Health and Environmental Effects Re...
Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine
Since the turbocharger turbine plays an important role in determining the engine performance, how to model and extrapolate mass flow characteristics of the turbocharger turbine is very important especially when only a narrow range of turbine data is provided by manufacturers. In this paper, a new mass flow model is proposed based on the physical model of a radial turbine simplified as two nozzles in series. With the ideal nozzle flow equation applied on the turbine stator, the mass flow rate through the turbine can be expressed with three fitted coefficients which have clear physical meanings. Existing empirical and partly empirical models of turbine mass flow characteristics are reviewed and compared with the deduced model in the Matlab software. The results show that considering the number of fitted coefficients and the modeling accuracy, the deduced model performs well in regression analyses conducted with experimental data tested from three radial turbines of different sizes. Also interpolating and extrapolating performances of this new model can match the turbine model in the GT-Power commercial software. Thus this new model is sufficiently robust to model and extrapolate mass flow characteristics of the radial turbocharger turbine at off design operating conditions. - Highlights: • A physical based turbine model of mass flow characteristics is proposed. • Existing turbine mass flow models are reviewed and summarized. • Comparative analyses of the deduced model and existing models are conducted. • Interpolating and extrapolating abilities of the deduced model are evaluated
Nowcasting of precipitation by an NWP model using assimilation of extrapolated radar reflectivity
Sokol, Zbyněk; Zacharov, Petr, jr.
2012-01-01
Roč. 138, č. 665 (2012), s. 1072-1082. ISSN 0035-9009 Institutional support: RVO:68378289 Keywords : precipitation forecast * radar extrapolation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.327, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/qj.970/abstract
Steam generator tubes are subjected to two categories of corrosion; metal/sodium reactions and metal/water-steam interactions. Referring to these environmental conditions the relevant parameters are discussed. The influences of these parameters on the sodium corrosion and water/steam-reactions are evaluated. Extrapolations of corrosion values to steam generator design conditions are performed and discussed in detail. (author)
The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, (90 Sr/90 Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)
Using composite flow laws to extrapolate lab data on ice to nature
de Bresser, Hans; Diebold, Sabrina; Durham, William
2013-04-01
The progressive evolution of the grain size distribution of deforming and recrystallizing Earth materials directly affects their rheological behaviour in terms of composite grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep. After time, such microstructural evolution might result in strain progressing at a steady-state balance of mechanisms of GSS and GSI creep. In order to come to a meaningful rheological description of materials deforming by combined GSS and GSI mechanisms, composite flow laws are required that bring together individual, laboratory derived GSS and GSI flow laws, and that include full grain size distributions rather than single mean values representing the grain size. A composite flow law approach including grain size distributions has proven to be very useful in solving discrepancies between microstructural observations in natural calcite mylonites and extrapolations of relatively simple laboratory flow laws (Herwegh et al., 2005, J. Struct Geol., 27, 503-521). In the current study, we used previous and new laboratory data on the creep behavior of water ice to investigate if a composite flow law approach also results in better extrapolation of lab data to nature for ice. The new lab data resulted from static grain-growth experiments and from deformation experiments performed on samples with a starting grain size of either image analysis techniques. We also investigated natural microstructures in EPICA drilling ice core samples of Dronning Maud Land in Antartica. The temperature of the core ranges from 228 K at the surface to 272 K close to the bedrock. Grain size distributions (in 2D) were determined for all 41 samples studied. Combining the experimental grain-growth results with the results of the fine-grained and coarse-grained samples allows us to describe the experimental deformation of ice in terms of composite flow and to speculate about the evolution towards a balance between
Latychevskaia, Tatiana; Zontone, Federico; Fink, Hans-Werner
2015-01-01
We demonstrate enhancement in resolution of a noncrystalline object reconstructed from an experimental X-ray diffraction pattern by extrapolating the measured diffraction intensities beyond the detector area. The experimental record contains about 10% missing information, including the pixels in the center of the diffraction pattern. The extrapolation is done by applying an iterative routine. The optimal parameters for implementing the iterative routine, including initial padding distribution and an object support, are studied. Extrapolation results in resolution enhancement and better matching between the recovered and experimental amplitudes in the Fourier domain. The limits of the extrapolation procedure are discussed.
Extrapolate well logs based on the constrained interpolation algorithm%基于约束插值算法的井资料外推
刘红伟; 刘洪; 秦月霜; 首皓
2008-01-01
Based on a detailed analysis of differences between seismic data and well logs, we discuss the problem of matching seismic traces and well logs and present a new matching method based on event search in instantaneous phase which greatly improves seismic resolution. The method is based on flattening events in instantaneous phase to compare the seismic traces to the well log traces with the same phase. We calculate the coefficients using the singular value decomposition method to extrapolate the well logs. As a result, the events in the seismic profile are continuous and match well with well logs. We apply this method to the Mao-2 well in Daqing Oilfield with good results.
Rong, Lu; Wang, Dayong; Zhou, Xun; Huang, Haochong; Li, Zeyu; Wang, Yunxin
2014-01-01
We report here on terahertz (THz) digital holography on a biological specimen. A continuous-wave (CW) THz in-line holographic setup was built based on a 2.52 THz CO2 pumped THz laser and a pyroelectric array detector. We introduced novel statistical method of obtaining true intensity values for the pyroelectric array detector's pixels. Absorption and phase-shifting images of a dragonfly's hind wing were reconstructed simultaneously from single in-line hologram. Furthermore, we applied phase retrieval routines to eliminate twin image and enhanced the resolution of the reconstructions by hologram extrapolation beyond the detector area. The finest observed features are 35 {\\mu}m width cross veins.
Electric form factors of the octet baryons from lattice QCD and chiral extrapolation
We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q2 in the range 0.2-1.3 GeV2. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μpGEp/GMp. This quantity decreases with Q2 in a way qualitatively consistent with recent experimental results.
Agarwal, Amit B; McBride, Ali
2016-08-01
The World Health Organization defines a biosimilar as "a biotherapeutic product which is similar in terms of quality, safety and efficacy to an already licensed reference biotherapeutic product." Biosimilars are biologic medical products that are very distinct from small-molecule generics, as their active substance is a biological agent derived from a living organism. Approval processes are highly regulated, with guidance issued by the European Medicines Agency and US Food and Drug Administration. Approval requires a comparability exercise consisting of extensive analytical and preclinical in vitro and in vivo studies, and confirmatory clinical studies. Extrapolation of biosimilars from their original indication to another is a feasible but highly stringent process reliant on rigorous scientific justification. This review focuses on the processes involved in gaining biosimilar approval and extrapolation and details the comparability exercise undertaken in the European Union between originator erythropoietin-stimulating agent, Eprex(®), and biosimilar, Retacrit™. PMID:27317353
Neutron spectroscopy results of JET high-performance plasmas and extrapolations to DT performance
In a fusion reactor with high energy gain, the fusion power will be mainly thermonuclear (THN). Measurements of the THN neutron rate are a good performance indicator of a fusion plasma, requiring neutron emission spectroscopy (NES) measurements to distinguish thermal and nonthermal contributions. We report here on recent NES results from JET high-performance plasmas with high fractions (about 65%) of THN emission. The analysis is made with a framework for analyzing NES data, taking into account THN reactions and beam-target reactions. The results are used to extrapolate to the equivalent DT rates. Finally, we discuss the applicability of using NES in the deuterium phase of ITER, both for the extrapolations to ITER's future DT performance as well as for the measurements of confined energetic ions.
Neutron spectroscopy results of JET high-performance plasmas and extrapolations to DT performance.
Hellesen, C; Andersson Sundén, E; Conroy, S; Ericsson, G; Eriksson, J; Gatu Johnson, M; Weiszflog, M
2010-10-01
In a fusion reactor with high energy gain, the fusion power will be mainly thermonuclear (THN). Measurements of the THN neutron rate are a good performance indicator of a fusion plasma, requiring neutron emission spectroscopy (NES) measurements to distinguish thermal and nonthermal contributions. We report here on recent NES results from JET high-performance plasmas with high fractions (about 65%) of THN emission. The analysis is made with a framework for analyzing NES data, taking into account THN reactions and beam-target reactions. The results are used to extrapolate to the equivalent DT rates. Finally, we discuss the applicability of using NES in the deuterium phase of ITER, both for the extrapolations to ITER’s future DT performance as well as for the measurements of confined energetic ions. PMID:21058461
Infrared length scale and extrapolations for the no-core shell model
Wendt, K A; Papenbrock, T; Sääf, D
2015-01-01
We precisely determine the infrared (IR) length scale of the no-core shell model (NCSM). In the NCSM, the $A$-body Hilbert space is truncated by the total energy, and the IR length can be determined by equating the intrinsic kinetic energy of $A$ nucleons in the NCSM space to that of $A$ nucleons in a $3(A-1)$-dimensional hyper-radial well with a Dirichlet boundary condition for the hyper radius. We demonstrate that this procedure indeed yields a very precise IR length by performing large-scale NCSM calculations for $^{6}$Li. We apply our result and perform accurate IR extrapolations for bound states of $^{4}$He, $^{6}$He, $^{6}$Li, $^{7}$Li. We also attempt to extrapolate NCSM results for $^{10}$B and $^{16}$O with bare interactions from chiral effective field theory over tens of MeV.
Infrared length scale and extrapolations for the no-core shell model
Wendt, K. A.; Forssén, C.; Papenbrock, T.; Sääf, D.
2015-06-01
We precisely determine the infrared (IR) length scale of the no-core shell model (NCSM). In the NCSM, the A -body Hilbert space is truncated by the total energy, and the IR length can be determined by equating the intrinsic kinetic energy of A nucleons in the NCSM space to that of A nucleons in a 3 (A -1 ) -dimensional hyper-radial well with a Dirichlet boundary condition for the hyper radius. We demonstrate that this procedure indeed yields a very precise IR length by performing large-scale NCSM calculations for 6Li. We apply our result and perform accurate IR extrapolations for bound states of 4He,6He,6Li , and 7Li . We also attempt to extrapolate NCSM results for 10B and 16O with bare interactions from chiral effective field theory over tens of MeV.
131I-SPGP internal dosimetry: animal model and human extrapolation
Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's 125ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the 131I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131I were considered. (author)
131I-CRTX internal dosimetry: animal model and human extrapolation
Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumor cells but also in the processes of tumor cell adhesion, migration and angiogenesis. 125I-Crtx, a radiolabeled version of a peptide derived from Crotalus durissus terrificus snake venom, specifically binds to tumor and triggers apoptotic signalling. At the present work, 125I-Crtx biokinetic data (evaluated in mice bearing Erlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for 131I-Crtx. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131I in the tissue were considered in dose calculations. (author)
Improving Predictions with Reliable Extrapolation Schemes and Better Understanding of Factorization
More, Sushant N
2016-01-01
We investigate two distinct sources of uncertainty in low-energy nuclear physics calculations and develop ways to account for them. Harmonic oscillator basis expansions are widely used in ab-initio nuclear structure calculations. Finite computational resources usually require that the basis be truncated before observables are fully converged, necessitating reliable extrapolation schemes. We show that a finite oscillator basis effectively imposes a hard-wall boundary condition. We accurately determine the position of the hard-wall as a function of oscillator space parameters, derive extrapolation formulas for the energy and other observables, and discuss the extension of this approach to higher angular momentum. Nucleon knockout reactions have been widely used to study and understand nuclear properties. Such an analysis implicitly assumes that the effects of the probe can be separated from the physics of the target nucleus. This factorization between nuclear structure and reaction components depends on the ren...
{sup 131}I-SPGP internal dosimetry: animal model and human extrapolation
Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soprani, Juliana; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: hma@cdtn.br; Figueiredo, Suely Gomes de [Universidade Federal do Espirito Santo, (UFES), Vitoria, ES (Brazil). Dept. de Ciencias Fisiologicas. Lab. de Quimica de Proteinas
2009-07-01
Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's {sup 125}ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the {sup 131}I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I were considered. (author)
Molecular Dynamics/Order Parameter eXtrapolation (MD/OPX) for Bionanosystem Simulations
Miao, Yinglong; Ortoleva, Peter J.
2009-01-01
A multiscale approach, Molecular Dynamics/Order Parameter eXtrapolation (MD/OPX), to the all-atom simulation of large bionanosystems is presented. The approach starts with the introduction of a set of order parameters (OPs) automatically generated with orthogonal polynomials to characterize the nanoscale features of bionanosystems. The OPs are shown to evolve slowly via Newton’s equations and the all-atom multiscale analysis (AMA) developed earlier1 demonstrates the existence of their stochas...
Charge symmetry breaking from a chiral extrapolation of moments of quark distribution functions
Shanahan, P. E.; Thomas, A. W.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia)
2013-01-01
We present a determination, from lattice QCD, of charge symmetry violation in the spin- independent and spin-dependent parton distribution functions of the nucleon. This is done by chirally extrapolating recent QCDSF/UKQCD Collaboration lattice simulations of the first several Mellin moments of the parton distribution functions of octet baryons to the physical point. We find small chiral corrections for the polarized moments, while the corrections are quantitatively significant in the unpolar...
A Spatial Extrapolation Approach to Assess the Impact of Climate Change on Water Resource Systems
Pina, J.; Tilmant, A.; Anctil, F.
2015-12-01
The typical approach to assess climate change impacts on water resources systems is based on a vertical integration/coupling of models: GCM models are run to project future precipitations and temperatures, which are then downscaled and used as inputs to hydrologic models whose outputs are processed by water systems models. From a decision-making point of view, this top-down vertical approach presents some challenges. For example, since the range of uncertainty that can be explored with GCM is limited, researchers are relying on ensembles to enlarge the spread, making the modeling approach even more demanding in terms of computation time and resource. When a particular water system must be analyzed, the question is to know whether this computationally intensive vertical approach is necessary in the first place or if we could extrapolate projections available in neighboring systems to feed the water system model? This would be equivalent to a horizontal approach. The proposed study addresses this question by comparing the performance of a water resource system under future climate conditions using the vertical and horizontal approaches. The methodology is illustrated with the hydropower system of the Gatineau River Basin in Quebec, Canada. Vertically obtained hydrologic projections available in those river basins are extrapolated and used as inputs to a stochastic multireservoir optimization model. Two different extrapolation techniques are tested. The first one simply relies on the ratios between the drainage areas. The second exploits the covariance structure found in historical flow data throughout the region. The analysis of the simulation results reveals that the annual and weekly energy productions of the system derived from the horizontal approach are statistically equivalent to those obtained with the vertical one, regardless of the extrapolation technique used.
Schwahofer, Andrea [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Clinical Center Vivantes, Neukoelln (Germany). Dept. of Radiotherapy and Oncology; Baer, Esther [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Kuchenbecker, Stefan; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiology; Grossmann, J. Guenter [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Ortenau Klinikum Offenburg-Gengenbach (Germany). Dept. of Radiooncology; Sterzing, Florian [Heidelberg Univ. (Germany). Dept. of Radiation Oncology; German Cancer Research Center, Heidelberg (Germany). Dept. of Radiotherapy
2015-07-01
V. However, the dose uncertainty remains of the order of 10% to 20%. Thus, the improvement is not significant for radiotherapy planning. For amalgam with a density between steel and tungsten, monoenergetic data sets of a patient do not show substantial artifact reduction. The local dose uncertainties around the metal artifact determined for a static field are of the order of 5%. Although dental fillings are smaller than the phantom inserts, metal artifacts could not be reduced effectively. In conclusion, the image based monoenergetic extrapolation method does not provide efficient reduction of the consequences of CT-generated metal artifacts for radiation therapy planning, but the suitability of other MAR methods will be subsequently studied.