WorldWideScience

Sample records for sustained erk phosphorylation

  1. ERK phosphorylation regulates sleep and plasticity in Drosophila.

    Directory of Open Access Journals (Sweden)

    William M Vanderheyden

    Full Text Available Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERK(SEM pan-neuronally in the adult fly using GeneSwitch (Gsw Gsw-elav-GAL4. Conversely, disrupting ERK reduces sleep and prevents both the behavioral and structural plasticity normally induced by social enrichment. Finally, using transgenic flies carrying a cAMP response Element (CRE-luciferase reporter we show that activating ERK enhances CRE-Luc activity while disrupting ERK reduces it. These data suggest that ERK phosphorylation is an important mediator in transducing waking experience into sleep.

  2. The three α1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation.

    Science.gov (United States)

    Perez-Aso, M; Segura, V; Montó, F; Barettino, D; Noguera, M A; Milligan, G; D'Ocon, P

    2013-10-01

    We analyzed the kinetic and spatial patterns characterizing activation of the MAP kinases ERK 1 and 2 (ERK1/2) by the three α1-adrenoceptor (α1-AR) subtypes in HEK293 cells and the contribution of two different pathways to ERK1/2 phosphorylation: protein kinase C (PKC)-dependent ERK1/2 activation and internalization-dependent ERK1/2 activation. The different pathways of phenylephrine induced ERK phosphorylation were determined by western blot, using the PKC inhibitor Ro 31-8425, the receptor internalization inhibitor concanavalin A and the siRNA targeting β-arrestin 2. Receptor internalization properties were studied using CypHer5 technology and VSV-G epitope-tagged receptors. Activation of α1A- and α1B-ARs by phenylephrine elicited rapid ERK1/2 phosphorylation that was directed to the nucleus and inhibited by Ro 31-8425. Concomitant with phenylephrine induced receptor internalization α1A-AR, but not α1B-AR, produced a maintained and PKC-independent ERK phosphorylation, which was restricted to the cytosol and inhibited by β-arrestin 2 knockdown or concanavalin A treatment. α1D-AR displayed constitutive ERK phosphorylation, which was reduced by incubation with prazosin or the selective α1D antagonist BMY7378. Following activation by phenylephrine, α1D-AR elicited rapid, transient ERK1/2 phosphorylation that was restricted to the cytosol and not inhibited by Ro 31-8425. Internalization of the α1D-AR subtype was not observed via CypHer5 technology. The three α1-AR subtypes present different spatio-temporal patterns of receptor internalization, and only α1A-AR stimulation translates to a late, sustained ERK1/2 phosphorylation that is restricted to the cytosol and dependent on β-arrestin 2 mediated internalization. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. BAG3 controls angiogenesis through regulation of ERK phosphorylation.

    Science.gov (United States)

    Falco, A; Festa, M; Basile, A; Rosati, A; Pascale, M; Florenzano, F; Nori, S L; Nicolin, V; Di Benedetto, M; Vecchione, M L; Arra, C; Barbieri, A; De Laurenzi, V; Turco, M C

    2012-12-13

    BAG3 is a co-chaperone of the heat shock protein (Hsp) 70, is expressed in many cell types upon cell stress, however, its expression is constitutive in many tumours. We and others have previously shown that in neoplastic cells BAG3 exerts an anti-apoptotic function thus favoring tumour progression. As a consequence we have proposed BAG3 as a target of antineoplastic therapies. Here we identify a novel role for BAG3 in regulation of neo-angiogenesis and show that its downregulation results in reduced angiogenesis therefore expanding the role of BAG3 as a therapeutical target. In brief we show that BAG3 is expressed in endothelial cells and is essential for the interaction between ERK and its phosphatase DUSP6, as a consequence its removal results in reduced binding of DUSP6 to ERK and sustained ERK phosphorylation that in turn determines increased levels of p21 and p15 and cell-cycle arrest in the G1 phase.

  4. HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF-IIR expression for hypertension-induced cardiomyocyte hypertrophy.

    Science.gov (United States)

    Huang, Chih-Yang; Lee, Fa-Lun; Peng, Shu-Fen; Lin, Kuan-Ho; Chen, Ray-Jade; Ho, Tsung-Jung; Tsai, Fu-Jen; Padma, Vijaya V; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT 1 R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1 S303 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. © 2017 Wiley Periodicals, Inc.

  5. Chronic tooth pulp inflammation induces persistent expression of phosphorylated ERK (pERK) and phosphorylated p38 (pp38) in trigeminal subnucleus caudalis

    Science.gov (United States)

    Worsley, M.A.; Allen, C.E.; Billinton, A.; King, A.E.; Boissonade, F.M.

    2014-01-01

    Background Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase are transiently phosphorylated (activated) in the spinal cord and trigeminal nucleus by acute noxious stimuli. Acute stimulation of dental pulp induces short-lived ERK activation in trigeminal subnucleus caudalis (Vc), and p38 inhibition attenuates short-term sensitization in Vc induced by acute pulpal stimulation. We have developed a model to study central changes following chronic inflammation of dental pulp that induces long-term sensitization. Here, we examine the effects of chronic inflammation and acute stimulation on the expression of phosphorylated ERK (pERK), phosphorylated p38 (pp38) and Fos in Vc. Results Chronic inflammation alone induced bilateral expression of pERK and pp38 in Vc, but did not induce Fos expression. Stimulation of both non-inflamed and inflamed pulps significantly increased pERK and pp38 bilaterally; expression was greatest in inflamed, stimulated animals, and was similar following 10-min and 60-min stimulation. Stimulation for 60 min, but not 10 min, induced Fos in ipsilateral Vc; Fos expression was significantly greater in inflamed, stimulated animals. pERK was present in both neurons and astrocytes; pp38 was present in neurons and other non-neuronal, non-astrocytic cell types. Conclusions This study provides the first demonstration that chronic inflammation of tooth pulp induces persistent bilateral activation of ERK and p38 within Vc, and that this activation is further increased by acute stimulation. This altered activity in intracellular signaling is likely to be linked to the sensitization that is seen in our animal model and in patients with pulpitis. Our data indicate that pERK and pp38 are more accurate markers of central change than Fos expression. In our model, localization of pERK and pp38 within specific cell types differs from that seen following acute stimulation. This may indicate specific roles for different cell types in

  6. Trihydrophobin 1 Phosphorylation by c-Src Regulates MAPK/ERK Signaling and Cell Migration

    Science.gov (United States)

    Wu, Weibin; Sun, Zhichao; Wu, Jingwen; Peng, Xiaomin; Gan, Huacheng; Zhang, Chunyi; Ji, Lingling; Xie, Jianhui; Zhu, Haiyan; Ren, Shifang

    2012-01-01

    c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src. PMID:22238675

  7. Phosphorylation of paxillin via the ERK mitogen-activated protein kinase cascade in EL4 thymoma cells.

    Science.gov (United States)

    Ku, H; Meier, K E

    2000-04-14

    Intracellular signals can regulate cell adhesion via several mechanisms in a process referred to as "inside-out" signaling. In phorbol ester-sensitive EL4 thymoma cells, phorbol-12-myristate 13-acetate (PMA) induces activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases and promotes cell adhesion. In this study, clonal EL4 cell lines with varying abilities to activate ERKs in response to PMA were used to examine signaling events occurring downstream of ERK activation. Paxillin, a multifunctional docking protein involved in cell adhesion, was phosphorylated on serine/threonine residues in response to PMA treatment. This response was correlated with the extent and time course of ERK activation. PMA-induced phosphorylation of paxillin was inhibited by compounds that block the ERK activation pathway in EL4 cells, primary murine thymocytes, and primary murine splenocytes. Paxillin was phosphorylated in vitro by purified active ERK2. Two-dimensional electrophoresis revealed that PMA treatment generated a complex pattern of phosphorylated paxillin species in intact cells, some of which were generated by ERK-mediated phosphorylation in vitro. An ERK pathway inhibitor interfered with PMA-induced adhesion of sensitive EL4 cells to substrate. These findings describe a novel inside-out signaling pathway by which the ERK cascade may regulate events involved in adhesion.

  8. NANOG Is Multiply Phosphorylated and Directly Modified by ERK2 and CDK1 In Vitro

    Directory of Open Access Journals (Sweden)

    Justin Brumbaugh

    2014-01-01

    Full Text Available NANOG is a divergent homeobox protein and a core component of the transcriptional circuitry that sustains pluripotency and self-renewal. Although NANOG has been extensively studied on the transcriptional level, little is known regarding its posttranslational regulation, likely due to its low abundance and challenging physical properties. Here, we identify eleven phosphorylation sites on endogenous human NANOG, nine of which mapped to single amino acids. To screen for the signaling molecules that impart these modifications, we developed the multiplexed assay for kinase specificity (MAKS. MAKS simultaneously tests activity for up to ten kinases while directly identifying the substrate and exact site of phosphorylation. Using MAKS, we discovered site-specific phosphorylation by ERK2 and CDK1/CyclinA2, providing a putative link between key signaling pathways and NANOG.

  9. Differential phosphorylation of Smad1 integrates BMP and neurotrophin pathways through Erk/Dusp in axon development.

    Science.gov (United States)

    Finelli, Mattéa J; Murphy, Kevin J; Chen, Lei; Zou, Hongyan

    2013-05-30

    Sensory axon development requires concerted actions of growth factors for the precise control of axonal outgrowth and target innervation. How developing sensory neurons integrate different cues is poorly understood. We demonstrate here that Smad1 activation is required for neurotrophin-mediated sensory axon growth in vitro and in vivo. Through differential phosphorylation, Smad1 exerts transcriptional selectivity to regulate the expression and activity of Erk1 and Erk2-two key neurotrophin effectors. Specifically, bone morphogenetic proteins (BMPs) signal through carboxy-terminal phosphorylation of Smad1 (pSmad1C) to induce Erk1/2 transcription for enhanced neurotrophin responsiveness. Meanwhile, neurotrophin signaling results in linker phosphorylation of Smad1 (pSmad1L), which in turn upregulates an Erk-specific dual-specificity phosphatase, Dusp6, leading to reduced pErk1/2 and constituting a negative-feedback loop for the prevention of axon overgrowth. Together, the BMP and neurotrophin pathways form a tightly regulated signaling network with a balanced ratio of Erk1/2 and pErk1/2 to direct the precise connections between sensory neurons and peripheral targets. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Inesta-Vaquera, Francisco A. [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain); Campbell, David G.; Arthur, J. Simon C. [MRC Protein Phosphorylation Unit, Sir James Black Building, School of Life Sciences, University of Dundee, Dundee DD1 5EH (United Kingdom); Cuenda, Ana, E-mail: acuenda@cnb.csic.es [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain)

    2010-08-13

    Research highlights: {yields} hDlg is phosphorylated during mitosis in multiple residues. {yields} Prospho-hDlg is excluded from the midbody during mitosis. {yields} hDlg is not phosphorylated by p38{gamma} or JNK1/2 during mitosis. {yields} ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  11. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    International Nuclear Information System (INIS)

    Inesta-Vaquera, Francisco A.; Campbell, David G.; Arthur, J. Simon C.; Cuenda, Ana

    2010-01-01

    Research highlights: → hDlg is phosphorylated during mitosis in multiple residues. → Prospho-hDlg is excluded from the midbody during mitosis. → hDlg is not phosphorylated by p38γ or JNK1/2 during mitosis. → ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  12. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    International Nuclear Information System (INIS)

    Roffe, Suzy; Hagai, Yosey; Pines, Mark; Halevy, Orna

    2010-01-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  13. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roffe, Suzy [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Hagai, Yosey [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Pines, Mark [Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Halevy, Orna, E-mail: halevyo@agri.huji.ac.il [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel)

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  14. Potent homocysteine-induced ERK phosphorylation in cultured neurons depends on self-sensitization via system Xc-

    International Nuclear Information System (INIS)

    Gu Li; Hu Xiaoling; Xue Zhanxia; Yang Jun; Wan Lishu; Ren Yan; Hertz, Leif; Peng Liang

    2010-01-01

    Homocysteine is increased during pathological conditions, endangering vascular and cognitive functions, and elevated homocysteine during pregnancy may be correlated with an increased incidence of schizophrenia in the offspring. This study showed that millimolar homocysteine concentrations in saline medium cause phosphorylation of extracellular-signal regulated kinases 1 and 2 (ERK 1/2 ) in cerebellar granule neurons, inhibitable by metabotropic but not ionotropic glutamate receptor antagonists. These findings are analogous to observations by , that similar concentrations cause neuronal death. However, these concentrations are much higher than those occurring clinically during hyperhomocysteinemia. It is therefore important that a ∼ 10-fold increase in potency occurred in the presence of the glutamate precursor glutamine, when ERK 1/2 phosphorylation became inhibitable by NMDA or non-NMDA antagonists and dependent upon epidermal growth factor (EGF) receptor transactivation. However, glutamate release to the medium was reduced, suggesting that reversal of the cystine/glutamate antiporter, system X c - could be involved in potentiation of the response by causing a localized release of initially accumulated homocysteine. In agreement with this hypothesis further enhancement of ERK 1/2 phosphorylation occurred in the additional presence of cystine. Pharmacological inhibition of system X c - prevented the effect of micromolar homocysteine concentrations, and U0126-mediated inhibition of ERK 1/2 phosphorylation enhanced homocysteine-induced death. In conclusion, homocysteine interacts with system X c - like quisqualate (Venkatraman et al. 1994), by 'self-sensitization' with initial accumulation and subsequent release in exchange with cystine and/or glutamate, establishing high local homocysteine concentrations, which activate adjacent ionotropic glutamate receptors and cause neurotoxicity.

  15. Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increased phosphorylation of ERK1/2.

    Science.gov (United States)

    Chen, Chien-Min; Hsieh, Yi-Hsien; Hwang, Jin-Ming; Jan, Hsun-Jin; Hsieh, Shu-Ching; Lin, Shin-Huey; Lai, Chung-Yu

    2015-05-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid which is widely distributed in plants. It has been reported to possess some anticancer and anti-invasive capabilities. We set out to explore the effects of fisetin on antimetastatic and its mechanism of action in GBM8401 cells. The results indicated that fisetin exhibited effective inhibition of cell migration and inhibited the invasion of GBM8401 cells under non-cytotoxic concentrations. To identify the potential targets of fisetin, human proteinase antibody array analysis was performed, and the results indicated that the fisetin treatment inhibited the expression of ADAM9 protein and mRNA, which are known to contribute to the progression of glioma cancer. Our results showed that fisetin phosphorylated ERK1/2 in a sustained way that contributed to the inhibited ADAM9 protein and mRNA expression determined by Western blot and RT-PCR. Moreover, inhibition of ERK1/2 by U0126 or transfection with the siERK plasmid significantly abolished the fisetin-inhibited migration and invasion through activation of the ERK1/2 pathway. In summary, our results suggest that fisetin might be a potential therapeutic agent against human glioma cells based on its capacity to activate ERK1/2 and to inhibit ADAM9 expression.

  16. Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2.

    Science.gov (United States)

    Heightman, Tom D; Berdini, Valerio; Braithwaite, Hannah; Buck, Ildiko M; Cassidy, Megan; Castro, Juan; Courtin, Aurélie; Day, James E H; East, Charlotte; Fazal, Lynsey; Graham, Brent; Griffiths-Jones, Charlotte M; Lyons, John F; Martins, Vanessa; Muench, Sandra; Munck, Joanne M; Norton, David; O'Reilly, Marc; Palmer, Nick; Pathuri, Puja; Reader, Michael; Rees, David C; Rich, Sharna J; Richardson, Caroline; Saini, Harpreet; Thompson, Neil T; Wallis, Nicola G; Walton, Hugh; Wilsher, Nicola E; Woolford, Alison J-A; Cooke, Michael; Cousin, David; Onions, Stuart; Shannon, Jonathan; Watts, John; Murray, Christopher W

    2018-05-31

    Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.

  17. HSP27 phosphorylation modulates TRAIL-induced activation of Src-Akt/ERK signaling through interaction with β-arrestin2.

    Science.gov (United States)

    Qi, Shimei; Xin, Yinqiang; Qi, Zhilin; Xu, Yimiao; Diao, Ying; Lan, Lei; Luo, Lan; Yin, Zhimin

    2014-03-01

    Heat shock protein 27 (HSP27) regulates critical cellular functions such as development, differentiation, cell growth and apoptosis. A variety of stimuli induce the phosphorylation of HSP27, which affects its cellular functions. However, most previous studies focused on the role of HSP27 protein itself in apoptosis, the particular role of its phosphorylation state in signaling transduction remains largely unclear. In the present study, we reported that HSP27 phosphorylation modulated TRAIL-triggered pro-survival signaling transduction. In HeLa cells, suppression of HSP27 phosphorylation by specific inhibitor KRIBB3 or MAPKAPK2 (MK2) knockdown and by overexpression of non-phosphorylatable HSP27(3A) mutant demonstrated that hindered HSP27 phosphorylation enhanced the TRAIL-induced apoptosis. In addition, reduced HSP27 phosphorylation by KRIBB3 treatment or MK2 knockdown attenuated the TRAIL-induced activation of Akt and ERK survival signaling through suppressing the phosphorylation of Src. By overexpression of HSP27(15A) or HSP27(78/82A) phosphorylation mutant, we further showed that phosphorylation of HSP27 at serine 78/82 residues was essential to TRAIL-triggered Src-Akt/ERK signaling transduction. Co-immunoprecipitation and confocal microscopy showed that HSP27 interacted with Src and scaffolding protein β-arrestin2 in response of TRAIL stimulation and suppression of HSP27 phosphorylation apparently disrupted the TRAIL-induced interaction of HSP27 and Src or interaction of HSP27 and β-arrestin2. We further demonstrated that β-arrestin2 mediated HSP27 action on TRAIL-induced Src activation, which was achieved by recruiting signaling complex of HSP27/β-arrestin2/Src in response to TRAIL. Taken together, our study revealed that HSP27 phosphorylation modulates TRAIL-triggered activation of Src-Akt/ERK pro-survival signaling via interacting with β-arrestin2 in HeLa cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Tungstate-targeting of BKαβ1 channels tunes ERK phosphorylation and cell proliferation in human vascular smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ana Isabel Fernández-Mariño

    Full Text Available Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51% the tungstate-produced reduction of platelet-derived growth factor (PDGF-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle.

  19. Differential induction of c-Fos and phosphorylated ERK by a noxious stimulus after peripheral nerve injury.

    Science.gov (United States)

    Tabata, Mitsuyasu; Terayama, Ryuji; Maruhama, Kotaro; Iida, Seiji; Sugimoto, Tomosada

    2018-03-01

    In this study, we compared induction of c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) in the spinal dorsal horn after peripheral nerve injury. We examined the spinal dorsal horn for noxious heat-induced c-Fos and p-ERK protein-like immunoreactive (c-Fos- and p-ERK-IR) neuron profiles after tibial nerve injury. The effect of administration of a MEK 1/2 inhibitor (PD98059) on noxious heat-induced c-Fos expression was also examined after tibial nerve injury. A large number of c-Fos- and p-ERK-IR neuron profiles were induced by noxious heat stimulation to the hindpaw in sham-operated animals. A marked reduction in the number of c-Fos- and p-ERK-IR neuron profiles was observed in the medial 1/3 (tibial territory) of the dorsal horn at 3 and 7 days after nerve injury. Although c-Fos-IR neuron profiles had reappeared by 14 days after injury, the number of p-ERK-IR neuron profiles remained decreased in the tibial territory of the superficial dorsal horn. Double immunofluorescence labeling for c-Fos and p-ERK induced by noxious heat stimulation to the hindpaw at different time points revealed that a large number of c-Fos-IR, but not p-ERK-IR, neuron profiles were distributed in the tibial territory after injury. Although administration of a MEK 1/2 inhibitor to the spinal cord suppressed noxious heat-induced c-Fos expression in the peroneal territory, this treatment did not alter c-Fos induction in the tibial territory after nerve injury. ERK phosphorylation may be involved in c-Fos induction in normal nociceptive responses, but not in exaggerated c-Fos induction after nerve injury.

  20. Optimizing an Intermittent Stretch Paradigm Using ERK1/2 Phosphorylation Results in Increased Collagen Synthesis in Engineered Ligaments

    Science.gov (United States)

    Paxton, Jennifer Z.; Hagerty, Paul; Andrick, Jonathan J.

    2012-01-01

    Dynamic mechanical input is believed to play a critical role in the development of functional musculoskeletal tissues. To study this phenomenon, cyclic uniaxial mechanical stretch was applied to engineered ligaments using a custom-built bioreactor and the effects of different stretch frequency, amplitude, and duration were determined. Stretch acutely increased the phosphorylation of p38 (3.5±0.74-fold), S6K1 (3.9±0.19-fold), and ERK1/2 (2.45±0.32-fold). The phosphorylation of ERK1/2 was dependent on time, rather than on frequency or amplitude, within these constructs. ERK1/2 phosphorylation was similar following stretch at frequencies from 0.1 to 1 Hz and amplitudes from 2.5% to 15%, whereas phosphorylation reached maximal levels at 10 min of stretch and returned toward basal within 60 min of stretch. Following a single 10-min bout of cyclic stretch, the cells remained refractory to a second stretch for up to 6 h. Using the phosphorylation of ERK1/2 as a guide, the optimum stretch paradigm was hypothesized to be 10 min of stretch at 2.5% of resting length repeated every 6 h. Consistent with this hypothesis, 7 days of stretch using this optimized intermittent stretch program increased the collagen content of the grafts more than a continuous stretch program (CTL=3.1%±0.44%; CONT=4.8%±0.30%; and INT=5.9%±0.56%). These results suggest that short infrequent bouts of loading are optimal for improving engineered tendon and ligament physiology. PMID:21902469

  1. Csk-Induced Phosphorylation of Src at Tyrosine 530 is Essential for H2O2-Mediated Suppression of ERK1/2 in Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Jeon, Bo Kyung; Kwon, Kihwan; Kang, Jihee Lee; Choi, Youn-Hee

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) are key signal transducers involved in various cellular events such as growth, proliferation, and differentiation. Previous studies have reported that H2O2 leads to phosphorylation of extracellular signal-regulated kinase (ERK), one of the MAPKs in endothelial cells. The current study shows that H2O2 suppressed ERK1/2 activation and phosphorylation at specific concentrations and times in human umbilical vein endothelial cells but not in immortalized mouse aortic endothelial cells or human astrocytoma cell line CRT-MG. Phosphorylation of other MAPK family members (i.e., p38 and JNK) was not suppressed by H2O2. The decrease in ERK1/2 phosphorylation induced by H2O2 was inversely correlated with the level of phosphorylation of Src tyrosine 530. Using siRNA, it was found that H2O2-induced suppression of ERK1/2 was dependent on Csk. Physiological laminar flow abrogated, but oscillatory flow did not affect, the H2O2-induced suppression of ERK1/2 phosphorylation. In conclusion, H2O2-induced Csk translocation to the plasma membrane leads to phosphorylation of Src at the tyrosine 530 residue resulting in a reduction of ERK1/2 phosphorylation. Physiological laminar flow abrogates this effect of H2O2 by inducing phosphorylation of Src tyrosine 419. These findings broaden our understanding of signal transduction mechanisms in the endothelial cells against oxidative stress. PMID:26234813

  2. Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Skladchikova, Galina; Lepekhin, Eugene E

    2010-01-01

    lines (BT4C, BT4Cn, U87MG, N2a, PC12-E2, CSML0, CSML100, HeLa, L929, Swiss 3T3). Results: VPA induced significant histone deacetylase (HDAC) inhibition in most of the cell lines, but the degree of inhibition was highly cell type-specific. Moreover, cell growth, motility and the degree of Erk1......ABSTRACT: BACKGROUND: The anti-epileptic drug valproic acid (VPA) has attracted attention as an anti-cancer agent. Methods: The present study investigated effects of VPA exposure on histone deacetylase (HDAC) inhibition, cell growth, cell speed, and the degree of Erk1/2 phosphorylation in 10 cell....../2 phosphorylation were inhibited, activated, or unaffected by VPA in a cell type-specific manner. Importantly, no relationship was found between the effects of VPA on HDAC inhibition and changes in the degree of Erk1/2 phosphorylation, cell growth, or motility. In contrast, VPA-induced modulation of the MAPK...

  3. ROS mediates interferon gamma induced phosphorylation of Src, through the Raf/ERK pathway, in MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Zibara, Kazem; Zeidan, Asad; Bjeije, Hassan; Kassem, Nouhad; Badran, Bassam; El-Zein, Nabil

    2017-03-01

    Interferon gamma (IFN-ɣ) is a pleiotropic cytokine which plays dual contrasting roles in cancer. Although IFN-ɣ has been clinically used to treat various malignancies, it was recently shown to have protumorigenic activities. Reactive oxygen species (ROS) are overproduced in cancer cells, mainly due to NADPH oxidase activity, which results into several changes in signaling pathways. In this study, we examined IFN-ɣ effect on the phosphorylation levels of key signaling proteins, through ROS production, in the human breast cancer cell line MCF-7. After treatment by IFN-ɣ, results showed a significant increase in the phosphorylation of STAT1, Src, raf, AKT, ERK1/2 and p38 signaling molecules, in a time specific manner. Src and Raf were found to be involved in early stages of IFN-ɣ signaling since their phosphorylation increased very rapidly. Selective inhibition of Src-family kinases resulted in an immediate significant decrease in the phosphorylation status of Raf and ERK1/2, but not p38 and AKT. On the other hand, IFN-ɣ resulted in ROS generation, through H 2 O 2 production, whereas pre-treatment with the ROS inhibitor NAC caused ROS inhibition and a significant decrease in the phosphorylation levels of AKT, ERK1/2, p38 and STAT1. Moreover, pretreatment with a selective NOX1 inhibitor resulted in a significant decrease of AKT phosphorylation. Finally, no direct relationship was found between ROS production and calcium mobilization. In summary, IFN-ɣ signaling in MCF-7 cell line is ROS-dependent and follows the Src/Raf/ERK pathway whereas its signaling through the AKT pathway is highly dependent on NOX1.

  4. Hydroxychloroquine Protects against Cardiac Ischaemia/Reperfusion Injury In Vivo via Enhancement of ERK1/2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Lauren Bourke

    Full Text Available An increasing number of investigations including human studies demonstrate that pharmacological ischaemic preconditioning is a viable way to protect the heart from myocardial ischaemia/reperfusion (I/R injury. This study investigated the role of hydroxychloroquine (HCQ in the heart during I/R injury. In vitro and in vivo models of myocardial I/R injury were used to assess the effects of HCQ. It was found that HCQ was protective in neonatal rat cardiomyocytes through inhibition of apoptosis, measured by TUNEL and cleaved caspase-3. This protection in vitro was mediated through enhancement of ERK1/2 phosphorylation mediated by HCQ in a dose-dependent fashion. A decrease in infarct size was observed in an in vivo model of myocardial I/R injury in HCQ treated animals and furthermore this protection was blocked in the presence of the ERK1/2 inhibitor U0126. For the first time, we have shown that HCQ promotes a preconditioning like protection in an in vivo simulated rat myocardial I/R injury model. Moreover, it was shown that HCQ is protective via enhanced phosphorylation of the pro-survival kinase ERK1/2.

  5. Invasive ability of human renal cell carcinoma cell line Caki-2 is accelerated by gamma-aminobutyric acid, via sustained activation of ERK1/2 inducible matrix metalloproteinases.

    Science.gov (United States)

    Inamoto, Teruo; Azuma, Haruhito; Sakamoto, Takeshi; Kiyama, Satoshi; Ubai, Takanobu; Kotake, Yatsugu; Watanabe, Masahito; Katsuoka, Yoji

    2007-10-01

    Gamma-aminobutyric acid (GABA) was first discovered as an inhibitory neurotransmitter in the central nervous system (CNS) and has been reported to have a variety of functions, including regulation of cell division, cell differentiation and maturation, and to be involved in the development of certain cancers outside the CNS. In the present study, using the human renal cell carcinoma cell line Caki-2, we demonstrated that GABA stimulation significantly increased the expression of MMP-2 and -9 and subsequently increased the invasive activity of the cancer cells. Because MAPK signaling is one of the key regulators of MMP expression, we further evaluated MAPK signaling after stimulation with GABA. It was found that GABA stimulation promoted the phosphorylation of MAPKs, including ERK1/2, JNK, and p38. ERK1/2 phosphorylation was sustained for up to 12 h, while phosphorylation of JNK and p38 returned to the endogenous level by 30 min. It was noteworthy that the ras/raf/MEK/ERK pathway inhibitor PD98059 attenuated GABA-induced MMP-9 expression and that both PD98059 and MMP inhibitors attenuated the GABA-induced invasive activity of Caki-2 cells. Moreover, data obtained by depletion of the MEK/ERK pathway using interfering RNA transfection of Caki-2 cells clearly corroborated the above results, as both MMP-9 expression and GABA-induced invasive ability were decreased significantly. We also demonstrated that the GABA-induced increase in invasive ability via ERK1/2 up-regulation was mediated mainly through the GABA-B receptor. These results indicate that GABA stimulation promotes cancer cell invasion and that the effect is partly due to ERK1/2-dependent up-regulation of MMPs.

  6. Effects of Forced Swimming Stress on ERK and Histone H3 Phosphorylation in Limbic Areas of Roman High- and Low-Avoidance Rats.

    Science.gov (United States)

    Morello, Noemi; Plicato, Ornella; Piludu, Maria Antonietta; Poddighe, Laura; Serra, Maria Pina; Quartu, Marina; Corda, Maria Giuseppa; Giorgi, Osvaldo; Giustetto, Maurizio

    2017-01-01

    Stressful events evoke molecular adaptations of neural circuits through chromatin remodeling and regulation of gene expression. However, the identity of the molecular pathways activated by stress in experimental models of depression is not fully understood. We investigated the effect of acute forced swimming (FS) on the phosphorylation of the extracellular signal-regulated kinase (ERK)1/2 (pERK) and histone H3 (pH3) in limbic brain areas of genetic models of vulnerability (RLA, Roman low-avoidance rats) and resistance (RHA, Roman high-avoidance rats) to stress-induced depression-like behavior. We demonstrate that FS markedly increased the density of pERK-positive neurons in the infralimbic (ILCx) and the prelimbic area (PrLCx) of the prefrontal cortex (PFCx), the nucleus accumbens, and the dorsal blade of the hippocampal dentate gyrus to the same extent in RLA and RHA rats. In addition, FS induced a significant increase in the intensity of pERK immunoreactivity (IR) in neurons of the PFCx in both rat lines. However, RHA rats showed stronger pERK-IR than RLA rats in the ILCx both under basal and stressed conditions. Moreover, the density of pH3-positive neurons was equally increased by FS in the PFCx of both rat lines. Interestingly, pH3-IR was higher in RHA than RLA rats in PrLCx and ILCx, either under basal conditions or upon FS. Finally, colocalization analysis showed that in the PFCx of both rat lines, almost all pERK-positive cells express pH3, whereas only 50% of the pH3-positive neurons is also pERK-positive. Moreover, FS increased the percentage of neurons that express exclusively pH3, but reduced the percentage of cells expressing exclusively pERK. These results suggest that (i) the distinctive patterns of FS-induced ERK and H3 phosphorylation in the PFCx of RHA and RLA rats may represent molecular signatures of the behavioural traits that distinguish the two lines and (ii) FS-induced H3 phosphorylation is, at least in part, ERK-independent.

  7. ERK2-Mediated Phosphorylation of Transcriptional Coactivator Binding Protein PIMT/NCoA6IP at Ser298 Augments Hepatic Gluconeogenesis

    Science.gov (United States)

    Parsa, Kishore V. L.; Kain, Vasundhara; Behera, Soma; Suraj, Sashidhara Kaimal; Babu, Phanithi Prakash; Kar, Anand; Panda, Sunanda; Zhu, Yi-jun; Jia, Yuzhi; Thimmapaya, Bayar; Reddy, Janardan K.; Misra, Parimal

    2013-01-01

    PRIP-Interacting protein with methyl transferase domain (PIMT) serves as a molecular bridge between CREB-binding protein (CBP)/ E1A binding protein p300 (Ep300) -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1) and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser298 and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMTS298D) suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMTS298D but not PIMTS298A augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser298 phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser298 is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia. PMID:24358311

  8. Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminae III and IV of the rat spinal dorsal horn following noxious stimulation

    Directory of Open Access Journals (Sweden)

    Watanabe Masahiko

    2007-02-01

    Full Text Available Abstract Background There is a population of large neurons with cell bodies in laminae III and IV of the spinal dorsal horn which express the neurokinin 1 receptor (NK1r and have dendrites that enter the superficial laminae. Although it has been shown that these are all projection neurons and that they are innervated by substance P-containing (nociceptive primary afferents, we know little about their responses to noxious stimuli. In this study we have looked for phosphorylation of extracellular signal-regulated kinases (ERKs in these neurons in response to different types of noxious stimulus applied to one hindlimb of anaesthetised rats. The stimuli were mechanical (repeated pinching, thermal (immersion in water at 52°C or chemical (injection of 2% formaldehyde. Results Five minutes after each type of stimulus we observed numerous cells with phosphorylated ERK (pERK in laminae I and IIo, together with scattered positive cells in deeper laminae. We found that virtually all of the lamina III/IV NK1r-immunoreactive neurons contained pERK after each of these stimuli and that in the great majority of cases there was internalisation of the NK1r on the dorsal dendrites of these cells. In addition, we also saw neurons in lamina III that were pERK-positive but lacked the NK1r, and these were particularly evident in animals that had had the pinch stimulus. Conclusion Our results demonstrate that lamina III/IV NK1r-immunoreactive neurons show receptor internalisation and ERK phosphorylation after mechanical, thermal or chemical noxious stimuli.

  9. LIN28 phosphorylation by MAPK/ERK couples signaling to the post-transcriptional control of pluripotency

    Science.gov (United States)

    Tsanov, Kaloyan M.; Pearson, Daniel S.; Wu, Zhaoting; Han, Areum; Triboulet, Robinson; Seligson, Marc T.; Powers, John T.; Osborne, Jihan K.; Kane, Susan; Gygi, Steven P.; Gregory, Richard I.; Daley, George Q.

    2016-01-01

    Signaling and post-transcriptional gene control are both critical for the regulation of pluripotency1,2, yet how they are integrated to influence cell identity remains poorly understood. LIN28 (also known as LIN28A), a highly conserved RNA-binding protein (RBP), has emerged as a central post-transcriptional regulator of cell fate through blockade of let-7 microRNA (miRNA) biogenesis and direct modulation of mRNA translation3. Here we show that LIN28 is phosphorylated by MAPK/ERK in pluripotent stem cells (PSCs), which increases its levels via post-translational stabilization. LIN28 phosphorylation had little impact on let-7 but enhanced LIN28’s effect on its direct mRNA targets, revealing a mechanism that uncouples LIN28’s let-7-dependent and independent activities. We have linked this mechanism to the induction of pluripotency by somatic cell reprogramming and the transition from naïve to primed pluripotency. Collectively, our findings indicate that MAPK/ERK directly impacts LIN28, defining an axis that connects signaling, post-transcriptional gene control, and cell fate regulation. PMID:27992407

  10. Transcutaneous electrical nerve stimulation on Yongquan acupoint reduces CFA-induced thermal hyperalgesia of rats via down-regulation of ERK2 phosphorylation and c-Fos expression.

    Science.gov (United States)

    Yang, Lin; Yang, Lianxue; Gao, Xiulai

    2010-07-01

    Activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and its involvement in regulating gene expression in spinal dorsal horn, cortical and subcortical neurons by peripheral noxious stimulation contribute to pain hypersensitivity. Transcutaneous electrical nerve stimulation (TENS) is a treatment used in physiotherapy practice to promote analgesia in acute and chronic inflammatory conditions. In this study, a total number of 114 rats were used for three experiments. Effects of complete Freund's adjuvant (CFA)-induced inflammatory pain hypersensitivity and TENS analgesia on ERK1/2 phosphorylation and c-Fos protein expression were examined by using behavioral test, Western blot, and immunostaining methods. We found that CFA injection caused an area of localized swelling, erythema, hypersensitivity to thermal stimuli, the decreased response time of hind paw licking (HPL), as well as upregulation of c-Fos protein expression and ERK2 phosphorylation in the ipsilateral spinal dorsal horn and the contralateral primary somatosensory area of cortex and the amygdala of rats. TENS on Yongquan acupoint for 20 min produced obvious analgesic effects as demonstrated with increased HPL to thermal stimuli of CFA-treated rats. In addition, TENS application suppressed the CFA-induced ERK2 activation and c-Fos protein expression. These results suggest that down-regulation of ERK2 phosphorylation and c-Fos expression were involved in TENS inhibition on CFA-induced thermal hyperalgesia of rats.

  11. Involvement of ERK phosphorylation of trigeminal spinal subnucleus caudalis neurons in thermal hypersensitivity in rats with infraorbital nerve injury.

    Directory of Open Access Journals (Sweden)

    Ikuko Suzuki

    Full Text Available To evaluate the involvement of the mitogen-activated protein kinase (MAPK cascade in orofacial neuropathic pain mechanisms, this study assessed nocifensive behavior evoked by mechanical or thermal stimulation of the whisker pad skin, phosphorylation of extracellular signal-regulated kinase (ERK in trigeminal spinal subnucleus caudalis (Vc neurons, and Vc neuronal responses to mechanical or thermal stimulation of the whisker pad skin in rats with the chronic constriction nerve injury of the infraorbital nerve (ION-CCI. The mechanical and thermal nocifensive behavior was significantly enhanced on the side ipsilateral to the ION-CCI compared to the contralateral whisker pad or sham rats. ION-CCI rats had an increased number of phosphorylated ERK immunoreactive (pERK-IR cells which also manifested NeuN-IR but not GFAP-IR and Iba1-IR, and were significantly more in ION-CCI rats compared with sham rats following noxious but not non-noxious mechanical stimulation. After intrathecal administration of the MEK1 inhibitor PD98059 in ION-CCI rats, the number of pERK-IR cells after noxious stimulation and the enhanced thermal nocifensive behavior but not the mechanical nocifensive behavior were significantly reduced in ION-CCI rats. The enhanced background activities, afterdischarges and responses of wide dynamic range neurons to noxious mechanical and thermal stimulation in ION-CCI rats were significantly depressed following i.t. administration of PD98059, whereas responses to non-noxious mechanical and thermal stimulation were not altered. The present findings suggest that pERK-IR neurons in the Vc play a pivotal role in the development of thermal hypersensitivity in the face following trigeminal nerve injury.

  12. SNT-2 interacts with ERK2 and negatively regulates ERK2 signaling in response to EGF stimulation

    International Nuclear Information System (INIS)

    Huang Lin; Gotoh, Noriko; Zhang Shengliang; Shibuya, Masabumi; Yamamoto, Tadashi; Tsuchida, Nobuo

    2004-01-01

    The control of cellular responses with fibroblast growth factors and neurotrophins is mediated through membrane-linked docking proteins, SNT (suc1-binding neurotrophic target)-1/FRS2α and SNT-2/FRS2β. ERK1/2 are members of the mitogen-activated protein kinase family that regulate diverse cellular activities in response to various stimuli. Here, we demonstrate that SNT-2 does not become tyrosine phosphorylated significantly in response to EGF but forms a complex with ERK2 via the region of 186-252 amino acid residues, and the complex formation is enhanced upon EGF stimulation. SNT-2 downregulates ERK2 phosphorylation, suppresses and delays ERK2 nuclear accumulation which occurs following EGF stimulation. In contrast, the mutant SNT-2 which carries deletion of 186-252 amino acids and lacks ERK2 binding does not have these effects. These observations suggest that SNT-2 negatively regulates ERK2 signaling activated via EGF stimulation through direct binding to ERK2

  13. Augmenter of liver regeneration causes different kinetics of ERK1/2 and Akt/PKB phosphorylation than EGF and induces hepatocyte proliferation in an EGF receptor independent and liver specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Ilowski, Maren; Putz, Christine [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Weiss, Thomas S. [Department of Surgery, University of Regensburg Hospital, Regensburg (Germany); Brand, Stephan [Department of Internal Medicine II, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Jauch, Karl-Walter [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Hengstler, Jan G. [Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund (Germany); Thasler, Wolfgang Erwin, E-mail: wolfgang.thasler@med.uni-muenchen.de [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany)

    2010-04-16

    Background/Aim: Augmenter of liver regeneration (ALR) is a potent growth factor which supports liver regeneration in experimental animals. The aim of this study was to compare proliferation as well as the kinetics of ERK1/2 and Akt/PKB phosphorylation by recombinant human ALR (rhALR) and EGF in human hepatocytes and extrahepatic cells. Methods: Kinetics of ERK1/2 and Akt/PKB phosphorylation were determined in primary human hepatocytes (phh) after stimulation with rhALR and EGF. Induction of proliferation was analyzed in phh and several cell lines of hepatic and extrahepatic origin by the MTT and [{sup 3}H]-thymidine assay. Results: The kinetics of ERK phosphorylation showed clear differences, whereby rhALR caused a transient and EGF a permanent increase during the observation period of 60 min. For both, Akt and ERK phosphorylation, EGF caused a faster effect with maximal levels observed already after 2 min, whereas rhALR caused maximal phosphorylation between 10 and 15 min. Using the EGF receptor inhibitor AG1478 we provide evidence of an EGF receptor independent induction of proliferation by rhALR. Furthermore, rhALR induced proliferation only in phh and the human liver derived cell lines HepG2 and Chang. In contrast, EGF enhanced proliferation in all analyzed cell types including cell lines of colon, bronchial, pancreatic and gastric origin (SW480, BC1, L36PL and GC1). Conclusion: rhALR and EGF induce different kinetics of ERK and Akt phosphorylation in human hepatocytes. The mitogenic effect of rhALR is liver specific and seems to be at least partially independent from EGF receptor mediated signaling.

  14. [Effects of electromagnetic radiation on RAF/MEK/ERK signaling pathway in rats hippocampus].

    Science.gov (United States)

    Zuo, Hong-yan; Wang, De-wen; Peng, Rui-yun; Wang, Shui-ming; Gao, Ya-bing; Xu, Xin-ping; Ma, Jun-Jie

    2009-05-01

    To study the development of changes for signaling molecules related to Raf/MEK/ERK pathway in hippocampus of rats after electromagnetic radiation, and investigate the mechanisms of radiation injury. Rats were exposed to X-HPM, S-HPM and EMP radiation source respectively, and animal model of electromagnetic radiation was established. Western blot was used to detect the expression of Raf-1, phosphorylated Raf-1 and phospholylated ERK. The expression of Raf-1 down-regulated during 6 h-14 d after radiation, most significantly at 7 d, and recovered at 28 d. There was no significant difference between the radiation groups. The expression of phosphorylated Raf-1 and phosphorylated ERK both up-regulated at 6 h and 7 d after radiation, more significantly at 6 h, and the two microwave groups were more serious for phosphorylated ERK. During 6 h-14 d after S-HPM radiation, the expression of phosphorylated Raf-1 increased continuously, but phosphorylated ERK changed wavily, 6 h and 7 d were expression peak. Raf/MEK/ERK signaling pathway participates in the hippocampus injury induced by electromagnetic radiation. The excessive activation of ERK pathway may result in the apoptosis and death of neurons, which is the important mechanism of recognition disfunction caused by electromagnetic radiation.

  15. Dorsal hippocampal NMDA receptor blockade impairs extinction of naloxone-precipitated conditioned place aversion in acute morphine-treated rats by suppressing ERK and CREB phosphorylation in the basolateral amygdala.

    Science.gov (United States)

    Wang, Wei-Sheng; Chen, Zhong-Guo; Liu, Wen-Tao; Chi, Zhi-Qiang; He, Ling; Liu, Jing-Gen

    2015-01-01

    Substantial evidence shows that negative reinforcement resulting from the aversive affective consequences of opiate withdrawal may play a crucial role in drug relapse. Understanding the mechanisms underlying the loss (extinction) of conditioned aversion of drug withdrawal could facilitate the treatment of drug addiction. Naloxone-induced conditioned place aversion (CPA) of Sprague-Dawley rats was used to measure conditioned aversion. An NMDA receptor antagonist and MAPK kinase inhibitor were applied through intracranial injections. The phosphorylation of ERK and cAMP response element-binding protein (CREB) was detected using Western blot. The extinction of CPA behaviour increased the phosphorylation of ERK and CREB in the dorsal hippocampus (DH) and basolateral amygdala (BLA), but not in the central amygdala (CeA). Intra-DH injection of AP5 or intra-BLA injection of AP-5 or U0126 before extinction training significantly attenuated ERK and CREB phosphorylation in the BLA and impaired the extinction of CPA behaviour. Although intra-DH injections of AP-5 attenuated extinction training-induced activation of the ERK-CREB pathway in the BLA, intra-BLA injection of AP5 had no effect on extinction training-induced activation of the ERK-CREB pathway in the DH. These results suggest that activation of ERK and CREB in the BLA and DH is involved in the extinction of CPA behaviour and that the DH, via a direct or indirect pathway, modulates the activity of ERK and CREB in the BLA through activation of NMDA receptors after extinction training. Understanding the mechanisms underlying the extinction of conditioned aversion could facilitate the treatment of drug addiction. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  16. γ-aminobutyric acidA (GABAA) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    International Nuclear Information System (INIS)

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing; Chen Jingyuan

    2009-01-01

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA A receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA A receptor α1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA A receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  17. Limits to sustainable muscle performance: interaction between glycolysis and oxidative phosphorylation.

    Science.gov (United States)

    Conley, K E; Kemper, W F; Crowther, G J

    2001-09-01

    This paper proposes a mechanism responsible for setting the sustainable level of muscle performance. Our contentions are that the sustainable work rate is determined (i) at the muscle level, (ii) by the ability to maintain ATP supply and (iii) by the products of glycolysis that may inhibit the signal for oxidative phosphorylation. We argue below that no single factor 'limits' sustainable performance, but rather that the flux through and the interaction between glycolysis and oxidative phosphorylation set the level of sustainable ATP supply. This argument is based on magnetic resonance spectroscopy measurements of the sources and sinks for energy in vivo in human muscle and rattlesnake tailshaker muscle during sustained contractions. These measurements show that glycolysis provides between 20% (human muscle) and 40% (tailshaker muscle) of the ATP supply during sustained contractions in these muscles. We cite evidence showing that this high glycolytic flux does not reflect an O(2) limitation or mitochondria operating at their capacity. Instead, this flux reflects a pathway independent of oxidative phosphorylation for ATP supply during aerobic exercise. The consequence of this high glycolytic flux is accumulation of H(+), which we argue inhibits the rise in the signal activating oxidative phosphorylation, thereby restricting oxidative ATP supply to below the oxidative capacity. Thus, both glycolysis and oxidative phosphorylation play important roles in setting the highest steady-state ATP synthesis flux and thereby determine the sustainable level of work by exercising muscle.

  18. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ.

    Science.gov (United States)

    Banks, Alexander S; McAllister, Fiona E; Camporez, João Paulo G; Zushin, Peter-James H; Jurczak, Michael J; Laznik-Bogoslavski, Dina; Shulman, Gerald I; Gygi, Steven P; Spiegelman, Bruce M

    2015-01-15

    Obesity-linked insulin resistance is a major precursor to the development of type 2 diabetes. Previous work has shown that phosphorylation of PPARγ (peroxisome proliferator-activated receptor γ) at serine 273 by cyclin-dependent kinase 5 (Cdk5) stimulates diabetogenic gene expression in adipose tissues. Inhibition of this modification is a key therapeutic mechanism for anti-diabetic drugs that bind PPARγ, such as the thiazolidinediones and PPARγ partial agonists or non-agonists. For a better understanding of the importance of this obesity-linked PPARγ phosphorylation, we created mice that ablated Cdk5 specifically in adipose tissues. These mice have both a paradoxical increase in PPARγ phosphorylation at serine 273 and worsened insulin resistance. Unbiased proteomic studies show that extracellular signal-regulated kinase (ERK) kinases are activated in these knockout animals. Here we show that ERK directly phosphorylates serine 273 of PPARγ in a robust manner and that Cdk5 suppresses ERKs through direct action on a novel site in MAP kinase/ERK kinase (MEK). Importantly, pharmacological inhibition of MEK and ERK markedly improves insulin resistance in both obese wild-type and ob/ob mice, and also completely reverses the deleterious effects of the Cdk5 ablation. These data show that an ERK/Cdk5 axis controls PPARγ function and suggest that MEK/ERK inhibitors may hold promise for the treatment of type 2 diabetes.

  19. Inhibition of the ERK phosphorylation plays a role in terbinafine-induced p21 up-regulation and DNA synthesis inhibition in human vascular endothelial cells

    International Nuclear Information System (INIS)

    Ho, P.-Y.; Hsu, S.-P.; Liang, Y.-C.; Kuo, M.-L.; Ho, Y.-S.; Lee, W.-S.

    2008-01-01

    Previously, we showed that terbinafine (TB) induces cell-cycle arrest in cultured human umbilical vein endothelial cells (HUVEC) through an up-regulation of the p21 protein. The aim of this study is to delineate the molecular mechanisms underlying TB-induced increase of p21 protein. RT-PCR analysis demonstrated that the mRNA levels of p21 and p53 were increased in the TB-treated HUVEC. The p21 promoter activity was also increased by TB treatment. Transfection of HUVEC with p53 dominant negative (DN) abolished the TB-induced increases of p21 promoter activity and protein level, suggesting that the TB-induced increase of p21 is p53-dependent. Western blot analysis demonstrated that TB decreased the levels of phosphorylated extracellular signal-regulated kinase (ERK). Over-expression of mitogen-activated protein kinase (MEK)-1, the immediate upstream activator kinase of ERK, abolished the TB-induced increases of p21 and p53 protein and decrease of thymidine incorporation. The ERK inhibitor (PD98059) enhanced the TB-induced inhibition of thymidine incorporation into HUVEC. Taken together, these data suggest that the decrease of ERK activity plays a role in the TB-induced up-regulation of p21 in HUVEC. On the other hand, pretreatment of the cells with geranylgeraniol (GGOH), farnesol (FOH), or Ras inhibitor peptide did not affect the TB-induced decrease of thymidine incorporation. Taken together, our results suggest that TB might cause a decrease of MEK, which in turn up-regulates p53 through the inhibition of ERK phosphorylation, and finally causes an increase of p21 expression and cell-cycle arrest

  20. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3β

    International Nuclear Information System (INIS)

    Choi, Cheol-Hee; Lee, Byung-Hoon; Ahn, Sang-Gun; Oh, Seon-Hee

    2012-01-01

    Highlights: ► MG132 induces the phosphorylation of GSK3β Ser9 and, to a lesser extent, of GSK3β Thr390 . ► MG132 induces dephosphorylation of p70S6K Thr389 and phosphorylation of p70S6K Thr421/Ser424 . ► Inactivation of p38 dephosphorylates GSK3β Ser9 and phosphorylates GSK3β Thr390 . ► Inactivation of p38 phosphorylates p70S6K Thr389 and increases the phosphorylation of p70S6K Thr421/Ser424 . ► Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3β (GSK3β) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3β at Ser 9 and, to a lesser extent, Thr 390 , the dephosphorylation of p70S6K at Thr 389 , and the phosphorylation of p70S6K at Thr 421 and Ser 424 . The specific p38 inhibitor SB203080 reduced the p-GSK3β Ser9 and autophagy through the phosphorylation of p70S6K Thr389 ; however, it augmented the levels of p-ERK, p-GSK3β Thr390 , and p-70S6K Thr421/Ser424 induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our data show that proteasome inhibition regulates p38/GSK Ser9 /p70S6K Thr380 and ERK/GSK3β Thr390 /p70S6K Thr421/Ser424 kinase signaling, which is involved in cell survival and cell death.

  1. Expression of FLNa in human melanoma cells regulates the function of integrin α1β1 and phosphorylation and localisation of PKB/AKT/ERK1/2 kinases.

    Science.gov (United States)

    Krebs, Kristi; Ruusmann, Anu; Simonlatser, Grethel; Velling, Teet

    2015-12-01

    FLNa is a ubiquitous cytoskeletal protein that links transmembrane receptors, including integrins, to F-actin and functions as a signalling intermediate. We investigated FLNa's role in the function of integrin-type collagen receptors, EGF-EGFR signalling and regulation of PKB/Akt and ERK1/2. Using FLNa-deficient M2 human melanoma cells, and same cells expressing EGFP-FLNa (M2F) or its Ig-like repeats 1-8+24, 8-15+24 and 16-24, we found that in M2F and M2 8-15+24 cells, EGF induced the increased phosphorylation of PKB/Akt and ERK1/2. In M2F cells EGF induced the localisation of these kinases to cell nucleus and lamellipodia, respectively, and the ERK1/2 phosphorylation-dependent co-immunoprecipitation of FLNa with ERK1/2. Only M2F and M2 8-15+24 cells adhered to and spread on type I collagen whereas on fibronectin all cells behaved similarly. α1β1 and α2β1 were the integrin-type collagen receptors expressed on these cells with primarily α1β1 localising to focal contacts and affecting cell adhesion and migration in a manner dependent on FLNa or its Ig-like repeats 8-15. Our results suggest a role for FLNa repeats 8-15 in the α1-subunit-dependent regulation of integrin α1β1 function, EGF-EGFR signalling to PKB/Akt and ERK1/2, identify ERK1/2 in EGF-induced FLNa-associated protein complexes, and show that the function of different integrins is subjected to differential regulation by FLNa. Copyright © 2015. Published by Elsevier GmbH.

  2. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine.

    Science.gov (United States)

    Nagarajah, James; Le, Mina; Knauf, Jeffrey A; Ferrandino, Giuseppe; Montero-Conde, Cristina; Pillarsetty, Nagavarakishore; Bolaender, Alexander; Irwin, Christopher; Krishnamoorthy, Gnana Prakasam; Saqcena, Mahesh; Larson, Steven M; Ho, Alan L; Seshan, Venkatraman; Ishii, Nobuya; Carrasco, Nancy; Rosen, Neal; Weber, Wolfgang A; Fagin, James A

    2016-11-01

    Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer.

  3. Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium

    International Nuclear Information System (INIS)

    Liu Zhiwei; Yu Xinyuan; Shaikh, Zahir A.

    2008-01-01

    Cadmium (Cd), an endocrine disruptor, can induce a variety of signaling events including the activation of ERK1/2 and AKT. In this study, the involvement of estrogen receptors (ER) in these events was evaluated in three human breast caner cell lines, MCF-7, MDA-MB-231, and SK-BR-3. The Cd-induced signal activation patterns in the three cell lines mimicked those exhibited in response to 17β-estradiol. Specifically, treatment of MCF-7 cells, that express ERα, ERβ and GPR30, to 0.5-10 μM Cd for only 2.5 min resulted in transient phosphorylation of ERK1/2. Cd also triggered a gradual increase and sustained activation of AKT during the 60 min treatment period. In SK-BR-3 cells, that express only GPR30, Cd also caused a transient activation of ERK1/2, but not of AKT. In contrast, in MDA-MB-231 cells, that express only ERβ, Cd was unable to cause rapid activation of either ERK1/2 or AKT. A transient phosphorylation of ERα was also observed within 2.5 min of Cd exposure in the MCF-7 cells. While the estrogen receptor antagonist, ICI 182,780, did not prevent the effect of Cd on these signals, specific siRNA against hERα significantly reduced Cd-induced activation of ERK1/2 and completely blocked the activation of AKT. It is concluded that Cd, like estradiol, can cause rapid activation of ERK1/2 and AKT and that these signaling events are mediated by possible interaction with membrane ERα and GPR30, but not ERβ

  4. Focused microwave irradiation-assisted immunohistochemistry to study effects of ketamine on phospho-ERK expression in the mouse brain.

    Science.gov (United States)

    Fernandes, Alda; Li, Yu-Wen

    2017-09-01

    Ketamine produces rapid and long-lasting antidepressant effects in depressive patients. Preclinical studies demonstrate that ketamine stimulates AMPA receptor transmission and activates BDNF/TrkB-Akt/ERK-mTOR signaling cascades, leading to a sustained increase in synaptic protein synthesis and strengthening of synaptic plasticity, a potential mechanism underlying the antidepressant effects. The purpose of this study was to develop an immunohistochemistry (IHC) assay to map the distribution of extracellular signal-regulated kinase (ERK) phosphorylation in the mouse brain in response to systemic ketamine treatment. We established a focused microwave irradiation-assisted IHC assay to detect phosphorylated (phospho) proteins including phospho-ERK, phospho- cAMP-response- element-binding protein (CREB), phospho- glutamate receptor 1 (GluR1) and phospho- calcium/calmodulin-dependent protein kinase II (CaMKII) with greater sensitivity and reproducibility in comparison to conventional IHC methods. A single dose of ketamine produced a robust, dose- and time-dependent increase in phospho-ERK immunoreactive (phospho-ERK-ir) neurons in the medial prefrontal cortex (mPFC) and the central nucleus of the amygdala. Phospho-ERK-ir neurons in the mPFC were primarily located in the prelimbic and anterior cingulate subregions with the morphology resembling pyramidal neurons. An increase in phospho-ERK-ir was also observed in the brainstem dorsal raphe nucleus and locus coeruleus. The NMDA GluN2B subtype receptor antagonist Ro 25-6981 increased phospho-ERK expression in the brain in a similar pattern as ketamine. In summary, we have established a sensitive and reliable focused microwave irradiation-assisted IHC assay, and defined the activation pattern of ERK, in response to systemic ketamine and Ro 25-6981 treatment, in brain regions that are potentially responsible for mediating the antidepressant effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol-Hee [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Lee, Byung-Hoon [College of Pharmacy and Multiscreening Center for Drug Development, Seoul National University, Seoul 151-742 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of); Oh, Seon-Hee, E-mail: oshccw@hanmail.net [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our

  6. Single-well monitoring of protein-protein interaction and phosphorylation-dephosphorylation events.

    Science.gov (United States)

    Arcand, Mathieu; Roby, Philippe; Bossé, Roger; Lipari, Francesco; Padrós, Jaime; Beaudet, Lucille; Marcil, Alexandre; Dahan, Sophie

    2010-04-20

    We combined oxygen channeling assays with two distinct chemiluminescent beads to detect simultaneously protein phosphorylation and interaction events that are usually monitored separately. This novel method was tested in the ERK1/2 MAP kinase pathway. It was first used to directly monitor dissociation of MAP kinase ERK2 from MEK1 upon phosphorylation and to evaluate MAP kinase phosphatase (MKP) selectivity and mechanism of action. In addition, MEK1 and ERK2 were probed with an ATP competitor and an allosteric MEK1 inhibitor, which generated distinct phosphorylation-interaction patterns. Simultaneous monitoring of protein-protein interactions and substrate phosphorylation can provide significant mechanistic insight into enzyme activity and small molecule action.

  7. Inhibitory Effects of Cytosolic Ca2+ Concentration by Ginsenoside Ro Are Dependent on Phosphorylation of IP3RI and Dephosphorylation of ERK in Human Platelets

    Directory of Open Access Journals (Sweden)

    Hyuk-Woo Kwon

    2015-01-01

    Full Text Available Intracellular Ca2+ ([Ca2+]i is platelet aggregation-inducing molecule and is involved in activation of aggregation associated molecules. This study was carried out to understand the Ca2+-antagonistic effect of ginsenoside Ro (G-Ro, an oleanane-type saponin in Panax ginseng. G-Ro, without affecting leakage of lactate dehydrogenase, dose-dependently inhibited thrombin-induced platelet aggregation, and the half maximal inhibitory concentration was approximately 155 μM. G-Ro inhibited strongly thrombin-elevated [Ca2+]i, which was strongly increased by A-kinase inhibitor Rp-8-Br-cAMPS compared to G-kinase inhibitor Rp-8-Br-cGMPS. G-Ro increased the level of cAMP and subsequently elevated the phosphorylation of inositol 1, 4, 5-triphosphate receptor I (IP3RI (Ser1756 to inhibit [Ca2+]i mobilization in thrombin-induced platelet aggregation. Phosphorylation of IP3RI (Ser1756 by G-Ro was decreased by PKA inhibitor Rp-8-Br-cAMPS. In addition, G-Ro inhibited thrombin-induced phosphorylation of ERK 2 (42 kDa, indicating inhibition of Ca2+ influx across plasma membrane. We demonstrate that G-Ro upregulates cAMP-dependent IP3RI (Ser1756 phosphorylation and downregulates phosphorylation of ERK 2 (42 kDa to decrease thrombin-elevated [Ca2+]i, which contributes to inhibition of ATP and serotonin release, and p-selectin expression. These results indicate that G-Ro in Panax ginseng is a beneficial novel Ca2+-antagonistic compound and may prevent platelet aggregation-mediated thrombotic disease.

  8. MTBP inhibits the Erk1/2-Elk-1 signaling in hepatocellular carcinoma

    Science.gov (United States)

    Ranjan, Atul; Iyer, Swathi V.; Ward, Christopher; Link, Tim; Diaz, Francisco J.; Dhar, Animesh; Tawfik, Ossama W.; Weinman, Steven A.; Azuma, Yoshiaki; Izumi, Tadahide; Iwakuma, Tomoo

    2018-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the prognosis of HCC patients, especially those with metastasis, remains extremely poor. This is partly due to unclear molecular mechanisms underlying HCC metastasis. Our previous study indicates that MDM2 Binding Protein (MTBP) suppresses migration and metastasis of HCC cells. However, signaling pathways regulated by MTBP remain unknown. To identify metastasis-associated signaling pathways governed by MTBP, we have performed unbiased luciferase reporter-based signal array analyses and found that MTBP suppresses the activity of the ETS-domain transcription factor Elk-1, a downstream target of Erk1/2 MAP kinases. MTBP also inhibits phosphorylation of Elk-1 and decreases mRNA expression of Elk-1 target genes. Reduced Elk-1 activity is caused by inhibited nuclear translocation of phosphorylated Erk1/2 (p-Erk) by MTBP and subsequent inhibition of Elk-1 phosphorylation. We also reveal that MTBP inhibits the interaction of p-Erk with importin-7/RanBP7 (IPO7), an importin family member which shuttles p-Erk into the nucleus, by binding to IPO7. Moreover, high levels of MTBP in human HCC tissues are correlated with cytoplasmic localization of p-Erk1/2. Our study suggests that MTBP suppresses metastasis, at least partially, by down-modulating the Erk1/2-Elk-1 signaling pathway, thus identifying a novel regulatory mechanism of HCC metastasis by regulating the subcellular localization of p-Erk. PMID:29765550

  9. Sulforaphane inhibits invasion via activating ERK1/2 signaling in human glioblastoma U87MG and U373MG cells.

    Directory of Open Access Journals (Sweden)

    Chunliu Li

    Full Text Available Glioblastoma has highly invasive potential, which might result in poor prognosis and therapeutic failure. Hence, the key we study is to find effective therapies to repress migration and invasion. Sulforaphane (SFN was demonstrated to inhibit cell growth in a variety of tumors. Here, we will further investigate whether SFN inhibits migration and invasion and find the possible mechanisms in human glioblastoma U87MG and U373MG cells.First, the optimal time and dose of SFN for migration and invasion study were determined via cell viability and cell morphological assay. Further, scratch assay and transwell invasion assay were employed to investigate the effect of SFN on migration and invasion. Meanwhile, Western blots were used to detect the molecular linkage among invasion related proteins phosphorylated ERK1/2, matrix metalloproteinase-2 (MMP-2 and CD44v6. Furthermore, Gelatin zymography was performed to detect the inhibition of MMP-2 activation. In addition, ERK1/2 blocker PD98059 (25 µM was integrated to find the link between activated ERK1/2 and invasion, MMP-2 and CD44v6.The results showed that SFN (20 µM remarkably reduced the formation of cell pseudopodia, indicating that SFN might inhibit cell motility. As expected, scratch assay and transwell invasion assay showed that SFN inhibited glioblastoma cell migration and invasion. Western blot and Gelatin zymography showed that SFN phosphorylated ERK1/2 in a sustained way, which contributed to the downregulated MMP-2 expression and activity, and the upregulated CD44v6 expression. These molecular interactions resulted in the inhibition of cell invasion.SFN inhibited migration and invasion processes. Furthermore, SFN inhibited invasion via activating ERK1/2 in a sustained way. The accumulated ERK1/2 activation downregulated MMP-2 expression and decreased its activity and upregulated CD44v6. SFN might be a potential therapeutic agent by activating ERK1/2 signaling against human glioblastoma.

  10. Estradiol treatment in preadolescent females enhances adolescent spatial memory and differentially modulates hippocampal region-specific phosphorylated ERK labeling.

    Science.gov (United States)

    Wartman, Brianne C; Keeley, Robin J; Holahan, Matthew R

    2012-10-24

    Estrogen levels in rats are positively correlated with enhanced memory function and hippocampal dendritic spine density. There is much less work on the long-term effects of estradiol manipulation in preadolescent rats. The present work examined how injections of estradiol during postnatal days 19-22 (p19-22; preadolescence) affected water maze performance and hippocampal phosphorylated ERK labeling. To investigate this, half of the estradiol- and vehicle-treated female rats were trained on a water maze task 24h after the end of estradiol treatment (p23-27) while the other half was not trained. All female rats were tested on the water maze from p40 to p44 (adolescence) and hippocampal pERK1/2 labeling was assessed as a putative marker of neuronal plasticity. During adolescence, preadolescent-trained groups showed lower latencies than groups without preadolescent training. Retention data revealed lower latencies in both estradiol groups, whether preadolescent trained or not. Immunohistochemical detection of hippocampal pERK1/2 revealed elevations in granule cell labeling associated with the preadolescent trained groups and reductions in CA1 labeling associated with estradiol treatment. These results show a latent beneficial effect of preadolescent estradiol treatment on adolescent spatial performance and suggest an organizational effect of prepubescent exogenously applied estradiol. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Evidence for Elevated Cerebrospinal Fluid ERK1/2 Levels in Alzheimer Dementia

    Directory of Open Access Journals (Sweden)

    Philipp Spitzer

    2011-01-01

    Full Text Available Cerebrospinal fluid (CSF samples from 33 patients with Alzheimer dementia (AD, 21 patients with mild cognitive impairment who converted to AD during followup (MCI-AD, 25 patients with stable mild cognitive impairment (MCI-stable, and 16 nondemented subjects (ND were analyzed with a chemiluminescence immunoassay to assess the levels of the mitogen-activated protein kinase ERK1/2 (extracellular signal-regulated kinase 1/2. The results were evaluated in relation to total Tau (tTau, phosphorylated Tau (pTau, and beta-amyloid 42 peptide (Aβ42. CSF-ERK1/2 was significantly increased in the AD group as compared to stable MCI patients and the ND group. Western blot analysis of a pooled cerebrospinal fluid sample revealed that both isoforms, ERK1 and ERK2, and low amounts of doubly phosphorylated ERK2 were detectable. As a predictive diagnostic AD biomarker, CSF-ERK1/2 was inferior to tTau, pTau, and Aβ42.

  12. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    However, exogenously added SOD1 and heat-inactivated catalase had no effect on either toxicity or sustained ERK phosphorylation. This correlation between antioxidant protection and inhibition of 6-OHDA-induced sustained ERK phosphorylation suggests that redox regulation of ERK signalling cascades may contribute ...

  13. Activation of ERK mitogen-activated protein kinase in human cells by the mycotoxin patulin

    International Nuclear Information System (INIS)

    Wu, T.-S.; Yu, F.-Y.; Su, C.-C.; Kan, J.-C.; Chung, C.-P.; Liu, B.-H.

    2005-01-01

    Patulin (PAT), a mycotoxin produced by certain species of Penicillium and Aspergillus, is often detectable in moldy fruits and their derivative products. PAT led to a concentration-dependent and time-dependent increase in phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human embryonic kidney (HEK293) cells, human peripheral blood mononuclear cells (PBMCs), and Madin-Darby canine kidney (MDCK) cells. Exposure of HEK293 cells to concentrations above 5 μM PAT for 30 min induced ERK1/2 phosphorylation; activation of ERK1/2 was also observed after 24 h incubation with 0.05 μM of PAT. Treatment of human PBMCs for 30 min with 30 μM PAT dramatically increased the phosphorylated ERK1/2 levels. Both MEK1/2 inhibitors, U0126 and PD98059, suppressed ERK1/2 activation in either HEK293 or MDCK cells. In HEK293 cells, U0126-mediated inhibition of PAT-induced ERK1/2 phosphorylation resulted in a significant decrease in levels of DNA damage, expressed as tail moment values, in the single cell gel electrophoresis assay. Conversely, U0126 did not affect cell viability, lactate dehydrogenase release, and the DNA synthesis rate in PAT-treated cultures. Exposure of HEK293 cells for 90 min to 15 μM PAT elevated the levels of early growth response gene-1 (egr-1) mRNA, but not of c-fos, fosB, and junB mRNAs. These results indicate that in human cells, PAT causes a rapid and persistent activation of ERK1/2 and this signaling pathway plays an important role in mediating PAT-induced DNA damage and egr-1 gene expression

  14. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth

    DEFF Research Database (Denmark)

    Zhao, Jian; Yuan, Xuejun; Frödin, Morten

    2003-01-01

    -specific transcription initiation factor TIF-IA. Activation of TIF-IA and ribosomal gene transcription is sensitive to PD98059, indicating that TIF-IA is targeted by MAPK in vivo. Phosphopeptide mapping and mutational analysis reveals two serine residues (S633 and S649) that are phosphorylated by ERK and RSK kinases....... Replacement of S649 by alanine inactivates TIF-IA, inhibits pre-rRNA synthesis, and retards cell growth. The results provide a link between growth factor signaling, ribosome production, and cell growth, and may have a major impact on the mechanism of cell transformation....

  15. Neuronal extracellular signal-regulated kinase (ERK activity as marker and mediator of alcohol and opioid dependence

    Directory of Open Access Journals (Sweden)

    Eva R. Zamora-Martinez

    2014-03-01

    Full Text Available Early pioneering work in the field of biochemistry identified phosphorylation as a crucial post-translational modification of proteins with the ability to both indicate and arbitrate complex physiological processes. More recent investigations have functionally linked phosphorylation of extracellular signal-regulated kinase (ERK to a variety of neurophysiological mechanisms ranging from acute neurotransmitter action to long-term gene expression. ERK phosphorylation serves as an intracellular bridging mechanism that facilitates neuronal communication and plasticity. Drugs of abuse, including alcohol and opioids, act as artificial yet powerful rewards that impinge upon natural reinforcement processes critical for survival. The graded progression from initial exposure to addiction (or substance dependence is believed to result from drug- and drug context-induced adaptations in neuronal signaling processes across brain reward and stress circuits following excessive drug use. In this regard, commonly abused drugs as well as drug-associated experiences are capable of modifying the phosphorylation of ERK within central reinforcement systems. In addition, chronic drug and alcohol exposure may drive ERK-regulated epigenetic and structural alterations that underlie a long-term propensity for escalating drug use. Under the influence of such a neurobiological vulnerability, encountering drug-associated cues and contexts can produce subsequent alterations in ERK signaling that drive relapse to drug and alcohol seeking. Current studies are determining precisely which molecular and regional ERK phosphorylation-associated events contribute to the addiction process, as well as which neuroadaptations need to be targeted in order to return dependent individuals to a healthy state.

  16. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    International Nuclear Information System (INIS)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-01-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  17. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  18. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    International Nuclear Information System (INIS)

    Kumari, Gita; Mahalingam, S.

    2009-01-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  19. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Gita [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Mahalingam, S., E-mail: mahalingam@iitm.ac.in [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Department of Biotechnology, Laboratory of Molecular Virology and Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036 (India)

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  20. ERK2 suppresses self-renewal capacity of embryonic stem cells, but is not required for multi-lineage commitment.

    Directory of Open Access Journals (Sweden)

    William B Hamilton

    Full Text Available Activation of the FGF-ERK pathway is necessary for naïve mouse embryonic stem (ES cells to exit self-renewal and commit to early differentiated lineages. Here we show that genetic ablation of Erk2, the predominant ERK isozyme expressed in ES cells, results in hyper-phosphorylation of ERK1, but an overall decrease in total ERK activity as judged by substrate phosphorylation and immediate-early gene (IEG induction. Normal induction of this subset of canonical ERK targets, as well as p90RSK phosphorylation, was rescued by transgenic expression of either ERK1 or ERK2 indicating a degree of functional redundancy. In contrast to previously published work, Erk2-null ES cells exhibited no detectable defect in lineage specification to any of the three germ layers when induced to differentiate in either embryoid bodies or in defined neural induction conditions. However, under self-renewing conditions Erk2-null ES cells express increased levels of the pluripotency-associated transcripts, Nanog and Tbx3, a decrease in Nanog-GFP heterogeneity, and exhibit enhanced self-renewal in colony forming assays. Transgenic add-back of ERK2 is capable of restoring normal pluripotent gene expression and self-renewal capacity. We show that ERK2 contributes to the destabilization of ES cell self-renewal by reducing expression of pluripotency genes, such as Nanog, but is not specifically required for the early stages of germ layer specification.

  1. ERK5 and cell proliferation: nuclear localization is what matters

    Directory of Open Access Journals (Sweden)

    Nestor Gomez

    2016-09-01

    Full Text Available ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumour growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote

  2. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions

    Directory of Open Access Journals (Sweden)

    Salvadore Christopher

    2004-09-01

    Full Text Available Abstract Background The mitogen-activated protein kinases (MAPKs have been shown to participate in a wide array of cellular functions. A role for some MAPKs (e.g., extracellular signal-regulated kinase, Erk1/2 has been documented in response to certain physiological stimuli, such as ischemia, visceral pain and electroconvulsive shock. We recently demonstrated that restraint stress activates the Erk MAPK pathway, but not c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK or p38MAPK, in several rat brain regions. In the present study, we investigated the effects of a different stressor, acute forced swim stress, on the phosphorylation (P state of these MAPKs in the hippocampus, neocortex, prefrontal cortex, amygdala and striatum. In addition, effects on the phosphorylation state of the upstream activators of the MAPKs, their respective MAPK kinases (MAPKKs; P-MEK1/2, P-MKK4 and P-MKK3/6, were determined. Finally, because the Erk pathway can activate c-AMP response element (CRE binding (CREB protein, and swim stress has recently been reported to enhance CREB phosphorylation, changes in P-CREB were also examined. Results A single 15 min session of forced swimming increased P-Erk2 levels 2–3-fold in the neocortex, prefrontal cortex and striatum, but not in the hippocampus or amygdala. P-JNK levels (P-JNK1 and/or P-JNK2/3 were increased in all brain regions about 2–5-fold, whereas P-p38MAPK levels remained essentially unchanged. Surprisingly, levels of the phosphorylated MAPKKs, P-MEK1/2 and P-MKK4 (activators of the Erk and JNK pathways, respectively were increased in all five brain regions, and much more dramatically (P-MEK1/2, 4.5 to > 100-fold; P-MKK4, 12 to ~300-fold. Consistent with the lack of forced swim on phosphorylation of p38MAPK, there appeared to be no change in levels of its activator, P-MKK3/6. P-CREB was increased in all but cortical (prefrontal, neocortex areas. Conclusions Swim stress specifically and markedly

  3. Robustness of MEK-ERK Dynamics and Origins of Cell-to-Cell Variability in MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Sarah Filippi

    2016-06-01

    Full Text Available Cellular signaling processes can exhibit pronounced cell-to-cell variability in genetically identical cells. This affects how individual cells respond differentially to the same environmental stimulus. However, the origins of cell-to-cell variability in cellular signaling systems remain poorly understood. Here, we measure the dynamics of phosphorylated MEK and ERK across cell populations and quantify the levels of population heterogeneity over time using high-throughput image cytometry. We use a statistical modeling framework to show that extrinsic noise, particularly that from upstream MEK, is the dominant factor causing cell-to-cell variability in ERK phosphorylation, rather than stochasticity in the phosphorylation/dephosphorylation of ERK. We furthermore show that without extrinsic noise in the core module, variable (including noisy signals would be faithfully reproduced downstream, but the within-module extrinsic variability distorts these signals and leads to a drastic reduction in the mutual information between incoming signal and ERK activity.

  4. ERK-dependent and -independent pathways trigger human neural progenitor cell migration

    International Nuclear Information System (INIS)

    Moors, Michaela; Cline, Jason E.; Abel, Josef; Fritsche, Ellen

    2007-01-01

    Besides differentiation and apoptosis, cell migration is a basic process in brain development in which neural cells migrate several centimeters within the developing brain before reaching their proper positions and forming the right connections. For identifying signaling events that control neural migration and are therefore potential targets of chemicals to disturb normal brain development, we developed a human neurosphere-based migration assay based on normal human neural progenitor (NHNP) cells, in which the distance is measured that cells wander over time. Applying this assay, we investigated the role of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the regulation of NHNP cell migration. Exposure to model substances like ethanol or phorbol 12-myristate 13-acetate (PMA) revealed a correlation between ERK1/2 activation and cell migration. The participation of phospho-(P-) ERK1/2 was confirmed by exposure of the cells to the MEK inhibitor PD98059, which directly prohibits ERK1/2 phosphorylation and inhibited cell migration. We identified protein kinase C (PKC) and epidermal growth factor receptor (EGFR) as upstream signaling kinases governing ERK1/2 activation, thereby controlling NHNP cell migration. Additionally, treatments with src kinase inhibitors led to a diminished cell migration without affecting ERK1/2 phosphorylation. Based on these results, we postulate that migration of NHNP cells is controlled via ERK1/2-dependent and -independent pathways

  5. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats

    Science.gov (United States)

    Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi

    2009-01-01

    In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and γ-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABAA receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABAA receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin–NTS, lingual muscle–NTS and lingual muscle–Pa5–NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures. PMID:19124539

  6. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats.

    Science.gov (United States)

    Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi

    2009-02-15

    In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and gamma-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABA(A) receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABA(A) receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin-NTS, lingual muscle-NTS and lingual muscle-Pa5-NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures.

  7. [Electroacupuncture Intervention Enhances Splenic Natural Killer Cell Activity via Inhibiting Phosphorylation of ERK 5 in the Hypothalamus of Surgically Traumatized Rats].

    Science.gov (United States)

    Chen, Yan; Li, Jing; Zhu, Ke-ying; Xiao, Sheng; Wang, Yan-qing; Wu, Gen-cheng; Wang, Jun

    2015-06-01

    To observe the effect of electroacupuncture (EA) on cytotoxic activity of splenic natural killer (NK) cells after surgical trauma via extracellular signal-regulated kinase (ERK) 5 pathway in the rats' hypothalamus, so as to explore its mechanism underlying improving immune disorders after surgery. Sprague-Dawley rats were randomly divided into the following 6 groups: control, trauma model, EA, sham EA, 4 nmol-BIX 02188 (an inhibitor for ERK 5 catalytic activity) and 20 nmol-BIX 02188 (n = 6 rats per group). The surgical trauma model was established by making a longitudinal incision (6 cm in length) along the median line of the back to expose the spinal column and another longitudinal incision along the abdominal median line. EA (2 Hz/15 Hz, 1 - 2 mA) was applied to bilateral "Zusanli" (ST 36) for 30 min immediately after surgery. For rats of the BIX groups, intra-lateral ventricular microinjection of BIX 02188 (10 µL, 4 nmol or 20 nmol, or saline for control rats) was conducted 30 min before the surgery. The expression level and protein of phosphorylated ERK 5 (p-ERK 5) and corticotropin-releasing factor (CRF) protein were measured by immunohistochemistry and Western blot, respectively. The cytotoxicity of splenic NK cells and the expression of splenic Perforin and Granzyme-B genes were measured by lactate dehydrogenase (LDH) release assay and real-time PCR, respectively. In comparison with the control group, hypothalamic p-ERK 5 immunoactivity, p-ERK 5 protein and CRF protein expression levels were significantly up-regulated in the model group (Psplenic NK cell cytotoxicity and Perforin mRNA and Granzyme-B mRNA expression levels were notably down-regulated in the model group (P 0. 05) except the increased p-ERK 5 protein in the 4 nmol-BIX 02188 group. In addition, the down-regulated NK cell activity, Perforin mRNA and Granzyme-B mRNA expression levels were significantly reversed in the EA and 20 nmol-BIX 02188 groups (Psplenic NK cytotoxicity and Perforin and

  8. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  9. Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Lucile Courtial

    2017-04-01

    Full Text Available The extracellular signal-regulated protein kinase (ERK signalling pathway controls key cellular processes, such as cell cycle regulation, cell fate determination and the response to external stressors. Although ERK functions are well studied in a variety of living organisms ranging from yeast to mammals, its functions in corals are still poorly known. The present work aims to give practical tools to study the expression level of ERK protein and the activity of the ERK signalling pathway in corals. The antibody characterisation experiment was performed five times and identical results were obtained. The present study validated the immune-reactivity of commercially available antibodies directed against ERK and its phosphorylated/activated forms on protein extracts of the reef-building coral Stylophora pistillata.

  10. 7-Chloro-6-piperidin-1-yl-quinoline-5,8-dione (PT-262), a novel synthetic compound induces lung carcinoma cell death associated with inhibiting ERK and CDC2 phosphorylation via a p53-independent pathway.

    Science.gov (United States)

    Hsu, Tzu-Sheng; Chen, Chinpiao; Lee, Pei-Ting; Chiu, Shu-Jun; Liu, Huei-Fang; Tsai, Chih-Chien; Chao, Jui-I

    2008-10-01

    The derivatives of 5,8-quinolinedione have been shown to exert anticancer activities. A new synthetic compound 7-chloro-6-piperidin-1-yl-quinoline-5,8-dione (designed as PT-262) derived from 6,7-dichloroquinoline-5,8-dione on its anticancer activity was investigated in this study. PT-262 was synthesized as the following: triethylamine (0.56 ml, 5.1 mmol) was added dropwise to a solution of 6,7-dichloroquinoline-5,8-dione (1.00 g, 4.4 mmol) and piperidine (0.50 ml, 5.1 mmol) in 150 ml of benzene with stirring at room temperature for 5 min, and the solvent was removed using rotary evaporator to give a dark brown solid. PT-262 was purified by flash chromatography using 50% ethyl acetate/hexanes to elute that displayed as brown solids. To examine the induction of apoptosis following PT-262 treatment, the lung cancer cells were subjected to apoptotic cell observation, caspase activation, and mitochondrial functional assays. The protein levels of phosphorylated ERK and CDC2 after treatment with PT-262 were analyzed by Western blot. Treatment with 1-20 microM PT-262 for 24 h induced cytotoxicity via a concentration-dependent manner in human lung cancer cells. PT-262 induced the loss of mitochondrial membrane potential and elevated the caspase-3 activation and apoptosis. Interestingly, the phosphorylation of ERK was inhibited by PT-262. The IC50 value of ERK phosphorylation inhibition was approximate around 5 microM. Treatment with a specific MEK1/2 (the upstream of ERK) inhibitor, PD98059, increased the PT-262-induced cytotoxicity in lung cancer cells. Moreover, PT-262 did not alter the protein expression of tumor suppressor p53. PT-262 elicited the cytotoxicity and accumulated the G2/M fractions in both the p53-wild type and p53-null lung cancer cells. The mitosis-regulated protein levels of cyclin B1 and phospho-CDC2 at Thr14, Tyr15, and Thr161 were repressed by PT-262 in these cells. PT-262 suppresses the phosphorylation of ERK and CDC2 associated with proliferation

  11. Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts

    Science.gov (United States)

    Smith, Susan M.; Murray, Sandy; Pham, Lucia D.; Minoo, Parviz; Nielsen, Heber C.

    2014-01-01

    Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast–Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts. PMID:24484548

  12. SP600125 Induces Src and Type I IGF Receptor Phosphorylation Independent of JNK

    Directory of Open Access Journals (Sweden)

    Qingbin Kong

    2014-09-01

    Full Text Available c-Jun N-terminal kinases (JNK are members of the mitogen-activated protein kinase (MAPK family that have important roles in signal transduction. The small molecule SP600125 is widely used in biochemical studies as a JNK inhibitor. However, recent studies indicate that SP600125 may also act independent of JNK. Here, we report that SP600125 can induce Src, type I insulin-like growth factor receptor (IGF-IR, Akt and Erk1/2 phosphorylation. Notably, these effects are independent of its inhibition of JNK. Inhibition of Src abrogates the stimulation of IGF-IR, Akt and Erk1/2 phosphorylation. IGF-IR knockdown blunts the induction of both Akt and Erk1/2 phosphorylation by SP600125. Moreover, combination of SP600125 and the Src inhibitor saracatinib synergistically inhibits cell proliferation. We conclude that SP600125 can activate Src-IGF-IR-Akt/Erk1/2 signaling pathways independent of JNK.

  13. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms

    Science.gov (United States)

    Sipieter, François; Cappe, Benjamin; Gonzalez Pisfil, Mariano; Spriet, Corentin; Bodart, Jean-François; Cailliau-Maggio, Katia; Vandenabeele, Peter; Héliot, Laurent; Riquet, Franck B.

    2015-01-01

    Uncoupling of ERK1/2 phosphorylation from subcellular localization is essential towards the understanding of molecular mechanisms that control ERK1/2-mediated cell-fate decision. ERK1/2 non-catalytic functions and discoveries of new specific anchors responsible of the subcellular compartmentalization of ERK1/2 signaling pathway have been proposed as regulation mechanisms for which dynamic monitoring of ERK1/2 localization is necessary. However, studying the spatiotemporal features of ERK2, for instance, in different cellular processes in living cells and tissues requires a tool that can faithfully report on its subcellular distribution. We developed a novel molecular tool, ERK2-LOC, based on the T2A-mediated coexpression of strictly equimolar levels of eGFP-ERK2 and MEK1, to faithfully visualize ERK2 localization patterns. MEK1 and eGFP-ERK2 were expressed reliably and functionally both in vitro and in single living cells. We then assessed the subcellular distribution and mobility of ERK2-LOC using fluorescence microscopy in non-stimulated conditions and after activation/inhibition of the MAPK/ERK1/2 signaling pathway. Finally, we used our coexpression system in Xenopus laevis embryos during the early stages of development. This is the first report on MEK1/ERK2 T2A-mediated coexpression in living embryos, and we show that there is a strong correlation between the spatiotemporal subcellular distribution of ERK2-LOC and the phosphorylation patterns of ERK1/2. Our approach can be used to study the spatiotemporal localization of ERK2 and its dynamics in a variety of processes in living cells and embryonic tissues. PMID:26517832

  14. Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization

    Science.gov (United States)

    Piketty, Vincent; Kara, Elodie; Guillou, Florian; Reiter, Eric; Crepieux, Pascale

    2006-01-01

    Background The follicle-stimulating hormone receptor (FSH-R) is a seven transmembrane spanning receptor (7TMR) which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK). However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK) 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418) dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418) construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH. PMID:16787538

  15. CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1

    International Nuclear Information System (INIS)

    Kilanczyk, Ewa; Filipek, Slawomir; Jastrzebska, Beata; Filipek, Anna

    2009-01-01

    In this work we showed for the first time that mouse CacyBP/SIP interacts with extracellular signal regulated kinases 1 and 2 (ERK1/2). We also established that a calcium binding protein, S100A6, competes for this interaction. Moreover, the E217K mutant of CacyBP/SIP does not bind significantly to ERK1/2 although it retains the ability to interact with S100A6. Molecular modeling shows that the E217K mutation in the 189-219 CacyBP/SIP fragment markedly changes its electrostatic potential, suggesting that the binding with ERK1/2 might have an electrostatic character. We also demonstrate that CacyBP/SIP-ERK1/2 interaction inhibits phosphorylation of the Elk-1 transcription factor in vitro and in the nuclear fraction of NB2a cells. Altogether, our data suggest that the binding of CacyBP/SIP with ERK1/2 might regulate Elk-1 phosphorylation/transcriptional activity and that S100A6 might further modulate this effect via Ca 2+ -dependent interaction with CacyBP/SIP and competition with ERK1/2.

  16. Calcium regulation of EGF-induced ERK5 activation: role of Lad1-MEKK2 interaction.

    Directory of Open Access Journals (Sweden)

    Zhong Yao

    Full Text Available The ERK5 cascade is a MAPK pathway that transmits both mitogenic and stress signals, yet its mechanism of activation is not fully understood. Using intracellular calcium modifiers, we found that ERK5 activation by EGF is inhibited both by the depletion and elevation of intracellular calcium levels. This calcium effect was found to occur upstream of MEKK2, which is the MAP3K of the ERK5 cascade. Co-immunoprecipitation revealed that EGF increases MEKK2 binding to the adaptor protein Lad1, and this interaction was reduced by the intracellular calcium modifiers, indicating that a proper calcium concentration is required for the interactions and transmission of EGF signals to ERK5. In vitro binding assays revealed that the proper calcium concentration is required for a direct binding of MEKK2 to Lad1. The binding of these proteins is not affected by c-Src-mediated phosphorylation on Lad1, but slightly affects the Tyr phosphorylation of MEKK2, suggesting that the interaction with Lad1 is necessary for full Tyr phosphorylation of MEKK2. In addition, we found that changes in calcium levels affect the EGF-induced nuclear translocation of MEKK2 and thereby its effect on the nuclear ERK5 activity. Taken together, these findings suggest that calcium is required for EGF-induced ERK5 activation, and this effect is probably mediated by securing proper interaction of MEKK2 with the upstream adaptor protein Lad1.

  17. Different associations of CD45 isoforms with STAT3, PKC and ERK regulate IL-6-induced proliferation in myeloma.

    Directory of Open Access Journals (Sweden)

    Xu Zheng

    Full Text Available In response to interleukin 6 (IL-6 stimulation, both CD45RO and CD45RB, but not CD45RA, translocate to lipid rafts. However, the significance of this distinct translocation and the downstream signals in CD45 isoforms-participated IL-6 signal are not well understood. Using sucrose fractionation, we found that phosphorylated signal transducer and activator of transcription (STAT3 and STAT1 were mainly localized in lipid rafts in response to IL-6 stimulation, despite both STAT3 and STAT1 localizing in raft and non-raft fractions in the presence or absence of IL-6. On the other hand, extracellular signal-regulated kinase (ERK, and phosphorylated ERK were localized in non-raft fractions regardless of the existence of IL-6. The rafts inhibitor significantly impeded the phosphorylation of STAT3 and STAT1 and nuclear translocation, but had little effect on (and only postponing the phosphorylation of ERK. This data suggests that lipid raft-dependent STAT3 and STAT1 pathways are dominant pathways of IL-6 signal in myeloma cells. Interestingly, the phosphorylation level of STAT3 but not STAT1 in CD45+ cells was significantly higher compared to that of CD45- cells, while the phosphorylation level of ERK in CD45+ myeloma cells was relatively low. Furthermore, exogenously expressed CD45RO/RB significantly enhanced STAT3, protein kinase C (PKC and downstream NF-κB activation; however, CD45RA/RB inhibited IL-6-induced ERK phosphorylation. CD45 also enhanced the nuclear localization of STAT3 but not that of STAT1. In response to IL-6 stimulation, CD45RO moved into raft compartments and formed a complex with STAT3 and PKC in raft fraction, while CD45RA remained outside of lipid rafts and formed a complex with ERK in non-raft fraction. This data suggests a different role of CD45 isoforms in IL-6-induced signaling, indicating that while CD45RA/RB seems inhibit the rafts-unrelated ERK pathway, CD45RO/RB may actually work to enhance the rafts-related STAT3 and PKC

  18. Phosphorylation of connexin43 on S279/282 may contribute to laminopathy-associated conduction defects

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Steven C., E-mail: bug@uw.edu [Fred Hutchinson Cancer Research Center (FHCRC), Public Health Sciences Division, 1100 Fairview Ave. N., Seattle, WA 98109 (United States); University of Washington Department of Biochemistry, 1959 NE Pacific St., Seattle, WA 98195 (United States); Kennedy, Brian K., E-mail: bkennedy@buckinstitute.org [University of Washington Department of Biochemistry, 1959 NE Pacific St., Seattle, WA 98195 (United States); Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945 (United States); Lampe, Paul D., E-mail: plampe@fhcrc.org [Fred Hutchinson Cancer Research Center (FHCRC), Public Health Sciences Division, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2013-04-01

    An understanding of the molecular mechanism behind the arrhythmic phenotype associated with laminopathies has yet to emerge. A-type lamins have been shown to interact and sequester activated phospho-ERK1/2(pERK1/2) at the nucleus. The gap junction protein connexin43 (Cx43) can be phosphorylated by pERK1/2 on S279/282 (pS279/282), inhibiting intercellular communication. We hypothesized that without A-type lamins, pS279/282 Cx43 will increase due to inappropriate phosphorylation by pERK1/2, resulting in decreased gap junction function. We observed a 1.6-fold increase in pS279/282 Cx43 levels in Lmna{sup −/−} mouse embryonic fibroblasts (MEFs) compared to Lmna{sup +/+}, and 1.8-fold more pERK1/2 co-precipitated from Lmna{sup −/−} MEFs with Cx43 antibodies. We found a 3-fold increase in the fraction of non-nuclear pERK1/2 and a concomitant 2-fold increase in the fraction of pS279/282 Cx43 in Lmna{sup −/−} MEFs by immunofluorescence. In an assay of gap junctional function, Lmna{sup −/−} MEFs transferred dye to 60% fewer partners compared to Lmna{sup +/+} controls. These results are mirrored in 5–6 week-old Lmna{sup −/−} mice compared to their Lmna{sup +/+} littermates as we detect increased pS279/282 Cx43 in gap junctions by immunofluorescence and 1.7-fold increased levels by immunoblot. We conclude that increased pS279/282 Cx43 in the Lmna{sup −/−} background results in decreased cell communication and may contribute to the arrhythmic pathology in vivo. - Highlights: ► Connexin43 phosphorylation plays a role in laminopathy-associated conduction defects. ► Loss of A-type lamin activity results in release of pERK1/2 from the nucleus. ► Increased cytoplasmic localization of pERK1/2 acts to phosphorylate S279/282 of Cx43. ► Phosphorylation of S279/282 on Cx43 decreases gap junction activity in cell culture. ► Mice lacking A-type lamins have increased phosphorylation on S279/282 of Cx43.

  19. Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function

    Science.gov (United States)

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara

    2013-01-01

    Accumulating evidence has implicated Rho GTPases, including Rac1, in many aspects of cancer development. Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that Rac1 T108 within the 106PNTP109 motif is likely an extracellular signal-regulated kinase (ERK) phosphorylation site and that Rac1 also has an ERK docking site, 183KKRKRKCLLL192 (D site), at the C terminus. Indeed, we show here that both transfected and endogenous Rac1 interacts with ERK and that this interaction is mediated by its D site. Green fluorescent protein (GFP)-Rac1 is threonine (T) phosphorylated in response to epidermal growth factor (EGF), and EGF-induced Rac1 threonine phosphorylation is dependent on the activation of ERK. Moreover, mutant Rac1 with the mutation of T108 to alanine (A) is not threonine phosphorylated in response to EGF. In vitro ERK kinase assay further shows that pure active ERK phosphorylates purified Rac1 but not mutant Rac1 T108A. We also show that Rac1 T108 phosphorylation decreases Rac1 activity, partially due to inhibiting its interaction with phospholipase C-γ1 (PLC-γ1). T108 phosphorylation targets Rac1 to the nucleus, which isolates Rac1 from other guanine nucleotide exchange factors (GEFs) and hinders Rac1's role in cell migration. We conclude that Rac1 T108 is phosphorylated by ERK in response to EGF, which plays an important role in regulating Rac1. PMID:24043306

  20. Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: the HPA axis, BDNF expression and phosphorylation of ERK.

    Science.gov (United States)

    Wang, Zhen; Gu, Jianhua; Wang, Xueer; Xie, Kai; Luan, Qinsong; Wan, Nianqing; Zhang, Qun; Jiang, Hong; Liu, Dexiang

    2013-11-01

    Resveratrol is a natural polyphenol enriched in Polygonum cuspidatum and has diverse biological activities. There is only limited information about the antidepressant-like effect of resveratrol. The present study assessed whether resveratrol treatment (20, 40 and 80mg/kg, i.p., 21days) has an antidepressant-like effect on the forced swim test (FST) and tail suspension test (TST) in mice and examined what its molecular targets might be. The results showed that resveratrol administration produced antidepressant-like effects in mice, evidenced by the reduced immobility time in the FST and TST, while it had no effect on the locomotor activity in the open field test. Resveratrol treatment significantly reduced serum corticosterone levels, which had been elevated by the FST and TST. Moreover, resveratrol increased brain-derived neurotrophic factor (BDNF) protein and extracellular signal-regulated kinase (ERK) phosphorylation levels in the prefrontal cortex and hippocampus. All of these antidepressant-like effects of resveratrol were essentially similar to those observed with the clinical antidepressant, fluoxetine. These results suggest that the antidepressant-like effects of resveratrol in the FST and TST are mediated, at least in part, by modulating hypothalamic-pituitary-adrenal axis, BDNF and ERK phosphorylation expression in the brain region of mice. © 2013.

  1. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chih-Chuan [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Institute of Basic Medicine Science, National Cheng Kung University, Tainan, Taiwan (China); Kuo, Hsing-Chun [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Cheng, Ho-Chen [Department of General Education, Chang Gung University of Science and Technology, CGUST, Taiwan (China); Wang, Ting-Chung [Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Center, Chiayi, Taiwan (China); Graduate Institute of Clinical Medical Sciences, Chang Gung University, Gueishan, Taiwan (China); Sze, Chun-I, E-mail: szec@mail.ncku.edu.tw [Institute of Basic Medicine Science, Department of Cell Biology and Anatomy and Pathology, National Cheng Kung University, Tainan, Taiwan (China)

    2012-08-15

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr{sup 15} and Cdc25cSer{sup 216}. Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer{sup 216} expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer{sup 216} in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer{sup 216} cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  2. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    International Nuclear Information System (INIS)

    Teng, Chih-Chuan; Kuo, Hsing-Chun; Cheng, Ho-Chen; Wang, Ting-Chung; Sze, Chun-I

    2012-01-01

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr 15 and Cdc25cSer 216 . Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer 216 expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer 216 in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer 216 cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  3. Signaling pathways of interleukin-1 actions in the brain: anatomical distribution of phospho-ERK1/2 in the brain of rat treated systemically with interleukin-1beta.

    Science.gov (United States)

    Nadjar, A; Combe, C; Busquet, P; Dantzer, R; Parnet, P

    2005-01-01

    Interleukin-1beta is released at the periphery during infection and acts on the nervous system to induce fever, neuroendocrine activation, and behavioral changes. These effects are mediated by brain type I IL-1 receptors. In vitro studies have shown the ability of interleukin-1beta to activate mitogen-activated protein kinase signaling pathways including p38, c-Jun N-terminal kinase and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). In contrast to other mitogen-activated protein kinases, little is known about ERK1/2 activation in the rat brain in response to interleukin-1beta. The aim of the present study was therefore to investigate spatial and temporal activation of ERK1/2 in the rat brain after peripheral administration of interleukin-1beta using immunohistochemistry to detect the phosphorylated form of the kinase. In non-stimulated conditions, phosphorylated ERK1/2 immunoreactivity was observed in neurons throughout the brain. Administration of interleukin-1beta (60 microg/kg, i.p.) induced the phosphorylation of ERK1/2 in areas at the interface between brain and blood or cerebrospinal fluid: meninges, circumventricular organs, endothelial like cells of the blood vessels, and in brain nuclei involved in behavioral depression, fever and neuroendocrine activation: paraventricular nucleus of the hypothalamus, supraoptic nucleus, central amygdala and arcuate nucleus. Double labeling of phosphorylated ERK1/2 and cell markers revealed the expression of phosphorylated ERK1/2 in neurons, astrocytes and microglia. Since phosphorylated ERK1/2 was found in structures in which type I IL-1 receptor has already been identified as well as in structures lacking this receptor, activation of ERK1/2 is likely to occur in response to both direct and indirect action of interleukin-1beta on its target cells.

  4. [Effect of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of p38 and ERK1/2 in osteoblast].

    Science.gov (United States)

    Lv, You; Jia, Ge; Qiu, Li-hong; Bao, Mu-rong; Yu, Ya-qiong; Guo, Yan

    2012-08-01

    To investigate the effect of lipopolysaccharides (LPS) extracted from Porphyromonas endodontalis(P.e) on the expression of p38 and ERK1/2 in osteoblast. MC3T3-E1 cells were stimulated with 10 μg/mL P.e-LPS for 0,5,15,30,60,180 min. The phosphorylation of p38 and ERK1/2 was measured by Western blot. Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. 10 μg/mL LPS could significantly activate p38 MAPK. The peak of phosphorylated p38 was detected at 5 to 30 min(P<0.01) and returned to baseline within 60 min; the level of phosphorylated ERK1/2 increased after the stimulation of LPS for 5 min and reached maximum at 15 min (P<0.01) and declined after 30 min. P.e-LPS can induce the expression of p38 and ERK1/2 in osteoblast MC3T3-E1, which indicates that P.e-LPS may play an important role in osteoblast through p38 and ERK1/2.

  5. ERK-GluR1 phosphorylation in trigeminal spinal subnucleus caudalis neurons is involved in pain associated with dry tongue.

    Science.gov (United States)

    Nakaya, Yuka; Tsuboi, Yoshiyuki; Okada-Ogawa, Akiko; Shinoda, Masamichi; Kubo, Asako; Chen, Jui Yen; Noma, Noboru; Batbold, Dulguun; Imamura, Yoshiki; Sessle, Barry J; Iwata, Koichi

    2016-01-01

    Dry mouth is known to cause severe pain in the intraoral structures, and many dry mouth patients have been suffering from intraoral pain. In development of an appropriate treatment, it is crucial to study the mechanisms underlying intraoral pain associated with dry mouth, yet the detailed mechanisms are not fully understood. To evaluate the mechanisms underlying pain related to dry mouth, the dry-tongue rat model was developed. Hence, the mechanical or heat nocifensive reflex, the phosphorylated extracellular signal-regulated kinase and phosphorylated GluR1-IR immunohistochemistries, and the single neuronal activity were examined in the trigeminal spinal subnucleus caudalis of dry-tongue rats. The head-withdrawal reflex threshold to mechanical, but not heat, stimulation of the tongue was significantly decreased on day 7 after tongue drying. The mechanical, but not heat, responses of trigeminal spinal subnucleus caudalis nociceptive neurons were significantly enhanced in dry-tongue rats compared to sham rats on day 7. The number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells was also significantly increased in the trigeminal spinal subnucleus caudalis following noxious stimulation of the tongue in dry-tongue rats compared to sham rats on day 7. The decrement of the mechanical head-withdrawal reflex threshold (HWT) was reversed during intracisternal administration of the mitogen-activated protein kinase kinase 1 inhibitor, PD98059. The trigeminal spinal subnucleus caudalis neuronal activities and the number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells following noxious mechanical stimulation of dried tongue were also significantly decreased following intracisternal administration of PD98059 compared to vehicle-administrated rats. Increased number of the phosphorylated GluR1-IR cells was observed in the trigeminal spinal subnucleus caudalis of dry-tongue rats, and the number of phosphorylated GluR1-IR cells

  6. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation

    Directory of Open Access Journals (Sweden)

    Capra Valérie

    2006-03-01

    Full Text Available Abstract Background Cysteine-containing leukotrienes (cysteinyl-LTs are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC proliferation. We used human ASMC (HASMC to identify the signal transduction pathway(s of the leukotriene D4 (LTD4-induced DNA synthesis. Methods Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS was estimated by measuring dichlorodihydrofluorescein (DCF oxidation. Results We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX and phosphoinositide 3-kinase (PI3K inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Conclusion Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF

  7. MMS 1001 inhibits melanin synthesis via ERK activation.

    Science.gov (United States)

    Lee, Hyun-E; Song, Jiho; Kim, Su Yeon; Park, Kyoung-Chan; Min, Kyung Hoon; Kim, Dong-Seok

    2013-03-01

    Melanin plays major a role in pigmentation of hair, eyes, and skin in mammals. In this study, the inhibitory effects of MMS 1001 on alpha-MSH-stimulated melanogenesis were investigated in B16F10 melanoma cells. MMS 1001 did not show cytotoxic effects up to 10 microM. Melanin content and intracellular tyrosinase activity were inhibited by MMS 1001 treatment in a dose-dependent manner. In Western blot analysis, MITF expression was decreased by MMS 1001. In addition, tyrosinase expressions were also reduced after MMS 1001 treatment. Further results showed that the phosphorylation of ERK was induced by MMS 1001. Moreover, a specific MEK inhibitor, PD98059, abrogated the inhibitory effects of MMS 1001 on melanin production and tyrosinase expression. These results indicate that the hypopigmentary effects of MMS 1001 resulted from the inhibition of MITF and tyrosinase expression via phosphorylation of ERK. Thus, MMS 1001 could be developed as a new effective skin-whitening agent.

  8. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120

    DEFF Research Database (Denmark)

    Prihandoko, Rudi; Alvarez-Curto, Elisa; Hudson, Brian D

    2016-01-01

    of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment...... activation. These unique observations define differential effects on signaling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signaling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode...

  9. Dynamics and control of the ERK signaling pathway: Sensitivity, bistability, and oscillations.

    Science.gov (United States)

    Arkun, Yaman; Yasemi, Mohammadreza

    2018-01-01

    Cell signaling is the process by which extracellular information is transmitted into the cell to perform useful biological functions. The ERK (extracellular-signal-regulated kinase) signaling controls several cellular processes such as cell growth, proliferation, differentiation and apoptosis. The ERK signaling pathway considered in this work starts with an extracellular stimulus and ends with activated (double phosphorylated) ERK which gets translocated into the nucleus. We model and analyze this complex pathway by decomposing it into three functional subsystems. The first subsystem spans the initial part of the pathway from the extracellular growth factor to the formation of the SOS complex, ShC-Grb2-SOS. The second subsystem includes the activation of Ras which is mediated by the SOS complex. This is followed by the MAPK subsystem (or the Raf-MEK-ERK pathway) which produces the double phosphorylated ERK upon being activated by Ras. Although separate models exist in the literature at the subsystems level, a comprehensive model for the complete system including the important regulatory feedback loops is missing. Our dynamic model combines the existing subsystem models and studies their steady-state and dynamic interactions under feedback. We establish conditions under which bistability and oscillations exist for this important pathway. In particular, we show how the negative and positive feedback loops affect the dynamic characteristics that determine the cellular outcome.

  10. Menadione (Vitamin K3) decreases melanin synthesis through ERK activation in Mel-Ab cells.

    Science.gov (United States)

    Kim, Eun-Hyun; Kim, Myo-Kyoung; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Park, Kyoung-Chan; Kim, Dong-Seok

    2013-10-15

    Menadione is a synthetic vitamin K3 derivative. Here, we examined the effects of menadione on melanogenesis and its related signaling pathways. Our results showed that melanin content was significantly reduced after menadione treatment in a dose-dependent manner. However, menadione treatment did not reduce tyrosinase activity directly. Wnt signaling is known to play a major role in the control of melanin synthesis. Thus, we tested the effects of menadione treatment on GSK3β and β-catenin signaling, but found that menadione did not influence either of these signaling pathways. We also investigated changes in the phosphorylation of ERK, which is related to melanin regulation. These results indicated that menadione treatment led to the phosphorylation of ERK. Additionally, menadione treatment reduced both MITF and tyrosinase protein levels. Treatment with PD98059, a specific ERK pathway inhibitor, restored menadione-induced melanin reduction and also prevented MITF and tyrosinase downregulation by menadione. These results suggest that the hypopigmentary action of menadione is due to MITF and tyrosinase downregulation by ERK activation. © 2013 Elsevier B.V. All rights reserved.

  11. Bisphenol-A rapidly enhanced passive avoidance memory and phosphorylation of NMDA receptor subunits in hippocampus of young rats

    International Nuclear Information System (INIS)

    Xu Xiaohong; Li Tao; Luo Qingqing; Hong Xing; Xie Lingdan; Tian Dong

    2011-01-01

    Bisphenol-A (BPA), an endocrine disruptor, is found to influence development of brain and behaviors in rodents. The previous study indicated that perinatal exposure to BPA impaired learning-memory and inhibited N-methyl-D-aspartate receptor (NMDAR) subunits expressions in hippocampus during the postnatal development in rats; and in cultured hippocampal neurons, BPA rapidly promotes dynamic changes in dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDAR subunit NR2B. In the present study, we examined the rapid effect of BPA on passive avoidance memory and NMDAR in the developing hippocampus of Sprague-Dawley rats at the age of postnatal day 18. The results showed that BPA or estradiol benzoate (EB) rapidly extended the latency to step down from the platform 1 h after footshock and increased the phosphorylation levels of NR1, NR2B, and mitogen-activated extracellular signal-regulated kinase (ERK) in hippocampus within 1 h. While 24 h after BPA or EB treatment, the improved memory and the increased phosphorylation levels of NR1, NR2B, ERK disappeared. Furthermore, pre-treatment with an estrogen receptors (ERs) antagonist, ICI182,780, or an ERK-activating kinase inhibitor, U0126, significantly attenuated EB- or BPA-induced phosphorylations of NR1, NR2B, and ERK within 1 h. These data suggest that BPA rapidly enhanced short-term passive avoidance memory in the developing rats. A non-genomic effect via ERs may mediate the modulation of the phosphorylation of NMDAR subunits NR1 and NR2B through ERK signaling pathway. - Highlights: → BPA rapidly extended the latency to step down from platform 1 h after footshock. → BPA rapidly increased pNR1, pNR2B, and pERK in hippocampus within 1 h. → ERs antagonist or MEK inhibitor attenuated BPA-induced pNR1, pNR2B, and pERK.

  12. Fisetin Reduces Cell Viability Through Up-Regulation of Phosphorylation of ERK1/2 in Cholangiocarcinoma Cells.

    Science.gov (United States)

    Kim, Nayoung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Jae Min; Kang, Min-Jung; Kim, Bo Hye; Lee, Jung-Su; Ryu, Ji Kon; Kim, Yong-Tae

    2016-11-01

    Cholangiocarcinoma (CCA) is a malignancy with poor prognosis and limited therapeutic options. Effective prevention and treatment of CCA require developing novel anticancer agents and improved therapeutic regimens. As natural products are concidered a rich source of potential anticancer agents, we investigated the anticancer effect of fisetin in combination with gemcitabine. Cytotoxic effect of fisetin and gemcitabine on a human CCA cell line SNU-308 was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and apoptosis assay using propidium iodine and annexin V. Molecular mechanisms of fisetin action in CCA were investigated by western blotting. Fisetin was found to inhibit survival of CCA cells, through strongly phosphorylating ERK. It also induced cellular apoptosis additively in combination with gemcitabine. Expression of cellular proliferative markers, such as phospho-p65 and myelocytomatosis (MYC), were reduced by fisetin. These results suggest fisetin in combination with gemcitabine as a candidate for use in improved anticancer regimens. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Interaction with Shc prevents aberrant Erk activation in the absence of extracellular stimuli

    KAUST Repository

    Suen, KinMan

    2013-05-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a new mechanism by which the adaptor protein Shc directly binds the MAP kinase Erk, thus preventing its activation in the absence of extracellular stimuli. The Shc-Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex forms through unique binding sites on both the Shc PTB domain and the N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc - induced through interaction with the phosphorylated receptor - releases Erk, allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered a tumor suppressor in human cells. © 2013 Nature America, Inc. All rights reserved.

  14. Interaction with Shc prevents aberrant Erk activation in the absence of extracellular stimuli

    KAUST Repository

    Suen, KinMan; Lin, Chichuan; George, Roger R.; Melo, Fernando A.; Biggs, Eleanor R.; Ahmed, Zamal; Drake, Melanie N.; Arur, Swathi; Arold, Stefan T.; Ladbury, John E S D

    2013-01-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a new mechanism by which the adaptor protein Shc directly binds the MAP kinase Erk, thus preventing its activation in the absence of extracellular stimuli. The Shc-Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex forms through unique binding sites on both the Shc PTB domain and the N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc - induced through interaction with the phosphorylated receptor - releases Erk, allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered a tumor suppressor in human cells. © 2013 Nature America, Inc. All rights reserved.

  15. Rapid and Sustained Nuclear-Cytoplasmic ERK Oscillations Induced by Epidermal Growth Factor

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Ippolito, Danielle L.; Chrisler, William B.; Resat, Haluk; Bollinger, Nikki; Opresko, Lee K.; Wiley, H. S.

    2009-12-01

    Mathematical modeling has predicted that ERK activity should oscillate in response to cell stimulation, but this has never been observed. To explore this inconsistency, we expressed an ERK1-GFP fusion protein in mammary epithelial cells. Following EGF stimulation, we observed rapid and continuous ERK oscillations between the nucleus and cytoplasm with a periodicity of approximately 15 minutes. These oscillations were remarkably persistent (>45 cycles), displayed an asymmetric waveform, and were highly dependent on cell density, essentially disappearing at confluency. We conclude that the ERK pathway is an intrinsic oscillator. Although the functional implications of the observed oscillations are uncertain, this property can be used to continuously monitor ERK activity in single cells.

  16. Neuronal Orphan G-Protein Coupled Receptor Proteins Mediate Plasmalogens-Induced Activation of ERK and Akt Signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available The special glycerophospholipids plasmalogens (Pls are enriched in the brain and reported to prevent neuronal cell death by enhancing phosphorylation of Akt and ERK signaling in neuronal cells. Though the activation of Akt and ERK was found to be necessary for the neuronal cells survival, it was not known how Pls enhanced cellular signaling. To answer this question, we searched for neuronal specific orphan GPCR (G-protein coupled receptor proteins, since these proteins were believed to play a role in cellular signal transduction through the lipid rafts, where both Pls and some GPCRs were found to be enriched. In the present study, pan GPCR inhibitor significantly reduced Pls-induced ERK signaling in neuronal cells, suggesting that Pls could activate GPCRs to induce signaling. We then checked mRNA expression of 19 orphan GPCRs and 10 of them were found to be highly expressed in neuronal cells. The knockdown of these 10 neuronal specific GPCRs by short hairpin (sh-RNA lentiviral particles revealed that the Pls-mediated phosphorylation of ERK was inhibited in GPR1, GPR19, GPR21, GPR27 and GPR61 knockdown cells. We further found that the overexpression of these GPCRs enhanced Pls-mediated phosphorylation of ERK and Akt in cells. Most interestingly, the GPCRs-mediated cellular signaling was reduced significantly when the endogenous Pls were reduced. Our cumulative data, for the first time, suggest a possible mechanism for Pls-induced cellular signaling in the nervous system.

  17. Histone Deacetylase 3 Suppresses Erk Phosphorylation and Matrix Metalloproteinase (Mmp)-13 Activity in Chondrocytes

    Science.gov (United States)

    Carpio, Lomeli R.; Bradley, Elizabeth W.; Westendorf, Jennifer J.

    2017-01-01

    Histone deacetylase inhibitors are emerging therapies for many diseases including cancers and neurological disorders; however, these drugs are teratogens to the developing skeleton. Hdac3 is essential for proper endochondral ossification as its deletion in chondrocytes increases cytokine signaling and the expression of matrix remodeling enzymes. Here we explored the mechanism by which Hdac3 controls Mmp13 expression in chondrocytes. In Hdac3-depleted chondrocytes, Erk1/2 as well as its downstream substrate, Runx2, were hyperphosphorylated as a result of decreased expression and activity of the Erk1/2 specific phosphatase, Dusp6. Erk1/2 kinase inhibitors and Dusp6 adenoviruses reduced Mmp13 expression and partially rescued matrix production in Hdac3-deficient chondrocytes. Postnatal chondrocyte-specific deletion of Hdac3 with an inducible Col2a1-Cre caused premature production of pErk1/2 and Mmp13 in the growth plate. Thus, Hdac3 controls the temporal and spatial expression of tissue-remodeling genes in chondrocytes to ensure proper endochondral ossification during development. PMID:27662443

  18. Dopamine receptors D3 and D5 regulate CD4(+)T-cell activation and differentiation by modulating ERK activation and cAMP production.

    Science.gov (United States)

    Franz, Dafne; Contreras, Francisco; González, Hugo; Prado, Carolina; Elgueta, Daniela; Figueroa, Claudio; Pacheco, Rodrigo

    2015-07-15

    Dopamine receptors have been described in T-cells, however their signalling pathways coupled remain unknown. Since cAMP and ERKs play key roles regulating T-cell physiology, we aim to determine whether cAMP and ERK1/2-phosphorylation are modulated by dopamine receptor 3 (D3R) and D5R, and how this modulation affects CD4(+) T-cell activation and differentiation. Our pharmacologic and genetic evidence shows that D3R-stimulation reduced cAMP levels and ERK2-phosphorylation, consequently increasing CD4(+) T-cell activation and Th1-differentiation, respectively. Moreover, D5R expression reinforced TCR-triggered ERK1/2-phosphorylation and T-cell activation. In conclusion, these findings demonstrate how D3R and D5R modulate key signalling pathways affecting CD4(+) T-cell activation and Th1-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Altered ERK1/2 Signaling in the Brain of Learned Helpless Rats: Relevance in Vulnerability to Developing Stress-Induced Depression

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2016-01-01

    Full Text Available Extracellular signal-regulated kinase 1/2- (ERK1/2- mediated cellular signaling plays a major role in synaptic and structural plasticity. Although ERK1/2 signaling has been shown to be involved in stress and depression, whether vulnerability to develop depression is associated with abnormalities in ERK1/2 signaling is not clearly known. The present study examined ERK1/2 signaling in frontal cortex and hippocampus of rats that showed vulnerability (learned helplessness, (LH or resiliency (non-learned helplessness, (non-LH to developing stress-induced depression. In frontal cortex and hippocampus of LH rats, we found that mRNA and protein expressions of ERK1 and ERK2 were significantly reduced, which was associated with their reduced activation and phosphorylation in cytosolic and nuclear fractions, where ERK1 and ERK2 target their substrates. In addition, ERK1/2-mediated catalytic activities and phosphorylation of downstream substrates RSK1 (cytosolic and nuclear and MSK1 (nuclear were also lower in the frontal cortex and hippocampus of LH rats without any change in their mRNA or protein expression. None of these changes were evident in non-LH rats. Our study indicates that ERK1/2 signaling is differentially regulated in LH and non-LH rats and suggests that abnormalities in ERK1/2 signaling may be crucial in the vulnerability to developing depression.

  20. Taurine zinc solid dispersions enhance bile-incubated L02 cell viability and improve liver function by inhibiting ERK2 and JNK phosphorylation during cholestasis

    International Nuclear Information System (INIS)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lai, Xiaofang; Xu, Donghui

    2016-01-01

    Highlights: • Taurine zinc SDs could prevent the bile-induced reduction in L02 cell viability. • Taurine zinc SDs can prevent cholestatic liver injury. • Taurine zinc SDs can inhibit BDL-induced hepatocyte apoptosis. • Taurine zinc SDs shows the cholesterol-lowering effects on cholestasis. • Taurine zinc SDs may suppress inflammation via dampening JNK phosphorylation. - Abstract: Dietary intakes of taurine and zinc are associated with decreased risk of liver disease. In this study, solid dispersions (SDs) of a taurine zinc complex on hepatic injury were examined in vitro using the immortalized human hepatocyte cell line L02 and in a rat model of bile duct ligation. Sham-operated and bile duct ligated Sprague-Dawley rats were treated with the vehicle alone or taurine zinc (40, 80, 160 mg/kg) for 17 days. Bile duct ligation significantly increased blood lipid levels, and promoted hepatocyte apoptosis, inflammation and compensatory biliary proliferation. In vitro, incubation with bile significantly reduced L02 cell viability; this effect was significantly attenuated by pretreatment with SP600125 (a JNK inhibitor) and enhanced when co-incubated with taurine zinc SDs. In vivo, administration of taurine zinc SDs decreased serum alanine aminotransferase and aspartate aminotransferase activities in a dose-dependent manner and attenuated the increases in serum total bilirubin, total cholesterol and low density lipoprotein cholesterol levels after bile duct ligation. Additionally, taurine zinc SDs downregulated the expression of interleukin-1β and inhibited the phosphorylation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase2 (ERK2) in the liver after bile duct ligation. Moreover, taurine zinc SDs had more potent blood lipid regulatory and anti-apoptotic effects than the physical mixture of taurine and zinc acetate. Therefore, we speculate that taurine zinc SDs protect liver function at least in part via a mechanism linked to reduce

  1. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Gongming [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Shen, Nan [Department of Clinical Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Jiang, Xuefeng; Sun, Huiqing [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Xu, Nanwei; Zhou, Dong [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Nong, Luming, E-mail: lumingnong@hotmail.com [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Ren, Kewei, E-mail: keweiren@hotmail.com [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China)

    2016-01-15

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  2. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    International Nuclear Information System (INIS)

    Gao, Gongming; Shen, Nan; Jiang, Xuefeng; Sun, Huiqing; Xu, Nanwei; Zhou, Dong; Nong, Luming; Ren, Kewei

    2016-01-01

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  3. Phosphorylation of threonine residues on Shc promotes ligand binding and mediates crosstalk between MAPK and Akt pathways in breast cancer cells

    KAUST Repository

    Suen, K.M.; Lin, C.C.; Seiler, C.; George, R.; Poncet-Montange, G.; Biter, A.B.; Ahmed, Z.; Arold, Stefan T.; Ladbury, J.E.

    2017-01-01

    Scaffold proteins play important roles in regulating signalling network fidelity, the absence of which is often the basis for diseases such as cancer. In the present work, we show that the prototypical scaffold protein Shc is phosphorylated by the extracellular signal-regulated kinase, Erk. In addition, Shc threonine phosphorylation is specifically up-regulated in two selected triple-negative breast cancer (TNBC) cell lines. To explore how Erk-mediated threonine phosphorylation on Shc might play a role in the dysregulation of signalling events, we investigated how Shc affects pathways downstream of EGF receptor. Using an in vitro model and biophysical analysis, we show that Shc threonine phosphorylation is responsible for elevated Akt and Erk signalling, potentially through the recruitment of the 14-3-3 ζ and Pin-1 proteins.

  4. Phosphorylation of threonine residues on Shc promotes ligand binding and mediates crosstalk between MAPK and Akt pathways in breast cancer cells

    KAUST Repository

    Suen, K.M.

    2017-12-06

    Scaffold proteins play important roles in regulating signalling network fidelity, the absence of which is often the basis for diseases such as cancer. In the present work, we show that the prototypical scaffold protein Shc is phosphorylated by the extracellular signal-regulated kinase, Erk. In addition, Shc threonine phosphorylation is specifically up-regulated in two selected triple-negative breast cancer (TNBC) cell lines. To explore how Erk-mediated threonine phosphorylation on Shc might play a role in the dysregulation of signalling events, we investigated how Shc affects pathways downstream of EGF receptor. Using an in vitro model and biophysical analysis, we show that Shc threonine phosphorylation is responsible for elevated Akt and Erk signalling, potentially through the recruitment of the 14-3-3 ζ and Pin-1 proteins.

  5. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif.

    Directory of Open Access Journals (Sweden)

    Mei Ying Ng

    Full Text Available Cycle inhibiting factors (Cifs are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways.

  6. [Progesterone Promotes Human Bone Marrow Mesenchymal Stem Cells to Synthesize Fibronectin via ERK Pathway].

    Science.gov (United States)

    Wu, Zhen-Yong; Chen, Jing-Li; Huang, Shu; Zhang, Hui; Wang, Fang; Wang, Yan; Bi, Xiao-Yun; Guo, Zi-Kuan

    2015-12-01

    To investigate whether the progesterone can promote fibronection (FN) synthesis by human bone marrow mesenchymal stem cells (MSCs) and to explore the potential underlying mechanism. The human bone marrow MSCs were cultured in a serum-free medium with progesterone for 72 hours, the MTT test was performed to observe the proliferation status and adhension ability of the treated cells. Western blot was used to detect the content of FN in MSDs with GAPDH as the internal reference, the phosphorylation of ERK1/2, as well as the FN content in MSC treated by PD98059, a specific inhibitor of ERK1/2. The progesterone at a range of certain doses not effect on the proliferation of human bone marrow MSCs. Progesterone (25 µg/L) treatment enhanced the FN expression and adherent ability of marrow MSCs. Progesterone could induce prompt phosphorylation of ERK 1/2 and its promoting effects on FN synthesis was reversed by PD98059. The progesterone can promote FN synthesis by human bone marrow MSCs via ERK 1/2 pathway, and it might be used to culture MSCs in serum-free medium.

  7. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development

    Science.gov (United States)

    2011-01-01

    Background Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Results Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Conclusions Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling. PMID:21401930

  8. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development.

    Science.gov (United States)

    Mouchel-Vielh, Emmanuèle; Rougeot, Julien; Decoville, Martine; Peronnet, Frédérique

    2011-03-14

    Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.

  9. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development

    Directory of Open Access Journals (Sweden)

    Peronnet Frédérique

    2011-03-01

    Full Text Available Abstract Background Mitogen-activated protein kinase (MAPK cascades (p38, JNK, ERK pathways are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Results Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Conclusions Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.

  10. Pituitary adenylate cyclase activating peptide (PACAP participates in adipogenesis by activating ERK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Tatjana Arsenijevic

    Full Text Available Pituitary adenylate cyclase activating peptide (PACAP belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2, strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ.

  11. Region- or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs in naïve and pain-experiencing rats

    Directory of Open Access Journals (Sweden)

    Cui Xiu-Yu

    2007-07-01

    Full Text Available Abstract Background Extracellular signal-regulated kinase (ERK, one member of the mitogen-activated protein kinase (MAPK family, has been suggested to regulate a diverse array of cellular functions, including cell growth, differentiation, survival, as well as neuronal plasticity. Recent evidence indicates a role for ERKs in nociceptive processing in both dorsal root ganglion and spinal cord. However, little literature has been reported to examine the differential distribution and activation of ERK isoforms, ERK1 and ERK2, at different levels of pain-related pathways under both normal and pain states. In the present study, quantitative blot immunolabeling technique was used to determine the spatial and temporal expression of ERK1 and ERK2, as well as their activated forms, in the spinal cord, primary somatosensory cortex (SI area of cortex, and hippocampus under normal, transient pain and persistent pain states. Results In naïve rats, we detected regional differences in total expression of ERK1 and ERK2 across different areas. In the spinal cord, ERK1 was expressed more abundantly than ERK2, while in the SI area of cortex and hippocampus, there was a larger amount of ERK2 than ERK1. Moreover, phosphorylated ERK2 (pERK2, not phosphorylated ERK1 (pERK1, was normally expressed with a high level in the SI area and hippocampus, but both pERK1 and pERK2 were barely detectable in normal spinal cord. Intraplantar saline or bee venom injection, mimicking transient or persistent pain respectively, can equally initiate an intense and long-lasting activation of ERKs in all three areas examined. However, isoform-dependent differences existed among these areas, that is, pERK2 exhibited stronger response than pERK1 in the spinal cord, whereas ERK1 was more remarkably activated than ERK2 in the S1 area and hippocampus. Conclusion Taken these results together, we conclude that: (1 under normal state, while ERK immunoreactivity is broadly distributed in the rat

  12. Detection of phosphorylated mitogen-activated protein kinase in the developing spinal cord of the mouse embryo

    International Nuclear Information System (INIS)

    Teraishi, Toshiya; Miura, Kenji

    2011-01-01

    Highlights: → We detected physiologically phosphorylated MAPKs in developing spinal cord. → We detected physiologically phosphorylated MAPKs by an improved method. → p-ERK1/2 and p-JNK1/2 were detected in the marginal layer and the dorsal horn. → p-ERK1/2 and p-JNK1/2 might play critical roles in the developing spinal cord. → Constructing phosphoprotein atlases will be possible if expanding this work. -- Abstract: Global understanding of the proteome is a major research topic. The comprehensive visualization of the distribution of proteins in vivo or the construction of in situ protein atlases may be a valuable strategy for proteomic researchers. Information about the distribution of various proteins under physiological and pathological conditions should be extremely valuable for the basic and clinical sciences. The mitogen-activated protein kinase (MAPK) cascade plays an essential role in intracellular signaling in organisms. This cascade also regulates biological processes involving development, differentiation, and proliferation. Phosphorylation and dephosphorylation are integral reactions in regulating the activity of MAPKs. Changes in the phosphorylation state of MAPKs are rapid and reversible; therefore, the localizations of physiologically phosphorylated MAPKs in vivo are difficult to accurately detect. Furthermore, phosphorylated MAPKs are likely to change phosphorylated states through commonly used experimental manipulations. In the present study, as a step toward the construction of in situ phosphoprotein atlases, we attempted to detect physiologically phosphorylated MAPKs in vivo in developing spinal cords of mice. We previously reported an improved immunohistochemical method for detecting unstable phosphorylated MAPKs. The distribution patterns of phosphorylated MAPKs in the spinal cords of embryonic mice from embryonic day 13 (E13) to E17 were observed with an improved immunohistochemical method. Phosphorylated extracellular signal

  13. The ERK5 and ERK1/2 signaling pathways play opposing regulatory roles during chondrogenesis of adult human bone marrow-derived multipotent progenitor cells.

    Science.gov (United States)

    Bobick, Brent E; Matsche, Alexander I; Chen, Faye H; Tuan, Rocky S

    2010-07-01

    Adult human bone marrow-derived multipotent progenitor cells (MPCs) are able to differentiate into a variety of specialized cell types, including chondrocytes, and are considered a promising candidate cell source for use in cartilage tissue engineering. In this study, we examined the regulation of MPC chondrogenesis by mitogen-activated protein kinases in an attempt to better understand how to generate hyaline cartilage in the laboratory that more closely resembles native tissue. Specifically, we employed the high-density pellet culture model system to assess the roles of ERK5 and ERK1/2 pathway signaling in MPC chondrogenesis. Western blotting revealed that high levels of ERK5 phosphorylation correlate with low levels of MPC chondrogenesis and that as TGF-beta 3-enhanced MPC chondrogenesis proceeds, phospho-ERK5 levels steadily decline. Conversely, levels of phospho-ERK1/2 paralleled the progression of MPC chondrogenesis. siRNA-mediated knockdown of ERK5 pathway components MEK5 and ERK5 resulted in increased MPC pellet mRNA transcript levels of the cartilage-characteristic marker genes SOX9, COL2A1, AGC, L-SOX5, and SOX6, as well as enhanced accumulation of SOX9 protein, collagen type II protein, and Alcian blue-stainable proteoglycan. In contrast, knockdown of ERK1/2 pathway members MEK1 and ERK1 decreased expression of all chondrogenic markers tested. Finally, overexpression of MEK5 and ERK5 also depressed MPC chondrogenesis, as indicated by diminished activity of a co-transfected collagen II promoter-luciferase reporter construct. In conclusion, our results suggest a novel role for the ERK5 pathway as an important negative regulator of adult human MPC chondrogenesis and illustrate that the ERK5 and ERK1/2 kinase cascades play opposing roles regulating MPC cartilage formation. (c) 2010 Wiley-Liss, Inc.

  14. Taurine zinc solid dispersions enhance bile-incubated L02 cell viability and improve liver function by inhibiting ERK2 and JNK phosphorylation during cholestasis.

    Science.gov (United States)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lai, Xiaofang; Xu, Donghui

    2016-07-29

    Dietary intakes of taurine and zinc are associated with decreased risk of liver disease. In this study, solid dispersions (SDs) of a taurine zinc complex on hepatic injury were examined in vitro using the immortalized human hepatocyte cell line L02 and in a rat model of bile duct ligation. Sham-operated and bile duct ligated Sprague-Dawley rats were treated with the vehicle alone or taurine zinc (40, 80, 160mg/kg) for 17days. Bile duct ligation significantly increased blood lipid levels, and promoted hepatocyte apoptosis, inflammation and compensatory biliary proliferation. In vitro, incubation with bile significantly reduced L02 cell viability; this effect was significantly attenuated by pretreatment with SP600125 (a JNK inhibitor) and enhanced when co-incubated with taurine zinc SDs. In vivo, administration of taurine zinc SDs decreased serum alanine aminotransferase and aspartate aminotransferase activities in a dose-dependent manner and attenuated the increases in serum total bilirubin, total cholesterol and low density lipoprotein cholesterol levels after bile duct ligation. Additionally, taurine zinc SDs downregulated the expression of interleukin-1β and inhibited the phosphorylation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase2 (ERK2) in the liver after bile duct ligation. Moreover, taurine zinc SDs had more potent blood lipid regulatory and anti-apoptotic effects than the physical mixture of taurine and zinc acetate. Therefore, we speculate that taurine zinc SDs protect liver function at least in part via a mechanism linked to reduce phosphorylation of JNK and ERK2, which suppresses inflammation, apoptosis and cholangiocyte proliferation during cholestasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Traditional Korean Herbal Formula Samsoeum Attenuates Adipogenesis by Regulating the Phosphorylation of ERK1/2 in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Soo-Jin Jeong

    2015-01-01

    Full Text Available Adipogenesis is the cell differentiation process from preadipocytes into adipocytes and the critical action in the development of obesity. In the present study, we conducted in vitro analyses to investigate the inhibitory effects of Samsoeum (SSE, a traditional herbal decoction. SSE had no significant cytotoxic effect against either the undifferentiated or differentiated 3T3-L1 cells. Oil Red O staining results showed that SSE significantly inhibited fat accumulation in adipocytes. SSE treatment consistently reduced the intracellular triglyceride content in the cells. SSE significantly inactivated glycerol-3-phosphate dehydrogenase (GPDH, a major link between carbohydrate and lipid metabolisms in 3T3-L1 adipocytes, and markedly inhibited the production of leptin, an important adipokine, in differentiated cells. SSE markedly suppressed the mRNA expression of the adipogenesis-related genes peroxisome proliferator-activated receptor-gamma (PPAR-γ, CCAAT/enhancer binding protein-alpha (C/EBP-α, fatty acid synthase (FAS, lipoprotein lipase (LPL, and fatty acid binding protein 4 (FABP4. Importantly, SSE increased the phosphorylation of ERK1/2, but not p38 MAPK and JNK, in adipose cells. Overall, our results indicate that SSE exerts antiadipogenic activity and modulates expressions of adipogenesis-related genes and ERK1/2 activation in adipocytes.

  16. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway.

    Science.gov (United States)

    Kim, Chae E; Lee, Seung J; Seo, Kyo W; Park, Hye M; Yun, Jung W; Bae, Jin U; Bae, Sun S; Kim, Chi D

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B(4) (LTB(4)) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB(4) production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB(4). Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB(4), subsequent MMP-9 production and plaque rupture.

  17. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    International Nuclear Information System (INIS)

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-01-01

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B 4 (LTB 4 ) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB 4 production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB 4 . Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB 4 , subsequent MMP-9 production and plaque rupture.

  18. KLF4 Nuclear Export Requires ERK Activation and Initiates Exit from Naive Pluripotency.

    Science.gov (United States)

    Dhaliwal, Navroop K; Miri, Kamelia; Davidson, Scott; Tamim El Jarkass, Hala; Mitchell, Jennifer A

    2018-04-10

    Cooperative action of a transcription factor complex containing OCT4, SOX2, NANOG, and KLF4 maintains the naive pluripotent state; however, less is known about the mechanisms that disrupt this complex, initiating exit from pluripotency. We show that, as embryonic stem cells (ESCs) exit pluripotency, KLF4 protein is exported from the nucleus causing rapid decline in Nanog and Klf4 transcription; as a result, KLF4 is the first pluripotency transcription factor removed from transcription-associated complexes during differentiation. KLF4 nuclear export requires ERK activation, and phosphorylation of KLF4 by ERK initiates interaction of KLF4 with nuclear export factor XPO1, leading to KLF4 export. Mutation of the ERK phosphorylation site in KLF4 (S132) blocks KLF4 nuclear export, the decline in Nanog, Klf4, and Sox2 mRNA, and differentiation. These findings demonstrate that relocalization of KLF4 to the cytoplasm is a critical first step in exit from the naive pluripotent state and initiation of ESC differentiation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Activation of ERK signalling by Src family kinases (SFKs) in DRG neurons contributes to hydrogen peroxide (H2O2)-induced thermal hyperalgesia.

    Science.gov (United States)

    Singh, Ajeet Kumar; Vinayak, Manjula

    2017-10-01

    Concomitant generation of reactive oxygen species during tissue inflammation has been recognised as a major factor for the development and the maintenance of hyperalgesia, out of which H 2 O 2 is the major player. However, molecular mechanism of H 2 O 2 induced hyperalgesia is still obscure. The aim of present study is to analyse the mechanism of H 2 O 2 -induced hyperalgesia in rats. Intraplantar injection of H 2 O 2 (5, 10 and 20 µmoles/paw) induced a significant thermal hyperalgesia in the hind paw, confirmed by increased c-Fos activity in dorsal horn of spinal cord. Onset of hyperalgesia was prior to development of oxidative stress and inflammation. Rapid increase in phosphorylation of extracellular signal regulated kinase (ERK) was observed in neurons of dorsal root ganglia after 20 min of H 2 O 2 (10 µmoles/paw) administration, which gradually returned towards normal level within 24 h, following the pattern of thermal hyperalgesia. The expression of TNFR1 followed the same pattern and colocalised with pERK. ERK phosphorylation was observed in NF-200-positive and -negative neurons, indicating the involvement of ERK in C-fibres as well as in A-fibres. Intrathecal preadministration of Src family kinases (SFKs) inhibitor (PP1) and MEK inhibitor (PD98059) prevented H 2 O 2 induced augmentation of ERK phosphorylation and thermal hyperalgesia. Pretreatment of protein tyrosine phosphatases (PTPs) inhibitor (sodium orthovanadate) also diminished hyperalgesia, although it further increased ERK phosphorylation. Combination of orthovanadate with PP1 or PD98059 did not exhibit synergistic antihyperalgesic effect. The results demonstrate SFKs-mediated ERK activation and increased TNFR1 expression in nociceptive neurons during H 2 O 2 induced hyperalgesia. However, the role of PTPs in hyperalgesic behaviour needs further molecular analysis.

  20. Elevated activation of ERK1 and ERK2 accompany enhanced liver injury following alcohol binge in chronically ethanol-fed rats.

    Science.gov (United States)

    Aroor, Annayya R; Jackson, Daniel E; Shukla, Shivendra D

    2011-12-01

    Binge drinking after chronic ethanol consumption is one of the important factors contributing to the progression of steatosis to steatohepatitis. The molecular mechanisms of this effect remain poorly understood. We have therefore examined in rats the effect of single and repeat ethanol binge superimposed on chronic ethanol intake on liver injury, activation of mitogen-activated protein kinases (MAPKs), and gene expression. Rats were chronically treated with ethanol in liquid diet for 4 weeks followed by single ethanol binge (5 gm/kg body weight) or 3 similar repeated doses of ethanol. Serum alcohol and alanine amino transferase (ALT) levels were determined by enzymatic methods. Steatosis was assessed by histology and hepatic triglycerides. Activation of MAPK, 90S ribosomal kinase (RSK), and caspase 3 were evaluated by Western blot. Levels of mRNA for tumor necrosis factor alpha (TNFα), early growth response-1 (egr-1), and plasminogen activator inhibitor-1 (PAI-1) were measured by real-time qRT-PCR. Chronic ethanol treatment resulted in mild steatosis and necrosis, whereas chronic ethanol followed by binge group exhibited marked steatosis and significant increase in necrosis. Chronic binge group also showed significant increase (compared with chronic ethanol alone) in the phosphorylation of extracellular regulated kinase 1 (ERK1), ERK2, and RSK. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK did not increase by the binge. Ethanol binge, after chronic ethanol intake, caused increase in mRNA for egr-1 and PAI-1, but not TNFα. Chronic ethanol exposure increases the susceptibility of rat liver to increased injury by 1 or 3 repeat binge. Among other alterations, the activated levels of ERK1, and more so ERK2, were remarkably amplified by binge suggesting a role of these isotypes in the binge amplification of the injury. In contrast, p38 MAPK and JNK1/2 activities were not amplified. These binge-induced changes were also reflected in the increases in the

  1. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Han; Zheng, Gang; Liu, Yang; Shen, Xue-Feng; Zhao, Zai-Hua [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Aschner, Michael [Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Luo, Wen-Jing, E-mail: luowenj@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Chen, Jing-Yuan, E-mail: jy_chen@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China)

    2016-04-15

    As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation. - Highlights: • Pb is sequestrated in choroid plexus both in vivo and in vitro. • Cx43 knockdown/overexpression prevents/increases Pb accumulations. • Cx43 hemichannels are required for Pb uptake. • Pb-induced Erk

  2. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation

    International Nuclear Information System (INIS)

    Song, Han; Zheng, Gang; Liu, Yang; Shen, Xue-Feng; Zhao, Zai-Hua; Aschner, Michael; Luo, Wen-Jing; Chen, Jing-Yuan

    2016-01-01

    As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation. - Highlights: • Pb is sequestrated in choroid plexus both in vivo and in vitro. • Cx43 knockdown/overexpression prevents/increases Pb accumulations. • Cx43 hemichannels are required for Pb uptake. • Pb-induced Erk

  3. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein regulates neurite development via PI3K-AKT and ERK signaling pathways.

    Science.gov (United States)

    Zhou, C; Li, C; Li, D; Wang, Y; Shao, W; You, Y; Peng, J; Zhang, X; Lu, L; Shen, X

    2013-12-19

    The elongation of neuron is highly dependent on membrane trafficking. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein 1 (BIG1) functions in the membrane trafficking between the Golgi apparatus and the plasma membrane. BFA, an uncompetitive inhibitor of BIG1 can inhibit neurite outgrowth and polarity development. In this study, we aimed to define the possible role of BIG1 in neurite development and to further investigate the potential mechanism. By immunostaining, we found that BIG1 was extensively colocalized with synaptophysin, a marker for synaptic vesicles in soma and partly in neurites. The amount of both protein and mRNA of BIG1 were up-regulated during rat brain development. BIG1 depletion significantly decreased the neurite length and inhibited the phosphorylation of phosphatidylinositide 3-kinase (PI3K) and protein kinase B (AKT). Inhibition of BIG1 guanine nucleotide-exchange factor (GEF) activity by BFA or overexpression of the dominant-negative BIG1 reduced PI3K and AKT phosphorylation, indicating regulatory effects of BIG1 on PI3K-AKT signaling pathway is dependent on its GEF activity. BIG1 siRNA or BFA treatment also significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation. Overexpression of wild-type BIG1 significantly increased ERK phosphorylation, but the dominant-negative BIG1 had no effect on ERK phosphorylation, indicating the involvement of BIG1 in ERK signaling regulation may not be dependent on its GEF activity. Our result identified a novel function of BIG1 in neurite development. The newly recognized function integrates the function of BIG1 in membrane trafficking with the activation of PI3K-AKT and ERK signaling pathways which are critical in neurite development. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Lead acetate induces EGFR activation upstream of SFK and PKCα linkage to the Ras/Raf-1/ERK signaling

    International Nuclear Information System (INIS)

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.; Yang, J.-L.

    2009-01-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC → ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1 S338 and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKCα using specific small interfering RNA blocked Pb induction of Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKCα, Ras-GTP, phospho-Raf-1 S338 and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKCα activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKCα activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKCα and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade

  5. ERK Regulates Renal Cell Proliferation and Renal Cyst Expansion in inv Mutant Mice

    International Nuclear Information System (INIS)

    Okumura, Yasuko; Sugiyama, Noriyuki; Tanimura, Susumu; Nishida, Masashi; Hamaoka, Kenji; Kohno, Michiaki; Yokoyama, Takahiko

    2009-01-01

    Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage kidney disease in children and young adults. Inv mice are a model for human nephronophthisis type 2 (NPHP2) and characterized by multiple renal cysts and situs inversus. Renal epithelial cells in inv cystic kidneys show increased cell proliferation. We studied the ERK pathway to understand the mechanisms that induce cell proliferation and renal cyst progression in inv kidneys. We studied the effects of ERK suppression by administering PD184352, an oral mitogen-activated protein kinase kinase (MEK) inhibitor on renal cyst expansion, extracellular signal-regulated protein kinase (ERK) activity, bromo-deoxyuridine (BrdU) incorporation and expression of cell-cycle regulators in invΔC kidneys. Phosphorylated ERK (p-ERK) level increased along with renal cyst enlargement. Cell-cycle regulators showed a high level of expression in invΔC kidneys. PD184352 successfully decreased p-ERK level and inhibited renal cyst enlargement. The inhibitor also decreased expression of cell-cycle regulators and BrdU incorporation in renal epithelial cells. The present results showed that ERK regulated renal cell proliferation and cyst expansion in inv mutants

  6. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  7. Hepatocyte-protective effect of nectandrin B, a nutmeg lignan, against oxidative stress: Role of Nrf2 activation through ERK phosphorylation and AMPK-dependent inhibition of GSK-3β

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae-Sook; Kim, Eun-Kyung; Choi, Yong-Won [Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588 (Korea, Republic of); Oh, Won Keun [College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University (Korea, Republic of); Kim, Young-Mi, E-mail: ymikim12@hanyang.ac.kr [Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588 (Korea, Republic of)

    2016-09-15

    Oxidative stress can contribute to the development and progression of liver diseases, such as drug-induced or alcoholic liver injury, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis. Nectandrin B is a bioactive lignan isolated from nutmeg extract. To date, little information is available about its pharmacological activities in the liver. This study investigated the hepatocyte-protective effect of nectandrin B against tert-butylhydroperoxide-induced oxidative injury and the underlying molecular mechanism. The cell viability assay revealed that nectandrin B prevents apoptosis stimulated by tert-butylhydroperoxide in both HepG2 cells and primary mouse hepatocytes. Nectandrin B also attenuated ROS production and restored the depleted glutathione level. Real-time PCR and immunoblot analyses showed that the expression of glutamate-cysteine ligase, an enzyme responsible for the glutathione biosynthesis, was induced by nectandrin B, indicating its indirect antioxidative effect. The NF-E2-related factor-2 (Nrf2) regulates gene expression of an array of antioxidant enzymes in hepatocytes. Nectandrin B stimulated Nrf2 activation as evidenced by its enhanced nuclear accumulation and increased antioxidant response element (ARE)-luciferase activity. Intriguingly, the hepatocyte-protective effect of nectandrin B against oxidative damage was completely abrogated by Nrf2 knockdown using Nrf2 specific siRNA. Nectandrin B promoted ERK activation, but inactivated GSK-3β through the AMPK-mediated inhibitory phosphorylation. The enforced overexpression of dominant-negative mutant of MEK1 or AMPKα, or wild-type GSK-3β inhibited the increase in the NQO1-ARE-luciferase activity stimulated by nectandrin B, suggesting that both ERK and AMPK-GSK-3β signalings are involved in the activation of Nrf2/ARE pathway by nectandrin B. Consistent with this, cytoprotection and restoration of glutathione level by nectandrin B was also blocked by the overexpression of dominant

  8. Stretch activates human myometrium via ERK, caldesmon and focal adhesion signaling.

    Directory of Open Access Journals (Sweden)

    Yunping Li

    2009-10-01

    Full Text Available An incomplete understanding of the molecular mechanisms responsible for myometrial activation from the quiescent pregnant state to the active contractile state during labor has hindered the development of effective therapies for preterm labor. Myometrial stretch has been implicated clinically in the initiation of labor and the etiology of preterm labor, but the molecular mechanisms involved in the human have not been determined. We investigated the mechanisms by which gestation-dependent stretch contributes to myometrial activation, by using human uterine samples from gynecologic hysterectomies and Cesarean sections. Here we demonstrate that the Ca requirement for activation of the contractile filaments in human myometrium increases with caldesmon protein content during gestation and that an increase in caldesmon phosphorylation can reverse this inhibitory effect during labor. By using phosphotyrosine screening and mass spectrometry of stretched human myometrial samples, we identify 3 stretch-activated focal adhesion proteins, FAK, p130Cas, and alpha actinin. FAK-Y397, which signals integrin engagement, is constitutively phosphorylated in term human myometrium whereas FAK-Y925, which signals downstream ERK activation, is phosphorylated during stretch. We have recently identified smooth muscle Archvillin (SmAV as an ERK regulator. A newly produced SmAV-specific antibody demonstrates gestation-specific increases in SmAV protein levels and stretch-specific increases in SmAV association with focal adhesion proteins. Thus, whereas increases in caldesmon levels suppress human myometrium contractility during pregnancy, stretch-dependent focal adhesion signaling, facilitated by the ERK activator SmAV, can contribute to myometrial activation. These results suggest that focal adhesion proteins may present new targets for drug discovery programs aimed at regulation of uterine contractility.

  9. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambrosio, Steven M. [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 (United States); Han, Chunhua [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Pan, Li; Douglas Kinghorn, A. [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Ding, Haiming, E-mail: ding.29@osu.edu [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2011-06-10

    Highlights: {yields} The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). {yields} Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). {yields} Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. {yields} The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. {yields} Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like those found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not

  10. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    International Nuclear Information System (INIS)

    D'Ambrosio, Steven M.; Han, Chunhua; Pan, Li; Douglas Kinghorn, A.; Ding, Haiming

    2011-01-01

    Highlights: → The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). → Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). → Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. → The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. → Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like those found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF

  11. Hypoxia Downregulates MAPK/ERK but Not STAT3 Signaling in ROS-Dependent and HIF-1-Independent Manners in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Jan Kučera

    2017-01-01

    Full Text Available Hypoxia is involved in the regulation of stem cell fate, and hypoxia-inducible factor 1 (HIF-1 is the master regulator of hypoxic response. Here, we focus on the effect of hypoxia on intracellular signaling pathways responsible for mouse embryonic stem (ES cell maintenance. We employed wild-type and HIF-1α-deficient ES cells to investigate hypoxic response in the ERK, Akt, and STAT3 pathways. Cultivation in 1% O2 for 24 h resulted in the strong dephosphorylation of ERK and its upstream kinases and to a lesser extent of Akt in an HIF-1-independent manner, while STAT3 phosphorylation remained unaffected. Downregulation of ERK could not be mimicked either by pharmacologically induced hypoxia or by the overexpression. Dual-specificity phosphatases (DUSP 1, 5, and 6 are hypoxia-sensitive MAPK-specific phosphatases involved in ERK downregulation, and protein phosphatase 2A (PP2A regulates both ERK and Akt. However, combining multiple approaches, we revealed the limited significance of DUSPs and PP2A in the hypoxia-mediated attenuation of ERK signaling. Interestingly, we observed a decreased reactive oxygen species (ROS level in hypoxia and a similar phosphorylation pattern for ERK when the cells were supplemented with glutathione. Therefore, we suggest a potential role for the ROS-dependent attenuation of ERK signaling in hypoxia, without the involvement of HIF-1.

  12. Kinase-loaded magnetic beads for sequential in vitro phosphorylation of peptides and proteins.

    Science.gov (United States)

    Hromadkova, Lenka; Kupcik, Rudolf; Vajrychova, Marie; Prikryl, Petr; Charvatova, Andrea; Jankovicova, Barbora; Ripova, Daniela; Bilkova, Zuzana; Slovakova, Marcela

    2018-01-15

    Post-translational modifications, including phosphorylation, greatly impact the physiological function of proteins, especially those that are natively unfolded and implicated in many neurodegenerative diseases. However, structural and functional studies of such proteins require fully defined phosphorylation, including those that are not physiological. Thus, the kinases ERK2 and GSK-3β were immobilized to various superparamagnetic beads with carboxylic, aldehyde, Ni 2+ , or Co 3+ functional groups, with a view to efficiently phosphorylate peptides and proteins in vitro. Full phosphorylation of specific synthetic peptides confirmed that beads were successfully loaded with kinases. Remarkably, enzymes covalently immobilized on carboxylated SeraMag beads remained active upon reuse, with residual activity after 10 uses 99.5 ± 0.34% for GSK-3β and 36.2 ± 2.01% for ERK2. The beads were also used to sequentially phosphorylate recombinant tau, which in vivo is a biomarker of Alzheimer's disease. Thus, a system consisting of two fully active kinases immobilized to magnetic beads is demonstrated for the first time. In comparison to soluble enzymes, the beads are easier to handle, reusable, and thus low-cost. Importantly, these beads are also convenient to remove from reactions to minimize contamination of phosphorylated products or to exchange with other kinases.

  13. ERK activation is required for hydrostatic pressure induced-tensile changes in engineered articular cartilage

    Science.gov (United States)

    DuRaine, G D; Athanasiou, K A

    2015-01-01

    The objective of this study was to identify the ERK 1/2 involvement in the changes in compressive and tensile mechanical properties associated with hydrostatic pressure treatment of self-assembled cartilage constructs. In study 1, ERK 1/2 phosphorylation was detected by immunoblot following application of hydrostatic pressure (1 hour of static 10MPa) applied at day 10-14 of self-assembly culture. In study 2, ERK 1/2 activation was blocked during hydrostatic pressure application on days 10-14. With pharmacological inhibition of the ERK pathway by the MEK1/ERK inhibitor U0126 during hydrostatic pressure application on days 10-14, the increase in Young’s modulus induced by hydrostatic pressure was blocked. Furthermore, this reduction in Young’s modulus with U0126 treatment during hydrostatic pressure application corresponded with a decrease in total collagen expression. However, U0126 did not inhibit the increase in aggregate modulus or GAG induced by hydrostatic pressure. These findings demonstrate a link between hydrostatic pressure application, ERK signaling, and changes in biomechanical properties of a tissue engineered construct. PMID:23255524

  14. ERK activation is required for hydrostatic pressure-induced tensile changes in engineered articular cartilage.

    Science.gov (United States)

    DuRaine, G D; Athanasiou, K A

    2015-04-01

    The objective of this study was to identify ERK 1/2 involvement in the changes in compressive and tensile mechanical properties associated with hydrostatic pressure treatment of self-assembled cartilage constructs. In study 1, ERK 1/2 phosphorylation was detected by immunoblot, following application of hydrostatic pressure (1 h of static 10 MPa) applied at days 10-14 of self-assembly culture. In study 2, ERK 1/2 activation was blocked during hydrostatic pressure application on days 10-14. With pharmacological inhibition of the ERK pathway by the MEK1/ERK inhibitor U0126 during hydrostatic pressure application on days 10-14, the increase in Young's modulus induced by hydrostatic pressure was blocked. Furthermore, this reduction in Young's modulus with U0126 treatment during hydrostatic pressure application corresponded to a decrease in total collagen expression. However, U0126 did not inhibit the increase in aggregate modulus or GAG induced by hydrostatic pressure. These findings demonstrate a link between hydrostatic pressure application, ERK signalling and changes in the biomechanical properties of a tissue-engineered construct. Copyright © 2012 John Wiley & Sons, Ltd.

  15. ERK1/2 mediates glucose-regulated POMC gene expression in hypothalamic neurons.

    Science.gov (United States)

    Zhang, Juan; Zhou, Yunting; Chen, Cheng; Yu, Feiyuan; Wang, Yun; Gu, Jiang; Ma, Lian; Ho, Guyu

    2015-04-01

    Hypothalamic glucose-sensing neurons regulate the expression of genes encoding feeding-related neuropetides POMC, AgRP, and NPY - the key components governing metabolic homeostasis. AMP-activated protein kinase (AMPK) is postulated to be the molecular mediator relaying glucose signals to regulate the expression of these neuropeptides. Whether other signaling mediator(s) plays a role is not clear. In this study, we investigated the role of ERK1/2 using primary hypothalamic neurons as the model system. The primary neurons were differentiated from hypothalamic progenitor cells. The differentiated neurons possessed the characteristic neuronal cell morphology and expressed neuronal post-mitotic markers as well as leptin-regulated orexigenic POMC and anorexigenic AgRP/NPY genes. Treatment of cells with glucose dose-dependently increased POMC and decreased AgRP/NPY expression with a concurrent suppression of AMPK phosphorylation. In addition, glucose treatment dose-dependently increased the ERK1/2 phosphorylation. Blockade of ERK1/2 activity with its specific inhibitor PD98059 partially (approximately 50%) abolished glucose-induced POMC expression, but had little effect on AgRP/NPY expression. Conversely, blockade of AMPK activity with its specific inhibitor produced a partial (approximately 50%) reversion of low-glucose-suppressed POMC expression, but almost completely blunted the low-glucose-induced AgRP/NPY expression. The results indicate that ERK1/2 mediated POMC but not AgRP/NPY expression. Confirming the in vitro findings, i.c.v. administration of PD98059 in rats similarly attenuated glucose-induced POMC expression in the hypothalamus, but again had little effect on AgRP/NPY expression. The results are indicative of a novel role of ERK1/2 in glucose-regulated POMC expression and offer new mechanistic insights into hypothalamic glucose sensing. © 2015 Society for Endocrinology.

  16. Sangivamycin induces apoptosis by suppressing Erk signaling in primary effusion lymphoma cells

    International Nuclear Information System (INIS)

    Wakao, Kazufumi; Watanabe, Tadashi; Takadama, Tadatoshi; Ui, Sadaharu; Shigemi, Zenpei; Kagawa, Hiroki; Higashi, Chizuka; Ohga, Rie; Taira, Takahiro; Fujimuro, Masahiro

    2014-01-01

    Highlights: • Sangivamycin induces the apoptosis of B cell lymphoma PEL cells. • Sangivamycin suppresses Erk signaling by inhibiting Erk phosphorylation in PEL cells. • The activation of Erk signaling is essential for PEL cell survival. • Sangivamycin induces the apoptosis of PEL cells without production of progeny virus. • Sangivamycin may serve as a novel drug for the treatment of PEL. - Abstract: Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that

  17. Sangivamycin induces apoptosis by suppressing Erk signaling in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wakao, Kazufumi [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Watanabe, Tadashi [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Takadama, Tadatoshi; Ui, Sadaharu [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Shigemi, Zenpei; Kagawa, Hiroki [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Higashi, Chizuka; Ohga, Rie; Taira, Takahiro [Department of Molecular Cell Biology, Faculty of Medicine, University of Yamanashi, Chuoh-shi 409-3898 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2014-02-07

    Highlights: • Sangivamycin induces the apoptosis of B cell lymphoma PEL cells. • Sangivamycin suppresses Erk signaling by inhibiting Erk phosphorylation in PEL cells. • The activation of Erk signaling is essential for PEL cell survival. • Sangivamycin induces the apoptosis of PEL cells without production of progeny virus. • Sangivamycin may serve as a novel drug for the treatment of PEL. - Abstract: Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that

  18. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    Science.gov (United States)

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  19. Decoy receptor 3 suppresses FasL-induced apoptosis via ERK1/2 activation in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Li, Dechun; Zhao, Xin; Song, Shiduo; Zhang, Lifeng; Zhu, Dongming [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Wang, Zhenxin [Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Chen, Xiaochen [Department of Pathology, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200090 (China); Zhou, Jian, E-mail: zhoujian20150602@126.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China)

    2015-08-07

    Resistance to Fas Ligand (FasL) mediated apoptosis plays an important role in tumorigenesis. Decoy receptor 3 (DcR3) is reported to interact with FasL and is overexpressed in some malignant tumors. We sought to investigate the role of DcR3 in resistance to FasL in pancreatic cancer. We compared expression of apoptosis related genes between FasL-resistant SW1990 and FasL-sensitive Patu8988 pancreatic cell lines by microarray analysis. We explored the impact of siRNA knockdown of, or exogenous supplementation with, DcR3 on FasL-induced cell growth inhibition in pancreatic cancer cell lines and expression of proteins involved in apoptotic signaling. We assessed the level of DcR3 protein and ERK1/2 phosphorylation in tumor and non-tumor tissue samples of 66 patients with pancreatic carcinoma. RNAi knockdown of DcR3 expression in SW1990 cells reduced resistance to FasL-induced apoptosis, and supplementation of Patu8988 with rDcR3 had the opposite effect. RNAi knockdown of DcR3 in SW1990 cells elevated expression of caspase 3, 8 and 9, and reduced ERK1/2 phosphorylation (P < 0.05), but did not alter phosphorylated-Akt expression. 47 tumor tissue specimens, but only 15 matched non-tumor specimens stained for DcR3 (χ{sup 2} = 31.1447, P < 0.001). The proliferation index of DcR3 positive specimens (14.26  ±  2.67%) was significantly higher than that of DcR3 negative specimens (43.58  ±  7.88%, P < 0.01). DcR3 expression positively correlated with p-ERK1/2 expression in pancreatic cancer tissues (r = 0.607, P < 0.001). DcR3 enhances ERK1/2 phosphorylation and opposes FasL signaling in pancreatic cancer cells. - Highlights: • We investigated the role of DcR3 in FasL resistance in pancreatic cancer. • Knockdown of DcR3 in SW1990 cells reduced resistance to FasL-induced apoptosis. • DcR3 knockdown also elevated caspase expression, and reduced ERK1/2 phosphorylation. • Tumor and non-tumor tissues were collected from 66 pancreatic carcinoma patients

  20. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Kim, Jong-Dai; Kim, Chun-Ki; Kim, Jung Huan; Won, Moo-Ho; Lee, Han-Soo; Dong, Mi-Sook; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2008-01-01

    We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy

  1. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation.

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    Full Text Available B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+ T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK.

  2. Impairment of cocaine-mediated behaviours in mice by clinically relevant Ras-ERK inhibitors

    Science.gov (United States)

    Papale, Alessandro; Morella, Ilaria Maria; Indrigo, Marzia Tina; Bernardi, Rick Eugene; Marrone, Livia; Marchisella, Francesca; Brancale, Andrea; Spanagel, Rainer; Brambilla, Riccardo; Fasano, Stefania

    2016-01-01

    Ras-ERK signalling in the brain plays a central role in drug addiction. However, to date, no clinically relevant inhibitor of this cascade has been tested in experimental models of addiction, a necessary step toward clinical trials. We designed two new cell-penetrating peptides - RB1 and RB3 - that penetrate the brain and, in the micromolar range, inhibit phosphorylation of ERK, histone H3 and S6 ribosomal protein in striatal slices. Furthermore, a screening of small therapeutics currently in clinical trials for cancer therapy revealed PD325901 as a brain-penetrating drug that blocks ERK signalling in the nanomolar range. All three compounds have an inhibitory effect on cocaine-induced ERK activation and reward in mice. In particular, PD325901 persistently blocks cocaine-induced place preference and accelerates extinction following cocaine self-administration. Thus, clinically relevant, systemically administered drugs that attenuate Ras-ERK signalling in the brain may be valuable tools for the treatment of cocaine addiction. DOI: http://dx.doi.org/10.7554/eLife.17111.001 PMID:27557444

  3. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.

    Science.gov (United States)

    Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J

    2004-03-01

    Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.

  4. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Sung, Kuo-Li Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412 (United States)

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  5. Inhibition of ERK1/2 or AKT Activity Equally Enhances Radiation Sensitization in B16F10 Cells

    Science.gov (United States)

    Kalal, Bhuvanesh Sukhlal; Fathima, Faraz; Pai, Vinitha Ramanath; Sanjeev, Ganesh; Krishna, Chilakapati Murali; Upadhya, Dinesh

    2018-01-01

    Background The aim of the study was to evaluate the radiation sensitizing ability of ERK1/2, PI3K-AKT and JNK inhibitors in highly radiation resistant and metastatic B16F10 cells which carry wild-type Ras and Braf. Methods Mouse melanoma cell line B16F10 was exposed to 1.0, 2.0 and 3.0 Gy of electron beam radiation. Phosphorylated ERK1/2, AKT and JNK levels were estimated by ELISA. Cells were exposed to 2.0 and 3.0 Gy of radiation with or without prior pharmacological inhibition of ERK1/2, AKT as well as JNK pathways. Cell death induced by radiation as well as upon inhibition of these pathways was measured by TUNEL assay using flow cytometry. Results Exposure of B16F10 cells to 1.0, 2.0 and 3.0 Gy of electron beam irradiation triggered an increase in all the three phosphorylated proteins compared to sham-treated and control groups. B16F10 cells pre-treated with either ERK1/2 or AKT inhibitors equally enhanced radiation-induced cell death at 2.0 as well as 3.0 Gy (P < 0.001), while inhibition of JNK pathway increased radiation-induced cell death to a lesser extent. Interestingly combined inhibition of ERK1/2 or AKT pathways did not show additional cell death compared to individual ERK1/2 or AKT inhibition. This indicates that ERK1/2 or AKT mediates radiation resistance through common downstream molecules in B16F10 cells. Conclusions Even without activating mutations in Ras or Braf genes, ERK1/2 and AKT play a critical role in B16F10 cell survival upon radiation exposure and possibly act through common downstream effector/s. PMID:29581812

  6. Benzoquinone activates the ERK/MAPK signaling pathway via ROS production in HL-60 cells

    International Nuclear Information System (INIS)

    Ruiz-Ramos, Ruben; Cebrian, Mariano E.; Garrido, Efrain

    2005-01-01

    Benzene (BZ) is a class I carcinogen and its oxidation to reactive intermediates is a prerequisite of hematoxicity and myelotoxicity. The generated metabolites include hydroquinone, which is further oxidized to the highly reactive 1,4-benzoquinone (BQ) in bone marrow. Therefore, we explored the mechanisms underlying BQ-induced HL-60 cell proliferation by studying the role of BQ-induced reactive oxygen species (ROS) in the activation of the ERK-MAPK signaling pathway. BQ treatment (0.01-30 μM) showed that doses below 10 μM did not significantly reduce viability. ROS production after 3 μM BQ treatment increased threefold; however, catalase addition reduced ROS generation to basal levels. FACS analysis showed that BQ induced a fivefold increase in the proportion of cells in S-phase. We also observed a high proportion of Bromodeoxyuridine (BrdU) stained cells, indicating a higher DNA synthesis rate. BQ also produced rapid and prolonged phosphorylation of ERK1/2 proteins. Simultaneous treatment with catalase or PD98059, a potent MEK protein inhibitor, reduced cell recruitment into the S-phase and also abolished the ERK1/2 protein phosphorylation induced by BQ, suggesting that MEK/ERK is an important pathway involved in BQ-induced ROS mediated proliferation. The prolonged activation of ERK1/2 contributes to explain the increased S-phase cell recruitment and to understand the leukemogenic processes associated with exposure to benzene metabolites. Thus, the possible mechanism by which BQ induce HL-60 cells to enter the cell cycle and proliferate is linked to ROS production and its growth promoting effects by specific activation of regulating genes known to be activated by redox mechanisms

  7. Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Bin, Geng; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Liping, An; Jinglin, Ma; Cuifang, Wang; Yonggang, Chen [The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, 730000 Gansu (China); Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000 Gansu (China); Yayi, Xia, E-mail: xiayayildey@163.com [The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, 730000 Gansu (China); Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000 Gansu (China)

    2016-05-01

    TNF-α is known to induce osteoblasts apoptosis, whereas mechanical stimulation has been shown to enhance osteoblast survival. In the present study, we found that mechanical stimulation in the form of fluid shear stress (FSS) suppresses TNF-α induced apoptosis in MC3T3-E1 cells. Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family that has been implicated in cell survival. We also demonstrated that FSS imposed by flow chamber in vitro leads to a markedly activation of ERK5, which was shown to be protective against TNF-α-induced apoptosis, whereas the transfection of siRNA against ERK5 (ERK5-siRNA) reversed the FSS-medicated anti-apoptotic effects. An initial FSS-mediated activation of ERK5 that phosphorylates AKT to increase its activity, and a following forkhead box O 3a (FoxO3a) was phosphorylated by activated AKT. Phosphorylated FoxO3a is sequestered in the cytoplasm, and prevents it from translocating to nucleus where it can increase the expression of FasL and Bim. The inhibition of AKT-FoxO3a signalings by a PI3K (PI3-kinase)/AKT inhibitor (LY294002) or the transfection of ERK5-siRNA led to the nuclear translocation of non-phosphorylated FoxO3a, and increased the protein expression of FasL and Bim. In addition, the activation of caspase-3 by TNF-α was significantly inhibited by aforementioned FSS-medicated mechanisms. In brief, the activation of ERK5-AKT-FoxO3a signaling pathways by FSS resulted in a decreased expression of FasL and Bim and an inhibition of caspase-3 activation, which exerts a protective effect that prevents osteoblasts from apoptosis. - Highlights: • Fluid shear stress inhibits osteoblast apoptosis induced by TNF-α. • Inhibition of ERK5 activity by transfection of ERK5 siRNA blocks FSS-mediated anti-apoptotic effect in osteoblast. • Activated ERK5-AKT-FoxO3a-Bim/FasL signaling pathways by FSS is required to protect osteoblast from apoptosis.

  8. A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer.

    Science.gov (United States)

    Yang, Ting; Xu, Feifei; Sheng, Yuan; Zhang, Wen; Chen, Yun

    2016-10-01

    Apoptosis suppression caused by overexpression of anti-apoptotic proteins is a central factor to the acquisition of multi-drug resistance (MDR) in breast cancer. As a highly conserved anti-apoptotic protein, Bcl-2 can initiate an anti-apoptosis response via an ERK1/2-mediated pathway. However, the details therein are still far from completely understood and a quantitative description of the associated proteins in the biological context may provide more insights into this process. Following our previous attempts in the quantitative analysis of MDR mechanisms, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics was continually employed here to describe ERK/Bcl-2-mediated anti-apoptosis. A targeted proteomics assay was developed and validated first for the simultaneous quantification of ERK1/2 and Bcl-2. In particular, ERK isoforms (i.e., ERK1 and ERK2) and their differential phosphorylated forms including isobaric ones were distinguished. Using this assay, differential protein levels and site-specific phosphorylation stoichiometry were observed in parental drug-sensitive MCF-7/WT cancer cells and drug-resistant MCF-7/ADR cancer cells and breast tissue samples from two groups of patients who were either suspected or diagnosed to have drug resistance. In addition, quantitative analysis of the time course of both ERK1/2 and Bcl-2 in doxorubicin (DOX)-treated MCF-7/WT cells confirmed these findings. Overall, we propose that targeted proteomics can be used generally to resolve more complex cellular events.

  9. Adenosine A2A receptor-dependent proliferation of pulmonary endothelial cells is mediated through calcium mobilization, PI3-kinase and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Ahmad, Aftab; Schaack, Jerome B.; White, Carl W.; Ahmad, Shama

    2013-01-01

    Highlights: •A 2A receptor-induced pulmonary endothelial growth is mediated by PI3K and ERK1/2. •Cytosolic calcium mobilization is also critical for pulmonary endothelial growth. •Effectors of A 2A receptor, like tyrosine kinases and cAMP increase PI3K/Akt signaling. •Activation of A 2A receptor can contribute to vascular remodeling. -- Abstract: Hypoxia and HIF-2α-dependent A 2A receptor expression and activation increase proliferation of human lung microvascular endothelial cells (HLMVECs). This study was undertaken to investigate the signaling mechanisms that mediate the proliferative effects of A 2A receptor. A 2A receptor-mediated proliferation of HLMVECs was inhibited by intracellular calcium chelation, and by specific inhibitors of ERK1/2 and PI3-kinase (PI3K). The adenosine A 2A receptor agonist CGS21680 caused intracellular calcium mobilization in controls and, to a greater extent, in A 2A receptor-overexpressing HLMVECs. Adenoviral-mediated A 2A receptor overexpression as well as receptor activation by CGS21680 caused increased PI3K activity and Akt phosphorylation. Cells overexpressing A 2A receptor also manifested enhanced ERK1/2 phosphorylation upon CGS21680 treatment. A 2A receptor activation also caused enhanced cAMP production. Likewise, treatment with 8Br-cAMP increased PI3K activity. Hence A 2A receptor-mediated cAMP production and PI3K and Akt phosphorylation are potential mediators of the A 2A -mediated proliferative response of HLMVECs. Cytosolic calcium mobilization and ERK1/2 phosphorylation are other critical effectors of HLMVEC proliferation and growth. These studies underscore the importance of adenosine A 2A receptor in activation of survival and proliferative pathways in pulmonary endothelial cells that are mediated through PI3K/Akt and ERK1/2 pathways

  10. Genistein attenuates brain damage induced by transient cerebral ischemia through up-regulation of ERK activity in ovariectomized mice.

    Science.gov (United States)

    Wang, Shiquan; Wei, Haidong; Cai, Min; Lu, Yan; Hou, Wugang; Yang, Qianzi; Dong, Hailong; Xiong, Lize

    2014-01-01

    Stroke has severe consequences in postmenopausal women. As replacement therapy of estrogen have various adverse effects and the undermined outcomes. Genistein, a natural phytoestrogen, has been suggested to be a potential neuroprotective agent for such stroke patients. However, the role of genistein and its underlying mechanism in ovariectomized mice has not yet been evaluated. In the present study, ovariectomized mice were treated with genistein (10 mg/kg) or vehicle daily for two weeks before developing transient cerebral ischemia (middle cerebral artery occlusion). The neurological manifestation was evaluated, and infarct volumes were demonstrated by 2,3,5-triphenyltetrazolium chloride staining at 24 h after reperfusion. In addition, phosphorylation of extracellular signal-regulated kinase (ERK) was detected by Western blotting and immunofluorescence staining, and cellular apoptosis was evaluated in the ischemic penumbra. We found that treatment with genistein reduced infarct volumes, improved neurological outcomes and attenuated cellular apoptosis at 24 h after reperfusion. ERK1/2 showed increased phosphorylation by genistein treatment after reperfusion, and an ERK1/2 inhibitor U0126 abolished this protective effect of genistein in terms of infarct volumes, neurological scores and cellular apoptosis. Our findings indicate that treatment with genistein can reduce the severity of subsequent stroke episodes, and that this beneficial function is associated with ERK activation.

  11. Instillation of Sericin Enhances Corneal Wound Healing through the ERK Pathway in Rat Debrided Corneal Epithelium

    Directory of Open Access Journals (Sweden)

    Noriaki Nagai

    2018-04-01

    Full Text Available Sericin is a major constituent of silk produced by silkworms. We previously found that the instillation of sericin enhanced the proliferation of corneal epithelial cells, and acted to promote corneal wound healing in both normal and diabetic model rats. However, the mechanisms by which sericin promotes the proliferation of corneal cells have not been established. In this study, we investigated the effects of sericin on Akt and ERK activation in a human corneal epithelial cell line (HCE-T cells and rat debrided corneal epithelium. Although Akt phosphorylation was not detected following the treatment of HCE-T cells with sericin, ERK1/2 phosphorylation was enhanced. The growth of HCE-T cells treated with sericin was significantly increased, with the cell growth of sericin-treated HCE-T cells being 1.7-fold higher in comparison with vehicle-treated HCE-T cells. On the other hand, both of an ERK inhibitor U0126 (non-specific specific inhibitor and SCH772984 (specific inhibitor attenuated the enhanced cell growth by sericin, and the growth level in the case of co-treatment with sericin and ERK1/2 inhibitor was similar to that of cells treated with ERK1/2 inhibitor alone. In an in vivo study using rat debrided corneal epithelium, the corneal wound healing rate was enhanced by the instillation of sericin, and this enhancement was also attenuated by the instillation of U0126. In addition, the corneal wound healing rate in rats co-instilled with sericin and U0126 was similar to that following the instillation of U0126 alone. In conclusion, we found that the instillation of sericin enhanced cell proliferation via the activation of the MAPK/ERK pathway, resulting in the promotion of corneal wound healing in rat eyes. These findings provide significant information for designing further studies to develop potent corneal wound-healing drugs.

  12. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    Science.gov (United States)

    D’Ambrosio, Steven M.; Han, Chunhua; Pan, Li; Kinghorn, A. Douglas; Ding, Haiming

    2011-01-01

    Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003), was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compound 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. PMID:21596018

  13. ERα and ERK1/2 MAP kinase expression in microdissected stromal and epithelial endometrial cells

    Directory of Open Access Journals (Sweden)

    Said Abu Alkhair Mohamed

    2014-03-01

    Total and phosphorylated levels for ERK1/2 and ERα were measured by quantitation of signals from Western blots using specific antibodies against the active and total forms of ERK1/2 and against ERα. When the level of the proteins was quantitated and normalized to β actin from microdissected stroma and epithelium, no significant difference was detected in the levels of these proteins between the two tissue compartments. There was a trend toward higher expression in the stroma vs. epithelium, respectively (active ERK1/2 0.45 ± 0.17 vs. 0.2 ± 0.65; total ERK1/2 0.54 ± 0.35 vs. 0.28 ± 0.23; ERα 0.82 ± 0.28 vs. 0.54 ± 0.18; n = 6. These data demonstrate that there are comparable levels of ERα (P = 0.41, total ERK1/2 (P = 0.18 and active ERK1/2 (P = 0.13 in the stroma and epithelium of proliferative phase endometrium with a trend toward higher expression of these proteins in the stromal compartment.

  14. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling.

    Science.gov (United States)

    Dyugovskaya, Larissa; Polyakov, Andrey; Cohen-Kaplan, Victoria; Lavie, Peretz; Lavie, Lena

    2012-10-22

    Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA) characterized by nightly intermittent hypoxia (IH). This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH) using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated the IH-induced Mcl-1 increase. In SH, only p38MAPK

  15. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling

    Directory of Open Access Journals (Sweden)

    Dyugovskaya Larissa

    2012-10-01

    Full Text Available Abstract Background Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA characterized by nightly intermittent hypoxia (IH. This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. Methods Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. Results Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated

  16. Ghrelin promotes human non-small cell lung cancer A549 cell proliferation through PI3K/Akt/mTOR/P70S6K and ERK signaling pathways.

    Science.gov (United States)

    Zhu, Jianhua; Yao, Jianfeng; Huang, Rongfu; Wang, Yueqin; Jia, Min; Huang, Yan

    2018-04-06

    Ghrelin is a gastric acyl-peptide that plays an important role in cell proliferation. In the present study, we explored the role of ghrelin in A549 cell proliferation and the possible molecular mechanisms. We found that ghrelin promotes A549 cell proliferation, knockdown of the growth hormone secretagogue receptor (GHSR) attenuated A549 cell proliferation caused by ghrelin. Ghrelin induced the rapid phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, ERK, mammalian target of rapamycin (mTOR) and P70S6K. PI3K inhibitor (LY 294002), ERK inhibitor (PD98059) and mTOR inhibitor (Rapamycin) inhibited ghrelin-induced A549 cell proliferation. Moreover, GHSR siRNA inhibited phosphorylation of PI3K, Akt, ERK, mTOR and P70S6K induced by ghrelin. Akt and mTOR/P70S6K phosphorylation was inhibited by LY 294002 but not by PD98059. These results indicate that ghrelin promotes A549 cell proliferation via GHSR-dependent PI3K/Akt/mTOR/P70S6K and ERK signaling pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Functional Redundancy of ERK1 and ERK2 MAP Kinases during Development

    Directory of Open Access Journals (Sweden)

    Christophe Frémin

    2015-08-01

    Full Text Available ERK1 and ERK2 are the effector kinases of the ERK1/2 MAP-kinase signaling pathway, which plays a central role in transducing signals controlling cell proliferation, differentiation, and survival. Deregulated activity of the ERK1/2 pathway is linked to a group of developmental syndromes and contributes to the pathogenesis of various human diseases. One fundamental question that remains unaddressed is whether ERK1 and ERK2 have evolved unique physiological functions or whether they are used redundantly to reach a threshold of global ERK activity. Here, we show that the extent of development of the mouse placenta and embryo bearing different combinations of Erk1 and Erk2 alleles is strictly correlated with total ERK1/2 activity. We further demonstrate that transgenic expression of ERK1 fully rescues the embryonic and placental developmental defects associated with the loss of ERK2. We conclude that ERK1 and ERK2 exert redundant functions in mouse development.

  18. Zurampic Protects Pancreatic β-Cells from High Uric Acid Induced-Damage by Inhibiting URAT1 and Inactivating the ROS/AMPK/ERK Pathways

    Directory of Open Access Journals (Sweden)

    Ying Xin

    2018-05-01

    Full Text Available Background/Aims: Zurampic is a US FDA approved drug for treatment of gout. However, the influence of Zurampic on pancreatic β-cells remains unclear. The study aimed to evaluate the effects of Zurampic on high uric acid-induced damage of pancreatic β-cells and the possible underlying mechanisms. Methods: INS-1 cells and primary rat islets were stimulated with Zurampic and the mRNA expression of urate transporter 1 (URAT1 was assessed by qRT-PCR. Cells were stimulated with uric acid or uric acid plus Zurampic, and cell viability, apoptosis and ROS release were measured by MTT and flow cytometry assays. Western blot analysis was performed to evaluate the expressions of active Caspase-3 and phosphorylation of AMPK and ERK. Finally, cells were stimulated with uric acid or uric acid plus Zurampic at low/high level of glucose (2.8/16.7 mM glucose, and the insulin release was assessed by ELISA. Results: mRNA expression of URAT1 was decreased by Zurampic in a dose-dependent manner. Uric acid decreased cell viability, promoted cell apoptosis and induced ROS release. Uric acid-induced alterations could be reversed by Zurampic. Activation of Caspase-3 and phosphorylation of AMPK and ERK were enhanced by uric acid, and the enhancements were reversed by Zurampic. Decreased phosphorylation of AMPK and ERK, induced by Zurampic, was further reduced by adding inhibitor of AMPK or ERK. Besides, uric acid inhibited high glucose-induced insulin secretion and the inhibition was rescued by Zurampic. Conclusions: Zurampic has a protective effect on pancreatic β-cells against uric acid induced-damage by inhibiting URAT1 and inactivating the ROS/AMPK/ERK pathway.

  19. Chewing suppresses the stress-induced increase in the number of pERK-immunoreactive cells in the periaqueductal grey.

    Science.gov (United States)

    Yamada, Kentaro; Narimatsu, Yuri; Ono, Yumie; Sasaguri, Ken-Ichi; Onozuka, Minoru; Kawata, Toshitsugu; Yamamoto, Toshiharu

    2015-07-10

    We investigated the effects of chewing under immobilization stress on the periaqueductal gray (PAG) matter using phosphorylated extracellular signal-regulated kinase (pERK) as a marker of responding cells. Immobilization stress increased pERK-immunoreactive cells in the PAG. Among four subdivisions of the PAG, the increase of immunoreactive cells was remarkable in the dorsolateral and ventrolateral subdivisions. However, increase of pERK-immunoreactive cells by the immobilization stress was not so evident in the dorsomedial and lateral subdivisions. The chewing under immobilization stress prevented the stress-induced increase of pERK-immunoreactive cells in the dorsolateral and ventrolateral subdivisions with statistical significances (p<0.05). Again, chewing effects on pERK-immunoreactive cells were not visible in the dorsomedial and lateral subdivisions. These results suggest that the chewing alleviates the PAG (dorsolateral and ventrolateral subdivisions) responses to stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Baicalein inhibition of oxidative-stress-induced apoptosis via modulation of ERKs activation and induction of HO-1 gene expression in rat glioma cells C6

    International Nuclear Information System (INIS)

    Chen, Y.-C.; Chow, J.-M.; Lin, C.-W.; Wu, C.-Y.; Shen, S.-C.

    2006-01-01

    In the present study, we examined the protective mechanism of baicalein (BE) and its glycoside, baicalin (BI), on hydrogen-peroxide (H 2 O 2 )-induced cell death in rat glioma C6 cells. Results of the MTT assay, LDH release assay, and morphological observation showed that H 2 O 2 addition reduced the viability of C6 cells, and this was prevented by the addition of BE but not BI. Incubation of C6 cells with BE significantly decreased the intracellular peroxide level induced by H 2 O 2 according to flow cytometric analysis using DCHF-DA as a fluorescent substrate. Suppression of H 2 O 2 -induced apoptotic events including DNA ladders, hypodiploid cells, and activation of caspases 3, 8, and, 9 by BE but not BI was identified in C6 cells. The cytotoxicity and phosphorylation of ERK proteins induced by H 2 O 2 were blocked by the ERK inhibitor PD98059. Catalase addition prevented H 2 O 2 -induced ROS production, ERKs protein phosphorylation, and cell death, and BE dose-dependently inhibited H 2 O 2 -induced ERK protein phosphorylation in C6 cells. These data suggest that ROS-scavenging activity is involved in BE prevention of H 2 O 2 -induced cell death via blocking ERKs activation. Additionally, BE but not BI induced heat shock protein 32 (HSP32; HO-1) protein expression in both time- and dose-dependent manners, but not heme oxygenase 2 (HO-2), heat shock protein 70 (HSP70), or heat shock protein 90 (HSP90) protein expression. In the absence of H 2 O 2 , BE induces ERKs protein phosphorylation, and HO-1 protein expression induced by BE was blocked by the addition of cycloheximide, actinomycin D, and the ERK inhibitor PD98059. The addition of the HO inhibitor ZnPP inhibited the protective effect of BE against H 2 O 2 -induced cytotoxicity in C6 cells according to the MTT assay and apoptotic morphology under microscopic observation, accompanied by blocking the ROS-scavenging activity of BE in C6 cells. However, BE treatment was unable to protect C6 cells from C2-ceramide

  1. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans.

    Science.gov (United States)

    Subramaniam, Selvakumar; Ozdener, Mehmet Hakan; Abdoul-Azize, Souleymane; Saito, Katsuyoshi; Malik, Bilal; Maquart, Guillaume; Hashimoto, Toshihiro; Marambaud, Philippe; Aribi, Mourad; Tordoff, Michael G; Besnard, Philippe; Khan, Naim Akhtar

    2016-10-01

    Obesity is a major public health problem. An in-depth knowledge of the molecular mechanisms of oro-sensory detection of dietary lipids may help fight it. Humans and rodents can detect fatty acids via lipido-receptors, such as CD36 and GPR120. We studied the implication of the MAPK pathways, in particular, ERK1/2, in the gustatory detection of fatty acids. Linoleic acid, a dietary fatty acid, induced via CD36 the phosphorylation of MEK1/2-ERK1/2-ETS-like transcription factor-1 cascade, which requires Fyn-Src kinase and lipid rafts in human taste bud cells (TBCs). ERK1/2 cascade was activated by Ca 2+ signaling via opening of the calcium-homeostasis modulator-1 (CALHM1) channel. Furthermore, fatty acid-evoked Ca 2+ signaling and ERK1/2 phosphorylation were decreased in both human TBCs after small interfering RNA knockdown of CALHM1 channel and in TBCs from Calhm1 -/- mice. Targeted knockdown of ERK1/2 by small interfering RNA or PD0325901 (MEK1/2 inhibitor) in the tongue and genetic ablation of Erk1 or Calhm1 genes impaired preference for dietary fat in mice. Lingual inhibition of ERK1/2 in healthy volunteers also decreased orogustatory sensitivity for linoleic acid. Our data demonstrate that ERK1/2-MAPK cascade is regulated by the opening of CALHM1 Ca 2+ channel in TBCs to modulate orogustatory detection of dietary lipids in mice and humans.-Subramaniam, S., Ozdener, M. H., Abdoul-Azize, S., Saito, K., Malik, B., Maquart, G., Hashimoto, T., Marambaud, P., Aribi, M., Tordoff, M. G., Besnard, P., Khan, N. A. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. © FASEB.

  2. IL-1β-Induced Accumulation of Amyloid: Macroautophagy in Skeletal Muscle Depends on ERK

    Directory of Open Access Journals (Sweden)

    Karsten Schmidt

    2017-01-01

    Full Text Available The pathology of inclusion body myositis (IBM involves an inflammatory response and β-amyloid deposits in muscle fibres. It is believed that MAP kinases such as the ERK signalling pathway mediate the inflammatory signalling in cells. Further, there is evidence that autophagic activity plays a crucial role in the pathogenesis of IBM. Using a well established in vitro model of IBM, the autophagic pathway, MAP kinases, and accumulation of β-amyloid were examined. We demonstrate that stimulation of muscle cells with IL-1β and IFN-γ led to an increased phosphorylation of ERK. The ERK inhibitor PD98059 diminished the expression of proinflammatory markers as well as the accumulation of β-amyloid. In addition, IL-1β and IFN-γ led to an increase of autophagic activity, upregulation of APP, and subsequent accumulation of β-sheet aggregates. Taken together, the data demonstrate that the ERK pathway contributes to formation of β-amyloid and regulation of autophagic activity in muscle cells exposed to proinflammatory cell stress. This suggests that ERK serves as an important mediator between inflammatory mechanisms and protein deposition in skeletal muscle and is a crucial element of the pathology of IBM.

  3. DA-9801 promotes neurite outgrowth via ERK1/2-CREB pathway in PC12 cells.

    Science.gov (United States)

    Won, Jong Hoon; Ahn, Kyong Hoon; Back, Moon Jung; Ha, Hae Chan; Jang, Ji Min; Kim, Ha Hyung; Choi, Sang-Zin; Son, Miwon; Kim, Dae Kyong

    2015-01-01

    In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 µg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.

  4. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1.

    Science.gov (United States)

    Mazalouskas, Matthew D; Godoy-Ruiz, Raquel; Weber, David J; Zimmer, Danna B; Honkanen, Richard E; Wadzinski, Brian E

    2014-02-14

    Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.

  5. Vitamin K3-2,3-epoxide induction of apoptosis with activation of ROS-dependent ERK and JNK protein phosphorylation in human glioma cells.

    Science.gov (United States)

    Wu, Jender; Chien, Chih-Chiang; Yang, Liang-Yo; Huang, Guan-Cheng; Cheng, Min-Chi; Lin, Che-Tong; Shen, Shing-Chuan; Chen, Yen-Chou

    2011-08-15

    2-Methyl-1,4-naphthoquinone (menadione or vitamin K3; EPO) and K3-2,3-epoxide (EPO1), but not vitamin K3-3-OH (EPO2), exhibited cytotoxicity that caused DNA fragmentation and chromatin condensation in U87 and C6 cells. EPO1 showed more-potent cytotoxicity than EPO, and the IC(50) values of EPO and EPO1 in U87 cells were 37.5 and 15.7μM, respectively. Activation of caspase 3 enzyme activity with cleavage of caspase 3 protein was detected in EPO1-treated U87 and C6 cells, and the addition of the caspase 3 peptidyl inhibitor, DEVD-FMK, reduced the cytotoxic effect of EPO1. An increase in the intracellular ROS level by EPO1 was observed in the DCHF-DA analysis, and EPO1-induced apoptosis and caspase 3 protein cleavage were prevented by adding the antioxidant, N-acetyl-cysteine (NAC), with decreased ROS production elicited by EPO1. Activation of ERK and JNK, but not p38, via phosphorylation induction was identified in EPO1- but not EPO- or EPO2-treated U87 and C6 cells, and this was blocked by adding NAC. However, the ERK inhibitor, PD98059, and the JNK inhibitor, SP600125, showed no effect on EPO1-induced cytotoxicity in either cell type. Our findings demonstrate that 2,3-epoxide substitution significantly potentiates the apoptotic effect of vitamin K3 via stimulating ROS production, which may be useful in the chemotherapy of glioblastoma cells. Copyright © 2011. Published by Elsevier Ireland Ltd.

  6. Stimulation of JNK Phosphorylation by the PTTH in Prothoracic Glands of the Silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Shi-Hong Gu

    2018-02-01

    Full Text Available In this study, phosphorylation of c-Jun N-terminal kinase (JNK by the prothoracicotropic hormone (PTTH was investigated in prothoracic glands (PGs of the silkworm, Bombyx mori. Results showed that JNK phosphorylation was stimulated by the PTTH in time- and dose-dependent manners. In vitro activation of JNK phosphorylation in PGs by the PTTH was also confirmed in an in vivo experiment, in which a PTTH injection greatly increased JNK phosphorylation in PGs of day-6 last instar larvae. JNK phosphorylation caused by PTTH stimulation was greatly inhibited by U73122, a potent and specific inhibitor of phospholipase C (PLC and an increase in JNK phosphorylation was also detected when PGs were treated with agents (either A23187 or thapsigargin that directly elevated the intracellular Ca2+ concentration, thereby indicating involvement of PLC and Ca2+. Pretreatment with an inhibitor (U0126 of mitogen-activated protein kinase (MAPK/extracellular signal-regulated kinase (ERK kinase (MEK and an inhibitor (LY294002 of phosphoinositide 3-kinase (PI3K failed to significantly inhibit PTTH-stimulated JNK phosphorylation, indicating that ERK and PI3K were not related to JNK. We further investigated the effect of modulation of the redox state on JNK phosphorylation. In the presence of either an antioxidant (N-acetylcysteine, NAC or diphenylene iodonium (DPI, PTTH-stimulated JNK phosphorylation was blocked. The JNK kinase inhibitor, SP600125, markedly inhibited PTTH-stimulated JNK phosphorylation and ecdysteroid synthesis. The kinase assay of JNK in PGs confirmed its stimulation by PTTH and inhibition by SP600125. Moreover, PTTH treatment did not affect JNK or Jun mRNA expressions. Based on these findings, we concluded that PTTH stimulates JNK phosphorylation in Ca2+- and PLC-dependent manners and that the redox-regulated JNK signaling pathway is involved in PTTH-stimulated ecdysteroid synthesis in B. mori PGs.

  7. BAG3 protects against hyperthermic stress by modulating NF-κB and ERK activities in human retinoblastoma cells.

    Science.gov (United States)

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi; Kondo, Takashi

    2015-03-01

    BCL2-associated athanogene 3 (BAG3), a co-chaperone of HSP70, is a cytoprotective and anti-apoptotic protein that acts against various stresses, including heat stress. Here, we examined the effect of BAG3 on the sensitivity of human retinoblastoma cells to hyperthermia (HT). We examined the effects of BAG3 knockdown on the sensitivity of Y79 and WERI-Rb-1cells to HT (44 °C, 1 h) by evaluating apoptosis and cell proliferation using western blotting, real-time quantitative PCR (qPCR), flow cytometry, and a WST-8 assay kit. Furthermore, we examined the effects of activating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK) using western blotting and real time qPCR. HT induced considerable apoptosis along with the activation of caspase-3 and chromatin condensation. The sensitivity of Y79 and WERI-Rb-1 cells to HT was significantly enhanced by BAG3 knockdown. Compared to HT alone, the combination of BAG3 knockdown and HT reduced phosphorylation of the inhibitors of kappa B α (IκBα) and p65, a subunit of NF-κB, and degraded IκB kinase γ (IKKγ) during the recovery period after HT. Furthermore, BAG3 knockdown increased the HT-induced phosphorylation of ERK after HT treatment, and the ERK inhibitor U0126 significantly improved the viability of the cells treated with a combination of BAG3 knockdown and HT. The silencing of BAG3 seems to enhance the effects of HT, at least in part, by maintaining HT-induced inactivity of NF-κB and the phosphorylation of ERK. These findings indicate that BAG3 may be a potential molecular target for modifying the outcomes of HT in retinoblastoma.

  8. Nec-1 Enhances Shikonin-Induced Apoptosis in Leukemia Cells by Inhibition of RIP-1 and ERK1/2

    Directory of Open Access Journals (Sweden)

    Hongming Pan

    2012-06-01

    Full Text Available Necrostatin-1 (Nec-1 inhibits necroptosis by allosterically inhibiting the kinase activity of receptor-interacting protein 1 (RIP1, which plays a critical role in necroptosis. RIP1 is a crucial adaptor kinase involved in the activation of NF-κB, production of reactive oxygen species (ROS and the phosphorylation of mitogen activated protein kinases (MAPKs. NF-κB, ROS and MAPKs all play important roles in apoptotic signaling. Nec-1 was regarded as having no effect on apoptosis. Here, we report that Nec-1 increased the rate of nuclear condensation and caspases activation induced by a low concentration of shikonin (SHK in HL60, K562 and primary leukemia cells. siRNA-mediated knockdown of RIP1 significantly enhanced shikonin-induced apoptosis in K562 and HL60 cells. Shikonin treatment alone could slightly inhibit the phosphorylation of ERK1/2 in leukemia cells, and the inhibitory effect on ERK1/2 was significantly augmented by Nec-1. We also found that Nec-1 could inhibit NF-κB p65 translocation to the nucleus at a later stage of SHK treatment. In conclusion, we found that Nec-1 can promote shikonin-induced apoptosis in leukemia cells. The mechanism by which Nec-1 sensitizes shikonin-induced apoptosis appears to be the inhibition of RIP1 kinase-dependent phosphorylation of ERK1/2. To our knowledge, this is the first study to document Nec-1 sensitizes cancer cells to apoptosis.

  9. Hypochoeris radicata attenuates LPS-induced inflammation by suppressing p38, ERK, and JNK phosphorylation in RAW 264.7 macrophages.

    Science.gov (United States)

    Kim, Min-Jin; Kim, Se-Jae; Kim, Sang Suk; Lee, Nam Ho; Hyun, Chang-Gu

    2014-01-01

    Hypochoeris radicata, an invasive plant species, is a large and growing threat to ecosystem integrity on Jeju Island, a UNESCO World Heritage site. Therefore, research into the utilization of H. radicata is important and urgently required in order to solve this invasive plant problem in Jeju Island. The broader aim of our research is to elucidate the biological activities of H. radicata, which would facilitate the conversion of this invasive species into high value-added products. The present study was undertaken to identify the pharmacological effects of H. radicata flower on the production of inflammatory mediators in macrophages. The results indicate that the ethyl acetate fraction of H. radicata extract (HRF-EA) inhibited the production of pro-inflammatory molecules such as NO, iNOS, PGE2, and COX-2, and cytokines such as TNF-α, IL-1ß, and IL-6 in LPS-stimulated RAW 264.7 cells. Furthermore, the phosphorylation of MAPKs such as p38, ERK, and JNK was suppressed by HRF-EA in a concentration-dependent manner. In addition, through HPLC and UPLC fingerprinting, luteolins were also identified and quantified as extract constituents. On the basis of these results, we suggest that H. radicata may be considered possible anti-inflammatory candidates for pharmaceutical and/or cosmetic applications.

  10. Echinocystic acid inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and ERK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jian-hui, E-mail: jianhui_yangxa@163.com [Rehabilitation Center, First Affiliated Hospital of Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, Shaanxi Province (China); Li, Bing [Department of Dermatology, the 451st Hospital of People’s Liberation Army, Xi’an 710054, Shaanxi Province (China); Wu, Qiong; Lv, Jian-guo; Nie, Hui-Yong [Rehabilitation Center, First Affiliated Hospital of Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, Shaanxi Province (China)

    2016-09-02

    Receptor activator of nuclear factor-κB ligand (RANKL) is a key factor in the differentiation and activation of osteoclasts. Echinocystic acid (EA), a pentacyclic triterpene isolated from the fruits of Gleditsia sinensis Lam, was reported to prevent reduction of bone mass and strength and improve the cancellous bone structure and biochemical properties in ovariectomy rats. However, the molecular mechanism of EA on the osteoclast formation has not been reported. The purpose of this study was to investigate the effects and mechanism of EA on RANKL-induced osteoclastogenesis. Our results showed that EA inhibited the formation of osteoclast, as well as the expression of osteoclastogenesis-related marker proteins in bone marrow macrophages (BMMs). At molecular levels, EA inhibited RANKL-induced NF-κB activation and ERK phosphorylation in BMMs. In conclusion, the present study demonstrated that EA can suppress osteoclastogenesis in vitro. Moreover, we clarified that these inhibitory effects of EA occur through suppression of NF-κB and ERK activation. Therefore, EA may be a potential agent in the treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • EA inhibited the formation of osteoclast in BMMs. • EA inhibits the expression of osteoclastogenesis-related marker proteins in BMMs. • EA inhibits RANKL-induced NF-κB activation in BMMs. • EA inhibits RANKL-induced ERK phosphorylation in BMMs.

  11. ERK1/2 signalling pathway is involved in CD147-mediated gastric cancer cell line SGC7901 proliferation and invasion.

    Science.gov (United States)

    Chen, Liping; Pan, Yuqin; Gu, Ling; Nie, Zhenlin; He, Bangshun; Song, Guoqi; Li, Rui; Xu, Yeqiong; Gao, Tianyi; Wang, Shukui

    2013-08-01

    This study aimed to investigate the role of CD147 in the progression of gastric cancer and the signalling pathway involved in CD147-mediated gastric cancer cell line SGC7901 proliferation and invasion. Short hairpin RNA (shRNA) expression vectors targeting CD147 were constructed to silence CD147, and the expression of CD147 was monitored by quantitative realtime reverse transcriptase polymerase chain reaction and Western blot and further confirmed by immunohistochemistry in vivo. Cell proliferation was determined by Cell Counting Kit-8 assay, the activities of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by gelatin zymography, and the invasion of SGC7901 was determined by invasion assay. The phosphorylation and non-phosphorylation of the mitogen-activated protein kinases, extracellular signal-regulated kinase1/2 (ERK1/2), P38 and c-Jun NH2-terminal kinase were examined by Western blot. Additionally, the ERK1/2 inhibitor U0126 were used to confirm the signalling pathway involved in CD147-mediated SGC7901 progression. The BALB/c nude mice were used to study tumour progression in vivo. The results revealed that CD147 silencing inhibited the proliferation and invasion of SGC7901 cells, and down-regulated the activities of MMP-2 and MMP-9 and the phosphorylation of the ERK1/2 in SGC7901 cells. ERK1/2 inhibitor U0126 decreased the proliferation, and invasion of SGC7901 cells, and down-regulated the MMP-2 and MMP-9 activities. In a nude mouse model of subcutaneous xenografts, the tumour volume was significantly smaller in the SGC7901/shRNA group compared to the SGC7901 and SGC7901/snc-RNA group. Immunohistochemistry analysis showed that CD147 and p-ERK1/2 protein expressions were down-regulated in the SGC7901/shRNA2 group compared to the SGC7901 and SGC7901/snc-RNA group. These results suggest that ERK1/2 pathway involves in CD147-mediated gastric cancer growth and invasion. These findings further highlight the importance of CD147 in cancer progression

  12. Growth suppression of colorectal cancer by plant-derived multiple mAb CO17-1A × BR55 via inhibition of ERK1/2 phosphorylation.

    Science.gov (United States)

    Kwak, Dong Hoon; Moussavou, Ghislain; Lee, Ju Hyoung; Heo, Sung Youn; Ko, Kisung; Hwang, Kyung-A; Jekal, Seung-Joo; Choo, Young-Kug

    2014-11-14

    We have generated the transgenic Tabaco plants expressing multiple monoclonal antibody (mAb) CO7-1A × BR55 by cross-pollinating with mAb CO17-1A and mAb BR55. We have demonstrated the anti-cancer effect of plant-derived multiple mAb CO17-1A × BR55. We find that co-treatment of colorectal mAbs (anti-epithelial cellular adhesion molecule (EpCAM), plant-derived monoclonal antibody (mAb(P)) CO17-1A and mAb(P) CO17-1A × BR55) with RAW264.7 cells significantly inhibited the cell growth in SW620 cancer cells. In particular, multi mAb(P) CO17-1A × BR55 significantly and efficiently suppressed the growth of SW620 cancer cells compared to another mAbs. Apoptotic death-positive cells were significantly increased in the mAb(P) CO17-1A × BR55-treated. The mAb(P) CO17-1A × BR55 treatment significantly decreased the expression of B-Cell lymphoma-2 (BCl-2), but the expression of Bcl-2-associated X protein (Bax), and cleaved caspase-3 were markedly increased. In vivo, the mAb(P) CO17-1A × BR55 significantly and efficiently inhibited the growth of colon tumors compared to another mAbs. The apoptotic cell death and inhibition of pro-apoptotic proteins expression were highest by treatment with mAb(P) CO17-1A × BR55. In addition, the mAb(P) CO17-1A × BR55 significantly inhibited the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation in cancer cells and tumors. Therefore, this study results suggest that multiple mAb(P) CO17-1A × BR55 has a significant effect on apoptosis-mediated anticancer by suppression of ERK1/2 phosphorylation in colon cancer compared to another mAbs. In light of these results, further clinical investigation should be conducted on mAb(P) CO17-1A × BR55 to determine its possible chemopreventive and/or therapeutic efficacy against human colon cancer.

  13. EGF-Induced VEGF Exerts a PI3K-Dependent Positive Feedback on ERK and AKT through VEGFR2 in Hematological In Vitro Models.

    Directory of Open Access Journals (Sweden)

    Lilian Saryeddine

    Full Text Available EGFR and VEGFR pathways play major roles in solid tumor growth and progression, however, little is known about these pathways in haematological tumors. This study investigated the crosstalk between EGFR and VEGFR2 signaling in two hematological in vitro models: THP1, a human monocytic leukemia, and Raji, a Burkitt's lymphoma, cell lines. Results showed that both cell lines express EGFR and VEGFR2 and responded to EGF stimulation by activating EGFR, triggering VEGF production and phosphorylating ERK, AKT, and p38 very early, with a peak of expression at 10-20min. Blocking EGFR using Tyrphostin resulted in inhibiting EGFR induced activation of ERK, AKT, and p38. In addition, EGF stimulation caused a significant and immediate increase, within 1min, in pVEGFR2 in both cell lines, which peaked at ~5-10 min after treatment. Selective inhibition of VEGFR2 by DMH4, anti-VEGFR2 antibody or siRNA diminished EGF-induced pAKT and pERK, indicating a positive feedback exerted by EGFR-induced VEGF. Similarly, the specific PI3K inhibitor LY294002, suppressed AKT and ERK phosphorylation showing that VEGF feedback is PI3K-dependent. On the other hand, phosphorylation of p38, initiated by EGFR and independent of VEGF feedback, was diminished using PLC inhibitor U73122. Moreover, measurement of intracellular [Ca2+] and ROS following VEGFR2 inhibition and EGF treatment proved that VEGFR2 is not implicated in EGF-induced Ca2+ release whereas it boosts EGF-induced ROS production. Furthermore, a significant decrease in pAKT, pERK and p-p38 was shown following the addition of the ROS inhibitor NAC. These results contribute to the understanding of the crosstalk between EGFR and VEGFR in haematological malignancies and their possible combined blockade in therapy.

  14. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    International Nuclear Information System (INIS)

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi

    2010-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21 WAF1 and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin α v β 3 were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  15. Low-level shear stress promotes migration of liver cancer stem cells via the FAK-ERK1/2 signalling pathway.

    Science.gov (United States)

    Sun, Jinghui; Luo, Qing; Liu, Lingling; Song, Guanbin

    2018-07-28

    Cancer stem cells (CSCs) are a small subpopulation of tumour cells that have been proposed to be responsible for cancer initiation, chemotherapy resistance and cancer recurrence. Shear stress activated cellular signalling is involved in cellular migration, proliferation and differentiation. However, little is known about the effects of shear stress on the migration of liver cancer stem cells (LCSCs). Here, we studied the effects of shear stress that are generated from a parallel plated flow chamber system, on LCSC migration and the activation of focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2), using transwell assay and western blot, respectively. We found that 2 dyne/cm 2 shear stress loading for 6 h promotes LCSC migration and activation of the FAK and ERK1/2 signalling pathways, whereas treatment with the FAK phosphorylation inhibitor PF573228 or the ERK1/2 phosphorylation inhibitor PD98059 suppressed the shear stress-promoted migration, indicating the involvement of FAK and ERK1/2 activation in shear stress-induced LCSC migration. Additionally, atomic force microscopy (AFM) analysis showed that shear stress lowers LCSC stiffness via the FAK and ERK1/2 pathways, suggesting that the mechanism by which shear stress promotes LCSC migration might partially be responsible for the decrease in cell stiffness. Further experiments focused on the role of the actin cytoskeleton, demonstrating that the F-actin filaments in LCSCs are less well-defined after shear stress treatment, providing an explanation for the reduction in cell stiffness and the promotion of cell migration. Overall, our study demonstrates that shear stress promotes LCSC migration through the activation of the FAK-ERK1/2 signalling pathways, which further results in a reduction of organized actin and softer cell bodies. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Lithium attenuates cannabinoid-induced dependence in the animal model: involvement of phosphorylated ERK1/2 and GSK-3β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Hamid Reza Rahimi

    2014-09-01

    Full Text Available Cannabis is one of the most banned drugs in the world. Cannabinoid-induced dependence or withdrawal signs are indicated by the result of complex molecular mechanisms including upstream protein kinases (PKs, such as an extracellular signal regulated kinase1/2 (ERK1/2 and downstream glycogen synthase kinase-3β (GSK-3β, which lead to neuronal plasticity. In this study, we examined the protective effect of lithium (Li as a potent ERK1/2 and GSK-3β modulator to prevent the development of dependence on cannabinoids. For this purpose, rats were treated twice daily with increasing doses of WIN 55,212-2 (WIN, 2-8 mg/kg, intraperitoneally (i.p., for five consecutive days. AM251 (AM, 2 mg/kg, a cannabinoid antagonist, was injected i.p to induce manifestations of abstinence in rat dependency on WIN, and the subsequent withdrawal signs were recorded. To evaluate the preventive effect of Li, the rats were pre-treated with Li (10 mg/kg, i.p. twice daily, 30 minutes before every injection of WIN. SL327, as an ERK1/2 inhibitor, was also injected (SL, 50 mg/kg, i.p. 30 minutes before the last doses of WIN in separate groups. The p-ERK1/2, total ERK1/2, p-GSK-3β and total GSK-3β expressions were determined with Western blot method after 60 minutes, prior to the Li, WIN or AM injections. Li and SL pre-treatment attenuated the global withdrawal signs in regarding their modulation effect on the up-regulation of p-ERK1/2 cascade enhanced by AM injection. Furthermore, the p-GSK-3β expression was up-regulated with SL and Li pre-treatment against AM injection, without alteration on the total contents of ERK1/2 and GSK-3β level. Therefore, p-ERK1/2 and p-GSK-3β pathways are involved in the cannabinoid-induced dependence. However, no crosstalk was indicated between these two pathways. In conclusion, Li neuroprotectionwith regard to cannabinoid abstinence may occur through the regulation of the p-ERK1/2 cascade inconsequent of p-GSK-3β signaling pathways in rats.

  17. BMP2 induces PANC-1 cell invasion by MMP-2 overexpression through ROS and ERK.

    Science.gov (United States)

    Liu, Jun; Ben, Qi-Wen; Yao, Wei-Yan; Zhang, Jian-Jun; Chen, Da-Fan; He, Xiang-Yi; Li, Lei; Yuan, Yao-Zong

    2012-06-01

    The emerging roles of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers have drawn great attention in cancer research. We hypothesized that BMP2 promotes cancer metastasis by modulating MMP-2 secretion and activity through intracellular ROS regulation and ERK activation in human pancreatic cancer. Our data show that stimulation of PANC-1 cells with BMP2 induced MMP-2 secretion and activation, associated with decreased E-cadherin expression, resulting in epithelial-to-mesenchymal transformation (EMT) and cell invasion. Blockade of ROS by the ROS scavenger, 2-MPG, abolished cell invasion, inhibited the EMT process and decreased MMP-2 expression, suggesting ROS accumulation caused an increase in MMP-2 expression in BMP2-stimulated PANC-1 cell invasion. Furthermore, treatment of PANC-1 cells with 2-MPG or ERK inhibitor PD98059 reduced the phosphorylation of ERK, resulting in attenuation of BMP2-induced cell invasion and MMP-2 activation. Taken together, these results suggest that BMP2 induces the cell invasion of PANC-1 cells by enhancing MMP-2 secretion and acting through ROS accumulation and ERK activation.

  18. MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells through delicate interaction with TGF-beta1/Smads pathway.

    Science.gov (United States)

    Li, J; Zhao, Z; Liu, J; Huang, N; Long, D; Wang, J; Li, X; Liu, Y

    2010-08-01

    This study was carried out to reveal functions and mechanisms of MEK/ERK and p38 pathways in chondrogenesis of rat bone marrow mesenchymal stem cells (BMSCs), and to investigate further any interactions between the mitogen-activated protein kinase (MAPK) and transforming growth factor-beta1 (TGF-beta1)/Smads pathway in the process. Chondrogenic differentiation of rat BMSCs was initiated in micromass culture, in the presence of TGF-beta1, for 2 weeks. ERK1/2 and p38 kinase activities were investigated by Western Blot analysis. Specific MAPK inhibitors PD98059 and SB20350 were employed to investigate regulatory effects of MEK/ERK and p38 signals on gene expression of chondrocyte-specific markers, and TGF-beta1 downstream pathways of Smad2/3. ERK1/2 was phosphorylated in a rapid but transient manner, whereas p38 was activated in a slow and sustained way. The two MAPK subtypes played opposing roles in mediating transcription of cartilage-specific genes for Col2alpha and aggrecan. TGF-beta1-stimulated gene expression of chondrogenic regulators, Sox9, Runx2 and Ihh, was also affected by activity of PD98059 and SB203580, to different degrees. However, influences of MAPK inhibitors on gene expression were relatively minor when not treated with TGF-beta1. In addition, gene transcription of Smad2/3 was significantly upregulated by TGF-beta1, but was regulated more subtly by treatment with MAPK inhibitors. MAPK subtypes seemed to regulate chondrogenesis with a delicate balance, interacting with the TGF-beta1/Smads signalling pathway.

  19. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1.

    Science.gov (United States)

    Svensson, Katrin J; Christianson, Helena C; Wittrup, Anders; Bourseau-Guilmain, Erika; Lindqvist, Eva; Svensson, Lena M; Mörgelin, Matthias; Belting, Mattias

    2013-06-14

    The role of exosomes in cancer can be inferred from the observation that they transfer tumor cell derived genetic material and signaling proteins, resulting in e.g. increased tumor angiogenesis and metastasis. However, the membrane transport mechanisms and the signaling events involved in the uptake of these virus-like particles remain ill-defined. We now report that internalization of exosomes derived from glioblastoma (GBM) cells involves nonclassical, lipid raft-dependent endocytosis. Importantly, we show that the lipid raft-associated protein caveolin-1 (CAV1), in analogy with its previously described role in virus uptake, negatively regulates the uptake of exosomes. We find that exosomes induce the phosphorylation of several downstream targets known to associate with lipid rafts as signaling and sorting platforms, such as extracellular signal-regulated kinase-1/2 (ERK1/2) and heat shock protein 27 (HSP27). Interestingly, exosome uptake appears dependent on unperturbed ERK1/2-HSP27 signaling, and ERK1/2 phosphorylation is under negative influence by CAV1 during internalization of exosomes. These findings significantly advance our general understanding of exosome-mediated uptake and offer potential strategies for how this pathway may be targeted through modulation of CAV1 expression and ERK1/2 signaling.

  20. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt

    International Nuclear Information System (INIS)

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao; Wang, Bin; Wu, Yun-Xiang; Zhang, Shu-Jie; Irwin, Michael G.; Wong, Tak-Ming; Zhang, Ye

    2015-01-01

    Preconditioning against myocardial ischemia–reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct size and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. - Highlights: • Morphine and ischemic preconditioning are cardioprotective in normal rat hearts. • Ischemic preconditioning fails to confer cardioprotection in rats with heart failure. • Morphine retains cardioprotection in doxorubicin-induced heart failure. • Morphine exerts cardioprotection via the ERK/GSK-β pathway independent of PI3K/Akt.

  1. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt

    Energy Technology Data Exchange (ETDEWEB)

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao; Wang, Bin; Wu, Yun-Xiang [Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601 (China); Zhang, Shu-Jie [Department of Ultrasound, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601 (China); Irwin, Michael G.; Wong, Tak-Ming [Department of Anesthesiology, University of Hong Kong (Hong Kong); Zhang, Ye, E-mail: zhangye_hassan@aliyun.com [Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601 (China)

    2015-11-01

    Preconditioning against myocardial ischemia–reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct size and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. - Highlights: • Morphine and ischemic preconditioning are cardioprotective in normal rat hearts. • Ischemic preconditioning fails to confer cardioprotection in rats with heart failure. • Morphine retains cardioprotection in doxorubicin-induced heart failure. • Morphine exerts cardioprotection via the ERK/GSK-β pathway independent of PI3K/Akt.

  2. MEK inhibition induces apoptosis in osteosarcoma cells with constitutive ERK1/2 phosphorylation

    OpenAIRE

    Baranski, Zuzanna; Booij, Tijmen H.; Kuijjer, Marieke L.; de Jong, Yvonne; Cleton-Jansen, Anne-Marie; Price, Leo S.; van de Water, Bob; Bovée, Judith V. M. G.; Hogendoorn, Pancras C.W.; Danen, Erik H.J.

    2015-01-01

    Conventional high-grade osteosarcoma is the most common primary bone cancer with relatively high incidence in young people. Recurrent and metastatic tumors are difficult to treat. We performed a kinase inhibitor screen in two osteosarcoma cell lines, which identified MEK1/2 inhibitors. These inhibitors were further validated in a panel of six osteosarcoma cell lines. Western blot analysis was performed to assess ERK activity and efficacy of MEK inhibition. A 3D culture system was used to vali...

  3. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2018-04-01

    Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 39;217-230, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. The human transient receptor potential vanilloid 3 channel is sensitized via the ERK pathway

    Czech Academy of Sciences Publication Activity Database

    Vyklická, Lenka; Boukalová, Štěpána; Mačíková, Lucie; Chvojka, Štěpán; Vlachová, Viktorie

    2017-01-01

    Roč. 292, č. 51 (2017), s. 21083-21091 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA15-15839S Institutional support: RVO:67985823 Keywords : epidermal growth factor receptor (EGFR) * extracellular-signal-regulated kinase (ERK) * keratinocyte * phosphorylation * transient receptor potential channels * TRP channels Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.125, year: 2016

  5. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells

    International Nuclear Information System (INIS)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Glisic, Branka; Kaisarevic, Sonja; Kovacevic, Radmila; Andric, Nebojsa

    2013-01-01

    Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA. Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine

  6. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Glisic, Branka; Kaisarevic, Sonja; Kovacevic, Radmila; Andric, Nebojsa, E-mail: nebojsa.andric@dbe.uns.ac.rs

    2013-07-01

    Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA. Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine

  7. PKCδ phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-β1-induced senescence.

    Science.gov (United States)

    Byun, H-O; Jung, H-J; Kim, M-J; Yoon, G

    2014-09-01

    Transforming growth factor β1 (TGF-β1) induces Mv1Lu cell senescence through inactivating glycogen synthase kinase 3 (GSK3), thereby inactivating complex IV and increasing intracellular ROS. In the present study, we identified protein kinase C delta (PKCδ) as an upstream regulator of GSK3 inactivation in this mechanism of TGF-β1-induced senescence. When Mv1Lu cells were exposed to TGF-β1, PKCδ phosphorylation simultaneously increased with GSK3 phosphorylation, and then AKT and ERK were phosphorylated. AKT phosphorylation and Smad signaling were independent of GSK3 phosphorylation, but ERK phosphorylation was downstream of GSK3 inactivation. TGF-β1-triggered GSK3 phosphorylation was blocked by inhibition of PKCδ, using its pharmacological inhibitor, Rottlerin, or overexpression of a dominant negative PKCδ mutant, but GSK3 inhibition with SB415286 did not alter PKCδ phosphorylation. Activation of PKCδ by PMA delayed cell growth and increased intracellular ROS level, but did not induce senescent phenotypes. In addition, overexpression of wild type or a constitutively active PKCδ mutant was enough to delay cell growth and decrease the mitochondrial oxygen consumption rate and complex IV activity, but weakly induce senescence. However, PMA treatment on Mv1Lu cells, which overexpress wild type and constitutively active PKCδ mutants, effectively induced senescence. These results indicate that PKCδ plays a key role in TGF-β1-induced senescence of Mv1Lu cells through the phosphorylation of GSK3, thereby triggering mitochondrial complex IV dysfunction and intracellular ROS generation.

  8. Expression of phosphorylated extracellular signal-regulated kinase in rat kidneys exposed to high +Gz

    Directory of Open Access Journals (Sweden)

    Hyun-Soo Kim

    2012-11-01

    Full Text Available Exposure to high gravitational acceleration forces acting along the body axis from the head to the feet (+Gz severely reduces blood flow to the visceral organs, including the kidneys. Extracellular signal-regulated kinase (ERK figures predominantly in mediating kidney cell responses to a wide variety of stress-related stimuli. Though previous studies have shown the activation of ERK in some experimental models, the regulation of ERK associated with +Gz exposure has not yet been investigated. The aim of this study was to examine the effect of high +Gz exposure on ERK activation in the kidneys. Using a small animal centrifuge, eight male Sprague-Dawley rats were exposed to +10Gz or +13Gz three times for 3 minutes each. The bilateral kidneys were obtained from each rat, and the expression levels of phosphorylated ERK (p-ERK were evaluated using immunohistochemistry. In the control group, the collecting duct epithelium displayed faint cytoplasmic staining with no nuclear staining of p-ERK. By contrast, rats exposed to +10Gz showed strong nuclear staining intensity for p-ERK. In the renal papilla, the epithelial cells of collecting ducts and thin segments of the loop of Henle exhibited strong nuclear immunoreactivity for p-ERK. Rats exposed to +13Gz also showed the same staining intensity and distribution of p-ERK expression as that of rats exposed to +10Gz. This study is the first to describe +Gz exposure-induced alteration in the expression of p-ERK in the kidneys. Our finding suggests that high +Gz exposure leads to the activation of ERK in the renal papilla.

  9. The small Rho GTPase Rac1 controls normal human dermal fibroblasts proliferation with phosphorylation of the oncoprotein c-myc

    International Nuclear Information System (INIS)

    Nikolova, Ekaterina; Mitev, Vanio; Zhelev, Nikolai; Deroanne, Christophe F.; Poumay, Yves

    2007-01-01

    Proliferation of dermal fibroblasts is crucial for the maintenance of skin. The small Rho GTPase, Rac1, has been identified as a key transducer of proliferative signals in various cell types, but in normal human dermal fibroblasts its significance to cell growth control has not been studied. In this study, we applied the method of RNA interference to suppress endogenous Rac1 expression and examined the consequences on human skin fibroblasts. Rac1 knock-down resulted in inhibition of DNA synthesis. This effect was not mediated by inhibition of the central transducer of proliferative stimuli, ERK1/2 or by activation of the pro-apoptotic p38. Rather, as a consequence of the suppressed Rac1 expression we observed a significant decrease in phosphorylation of c-myc, revealing for the first time that in human fibroblasts Rac1 exerts control on proliferation through c-myc phosphorylation. Thus Rac1 activates proliferation of normal fibroblasts through stimulation of c-myc phosphorylation without affecting ERK1/2 activity

  10. The mechanism by which MEK/ERK regulates JNK and p38 activity in polyamine depleted IEC-6 cells during apoptosis

    Science.gov (United States)

    Bavaria, Mitul N.; Jin, Shi; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Polyamine-depletion inhibited apoptosis by activating ERK1/2, while, preventing JNK1/2 activation. MKP-1 knockdown by SiRNA increased ERK1/2, JNK1/2, and p38 phosphorylation and apoptosis. Therefore, we predicted that polyamines might regulate MKP1 via MEK/ERK and thereby apoptosis. We examined the role of MEK/ERK in the regulation of MKP1 and JNK, and p38 activities and apoptosis. Inhibition of MKP-1 activity with a pharmacological inhibitor, sanguinarine (SA), increased JNK1/2, p38, and ERK1/2 activities without causing apoptosis. However, pre-activation of these kinases by SA significantly increased camptothecin (CPT)-induced apoptosis suggesting different roles for MAPKs during survival and apoptosis. Inhibition of MEK1 activity prevented the expression of MKP-1 protein and augmented CPT-induced apoptosis, which correlated with increased activities of JNK1/2, caspases, and DNA fragmentation. Polyamine depleted cells had higher levels of MKP-1 protein and decreased JNK1/2 activity and apoptosis. Inhibition of MEK1 prevented MKP-1 expression and increased JNK1/2 and apoptosis. Phospho-JNK1/2, phospho-ERK2, MKP-1, and the catalytic subunit of protein phosphatase 2A (PP2Ac) formed a complex in response to TNF/CPT. Inactivation of PP2Ac had no effect on the association of MKP-1 and JNK1. However, inhibition of MKP-1 activity decreased the formation of the MKP-1, PP2Ac and JNK complex. Following inhibition by SA, MKP-1 localized in the cytoplasm, while basal and CPT-induced MKP-1 remained in the nuclear fraction. These results suggest that nuclear MKP-1 translocates to the cytoplasm, binds phosphorylated JNK and p38 resulting in dephosphorylation and decreased activity. Thus, MEK/ERK activity controls the levels of MKP-1 and, thereby, regulates JNK activity in polyamine-depleted cells. PMID:24253595

  11. Differential roles of PKC isoforms (PKCs) in GnRH stimulation of MAPK phosphorylation in gonadotrope derived cells.

    Science.gov (United States)

    Mugami, Shany; Dobkin-Bekman, Masha; Rahamim-Ben Navi, Liat; Naor, Zvi

    2018-03-05

    The role of protein kinase C (PKC) isoforms (PKCs) in GnRH-stimulated MAPK [ERK1/2, JNK1/2 and p38) phosphorylation was examined in gonadotrope derived cells. GnRH induced a protracted activation of ERK1/2 and a slower and more transient activation of JNK1/2 and p38MAPK. Gonadotropes express conventional PKCα and PKCβII, novel PKCδ, PKCε and PKCθ, and atypical PKC-ι/λ. The use of green fluorescent protein (GFP)-PKCs constructs revealed that GnRH induced rapid translocation of PKCα and PKCβII to the plasma membrane, followed by their redistribution to the cytosol. PKCδ and PKCε localized to the cytoplasm and Golgi, followed by the rapid redistribution by GnRH of PKCδ to the perinuclear zone and of PKCε to the plasma membrane. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs) has revealed differential role for PKCα, PKCβII, PKCδ and PKCε in ERK1/2, JNK1/2 and p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in MAPKs phosphorylation may be explained by persistent vs. transient redistribution of selected PKCs or redistribution of a given PKC to the perinuclear zone vs. the plasma membrane. Thus, we have identified the PKCs involved in GnRH stimulated MAPKs phosphorylation in gonadotrope derived cells. Once activated, the MAPKs will mediate the transcription of the gonadotropin subunits and GnRH receptor genes. Copyright © 2017. Published by Elsevier B.V.

  12. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway

    Science.gov (United States)

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-01-01

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal–regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway. PMID:27827993

  13. Hesperidin, A Popular Antioxidant Inhibits Melanogenesis via Erk1/2 Mediated MITF Degradation

    Directory of Open Access Journals (Sweden)

    Heun Joo Lee

    2015-08-01

    Full Text Available Regulation of melanogenesis has been the focus of treatment for hyperpigmentary skin disorders. Although hesperidin is one of the most well-known, naturally occurring flavonoids with antioxidant and anti-inflammatory effect, its anti-melanogenic effect is not known. The present study aims to determine the anti-melanogenic effect of hespiridin as well as its underlying molecular mechanisms. Melanin contents were measured in normal human melanocytes and B16F10 melanoma cells. Protein and mRNA levels of tyrosinase, microphthalmia-associated transcription factor (MITF, tyrosinase related protein-1 (TRP-1 and TRP-2 were determined. Melanogenesis-regulating signals were examined. In results, hesperidin strongly inhibited melanin synthesis and tyrosinase activity. Hesperidin decreased tyrosinase, TRP-1, and TRP-2 protein expression but increased phospho-extracellular signal-regulated kinase 1/2 (p-Erk1/2 expression. Specific inhibitor of Erk1/2 or proteasome inhibitor reversed the inhibition of melanogenesis induced by hesperidin. Taken together, hesperidin, a popular antioxidant, stimulated Erk1/2 phosphorylation which subsequently degraded MITF which resulted in suppression of melanogenic enzymes and melanin synthesis.

  14. Cross talk between MMP2-Spm-Cer-S1P and ERK1/2 in proliferation of pulmonary artery smooth muscle cells under angiotensin II stimulation.

    Science.gov (United States)

    Chowdhury, Animesh; Sarkar, Jaganmay; Pramanik, Pijush Kanti; Chakraborti, Tapati; Chakraborti, Sajal

    2016-08-01

    The aim of the present study is to establish the mechanism associated with the proliferation of PASMCs under ANG II stimulation. The results showed that treatment of PASMCs with ANG II induces an increase in cell proliferation and 100 nM was the optimum concentration for maximum increase in proliferation of the cells. Pretreatment of the cells with AT1, but not AT2, receptor antagonist inhibited ANG II induced cell proliferation. Pretreatment with pharmacological and genetic inhibitors of sphingomyelinase (SMase) and sphingosine kinase (SPHK) prevented ANG II-induced cell proliferation. ANG II has also been shown to induce SMase activity, SPHK phosphorylation and S1P production. In addition, ANG II caused an increase in proMMP-2 expression and activation, ERK1/2 phosphorylation and NADPH oxidase activation. Upon inhibition of MMP-2, SMase activity and S1P level were curbed leading to inhibition of cell proliferation. SPHK was phosphorylated by ERK1/2 during ET-1 stimulation of the cells. ANG II-induced ERK1/2 phosphorylation and proMMP-2 expression and activation in the cells were abrogated upon inhibition of NADPH oxidase activity. Overall, NADPH oxidase plays an important role in proMMP-2 expression and activation and that MMP-2 mediated SMC proliferation occurs through the involvement of Spm-Cer-S1P signaling axis under ANG II stimulation of PASMCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory

    Science.gov (United States)

    Maher, Pamela; Akaishi, Tatsuhiro; Abe, Kazuho

    2006-01-01

    Small molecules that activate signaling pathways used by neurotrophic factors could be useful for treating CNS disorders. Here we show that the flavonoid fisetin activates ERK and induces cAMP response element-binding protein (CREB) phosphorylation in rat hippocampal slices, facilitates long-term potentiation in rat hippocampal slices, and enhances object recognition in mice. Together, these data demonstrate that the natural product fisetin can facilitate long-term memory, and therefore it may be useful for treating patients with memory disorders. PMID:17050681

  16. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ai-Guo, E-mail: wangaiguotl@hotmail.com; Song, Ya-Nan; Chen, Jun; Li, Hui-Ling; Dong, Jian-Yi; Cui, Hai-Peng; Yao, Liang; Li, Xue-Feng; Gao, Wen-Ting; Qiu, Ze-Wen; Wang, Fu-Jin; Wang, Jing-Yu, E-mail: wangjingyus@163.com

    2014-09-26

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12V oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5-week

  17. PHO-ERK1/2 interaction with mitochondria regulates the permeability transition pore in cardioprotective signaling.

    Science.gov (United States)

    Hernández-Reséndiz, Sauri; Zazueta, Cecilia

    2014-07-11

    The molecular mechanism(s) by which extracellular signal-regulated kinase 1/2 (ERK1/2) and other kinases communicate with downstream targets have not been fully determined. Multiprotein signaling complexes undergoing spatiotemporal redistribution may enhance their interaction with effector proteins promoting cardioprotective response. Particularly, it has been proposed that some active kinases in association with caveolae may converge into mitochondria. Therefore, in this study we investigate if PHO-ERK1/2 interaction with mitochondria may provide a mechanistic link in the regulation of these organelles in cardioprotective signaling. Using a model of dilated cardiomyopathy followed by ischemia-reperfusion injury, we determined ERK1/2 signaling at the level of mitochondria and evaluated its effect on the permeability transition pore. The most important finding of the present study is that, under cardioprotective conditions, a subpopulation of activated ERK1/2 was directed to the mitochondrial membranes through vesicular trafficking, concurring with increased phosphorylation of mitochondrial proteins and inhibition of the mitochondrial permeability transition pore opening. In addition, our results suggest that vesicles enriched with caveolin-3 could form structures that may drive ERK1/2, GSK3β and Akt to mitochondria. Signaling complexes including PHO-ERK, PHO-Akt, PHO-eNOS and caveolin-3 contribute to cardioprotection by directly targeting the mitochondrial proteome and regulating the opening of the permeability transition pore in this model. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. 8-C-(E-phenylethenyl)quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through ERK activation.

    Science.gov (United States)

    Zhao, Yueliang; Fan, Daming; Zheng, Zong-Ping; Li, Edmund T S; Chen, Feng; Cheng, Ka-Wing; Wang, Mingfu

    2017-02-01

    Quercetin, a flavonoid, widely distributed in edible fruits and vegetables, was reported to effectively inhibit 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) formation in a food model (roast beef patties) with itself being converted into a novel compound 8-C-(E-phenylethenyl)quercetin (8-CEPQ). Here we investigated whether 8-CEPQ could be formed in a real food system, and tested its anticancer activity in human colon cancer cell lines. LC-MS was applied for the determination of 8-CEPQ formation in onion/beef soup. Anticancer activity of 8-CEPQ was evaluated by using cell viability assay and flow cytometry. Results showed that 8-CEPQ suppressed proliferation and caused G 2 phase arrest in colon cancer cells. Based on immunofluorescent staining assay, western blot assay, and RNA knockdown data, we found that 8-CEPQ did not cause apoptotic cell death. Instead, it induced autophagic cell death. Moreover, treatment with 8-CEPQ induced phosphorylation of extracellular signal-regulated kinase (ERK). Inhibition of ERK phosphorylation by the mitogen-activated protein kinase kinase (MEK)/ERK inhibitor U0126 attenuated 8-CEPQ-induced autophagy and reversed 8-CEPQ-mediated cell growth inhibition. Our results demonstrate that 8-CEPQ, a novel quercetin derivative, could be formed in onion/beef soup. 8-CEPQ inhibited colon cancer cell growth by inducing autophagic cell death through ERK activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiulong, E-mail: songxiulong@hotmail.com; Wei, Zhengxi; Shaikh, Zahir A., E-mail: zshaikh@uri.edu

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  20. KSR1 is a functional protein kinase capable of serine autophosphorylation and direct phosphorylation of MEK1

    International Nuclear Information System (INIS)

    Goettel, Jeremy A.; Liang, Dongchun; Hilliard, Valda C.; Edelblum, Karen L.; Broadus, Matthew R.; Gould, Kathleen L.; Hanks, Steven K.; Polk, D. Brent

    2011-01-01

    The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1 -/- colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.

  1. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability.

    Directory of Open Access Journals (Sweden)

    Glenn M Marshall

    2011-06-01

    Full Text Available The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3, leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc-induced neuroblastoma.

  2. Biphasic Estradiol-induced AKT Phosphorylation Is Modulated by PTEN via MAP Kinase in HepG2 Cells

    Science.gov (United States)

    Marino, Maria; Acconcia, Filippo; Trentalance, Anna

    2003-01-01

    We reported previously in HepG2 cells that estradiol induces cell cycle progression throughout the G1–S transition by the parallel stimulation of both PKC-α and ERK signaling molecules. The analysis of the cyclin D1 gene expression showed that only the MAP kinase pathway was involved. Here, the presence of rapid/nongenomic, estradiol-regulated, PI3K/AKT signal transduction pathway, its modulation by the levels of the tumor suppressor PTEN, its cross-talk with the ERK pathway, and its involvement in DNA synthesis and cyclin D1 gene promoter activity have all been studied in HepG2 cells. 17β-Estradiol induced the rapid and biphasic phosphorylation of AKT. These phosphorylations were independent of each other, being the first wave of activation independent of the estrogen receptor (ER), whereas the second was dependent on ER. Both activations were dependent on PI3K activity; furthermore, the ERK pathway modulated AKT phosphorylation by acting on the PTEN levels. The results showed that the PI3K pathway, as well as ER, were strongly involved in both G1–S progression and cyclin D1 promoter activity by acting on its proximal region (-254 base pairs). These data indicate that in HepG2 cells, different rapid/nongenomic estradiol-induced signal transduction pathways modulate the multiple steps of G1–S phase transition. PMID:12808053

  3. Angiotensin II modulates interleukin-1β-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-κB crosstalk

    International Nuclear Information System (INIS)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun; Jiang, Bingbing

    2011-01-01

    Highlights: → We examine how angiotensin II modulates ERK-NF-κB crosstalk and gene expression. → Angiotensin II suppresses IL-1β-induced prolonged ERK and NF-κB activation. → ERK-RSK1 signaling is required for IL-1β-induced prolonged NF-κB activation. → Angiotensin II modulates NF-κB responsive genes via regulating ERK-NF-κB crosstalk. → ERK-NF-κB crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1β-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-κB, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1β-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1β, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE -/- ) mice. VCAM-1 and iNOS expression were higher in ApoE -/- than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE -/- mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells

  4. MAPK/ERK and Wnt/β-Catenin pathways are synergistically involved in proliferation of Sca-1 positive hepatic progenitor cells

    International Nuclear Information System (INIS)

    Jin, Caixia; Samuelson, Lisa; Cui, Cai-Bin; Sun, Yangzhong; Gerber, David A.

    2011-01-01

    Highlights: → Activation of MAPK/ERK pathway with epidermal growth factor (EGF) significantly increased Sca-1 + HPC proliferation and colony formation. → Activation of either IL-6/STAT3 or Wnt/β-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. → Wnt/β-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation and maintain long-term HPCs in vitro. -- Abstract: Hepatic progenitor cells (HPCs) persist in adulthood and have the potential to play a major role in regenerating diseased liver. However, the signaling pathways that both directly and indirectly regulate HPCs' self-renewal and differentiation remain elusive. Previously, we identified a bipotent, stem cell antigen-1 (Sca-1) positive HPC population from naive adult liver tissue. In the present study, we aimed to investigate the involvement of various signaling pathways in Sca-1 + HPC proliferation. Epidermal growth factor (EGF) supplementation shows a significant increase in Sca-1 + HPC proliferation and colony formation while stimulating phosphorylation of ERK1/2 and activating the induction of Cyclin D1. There were no demonstrable effects of EGF on Akt. The MEK inhibitor, PD0325901, inhibits proliferation and ERK1/2 phosphorylation while also suppressing the expression of Cyclin D1. In addition, activation of either IL-6/STAT3 or Wnt/β-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. The Wnt/β-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation ratio and maintain long-term HPC in vitro. The data indicates that the MAPK/ERK pathway is both essential and critical for HPC proliferation, and the Wnt signaling pathway is not sufficient, while it works synergistically with the MAPK/ERK signaling pathway to promote HPC proliferation.

  5. MAPK/ERK and Wnt/{beta}-Catenin pathways are synergistically involved in proliferation of Sca-1 positive hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Caixia [Department of Surgery, University of North Carolina at Chapel Hill (United States); Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan 750004 (China); Samuelson, Lisa; Cui, Cai-Bin; Sun, Yangzhong [Department of Surgery, University of North Carolina at Chapel Hill (United States); Gerber, David A., E-mail: david_gerber@med.unc.edu [Department of Surgery, University of North Carolina at Chapel Hill (United States); Lineberger Cancer Center, University of North Carolina at Chapel Hill (United States)

    2011-06-17

    Highlights: {yields} Activation of MAPK/ERK pathway with epidermal growth factor (EGF) significantly increased Sca-1{sup +} HPC proliferation and colony formation. {yields} Activation of either IL-6/STAT3 or Wnt/{beta}-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. {yields} Wnt/{beta}-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation and maintain long-term HPCs in vitro. -- Abstract: Hepatic progenitor cells (HPCs) persist in adulthood and have the potential to play a major role in regenerating diseased liver. However, the signaling pathways that both directly and indirectly regulate HPCs' self-renewal and differentiation remain elusive. Previously, we identified a bipotent, stem cell antigen-1 (Sca-1) positive HPC population from naive adult liver tissue. In the present study, we aimed to investigate the involvement of various signaling pathways in Sca-1{sup +} HPC proliferation. Epidermal growth factor (EGF) supplementation shows a significant increase in Sca-1{sup +} HPC proliferation and colony formation while stimulating phosphorylation of ERK1/2 and activating the induction of Cyclin D1. There were no demonstrable effects of EGF on Akt. The MEK inhibitor, PD0325901, inhibits proliferation and ERK1/2 phosphorylation while also suppressing the expression of Cyclin D1. In addition, activation of either IL-6/STAT3 or Wnt/{beta}-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. The Wnt/{beta}-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation ratio and maintain long-term HPC in vitro. The data indicates that the MAPK/ERK pathway is both essential and critical for HPC proliferation, and the Wnt signaling pathway is not sufficient, while it works synergistically with the MAPK/ERK signaling pathway to promote HPC proliferation.

  6. Extracellular Signal-Regulated Kinase 2 (ERK2) Phosphorylation Sites and Docking Domain on the Nuclear Pore Complex Protein Tpr Cooperatively Regulate ERK2-Tpr Interaction

    Czech Academy of Sciences Publication Activity Database

    Vomastek, Tomáš; Iwanicky, M. P.; Burack, W. R.; Tiwari, D.; Kumar, D.; Parsons, J. T.; Weber, M. J.; Nandicoori, V. K.

    2008-01-01

    Roč. 28, č. 22 (2008), s. 6954-6966 ISSN 0270-7306 R&D Projects: GA AV ČR IAA500200716 Institutional research plan: CEZ:AV0Z50200510 Keywords : erk * docking domain * cell growth Subject RIV: EE - Microbiology, Virology Impact factor: 5.942, year: 2008

  7. Dynamic changes in dopamine neuron function after DNSP-11 treatment: effects in vivo and increased ERK 1/2 phosphorylation in vitro.

    Science.gov (United States)

    Fuqua, Joshua L; Littrell, Ofelia M; Lundblad, Martin; Turchan-Cholewo, Jadwiga; Abdelmoti, Lina G; Galperin, Emilia; Bradley, Luke H; Cass, Wayne A; Gash, Don M; Gerhardt, Greg A

    2014-04-01

    Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Inhibition of the Ras-ERK pathway in mitotic COS7 cells is due to the inability of EGFR/Raf to transduce EGF signaling to downstream proteins.

    Science.gov (United States)

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Ma, Yue

    2016-06-01

    Although previous studies have shown that Ras-ERK signaling in mitosis is closed due to the inhibition of signal transduction, the events involved in the molecular mechanisms are still unclear. In the present study, we investigated the Ras-ERK signaling pathway in mitotic COS7 cells. The results demonstrated that treatment with epidermal growth factor (EGF) failed to increase the endocytosis of EGF-EGFR (EGF receptor) complexes in mitotic COS7 cells, although a large amount of endosomes were found in asynchronous COS7 cells. Clathrin expression levels in mitotic COS7 cells were inhibited whereas caveolin expression levels in mitotic COS7 cells were almost unaffected. Y1068 and Y1086 residues of EGFR in the mitotic COS7 cells were activated. However, Grb2 and Shc in the mitotic COS7 cells did not bind to activated EGFR. Ras activity was inhibited in the mitotic COS7 cells whereas its downstream protein, Raf, was obviously phosphorylated by EGF in mitosis. Treatment with phorbol 12-myristate 13-acetate (PMA) also increased the phosphorylation levels of Raf in the mitotic COS7 cells. Nevertheless, Raf phosphorylation in mitosis was significantly inhibited by AG1478. Lastly, activation of EGF-mediated MEK and ERK in the mitotic COS7 cells was obviously inhibited. In summary, our results suggest that the Ras-ERK pathway is inhibited in mitotic COS7 cells which may be the dual result of the difficulty in the transduction of EGF signaling by EGFR or Raf to downstream proteins.

  9. Rab11 is phosphorylated by classical and novel protein kinase C isoenzymes upon sustained phorbol ester activation.

    Science.gov (United States)

    Pavarotti, Martín; Capmany, Anahí; Vitale, Nicolas; Colombo, María Isabel; Damiani, María Teresa

    2012-02-01

    Rab11 is a small GTPase that controls diverse intracellular trafficking pathways. However, the molecular machinery that regulates the participation of Rab11 in those different transport events is poorly understood. In resting cells, Rab11 localizes at the endocytic recycling compartment (ERC), whereas the different protein kinase C (PKC) isoforms display a cytosolic distribution. Sustained phorbol ester stimulation induces the translocation of the classical PKCα and PKCβII isoenzymes to the ERC enriched in Rab11, and results in transferrin recycling inhibition. In contrast, novel PKCε and atypical PKCζ isoenzymes neither redistribute to the perinucleus nor modify transferrin recycling transport after phorbol ester stimulation. Although several Rabs have been shown to be phosphorylated, there is to date no evidence indicating Rab11 as a kinase substrate. In this report, we show that Rab11 appears phosphorylated in vivo in phorbol ester-stimulated cells. A bioinformatic analysis of Rab11 allowed us to identify several high-probability Ser/Thr kinase phosphorylation sites. Our results demonstrate that classical PKC (PKCα and PKCβII but not PKCβI) directly phosphorylate Rab11 in vitro. In addition, novel PKCε and PKCη but not PKCδ isoenzymes also phosphorylate Rab11. Mass spectrometry analysis revealed that Ser 177 is the Rab11 residue to be phosphorylated in vitro by either PKCβII or PKCε. In agreement, the phosphomimetic mutant, Rab11 S177D, retains transferrin at the ERC in the absence of phorbol-12-myristate-13-acetate stimulus. This report shows for the first time that Rab11 is differentially phosphorylated by distinct PKC isoenzymes and that this post-translational modification might be a regulatory mechanism of intracellular trafficking. Copyright © 2012 Soçiété Francaise des Microscopies and Société de Biologie Cellulaire de France.

  10. ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast.

    Science.gov (United States)

    Yu, Yang; Wang, Xiaoxiao; Zhang, Xiaoxin; Zhai, Yanhua; Lu, Xukun; Ma, Haixia; Zhu, Kai; Zhao, Tongbiao; Jiao, Jianwei; Zhao, Zhen-Ao; Li, Lei

    2018-01-05

    Pluripotent stem cells hold great promise for regenerative medicine. However, before clinical application, reproducible protocols for pluripotent stem cell differentiation should be established. Extracellular signal-regulated protein kinase (ERK) signaling plays a central role for the self-renewal of epiblast stem cells (EpiSCs), but its role for subsequent germ layer differentiation is still ambiguous. We proposed that ERK could modulate differentiation of the epiblast. PD0325901 was used to inhibit ERK activation during the differentiation of embryonic stem cells and EpiSCs. Immunofluorescence, western blot analysis, real-time PCR and flow cytometry were used to detect germ layer markers and pathway activation. We demonstrate that the ERK phosphorylation level is lower in neuroectoderm of mouse E7.5 embryos than that in the primitive streak. ERK inhibition results in neural lineage commitment of epiblast. Mechanistically, PD0325901 abrogates the expression of primitive streak markers by β-catenin retention in the cytoplasm, and inhibits the expression of OCT4 and NANOG during EpiSC differentiation. Thus, EpiSCs differentiate into neuroectodermal lineage efficiently under PD0325901 treatment. These results suggest that neuroectoderm differentiation does not require extrinsic signals, supporting the default differentiation of neural lineage. We report that a single ERK inhibitor, PD0325901, can specify epiblasts and EpiSCs into neural-like cells, providing an efficient strategy for neural differentiation.

  11. PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin β1-ERK1/2 and-MMP2 signaling

    Directory of Open Access Journals (Sweden)

    Wu Jian

    2009-11-01

    Full Text Available Abstract Background Phosphatase of regenerating liver-3 (PRL-3 plays a causative role in tumor metastasis, but the underlying mechanisms are not well understood. In our previous study, we observed that PRL-3 could decrease tyrosine phosphorylation of integrin β1 and enhance activation of ERK1/2 in HEK293 cells. Herein we aim to explore the association of PRL-3 with integrin β1 signaling and its functional implications in motility, invasion, and metastasis of colon cancer cell LoVo. Methods Transwell chamber assay and nude mouse model were used to study motility and invasion, and metastsis of LoVo colon cancer cells, respectively. Knockdown of integrin β1 by siRNA or lentivirus were detected with Western blot and RT-PCR. The effect of PRL-3 on integrin β1, ERK1/2, and MMPs that mediate motility, invasion, and metastasis were measured by Western blot, immunofluorencence, co-immunoprecipitation and zymographic assays. Results We demonstrated that PRL-3 associated with integrin β1 and its expression was positively correlated with ERK1/2 phosphorylation in colon cancer tissues. Depletion of integrin β1 with siRNA, not only abrogated the activation of ERK1/2 stimulated by PRL-3, but also abolished PRL-3-induced motility and invasion of LoVo cells in vitro. Similarly, inhibition of ERK1/2 phosphorylation with U0126 or MMP activity with GM6001 also impaired PRL-3-induced invasion. In addition, PRL-3 promoted gelatinolytic activity of MMP2, and this stimulation correlated with decreased TIMP2 expression. Moreover, PRL-3-stimulated lung metastasis of LoVo cells in a nude mouse model was inhibited when integrin β1 expression was interfered with shRNA. Conclusion Our results suggest that PRL-3's roles in motility, invasion, and metastasis in colon cancer are critically controlled by the integrin β1-ERK1/2-MMP2 signaling.

  12. Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis, upper cervical cord, NTS and Pa5 following capsaicin injection into masticatory and swallowing-related muscles in rats.

    Science.gov (United States)

    Tsujimura, Takanori; Shinoda, Masamichi; Honda, Kuniya; Hitomi, Suzuro; Kiyomoto, Masaaki; Matsuura, Shingo; Katagiri, Ayano; Tsuji, Kojun; Inoue, Makoto; Shiga, Yoshi; Iwata, Koichi

    2011-10-12

    Many phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells are expressed in the trigeminal spinal subnucleus caudalis (Vc), upper cervical spinal cord (C1-C2), nucleus tractus solitarii (NTS) and paratrigeminal nucleus (Pa5) after capsaicin injection into the whisker pad (WP), masseter muscle (MM), digastric muscle (DM) or sternohyoideus muscle (SM). The pERK-IR cells also showed NeuN immunoreactivity, indicating that ERK phosphorylation occurs in neurons. The pERK-IR cells were significantly reduced after intrathecal injection of MEK 1/2 inhibitor PD98059. The pERK-IR cells expressed bilaterally in the Vc and C1-C2 after capsaicin injection into the unilateral DM or SM, whereas unilaterally in the Vc and C1-C2 after unilateral WP or MM injection. After capsaicin injection into the WP or MM, the pERK-IR cell expression in the Vc was restricted rostrocaudally within a narrow area. However, the distribution of pERK-IR cells was more wide spread without a clear peak in the Vc and C1-C2 after capsaicin injection into the DM or SM. In the NTS, the unimodal pERK-IR cell expression peaked at 0-720μm rostral from the obex following capsaicin injection into WP, MM, DM or SM. In the ipsilateral Pa5, many pERK-IR cells were observed following capsaicin injection into the SM. The number of swallows elicited by distilled water administration was significantly smaller after capsaicin injection into the WP, MM or DM but not SM compared to that of vehicle-injected rats. Various noxious inputs due to the masticatory or swallowing-related muscle inflammation may be differentially involved in muscle pain and swallowing reflex activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied....... In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia....... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  14. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  15. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    Energy Technology Data Exchange (ETDEWEB)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G., E-mail: bipin@amrita.edu

    2016-08-15

    and phosphorylation of ERK.

  16. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    International Nuclear Information System (INIS)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G.

    2016-01-01

    and phosphorylation of ERK.

  17. Perlecan Domain V induces VEGf secretion in brain endothelial cells through integrin α5β1 and ERK-dependent signaling pathways.

    Directory of Open Access Journals (Sweden)

    Douglas N Clarke

    Full Text Available Perlecan Domain V (DV promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs following stroke. In this study, we define the specific mechanism of DV interaction with the α(5β(1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV's angio-modulatory activity outside of the brain, binds poorly to α(5β(1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV's DGR sequence as an important element for the interaction of DV with α(5β(1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV's induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV's mechanism of action on BECs, and further support its potential as a novel stroke therapy.

  18. Perlecan Domain V Induces VEGf Secretion in Brain Endothelial Cells through Integrin α5β1 and ERK-Dependent Signaling Pathways

    Science.gov (United States)

    Clarke, Douglas N.; Al Ahmad, Abraham; Lee, Boyeon; Parham, Christi; Auckland, Lisa; Fertala, Andrezj; Kahle, Michael; Shaw, Courtney S.; Roberts, Jill; Bix, Gregory J.

    2012-01-01

    Perlecan Domain V (DV) promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs) following stroke. In this study, we define the specific mechanism of DV interaction with the α5β1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV’s angio-modulatory activity outside of the brain, binds poorly to α5β1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV’s DGR sequence as an important element for the interaction of DV with α5β1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV’s induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV’s mechanism of action on BECs, and further support its potential as a novel stroke therapy. PMID:23028886

  19. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Jong Ryeal [Department of Internal Medicine, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Ahmed, Mahmoud [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of)

    2016-09-09

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 was highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases triacylglycerides in

  20. High glucose enhances cAMP level and extracellular signal-regulated kinase phosphorylation in Chinese hamster ovary cell: Usage of Br-cAMP in foreign protein β-galactosidase expression.

    Science.gov (United States)

    Lin, Hsiao-Hsien; Lee, Tsung-Yih; Liu, Ting-Wei; Tseng, Ching-Ping

    2017-07-01

    Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27 kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells. Copyright © 2017. Published by Elsevier B.V.

  1. P2X7, NMDA and BDNF receptors converge on GSK3 phosphorylation and cooperate to promote survival in cerebellar granule neurons.

    Science.gov (United States)

    Ortega, Felipe; Pérez-Sen, Raquel; Morente, Verónica; Delicado, Esmerilda G; Miras-Portugal, Maria Teresa

    2010-05-01

    Glycogen synthase kinase-3 (GSK3) is a key player in the regulation of neuronal survival. Herein, we report evidence of an interaction between P2X7 receptors with NMDA and BDNF receptors at the level of GSK3 signalling and neuroprotection. The activation of these receptors in granule neurons led to a sustained pattern of GSK3 phosphorylation that was mainly PKC-dependent. BDNF was the most potent at inducing GSK3 phosphorylation, which was also dependent on PI3K. The P2X7 agonist, BzATP, exhibited additive effects with both NMDA and BDNF to rescue granule neurons from cell death induced by PI3K inhibition. This survival effect was mediated by the PKC-dependent GSK3 pathway. In addition, ERK1/2 proteins were also involved in BDNF protective effect. These results show the function of ATP in amplifying neuroprotective actions of glutamate and neurotrophins, and support the role of GSK3 as an important convergence point for these survival promoting factors in granule neurons.

  2. Phosphorylation of Lbx1 controls lateral myoblast migration into the limb.

    Science.gov (United States)

    Masselink, Wouter; Masaki, Megumi; Sieiro, Daniel; Marcelle, Christophe; Currie, Peter D

    2017-10-15

    The migration of limb myogenic precursors from limb level somites to their ultimate site of differentiation in the limb is a paradigmatic example of a set of dynamic and orchestrated migratory cell behaviours. The homeobox containing transcription factor ladybird homeobox 1 (Lbx1) is a central regulator of limb myoblast migration, null mutations of Lbx1 result in severe disruptions to limb muscle formation, particularly in the distal region of the limb in mice (Gross et al., 2000). As such Lbx1 has been hypothesized to control lateral migration of myoblasts into the distal limb anlage. It acts as a core regulator of the limb myoblast migration machinery, controlled by Pax3. A secondary role for Lbx1 in the differentiation and commitment of limb musculature has also been proposed (Brohmann et al., 2000; Uchiyama et al., 2000). Here we show that lateral migration, but not differentiation or commitment of limb myoblasts, is controlled by the phosphorylation of three adjacent serine residues of LBX1. Electroporation of limb level somites in the chick embryo with a dephosphomimetic form of Lbx1 results in a specific defect in the lateral migration of limb myoblasts. Although the initial delamination and migration of myoblasts is unaffected, migration into the distal limb bud is severely disrupted. Interestingly, myoblasts undergo normal differentiation independent of their migratory status, suggesting that the differentiation potential of hypaxial muscle is not regulated by the phosphorylation state of LBX1. Furthermore, we show that FGF8 and ERK mediated signal transduction, both critical regulators of the developing limb bud, have the capacity to induce the phosphorylation of LBX1 at these residues. Overall, this suggests a mechanism whereby the phosphorylation of LBX1, potentially through FGF8 and ERK signalling, controls the lateral migration of myoblasts into the distal limb bud. Copyright © 2017. Published by Elsevier Inc.

  3. Terbinafine stimulates the pro-inflammatory responses in human monocytic THP-1 cells through an ERK signaling pathway.

    Science.gov (United States)

    Mizuno, Katsuhiko; Fukami, Tatsuki; Toyoda, Yasuyuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2010-10-23

    Oral antifungal terbinafine has been reported to cause liver injury with inflammatory responses in a small percentage of patients. However the underlying mechanism remains unknown. To examine the inflammatory reactions, we investigated whether terbinafine and other antifungal drugs increase the release of pro-inflammatory cytokines using human monocytic cells. Dose- and time-dependent changes in the mRNA expression levels and the release of interleukin (IL)-8 and tumor necrosis factor (TNF)α from human monocytic THP-1 and HL-60 cells with antifungal drugs were measured. Effects of terbinafine on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK)1/2 were investigated. The release of IL-8 and TNFα from THP-1 and HL-60 cells was significantly increased by treatment with terbinafine but not by fluconazole, suggesting that terbinafine can stimulate monocytes and increase the pro-inflammatory cytokine release. Terbinafine also significantly increased the phosphorylation of ERK1/2 and p38 MAP kinase in THP-1 cells. Pretreatment with a MAP kinase/ERK kinase (MEK)1/2 inhibitor U0126 significantly suppressed the increase of IL-8 and TNFα levels by terbinafine treatment in THP-1 cells, but p38 MAPK inhibitor SB203580 did not. These results suggested that an ERK1/2 pathway plays an important role in the release of IL-8 and TNFα in THP-1 cells treated with terbinafine. The release of inflammatory mediators by terbinafine might be one of the mechanisms underlying immune-mediated liver injury. This in vitro method may be useful to predict adverse inflammatory reactions that lead to drug-induced liver injury. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Lipo-PGE1 suppresses collagen production in human dermal fibroblasts via the ERK/Ets-1 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Yoolhee Yang

    Full Text Available Dysregulation of collagen production contributes to various pathological processes, including tissue fibrosis as well as impaired wound healing. Lipo-prostaglandin E1 (Lipo-PGE1, a lipid microsphere-incorporated prostaglandin E1, is used as a vasodilator for the treatment of peripheral vascular diseases. Lipo-PGE1 was recently shown to enhance human dermal fibroblast (HDF migration and in vivo wound healing. No published study has characterized the role of Lipo-PGE1 in collagen regulation in HDFs. Here, we investigated the cellular signaling mechanism by which Lipo-PGE1 regulates collagen in HDFs. Collagen production was evaluated by the Sircol collagen assay, Western blot analysis of type I collagen and real time PCR. Unexpectedly, Lipo-PGE1 decreased mRNA expression of collagen 1A1, 1A2, and 3A1. Lipo-PGE1 markedly inhibited type I collagen and total soluble collagen production. In addition, Lipo-PGE1 inhibited transforming growth factor-β-induced collagen expression via Smad2 phosphorylation. To further investigate whether extracellular signal-regulated kinase (ERK/Ets-1 signaling, a crucial pathway in collagen regulation, is involved in Lipo-PGE1-inhibited collagen production, cells were pretreated with an ERK-specific inhibitor, PD98059, prior to the addition of Lipo-PGE1. Lipo-PGE1-inhibited collagen mRNA expression and total soluble collagen production were recovered by pretreatment with PD98059. Moreover, Lipo-PGE1 directly induced the phosphorylation of ERK. Furthermore, silencing of Ets-1 recovered Lipo-PGE1-inhibited collagen production and PD98059 blocked Lipo-PGE1-enhanced Ets-1 expression. The present study reveals an important role for Lipo-PGE1 as a negative regulator of collagen gene expression and production via ERK/Ets-1 signaling. These results suggest that Lipo-PGE1 could potentially be a therapeutic target in diseases with deregulated collagen turnover.

  5. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK

    International Nuclear Information System (INIS)

    Li, Wei; Man, Xiao-Yong; Li, Chun-Ming; Chen, Jia-Qi; Zhou, Jiong; Cai, Sui-Qing; Lu, Zhong-Fa; Zheng, Min

    2012-01-01

    Vascular endothelial growth factor (VEGF) is one of the strongest regulators of physiological and pathological angiogenesis. VEGF receptor 2 (VEGFR-2), the primary receptor for VEGF, is thought to mediate major functional effects of VEGF. Previously, we have localized both VEGF and VEGFR-2 in human hair follicles. In this study, we further defined the expression and roles of VEGFR-2 on human hair follicle dermal papilla (DP) cells. The expression of VEGFR-2 on DP cells was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis separately, and localization of VEGFR-2 was defined by immunofluorescence. The effect of VEGF on DP cells was analyzed by MTT assays and specific inhibitors. Finally, the role of VEGF involved in the signaling pathways was investigated by Western blot. RT-PCR and Western blot analysis demonstrated the expression of VEGFR-2 on DP cells. Immunostaining for VEGFR-2 showed strong signal on cultured human DP cells in vitro. Exogenous VEGF 165 stimulated proliferation of DP cells in a dose-dependent manner. Furthermore, this stimulation was blocked by a VEGFR-2 neutralizing antibody (MAB3571) and an ERK inhibitor (PD98059). VEGF 165 -induced phosphorylation of ERK1/2 was abolished by MAB3571 and PD98059, while the phosphorylation of p38, JNK and AKT were not changed by VEGF 165 . Taken together, VEGFR-2 is expressed on primary human hair follicle DP cells and VEGF induces proliferation of DP cells through VEGFR-2/ERK pathway, but not p38, JNK or AKT signaling. -- Highlights: ► We examine the expression of VEGFR-2 on cultured human dermal papilla (DP) cells. ► VEGF 165 stimulated proliferation of human DP cells in a dose-dependent manner. ► This stimulation was through VEGFR-2-mediated activation of ERK.

  6. IL-1β Upregulates StAR and Progesterone Production Through the ERK1/2- and p38-Mediated CREB Signaling Pathways in Human Granulosa-Lutein Cells.

    Science.gov (United States)

    Dang, Xuan; Zhu, Qinling; He, Yaqiong; Wang, Yuan; Lu, Yao; Li, Xiaoxue; Qi, Jia; Wu, Hasiximuke; Sun, Yun

    2017-10-01

    The proinflammatory cytokine interleukin-1β (IL-1β) may be involved in several ovulation-associated events, such as protease synthesis, prostaglandin production, and steroidogenesis in granulosa cells. However, the exact effect of IL-1β on progesterone synthesis in granulosa cells and the underlying mechanism remain unclear. By using cultured granulosa-lutein cells collected from women undergoing in vitro fertilization or intracytoplasmic sperm injection, we found that IL-1β upregulated steroidogenic acute regulatory protein (StAR) expression and progesterone synthesis in granulosa-lutein cells, which was comparable with luteinizing hormone effect and could be abolished by an IL-1 receptor antagonist. Moreover, IL-1β activated the phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB), and knockdown of CREB attenuated the induction of StAR expression and progesterone synthesis by IL-1β in granulosa-lutein cells. Furthermore, IL-1β activated the extracellular signal-regulated kinase (ERK)1/2 and p38 pathways and inhibition of the ERK1/2 and p38 pathways attenuated the IL-1β-induced phosphorylation of CREB, StAR expression, and progesterone synthesis in granulosa-lutein cells. In conclusion, IL-1β could upregulate StAR expression and stimulate progesterone biosynthesis through increase in CREB phosphorylation via activating the ERK1/2 and p38 pathways in human granulosa-lutein cells. Copyright © 2017 Endocrine Society.

  7. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    Directory of Open Access Journals (Sweden)

    Edvinsson Lars

    2008-09-01

    Full Text Available Abstract Background MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2. Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA leading to the ischemic region. Here we explored the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126. Methods and result Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO followed by reperfusion for 48-h and the ischemic area was calculated. The expression of phosphorylated ERK1/2 and Elk-1, and of endothelin ETA and ETB, angiotensin AT1, and 5-hydroxytryptamine 5-HT1B receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ETB receptor was analyzed by quantitative Western blot. We demonstrate that there is an increase in the number of contractile smooth muscle receptors in the MCA and in micro- vessels within the ischemic region. The enhanced expression occurs in the smooth muscle cells as verified by co-localization studies. This receptor upregulation is furthermore associated with enhanced expression of pERK1/2 and of transcription factor pElk-1 in the vascular smooth muscle cells. Blockade of transcription with the MEK1 inhibitor U0126, given at the onset of reperfusion or as late as 6 hours after the insult, reduced transcription (pERK1/2 and pElk-1, the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score. Conclusion Our results show that MCAO results in upregulation of cerebrovascular ETB, AT1 and 5-HT1B receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced the enhanced vascular receptor expression and the associated cerebral infarction.

  8. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK.

    Science.gov (United States)

    Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I

    2006-10-01

    We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.

  9. Resilience to audiogenic seizures is associated with p-ERK1/2 dephosphorylation in the subiculum of Fmr1 knockout mice

    Directory of Open Access Journals (Sweden)

    Giulia eCuria

    2013-04-01

    Full Text Available Young, but not adult, Fmr1 knockout (KO mice display audiogenic seizures (AGS that can be prevented by inhibiting extracellular signal-regulated kinases 1/2 (ERK1/2 phosphorylation. In order to identify the cerebral regions involved in these phenomena, we characterized the response to AGS in Fmr1 KO mice and wild type (WT controls at postnatal day (P 45 and P90. To characterize the diverse response to AGS in various cerebral regions, we evaluated the activity markers FosB/ΔFosB and phosphorylated ERK1/2 (p-ERK1/2. Wild running (100% of tested mice followed by clonic/tonic seizures (30% were observed in P45 Fmr1 KO mice, but not in WT mice. In P90 Fmr1 KO mice, wild running was only present in 25% of tested animals. Basal FosB/ΔFosB immunoreactivity was higher (P<0.01 vs WT in the CA1 and subiculum of P45 Fmr1 KO mice. Following the AGS test, FosB/ΔFosB expression consistently increased in most of the analyzed regions in both groups at P45, but not at P90. Interestingly, FosB/ΔFosB immunoreactivity was significantly higher in P45 Fmr1 KO mice in the medial geniculate body (P<0.05 vs WT and CA3 (P<0.01. Neurons presenting with immunopositivity to p-ERK1/2 were more abundant in the subiculum of Fmr1 KO mice in control condition (P<0.05 vs WT, in both age groups. In this region, p-ERK1/2-immunopositive cells significantly decreased (-75%, P<0.01 in P90 Fmr1 KO mice exposed to the AGS test, but no changes were found in P45 mice or in other brain regions. In both age groups of WT mice, p-ERK1/2-immunopositive cells increased in the subiculum after exposure to the acoustic test. Our findings illustrate that FosB/ΔFosB markers are overexpressed in the medial geniculate body and CA3 in Fmr1 KO mice experiencing AGS, and that p-ERK1/2 is markedly decreased in the subiculum of Fmr1 KO mice resistant to AGS induction. These findings suggest that resilience to AGS is associated with dephosphorylation of p-ERK1/2 in the subiculum of mature Fmr1 KO mice.

  10. A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation

    International Nuclear Information System (INIS)

    Giannoni, Elisa; Raugei, Giovanni; Chiarugi, Paola; Ramponi, Giampietro

    2006-01-01

    Low molecular weight-PTP has been reported as a redox-sensitive protein during both platelet-derived growth factor and integrin signalling. In response to oxidation the phosphatase undergoes a reversible inactivation, which in turn leads to the increase in tyrosine phosphorylation of its substrates and the properly executed anchorage-dependent proliferation program. Here, we report that an exogenous oxidative stress enhances LMW-PTP tyrosine phosphorylation, through oxidation/inactivation of the enzyme, thus preventing its auto-dephosphorylation activity. In particular, we observed a selective hyper-phosphorylation of Tyr132, that acts as a docking site for the adaptor protein Grb2. The redox-dependent enhancement of Grb2 recruitment to LMW-PTP ultimately leads to an improvement of ERK activation, likely triggering a prosurvival signal against the oxidant environment

  11. Effects of exosomes derived from MDA-MB-231 on proliferation of endothelial cells and the role of MAPK/ERK and PI3K/Akt pathways

    Directory of Open Access Journals (Sweden)

    Shuang LONG

    2012-11-01

    Full Text Available Objective  To investigate the effects of exosomes derived from breast cancer cell line MDA-MB-231 on proliferation of human umbilical cord vein endothelial cells (HUVECs, and evaluate the role of MAPK/ERK and PI3K/Akt signal transduction pathway during the process. Methods  Exosomes were derived and purified from MDA-MB-231 by cryogenic ultracentrifugation and density gradient centrifugation. MTT assay was carried out for measurement of cell proliferation in HUVECs with exosome of 50, 100, 200 and 400μg/ml. The states of cell cycle of HUVECs co-cultured with 200μg/ml exosomes were detected by flow cytometry. The effects of 200μg/ml exosomes on the expression of ERK, Akt and phosphorylated ERK, Akt in HUVECs were detected with Western blotting. Results  Exosomes derived from MDA-MB-231 significantly promoted HUVECs proliferation in a classical time-and dose-dependent manner. Flow cytometry revealed that, co-cultured with 200μg/ml exosomes for 24h, S-phase cells in HUVECs increased, while G1/S phase cells in HUVECs decreased. Western blotting showed that, cocultured with 200μg/ml exosomes for 24h, 48h and 72h, the expressions of phosphorylated ERK and Akt were up-regulated in a time-dependent manner. Conclusion  Exosomes derived from breast cancer cell line MDA-MB-231 may promote HUVECs proliferation, the changes in cell cycle and the continuous activation of the MAPK/ERK and PI3K/Akt signal transduction pathways may be the underlying mechanism.

  12. Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition.

    Directory of Open Access Journals (Sweden)

    Fabio Penna

    Full Text Available BACKGROUND: The onset of cachexia is a frequent feature in cancer patients. Prominent characteristic of this syndrome is the loss of body and muscle weight, this latter being mainly supported by increased protein breakdown rates. While the signaling pathways dependent on IGF-1 or myostatin were causally involved in muscle atrophy, the role of the Mitogen-Activated-Protein-Kinases is still largely debated. The present study investigated this point on mice bearing the C26 colon adenocarcinoma. METHODOLOGY/PRINCIPAL FINDINGS: C26-bearing mice display a marked loss of body weight and muscle mass, this latter associated with increased phosphorylated (p-ERK. Administration of the ERK inhibitor PD98059 to tumor bearers attenuates muscle depletion and weakness, while restoring normal atrogin-1 expression. In C26 hosts, muscle wasting is also associated with increased Pax7 expression and reduced myogenin levels. Such pattern, suggestive of impaired myogenesis, is reversed by PD98059. Increased p-ERK and reduced myosin heavy chain content can be observed in TNFα-treated C2C12 myotubes, while decreased myogenin and MyoD levels occur in differentiating myoblasts exposed to the cytokine. All these changes are prevented by PD98059. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that ERK is involved in the pathogenesis of muscle wasting in cancer cachexia and could thus be proposed as a therapeutic target.

  13. Analgesic effect of paeoniflorin in rats with neonatal maternal separation-induced visceral hyperalgesia is mediated through adenosine A(1) receptor by inhibiting the extracellular signal-regulated protein kinase (ERK) pathway.

    Science.gov (United States)

    Zhang, Xiao-Jun; Chen, Hong-Li; Li, Zhi; Zhang, Hong-Qi; Xu, Hong-Xi; Sung, Joseph J Y; Bian, Zhao-Xiang

    2009-11-01

    Paeoniflorin (PF), a chief active ingredient in the root of Paeonia lactiflora Pall (family Ranunculaceae), is effective in relieving colorectal distention (CRD)-induced visceral pain in rats with visceral hyperalgesia induced by neonatal maternal separation (NMS). This study aimed at exploring the underlying mechanisms of PF's analgesic effect on CRD-evoked nociceptive signaling in the central nervous system (CNS) and investigating whether the adenosine A(1) receptor is involved in PF's anti-nociception. CRD-induced visceral pain as well as phosphorylated-extracellular signal-regulated protein kinase (p-ERK) and phospho-cAMP response element-binding protein (p-CREB) expression in the CNS structures of NMS rats were suppressed by NMDA receptor antagonist dizocilpine (MK-801) and ERK phosphorylation inhibitor U0126. PF could similarly inhibit CRD-evoked p-ERK and c-Fos expression in laminae I-II of the lumbosacral dorsal horn and anterior cingulate cortex (ACC). PF could also reverse the CRD-evoked increased glutamate concentration by CRD as shown by dynamic microdialysis monitoring in ACC, whereas, DPCPX, an antagonist of adenosine A(1) receptor, significantly blocked the analgesic effect of PF and PF's inhibition on CRD-induced p-ERK and p-CREB expression. These results suggest that PF's analgesic effect is possibly mediated by adenosine A(1) receptor by inhibiting CRD-evoked glutamate release and the NMDA receptor dependent ERK signaling.

  14. Oleic Acid Induces Lung Injury in Mice through Activation of the ERK Pathway

    Directory of Open Access Journals (Sweden)

    Cassiano Felippe Gonçalves-de-Albuquerque

    2012-01-01

    Full Text Available Oleic acid (OA can induce acute lung injury in experimental models. In the present work, we used intratracheal OA injection to show augmented oedema formation, cell migration and activation, lipid mediator, and cytokine productions in the bronchoalveolar fluids of Swiss Webster mice. We also demonstrated that OA-induced pulmonary injury is dependent on ERK1/2 activation, since U0126, an inhibitor of ERK1/2 phosphorylation, blocked neutrophil migration, oedema, and lipid body formation as well as IL-6, but not IL-1β production. Using a mice strain carrying a null mutation for the TLR4 receptor, we proved that increased inflammatory parameters after OA challenges were not due to the activation of the TLR4 receptor. With OA being a Na/K-ATPase inhibitor, we suggest the possible involvement of this enzyme as an OA target triggering lung inflammation.

  15. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  16. Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jixia; Malakhova, Margarita; Mottamal, Madhusoodanan; Reddy, Kanamata; Kurinov, Igor; Carper, Andria; Langfald, Alyssa; Oi, Naomi; Kim, Myoung Ok; Zhu, Feng; Sosa, Carlos P.; Zhou, Keyuan; Bode, Ann M.; Dong, Zigang (Cornell); (Guangdong); (UMM)

    2012-06-27

    Ultraviolet (UV) irradiation is the leading factor in the development of skin cancer, prompting great interest in chemopreventive agents for this disease. In this study, we report the discovery of norathyriol, a plant-derived chemopreventive compound identified through an in silico virtual screening of the Chinese Medicine Library. Norathyriol is a metabolite of mangiferin found in mango, Hypericum elegans, and Tripterospermum lanceolatum and is known to have anticancer activity. Mechanistic investigations determined that norathyriol acted as an inhibitor of extracellular signal-regulated kinase (ERK)1/2 activity to attenuate UVB-induced phosphorylation in mitogen-activated protein kinases signaling cascades. We confirmed the direct and specific binding of norathyriol with ERK2 through a cocrystal structural analysis. The xanthone moiety in norathyriol acted as an adenine mimetic to anchor the compound by hydrogen bonds to the hinge region of the protein ATP-binding site on ERK2. Norathyriol inhibited in vitro cell growth in mouse skin epidermal JB6 P+ cells at the level of G{sub 2}-M phase arrest. In mouse skin tumorigenesis assays, norathyriol significantly suppressed solar UV-induced skin carcinogenesis. Further analysis indicated that norathyriol mediates its chemopreventive activity by inhibiting the ERK-dependent activity of transcriptional factors AP-1 and NF-{kappa}B during UV-induced skin carcinogenesis. Taken together, our results identify norathyriol as a safe new chemopreventive agent that is highly effective against development of UV-induced skin cancer.

  17. ERK, Akt, and STAT5 are differentially activated by the two growth hormone receptors subtypes of a teleost fish (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Jeffrey eKittilson

    2011-09-01

    Full Text Available Previously, we found that the teleost fish, rainbow trout, possesses two growth hormone receptor (GHR subtypes that display distinct ligand binding and agonist-induced regulation features. In this study, we used Chinese hamster ovary-K1 cells stably transfected individually with the two trout GHR subtypes, GHR1 and GHR2, to elucidate receptor-effector pathway linkages. Growth hormone (GH stimulated rapid (5-10 min phosphorylation of ERK, Akt, JAk2, and STAT5 in both GHR1- and GHR2-expressing cells; however; STAT5 was activated to a greater extent through GHR1 than through GHR2, whereas ERK and Akt were activated to a greater through GHR2 than through GHR1. Although blockade of the ERK pathway had no effect on the activation of Akt, inhibition of PI3k-Akt partially prevented activation of ERK, suggesting cross-talk between the ERK and PI3K-Akt pathways. JAK2 inhibition completely blocked activation of ERK, Akt, and STAT5, suggesting that all of these pathways link to GHR1 and GHR2 via JAK2. These findings establish important receptor-effector pathway linkages and suggest that the GHR subtypes of teleost fish may be functionally distinct.

  18. Cigarette smoke extract promotes human vascular smooth muscle cell proliferation and survival through ERK1/2- and NF-κB-dependent pathways

    DEFF Research Database (Denmark)

    Chen, Qing-Wen; Edvinsson, Lars; Xu, Cang-Bao

    2010-01-01

    and necrosis were found in serum-starved HASMCs. DSPs decreased cell death and increased B-cell leukemia/lymphoma 2 expression. Blocking phosphorylation of ERK1/2 or NF-κB attenuated DSP-induced cell death inhibition. Cigarette smoke particles stimulate HASMC proliferation and inhibit cell death...

  19. MAT2B promotes adipogenesis by modulating SAMe levels and activating AKT/ERK pathway during porcine intramuscular preadipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cunzhen; Chen, Xiaochang; Wu, Wenjing; Wang, Wusu; Pang, Weijun; Yang, Gongshe, E-mail: gsyang999@hotmail.com

    2016-05-15

    Intramuscular fat (IMF) has been demonstrated as one of the crucial factors of livestock meat quality. The MAT2B protein with MAT2α catalyzes the formation of methyl donor S- adenosylmethionine (SAMe) to mediate cell metabolism including proliferation and apoptosis. However, the regulatory effect of MAT2B on IMF deposition is still unclear. In this study, the effect of MAT2B on adipogenesis and its potential mechanism during porcine intramuscular preadipocyte differentiation was studied. The results showed that overexpression of MAT2B promoted adipogenesis and significantly up-regulated the mRNA and protein levels of adipogenic marker genes including FASN, PPARγ and aP2, consistently, knockdown of MAT2B inhibited lipid accumulation and down-regulated the mRNA and protein levels of the above genes. Furthermore, flow cytometry and EdU-labeling assay indicated that MAT2B regulate adipogenesis was partly due to influence intracellular SAMe levels and further affect cell clonal expansion. Also, increased expression of MAT2B activated the phosphorylations of AKT and ERK1/2, whereas knockdown of MAT2B blocked AKT signaling and repressed the phosphorylation of ERK1/2. Moreover, the inhibitory effect of LY294002 (a specific PI3K inhibitor) on the activities of AKT and ERK1/2 was partially recovered by overexpression of MAT2B in porcine intramuscular adipocytes. Finally, Co-IP experiments showed that MAT2B can directly interact with AKT. Taken together, our findings suggested that MAT2B acted as a positive regulator through modifying SAMe levels as well as activating AKT/ERK signaling pathway to promote porcine intramuscular adipocyte differentiation. - Highlights: • MAT2B up-regulates the expression of adipogenic marker genes and promotes porcine intramuscular preadipocyte differentiation. • MAT2B influences intracellular SAMe levels and further affects cell clonal expansion. • MAT2B interacts with AKT and activates AKT/ERK signaling pathway.

  20. miR-322 stabilizes MEK1 expression to inhibit RAF/MEK/ERK pathway activation in cartilage.

    Science.gov (United States)

    Bluhm, Björn; Ehlen, Harald W A; Holzer, Tatjana; Georgieva, Veronika S; Heilig, Juliane; Pitzler, Lena; Etich, Julia; Bortecen, Toman; Frie, Christian; Probst, Kristina; Niehoff, Anja; Belluoccio, Daniele; Van den Bergen, Jocelyn; Brachvogel, Bent

    2017-10-01

    Cartilage originates from mesenchymal cell condensations that differentiate into chondrocytes of transient growth plate cartilage or permanent cartilage of the articular joint surface and trachea. MicroRNAs fine-tune the activation of entire signaling networks and thereby modulate complex cellular responses, but so far only limited data are available on miRNAs that regulate cartilage development. Here, we characterize a miRNA that promotes the biosynthesis of a key component in the RAF/MEK/ERK pathway in cartilage. Specifically, by transcriptome profiling we identified miR-322 to be upregulated during chondrocyte differentiation. Among the various miR-322 target genes in the RAF/MEK/ERK pathway, only Mek1 was identified as a regulated target in chondrocytes. Surprisingly, an increased concentration of miR-322 stabilizes Mek1 mRNA to raise protein levels and dampen ERK1/2 phosphorylation, while cartilage-specific inactivation of miR322 in mice linked the loss of miR-322 to decreased MEK1 levels and to increased RAF/MEK/ERK pathway activation. Such mice died perinatally due to tracheal growth restriction and respiratory failure. Hence, a single miRNA can stimulate the production of an inhibitory component of a central signaling pathway to impair cartilage development. © 2017. Published by The Company of Biologists Ltd.

  1. Effects of L-cysteine on reinstatement of ethanol-seeking behavior and on reinstatement-elicited extracellular signal-regulated kinase phosphorylation in the rat nucleus accumbens shell.

    Science.gov (United States)

    Peana, Alessandra T; Giugliano, Valentina; Rosas, Michela; Sabariego, Marta; Acquas, Elio

    2013-01-01

    Alcoholism is a neuroadaptive disorder, and the understanding of the mechanisms of the high rates of relapse, which characterize it, represents one of the most demanding challenges in alcoholism and addiction research. The extracellular signal-regulated kinase (ERK) is an intracellular kinase, critical for neuroplasticity in the adult brain that is suggested to play a fundamental role in the molecular mechanisms underlying drug addiction and relapse. We previously observed that a nonessential amino acid, L-cysteine, significantly decreases oral ethanol (EtOH) self-administration, reinstatement of EtOH-drinking behavior, and EtOH self-administration break point. Here, we tested whether L-cysteine can affect the ability of EtOH priming to induce reinstatement of EtOH-seeking behavior. In addition, we determined the ability of EtOH priming to induce ERK phosphorylation as well as the ability of L-cysteine to affect reinstatement-elicited ERK activation. To these purposes, Wistar rats were trained to nose-poke for a 10% v/v EtOH solution. After stable drug-taking behavior was obtained, nose-poking for EtOH was extinguished, and reinstatement of drug seeking, as well as reinstatement-elicited pERK, was determined after an oral, noncontingent, priming of EtOH (0.08 g/kg). Rats were pretreated with either saline or L-cysteine (80 to 120 mg/kg) 30 minutes before testing for reinstatement. The findings of this study confirm that the noncontingent delivery of a nonpharmacologically active dose of EtOH to rats, whose previous self-administration behavior had been extinguished, results in significant reinstatement into EtOH-seeking behavior. In addition, the results indicate that reinstatement selectively activates ERK phosphorylation in the shell of the nucleus accumbens (Acb) and that pretreatment with L-cysteine reduces either reinstatement of EtOH seeking and reinstatement-elicited pERK in the AcbSh. Altogether, these results indicate that L-cysteine could be an effective

  2. Sodium Ferulate Prevents Daunorubicin - Induced Apoptosis in H9c2 Cells via Inhibition of the ERKs Pathway

    Directory of Open Access Journals (Sweden)

    Zhi-Juan Wu

    2015-07-01

    Full Text Available Background: Daunorubicin (DNR-induced cardiotoxicity, which is closely associated with cardiomyocyte apoptosis, limits the drug's clinical application. The activation of the extracellular regulated protein kinases (ERKs pathway is responsible for the pro-apoptosis effect of DNR Sodium ferulate (SF has recently been found to attenuate both DNR-induced cardiotoxicity and mitochondrial apoptosis in juvenile rats. Nonetheless, the precise mechanism underlying SF-induced cardio-protection remains unclear. Methods: The DNR-injured H9c2 cell model was prepared by incubating the cells in 1 µM DNR for 24 h. Amounts of 15.6, 31.3 or 62.5 µM SF were simultaneously added to the cells. The effect of SF on the cytotoxic and apoptotic parameters of the cells was studied by monitoring apoptosis regulation via the ERKs pathway. Results: SF attenuated DNR-induced cell death (particularly apoptotic death, cTnI and β-tubulin degradation, and cellular morphological changes. SF reduced mitochondrial membrane potential depolarization, cytochrome c leakage, and caspase-9 and caspase-3 activation. SF also decreased ERK1/2, phospho-ERK1/2, p53 and Bax expression and increased Bcl-2 expression. These effects were similar to the results observed when using the pharmacological ERKs phosphorylation inhibitor, AZD6244. Conclusion: We determined that SF protects H9c2 cells from DNR-induced apoptosis through a mechanism that involves the interruption of the ERKs signaling pathway.

  3. Phosphorylation state of a Tob/BTG protein, FOG-3, regulates initiation and maintenance of the Caenorhabditis elegans sperm fate program.

    Science.gov (United States)

    Lee, Myon-Hee; Kim, Kyung Won; Morgan, Clinton T; Morgan, Dyan E; Kimble, Judith

    2011-05-31

    FOG-3, the single Caenorhabditis elegans Tob/BTG protein, directs germ cells to adopt the sperm fate at the expense of oogenesis. Importantly, FOG-3 activity must be maintained for the continued production of sperm that is typical of the male sex. Vertebrate Tob proteins have antiproliferative activity and ERK phosphorylation of Tob proteins has been proposed to abrogate "antiproliferative" activity. Here we investigate FOG-3 phosphorylation and its effect on sperm fate specification. We found both phosphorylated and unphosphorylated forms of FOG-3 in nematodes. We then interrogated the role of FOG-3 phosphorylation in sperm fate specification. Specifically, we assayed FOG-3 transgenes for rescue of a fog-3 null mutant. Wild-type FOG-3 rescued both initiation and maintenance of sperm fate specification. A FOG-3 mutant with its four consensus ERK phosphorylation sites substituted to alanines, called FOG-3(4A), rescued partially: sperm were made transiently but not continuously in both sexes. A different FOG-3 mutant with its sites substituted to glutamates, called FOG-3(4E), had no rescuing activity on its own, but together with FOG-3(4A) rescue was complete. Thus, when FOG-3(4A) and FOG-3(4E) were both introduced into the same animals, sperm fate specification was not only initiated but also maintained, resulting in continuous spermatogenesis in males. Our findings suggest that unphosphorylated FOG-3 initiates the sperm fate program and that phosphorylated FOG-3 maintains that program for continued sperm production typical of males. We discuss implications of our results for Tob/BTG proteins in vertebrates.

  4. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation.

    LENUS (Irish Health Repository)

    McEneaney, Victoria

    2010-01-01

    Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1\\/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1\\/2-dependent. Aldosterone induced the rapid activation of ERK1\\/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1\\/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1\\/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1\\/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1\\/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1\\/2 was inhibited in cells suppressed in the expression of PKD1.

  5. In brown adipocytes, adrenergically induced β1-/β3-(Gs)-, α2-(Gi)- and α1-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    International Nuclear Information System (INIS)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.; Holmström, Therése E.; Nedergaard, Jan

    2013-01-01

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α 1 -adrenoceptor coupled via G q ), clonidine (α 2 via G i ) or CL316243 (β 3 via G s ) or via β 1 -receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC 50 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR-induced Erk1/2 activation. •

  6. Sustained oxidative stress causes late acute renal failure via duplex regulation on p38 MAPK and Akt phosphorylation in severely burned rats.

    Directory of Open Access Journals (Sweden)

    Yafei Feng

    Full Text Available BACKGROUND: Clinical evidence indicates that late acute renal failure (ARF predicts high mortality in severely burned patients but the pathophysiology of late ARF remains undefined. This study was designed to test the hypothesis that sustained reactive oxygen species (ROS induced late ARF in a severely burned rat model and to investigate the signaling mechanisms involved. MATERIALS AND METHODS: Rats were exposed to 100°C bath for 15 s to induce severe burn injury (40% of total body surface area. Renal function, ROS generation, tubular necrosis and apoptosis, and phosphorylation of MAPK and Akt were measured during 72 hours after burn. RESULTS: Renal function as assessed by serum creatinine and blood urea nitrogen deteriorated significantly at 3 h after burn, alleviated at 6 h but worsened at 48 h and 72 h, indicating a late ARF was induced. Apoptotic cells and cleavage caspase-3 in the kidney went up slowly and turned into significant at 48 h and 72 h. Tubular cell ROS production shot up at 6 h and continuously rose during the 72-h experiment. Scavenging ROS with tempol markedly attenuated tubular apoptosis and renal dysfunction at 72 h after burn. Interestingly, renal p38 MAPK phosphorylation elevated in a time dependent manner whereas Akt phosphorylation increased during the first 24 h but decreased at 48 h after burn. The p38 MAPK specific inhibitor SB203580 alleviated whereas Akt inhibitor exacerbated burn-induced tubular apoptosis and renal dysfunction. Furthermore, tempol treatment exerted a duplex regulation through inhibiting p38 MAPK phosphorylation but further increasing Akt phosphorylation at 72 h postburn. CONCLUSIONS: These results demonstrate that sustained renal ROS overproduction induces continuous tubular cell apoptosis and thus a late ARF at 72 h after burn in severely burned rats, which may result from ROS-mediated activation of p38 MAPK but a late inhibition of Akt phosphorylation.

  7. Phosphorylated lignin as a halogen-free flame retardant additive for epoxy composites

    Science.gov (United States)

    Gamini P. Mendis; Sydney G. Weiss; Matthew Korey; Charles R. Boardman; Mark Dietenberger; Jeffrey P. Youngblood; John A. Howarter

    2016-01-01

    Sustainable, non-halogenated flame retardants are desired for a variety of industry applications. Lignin, as an industrially processed wood derivative, has been examined as a potential sustainable flame retardant additive to polymer systems. Here, the lignin is phosphorylated using a pyridine-catalysed esterification reaction with diphenyl phosphoryl chloride to...

  8. Localization of active, dually phosphorylated extracellular signal-regulated kinase 1 and 2 in colorectal cancer with or without activating BRAF and KRAS mutations

    DEFF Research Database (Denmark)

    Holck, Susanne; Bonde, Jesper; Pedersen, Helle

    2016-01-01

    Colorectal cancers (CRC) often show activating mutations of the KRAS or BRAF genes, which stimulate the extracellular signal-regulated kinase (ERK) pathway, thus increasing cell proliferation and inhibiting apoptosis. However, immunohistochemical results on ERK activation in such tumors differ...... detectable increases in phosphorylation of ERK (pERK), we stained biopsies from 36 CRC patients with activating mutations in the BRAF gene (BRAFV600E: BRAF(m)), the KRAS gene (KRAS(m)) or in neither (BRAF/KRAS(n)) with this optimized method. Staining was scored in blind-coded specimens by two observers....... Staining of stromal cells was used as a positive control. BRAF(m) or KRAS(m) tumors did not show higher staining scores than BRAF/KRAS(n) tumors. Although BRAFV600E staining occurred in over 90% of cancer cells in all 9 BRAF(m) tumors, 3 only showed staining for pERK in less than 10% of cancer cell nuclei...

  9. Glucose dependence of glycogen synthase activity regulation by GSK3 and MEK/ERK inhibitors and angiotensin-(1-7) action on these pathways in cultured human myotubes.

    Science.gov (United States)

    Montori-Grau, Marta; Tarrats, Núria; Osorio-Conles, Oscar; Orozco, Anna; Serrano-Marco, Lucía; Vázquez-Carrera, Manuel; Gómez-Foix, Anna M

    2013-05-01

    Glycogen synthase (GS) is activated by glucose/glycogen depletion in skeletal muscle cells, but the contributing signaling pathways, including the chief GS regulator GSK3, have not been fully defined. The MEK/ERK pathway is known to regulate GSK3 and respond to glucose. The aim of this study was to elucidate the GSK3 and MEK/ERK pathway contribution to GS activation by glucose deprivation in cultured human myotubes. Moreover, we tested the glucose-dependence of GSK3 and MEK/ERK effects on GS and angiotensin (1-7) actions on these pathways. We show that glucose deprivation activated GS, but did not change phospho-GS (Ser640/1), GSK3β activity or activity-activating phosphorylation of ERK1/2. We then treated glucose-replete and -depleted cells with SB415286, U0126, LY294 and rapamycin to inhibit GSK3, MEK1/2, PI3K and mTOR, respectively. SB415286 activated GS and decreased the relative phospho-GS (Ser640/1) level, more in glucose-depleted than -replete cells. U0126 activated GS and reduced the phospho-GS (Ser640/1) content significantly in glucose-depleted cells, while GSK3β activity tended to increase. LY294 inactivated GS in glucose-depleted cells only, without affecting relative phospho-GS (Ser640/1) level. Rapamycin had no effect on GS activation. Angiotensin-(1-7) raised phospho-ERK1/2 but not phospho-GSK3β (Ser9) content, while it inactivated GS and increased GS phosphorylation on Ser640/1, in glucose-replete cells. In glucose-depleted cells, angiotensin-(1-7) effects on ERK1/2 and GS were reverted, while relative phospho-GSK3β (Ser9) content decreased. In conclusion, activation of GS by glucose deprivation is not due to GS Ser640/1 dephosphorylation, GSK3β or ERK1/2 regulation in cultured myotubes. However, glucose depletion enhances GS activation/Ser640/1 dephosphorylation due to both GSK3 and MEK/ERK inhibition. Angiotensin-(1-7) inactivates GS in glucose-replete cells in association with ERK1/2 activation, not with GSK3 regulation, and glucose

  10. Agmatine Protects Against 6-OHDA-Induced Apoptosis, and ERK and Akt/GSK Disruption in SH-SY5Y Cells.

    Science.gov (United States)

    Amiri, Esmat; Ghasemi, Rasoul; Moosavi, Maryam

    2016-08-01

    6-Hydroxydopamine (6-OHDA), a metabolite of dopamine is known to induce dopaminergic cell toxicity which makes that a suitable agent inducing an experimental model of Parkinson's disease (PD). Agmatine has been shown to protect against some cellular and animal PD models. This study was aimed to assess whether agmatine prevents 6-OHDA-induced SH-SY5Y cell death and if yes, then how it affects Akt/glycogen synthesis kinase-3β (GSK-3β) and extracellular signal-regulated kinases (ERK) signals. The cells were treated with different drugs, and their viability was examined via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay and morphological observation. Western blot studies were done to assess cleaved caspase-3, Akt/GSK-3β, and ERK proteins. 6-OHDA-induced cell death and caspase-3 cleavage, while agmatine prevented those changes. 6-OHDA also decreased the amount of phosphorylated Akt (pAkt)/Akt while increased GSK-3β activity which was prevented by agmatine. Additionally, this toxin increased pERK/ERK ratio which was averted again by agmatine. The PI3/Akt inhibitor, LY294002, impeded the changes induced by agmatine, while ERK inhibitor (PD98059) did not disturb the effects of agmatine, and by itself, it preserved the cells against 6-OHDA toxicity. This study revealed that agmatine is protective in 6-OHDA model of PD and affects Akt/GSK-3β and ERK pathways.

  11. Increased limbic phosphorylated extracellular-regulated kinase 1 and 2 expression after chronic stress is reduced by cyclic 17 beta-estradiol administration

    NARCIS (Netherlands)

    Gerrits, M.; Westenbroek, C.; Koch, T.; Grootkarzijn, A.; Ter Horst, G. J.

    2006-01-01

    Chronic stress induced neuronal changes that may have consequences for subsequent stress responses. For example, chronic stress in rats rearranges dendritic branching patterns and disturbs the phosphorylation of extracellular-regulated kinase 1 and 2 (ERK) 1/2 throughout the limbic system.

  12. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    International Nuclear Information System (INIS)

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-01-01

    Highlights: ► Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. ► Activation of ERK mediates the toxicity of hydrogen sulfide. ► Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H 2 S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H 2 S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H 2 S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  13. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung-Hoon; Kim, Do-Hee [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Na, Hye-Kyung [Department of Food and Nutrition, Sungshin Women' s University, Seoul (Korea, Republic of); Kim, Jung-Hwan; Kim, Ha-Na [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Haegeman, Guy [LEGEST, University of Gent (Belgium); Surh, Young-Joon, E-mail: surh@snu.ac.kr [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    Genistein, an isoflavone present in soy products, has chemopreventive effects on mammary carcinogenesis. In the present study, we have investigated the effects of genistein on phorbol ester-induced expression of cyclooxygenase-2 (COX-2) that plays an important role in the pathophysiology of inflammation-associated carcinogenesis. Pretreatment of cultured human breast epithelial (MCF10A) cells with genistein reduced COX-2 expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). There are multiple lines of evidence supporting that the induction of COX-2 is regulated by the eukaryotic transcription factor NF-κB. Genistein failed to inhibit TPA-induced nuclear translocation and DNA binding of NF-κB as well as degradation of IκB. However, genistein abrogated the TPA-induced transcriptional activity of NF-κB as determined by the luciferase reporter gene assay. Genistein inhibited phosphorylation of the p65 subunit of NF-κB and its interaction with cAMP regulatory element-binding protein-binding protein (CBP)/p300 and TATA-binding protein (TBP). TPA-induced NF-κB phosphorylation was abolished by pharmacological inhibition of extracellular signal-regulated kinase (ERK). Likewise, pharmacologic inhibition or dominant negative mutation of ERK suppressed phosphorylation of p65. The above findings, taken together, suggest that genistein inhibits TPA-induced COX-2 expression in MCF10A cells by blocking ERK-mediated phosphorylation of p65 and its subsequent interaction with CBP and TBP.

  14. Inhibition of swallowing reflex following phosphorylation of extracellular signal-regulated kinase in nucleus tractus solitarii neurons in rats with masseter muscle nociception.

    Science.gov (United States)

    Tsujimura, Takanori; Kitagawa, Junichi; Ueda, Koichiro; Iwata, Koichi

    2009-02-06

    Pain is associated with swallowing abnormalities in dysphagic patients. Understanding neuronal mechanisms underlying the swallowing abnormalities associated with orofacial abnormal pain is crucial for developing new methods to treat dysphagic patients. However, how the orofacial abnormal pain is involved in the swallowing abnormalities is not known. In order to evaluate neuronal mechanisms of modulation of the swallows by masticatory muscle pain, here we first induced swallows by topical administration of distilled water to the pharyngolaryngeal region. The swallowing reflex was significantly inhibited after capsaicin (10, 30mM) injection into the masseter muscle compared to vehicle injection. Moreover the number of phosphorylated extracellular signal-regulated kinase-like immunoreactive (pERK-LI) neurons in the nucleus tractus solitarii (NTS) was significantly increased in the rats with capsaicin injection into the masseter muscle compared to that with vehicle injection. Rostro-caudal distribution of pERK-LI neurons in the NTS was peaked at the obex level. The capsaicin-induced inhibitory effect on swallowing reflex was reversed after intrathecal administration of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. The present findings suggest that phosphorylation of ERK in NTS neurons may be involved in capsaicin-induced inhibition of swallowing reflex.

  15. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xia, E-mail: zhongxia1977@126.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Li, Xiaonan; Liu, Fuli; Tan, Hui [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Shang, Deya, E-mail: wenhuashenghuo1@163.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  16. Reciprocal activation/inactivation of ERK in the amygdala and frontal cortex is correlated with the degree of novelty of an open-field environment.

    Science.gov (United States)

    Sanguedo, Frederico Velasco; Dias, Caio Vitor Bueno; Dias, Flavia Regina Cruz; Samuels, Richard Ian; Carey, Robert J; Carrera, Marinete Pinheiro

    2016-03-01

    Phosphorylated extracellular signal-regulated kinase (ERK) has been used to identify brain areas activated by exogenous stimuli including psychostimulant drugs. Assess the role of the amygdala in emotional responses. Experimental manipulations were performed in which environmental familiarity was the variable. To provide the maximal degree of familiarity, ERK was measured after removal from the home cage and re-placement back into the same cage. To maximize exposure to an unfamiliar environment, ERK was measured following placement into a novel open field. To assess whether familiarity was the critical variable in the ERK response to the novel open field, ERK was also measured after either four or eight placements into the same environment. ERK quantification was carried out in the amygdala, frontal cortex, and the nucleus accumbens. After home cage re-placement, ERK activation was found in the frontal cortex and nucleus accumbens but was absent in the amygdala. Following placement in a novel environment, ERK activation was more prominent in the amygdala than the frontal cortex or nucleus accumbens. In contrast, with habituation to the novel environment, ERK phosphors declined markedly in the amygdala but increased in the frontal cortex and nucleus accumbens to the level observed following home cage re-placement. The differential responsiveness of the amygdala versus the frontal cortex and the nucleus accumbens to a novel versus a habituated environment is consistent with a reciprocal interaction between these neural systems and points to their important role in the mediation of behavioral activation to novelty and behavioral inactivation with habituation.

  17. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing, E-mail: allenylq@hotmail.com; Liao, Er-Yuan, E-mail: eyliao@21cn.com

    2013-11-01

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T3-E1

  18. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    International Nuclear Information System (INIS)

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing; Liao, Er-Yuan

    2013-01-01

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T3-E1

  19. Sotos syndrome is associated with deregulation of the MAPK/ERK-signaling pathway.

    Directory of Open Access Journals (Sweden)

    Remco Visser

    Full Text Available Sotos syndrome (SoS is characterized by tall stature, characteristic craniofacial features and mental retardation. It is caused by haploinsufficiency of the NSD1 gene. In this study, our objective was to identify downstream effectors of NSD1 and to map these effectors in signaling pathways associated with growth. Genome-wide expression studies were performed on dermal fibroblasts from SoS patients with a confirmed NSD1 abnormality. To substantiate those results, phosphorylation, siRNA and transfection experiments were performed. A significant association was demonstrated with the Mitogen-Activated Protein Kinase (MAPK pathway. Members of the fibroblast growth factor family such as FGF4 and FGF13 contributed strongly to the differential expression in this pathway. In addition, a diminished activity state of the MAPK/ERK pathway was demonstrated in SoS. The Ras Interacting Protein 1 (RASIP1 was identified to exhibit upregulated expression in SoS. It was shown that RASIP1 dose-dependently potentiated bFGF induced expression of the MAPK responsive SBE reporter providing further support for a link between NSD1 and the MAPK/ERK signaling pathway. Additionally, we demonstrated NSD1 expression in the terminally differentiated hypertrophic chondrocytes of normal human epiphyseal growth plates. In short stature syndromes such as hypochondroplasia and Noonan syndrome, the activation level of the FGF-MAPK/ERK-pathway in epiphyseal growth plates is a determining factor for statural growth. In analogy, we propose that deregulation of the MAPK/ERK pathway in SoS results in altered hypertrophic differentiation of NSD1 expressing chondrocytes and may be a determining factor in statural overgrowth and accelerated skeletal maturation in SoS.

  20. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    International Nuclear Information System (INIS)

    Liu, Ping; Kong, Feng; Wang, Jue; Lu, Qinghua; Xu, Haijia; Qi, Tonggang; Meng, Juan

    2015-01-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression

  1. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ping, E-mail: lping@sdu.edu.cn [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China); Kong, Feng; Wang, Jue [Central Laboratory, The Second Hospital of Shandong University, Shandong, Jinan 250033 (China); Lu, Qinghua [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China); Xu, Haijia [Department of Cardiology, Wendeng Central Hospital of Weihai City, Shandong, Weihai 264400 (China); Qi, Tonggang [Central Laboratory, The Second Hospital of Shandong University, Shandong, Jinan 250033 (China); Meng, Juan [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China)

    2015-02-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression

  2. DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, is a putative tumor suppressor.

    Science.gov (United States)

    Kanno, Emiri; Kawasaki, Osamu; Takahashi, Kazuya; Takano, Kazunori; Endo, Takeshi

    2018-01-01

    Activating mutations of RAS genes, particularly KRAS, are detected with high frequency in human tumors. Mutated Ras proteins constitutively activate the ERK pathway (Raf-MEK-ERK phosphorylation cascade), leading to cellular transformation and tumorigenesis. DA-Raf1 (DA-Raf) is a splicing variant of A-Raf and contains the Ras-binding domain (RBD) but lacks the kinase domain. Accordingly, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative fashion and suppresses constitutively activated K-Ras-induced cellular transformation. Thus, we have addressed whether DA-Raf serves as a tumor suppressor of Ras-induced tumorigenesis. DA-Raf(R52Q), which is generated from a single nucleotide polymorphism (SNP) in the RBD, and DA-Raf(R52W), a mutant detected in a lung cancer, neither bound to active K-Ras nor interfered with the activation of the ERK pathway. They were incapable of suppressing activated K-Ras-induced cellular transformation and tumorigenesis in mice, in which K-Ras-transformed cells were transplanted. Furthermore, although DA-Raf was highly expressed in lung alveolar epithelial type 2 (AE2) cells, its expression was silenced in AE2-derived lung adenocarcinoma cell lines with oncogenic KRAS mutations. These results suggest that DA-Raf represents a tumor suppressor protein against Ras-induced tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Developmental fluoride exposure influenced rat's splenic development and cell cycle via disruption of the ERK signal pathway.

    Science.gov (United States)

    Ma, Yanqin; Zhang, Kankan; Ren, Fengjun; Wang, Jundong

    2017-11-01

    Excessive fluoride exposure has been reported to cause damage to spleen. Neonatal period is characterized by rapid proliferation and differentiation of lymphocyte in the spleen. Children may be more sensitive to the toxicity of fluoride compared to the adults. The aim of this study was to investigate the effects of postnatal exposure (from neonatal period to early adulthood) to fluoride on the development of spleen on a regular basis and the underlying signal pathway. Results showed a marked decrease in spleen weight index and altered morphology in the spleen of fluoride-treated group on PND-84, which reflected fluoride inhibition of the development of spleen. Fluoride exposure induced cell cycle arrest of splenocytes and decreased the mRNA expression of IL-2, which indicated compromised baseline lymphocyte proliferation in the spleen. Time course research from 3-wk-of-age until 12-wk-of-age showed an adverse and cumulative impact of fluoride on the development of spleen. In view of the key role of MAPK/ERK pathway in lymphocyte development, Raf-1/MEK-1/ERK-2/c-fos mRNA expression and ERK/p-ERK protein expression were detected. Results showed despite a transitory increase in mRNA expression from PND-42 to PND-63 in fluoride-treated group, the expression of these genes on PND-84 decreased significantly compared with PND-42 or PND-63. NaF significantly inhibited the phosphorylation of ERK protein on PND-84. Taken together, these results emphasized the vital role of ERK pathway in the interfered development of spleen induced by a high dose of fluoride exposure in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Regorafenib inhibits tumor progression through suppression of ERK/NF-κB activation in hepatocellular carcinoma bearing mice.

    Science.gov (United States)

    Weng, Mao-Chi; Wang, Mei-Hui; Tsai, Jai-Jen; Kuo, Yu-Cheng; Liu, Yu-Chang; Hsu, Fei-Ting; Wang, Hsin-Ell

    2018-03-13

    Regorafenib has been demonstrated in our previous study to trigger apoptosis through suppression of extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) activation in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro However, the effect of regorafenib on NF-κB-modulated tumor progression in HCC in vivo is ambiguous. The aim of the present study is to investigate the effect of regorafenib on NF-κB-modulated tumor progression in HCC bearing mouse model. pGL4.50 luciferase reporter vector transfected SK-Hep1 (SK-Hep1/ luc2 ) and Hep3B 2.1-7 tumor bearing mice were established and used for this study. Mice were treated with vehicle or regorafenib (20 mg/kg/day by gavage) for 14 days. Effects of regorafenib on tumor growth and protein expression together with toxicity of regorafenib were evaluated with digital caliper and bioluminescence imaging (BLI), ex vivo Western blotting immunohistochemistry (IHC) staining, and measurement of body weight and pathological examination of liver tissue, respectively, in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor bearing mice. The results indicated regorafenib significantly reduced tumor growth and expression of phosphorylated ERK, NF-κB p65 (Ser536), phosphorylated AKT and tumor progression-associated proteins. In addition, we found regorafenib induced both extrinsic and intrinsic apoptotic pathways. Body weight and liver morphology were not affected by regorafenib treatment. Our findings present the mechanism of tumor progression inhibition by regorafenib is linked to suppression of ERK/NF-κB signaling in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor-bearing mice. ©2018 The Author(s).

  5. Verteporfin inhibits papillary thyroid cancer cells proliferation and cell cycle through ERK1/2 signaling pathway

    Science.gov (United States)

    Liao, Tian; Wei, Wen-Jun; Wen, Duo; Hu, Jia-Qian; Wang, Yu; Ma, Ben; Cao, Yi-Min; Xiang, Jun; Guan, Qing; Chen, Jia-Ying; Sun, Guo-Hua; Zhu, Yong-Xue; Li, Duan-Shu; Ji, Qing-Hai

    2018-01-01

    Verteporfin, a FDA approved second-generation photosensitizer, has been demonstrated to have anticancer activity in various tumors, but not including papillary thyroid cancer (PTC). In current pre-clinical pilot study, we investigate the effect of verteporfin on proliferation, apoptosis, cell cycle and tumor growth of PTC. Our results indicate verteporfin attenuates cell proliferation, arrests cell cycle in G2/S phase and induces apoptosis of PTC cells. Moreover, treatment of verteporfin dramatically suppresses tumor growth from PTC cells in xenograft mouse model. We further illustrate that exposure to MEK inhibitor U0126 inactivates phosphorylation of ERK1/2 and MEK in verteporfin-treated PTC cells. These data suggest verteporfin exhibits inhibitory effect on PTC cells proliferation and cell cycle partially via ERK1/2 signalling pathway, which strongly encourages the further application of verteporfin in the treatment against PTC. PMID:29721041

  6. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules.

    Directory of Open Access Journals (Sweden)

    Takanobu Nagata

    Full Text Available Myocardial ischemia reperfusion injury (IRI adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS-3, an intrinsic negative feedback regulator of the Janus kinase (JAK-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO. The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1 was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.

  7. Transcriptional down-regulation of thromboxane A(2) receptor expression via activation of MAPK ERK1/2, p38/NF-kappaB pathways

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2009-01-01

    culture of the arteries, VSMC TP receptors were studied by using myography, real-time PCR and immunohistochemistry. We observed that organ culture for 24 and 48 h resulted in depressed TP receptor-mediated contraction in the VSMC, in parallel with decreased TP receptor mRNA and protein expressions....... Phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38 and nuclear factor-kappaB (NF-kappaB) was seen by Western blot within 1-3 h after organ culture. Inhibition of ERK1/2, p38 or NF-kappaB reversed depressed contraction as well as decreased receptor mRNA expression. Actinomycin D...

  8. Transcriptional Down-Regulation of Thromboxane A(2) Receptor Expression via Activation of MAPK ERK1/2, p38/NF-kappaB Pathways

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2008-01-01

    culture of the arteries, VSMC TP receptors were studied by using myography, real-time PCR and immunohistochemistry. We observed that organ culture for 24 and 48 h resulted in depressed TP receptor-mediated contraction in the VSMC, in parallel with decreased TP receptor mRNA and protein expressions....... Phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38 and nuclear factor-kappaB (NF-kappaB) was seen by Western blot within 1-3 h after organ culture. Inhibition of ERK1/2, p38 or NF-kappaB reversed depressed contraction as well as decreased receptor mRNA expression. Actinomycin D...

  9. The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuening [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States); Pesakhov, Stella [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Harrison, Jonathan S [Department of Medicine, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08903 (United States); Kafka, Michael; Danilenko, Michael [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Studzinski, George P, E-mail: studzins@njms.rutgers.edu [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States)

    2015-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D{sub 3} (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. - Highlights: • ERK5 has at least some functions in AML cells which are distinct from those of ERK1/2. • ERK5 activity negatively controls the expression of M-CSFR. • ERK5 retards the progression of differentiation from monocyte to functional macrophage.

  10. Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway

    International Nuclear Information System (INIS)

    Tseng, Ya-Shih; Lee, Jenq-Chang; Huang, Chi-Ying F; Liu, Hsiao-Sheng

    2009-01-01

    Overexpression of Aurora-A and mutant Ras (Ras V12 ) together has been detected in human bladder cancer tissue. However, it is not clear whether this phenomenon is a general event or not. Although crosstalk between Aurora-A and Ras signaling pathways has been reported, the role of these two genes acting together in tumorigenesis remains unclear. Real-time PCR and sequence analysis were utilized to identify Ha- and Ki-ras mutation (Gly -> Val). Immunohistochemistry staining was used to measure the level of Aurora-A expression in bladder and colon cancer specimens. To reveal the effect of overexpression of the above two genes on cellular responses, mouse NIH3T3 fibroblast derived cell lines over-expressing either Ras V12 and wild-type Aurora-A (designated WT) or Ras V12 and kinase-inactivated Aurora-A (KD) were established. MTT and focus formation assays were conducted to measure proliferation rate and focus formation capability of the cells. Small interfering RNA, pharmacological inhibitors and dominant negative genes were used to dissect the signaling pathways involved. Overexpression of wild-type Aurora-A and mutation of Ras V12 were detected in human bladder and colon cancer tissues. Wild-type Aurora-A induces focus formation and aggregation of the Ras V12 transformants. Aurora-A activates Ral A and the phosphorylation of AKT as well as enhances the phosphorylation of MEK, ERK of WT cells. Finally, the Ras/MEK/ERK signaling pathway is responsible for Aurora-A induced aggregation of the Ras V12 transformants. Wild-type-Aurora-A enhances focus formation and aggregation of the Ras V12 transformants and the latter occurs through modulating the Ras/MEK/ERK signaling pathway

  11. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine

    NARCIS (Netherlands)

    Nagarajah, J.; Le, M.; Knauf, J.A.; Ferrandino, G.; Montero-Conde, C.; Pillarsetty, N.; Bolaender, A.; Irwin, C.; Krishnamoorthy, G.P.; Saqcena, M.; Larson, S.M.; Ho, A.L.; Seshan, V.; Ishii, N.; Carrasco, N.; Rosen, N.; Weber, W.A.; Fagin, J.A.

    2016-01-01

    Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly

  12. A standardized bark extract of Pinus pinaster Aiton (Pycnogenol®) attenuated chronic obstructive pulmonary disease via Erk-sp1 signaling pathway.

    Science.gov (United States)

    Shin, Na-Rae; Ryu, Hyung-Won; Ko, Je-Won; Park, Ji-Won; Kwon, Ok-Kyoung; Oh, Sei-Ryang; Kim, Jong-Choon; Shin, In-Sik; Ahn, Kyung-Seop

    2016-12-24

    A standardized bark extract of Pinus pinaster Aiton (Pycnogenol ® ; PYC) used as an herbal medicine to treat various diseases in Europe and North America. This study evaluates the ability of PYC to inhibit chronic obstructive pulmonary disease (COPD) in the cigarette smoke extract (CSE)-stimulated human airway epithelial cell line NCI-H292 and in a cigarette smoke (CS) and lipopolysaccharide (LPS)-induced mouse model. To induce COPD, the mice intranasally received LPS on day 4 and were exposed to CS for 1h per day (total eight cigarettes per day) from days 1-7. The mice were administered PYC at a dose of 15mg/kg and 30mg/kg 1h before CS exposure. In the CSE-stimulated NCI-H292 cells, PYC significantly inhibited Erk phosphorylation, sp1 expression, MUC5AC, and pro-inflammatory cytokines in a concentration-dependent manner, as evidenced by a reduction in their mRNA levels. Co-treatment with PYC and Erk inhibitors markedly reduced the levels inflammatory mediators compared to only PYC-treatment. In the COPD mice model, PYC decreased the inflammatory cell count and the levels of pro-inflammatory cytokines in the broncho-alveolar lavage fluid compared with COPD mice. PYC attenuated the recruitment of inflammatory cells in the airways and decreased the expression levels of Erk phosphorylation and sp1. PYC also inhibited the expression of myeloperoxidase and matrix metalloproteinases-9 in lung tissue. Our results indicate that PYC inhibited the reduction in the inflammatory response in CSE-stimulated NCI-H292 cells and the COPD mouse model via the Erk-sp1 pathway. Therefore, we suggest that PYC has the potential to treat COPD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. TGF-β-stimulated aberrant expression of class III β-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    International Nuclear Information System (INIS)

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-01-01

    Highlights: ► TGF-β induces aberrant expression of βIII in RPE cells via the ERK pathway. ► TGF-β increases O-GlcNAc modification of βIII in RPE cells. ► Mature RPE cells have the capacity to express a neuron-associated gene by TGF-β. -- Abstract: The class III β-tubulin isotype (β III ) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III β-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-β (TGF-β) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-β on the aberrant expression of class III β-tubulin and the intracellular signaling pathway mediating these changes. TGF-β-induced aberrant expression and O-linked-β-N-acetylglucosamine (O-GlcNac) modification of class III β-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-β also stimulated phosphorylation of ERK. TGF-β-induced aberrant expression of class III β-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-β stimulated aberrant expression of class III β-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-β stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.

  14. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  15. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied...... by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal...... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  16. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Karlsson, Håkan K R; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied...... by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal...... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  17. Neuroprotective effects of Arctium lappa L. roots against glutamate-induced oxidative stress by inhibiting phosphorylation of p38, JNK and ERK 1/2 MAPKs in PC12 cells.

    Science.gov (United States)

    Tian, Xing; Sui, Shuang; Huang, Jin; Bai, Jun-Peng; Ren, Tian-Shu; Zhao, Qing-Chun

    2014-07-01

    Many studies have shown that glutamate-induced oxidative stress can lead to neuronal cell death involved in the development of neurodegenerative diseases. In this work, protective effects of ethyl acetate extract (EAE) of Arctium lappa L. roots against glutamate-induced oxidative stress in PC12 cells were evaluated. Also, the effects of EAE on antioxidant system, mitochondrial pathway, and signal transduction pathway were explored. Pretreatment with EAE significantly increased cell viability, activities of GSH-Px and SOD, mitochondrial membrane potential and reduced LDH leakage, ROS formation, and nuclear condensation in a dose-dependent manner. Furthermore, western blot results revealed that EAE increased the Bcl-2/Bax ratio, and inhibited the up-regulation of caspase-3, release of cytochrome c, phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK 1/2). Therefore, our results indicate that EAE may be a promising neuroprotective agent for the prevention and treatment of neurodegenerative diseases implicated with oxidative stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    Science.gov (United States)

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Both ERK/MAPK and TGF-Beta/Smad Signaling Pathways Play a Role in the Kidney Fibrosis of Diabetic Mice Accelerated by Blood Glucose Fluctuation

    Directory of Open Access Journals (Sweden)

    Xiaoyun Cheng

    2013-01-01

    Full Text Available Background. The notion that diabetic nephropathy is the leading cause of renal fibrosis prompted us to investigate the effects of blood glucose fluctuation (BGF under high glucose condition on kidney in the mice. Methods. The diabetic and BGF animal models were established in this study. Immunohistochemistry, Western blot, and RT-PCR analysis were applied to detect the expression of type I collagen, matrix metalloproteinase-1 (MMP1, metalloproteinase inhibitor 1 (TIMP1, transforming growth factor beta 1 (TGF-β1, phosphorylated-ERK, p38, smad2/3, and Akt. Results. BGF treatment increased type I collagen synthesis by two times compared with the control. The expression of MMP1 was reduced markedly while TIMP1 synthesis was enhanced after BGF treatment. ERK phosphorylation exhibits a significant increase in the mice treated with BGF. Furthermore, BGF can markedly upregulate TGF-β1 expression. The p-smad2 showed 2-fold increases compared with the only diabetic mice. However, p-AKT levels were unchanged after BGF treatment. Conclusions. These data demonstrate that BGF can accelerate the trend of kidney fibrosis in diabetic mice by increasing collagen production and inhibiting collagen degradation. Both ERK/MAPK and TGF-β/smad signaling pathways seem to play a role in the development of kidney fibrosis accelerated by blood glucose fluctuation.

  20. Stimulation of Alpha7 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Upregulation of MMP, MCP-1, and RANTES through Modulating ERK1/2/AP-1 Signaling Pathway in RAW264.7 and MOVAS Cells

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2017-01-01

    Full Text Available Vagus nerve stimulation through alpha7 nicotine acetylcholine receptors (α7-nAChR signaling had been demonstrated attenuation of inflammation. This study aimed to determine whether PNU-282987, a selective α7-nAChR agonist, affected activities of matrix metalloproteinase (MMP and inflammatory cytokines in nicotine-treatment RAW264.7 and MOVAS cells and to assess the underlying molecular mechanisms. RAW264.7 and MOVAS cells were treated with nicotine at different concentrations (0, 1, 10, and 100 ng/ml for 0–120 min. Nicotine markedly stimulated the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2 and c-Jun in RAW264.7 cells. Pretreatment with U0126 significantly suppressed phosphorylation of ERK1/2 and further attenuated nicotine-induced activation of c-Jun and upregulation of MMP-2, MMP-9, monocyte chemotactic protein- (MCP- 1, and regulated upon activation normal T cell expressed and secreted (RANTES. Similarly, nicotine treatment also increased phosphorylation of c-Jun and expressions of MMP-2, MMP-9, MCP-1, and RANTES in MOVAS cells. When cells were pretreated with PNU-282987, nicotine-induced activations of ERK1/2 and c-Jun in RAW264.7 cells and c-Jun in MOVAS cells were effectively inhibited. Furthermore, nicotine-induced secretions of MMP-2, MMP-9, MCP-1, and RANTES were remarkably downregulated. Treatment with α7-nAChR agonist inhibits nicotine-induced upregulation of MMP and inflammatory cytokines through modulating ERK1/2/AP-1 signaling in RAW264.7 cells and AP-1 in MOVAS cells, providing a new therapeutic for abdominal aortic aneurysm.

  1. Mineral trioxide aggregate upregulates odonto/osteogenic capacity of bone marrow stromal cells from craniofacial bones via JNK and ERK MAPK signalling pathways.

    Science.gov (United States)

    Wang, Y; Li, J; Song, W; Yu, J

    2014-06-01

    The aim of this study was to investigate effects of mineral trioxide aggregate (MTA) on odonto/osteogenic differentiation of bone marrow stromal cells (BMSCs) from craniofacial bones. Craniofacial BMSCs were isolated from rat mandible and effects of MTA on their proliferation, differentiation and MAPK pathway involvement were subsequently investigated, in vitro. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,5-tetrazoliumbromide) assay was performed to evaluate proliferation of the MTA-treated cells. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time reverse transcription polymerase chain reaction and western blot assays were used to assess differentiation capacity as well as MAPK pathway involvement. 0.02 mg/ml MTA-treated BMSCs had significantly higher ALP activity and formed more mineralized nodules than the untreated group. Odonto/osteoblastic marker genes/proteins (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN and Dspp/DSP respectively) in MTA-treated cells were remarkably upregulated compared to untreated ones. Mechanistically, phosphorylated Jun N-terminal kinase (P-JNK) and phosphorylated extracellular regulated protein kinases (P-ERK) in MTA-treated BMSCs increased significantly in a time-dependent manner, while inhibition of JNK and ERK MAPK pathways dramatically blocked MTA-induced odonto/osteoblastic differentiation, as indicated by reduced ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic marker genes (Alp, Runx2, Osx, Ocn and Dspp). Mineral trioxide aggregate promoted odonto/osteogenic capacity of craniofacial BMSCs via JNK and ERK MAPK signalling pathways. © 2014 John Wiley & Sons Ltd.

  2. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes.

    Science.gov (United States)

    Liu, Ping; Kong, Feng; Wang, Jue; Lu, Qinghua; Xu, Haijia; Qi, Tonggang; Meng, Juan

    2015-02-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0-G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N

    2000-01-01

    , inhibitors of the nonreceptor tyrosine kinase p59(fyn), PLC, PKC and MEK and an activator of PKC, phorbol-12-myristate-13-acetate (PMA). MEK2 transfection rescued cells treated with all inhibitors. The same was found for PMA treatment, except when cells concomitantly were treated with the MEK inhibitor....... Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate...... phosphorylation of the MAP kinases extracellular signal-regulated kinases ERK1 and ERK2. The MAP kinase activation was sustained, because ERK1 and ERK2 were phosphorylated in PC12-E2 cells and primary hippocampal neurons even after 24 hr of cultivation on NCAM-expressing fibroblasts. Based on these results, we...

  4. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhan [School of Public Health, Xinxiang Medical University, 453003 (China); The Fifth Affiliated Hospital, Zhengzhou University, 450052 (China); Bu, Yongjun [School of Public Health, Xinxiang Medical University, 453003 (China); Liu, Xiaozhuan [Medical College, Henan University of Science & Technology, 471023 (China); Wang, Xugang; Zhang, Guofu; Wang, Erhui; Ding, Shibin; Liu, Yongfeng; Shi, Ruling [School of Public Health, Xinxiang Medical University, 453003 (China); Li, Qiaoyun; Fu, Jianhong [The Fifth Affiliated Hospital, Zhengzhou University, 450052 (China); Yu, Zengli, E-mail: zly@zzu.edu.cn [School of Public Health, Xinxiang Medical University, 453003 (China); School of Public Health, Zhengzhou University, 450001 (China)

    2016-05-01

    One critical step of second palatal fusion is the newly formed medial epithelia seam (MES) disintegration, which involves apoptosis, epithelial to mesenchymal transition (EMT), and cell migration. Although the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate at high rates, little is known about the effects of TCDD exposure on the fate of palatal epithelial cells. By using primary epithelial cells isolated from human fetal palatal shelves (hFPECs), we show that TCDD increased cell proliferation and EMT, as demonstrated by increased the epithelial markers (E-cadherin and cytokeratin14) and enhanced the mesenchymal markers (vimentin and fibronectin), but had no effect on cell migration and apoptosis. TCDD exposure led to a dose-dependent increase in Slug protein expression. Coimmunoprecipitation revealed that TCDD promoted AhR to form a protein complex with Slug. ChIP assay confirmed that TCDD exposure recruited AhR to the xenobiotic responsive element of Slug promoter. Knockdown of AhR by siRNA remarkably weakened TCDD-induced binding of AhR to the XRE promoter of slug, thereby suppressed TCDD-induced vimentin. Further experiment showed that TCDD stimulated EGFR phosphorylation did not influence the TGFβ3/Smad signaling; whereas TCDD increased phosphorylation of ERK1/2 and p38 with no effect on activation of JNK. By using varieties of inhibitors, we confirmed that TCDD promoted proliferation and EMT of hFPECs via activation of EGFR/ERK pathway. These data make a novel contribution to the molecular mechanism of cleft palate by TCDD. - Highlights: • TCDD exposure promoted cell proliferation and EMT of hFPECs; • AhR signaling was activated and required for TCDD-induced EMT; • TCDD-mediated EMT of hFPECs involved the activation of EGFR/ERK signaling; • TCDD exposure had no effect on TGFβ3/Smad pathway.

  5. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling

    International Nuclear Information System (INIS)

    Gao, Zhan; Bu, Yongjun; Liu, Xiaozhuan; Wang, Xugang; Zhang, Guofu; Wang, Erhui; Ding, Shibin; Liu, Yongfeng; Shi, Ruling; Li, Qiaoyun; Fu, Jianhong; Yu, Zengli

    2016-01-01

    One critical step of second palatal fusion is the newly formed medial epithelia seam (MES) disintegration, which involves apoptosis, epithelial to mesenchymal transition (EMT), and cell migration. Although the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate at high rates, little is known about the effects of TCDD exposure on the fate of palatal epithelial cells. By using primary epithelial cells isolated from human fetal palatal shelves (hFPECs), we show that TCDD increased cell proliferation and EMT, as demonstrated by increased the epithelial markers (E-cadherin and cytokeratin14) and enhanced the mesenchymal markers (vimentin and fibronectin), but had no effect on cell migration and apoptosis. TCDD exposure led to a dose-dependent increase in Slug protein expression. Coimmunoprecipitation revealed that TCDD promoted AhR to form a protein complex with Slug. ChIP assay confirmed that TCDD exposure recruited AhR to the xenobiotic responsive element of Slug promoter. Knockdown of AhR by siRNA remarkably weakened TCDD-induced binding of AhR to the XRE promoter of slug, thereby suppressed TCDD-induced vimentin. Further experiment showed that TCDD stimulated EGFR phosphorylation did not influence the TGFβ3/Smad signaling; whereas TCDD increased phosphorylation of ERK1/2 and p38 with no effect on activation of JNK. By using varieties of inhibitors, we confirmed that TCDD promoted proliferation and EMT of hFPECs via activation of EGFR/ERK pathway. These data make a novel contribution to the molecular mechanism of cleft palate by TCDD. - Highlights: • TCDD exposure promoted cell proliferation and EMT of hFPECs; • AhR signaling was activated and required for TCDD-induced EMT; • TCDD-mediated EMT of hFPECs involved the activation of EGFR/ERK signaling; • TCDD exposure had no effect on TGFβ3/Smad pathway.

  6. The critical role of ERK in death resistance and invasiveness of hypoxia-selected glioblastoma cells

    International Nuclear Information System (INIS)

    Kim, Jee-Youn; Kim, Yong-Jun; Lee, Sun; Park, Jae-Hoon

    2009-01-01

    The rapid growth of tumor parenchyma leads to chronic hypoxia that can result in the selection of cancer cells with a more aggressive behavior and death-resistant potential to survive and proliferate. Thus, identifying the key molecules and molecular mechanisms responsible for the phenotypic changes associated with chronic hypoxia has valuable implications for the development of a therapeutic modality. The aim of this study was to identify the molecular basis of the phenotypic changes triggered by chronic repeated hypoxia. Hypoxia-resistant T98G (HRT98G) cells were selected by repeated exposure to hypoxia and reoxygenation. Cell death rate was determined by the trypan blue exclusion method and protein expression levels were examined by western blot analysis. The invasive phenotype of the tumor cells was determined by the Matrigel invasion assay. Immunohistochemistry was performed to analyze the expression of proteins in the brain tumor samples. The Student T-test and Pearson Chi-Square test was used for statistical analyses. We demonstrate that chronic repeated hypoxic exposures cause T98G cells to survive low oxygen tension. As compared with parent cells, hypoxia-selected T98G cells not only express higher levels of anti-apoptotic proteins such as Bcl-2, Bcl-X L , and phosphorylated ERK, but they also have a more invasive potential in Matrigel invasion chambers. Activation or suppression of ERK pathways with a specific activator or inhibitor, respectively, indicates that ERK is a key molecule responsible for death resistance under hypoxic conditions and a more invasive phenotype. Finally, we show that the activation of ERK is more prominent in malignant glioblastomas exposed to hypoxia than in low grade astrocytic glial tumors. Our study suggests that activation of ERK plays a pivotal role in death resistance under chronic hypoxia and phenotypic changes related to the invasive phenotype of HRT98G cells compared to parent cells

  7. Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate.

    Science.gov (United States)

    Frias, Miguel A; James, Richard W; Gerber-Wicht, Christine; Lang, Ursula

    2009-05-01

    High-density lipoprotein (HDL) has been reported to have cardioprotective properties independent from its cholesterol transport activity. The influence of native HDL and reconstituted HDL (rHDL) on Stat3, the transcription factor playing an important role in myocardium adaptation to stress, was analysed in neonatal rat ventricular cardiomyocytes. We have investigated modulating the composition of rHDL as a means of expanding its function and potential cardioprotective effects. Stat3 phosphorylation and activation were determined by western blotting and electrophoretic mobility shift assay (EMSA). In ventricular cardiomyocytes, HDL and the HDL constituent sphingosine-1-phosphate (S1P) induce a concentration- and time-dependent increase in Stat3 activation. They also enhance extracellular signal-regulated kinases (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) phosphorylation. U0126, a specific inhibitor of MEK1/2, the upstream activator of ERK1/2, abolishes HDL- and S1P-induced Stat3 activation, whereas the p38 MAPK blocker SB203580 has no significant effect. Inhibition of the tyrosine kinase family Src (Src) caused a significant reduction of Stat3 activation, whereas inhibition of phosphatidylinositol 3-kinase (PI3K) had no effect. S1P and rHDL containing S1P have a similar strong stimulatory action on Stat3, ERK1/2, and p38 MAPK comparable to native HDL. S1P-free rHDL has a much weaker effect. Experiments with agonists and antagonists of the S1P receptor subtypes indicate that HDL and S1P activate Stat3 mainly through the S1P2 receptor. In ventricular cardiomyocytes, addition of S1P to rHDL enhances its therapeutic potential by improving its capacity to activate Stat3. Activation of Stat3 occurs mainly via the S1P constituent and the lipid receptor S1P2 requiring stimulation of ERK1/2 and Src but not p38 MAPK or PI3K. The study underlines the therapeutic potential of tailoring rHDL to confront particular clinical situations.

  8. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation

    Science.gov (United States)

    Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru

    2013-01-01

    Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693

  9. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells.

    Science.gov (United States)

    Akhtar, Saghir; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H M; Benter, Ibrahim F

    2013-05-01

    Polyamidoamine (PAMAM) dendrimers are cationic branch-like macromolecules that may serve as drug delivery systems for gene-based therapies such as RNA interference. For their safe use in the clinic, they should ideally only enhance drug delivery to target tissues and exhibit no adverse effects. However, little is known about their toxicological profiles in terms of their interactions with cellular signal transduction pathways such as the epidermal growth factor receptor (EGFR). The EGFR is an important signaling cascade that regulates cell growth, differentiation, migration, survival and apoptosis. Here, we investigated the impact of naked, unmodified Superfect (SF), a commercially available generation 6 PAMAM dendrimer, on the epidermal growth factor receptor (EGFR) tyrosine kinase-extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway in human embryonic kidney (HEK 293) cells. At concentrations routinely used for transfection, SF exhibited time and dose-dependent stimulation of EGFR and ERK1/2 phosphorylation whereas AG1478, a selective EGFR tyrosine kinase antagonist, inhibited EGFR-ERK1/2 signaling. SF-induced phosphorylation of EGFR for 1h was partly reversible upon removal of the dendrimer and examination of cells 24 later. Co-treatment of SF with epidermal growth factor (EGF) ligand resulted in greater EGFR stimulation than either agent alone implying that the stimulatory effects of SF and the ligand are synergistic. Dendrimer-induced stimulation of EGFR-ERK1/2 signaling could be attenuated by the antioxidants apocynin, catalase and tempol implying that an oxidative stress dependent mechanism was involved. These results show for the first time that PAMAM dendrimers, aside from their ability to improve drug delivery, can modulate the important EGFR-ERK1/2 cellular signal transduction pathway - a novel finding that may have a bearing on their safe application as drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. ERK/CANP rapid signaling mediates 17β-estradiol-induced proliferation of human breast cancer cell line MCF-7 cells.

    Science.gov (United States)

    Wang, Guo-Sheng; Huang, Yan-Gang; Li, Huan; Bi, Shi-Jie; Zhao, Jin-Long

    2014-01-01

    17β-estradiol (E2) exerts its functions through both genomic and non-genomic signaling pathways. Because E2 is important in breast cancer development, we investigated whether its actions in promoting breast cancer cell proliferation occur through the non-genomic signaling pathway via extracellular signal-regulated kinase 1/2 (ERK1/2)/calcium-activated neutral protease (CANP). MCF-7 breast cancer cells were treated with ERKl/2 inhibitor (PD98059) or CANP inhibitor (calpeptin) before exposure to 1×10(-8) M E2. MTT colorimetry and flow cytometry were used to analyze effects on cell proliferation and cell cycle progression, respectively. Expression of phosphorylated-ERK (p-ERK), total ERK, and Capn4 proteins were assessed by Western blotting. Cell proliferation increased in cells treated with E2 for 24 h (P<0.05), and the proportion of cells in G0/G1 was decreased, accompanied by accelerated G1/S. Calpeptin pre-treatment significantly inhibited the E2-induced proliferation of MCF-7 cells (P<0.05), while also ameliorating the effects of E2 on cell cycle progression. Further, expression of p-ERK was rapidly up-regulated (after 10 min) by E2 (P<0.05), an effect that persisted 16 h after E2 exposure but which was significantly inhibited by PD98059 (P<0.05). Finally, expression of Capn4 protein was rapidly up-regulated in E2-exposed cells (P<0.05), but this change was significantly inhibited by PD98059 or calpeptin (P<0.05) pre-treatment. Thus, the rapid, non-genomic ERK/CANP signaling pathway mediates E2-induced proliferation of human breast cancer cells.

  11. SMOC Binds to Pro-EGF, but Does Not Induce Erk Phosphorylation via the EGFR.

    Science.gov (United States)

    Thomas, J Terrig; Chhuy-Hy, Lina; Andrykovich, Kristin R; Moos, Malcolm

    2016-01-01

    In an attempt to identify the cell-associated protein(s) through which SMOC (Secreted Modular Calcium binding protein) induces mitogen-activated protein kinase (MAPK) signaling, the epidermal growth factor receptor (EGFR) became a candidate. However, although in 32D/EGFR cells, the EGFR was phosphorylated in the presence of a commercially available human SMOC-1 (hSMOC-1), only minimal phosphorylation was observed in the presence of Xenopus SMOC-1 (XSMOC-1) or human SMOC-2. Analysis of the commercial hSMOC-1 product demonstrated the presence of pro-EGF as an impurity. When the pro-EGF was removed, only minimal EGFR activation was observed, indicating that SMOC does not signal primarily through EGFR and its receptor remains unidentified. Investigation of SMOC/pro-EGF binding affinity revealed a strong interaction that does not require the C-terminal extracellular calcium-binding (EC) domain of SMOC or the EGF domain of pro-EGF. SMOC does not appear to potentiate or inhibit MAPK signaling in response to pro-EGF, but the interaction could provide a mechanism for retaining soluble pro-EGF at the cell surface.

  12. Trichinella spiralis infection enhances protein kinase C phosphorylation in guinea pig alveolar macrophages.

    Science.gov (United States)

    Dzik, J M; Zieliński, Z; Cieśla, J; Wałajtys-Rode, E

    2010-03-01

    To learn more about the signalling pathways involved in superoxide anion production in guinea pig alveolar macrophages, triggered by Trichinella spiralis infection, protein level and phosphorylation of mitogen activated protein (MAP) kinases and protein kinase C (PKC) were investigated. Infection with T. spiralis, the nematode having 'lung phase' during colonization of the host, enhances PKC phosphorylation in guinea pig alveolar macrophages. Isoenzymes beta and delta of PKC have been found significantly phosphorylated, although their location was not changed as a consequence of T. spiralis infection. Neither in macrophages from T. spiralis-infected guinea pig nor in platelet-activating factor (PAF)-stimulated macrophages from uninfected animals, participation of MAP kinases in respiratory burst activation was statistically significant. The parasite antigens seem to act through macrophage PAF receptors, transducing a signal for enhanced NADPH oxidase activity, as stimulating effect of newborn larvae homogenate on respiratory burst was abolished by specific PAF receptor antagonist CV 6209. A suppressive action of T. spiralis larvae on host alveolar macrophage innate immunological response was reflected by diminished protein level of ERK2 kinase and suppressed superoxide anion production, in spite of high level of PKC phosphorylation.

  13. The coffee diterpene kahweol suppresses the cell proliferation by inducing cyclin D1 proteasomal degradation via ERK1/2, JNK and GKS3β-dependent threonine-286 phosphorylation in human colorectal cancer cells.

    Science.gov (United States)

    Park, Gwang Hun; Song, Hun Min; Jeong, Jin Boo

    2016-09-01

    Kahweol as a coffee-specific diterpene has been reported to exert anti-cancer properties. However, the mechanism responsible for the anti-cancer effects of kahweol is not fully understood. The main aim of this investigation was to determine the effect of kahweol on cell proliferation and the possible mechanisms in human colorectal cancer cells. Kahweol inhibited markedly the proliferation of human colorectal cancer cell lines such as HCT116, SW480. Kahweol decreased cyclin D1 protein level in HCT116 and SW480 cells. Contrast to protein levels, cyclin D1 mRNA level and promoter activity did not be changed by kahweol treatment. MG132 treatment attenuated kahweol-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in kahweol-treated cells. Kahweol increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated cyclin D1 degradation by kahweol. Inhibition of ERK1/2 by PD98059, JNK by SP600125 or GSK3β by LiCl suppressed cyclin D1 phosphorylation and downregulation by kahweol. Furthermore, the inhibition of nuclear export by LMB attenuated cyclin D1 degradation by kahweol. In conclusion, kahweol-mediated cyclin D1 degradation may contribute to the inhibition of the proliferation in human colorectal cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Aspirin Reduces Cardiac Interstitial Fibrosis by Inhibiting Erk1/2-Serpine2 and P-Akt Signalling Pathways.

    Science.gov (United States)

    Li, Xuelian; Wang, GuoYuan; QiLi, MuGe; Liang, HaiHai; Li, TianShi; E, XiaoQiang; Feng, Ying; Zhang, Ying; Liu, Xiao; Qian, Ming; Xu, BoZhi; Shen, ZhiHang; Gitau, Samuel Chege; Zhao, DanDan; Shan, HongLi

    2018-01-01

    Cardiac interstitial fibrosis is an abnormality of various cardiovascular diseases, including myocardial infarction, hypertrophy, and atrial fibrillation, and it can ultimately lead to heart failure. However, there is a lack of practical therapeutic approaches to treat fibrosis and reverse the damage to the heart. The purpose of this study was to investigate the effect of long-term aspirin administration on pressure overload-induced cardiac fibrosis in mice and reveal the underlying mechanisms of aspirin treatment. C57BL/6 mice were subjected to transverse aortic constriction (TAC), and treated with 10 mg·kg-1·day-1 of aspirin for 4 weeks. Masson staining and a collagen content assay were used to detect the effects of aspirin on cardiac fibrosis in vivo and in vitro. Western blot and qRT-PCR were applied to examine the impact of aspirin on extracellular signal-regulated kinases (Erks), p-Akt/β-catenin, SerpinE2, collagen I, and collagen III levels in the mice heart. Aspirin significantly suppressed the expression of α-smooth muscle actin (α-SMA; 1.19±0.19-fold) and collagen I (0.95±0.09-fold) in TAC mice. Aspirin, at doses of 100 and 1000 µM, also significantly suppressed angiotensin II-induced α-SMA and collagen I in cultured CFs. The enhanced phosphorylation of Erk1/2 caused by TAC (p-Erk1, 1.49±0.19-fold; p-Erk2, 1.96±0.68-fold) was suppressed by aspirin (p-Erk1, 1.04±0.15-fold; p-Erk2, 0.87±0.06-fold). SerpinE2 levels were suppressed via the Erk1/2 signalling pathway following treatment with aspirin (1.36±0.12-fold for TAC; 1.06±0.07-fold for aspirin+TAC). The p-Akt and β-catenin levels were also significantly inhibited in vivo and in vitro. Our study reveals a novel mechanism by which aspirin alleviates pressure overload-induced cardiac interstitial fibrosis in TAC mice by suppressing the p-Erk1/2 and p-Akt/β-catenin signalling pathways. © 2018 The Author(s). Published by S. Karger AG, Basel.

  15. Monosodium iodoacetate-induced joint pain is associated with increased phosphorylation of mitogen activated protein kinases in the rat spinal cord

    Directory of Open Access Journals (Sweden)

    Jarvis Michael F

    2011-05-01

    Full Text Available Abstract Background Intra-articular injection of monosodium iodoacetate (MIA in the knee joint of rats disrupts chondrocyte metabolism resulting in cartilage degeneration and subsequent nociceptive behavior that has been described as a model of osteoarthritis (OA pain. Central sensitization through activation of mitogen activated protein kinases (MAPKs is recognized as a pathogenic mechanism in chronic pain. In the present studies, induction of central sensitization as indicated by spinal dorsal horn MAPK activation, specifically ERK and p38 phosphorylation, was assessed in the MIA-OA model. Results Behaviorally, MIA-injected rats displayed reduced hind limb grip force 1, 2, and 3 weeks post-MIA treatment. In the same animals, activation of phospho ERK1/2 was gradually increased, reaching a significant level at post injection week 3. Conversely, phosphorylation of p38 MAPK was enhanced maximally at post injection week 1 and decreased, but remained elevated, thereafter. Double labeling from 3-wk MIA rats demonstrated spinal pERK1/2 expression in neurons, but not glia. In contrast, p-p38 was expressed by microglia and a subpopulation of neurons, but not astrocytes. Additionally, there was increased ipsilateral expression of microglia, but not astrocytes, in 3-wk MIA-OA rats. Consistent with increased MAPK immunoreactivity in the contralateral dorsal horn, mechanical allodynia to the contralateral hind-limb was observed 3-wk following MIA. Finally, intrathecal injection of the MEK1 inhibitor PD98059 blocked both reduced hind-limb grip force and pERK1/2 induction in MIA-OA rats. Conclusion Results of these studies support the role of MAPK activation in the progression and maintenance of central sensitization in the MIA-OA experimental pain model.

  16. Fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation.

    Science.gov (United States)

    Yan, Weixin; Chen, Shouhui; Zhao, Yiyang; Ye, Xiaoyu

    2018-06-01

    The present study aimed to investigate the effect of fisetin on proliferation and apoptosis of gastric cancer cells, as well as the underlying mechanism. Proliferation in SGC7901 cancer and GES-1 normal cells was analyzed using a CCK-8 assay. Apoptosis was analyzed using an Annexin V/Propidium Iodide apoptosis kit and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was analyzed by western blot assay. Treatment of SGC7901 cells with various concentrations (1, 5, 10, 15 and 20 µM) of fisetin for 48 h resulted in a concentration dependent reduction in proliferation. Flow cytometry revealed a marked increase in apoptosis from 5 µM concentration of fisetin after 48 h. The percentage of apoptotic cells increased to 87% following treatment with 15 µM fisetin for 48 h, compared with 2% in control. Treatment of SGC7901 cells with fisetin for 48 h resulted in a reduction in the activation of ERK 1/2 in a concentration-dependent manner. The reduction in activation of ERK 1/2 was significant following treatment with 15 µM fisetin for 48 h. The inhibitory effect of fisetin on activation of ERK 1/2 was further demonstrated using the ERK 1/2 inhibitor, PD98059. The results indicated a significant reduction in the proliferation of SGC7901 cells following treatment with PD98059 (P<0.002). The reduction by PD98059 administration was comparable to that observed following fisetin treatment for 48 h. In conclusion, the current study demonstrates that fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation. Thus, fisetin may have therapeutic applications in the treatment of gastric cancer.

  17. ERK1/2 signaling plays an important role in topoisomerase II poison-induced G2/M checkpoint activation.

    Science.gov (United States)

    Kolb, Ryan H; Greer, Patrick M; Cao, Phu T; Cowan, Kenneth H; Yan, Ying

    2012-01-01

    Topo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest. Furthermore, inhibition of ERK1/2 activation using specific inhibitors markedly attenuated the topo II poison-induced G2/M arrest and diminished the topo II poison-induced activation of ATR and Chk1 kinases. Moreover, decreased expression of ATR by specific shRNA diminished topo II poison-induced G2/M arrest but had no effect on topo II poison-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling had little, if any, effect on topo II poison-induced ATM activation. In addition, ATM inhibition by either incubation of cells with ATM specific inhibitor or transfection of cells with ATM specific siRNA did not block topo II poison-induced G2/M arrest. Ultimately, inhibition of ERK1/2 signaling greatly enhanced topo II poison-induced apoptosis. These results implicate a critical role for ERK1/2 signaling in the activation of G2/M checkpoint response following topo II poison treatment, which protects cells from topo II poison-induced apoptosis.

  18. Monocyte to macrophage differentiation-associated (MMD) positively regulates ERK and Akt activation and TNF-α and NO production in macrophages.

    Science.gov (United States)

    Liu, Qiang; Zheng, Jin; Yin, Dan-Dan; Xiang, Jie; He, Fei; Wang, Yao-Chun; Liang, Liang; Qin, Hong-Yan; Liu, Li; Liang, Ying-Min; Han, Hua

    2012-05-01

    Macrophage activation is modulated by both environmental cues and endogenous programs. In the present study, we investigated the role of a PAQR family protein, monocyte to macrophage differentiation-associated (MMD), in macrophage activation and unveiled its underlying molecular mechanism. Our results showed that while MMD expression could be detected in all tissues examined, its expression level is significantly up-regulated upon monocyte differentiation. Within cells, EGFP-MMD fusion protein could be co-localized to endoplasmic reticulum, mitochondria, Golgi apparatus, but not lysosomes and cytoplasm. MMD expression is up-regulated in macrophages after LPS stimulation, and this might be modulated by RBP-J, the critical transcription factor of Notch signaling. Overexpression of MMD in macrophages increased the production of TNF-α and NO upon LPS stimulation. We found that MMD overexpression enhanced ERK1/2 and Akt phosphorylation in macrophages after LPS stimulation. Blocking Erk or Akt by pharmacological agent reduced TNF-α or NO production in MMD-overexpressing macrophages, respectively. These results suggested that MMD modulates TNF-α and NO production in macrophages, and this process might involves Erk or Akt.

  19. Piper sarmentosum Roxb. produces antidepressant-like effects in rodents, associated with activation of the CREB-BDNF-ERK signaling pathway and reversal of HPA axis hyperactivity.

    Science.gov (United States)

    Li, Qing; Qu, Fa-Lin; Gao, Yue; Jiang, Yi-Ping; Rahman, Khalid; Lee, Kuo-Hsiung; Han, Ting; Qin, Lu-Ping

    2017-03-06

    There are many plants of genus Piper which have been reported to induce antidepressant-like effects, Piper sarmentosum (PS) is one of them. PS is a Chinese herbal medicine and a traditional edible vegetable. In the present study, the antidepressant-like effects of PS extracts and the ethyl acetate fraction of PS extracts (PSY) were assessed using the open field test (OFT), forced swimming test (FST), and tail suspension test (TST) in mice. Furthermore, we applied a 4 consecutive weeks of chronic unpredictable mild stress (CUMS) as a model of depression in rats, followed by a sucrose preference test. Then we examined the possible mechanisms of this action. The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by detecting the serum corticosterone (CORT) concentrations, and the protein expression levels of brain-derived neurotrophic factor (BDNF), the phosphorylated form CREB and ERK1/2 were detected by qRT-PCR or Western blot. The results showed that PS extracts (100, 200mg/kg) and PSY (12.5, 25, 50mg/kg) treatment produced antidepressant-like effects in mice similar to fluoxetine (20mg/kg), indicated by the reduced immobility time in the FST and TST, while both had no influence on the locomotor activity in the OFT. PSY treatment significantly increased sucrose preference and reduced serum CORT levels in CUMS rats. Moreover, PSY up-regulated BDNF protein levels, and increased CREB and ERK phosphorylation levels in the hippocampus on CUMS rats. These findings suggest that the antidepressant-like effects of PS extracts and PSY are mediated, at least in part, by modulating HPA axis, BDNF, CREB and ERK phosphorylation and expression in the hippocampus. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    Science.gov (United States)

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway.

    Science.gov (United States)

    Aimaiti, Abudousaimi; Maimaitiyiming, Asihaerjiang; Boyong, Xu; Aji, Kaisaier; Li, Cao; Cui, Lei

    2017-12-19

    Strontium is a widely used anti-osteoporotic agent due to its dual effects on inhibiting bone resorption and stimulating bone formation. Thus, we studied the dose response of strontium on osteo-inductive efficiency in human adipose-derived stem cells (hASCs). Qualitative alkaline phosphatase (ALP) staining, quantitative ALP activity, Alizarin Red staining, real-time polymerase chain reaction and Western blot were used to investigate the in vitro effects of a range of strontium concentrations on hASC osteogenesis and associated signaling pathways. In vitro work revealed that strontium (25-500 μM) promoted osteogenic differentiation of hASCs according to ALP activity, extracellular calcium deposition, and expression of osteogenic genes such as runt-related transcription factor 2, ALP, collagen-1, and osteocalcin. However, osteogenic differentiation of hASCs was significantly inhibited with higher doses of strontium (1000-3000 μM). These latter doses of strontium promoted apoptosis, and phosphorylation of ERK1/2 signaling was increased and accompanied by the downregulation of Bcl-2 and increased phosphorylation of BAX. The inhibition of ERK1/2 decreased apoptosis in hASCs. Lower concentrations of strontium facilitate osteogenic differentiation of hASCs up to a point; higher doses cause apoptosis of hASCs, with activation of the ERK1/2 signaling pathway contributing to this process.

  2. Determination of HER2 phosphorylation at tyrosine 1221/1222 improves prediction of poor survival for breast cancer patients with hormone receptor-positive tumors

    DEFF Research Database (Denmark)

    Frogne, Thomas; Laenkholm, Anne-Vibeke; Lyng, Maria B

    2009-01-01

    INTRODUCTION: High expression of total HER2 protein confers poor prognosis for breast cancer patients. HER2 is a member of the HER family consisting of four receptors, HER1 to HER4. HER receptor activity is regulated by a variety of mechanisms, and phosphorylation of the C-terminal part of the HER...... metastases, by evaluating the expression of phosphorylated HER1, HER2, HER3, Erk, Akt and the total level of HER4 and HER2. METHODS: Immunohistochemical analysis was performed on 268 primary breast tumors and 30 paired metastatic lesions from postmenopausal women with hormone receptor-positive breast tumors...... of Akt and Erk were quite uniformly expressed in the categories; negative, moderate or strong. In univariate analysis, expression of total HER2, pHER1, pHER2 and pHER3 was significantly associated with poor disease-free survival. Strong HER4 expression was associated with prolonged disease-free as well...

  3. Chlorpyrifos- and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2

    International Nuclear Information System (INIS)

    Sindi, Ramya A.; Harris, Wayne; Arnott, Gordon; Flaskos, John; Lloyd Mills, Chris; Hargreaves, Alan J.

    2016-01-01

    Chlorpyrifos (CPF) and CPF-oxon (CPO) are known to inhibit neurite outgrowth but little is known about their ability to induce neurite retraction in differentiating neuronal cells. The aims of this study were to determine the ability of these compounds to destabilize neurites and to identify the key molecular events involved. N2a cells were induced to differentiate for 20 h before exposure to CPF or CPO for 2–8 h. Fixed cell monolayers labeled with carboxyfluorescein succinimidyl ester or immunofluorescently stained with antibodies to tubulin (B512) or phosphorylated neurofilament heavy chain (Ta51) showed time- and concentration-dependent reductions in numbers and length of axon-like processes compared to the control, respectively, retraction of neurites being observed within 2 h of exposure by live cell imaging. Neurofilament disruption was also observed in treated cells stained by indirect immunofluorescence with anti-phosphorylated neurofilament heavy chain (NFH) monoclonal antibody SMI34, while the microtubule network was unaffected. Western blotting analysis revealed transiently increased levels of reactivity of Ta51 after 2 h exposure and reduced levels of reactivity of the same antibody following 8 h treatment with both compounds, whereas reactivity with antibodies to anti-total NFH or anti-tubulin was not affected. The alteration in NFH phosphorylation at 2 h exposure was associated with increased activation of extracellular signal-regulated protein kinase ERK 1/2. However, increased levels of phosphatase activity were observed following 8 h exposure. These findings suggest for the first time that organophosphorothionate pesticide-induced neurite retraction in N2a cells is associated with transient increases in NFH phosphorylation and ERK1/2 activation. - Highlights: • Chlorpyrifos and chlorpyrifos oxon induced rapid neurite retraction in N2a cells. • This occurred following transient hyperphosphorylation of ERK 1/2. • It was concomitant with

  4. Chlorpyrifos- and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2

    Energy Technology Data Exchange (ETDEWEB)

    Sindi, Ramya A., E-mail: ramya.sindi2010@my.ntu.ac.uk [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); School of Applied Medical Sciences, Umm Al-Qura University, Makkah (Saudi Arabia); Harris, Wayne [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); Arnott, Gordon [School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS (United Kingdom); Flaskos, John [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lloyd Mills, Chris [School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS (United Kingdom); Hargreaves, Alan J., E-mail: alan.hargreaves@ntu.ac.uk [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom)

    2016-10-01

    Chlorpyrifos (CPF) and CPF-oxon (CPO) are known to inhibit neurite outgrowth but little is known about their ability to induce neurite retraction in differentiating neuronal cells. The aims of this study were to determine the ability of these compounds to destabilize neurites and to identify the key molecular events involved. N2a cells were induced to differentiate for 20 h before exposure to CPF or CPO for 2–8 h. Fixed cell monolayers labeled with carboxyfluorescein succinimidyl ester or immunofluorescently stained with antibodies to tubulin (B512) or phosphorylated neurofilament heavy chain (Ta51) showed time- and concentration-dependent reductions in numbers and length of axon-like processes compared to the control, respectively, retraction of neurites being observed within 2 h of exposure by live cell imaging. Neurofilament disruption was also observed in treated cells stained by indirect immunofluorescence with anti-phosphorylated neurofilament heavy chain (NFH) monoclonal antibody SMI34, while the microtubule network was unaffected. Western blotting analysis revealed transiently increased levels of reactivity of Ta51 after 2 h exposure and reduced levels of reactivity of the same antibody following 8 h treatment with both compounds, whereas reactivity with antibodies to anti-total NFH or anti-tubulin was not affected. The alteration in NFH phosphorylation at 2 h exposure was associated with increased activation of extracellular signal-regulated protein kinase ERK 1/2. However, increased levels of phosphatase activity were observed following 8 h exposure. These findings suggest for the first time that organophosphorothionate pesticide-induced neurite retraction in N2a cells is associated with transient increases in NFH phosphorylation and ERK1/2 activation. - Highlights: • Chlorpyrifos and chlorpyrifos oxon induced rapid neurite retraction in N2a cells. • This occurred following transient hyperphosphorylation of ERK 1/2. • It was concomitant with

  5. The PreS2 activator MHBst of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice

    Science.gov (United States)

    Hildt, Eberhard; Munz, Barbara; Saher, Gesine; Reifenberg, Kurt; Hofschneider, Peter Hans

    2002-01-01

    The large hepatitis B virus (HBV) surface protein (LHBs) and C-terminally truncated middle size surface proteins (MHBst) form the family of the PreS2 activator proteins of HBV. Their transcriptional activator function is based on the cytoplasmic orientation of the PreS2 domain. MHBst activators are paradigmatic for this class of activators. Here we report that MHBst is protein kinase C (PKC)-dependently phosphorylated at Ser28. The integrity of the phosphorylation site is essential for the activator function. MHBst triggers PKC-dependent activation of c-Raf-1/Erk2 signaling that is a prerequisite for MHBst-dependent activation of AP-1 and NF-κB. To analyze the pathophysiological relevance of these data in vivo, transgenic mice were established that produce the PreS2 activator MHBst specifically in the liver. In these mice, a permanent PreS2-dependent specific activation of c-Raf-1/Erk2 signaling was observed, resulting in an increased hepatocyte proliferation rate. In transgenics older than 15 months, an increased incidence of liver tumors occurs. These data suggest that PreS2 activators LHBs and MHBst exert a tumor promoter-like function by activation of key enzymes of proliferation control. PMID:11847101

  6. Shoc2/Sur8 protein regulates neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Gonzalo Leon

    Full Text Available The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth.

  7. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    Directory of Open Access Journals (Sweden)

    Tobias Boothe

    2016-05-01

    Full Text Available Objective: The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods: We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results: Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions: We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. Author Video: Author Video Watch what authors say about their articles Keywords: Insulin receptor internalization, Insulin resistance, Pancreatic islet beta-cells, Autocrine insulin signaling

  8. CCN2 is required for the TGF-β induced activation of Smad1-Erk1/2 signaling network.

    Directory of Open Access Journals (Sweden)

    Sashidhar S Nakerakanti

    Full Text Available Connective tissue growth factor (CCN2 is a multifunctional matricellular protein, which is frequently overexpressed during organ fibrosis. CCN2 is a mediator of the pro-fibrotic effects of TGF-β in cultured cells, but the specific function of CCN2 in the fibrotic process has not been elucidated. In this study we characterized the CCN2-dependent signaling pathways that are required for the TGF-β induced fibrogenic response. By depleting endogenous CCN2 we show that CCN2 is indispensable for the TGF-β-induced phosphorylation of Smad1 and Erk1/2, but it is unnecessary for the activation of Smad3. TGF-β stimulation triggered formation of the CCN2/β(3 integrin protein complexes and activation of Src signaling. Furthermore, we demonstrated that signaling through the α(vβ(3 integrin receptor and Src was required for the TGF-β induced Smad1 phosphorylation. Recombinant CCN2 activated Src and Erk1/2 signaling, and induced phosphorylation of Fli1, but was unable to stimulate Smad1 or Smad3 phosphorylation. Additional experiments were performed to investigate the role of CCN2 in collagen production. Consistent with the previous studies, blockade of CCN2 abrogated TGF-β-induced collagen mRNA and protein levels. Recombinant CCN2 potently stimulated collagen mRNA levels and upregulated activity of the COL1A2 promoter, however CCN2 was a weak inducer of collagen protein levels. CCN2 stimulation of collagen was dose-dependent with the lower doses (<50 ng/ml having a stimulatory effect and higher doses having an inhibitory effect on collagen gene expression. In conclusion, our study defines a novel CCN2/α(vβ(3 integrin/Src/Smad1 axis that contributes to the pro-fibrotic TGF-β signaling and suggests that blockade of this pathway may be beneficial for the treatment of fibrosis.

  9. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway.

    Science.gov (United States)

    Li, Wei-Hua; Qiu, Ying; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2015-01-01

    As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.

  10. Activation of the ERK1/2 Signaling Pathway during the Osteogenic Differentiation of Mesenchymal Stem Cells Cultured on Substrates Modified with Various Chemical Groups

    Directory of Open Access Journals (Sweden)

    Bing Bai

    2013-01-01

    Full Text Available The current study examined the influence of culture substrates modified with the functional groups –OH, –COOH, –NH2, and –CH3 using SAMs technology, in conjunction with TAAB control, on the osteogenic differentiation of rabbit BMSCs. The CCK-8 assay revealed that BMSCs exhibited substrate-dependent cell viability. The cells plated on –NH2- and –OH-modified substrates were well spread and homogeneous, but those on the –COOH- and –CH3-modified substrates showed more rounded phenotype. The mRNA expression of BMSCs revealed that –NH2-modified substrate promoted the mRNA expression and osteogenic differentiation of the BMSCs. The contribution of ERK1/2 signaling pathway to the osteogenic differentiation of BMSCs cultured on the –NH2-modified substrate was investigated in vitro. The –NH2-modified substrate promoted the expression of integrins; the activation of FAK and ERK1/2. Inhibition of ERK1/2 activation by PD98059, a specific inhibitor of the ERK signaling pathway, blocked ERK1/2 activation in a dose-dependent manner, as revealed for expression of Cbfα-1 and ALP. Blockade of ERK1/2 phosphorylation in BMSCs by PD98059 suppressed osteogenic differentiation on chemical surfaces. These findings indicate a potential role for ERK in the osteogenic differentiation of BMSCs on surfaces modified by specific chemical functional groups, indicating that the microenvironment affects the differentiation of BMSCs. This observation has important implications for bone tissue engineering.

  11. Antiplatelet effect of phloroglucinol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A2 production

    International Nuclear Information System (INIS)

    Chang, Mei-Chi; Chang, Hsiao-Hua; Chan, Chiu-Po; Chou, Han-Yi; Chang, Bei-En; Yeung, Sin-Yuet; Wang, Tong-Mei; Jeng, Jiiang-Huei

    2012-01-01

    Platelet dysfunction is a major risk factor of cardiovascular diseases such as atherosclerosis, stroke and myocardial infarction. Many antiplatelet agents are used for prevention and treatment of these diseases. In this study, phloroglucinol (2.5–25 μM) suppressed AA-induced platelet aggregation and thromboxane B 2 (TXB 2 ) production, but not U46619-induced platelet aggregation. Phloroglucinol (100–250 μM) showed little cytotoxicity to platelets. Phloroglucinol inhibited the COX-1 and COX-2 activities by 45–74% and 49–72% respectively at concentrations of 10–50 μM. At concentrations of 1 and 5 μM, phloroglucinol attenuated the AA-induced ROS production in platelets by 30% and 53%, with an IC 50 of 13.8 μM. Phloroglucinol also inhibited the PMA-stimulated ROS production in PMN. Preincubation of platelets by phloroglucinol (10–25 μM) markedly attenuated the AA-induced ERK and p38 phosphorylation. Intravenous administration of phloroglucinol (2.5 and 5 μmol/mouse) suppressed the ex vivo AA-induced platelet aggregation by 57–71%. Phloroglucinol administration also elevated the mice tail bleeding time. Moreover, phloroglucinol inhibited the IL-1β-induced PGE 2 production in pulp fibroblasts. These results indicate that antiplatelet and anti-inflammatory effects of phloroglucinol are related to inhibition of COX, ROS and TXA2 production as well as ERK/p38 phosphorylation in platelets. Phloroglucinol further suppress PMA-induced ROS production in PMN. The antiplatelet effect of phloroglucinol was confirmed by ex vivo study. Clinically, the consumption of phloroglucinol-containing food/natural products as nutritional supplement may be helpful to cardiovascular health. Phloroglucinol has potential pharmacological use. -- Highlights: ► Phloroglucinol suppressed AA-induced platelet aggregation and thromboxane production. ► Phloroglucinol inhibited COX activity and IL-1b-induced PGE2 production in fibroblast. ► Phloroglucinol declined platelet and

  12. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity.

    Science.gov (United States)

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T

    2011-04-15

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.

  13. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    DEFF Research Database (Denmark)

    Maddahi, A.; Edvinsson, L.

    2008-01-01

    ), the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score. CONCLUSION: Our results show that MCAO results in upregulation of cerebrovascular ETB, AT1 and 5-HT1B receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced...... the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126. METHODS AND RESULT: Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO) followed by reperfusion for 48-h and the ischemic area was calculated. The expression...... of phosphorylated ERK1/2 and Elk-1, and of endothelin ETA and ETB, angiotensin AT1, and 5-hydroxytryptamine 5-HT1B receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ETB receptor was analyzed...

  14. In brown adipocytes, adrenergically induced β{sub 1}-/β{sub 3}-(G{sub s})-, α{sub 2}-(G{sub i})- and α{sub 1}-(G{sub q})-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.; Holmström, Therése E.; Nedergaard, Jan, E-mail: jan@metabol.su.se

    2013-10-15

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α{sub 1}-adrenoceptor coupled via G{sub q}), clonidine (α{sub 2} via G{sub i}) or CL316243 (β{sub 3} via G{sub s}) or via β{sub 1}-receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC{sub 50} 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR

  15. The Cu-Zn superoxide dismutase (SOD1) inhibits ERK phosphorylation by muscarinic receptor modulation in rat pituitary GH3 cells

    International Nuclear Information System (INIS)

    Secondo, Agnese; De Mizio, Mariarosaria; Zirpoli, Laura; Santillo, Mariarosaria; Mondola, Paolo

    2008-01-01

    The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation. These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor

  16. Sulfuretin Attenuates MPP+-Induced Neurotoxicity through Akt/GSK3β and ERK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Ramesh Pariyar

    2017-12-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disease. It is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress and mitochondrial dysfunction contribute to the loss of dopaminergic neurons in PD. Sulfuretin is a potent antioxidant that is reported to be beneficial in the treatment of neurodegenerative diseases. In this study, we examined the protective effect of sulfuretin against 1-methyl-4-phenyl pyridinium (MPP+-induced cell model of PD in SH-SY5Y cells and the underlying molecular mechanisms. Sulfuretin significantly decreased MPP+-induced apoptotic cell death, accompanied by a reduction in caspase 3 activity and polyADP-ribose polymerase (PARP cleavage. Furthermore, it attenuated MPP+-induced production of intracellular reactive oxygen species (ROS and disruption of mitochondrial membrane potential (MMP. Consistently, sulfuretin decreased p53 expression and the Bax/Bcl-2 ratio. Moreover, sulfuretin significantly increased the phosphorylation of Akt, GSK3β, and ERK. Pharmacological inhibitors of PI3K/Akt and ERK abolished the cytoprotective effects of sulfuretin against MPP+. An inhibitor of GSK3β mimicked sulfuretin-induced protection against MPP+. Taken together, these results suggest that sulfuretin significantly attenuates MPP+-induced neurotoxicity through Akt/GSK3β and ERK signaling pathways in SH-SY5Y cells. Our findings suggest that sulfuretin might be one of the potential candidates for the treatment of PD.

  17. Phosphorylated c-Mpl tyrosine 591 regulates thrombopoietin-induced signaling.

    Science.gov (United States)

    Sangkhae, Veena; Saur, Sebastian Jonas; Kaushansky, Alexis; Kaushansky, Kenneth; Hitchcock, Ian Stuart

    2014-06-01

    Thrombopoietin (TPO) is the primary regulator of platelet production, affecting cell survival, proliferation, and differentiation through binding to and stimulation of the cell surface receptor the cellular myeloproliferative leukemia virus oncogene (c-Mpl). Activating mutations in c-Mpl constitutively stimulate downstream signaling pathways, leading to aberrant hematopoiesis, and contribute to development of myeloproliferative neoplasms. Several studies have mapped the tyrosine residues within the cytoplasmic domain of c-Mpl that mediate these cellular signals; however, secondary signaling pathways are incompletely understood. In this study, we focused on c-Mpl tyrosine 591 (Y591). We found Y591 of wild-type c-Mpl to be phosphorylated in the presence of TPO. Additionally, eliminating Y591 phosphorylation by mutation to Phe resulted in decreased total receptor phosphorylation. Using a Src homology 2/phosphotyrosine-binding (SH2/PTB) domain binding microarray, we identified novel c-Mpl binding partners for phosphorylated Y591, including Src homology region 2 domain-containing phosphatase-1 (SHP-1), spleen tyrosine kinase (SYK) and Bruton's tyrosine kinase (BTK). The functional significance of binding partners was determined through small interfering RNA treatment of Ba/F3-Mpl cells, confirming that the increase in pERK1/2 resulting from removal of Y591 may be mediated by spleen tyrosine kinase. These findings identify a novel negative regulatory pathway that controls TPO-mediated signaling, advancing our understanding of the mechanisms required for successful maintenance of hematopoietic stem cells and megakaryocyte development. Copyright © 2014 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  18. The PreS2 activator MHBs(t) of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice.

    Science.gov (United States)

    Hildt, Eberhard; Munz, Barbara; Saher, Gesine; Reifenberg, Kurt; Hofschneider, Peter Hans

    2002-02-15

    The large hepatitis B virus (HBV) surface protein (LHBs) and C-terminally truncated middle size surface proteins (MHBs(t)) form the family of the PreS2 activator proteins of HBV. Their transcriptional activator function is based on the cytoplasmic orientation of the PreS2 domain. MHBs(t) activators are paradigmatic for this class of activators. Here we report that MHBs(t) is protein kinase C (PKC)-dependently phosphorylated at Ser28. The integrity of the phosphorylation site is essential for the activator function. MHBs(t) triggers PKC-dependent activation of c-Raf-1/Erk2 signaling that is a prerequisite for MHBs(t)-dependent activation of AP-1 and NF-kappaB. To analyze the pathophysiological relevance of these data in vivo, transgenic mice were established that produce the PreS2 activator MHBs(t) specifically in the liver. In these mice, a permanent PreS2-dependent specific activation of c-Raf-1/Erk2 signaling was observed, resulting in an increased hepatocyte proliferation rate. In transgenics older than 15 months, an increased incidence of liver tumors occurs. These data suggest that PreS2 activators LHBs and MHBs(t) exert a tumor promoter-like function by activation of key enzymes of proliferation control.

  19. ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer.

    Science.gov (United States)

    Zinn, Rebekah L; Gardner, Eric E; Marchionni, Luigi; Murphy, Sara C; Dobromilskaya, Irina; Hann, Christine L; Rudin, Charles M

    2013-06-01

    New therapies are critically needed to improve the outcome for patients with small cell lung cancer (SCLC). Insulin-like growth factor 1 receptor (IGF-1R) inhibition is a potential treatment strategy for SCLC: the IGF-1R pathway is commonly upregulated in SCLC and has been associated with inhibition of apoptosis and stimulation of proliferation through downstream signaling pathways, including phosphatidylinositol-3-kinase-Akt and mitogen-activated protein kinase. To evaluate potential determinants of response to IGF-1R inhibition, we assessed the relative sensitivity of 19 SCLC cell lines to OSI-906, a small molecule inhibitor of IGF-1R, and the closely related insulin receptor. Approximately one third of these cell lines were sensitive to OSI-906, with an IC50 OSI-906. Interestingly, OSI-906 sensitive lines expressed significantly lower levels of baseline phospho-ERK relative to resistant lines (P = 0.006). OSI-906 treatment resulted in dose-dependent inhibition of phospho-IGF-1R and phospho-Akt in both sensitive and resistant cell lines, but induced apoptosis and cell-cycle arrest only in sensitive lines. We tested the in vivo efficacy of OSI-906 using an NCI-H187 xenograft model and two SCLC patient xenografts in mice. OSI-906 treatment resulted in 50% tumor growth inhibition in NCI-H187 and 30% inhibition in the primary patient xenograft models compared with mock-treated animals. Taken together our data support IGF-1R inhibition as a viable treatment strategy for a defined subset of SCLC and suggest that low pretreatment levels of phospho-ERK may be indicative of sensitivity to this therapeutic approach. ©2013 AACR

  20. EXPRESSION AND SIGNIFICANCE OF ERK PROTEIN IN HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 李柏林; 宋敏; 宋继谒

    2004-01-01

    Objective: To investigate the expression of ERK and p-ERK protein in human breast cancer and their corresponding tissue, to assess the significance of ERK signal pathway in tumorigenesis and progression of breast carcinoma. Methods: 40 breast cancer cases were used in S-P immunohistochemistry technique and Western Blot study. Results: The expression of ERK1, ERK2, and p- ERK protein levels increased remarkably in breast cancer tissues in comparison to normal tissues (P<0.01). The expression was upregulated by 1.32-, 1.53-and 4.27-fold, respectively. The overexpressions of ERK1, ERK2, and p- ERK proteins were obviously correlated with clinical stage of breast cancer. Protein levels of ERK and p-ERK were higher in stage III patients than in stage I and stage II patients (P<0.05). These proteins were strongly related with axillary lymph node metastasis of breast cancer, but not correlated with histopathological type and status of ER and PR of breast cancer. Expression of ERK1, and ERK2, protein showed a positive linear correlation. Conclusion: ERK signal transduction pathway is a key factor during human breast tumorigenesis and breast cancer progression.

  1. Aberrant ERK 1/2 complex activation and localization in scrapie-infected GT1-1 cells

    Directory of Open Access Journals (Sweden)

    Didonna Alessandro

    2010-08-01

    Full Text Available Abstract Background Fatal neurodegenerative disorders such as Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases in humans, scrapie and bovine spongiform encephalopathy in animals, are characterized by the accumulation in the brain of a pathological form of the prion protein (PrP denominated PrPSc. The latter derives from the host cellular form, PrPC, through a process whereby portions of its α-helical and coil structures are refolded into β-sheet structures. Results In this work, the widely known in vitro model of prion replication, hypothalamic GT1-1 cell line, was used to investigate cellular and molecular responses to prion infection. The MAP kinase cascade was dissected to assess the phosphorylation levels of src, MEK 1/2 and ERK 1/2 signaling molecules, both before and after prion infection. Our findings suggest that prion replication leads to a hyper-activation of this pathway. Biochemical analysis was complemented with immunofluorescence studies to map the localization of the ERK complex within the different cellular compartments. We showed how the ERK complex relocates in the cytosol upon prion infection. We correlated these findings with an impairment of cell growth in prion-infected GT1-1 cells as probed by MTT assay. Furthermore, given the persistent urgency in finding compounds able to cure prion infected cells, we tested the effects on the ERK cascade of two molecules known to block prion replication in vitro, quinacrine and Fab D18. We were able to show that while these two compounds possess similar effects in curing prion infection, they affect the MAP kinase cascade differently. Conclusions Taken together, our results help shed light on the molecular events involved in neurodegeneration and neuronal loss in prion infection and replication. In particular, the combination of chronic activation and aberrant localization of the ERK complex may lead to a lack of essential neuroprotective and survival factors

  2. Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line.

    Science.gov (United States)

    Chopra, Deepti; Ray, Lipika; Dwivedi, Ashish; Tiwari, Shashi Kant; Singh, Jyoti; Singh, Krishna P; Kushwaha, Hari Narayan; Jahan, Sadaf; Pandey, Ankita; Gupta, Shailendra K; Chaturvedi, Rajnish Kumar; Pant, Aditya Bhushan; Ray, Ratan Singh; Gupta, Kailash Chand

    2016-04-01

    Curcumin (Cur) has been demonstrated to have wide pharmacological window including anti-oxidant and anti-inflammatory properties. However, phototoxicity under sunlight exposure and poor biological availability limits its applicability. We have synthesized biodegradable and non-toxic polymer-poly (lactic-co-glycolic) acid (PLGA) encapsulated formulation of curcumin (PLGA-Cur-NPs) of 150 nm size range. Photochemically free curcumin generates ROS, lipid peroxidation and induces significant UVA and UVB mediated impaired mitochondrial functions leading to apoptosis/necrosis and cell injury in two different origin cell lines viz., mouse fibroblasts-NIH-3T3 and human keratinocytes-HaCaT as compared to PLGA-Cur-NPs. Molecular docking studies suggested that intact curcumin from nanoparticles, bind with BAX in BIM SAHB site and attenuate it to undergo apoptosis while upregulating anti-apoptotic genes like BCL2. Real time studies and western blot analysis with specific phosphorylation inhibitor of ERK1 and AKT1/2/3 confirm the involvement of ERK/AKT signaling molecules to trigger the survival cascade in case of PLGA-Cur-NPs. Our finding demonstrates that low level sustained release of curcumin from PLGA-Cur-NPs could be a promising way to protect the adverse biological interactions of photo-degradation products of curcumin upon the exposure of UVA and UVB. Hence, the applicability of PLGA-Cur-NPs could be suggested as prolonged radical scavenging ingredient in curcumin containing products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Rosiglitazone attenuates NF-κB-dependent ICAM-1 and TNF-α production caused by homocysteine via inhibiting ERK1/2/p38MAPK activation

    International Nuclear Information System (INIS)

    Bai, Yong-Ping; Liu, Yu-Hui; Chen, Jia; Song, Tao; You, Yu; Tang, Zhen-Yan; Li, Yuan-Jian; Zhang, Guo-Gang

    2007-01-01

    Previous studies demonstrated an important interaction between nuclear factor-kappaB (NF-κB) activation and homocysteine (Hcy)-induced cytokines expression in endothelial cells and vascular smooth muscle cells. However, the underlying mechanism remains illusive. In this study, we investigated the effects of Hcy on NF-κB-mediated sICAM-1, TNF-α production and the possible involvement of ERK 1/2 /p38MAPK pathway. The effects of rosiglitazone intervention were also examined. Our results show that Hcy increased the levels of sICAM-1 and TNF-α in cultured human umbilical vein endothelial cells (HUVECs) in a time- and concentration-dependent manner. This effect was significantly depressed by rosiglitazone and different inhibitors (PDTC, NF-κB inhibitor; PD98059, MEK inhibitor; SB203580, p38MAPK specific inhibitor; and staurosporine, PKC inhibitor). Next, we investigated the effect of Hcy on ERK 1/2 /p38MAPK pathway and NF-κB activity in HUVECs. The results show that Hcy activated both ERK 1/2 /p38MAPK pathway and NF-κB-DNA-binding activity. These effects were markedly inhibited by rosiglitazone as well as other inhibitors (SB203580, PD98059, and PDTC). Further, the pretreatment of staurosporine abrogated ERK 1/2 /p38MAPK phosphorylation, suggesting that Hcy-induced ERK 1/2 /p38MAPK activation is associated with PKC activity. Our results provide evidence that Hcy-induced NF-κB activation was mediated by activation of ERK 1/2 /p38MAPK pathway involving PKC activity. Rosiglitazone reduces the NF-κB-mediated sICAM-1 and TNF-α production induced by Hcy via inhibition of ERK 1/2 /p38MAPK pathway

  4. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Christopher C.; Bloodworth, Jeffrey C. [Division of Pharmacology, Columbus, OH 43210 (United States); Mythreye, Karthikeyan [Duke University, Department of Medicine, Durham, NC 27708 (United States); Lee, Nam Y., E-mail: lee.5064@osu.edu [Division of Pharmacology, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, Columbus, OH 43210 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  5. Tungstate-Targeting of BKαβ1 Channels Tunes ERK Phosphorylation and Cell Proliferation in Human Vascular Smooth Muscle

    OpenAIRE

    López López, José Ramón; Fernández Mariño, Ana Isabel; Cidad, Pilar; Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Oliván Viguera, Aida; Köhler, Ralf; Pérez García, María Teresa; Valverde, Miguel Ángel; Guinovart, Joan J.; Fernández Fernández, José Manuel

    2015-01-01

    Producción Científica Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced...

  6. Inhibition of lipopolysaccharide-induced proinflammatory responses by Buddleja officinalis extract in BV-2 microglial cells via negative regulation of NF-kB and ERK1/2 signaling.

    Science.gov (United States)

    Oh, Won-Jun; Jung, Uhee; Eom, Hyun-Soo; Shin, Hee-June; Park, Hae-Ran

    2013-07-31

    Buddleja officinalis has been traditionally used in the supportive treatment of inflammatory and neuronal diseases in Korea and China. Although several reports have shown the anti-inflammatory effects of Buddleja officinalis, the anti-neuroinflammatory effect has remained unclear. In this study, we aimed to investigate the inhibitory effects of flower buds of B. officinalis Maximowicz water extract (BOWE) on LPS-induced inflammatory processes in BV-2 microglial cells. BOWE dose-dependently inhibited the production of nitric oxide as well as iNOS mRNA expression. Moreover, BOWE prevented IL-1β and IL-6 mRNA expression. However, BOWE had no effect on LPS-induced COX-2 or TNF-a mRNA expression. The extract also had no effect on LPS-stimulated p38 MAPK, JNK, and c-Jun phosphorylation, whereas ERK1/2 phosphorylation was strongly inhibited by BOWE. BOWE also inhibited the LPS-induced degradation of IkB-α, and LPS-induced phosphorylation of p65 NF-kB protein. These data indicate that BOWE inhibited the nitric oxide production and pro-inflammatory gene expression in BV-2 microglial cells, possibly through a negative regulation of the NF-kB and ERK1/2 pathways. Further identification of the direct target molecule(s) of BOWE is required to support its use as an anti-neuroinflammatory agent against the neurodegenerative disorders.

  7. Inhibition of Lipopolysaccharide-Induced Proinflammatory Responses by Buddleja officinalis Extract in BV-2 Microglial Cells via Negative Regulation of NF-kB and ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Hae-Ran Park

    2013-07-01

    Full Text Available Buddleja officinalis has been traditionally used in the supportive treatment of inflammatory and neuronal diseases in Korea and China. Although several reports have shown the anti-inflammatory effects of Buddleja officinalis, the anti-neuroinflammatory effect has remained unclear. In this study, we aimed to investigate the inhibitory effects of flower buds of B. officinalis Maximowicz water extract (BOWE on LPS-induced inflammatory processes in BV-2 microglial cells. BOWE dose-dependently inhibited the production of nitric oxide as well as iNOS mRNA expression. Moreover, BOWE prevented IL-1β and IL-6 mRNA expression. However, BOWE had no effect on LPS-induced COX-2 or TNF-a mRNA expression. The extract also had no effect on LPS-stimulated p38 MAPK, JNK, and c-Jun phosphorylation, whereas ERK1/2 phosphorylation was strongly inhibited by BOWE. BOWE also inhibited the LPS-induced degradation of IkB-α, and LPS-induced phosphorylation of p65 NF-kB protein. These data indicate that BOWE inhibited the nitric oxide production and pro-inflammatory gene expression in BV-2 microglial cells, possibly through a negative regulation of the NF-kB and ERK1/2 pathways. Further identification of the direct target molecule(s of BOWE is required to support its use as an anti-neuroinflammatory agent against the neurodegenerative disorders.

  8. Leukotriene B4 induces EMT and vimentin expression in PANC-1 pancreatic cancer cells: Involvement of BLT2 via ERK2 activation.

    Science.gov (United States)

    Kim, You Ri; Park, Mi Kyung; Kang, Gyeong Jin; Kim, Hyun Ji; Kim, Eun Ji; Byun, Hyun Jung; Lee, Moo-Yeol; Lee, Chang Hoon

    2016-12-01

    Leukotriene B 4 (LTB 4 ) is a leukocyte chemoattractant and plays a major role controlling inflammatory responses including pancreatitis. LTB 4 is known to be correlated with cancer progression. LTB 4 induces keratin phosphorylation and reorganization by activating extracellular regulated kinase (ERK) in PANC-1 pancreatic cancer cell lines. However, the role of LTB 4 in epithelial mesenchymal transition (EMT) and vimentin expression in pancreatic cancer cells is unknown. We examined whether LTB 4 induces EMT and vimentin expression by Western blot, si-RNA, and RT-PCR. LTB 4 induced morphological change, decreased E-cadherin expression and increased N-cadherin and vimentin expression. LTB4 increased migration and invasion of PANC-1 cancer cells. LTB 4 dose-dependently upregulated expression of vimentin in PANC-1 cancer cells. LTB 4 -induced vimentin expression was suppressed by LY255283 (BLT2 antagonist). Comp A, a BLT2 agonist, further increased vimentin expression. Gene silencing of BLT2 suppressed LTB 4 -or Comp A-induced vimentin expression in PANC-1 cells. The MEK inhibitor, PD98059 suppressed Comp A-induced vimentin expression. Comp A or transfection of plasmid containing BLT2 cDNA (pC BLT2 ) activated ERK, and BLT2 gene silencing suppressed Comp A-induced ERK activation. ERK2 siRNA abrogated Comp A-induced vimentin expression and ERK2 overexpression enhanced vimentin expression. One of well-known cause of ras mutation, cigarette smoke extracts increased BLT2 expression in PANC-1 cancer cells. Taken together, these results suggest that BLT2 is involved in LTB 4 -induced vimentin expression through ERK2 in PANC-1 cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. PDGFR alpha signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90(RSK) and AKT signaling pathways

    DEFF Research Database (Denmark)

    Clement, Ditte L.; Mally, Sabine; Stock, Christian

    2013-01-01

    In fibroblasts, platelet-derived growth factor receptor alpha (PDGFR alpha) is upregulated during growth arrest and compartmentalized to the primary cilium. PDGF-AA mediated activation of the dimerized ciliary receptor produces a phosphorylation cascade through the PI3K-AKT and MEK1/2-ERK1/2 path...

  10. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    International Nuclear Information System (INIS)

    Yoshida, Ikuma; Ibuki, Yuko

    2014-01-01

    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications

  11. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ikuma; Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp

    2014-12-15

    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.

  12. The D Domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells

    Directory of Open Access Journals (Sweden)

    Zeyou Wang

    2016-11-01

    Full Text Available Abstract Background As a well-characterized key player in various signal transduction networks, extracellular-signal-regulated kinase (ERK1/2 has been widely implicated in the development of many malignancies. We previously found that Leucine-rich repeat containing 4 (LRRC4 was a tumor suppressor and a negative regulator of the ERK/MAPK pathway in glioma tumorigenesis. However, the precise molecular role of LRRC4 in ERK signal transmission is unclear. Methods The interaction between LRRC4 and ERK1/2 was assessed by co-immunoprecipitation and GST pull-down assays in vivo and in vitro. We also investigated the interaction of LRRC4 and ERK1/2 and the role of the D domain in ERK activation in glioma cells. Results Here, we showed that LRRC4 and ERK1/2 interact via the D domain and CD domain, respectively. Following EGF stimuli, the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and abrogates ERK1/2 activation and nuclear translocation. In glioblastoma cells, ectopic LRRC4 expression competitively inhibited the interaction of endogenous mitogen-activated protein kinase (MEK and ERK1/2. Mutation of the D domain decreased the LRRC4-mediated inhibition of MAPK signaling and its anti-proliferation and anti-invasion roles. Conclusions Our results demonstrated that the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. These findings identify a new mechanism underlying glioblastoma progression and suggest a novel therapeutic strategy by restoring the activity of LRRC4 to decrease MAPK cascade activation.

  13. Calcineurin inhibitor-induced complement system activation via ERK1/2 signalling is inhibited by SOCS-3 in human renal tubule cells.

    Science.gov (United States)

    Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes

    2018-02-01

    One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Attenuation of everolimus-induced cytotoxicity by a protective autophagic pathway involving ERK activation in renal cell carcinoma cells

    Science.gov (United States)

    Zeng, Yizhou; Tian, Xiaofang; Wang, Quan; He, Weiyang; Fan, Jing; Gou, Xin

    2018-01-01

    Aim The mammalian target of rapamycin (mTOR) pathway is a critical target for cancer treatment and the mTOR inhibitor everolimus (RAD001) has been approved for treatment of renal cell carcinoma (RCC). However, the limited efficacy of RAD001 has led to the development of drug resistance. Autophagy is closely related to cell survival and death, which may be activated under RAD001 stimulation. The aim of the present study was to identify the underlying mechanisms of RAD001 resistance in RCC cells through cytoprotective autophagy involving activation of the extracellular signal-regulated kinase (ERK) pathway. Methods and results: RAD001 strongly induced autophagy of RCC cells in a dose- and time-dependent manner, as confirmed by Western blot analysis. Importantly, suppression of autophagy by the pharmacological inhibitor chloroquine effectively enhanced RAD001-induced apoptotic cytotoxicity, as demonstrated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western blot analysis, indicating a cytoprotective role for RAD001-induced autophagy. In addition, as was shown by the MTT assay, flow cytometry, and Western blot analysis, RAD001 robustly activated ERK, but not c-Jun N-terminal kinase and p38. Activation of ERK was inhibited by the pharmacological inhibitor selumetinib (AZD6244), which effectively promoted RAD001-induced cell death. Moreover, employing AZD6244 markedly attenuated RAD001-induced autophagy and enhanced RAD001-induced apoptosis, which play a central role in RAD001-induced cell death. Furthermore, RAD001-induced autophagy is regulated by ERK-mediated phosphorylation of Beclin-1 and B-cell lymphoma 2, as confirmed by Western blot analysis. Conclusion These results suggest that RAD001-induced autophagy involves activation of the ERK, which may impair cytotoxicity of RAD001 in RCC cells. Thus, inhibition of the activation of ERK pathway-mediated autophagy may be useful to overcome chemoresistance to RAD001. PMID:29719377

  15. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yao Song

    Full Text Available AIMS: It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS: We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION: CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.

  16. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Dawei; Liu, Dandan; Zhang, Jinchao; Fong, Chichun; Yang, Mengsu

    2014-01-01

    Gold nanoparticles (AuNPs) have shown great promise for a variety of applications, including chemistry, biology, and medicine. Recently, AuNPs have found promising applications in cartilage and bone repair. However, to realize the above promised applications, more work needs to be carried out to clarify the interactions between biological systems and AuNPs. In the present study, primary osteoblasts were used to evaluate the biocompatibility of 20-nm and 40-nm AuNPs, including morphology, proliferation, differentiation, gene and protein expression, and the underlying mechanisms. The results demonstrated that AuNPs were taken up by osteoblasts and aggregated in perinuclear compartment and vescular structures, but no morphological changes were observed. AuNPs could significantly promote the proliferation of osteoblasts, enhance the ALP activities, and increase the number of bone nodules and calcium content in vitro. In addition, the expression of BMP-2, Runx-2, OCN and Col-1 was remarkably up-regulated in the presence of AuNPs. It is noteworthy that 20-nm AuNPs are more potent than 40-nm AuNPs in regulating osteoblast activities. Besides, AuNPs increased the level of ERK phosphorylation/total ERK, suggesting the activation of ERK/MAPK pathway is involved in above activities. In conclusion, AuNPs exhibited great biocompatibility with osteoblasts, and have tremendous potential to be used as drug and/or gene delivery carrier for bone and tissue engineering in the future. - Highlights: • AuNPs aggregated in perinuclear compartment and vescular structures of osteoblasts. • AuNPs up-regulated the expression of Runx-2, BMP-2, OCN and Col I of osteoblasts. • AuNPs enhanced osteoblast differentiation by activating the ERK/MAPK pathway. • The size of nanoparticles may be important to exhibit their biological effects. • AuNPs have tremendous potential in bone and tissue engineering in future

  17. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  18. The Rab2A GTPase Promotes Breast Cancer Stem Cells and Tumorigenesis via Erk Signaling Activation

    Directory of Open Access Journals (Sweden)

    Man-Li Luo

    2015-04-01

    Full Text Available Proline-directed phosphorylation is regulated by the prolyl isomerase Pin1, which plays a fundamental role in driving breast cancer stem-like cells (BCSCs. Rab2A is a small GTPase critical for vesicle trafficking. Here, we show that Pin1 increases Rab2A transcription to promote BCSC expansion and tumorigenesis in vitro and in vivo. Mechanistically, Rab2A directly interacts with and prevents dephosphorylation/inactivation of Erk1/2 by the MKP3 phosphatase, resulting in Zeb1 upregulation and β-catenin nuclear translocation. In cancer cells, Rab2A is activated via gene amplification, mutation or Pin1 overexpression. Rab2A overexpression or mutation endows BCSC traits to primary normal human breast epithelial cells, whereas silencing Rab2A potently inhibits the expansion and tumorigenesis of freshly isolated BCSCs. Finally, Rab2A overexpression correlates with poor clinical outcome in breast cancer patients. Thus, Pin1/Rab2A/Erk drives BCSC expansion and tumorigenicity, suggesting potential drug targets.

  19. Anti-TNF-alpha antibody attenuates subarachnoid hemorrhage-induced apoptosis in the hypothalamus by inhibiting the activation of Erk

    Directory of Open Access Journals (Sweden)

    Ma L

    2018-02-01

    Full Text Available Ling Ma,1 Yong Jiang,2 Yanan Dong,2 Jun Gao,2 Bin Du,2 Dianwei Liu2 1Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, People’s Republic of China; 2Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China Background: Subarachnoid hemorrhage (SAH can induce apoptosis in many regions of the brain including the cortex and hippocampus. However, few studies have focused on apoptosis in the hypothalamus after SAH. Although some antiapoptotic strategies have been developed for SAH, such as anti-tumor necrosis factor-alpha (TNF-α antibody, the molecular mechanisms underlying this condition have yet to be elucidated. Therefore, the purpose of this study was to evaluate whether SAH could induce apoptosis in the hypothalamus and identify the potential molecular mechanisms underlying the actions of anti-TNF-α antibody, as a therapeutic regimen, upon apoptosis. Materials and methods: SAH was induced in a rat model. Thirty minutes prior to SAH, anti-TNF-α antibody or U0126, an extracellular signal-regulated kinase (Erk inhibitor, was microinjected into the left lateral cerebral ventricle. In addition, phorbol-12-myristate-13-acetate was injected intraperitoneally immediately after the anti-TNF-α antibody microinjection. Then, real-time polymerase chain reaction, Western blotting and immunohistochemistry were used to detect the expression of caspase-3, bax, bcl-2, phosphorylated Erk (p-Erk and Erk. Finally, anxiety-like behavior was identified by using open field. Results: Levels of caspase-3, bax and bcl-2, all showed a temporary rise after SAH in the hypothalamus, indicating the induction of apoptosis in this brain region. Interestingly, we found that the microinjection of anti-TNF-α antibody could selectively block the elevated levels of bax, suggesting the potential role of anti-TNF-α antibody in the inhibition of SAH

  20. Phosphorylation of the Grb2- and phosphatidylinositol 3-kinase p85-binding p36/38 by Syk in Lck-negative T cells.

    Science.gov (United States)

    von Willebrand, M; Williams, S; Tailor, P; Mustelin, T

    1998-06-01

    Activation of the mitogen-activated protein kinase (MAPK) pathway by the T-cell antigen receptor (TCR) in T cells involves a positive role for phosphatidylinositol 3-kinase (PI3K) activity. We recently reported that over-expression of the Syk protein tyrosine kinase in the Lck-negative JCaM1 cells enabled the TCR to induce a normal activation of the Erk2 MAPK and enhanced transcription of a reporter gene driven by the nuclear factor of activated T cells and AP-1. Because this system allows us to analyse the targets for Syk in receptor-mediated signalling, we examined the role of PI3K in signalling events between the TCR-regulated Syk and the downstream activation of Erk2. We report that inhibition of PI3K by wortmannin or an inhibitory p85 construct, p85deltaiSH2, reduced the TCR-induced Syk-dependent activation of Erk2, as well as the appearance of phospho-Erk and phospho-Mek. At the same time, expression of Syk resulted in the activation-dependent phosphorylation of three proteins that bound to the src homology 2 (SH2) domains of PI3K p85. The strongest of these bands had an apparent molecular mass of 36-38 kDa on SDS gels, and it was quantitatively removed from the lysates by adsorption to a fusion protein containing the SH2 domain of Grb2. The appearance of this band was Syk dependent, and it was seen only upon triggering of the TCR complex. Thus, p36/38 was phosphorylated by Syk or a Syk-regulated kinase, and this protein may provide a link to the recruitment and activation of PI3K, as well as to the Ras-MAPK pathway, in TCR-triggered T cells.

  1. Effects of activin A and its downstream ERK1/2 in oxygen and glucose deprivation after isoflurane-induced postconditioning.

    Science.gov (United States)

    Wang, Qin; Yin, Jiangwen; Wang, Sheng; Cui, Di; Lin, Hong; Ge, Mingyue; Dai, Zhigang; Xie, Liping; Si, Junqiang; Ma, Ketao; Li, Li; Zhao, Lei

    2016-12-01

    Isoflurane postconditioning (ISPOC) plays a neuroprotection role in the brain. Previous studies confirmed that isoflurane postconditioning can provide better protection than preconditioning in acute hypoxic-ischemic brain damage, such as acute craniocerebral trauma and ischemic stroke. Numerous studies have reported that activin A can protect rat's brain from cell injury. However, whether activin A and its downstream ERK1/2 were involved in isoflurane postconditioning-induced neuroprotection is unknown. A total of 80 healthy Sprague-Dawley rats weighing 50-70g were randomly divided into 10 groups of 8: normal control, oxygen and glucose deprivation (OGD), 1.5% ISPOC, 3.0% ISPOC, 4.5% ISPOC, blocker of activin A (SB431542), blocker of ERK1/2 (U0126), 3.0% ISPOC+SB431542, 3.0% ISPOC+U0126, and vehicle (dimethyl sulfoxide(DMSO)) group. Blockers (SB431542 and U0126) were used in each concentration of isoflurane before OGD. Hematoxylin-eosin staining, 2,3,5-triphenyl tetrazolium chloride staining, and propidium iodide (PI) staining were conducted to assess the reliability in the brain slices. Immunofluorescence, Western blot, and quantitative real-time PCR(Q-PCR) were performed to validate the protein expression levels of activin A, Smad2/3, P-Smad2/3, ERK1/2, and phosphorylation ERK1/2 (P-ERK1/2). The number of damaged neurons and mean fluorescence intensity(MFI) of PI staining increased, but formazan generation, expression levels of activin A and P-ERK1/2 protein, and mRNA synthesis level of activin A decreased in the OGD group compared with the normal control group (pneurons and MFI of PI staining decreased, but formazan production, expression levels of activin A, P-Smad2/3, and P-ERK1/2, and mRNA synthesis level of activin A increased significantly in the 1.5% ISPOC and 3.0% ISPOC groups (pneuron and MFI of PI staining increased, but formazan production, expression levels of activin A, P-Smad2/3, and P-ERK1/2, and mRNA synthesis level of activin A decreased in the 4

  2. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    International Nuclear Information System (INIS)

    Wang, D.; Guo, T.Q.; Wang, Z.Y.; Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J.; Zhang, X.L.; Liu, Y.; Teng, L.S.

    2014-01-01

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases

  3. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [School of Life Sciences, Jilin University, Changchun (China); The State Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun (China); Guo, T.Q. [School of Life Sciences, Jilin University, Changchun (China); Wang, Z.Y. [State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun (China); Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J. [School of Life Sciences, Jilin University, Changchun (China); Zhang, X.L. [Faculty of ScienceNational University of Singapore (Singapore); Liu, Y. [School of Life Sciences, Jilin University, Changchun (China); Teng, L.S. [School of Life Sciences, Jilin University, Changchun (China); The State Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun (China)

    2014-07-25

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases.

  4. PBX3 promotes migration and invasion of colorectal cancer cells via activation of MAPK/ERK signaling pathway.

    Science.gov (United States)

    Han, Hai-Bo; Gu, Jin; Ji, Deng-Bo; Li, Zhao-Wei; Zhang, Yuan; Zhao, Wei; Wang, Li-Min; Zhang, Zhi-Qian

    2014-12-28

    To investigate the role of pre-B-cell leukemia homeobox (PBX)3 in migration and invasion of colorectal cancer (CRC) cells. We detected PBX3 expression in five cell lines and surgical specimens from 111 patients with CRC using real-time reverse transcription-polymerase chain reaction. We forced expression of PBX3 in low metastatic HT-29 and SW480 cells and knocked down expression of PBX3 in highly metastatic LOVO and HCT-8 cells. Wound healing and Boyden chamber assays were used to detect cell migration and invasion after altered expression of PBX3. Western blot was performed to detect the change of signaling molecule ERK1/2 following PBX3 overexpression. High level of PBX3 expression was correlated with the invasive potential of CRC cells, and significantly associated with lymph node invasion (P = 0.02), distant metastasis (P = 0.04), advanced TNM stage (P = 0.03) and poor overall survival of patients (P migration and invasion, while inhibited PBX3 expression in highly metastatic cells suppressed migration and invasion. Furthermore, upregulation of phosphorylated extracellular signal-regulated kinase (ERK)1/2 was found to be one of the targeted molecules responsible for PBX3-induced CRC cell migration and invasion. PBX3 induces invasion and metastasis of CRC cells partially through activation of the MAPK/ERK signaling pathway.

  5. GSK3-mediated MAF phosphorylation in multiple myeloma as a potential therapeutic target

    International Nuclear Information System (INIS)

    Herath, N I; Rocques, N; Garancher, A; Eychène, A; Pouponnot, C

    2014-01-01

    Multiple myeloma (MM) is an incurable haematological malignancy characterised by the proliferation of mature antibody-secreting plasma B cells in the bone marrow. MM can arise from initiating translocations, of which the musculoaponeurotic fibrosarcoma (MAF) family is implicated in ∼5%. MMs bearing Maf translocations are of poor prognosis. These translocations are associated with elevated Maf expression, including c-MAF, MAFB and MAFA, and with t(14;16) and t(14;20) translocations, involving c-MAF and MAFB, respectively. c-MAF is also overexpressed in MM through MEK/ERK activation, bringing the number of MMs driven by the deregulation of a Maf gene close to 50%. Here we demonstrate that MAFB and c-MAF are phosphorylated by the Ser/Thr kinase GSK3 in human MM cell lines. We show that LiCl-induced GSK3 inhibition targets these phosphorylations and specifically decreases proliferation and colony formation of Maf-expressing MM cell lines. Interestingly, bortezomib induced stabilisation of Maf phosphorylation, an observation that could explain, at least partially, the low efficacy of bortezomib for patients carrying Maf translocations. Thus, GSK3 inhibition could represent a new therapeutic approach for these patients

  6. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta

    International Nuclear Information System (INIS)

    Sun, Xin; Huang, Luqi; Zhang, Min; Sun, Shenggang; Wu, Yan

    2010-01-01

    Dopaminergic neurons are lost mainly through apoptosis in Parkinson's disease. Insulin like growth factor-1 (IGF-1) inhibits apoptosis in a wide variety of tissues. Here we have shown that IGF-1 protects PC12 cells from toxic effects of 1-methyl-4-phenylpyridiniumion (MPP + ). Treatment of PC12 cells with recombinant human IGF-1 significantly decreased apoptosis caused by MPP + as measured by acridine orange/ethidium bromide staining. IGF-1 treatment induced sustained phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) as shown by western blot analysis. The anti-apoptotic effect of IGF-1 was abrogated by LY294002, which indirectly inhibits phosphorylation of GSK-3beta. Lithium chloride (LiCl), a known inhibitor of GSK-3beta, also blocked MPP + -induced apoptosis. Finally, although IGF-1 enhanced phosphorylation of extracellular signal-regulated kinases ERK1 and 2 (ERK1/2), PD98059, a specific inhibitor of ERK1/2, did not alter the survival effect of IGF-1. Thus, our findings indicate that IGF-1 protects PC12 cells exposed to MPP + from apoptosis via the GSK-3beta signaling pathway.

  7. Chronic Fluoxetine Treatment Upregulates the Activity of the ERK1/2-NF-κB Signaling Pathway in the Hippocampus and Prefrontal Cortex of Rats Exposed to Forced-Swimming Stress.

    Science.gov (United States)

    Cui, Jingqiu; Yang, Kun; Yu, Xue; Wang, Jing-Lan; Li, Jie; Zhang, Yong; Li, Hengfen

    2016-01-01

    The aim of this study was to explore whether or not the antidepressant actions of fluoxetine (FLX) are correlated with extracellular signal-regulated kinase 1 and 2 (ERK1/2) and nuclear factor κ-light chain enhancer of activated B cells (NF-κB) in the hippocampus (HC) and prefrontal cortex (PFC) of rats. A total of 108 male Sprague-Dawley rats were randomly divided into 6 groups of 18 rats each. Group 1 was the control group, while group 2 comprised the depressed model in which rats were subjected to 28 days of forced-swimming stress (FST); groups 3-6 were also subjected to 28 days of FST and treated with FLX once a day for 1 day (group 3; F1d), 1 week (group 4; F1w), 2 weeks (group 5; F2w), or 4 weeks (group 6; F4w). The control group was not subjected to FST or treated with FLX. Behavior tests that included the Morris water maze (MWM) and saccharin preference were performed, and ERK1/2 and NF-κB proteins were assayed using Western blot. The rats in the control group and in groups 5 and 6 (F2w and F4w, respectively) had a significantly shorter average escape latency, needed more attempts in order to successfully cross the platform, and had a greater saccharin preference than those in the depressed group (p < 0.05). In the depressed group, the phosphorylated ERK1/2 (p-ERK1/2) and phosphorylated NF-κB (p-NF-κB) expression in the HC and PFC were lower than in the control group (p < 0.05). Treatment with FLX reversed the changes in the expression of p-ERK1/2 and p-NF-κB in rats in the F2w and F4w groups. In this study, FLX treatment for 2 weeks or longer reversed the impaired spatial learning, memory, and anhedonia observed in the depressed model rats and upregulated the activities of the ERK1/2-NF-κB signaling pathway. © 2016 S. Karger AG, Basel.

  8. Tenascin-C induces resistance to apoptosis in pancreatic cancer cell through activation of ERK/NF-κB pathway.

    Science.gov (United States)

    Shi, Meiyan; He, Xiaodan; Wei, Wei; Wang, Juan; Zhang, Ti; Shen, Xiaohong

    2015-06-01

    As a glycol-protein located in extracellular matrix (ECM), tenascin-C (TNC) is absent in most normal adult tissues but is highly expressed in the majority of malignant solid tumors. Pancreatic cancer is characterized by an abundant fibrous tissue rich in TNC. Although it was reported that TNC's expression increased in the progression from low-grade precursor lesions to invasive cancer and was associated with tumor differentiation in human pancreatic cancer, studies on the relations between TNC and tumor progression in pancreatic cancer were rare. In this study, we performed an analysis to determine the effects of TNC on modulating cell apoptosis and chemo-resistance and explored its mechanisms involving activation in pancreatic cancer cell. The expressions of TNC, ERK1/2/p-ERK1/2, Bcl-xL and Bcl-2 were detected by immunohistochemistry and western blotting. Then the effects of exogenous and endogenous TNC on the regulation of tumor proliferation, apoptosis and gemcitabine cytotoxicity were investigated. The associations among the TNC knockdown, TNC stimulation and expressions of ERK1/2/NF-κB/p65 and apoptotic regulatory proteins were also analyzed in cell lines. The mechanism of TNC on modulating cancer cell apoptosis and drug resistant through activation of ERK1/2/NF-κB/p65 signals was evaluated. The effect of TNC on regulating cell cycle distribution was also tested. TNC, ERK1/2/p-ERK1/2, and apoptotic regulatory proteins Bcl-xL and Bcl-2 were highly expressed in human pancreatic cancer tissues. In vitro, exogenous TNC promoted pancreatic cancer cell growth also mediates basal as well as starved and drug-induced apoptosis in pancreatic cancer cells. The effects of TNC on anti-apoptosis were induced by the activation state of ERK1/2/NF-κB/p65 signals in pancreatic cell. TNC phosphorylate ERK1/2 to induce NF-κB/p65 nucleus translocation. The latter contributes to promote Bcl-xL, Bcl-2 protein expressions and reduce caspase activity, which inhibit cell apoptotic

  9. Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid.

    Directory of Open Access Journals (Sweden)

    Jae Sung You

    Full Text Available Signaling by mTOR is a well-recognized component of the pathway through which mechanical signals regulate protein synthesis and muscle mass. However, the mechanisms involved in the mechanical regulation of mTOR signaling have not been defined. Nevertheless, recent studies suggest that a mechanically-induced increase in phosphatidic acid (PA may be involved. There is also evidence which suggests that mechanical stimuli, and PA, utilize ERK to induce mTOR signaling. Hence, we reasoned that a mechanically-induced increase in PA might promote mTOR signaling via an ERK-dependent mechanism. To test this, we subjected mouse skeletal muscles to mechanical stimulation in the presence or absence of a MEK/ERK inhibitor, and then measured several commonly used markers of mTOR signaling. Transgenic mice expressing a rapamycin-resistant mutant of mTOR were also used to confirm the validity of these markers. The results demonstrated that mechanically-induced increases in p70(s6k T389 and 4E-BP1 S64 phosphorylation, and unexpectedly, a loss in total 4E-BP1, were fully mTOR-dependent signaling events. Furthermore, we determined that mechanical stimulation induced these mTOR-dependent events, and protein synthesis, through an ERK-independent mechanism. Similar to mechanical stimulation, exogenous PA also induced mTOR-dependent signaling via an ERK-independent mechanism. Moreover, PA was able to directly activate mTOR signaling in vitro. Combined, these results demonstrate that mechanical stimulation induces mTOR signaling, and protein synthesis, via an ERK-independent mechanism that potentially involves a direct interaction of PA with mTOR. Furthermore, it appears that a decrease in total 4E-BP1 may be part of the mTOR-dependent mechanism through which mechanical stimuli activate protein synthesis.

  10. Appetitive Cue-Evoked ERK Signaling in the Nucleus Accumbens Requires NMDA and D1 Dopamine Receptor Activation and Regulates CREB Phosphorylation

    Science.gov (United States)

    Kirschmann, Erin K. Z.; Mauna, Jocelyn C.; Willis, Cory M.; Foster, Rebecca L.; Chipman, Amanda M.; Thiels, Edda

    2014-01-01

    Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP…

  11. Curcumin Improves Amyloid β-Peptide (1-42 Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD. However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working memory and spatial reference memory in rats that received a ventricular injection of amyloid-β1-42 (Aβ1-42, representing a rodent model of Alzheimer's disease (AD. The rats treated with Aβ1-42 exhibited obvious cognitive deficits in behavioral tasks. Chronic (seven consecutive days, once per day but not acute (once a day curcumin treatments (50, 100, and 200 mg/kg improved the cognitive functions in a dose-dependent manner. In addition, the beneficial effect of curcumin is accompanied by increased BDNF levels and elevated levels of phosphorylated ERK in the hippocampus. Furthermore, the cognition enhancement effect of curcumin could be mimicked by the overexpression of BDNF in the hippocampus and blocked by either bilateral hippocampal injections with lentiviruses that express BDNF shRNA or a microinjection of ERK inhibitor. These findings suggest that chronic curcumin ameliorates AD-related cognitive deficits and that upregulated BDNF-ERK signaling in the hippocampus may underlie the cognitive improvement produced by curcumin.

  12. TGF-β1 is Involved in Vitamin D-Induced Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Regulating the ERK/JNK Pathway

    Directory of Open Access Journals (Sweden)

    Xiaorui Jiang

    2017-08-01

    Full Text Available Background/Aims: Osteoarthritis (OA is characterized by degradation of cartilage, sole cell type of which is chondrocytes. Bone marrow-derived mesenchymal stem cells (BMSCs possess multipotency and can be directionally differentiated into chondrocytes under stimulation. This study was aimed to explore the possible roles of vitamin D and transforming growth factor-β1 (TGF-β1 in the chondrogenic differentiation of BMSCs. Methods: BMSCs were isolated from femurs and tibias of rats and characterized by flow cytometry. After stimulation with vitamin D, BMSC proliferation and migration were measured by Cell Counting Kit-8 (CCK-8 and Transwell assays, respectively. Chondrogenic differentiation was estimated through expression levels of specific markers by qRT-PCR and Western blot analysis. After stable transfection, the effects of aberrantly expressed TGF-β1 on vitamin D-induced alterations, including BMSC viability, migration and chondrogenic differentiation, were all evaluated utilizing CCK-8 assay, Transwell assay, qRT-PCR and Western blot analysis. Finally, the phosphorylation levels of key kinases in the extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK pathways were determined by Western blot analysis. Results: Vitamin D remarkably promoted BMSC viability, migration and chondrogenic differentiation. These alterations of BMSCs induced by vitamin D were reinforced by TGF-β1 overexpression while were reversed by TGF-β1 silencing. Additionally, the phosphorylation levels of ERK, JNK and c-Jun were enhanced by TGF-β1 overexpression but were reduced by TGF-β1 knockdown. Conclusion: Vitamin D promoted BMSC proliferation, migration and chondrogenic differentiation. TGF-β1 might be implicated in the vitamin D-induced alterations of BMSCs through regulating ERK/JNK pathway.

  13. Functional significance of the signal transduction pathways Akt and Erk in ovarian follicles: in vitro and in vivo studies in cattle and sheep

    Directory of Open Access Journals (Sweden)

    Ryan Kate E

    2008-10-01

    Full Text Available Abstract Background The intracellular signalling mechanisms that regulate ovarian follicle development are unclear; however, we have recently shown differences in the Akt and Erk signalling pathways in dominant compared to subordinate follicles. The aim of this study was to investigate the effects of inhibiting Akt and Erk phosphorylation on IGF- and gonadotropin- stimulated granulosa and theca cell function in vitro, and on follicle development in vivo. Methods Bovine granulosa and theca cells were cultured for six days and stimulated with FSH and/or IGF, or LH in combination with PD98059 (Erk inhibitor and/or LY294002 (Akt inhibitor and their effect on cell number and hormone secretion (estradiol, activin-A, inhibin-A, follistatin, progesterone and androstenedione determined. In addition, ovarian follicles were treated in vivo with PD98059 and/or LY294002 in ewes on Day 3 of the cycle and follicles were recovered 48 hours later. Results We have shown that gonadotropin- and IGF-stimulated hormone production by granulosa and theca cells is reduced by treatment with PD98059 and LY294002 in vitro. Furthermore, treatment with PD98059 and LY294002 reduced follicle growth and oestradiol production in vivo. Conclusion These results demonstrate an important functional role for the Akt and Erk signalling pathways in follicle function, growth and development.

  14. Angiotensin II reduces cardiac AdipoR1 expression through AT1 receptor/ROS/ERK1/2/c-Myc pathway.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Adiponectin, an abundant adipose tissue-derived protein, exerts protective effect against cardiovascular disease. Adiponectin receptors (AdipoR1 and AdipoR2 mediate the beneficial effects of adiponectin on the cardiovascular system. However, the alteration of AdipoRs in cardiac remodeling is not fully elucidated. Here, we investigated the effect of angiotensin II (AngII on cardiac AdipoRs expression and explored the possible molecular mechanism. AngII infusion into rats induced cardiac hypertrophy, reduced AdipoR1 but not AdipoR2 expression, and attenuated the phosphorylations of adenosine monophosphate-activated protein kinase and acetyl coenzyme A carboxylase, and those effects were all reversed by losartan, an AngII type 1 (AT1 receptor blocker. AngII reduced expression of AdipoR1 mRNA and protein in cultured neonatal rat cardiomyocytes, which was abolished by losartan, but not by PD123319, an AT2 receptor antagonist. The antioxidants including reactive oxygen species (ROS scavenger NAC, NADPH oxidase inhibitor apocynin, Nox2 inhibitor peptide gp91 ds-tat, and mitochondrial electron transport chain complex I inhibitor rotenone attenuated AngII-induced production of ROS and phosphorylation of extracellular signal-regulated kinase (ERK 1/2. AngII-reduced AdipoR1 expression was reversed by pretreatment with NAC, apocynin, gp91 ds-tat, rotenone, and an ERK1/2 inhibitor PD98059. Chromatin immunoprecipitation assay demonstrated that AngII provoked the recruitment of c-Myc onto the promoter region of AdipoR1, which was attenuated by PD98059. Moreover, AngII-induced DNA binding activity of c-Myc was inhibited by losartan, NAC, apocynin, gp91 ds-tat, rotenone, and PD98059. c-Myc small interfering RNA abolished the inhibitory effect of AngII on AdipoR1 expression. Our results suggest that AngII inhibits cardiac AdipoR1 expression in vivo and in vitro and AT1 receptor/ROS/ERK1/2/c-Myc pathway is required for the downregulation of AdipoR1 induced by AngII.

  15. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells.

    Science.gov (United States)

    Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero

    2016-06-15

    Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane-disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. © 2016 Herrero et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. GLP-1 Treatment Improves Diabetic Retinopathy by Alleviating Autophagy through GLP-1R-ERK1/2-HDAC6 Signaling Pathway.

    Science.gov (United States)

    Cai, Xiangsheng; Li, Jingjing; Wang, Mingzhu; She, Miaoqin; Tang, Yongming; Li, Jinlong; Li, Hongwei; Hui, Hongxiang

    2017-01-01

    Objective: Apoptosis and autophagy of retinal cells, which may be induced by oxidative stress, are tightly associated with the pathogenesis of diabetic retinopathy (DR). The autophagy induced by oxidative stress is considered as excessively stimulated autophagy, which accelerates the progression of DR. This study aims to investigate the protective effect of GLP-1 treatment on alleviating apoptosis and autophagy of retinal cells in type 2 diabetic rats and reveals its possible mechanism. Methods: Type 2 diabetic rats were induced by fed with high sugar, high fat diet and followed with streptozotocin injection. GLP-1 was applied to treat the diabetic rats for one week after the onset of diabetes. The expressions of oxidative stress-related enzymes, retinal GLP-1R, mitochondria-dependent apoptosis- related genes, autophagy markers, and autophagy-associated pathway genes were studied by Western blotting or immunohistochemistry analysis. Results: GLP-1treatment reduced the levels of NOX3 and SOD2 in DR. The expression of BCL2 was increased, while the levels of caspase3 and LC3B were reduced through GLP-1 treatment in DR . GLP-1 treatment restored the GLP-1R expression and decreased the levels of phosphorylated AKT and phosphorylated ERK1/2, which was accompanied with the reduction of the HDAC6 levels in DR. Conclusions: GLP-1 treatment can alleviate autophagy which may be induced by oxidative stress; this protective effect is likely through GLP-1R-ERK1/2-HDAC6 signaling pathway.

  17. Higher Levels of c-Met Expression and Phosphorylation Identify Cell Lines With Increased Sensitivity to AMG-458, a Novel Selective c-Met Inhibitor With Radiosensitizing Effects

    International Nuclear Information System (INIS)

    Li Bo; Torossian, Artour; Sun, Yunguang; Du, Ruihong; Dicker, Adam P.; Lu Bo

    2012-01-01

    Purpose: c-Met is overexpressed in some non-small cell lung cancer (NSCLC) cell lines and tissues. Cell lines with higher levels of c-Met expression and phosphorylation depend on this receptor for survival. We studied the effects of AMG-458 on 2 NSCLC cell lines. Methods and Materials: 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium assays assessed the sensitivities of the cells to AMG-458. Clonogenic survival assays illustrated the radiosensitizing effects of AMG-458. Western blot for cleaved caspase 3 measured apoptosis. Immunoblotting for c-Met, phospho-Met (p-Met), Akt/p-Akt, and Erk/p-Erk was performed to observe downstream signaling. Results: AMG-458 enhanced radiosensitivity in H441 but not in A549. H441 showed constitutive phosphorylation of c-Met. A549 expressed low levels of c-Met, which were phosphorylated only in the presence of exogenous hepatocyte growth factor. The combination of radiation therapy and AMG-458 treatment was found to synergistically increase apoptosis in the H441 cell line but not in A549. Radiation therapy, AMG-458, and combination treatment were found to reduce p-Akt and p-Erk levels in H441 but not in A549. H441 became less sensitive to AMG-458 after small interfering RNA knockdown of c-Met; there was no change in A549. After overexpression of c-Met, A549 became more sensitive, while H441 became less sensitive to AMG-458. Conclusions: AMG-458 was more effective in cells that expressed higher levels of c-Met/p-Met, suggesting that higher levels of c-Met and p-Met in NSCLC tissue may classify a subset of tumors that are more sensitive to molecular therapies against this receptor.

  18. Dose-Dependent AMPK-Dependent and Independent Mechanisms of Berberine and Metformin Inhibition of mTORC1, ERK, DNA Synthesis and Proliferation in Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ming Ming

    Full Text Available Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC cells (PANC-1, MiaPaCa-2 with the isoquinoline alkaloid berberine (0.3-6 µM inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70% the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244 and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways.

  19. Marine Compound Catunaregin Inhibits Angiogenesis through the Modulation of Phosphorylation of Akt and eNOS in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Jun-Xiu Liu

    2014-05-01

    Full Text Available Angiogenesis is the formation of blood vessels from pre-existing vasculature. Excessive or uncontrolled angiogenesis is a major contributor to many pathological conditions whereas inhibition of aberrant angiogenesis is beneficial to patients with pathological angiogenesis. Catunaregin is a core of novel marine compound isolated from mangrove associate. The potential anti-angiogenesis of catunaregin was investigated in human umbilical vein endothelial cells (HUVECs and zebrafish. HUVECs were treated with different concentrations of catunaregin in the presence or absence of VEGF. The angiogenic phenotypes including cell invasion cell migration and tube formation were evaluated following catunaregin treatment in HUVECs. The possible involvement of AKT, eNOS and ERK1/2 in catunaregin-induced anti-angiogenesis was explored using Western blotting. The anti-angiogenesis of catunaregin was further tested in the zebrafish embryo neovascularization and caudal fin regeneration assays. We found that catunaregin dose-dependently inhibited angiogenesis in both HUVECs and zebrafish embryo neovascularization and zebrafish caudal fin regeneration assays. In addition, catunaregin significantly decreased the phosphorylation of Akt and eNOS, but not the phosphorylation of ERK1/2. The present work demonstrates that catunaregin exerts the anti-angiogenic activity at least in part through the regulation of the Akt and eNOS signaling pathways.

  20. Curcumin Inhibits Apoptosis of Chondrocytes through Activation ERK1/2 Signaling Pathways Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Xiaodong Li

    2017-04-01

    Full Text Available Osteoarthritis (OA is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective in treating pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe, and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Curcumin, the principal curcuminoid and the most active component in turmeric, is a biologically active phytochemical. Evidence from several recent in vitro studies suggests that curcumin may exert a chondroprotective effect through actions such as anti-inflammatory, anti-oxidative stress, and anti-catabolic activity that are critical for mitigating OA disease pathogenesis and symptoms. In the present study, we investigated the protective mechanisms of curcumin on interleukin 1β (IL-1β-stimulated primary chondrocytes in vitro. The treatment of interleukin (IL-1β significantly reduces the cell viability of chondrocytes in dose and time dependent manners. Co-treatment of curcumin with IL-1β significantly decreased the growth inhibition. We observed that curcumin inhibited IL-1β-induced apoptosis and caspase-3 activation in chondrocytes. Curcumin can increase the expression of phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2, autophagy marker light chain 3 (LC3-II, and Beclin-1 in chondrocytes. The expression of autophagy markers could be decreased when the chondrocytes were incubated with ERK1/2 inhibitor U0126. Our results suggest that curcumin suppresses apoptosis and inflammatory signaling through its actions on the ERK1/2-induced autophagy in chondrocytes. We propose that curcumin should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.

  1. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Du, Yuxuan; Zhang, Xulong; Sun, Ying; Li, Shentao; Dou, Yunpeng [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Li, Zhanguo [Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People' s Hospital, No. 11 Xizhimen South Street, Beijing 100044 (China); Yuan, Huihui, E-mail: huihui_yuan@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Zhao, Wenming, E-mail: zhao-wenming@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China)

    2014-11-01

    Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity of Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.

  2. ERK mutations confer resistance to mitogen-activated protein kinase pathway inhibitors.

    Science.gov (United States)

    Goetz, Eva M; Ghandi, Mahmoud; Treacy, Daniel J; Wagle, Nikhil; Garraway, Levi A

    2014-12-01

    The use of targeted therapeutics directed against BRAF(V600)-mutant metastatic melanoma improves progression-free survival in many patients; however, acquired drug resistance remains a major medical challenge. By far, the most common clinical resistance mechanism involves reactivation of the MAPK (RAF/MEK/ERK) pathway by a variety of mechanisms. Thus, targeting ERK itself has emerged as an attractive therapeutic concept, and several ERK inhibitors have entered clinical trials. We sought to preemptively determine mutations in ERK1/2 that confer resistance to either ERK inhibitors or combined RAF/MEK inhibition in BRAF(V600)-mutant melanoma. Using a random mutagenesis screen, we identified multiple point mutations in ERK1 (MAPK3) and ERK2 (MAPK1) that could confer resistance to ERK or RAF/MEK inhibitors. ERK inhibitor-resistant alleles were sensitive to RAF/MEK inhibitors and vice versa, suggesting that the future development of alternating RAF/MEK and ERK inhibitor regimens might help circumvent resistance to these agents. ©2014 American Association for Cancer Research.

  3. Chemokine CXCL13 mediates orofacial neuropathic pain via CXCR5/ERK pathway in the trigeminal ganglion of mice.

    Science.gov (United States)

    Zhang, Qian; Cao, De-Li; Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2016-07-11

    Trigeminal nerve damage-induced neuropathic pain is a severely debilitating chronic orofacial pain syndrome. Spinal chemokine CXCL13 and its receptor CXCR5 were recently demonstrated to play a pivotal role in the pathogenesis of spinal nerve ligation-induced neuropathic pain. Whether and how CXCL13/CXCR5 in the trigeminal ganglion (TG) mediates orofacial pain are unknown. The partial infraorbital nerve ligation (pIONL) was used to induce trigeminal neuropathic pain in mice. The expression of ATF3, CXCL13, CXCR5, and phosphorylated extracellular signal-regulated kinase (pERK) in the TG was detected by immunofluorescence staining and western blot. The effect of shRNA targeting on CXCL13 or CXCR5 on pain hypersensitivity was checked by behavioral testing. pIONL induced persistent mechanical allodynia and increased the expression of ATF3, CXCL13, and CXCR5 in the TG. Inhibition of CXCL13 or CXCR5 by shRNA lentivirus attenuated pIONL-induced mechanical allodynia. Additionally, pIONL-induced neuropathic pain and the activation of ERK in the TG were reduced in Cxcr5 (-/-) mice. Furthermore, MEK inhibitor (PD98059) attenuated mechanical allodynia and reduced TNF-α and IL-1β upregulation induced by pIONL. TNF-α inhibitor (Etanercept) and IL-1β inhibitor (Diacerein) attenuated pIONL-induced orofacial pain. Finally, intra-TG injection of CXCL13 induced mechanical allodynia, increased the activation of ERK and the production of TNF-α and IL-1β in the TG of WT mice, but not in Cxcr5 (-/-) mice. Pretreatment with PD98059, Etanercept, or Diacerein partially blocked CXCL13-induced mechanical allodynia, and PD98059 also reduced CXCL13-induced TNF-α and IL-1β upregulation. CXCL13 and CXCR5 contribute to orofacial pain via ERK-mediated proinflammatory cytokines production. Targeting CXCL13/CXCR5/ERK/TNF-α and IL-1β pathway in the trigeminal ganglion may offer effective treatment for orofacial neuropathic pain.

  4. BMP9 inhibits proliferation and metastasis of HER2-positive SK-BR-3 breast cancer cells through ERK1/2 and PI3K/AKT pathways.

    Science.gov (United States)

    Ren, Wei; Liu, Yuehong; Wan, Shaoheng; Fei, Chang; Wang, Wei; Chen, Yingying; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Zhou, Lan; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-01-01

    Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer.

  5. Receptor-interacting Protein 140 Overexpression Promotes Neuro-2a Neuronal Differentiation by ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Xiao Feng

    2015-01-01

    Full Text Available Background: Abnormal neuronal differentiation plays an important role in central nervous system (CNS development abnormalities such as Down syndrome (DS, a disorder that results directly from overexpression of genes in trisomic cells. Receptor-interacting protein 140 (RIP140 is significantly upregulated in DS brains, suggesting its involvement in DS CNS development abnormalities. However, the role of RIP140 in neuronal differentiation is still not clear. The current study aimed to investigate the effect of RIP140 overexpression on the differentiation of neuro-2a (N2a neuroblastoma cells, in vitro. Methods: Stably RIP140-overexpressing N2a (N2a-RIP140 cells were used as a neurodevelopmental model, and were constructed by lipofection and overexpression validated by real-time polymerase chain reaction and Western blot. Retinoic acid (RA was used to stimulate N2a differentiation. Combining the expression of Tuj1 at the mRNA and protein levels, the percentage of cells baring neurites, and the number of neurites per cell body was semi-quantified to determine the effect of RIP140 on differentiation of N2a cells. Furthermore, western blot and the ERK1/2 inhibitor U0126 were used to identify the specific signaling pathway by which RIP140 induces differentiation of N2a cells. Statistical significance of the differences between groups was determined by one-way analysis of variance followed by the Dunnett test. Results: Compared to untransfected N2a cells RIPl40 expression in N2a-RIP140 cells was remarkably upregulated at both the mRNA and protein levels. N2a-RIP140 cells had a significantly increased percentage of cells baring neurites, and numbers of neurites per cell, as compared to N2a cells, in the absence and presence of RA (P < 0.05. In addition, Tuj1, a neuronal biomarker, was strongly upregulated in N2a-RIP140 cells (P < 0.05 and phosphorylated ERK1/2 (p-ERK1/2 levels in N2a-RIP140 cells were dramatically increased, while differentiation was

  6. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  7. Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Aiping Lan

    Full Text Available Hydrogen sulfide (H(2S has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl(2 is a well-known hypoxia mimetic agent. We have demonstrated that H(2S protects against CoCl(2-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK, in particular, extracellular signal-regulated kinase1/2(ERK1/2 and p38MAPK are involved in the neuroprotection of H(2S against chemical hypoxia-induced injuries of PC12 cells is not understood. We observed that CoCl(2 induced expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α, decreased cystathionine-β synthase (CBS, a synthase of H(2S expression, and increased generation of reactive oxygen species (ROS, leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial membrane potential (MMP , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a donor of H(2S or N-acetyl-L cystein (NAC, a ROS scavenger. CoCl(2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal kinase (JNK. Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK significantly prevented CoCl(2-induced injuries. Pretreatment with NaHS or NAC inhibited not only CoCl(2-induced ROS production, but also phosphorylation of ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in CoCl(2-induced injuries and that H(2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants may be useful for preventing and treating hypoxia-induced neuronal injury.

  8. 8-O-Acetyl Shanzhiside Methylester From Lamiophlomis Rotata Reduces Neuropathic Pain by Inhibiting the ERK/TNF-α Pathway in Spinal Astrocytes

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-03-01

    Full Text Available Lamiophlomis rotata (L. rotata; Benth. Kudo is an effective traditional herb in the clinical treatment of chronic pain syndromes in China. 8-O-acetyl shanzhiside methylester (8-OaS, a chief component in L. rotata, possesses potent immunosuppressive activities and favorable analgesic effects. This study was proposed to compare the analgesic effects of 8-OaS with those of lidocaine and ketamine in a spinal nerve ligation (SNL model by behavioral tests, and then investigated its effects upon the expression of spinal glial fibrillary acidic protein (GFAP, phosphorylated extracellular regulated protein kinases (pERK and tumor necrosis factor-alpha (TNF-α via immunofluorescence staining and western blot analyses. The data showed consecutive intrathecal injection of 8-OaS for 2 weeks brought about remarkable palliation of neuropathic pain (NP, possessing similar anti-allodynia effects with those of lidocaine and ketamine. Two weeks after surgery, pERK within the spinal dorsal horn was mainly expressed in astrocytes more than neurons and microglia, and 8-OaS inhibited spinal astrocytic activation and TNF-α expression. Finally, co-treatment of 8-OaS and PD98059 (an Extracellular signal-regulated kinase, ERK inhibitor did not lead to remarkable increase in pain relief or TNF-α expression comparing to rats treated with 8-OaS or PD98059 alone. In conclusion, the anti-nociceptive effects of 8-OaS in the condition of NP relied on the inhibition of SNL-induced astrocyte activation, probably via the down-regulation of the ERK/TNF-α pathway.

  9. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion

    DEFF Research Database (Denmark)

    Lukács, M; Warfvinge, K; Kruse, L S

    2016-01-01

    modify the neurogenic inflammatory response in the trigeminal ganglion. METHODS: Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were...... investigated using immunohistochemistry and Western blot. FINDINGS: Pretreatment with one dose of SZR72 abolished the CFA-induced pERK1/2 and IL-1β activation in the trigeminal ganglion. No significant change was noted in case of repeated treatment with SZR72 as compared to a single dose. CONCLUSIONS......: This is the first study that demonstrates that one dose of KYNA analog before application of CFA can give anti-inflammatory response in a model of trigeminal activation, opening a new line for further investigations regarding possible effects of KYNA derivates....

  10. Glycogen synthase kinase-3 levels and phosphorylation undergo large fluctuations in mouse brain during development

    Science.gov (United States)

    Beurel, Eléonore; Mines, Marjelo A; Song, Ling; Jope, Richard S

    2012-01-01

    Objectives Dysregulated glycogen synthase kinase-3 (GSK3) may contribute to the pathophysiology of mood disorders and other diseases, and appears to be a target of certain therapeutic drugs. The growing recognition of heightened vulnerability during development to many psychiatric diseases, including mood disorders, led us to test if there are developmental changes in mouse brain GSK3 and its regulation by phosphorylation and by therapeutic drugs. Methods GSK3 levels and phosphorylation were measured at seven ages of development in mouse cerebral cortex and hippocampus. Results Two periods of rapid transitions in GSK3 levels were identified, a large rise between postnatal day 1 and two to three weeks of age, where GSK3 levels were as high as four-fold adult mouse brain levels, and a rapid decline between two to four and eight weeks of age, when adult levels were reached. Inhibitory serine-phosphorylation of GSK3, particularly GSK3β, was extremely high in one-day postnatal mouse brain, and rapidly declined thereafter. These developmental changes in GSK3 were equivalent in male and female cerebral cortex, and differed from other signaling kinases, including Akt, ERK1/2, JNK, and p38 levels and phosphorylation. In contrast to adult mouse brain, where administration of lithium or fluoxetine rapidly and robustly increased serine-phosphorylation of GSK3, in young mice these responses were blunted or absent. Conclusions High brain levels of GSK3 and large fluctuations in its levels and phosphorylation in juvenile and adolescent mouse brain raise the possibility that they may contribute to destabilized mood regulation induced by environmental and genetic factors. PMID:23167932

  11. Prelimbic cortex extracellular signal-regulated kinase 1/2 activation is required for memory retrieval of long-term inhibitory avoidance.

    Science.gov (United States)

    Luo, Fei; Zheng, Jian; Sun, Xuan; Deng, Wei-Ke; Li, Bao Ming; Liu, Fang

    2017-04-15

    Neural mechanism underlying memory retrieval has been extensively studied in the hippocampus and amygdala. However, little is known about the role of medial prefrontal cortex in long-term memory retrieval. We evaluate this issue in one-trial step-through inhibitory avoidance (IA) paradigm. Our results showed that, 1) inactivation of mPFC by local infusion of GABA A -receptor agonist muscimol caused severe deficits in retrieval of 1-day and 7-day but had no effects on 2-h inhibitory avoidance memory; 2) the protein level of phosphorylated-ERK1/2 in mPFC were significantly increased following retrieval of 1-day and 7-day IA memory, so did the numbers of phosphorylated-ERK (pERK) and phosphorylated-CREB (pCREB) labeled neurons; 3) intra-mPFC infusion of ERK kinase inhibitor PD98095 significantly reduced phosphorylated ERK1/2 levels and phosphorylated-ERK1/2 and phosphorylated-CREB labeled cells, and severely impaired retrieval of 7-day IA memory when the drugs were administrated 30min prior to test. The present study provides evidence that retrieval of long-lasting memory for inhibitory avoidance requires mPFC and involves the ERK-CREB signaling cascade. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Didymin Alleviates Hepatic Fibrosis Through Inhibiting ERK and PI3K/Akt Pathways via Regulation of Raf Kinase Inhibitor Protein

    Directory of Open Access Journals (Sweden)

    Xing Lin

    2016-12-01

    Full Text Available Background: Didymin has been reported to have anti-cancer potential. However, the effect of didymin on liver fibrosis remains illdefined. Methods: Hepatic fibrosis was induced by CCl4 in rats. The effects of didymin on liver pathology and collagen accumulation were observed by hematoxylin-eosin and Masson's trichrome staining, respectively. Serum transaminases activities and collagen-related indicators levels were determined by commercially available kits. Moreover, the effects of didymin on hepatic stellate cell apoptosis and cell cycle were analyzed by flow cytometry. Mitochondrial membrane potential was detected by using rhodamine-123 dye. The expression of Raf kinase inhibitor protein (RKIP and the phosphorylation of the ERK/MAPK and PI3K/Akt pathways were assessed by Western blot. Results: Didymin significantly ameliorated chronic liver injury and collagen deposition. It strongly inhibited hepatic stellate cells proliferation, induced apoptosis and caused cell cycle arrest in G2/M phase. Moreover, didymin notably attenuated mitochondrial membrane potential, accompanied by release of cytochrome C. Didymin significantly inhibited the ERK/MAPK and PI3K/Akt pathways. The effects of didymin on the collagen accumulation in rats and on the biological behaviors of hepatic stellate cells were largely abolished by the specific RKIP inhibitor locostatin. Conclusion: Didymin alleviates hepatic fibrosis by inhibiting ERK/MAPK and PI3K/Akt pathways via regulation of RKIP expression.

  13. Fisetin Exerts Antioxidant and Neuroprotective Effects in Multiple Mutant hSOD1 Models of Amyotrophic Lateral Sclerosis by Activating ERK.

    Science.gov (United States)

    Wang, T H; Wang, S Y; Wang, X D; Jiang, H Q; Yang, Y Q; Wang, Y; Cheng, J L; Zhang, C T; Liang, W W; Feng, H L

    2018-05-21

    Oxidative stress exhibits a central role in the course of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease commonly found to include a copper/zinc superoxide dismutase (SOD1) gene mutation. Fisetin, a natural antioxidant, has shown benefits in varied neurodegenerative diseases. The possible effect of fisetin in ALS has not been clarified as of yet. We investigated whether fisetin affected mutant hSOD1 ALS models. Three different hSOD1-related mutant models were used: Drosophila expressing mutant hSOD1 G85R , hSOD1 G93A NSC34 cells, and transgenic mice. Fisetin treatment provided neuroprotection as demonstrated by an improved survival rate, attenuated motor impairment, reduced ROS damage and regulated redox homeostasis compared with those in controls. Furthermore, fisetin increased the expression of phosphorylated ERK and upregulated antioxidant factors, which were reversed by MEK/ERK inhibition. Finally, fisetin reduced the levels of both mutant and wild-type hSOD1 in vivo and in vitro, as well as the levels of detergent-insoluble hSOD1 proteins. The results indicate that fisetin protects cells from ROS damage and improves the pathological behaviors caused by oxidative stress in disease models related to SOD1 gene mutations probably by activating ERK, thereby providing a potential treatment for ALS. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Cell survival after UV radiation stress in the unicellular chlorophyte Dunaliella tertiolecta is mediated by DNA repair and MAPK phosphorylation.

    Science.gov (United States)

    García-Gómez, Candela; Parages, María L; Jiménez, Carlos; Palma, Armando; Mata, M Teresa; Segovia, María

    2012-09-01

    Ultraviolet radiation (UVR) induces damage in a variety of organisms, and cells may adapt by developing repair or tolerance mechanisms to counteract such damage; otherwise, the cellular fate is cell death. Here, the effect of UVR-induced cell damage and the associated signalling and repair mechanisms by which cells are able to survive was studied in Dunaliella tertiolecta. UVR did not cause cell death, as shown by the absence of SYTOX Green-positive labelling cells. Ultrastructure analysis by transmission electron microscopy demonstrated that the cells were alive but were subjected to morphological changes such as starch accumulation, chromatin disaggregation, and chloroplast degradation. This behaviour paralleled a decrease in F(v)/F(m) and the formation of cyclobutane-pyrimidine dimers, showing a 10-fold increase at the end of the time course. There was a high accumulation of the repressor of transcriptional gene silencing (ROS1), as well as the cell proliferation nuclear antigen (PCNA) in UVR-treated cells, revealing activation of DNA repair mechanisms. The degree of phosphorylation of c-Jun N-terminal kinase (JNK) and p38-like mitogen-activated protein kinases was higher in UVR-exposed cells; however, the opposite occurred with the phosphorylated extracellular signal-regulated kinase (ERK). This confirmed that both JNK and p38 need to be phosphorylated to trigger the stress response, as well as the fact that cell division is arrested when an ERK is dephosphorylated. In parallel, both DEVDase and WEHDase caspase-like enzymatic activities were active even though the cells were not dead, suggesting that these proteases must be considered within a wider frame of stress proteins, rather than specifically being involved in cell death in these organisms.

  15. Active Erk Regulates Microtubule Stability in H-ras-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Rene E. Harrison

    2001-01-01

    Full Text Available Increasing evidence suggests that activated erk regulates cell functions, at least in part, by mechanisms that do not require gene transcription. Here we show that the map kinase, erk, decorates microtubules (MTs and mitotic spindles in both parental and mutant active rastransfected 10T1 /2 fibroblasts and MCF10A breast epithelial cells. Approximately 20% of total cellular erk decorated MTs in both cell lines. A greater proportion of activated erk was associated with MTs in the presence of mutant active H-ras than in parental cells. Activation of erk by the ras pathway coincided with a decrease in the stability of MT, as detected by a stability marker. The MKK1 inhibitor, PD98059 and transfection of a dominant negative MKK1 blocked ras-induced instability of MTs but did not modify the association of erk with MTs or affect MT stability of the parental cells. These results indicate that the subset of active erk kinase that associates with MTs contributes to their instability in the presence of a mutant active ras. The MT-associated subset of active erk likely contributes to the enhanced invasive and proliferative abilities of cells containing mutant active H-ras.

  16. Phosphorylation of ETS-1 is a critical event in DNA polymerase iota-induced invasion and metastasis of esophageal squamous cell carcinoma.

    Science.gov (United States)

    He, Chao; Wu, Shuhua; Gao, Aidi; Su, Ye; Min, Han; Shang, Zeng-Fu; Wu, Jinchang; Yang, Li; Ding, Wei-Qun; Zhou, Jundong

    2017-12-01

    An aberrantly elevated expression of DNA polymerase ι (Pol ι) is significantly associated with poor prognosis of patients with esophageal squamous cell carcinoma (ESCC), yet the mechanisms behind this phenomenon remain obscure. Based on the RNA-Seq transcriptome and real-time PCR analysis, we identified ETS-1 as a candidate gene involved in Pol ι-mediated progression of ESCC. Wound-healing and transwell assay indicated that downregulation of ETS-1 attenuates Pol ι-mediated invasiveness of ESCC. Signaling pathway analysis showed that Pol ι enhances ETS-1 phosphorylation at threonine-38 through the Erk signaling pathway in ESCC cells. Kaplan-Meier analysis, based on 93 clinical tissue samples, revealed that ETS-1 phosphorylation at threonine-38 is associated with poor prognosis of ESCC patients. The present study thus demonstrates that phosphorylation of ETS-1 is a critical event in the Pol ι-induced invasion and metastasis of ESCC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  17. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors.

    Science.gov (United States)

    Ogata, Takehiro; Naito, Daisuke; Nakanishi, Naohiko; Hayashi, Yukiko K; Taniguchi, Takuya; Miyagawa, Kotaro; Hamaoka, Tetsuro; Maruyama, Naoki; Matoba, Satoaki; Ikeda, Koji; Yamada, Hiroyuki; Oh, Hidemasa; Ueyama, Tomomi

    2014-03-11

    The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as "caveolae." Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR-induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy.

  18. Acidic environment leads to ROS-induced MAPK signaling in cancer cells.

    Directory of Open Access Journals (Sweden)

    Anne Riemann

    Full Text Available Tumor micromilieu often shows pronounced acidosis forcing cells to adapt their phenotype towards enhanced tumorigenesis induced by altered cellular signalling and transcriptional regulation. In the presents study mechanisms and potential consequences of the crosstalk between extra- and intracellular pH (pH(e, pH(i and mitogen-activated-protein-kinases (ERK1/2, p38 was analyzed. Data were obtained mainly in AT1 R-3327 prostate carcinoma cells, but the principle importance was confirmed in 5 other cell types. Extracellular acidosis leads to a rapid and sustained decrease of pH(i in parallel to p38 phosphorylation in all cell types and to ERK1/2 phosphorylation in 3 of 6 cell types. Furthermore, p38 phosphorylation was elicited by sole intracellular lactacidosis at normal pH(e. Inhibition of ERK1/2 phosphorylation during acidosis led to necrotic cell death. No evidence for the involvement of the kinases c-SRC, PKC, PKA, PI3K or EGFR nor changes in cell volume in acidosis-induced MAPK activation was obtained. However, our data reveal that acidosis enhances the formation of reactive oxygen species (ROS, probably originating from mitochondria, which subsequently trigger MAPK phosphorylation. Scavenging of ROS prevented acidosis-induced MAPK phosphorylation whereas addition of H(2O(2 enhanced it. Finally, acidosis increased phosphorylation of the transcription factor CREB via p38, leading to increased transcriptional activity of a CRE-reporter even 24 h after switching the cells back to a normal environmental milieu. Thus, an acidic tumor microenvironment can induce a longer lasting p38-CREB-medited change in the transcriptional program, which may maintain the altered phenotype even when the cells leave the tumor environment.

  19. Molecular mechanisms of the synergy between cysteinyl-leukotrienes and receptor tyrosine kinase growth factors on human bronchial fibroblast proliferation

    Directory of Open Access Journals (Sweden)

    Hajime Yoshisue

    2006-12-01

    Full Text Available We have reported that cysteinyl-leukotrienes (cys-LTs synergise not only with epidermal growth factor (EGF but also with platelet-derived growth factor (PDGF and fibroblast growth factor (FGF to induce mitogenesis in human bronchial fibroblasts. We now describe the molecular mechanisms underlying this synergism. Mitogenesis was assessed by incorporation of [3H]thymidine into DNA and changes in protein phosphorylation by Western blotting. Surprisingly, no CysLT receptor antagonists (MK-571, montelukast, BAY u9773 prevented the synergistic mitogenesis. LTD4 did not cause phosphorylation of EGFR nor did it augment EGF-induced phosphorylation of EGFR, and the synergy between LTD4 and EGF was not blocked by the metalloproteinase inhibitor GM6001 or by an HB-EGF neutralising antibody. The EGFR-selective kinase inhibitor, AG1478, suppressed the synergy by LTD4 and EGF, but had no effect on the synergy with PDGF and FGF. While inhibitors of mitogen-activated protein kinase, phosphatidylinositol 3-kinase and protein kinase C (PKC prevented the synergy, these drugs also inhibited mitogenesis elicited by EGF alone. In contrast, pertussis toxin (PTX efficiently inhibited the potentiating effect of LTD4 on EGF-induced mitogenesis, as well as that provoked by PDGF or FGF, but had no effect on mitogenesis elicited by the growth factors alone. Whereas LTD4 alone did not augment phosphorylation of extracellular signal-regulated kinase (Erk-1/2 and Akt, it increased phosphorylation of PKC in a Gi-dependent manner. Addition of LTD4 prolonged the duration of EGF-induced phosphorylation of Erk-1/2 and Akt, both of which were sensitive to PTX. The effect of cys-LTs involves a PTX-sensitive and PKC-mediated intracellular pathway leading to sustained growth factor-dependent phosphorylation of Erk-1/2 and Akt.

  20. Phosphorylation of p53 at serine 15 in A549 pulmonary epithelial cells exposed to vanadate: Involvement of ATM pathway

    International Nuclear Information System (INIS)

    Suzuki, Katsura; Inageda, Kiyoshi; Nishitai, Gen; Matsuoka, Masato

    2007-01-01

    When A549 cells were exposed to sodium metavanadate (NaVO 3 ), the pentavalent species of vanadium (vanadate), phosphorylation of p53 protein at Ser15 was found in a time (8-48 h)- and dose (10-200 μM)-dependent manner. After the incubation with 50 or 100 μM NaVO 3 for 48 h, accumulation of p53 protein was accompanied with Ser15 phosphorylation. Among serines in p53 protein immunoprecipitated from A549 cells treated with 100 μM NaVO 3 for 48 h, only Ser15 was markedly phosphorylated. Treatment with other vanadate compounds, sodium orthovanadate (Na 3 VO 4 ) and ammonium metavanadate (NH 4 VO 3 ), also induced Ser15 phosphorylation and accumulation of p53 protein. While phosphorylation of extracellular signal-regulated protein kinase (ERK) was found in cells treated with NaVO 3 , treatment with U0126 did not suppress Ser15 phosphorylation. On the other hand, treatment with wortmannin or caffeine, the inhibitors to phosphatidylinositol 3-kinase related kinases (PIKKs), suppressed both NaVO 3 -induced Ser15 phosphorylation and accumulation of p53 protein. The silencing of ataxia telangiectasia mutated (ATM) expression using short-interference RNA resulted in the marked suppression of Ser15 phosphorylation in A549 cells exposed to NaVO 3 . However, treatment with antioxidants such as catalase and N-acetylcysteine did not suppress NaVO 3 -induced Ser15 phosphorylation. Transcriptional activation of p53 and DNA fragmentation in A549 cells treated with NaVO 3 were suppressed only slightly by S15A mutation, suggesting that Ser15 phosphorylation is not essential for these responses. The present results showed that vanadate induces the phosphorylation of p53 at Ser15 depending on ATM, one of the members of PIKK family, in this human pulmonary epithelial cell line

  1. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Energy Technology Data Exchange (ETDEWEB)

    Tamminen, Jenni A.; Yin, Miao [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Rönty, Mikko [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Pathology, University of Helsinki (Finland); Sutinen, Eva [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Pasternack, Arja; Ritvos, Olli [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Bacteriology and Immunology, University of Helsinki (Finland); Myllärniemi, Marjukka [Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Koli, Katri, E-mail: katri.koli@helsinki.fi [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland)

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  2. Black rice extract protected HepG2 cells from oxidative stress-induced cell death via ERK1/2 and Akt activation

    Science.gov (United States)

    Yoon, Jaemin; Ham, Hyeonmi; Sung, Jeehye; Kim, Younghwa; Choi, Youngmin; Lee, Jeom-Sig; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    BACKGROUND/OBJECTIVES The objective of this study was to evaluate the protective effect of black rice extract (BRE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. MATERIALS/METHODS Methanolic extract from black rice was evaluated for the protective effect on TBHP-induced oxidative injury in HepG2 cells. Several biomarkers that modulate cell survival and death including reactive oxygen species (ROS), caspase-3 activity, and related cellular kinases were determined. RESULTS TBHP induced cell death and apoptosis by a rapid increase in ROS generation and caspase-3 activity. Moreover, TBHP-induced oxidative stress resulted in a transient ERK1/2 activation and a sustained increase of JNK1/2 activation. While, BRE pretreatment protects the cells against oxidative stress by reducing cell death, caspase-3 activity, and ROS generation and also by preventing ERKs deactivation and the prolonged JNKs activation. Moreover, pretreatment of BRE increased the activation of ERKs and Akt which are pro-survival signal proteins. However, this effect was blunted in the presence of ERKs and Akt inhibitors. CONCLUSIONS These results suggest that activation of ERKs and Akt pathway might be involved in the cytoprotective effect of BRE against oxidative stress. Our findings provide new insights into the cytoprotective effects and its possible mechanism of black rice against oxidative stress. PMID:24741394

  3. Noradrenaline, oxymetazoline and phorbol myristate acetate induce distinct functional actions and phosphorylation patterns of α1A-adrenergic receptors.

    Science.gov (United States)

    Alcántara-Hernández, Rocío; Hernández-Méndez, Aurelio; Romero-Ávila, M Teresa; Alfonzo-Méndez, Marco A; Pupo, André S; García-Sáinz, J Adolfo

    2017-12-01

    In LNCaP cells that stably express α 1A -adrenergic receptors, oxymetazoline increased intracellular calcium and receptor phosphorylation, however, this agonist was a weak partial agonist, as compared to noradrenaline, for calcium signaling. Interestingly, oxymetazoline-induced receptor internalization and desensitization displayed greater effects than those induced by noradrenaline. Phorbol myristate acetate induced modest receptor internalization and minimal desensitization. α 1A -Adrenergic receptor interaction with β-arrestins (colocalization/coimmunoprecipitation) was induced by noradrenaline and oxymetazoline and, to a lesser extent, by phorbol myristate acetate. Oxymetazoline was more potent and effective than noradrenaline in inducing ERK 1/2 phosphorylation. Mass spectrometric analysis of immunopurified α 1A -adrenergic receptors from cells treated with adrenergic agonists and the phorbol ester clearly showed that phosphorylated residues were present both at the third intracellular loop and at the carboxyl tail. Distinct phosphorylation patterns were observed under the different conditions. The phosphorylated residues were: a) Baseline and all treatments: T233; b) noradrenaline: S220, S227, S229, S246, S250, S389; c) oxymetazoline: S227, S246, S381, T384, S389; and d) phorbol myristate acetate: S246, S250, S258, S351, S352, S401, S402, S407, T411, S413, T451. Our novel data, describing the α 1A -AR phosphorylation sites, suggest that the observed different phosphorylation patterns may participate in defining adrenoceptor localization and action, under the different conditions examined. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Celecoxib induces proliferation and Amphiregulin production in colon subepithelial myofibroblasts, activating erk1-2 signaling in synergy with EGFR.

    Science.gov (United States)

    Benelli, Roberto; Venè, Roberta; Minghelli, Simona; Carlone, Sebastiano; Gatteschi, Beatrice; Ferrari, Nicoletta

    2013-01-01

    The COX-2 inhibitor Celecoxib, tested in phase III trials for the prevention of sporadic colon adenomas, reduced the appearance of new adenomas, but was unable to affect the incidence of colon cancer. Moreover the 5years follow-up showed that patients discontinuing Celecoxib treatment had an increased incidence of adenomas as compared to the placebo arm. In the APC(min/+) mouse model short term treatment with Celecoxib reduced gut adenomas, but a prolonged administration of the drug induced fibroblast activation and intestinal fibrosis with a final tumor burden. The way Celecoxib could directly activate human colon myofibroblasts (MF) has not yet been investigated. We found that MF are activated by non toxic doses of Celecoxib. Celecoxib induces erk1-2 and Akt phosphorylation within 5'. This short term activation is apparently insufficient to cause phenotypic changes, but the contemporary triggering of EGFR causes an impressive synergic effect inducing MF proliferation and the neo-expression and release of Amphiregulin (AREG), a well known EGFR agonist involved in colon cancer progression. As a confirm to these observations, the erk inhibitor U0126 and the EGFR inhibitors Tyrphostin and Cetuximab were able to contrast AREG induction. Our data provide evidence that Celecoxib directly activates MF empowering EGFR signaling. According to these results the association with EGFR (or erk1-2) inhibitors could abolish the off-target activity of Celecoxib, possibly extending the potential of this drug for colon cancer prevention. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. JWA gene regulates PANC-1 pancreatic cancer cell behaviors through MEK-ERK1/2 of the MAPK signaling pathway.

    Science.gov (United States)

    Wu, Yuan-Yuan; Ma, Tie-Liang; Ge, Zhi-Jun; Lin, Jie; Ding, Wei-Liang; Feng, Jia-Ke; Zhou, Su-Jun; Chen, Guo-Chang; Tan, Yong-Fei; Cui, Guo-Xing

    2014-10-01

    The present study aimed to investigate the role of JWA gene in the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells and the effect on the MAPK signaling pathway. Human PANC-1 pancreatic cancer cells were cultured in vitro , and small interfering RNA (siRNA) was designed for the JWA gene. The siRNA was transfected into PANC-1 cells. Subsequently, the cell proliferation was measured by MTT assay; cell apoptosis was detected by analyzing BAX and Bcl-2 protein expression; cell migration and invasion were measured using Transwell ® chambers; and the protein expression of JWA and ERK1/2, JNK and p38 and their phosphorylated forms were measured by western blotting. By utilizing the MTT assay, the results showed that when JWA protein expression was inhibited, the proliferation of PANC-1 cells was enhanced. In addition, the expression of apoptosis-associated protein (AAP) BAX was substantially decreased, while the expression of the apoptosis inhibitor gene, Bcl-2 , was significantly enhanced. Using Transwell chambers, it was found that the number of penetrating PANC-1 cells was significantly increased after transfection with JWA siRNA, suggesting that the migration and invasion of the cells was substantially increased. By studying the association between JWA and the MAPK pathway in PANC-1 cells, it was found that the expression of p-ERK1/2 of the MAPK pathway was significantly downregulated following JWA siRNA transfection. However, the expression levels of ERK1/2, JNK, p38, p-JNK and p-p38 showed no significant differences. In conclusion, it was shown that JWA affects the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells which could be attributed to effects on the expression of ERK1/2 in the MAPK pathway.

  6. Phosphorylated human prolactin (S179D-hPRL) is a potent anti-angiogenic hormone in vitro and in vivo

    International Nuclear Information System (INIS)

    Ueda, Eric Kinnosuke Martins

    2006-01-01

    previously shown, S179D-hPRL blocked extracellular regulated kinase (ERK) phosphorylation in response to bFGF, but, in addition, continued co-incubation showed a delayed and prolonged activation of ERK. PD98059 [a specific mitogen-activated protein kinase (MAPkinase) inhibitor] inhibited this delayed activation of ERK and the effects of S179D-hPRL on all parameters except p53, or activity of the Bax promoter. We conclude that low doses of S179D-hPRL block bFGF-induced ERK signaling and yet activates ERK in a different time frame to elevate p21, and activate the extrinsic pathway. Longer incubations and higher concentrations, however, additionally activate the intrinsic pathway using an alternate intracellular signal. These findings suggest that circulating levels of phosphorylated hPRL may reduce the progression of cancer and, furthermore, that S179D-hPRL may be a useful anti-angiogenic therapeutic. (author)

  7. Activation of PKA, p38 MAPK and ERK1/2 by gonadotropins in cumulus cells is critical for induction of EGF-like factor and TACE/ADAM17 gene expression during in vitro maturation of porcine COCs

    Directory of Open Access Journals (Sweden)

    Yamashita Yasuhisa

    2009-12-01

    Full Text Available Abstract Objectives During ovulation, it has been shown that LH stimulus induces the expression of numerous genes via PKA, p38 MAPK, PI3K and ERK1/2 in cumulus cells and granulosa cells. Our recent study showed that EGF-like factor and its protease (TACE/ADAM17 are required for the activation of EGF receptor (EGFR, cumulus expansion and oocyte maturation of porcine cumulus-oocyte complexes (COCs. In the present study, we investigated which signaling pathways are involved in the gene expression of EGF-like factor and in Tace/Adam17 expression in cumulus cells of porcine COC during in vitro maturation. Methods Areg, Ereg, Tace/Adam17, Has2, Tnfaip6 and Ptgs2 mRNA expressions were detected in cumulus cells of porcine COCs by RT-PCR. Protein level of ERK1/2 phosphorylation in cultured cumulus cells was analyzed by westernblotting. COCs were visualized using a phase-contrast microscope. Results When COCs were cultured with FSH and LH up to 2.5 h, Areg, Ereg and Tace/Adam17 mRNA were expressed in cumulus cells of COCs. Areg, Ereg and Tace/Adam17 gene expressions were not suppressed by PI3K inhibitor (LY294002, whereas PKA inhibitor (H89, p38 MAPK inhibitor (SB203580 and MEK inhibitor (U0126 significantly suppressed these gene expressions. Phosphorylation of ERK1/2, and the gene expression of Has2, Tnfaip6 and Ptgs2 were also suppressed by H89, SB203580 and U0126, however, these negative effects were overcome by the addition of EGF to the medium, but not in the U0126 treatment group. Conclusion The results showed that PKA, p38 MAPK and ERK1/2 positively controlled the expression of EGF-like factor and TACE/ADMA17, the latter of which impacts the cumulus expansion and oocyte maturation of porcine COCs via the EGFR-ERK1/2 pathway in cumulus cells.

  8. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse.

    Science.gov (United States)

    Lim, Soonmin; Moon, Minho; Oh, Hyein; Kim, Hyo Geun; Kim, Sun Yeou; Oh, Myung Sook

    2014-10-01

    Ginger (the rhizome of Zingiber officinale Roscoe) has been used worldwide for many centuries in cooking and for treatment of several diseases. The main pharmacological properties of ginger include anti-inflammatory, antihyperglycemic, antiarthritic, antiemetic and neuroprotective actions. Recent studies demonstrated that ginger significantly enhances cognitive function in various cognitive disorders as well as in healthy brain. However, the biochemical mechanisms underlying the ginger-mediated enhancement of cognition have not yet been studied in normal or diseased brain. In the present study, we assessed the memory-enhancing effects of dried ginger extract (GE) in a model of scopolamine-induced memory deficits and in normal animals by performing a novel object recognition test. We found that GE administration significantly improved the ability of mice to recognize novel objects, indicating improvements in learning and memory. Furthermore, to elucidate the mechanisms of GE-mediated cognitive enhancement, we focused on nerve growth factor (NGF)-induced signaling pathways. NGF enzyme-linked immunosorbent assay analysis revealed that GE administration led to elevated NGF levels in both the mouse hippocampus and rat glioma C6 cells. GE administration also resulted in phosphorylation of extracellular-signal-regulated kinase (ERK) and cyclic AMP response element-binding protein (CREB), as revealed by Western blotting analysis. Neutralization of NGF with a specific NGF antibody inhibited GE-triggered activation of ERK and CREB in the hippocampus. Also, GE treatment significantly increased pre- and postsynaptic markers, synaptophysin and PSD-95, which are related to synapse formation in the brain. These data suggest that GE has a synaptogenic effect via NGF-induced ERK/CREB activation, resulting in memory enhancement. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. AVS-1357 inhibits melanogenesis via prolonged ERK activation.

    Science.gov (United States)

    Kim, Dong-Seok; Lee, Hyun-Kyung; Park, Seo-Hyoung; Chae, Chong Hak; Park, Kyoung-Chan

    2009-08-01

    In this study, we demonstrated that a derivative of imidazole, AVS-1357, is a novel skin-whitening compound. AVS-1357 was found to significantly inhibit melanin production in a dose-dependent manner; however, it did not directly inhibit tyrosinase. Furthermore, we found that AVS-1357 induced prolonged activation of extracellular signal-regulated kinase (ERK) and Akt, while it downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase. It has been reported that the activation of ERK and/or Akt is involved in melanogenesis. Therefore, we examined the effects of AVS-1357 on melanogenesis in the absence or presence of PD98059 (a specific inhibitor of the ERK pathway) and/or LY294002 (a specific inhibitor of the Akt pathway). PD98059 dramatically increased melanogenesis, whereas LY294002 had no effect. Furthermore, PD98059 attenuated AVS-1357 induced ERK activation, as well as the downregulation of MITF and tyrosinase. These findings suggest that the effects of AVS-1357 occur via downregulation of MITF and tyrosinase, which is caused by AVS-1357-induced prolonged ERK activation. Taken together, our results indicate that AVS-1357 has the potential as a new skin whitening agent.

  10. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway

    International Nuclear Information System (INIS)

    Karam, Manale; Legay, Christine; Auclair, Christian; Ricort, Jean-Marc

    2012-01-01

    Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic

  11. Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase (STEP)

    Science.gov (United States)

    Li, Hui; Li, Kang-shuai; Su, Jing; Chen, Lai-Zhong; Xu, Yun-Fei; Wang, Hong-Mei; Gong, Zheng; Cui, Guo-Ying; Yu, Xiao; Wang, Kai; Yao, Wei; Xin, Tao; Li, Min-Yong; Xiao, Kun-Hong; An, Xiao-fei; Huo, Yuqing; Xu, Zhi-gang; Sun, Jin-Peng; Pang, Qi

    2013-01-01

    Striatal-enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal-regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho-ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho-ERK by STEP is not known. Therefore, we examined STEP activity toward pNPP, phospho-tyrosine-containing peptides, and the full-length phospho-ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N-terminal regulatory region and key residues in its active site. Specifically, both KIM and KIS of STEP were required for ERK interaction. In addition to the N-terminal KIS region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho-ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho-ERK peptide sequence through its active site, and the contact of STEP F311 with phospho-ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP-ERK recognition, which could serve as a potential therapy for neurological disorders. PMID:24117863

  12. The human leukocyte antigen G promotes trophoblast fusion and β-hCG production through the Erk1/2 pathway in human choriocarcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji-meng [School of Medicine, Nankai University, Tianjin 300071 (China); State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Zhao, Hong-xi [Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038 (China); Wang, Li [Department of Obstetrics and Gynecology, General Hospital of Chinese People’s Liberation Army, Beijing 100853 (China); Gao, Zhi-ying, E-mail: gaozy301@yahoo.com.cn [Department of Obstetrics and Gynecology, General Hospital of Chinese People’s Liberation Army, Beijing 100853 (China); Yao, Yuan-qing, E-mail: yqyao@126.com [Department of Obstetrics and Gynecology, General Hospital of Chinese People’s Liberation Army, Beijing 100853 (China)

    2013-05-10

    Highlights: •HLA-G expression promotes BeWo cells fusion and fusogenic gene expression. •HLA-G is capable of inducing β-hCG production in human choriocarcinoma cell lines. •Up-regulation of β-hCG production by HLA-G is mediated via the Erk1/2 pathway. -- Abstract: The human leukocyte antigen G (HLA-G) is expressed on the fetal–maternal interface and plays a role in protecting fetal-derived trophoblasts from the maternal immune response, allowing trophoblasts to invade the uterus. However, HLA-G also possesses immune suppressing-independent functions. We found that HLA-G expressing BeWo choriocarcinoma cells increased cell–cell fusion compared to control BeWo cells under forskolin treatment. Regardless of forskolin treatment, the expression of fusogenic gene mRNAs, including syncytin-1, the transcription factor glial cell missing 1 (Gcm1), and beta human chorionic gonadotropin (β-hCG) were elevated. HLA-G up-regulates β-hCG production in human choriocarcinoma cells because HLA-G knockdown in JEG-3 cells induces a dramatic decrease in β-hCG compared with control cells. The defect in β-hCG production in HLA-G knocked-down cells could not be completely overcome by stimulating hCG production through increasing intracellular cAMP levels. HLA-G expressing cells have increased phosphorylation levels for extracellular signal-regulated kinase1/2 (Erk1/2) in BeWo cells. The Erk1/2 pathway is inactivated after the inhibition of HLA-G expression in JEG-3 cells. Finally, Erk1/2 inhibition was able to suppress the increased hCG production induced by HLA-G expression. Together, these data suggest novel roles for HLA-G in regulating β-hCG production via the modulation of the Erk1/2 pathway and by inducing trophoblast cell fusion.

  13. 4-Hydroxynonenal enhances MMP-9 production in murine macrophages via 5-lipoxygenase-mediated activation of ERK and p38 MAPK

    International Nuclear Information System (INIS)

    Lee, Seung J.; Kim, Chae E.; Yun, Mi R.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Shin, Hwa K.; Bae, Sun S.; Kim, Chi D.

    2010-01-01

    Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B 4 (LTB 4 ) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT 1 (cysLT 1 ) receptor antagonist, REV-5901 as well as a BLT 1 receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB 4 and cysLT (LTC 4 and LTD 4 ) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB 4 and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.

  14. Cyanidin-3-O-galactoside and blueberry extracts supplementation improves spatial memory and regulates hippocampal ERK expression in senescence-accelerated mice.

    Science.gov (United States)

    Tan, Long; Yang, Hong Peng; Pang, Wei; Lu, Hao; Hu, Yan Dan; Li, Jing; Lu, Shi Jun; Zhang, Wan Qi; Jiang, Yu Gang

    2014-03-01

    To investigate whether the antioxidation and the regulation on the Extracellular Regulated Protein Kinases (ERK) signaling pathway are involved in the protective effects of blueberry on central nervous system. 30 Senescence-accelerated mice prone 8 (SAMP8) mice were divided into three groups and treated with normal diet, blueberry extracts (200 mg/kg•bw/day) and cyaniding-3-O-galactoside (Cy-3-GAL) (50 mg/kg•bw/day) from blueberry for 8 weeks. 10 SAMR1 mice were set as control group. The capacity of spatial memory was assessed by Passive avoidance task and Morris water maze. Histological analyses on hippocampus were completed. Malondialdehyde (MDA) levels, Superoxide Dismutase (SOD) activity and the expression of ERK were detected. Both Cy-3-GAL and blueberry extracts were shown effective functions to relieve cellular injury, improve hippocampal neurons survival and inhibit the pyramidal cell layer damage. Cy-3-GAL and blueberry extracts also increased SOD activity and reduced MDA content in brain tissues and plasma, and increased hippocampal phosphorylated ERK (p-ERK) expression in SAMP8 mice. Further more, the passive avoidance task test showed that both the latency time and the number of errors were improved by Cy-3-GAL treatment, and the Morris Water Maze test showed significant decreases of latency were detected by Cy-3-GAL and blueberry extracts treatment on day 4. Blueberry extracts may reverse the declines of cognitive and behavioral function in the ageing process through several pathways, including enhancing the capacity of antioxidation, altering stress signaling. Cy-3-GAL may be an important active ingredient for these biological effects. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  15. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen.

    Directory of Open Access Journals (Sweden)

    Zhong-Dong Shi

    2011-01-01

    Full Text Available Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP expression in rat vascular smooth muscle cells (SMCs and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS chains from proteoglycan (PG core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1 suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13 expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction

  16. Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3.

    Directory of Open Access Journals (Sweden)

    Rocío Alcántara-Hernández

    Full Text Available The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1-3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1-3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes.Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes.

  17. Polyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and ERK1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels

    Directory of Open Access Journals (Sweden)

    Mohamed T

    2017-12-01

    viability/proliferation. These inhibitory effects were lost after 48 hours’ exposure (except for the PVP-modified AuNPs. Furthermore, all AuNPs decreased acetylcholine (ACh-induced phosphorylation of ERK1/2, a key signaling protein of cell function. mPEG-modified AuNPs had lower cytostatic effects than PVP-modified AuNPs. Citrate-stabilized AuNPs did not alter endothelial-dependent vasodilation induced by ACh, but attenuated endothelial-independent responses induced by sodium nitroprusside. PVP-modified AuNPs attenuated ACh-induced dilation, whereas mPEG-modified AuNPs did not, though this was dose-related.Conclusion: We demonstrated that mPEG-modified AuNPs at a therapeutic dosage showed lower cytostatic effects and were less detrimental to vasodilator function than PVP-modified AuNPs, indicating greater potential as agents for diagnostic imaging and therapy. Keywords: nanoparticles, gold, vascular, vasodilation, artery, cell culture

  18. Icaritin induces MC3T3-E1 subclone14 cell differentiation through estrogen receptor-mediated ERK1/2 and p38 signaling activation.

    Science.gov (United States)

    Wu, Zhidi; Ou, Ling; Wang, Chaopeng; Yang, Li; Wang, Panpan; Liu, Hengrui; Xiong, Yingquan; Sun, Kehuan; Zhang, Ronghua; Zhu, Xiaofeng

    2017-10-01

    Icaritin (ICT), a hydrolytic product of icariin from the genus Epimedium, has many indicated pharmacological and biological activities. Several studies have shown that ICT has potential osteoprotective effects, including stimulation of osteoblast differentiation and inhibition of osteoclast differentiation. However, the molecular mechanism for this anabolic action of ICT remains largely unknown. Here, we found that ICT could enhance MC3T3-E1 subclone 14 preosteoblastic cell differentiation associated with increased mRNA levels and protein expression of the differentiation markers alkaline phosphatase (ALP), type 1 collagen (COL1), osteocalcin (OC), osteoponin (OPN) and runt-related transcription factor 2 (RUNX2), and improved mineralization, confirmed by bone nodule formation and collagen synthesis. To characterize the underlying mechanisms, we examined the effect of ICT on estrogen receptor (ER) and mitogen-activated protein kinase (MAPK) signaling. ICT treatment induced p38 kinase and extracellular signal-regulated kinase 1/2 (ERK1/2) activation, but it demonstrated at the same time point no effect on activation of c-Jun N-terminal kinase (JNK). ER antagonist ICI182780, p38 antagonist SB203580 and ERK1/2 antagonist PD98059 markedly inhibited the ICT-induced the mRNA expression of ALP, COL1, OC and OPN. ICI182780 attenuated the ICT-induced phosphorylation of p38 and ERK1/2. These observations indicate a potential mechanism of osteogenic effects of ICT involving the ERK1/2 and p38 pathway activation through the ER. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Endothelial ERK signaling controls lymphatic fate specification

    Science.gov (United States)

    Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael

    2013-01-01

    Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722

  20. Autophagy Stimulus Promotes Early HuR Protein Activation and p62/SQSTM1 Protein Synthesis in ARPE-19 Cells by Triggering Erk1/2, p38MAPK, and JNK Kinase Pathways

    Directory of Open Access Journals (Sweden)

    Nicoletta Marchesi

    2018-01-01

    Full Text Available RNA-binding protein dysregulation and altered expression of proteins involved in the autophagy/proteasome pathway play a role in many neurodegenerative disease onset/progression, including age-related macular degeneration (AMD. HuR/ELAVL1 is a master regulator of gene expression in human physiopathology. In ARPE-19 cells exposed to the proteasomal inhibitor MG132, HuR positively affects at posttranscriptional level p62 expression, a stress response gene involved in protein aggregate clearance with a role in AMD. Here, we studied the early effects of the proautophagy AICAR + MG132 cotreatment on the HuR-p62 pathway. We treated ARPE-19 cells with Erk1/2, AMPK, p38MAPK, PKC, and JNK kinase inhibitors in the presence of AICAR + MG132 and evaluated HuR localization/phosphorylation and p62 expression. Two-hour AICAR + MG132 induces both HuR cytoplasmic translocation and threonine phosphorylation via the Erk1/2 pathway. In these conditions, p62 mRNA is loaded on polysomes and its translation in de novo protein is favored. Additionally, for the first time, we report that JNK can phosphorylate HuR, however, without modulating its localization. Our study supports HuR’s role as an upstream regulator of p62 expression in ARPE-19 cells, helps to understand better the early events in response to a proautophagy stimulus, and suggests that modulation of the autophagy-regulating kinases as potential therapeutic targets for AMD may be relevant.

  1. Polymeric immunoglobulin receptor-mediated invasion of Streptococcus pneumoniae into host cells requires a coordinate signaling of SRC family of protein-tyrosine kinases, ERK, and c-Jun N-terminal kinase.

    Science.gov (United States)

    Agarwal, Vaibhav; Asmat, Tauseef M; Dierdorf, Nina I; Hauck, Christof R; Hammerschmidt, Sven

    2010-11-12

    Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and the retrograde machinery of pIgR. Here, we demonstrate the involvement of Src protein-tyrosine kinases (PTKs), focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinases (MAPK) in pneumococcal invasion via pIgR. Pharmacological inhibitors of PTKs and MAPKs and genetic interference with Src PTK and FAK functions caused a significant reduction of pIgR-mediated pneumococcal invasion but did not influence bacterial adhesion to host cells. Furthermore, pneumococcal ingestion by host cells induces activation of ERK1/2 and JNK. In agreement with activated JNK, its target molecule and DNA-binding protein c-Jun was phosphorylated. We also show that functionally active Src PTK is essential for activation of ERK1/2 upon pneumococcal infections. In conclusion, these data illustrate the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells.

  2. Urotensin II contributes to collagen synthesis and up-regulates Egr-1 expression in cultured pulmonary arterial smooth muscle cells through the ERK1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan 250061 (China); Cai, Zhifeng; Liu, Mengmeng [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan 250012 (China); Zhao, Cuifen, E-mail: zhaocuifen@sdu.edu.cn [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan 250012 (China); Li, Dong [Research Room of Hypothermia Medicine, Qilu Hospital, Shandong University, Jinan 250012 (China); Lv, Chenguang; Wang, Yuping; Xu, Tengfei [Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan 250061 (China)

    2015-11-27

    Aim: The objective of this study was to investigate the effects of urotensin II (UII) treatment on the proliferation and collagen synthesis of cultured rat pulmonary arterial smooth muscle cells (PASMCs) and to explore whether these effects are mediated by mitogen-activated protein kinase (MAPK) signaling pathways and early growth response 1 (Egr-1). Methods: The proliferation of cultured PASMCs stimulated with different doses of UII was detected by BrdU incorporation. The mRNA expression levels of procollagen I (procol I), procollagen III (procol III), extracellular regulated protein kinase 1/2 (ERK1/2), stress-stimulated protein kinase (Sapk), p38 MAPK (p38), and Egr-1 mRNA in cultured PASMCs after treatment with UII, the UII-specific antagonist urantide, and the ERK1/2 inhibitor PD98059 were detected by real-time polymerase chain reaction (PCR), and the protein expression levels of procol I, procol III, phosphorylated (p)-ERK1/2, p-Sapk, p-p38, and Egr-1 were detected by Western blotting. Results: Treatment with UII increased the proliferation of cultured PASMCs in a dose-dependent manner (P < 0.05). However, treatment with urantide and PD98059 inhibited the promoting effect of UII on PASMC proliferation (P < 0.05). Real-time PCR analysis showed that UII up-regulated the expression of procol I, procol III, ERK1/2, Sapk, and Egr-1 mRNA (P < 0.05), but not p38 mRNA. However, the up-regulating effect of UII was inhibited by PD98059 and urantide. Western blotting analysis showed that UII increased the synthesis of collagen I, collagen III, p-ERK1/2, p-Sapk, and Egr-1, and these effects also were inhibited by PD98059 and urantide (P < 0.05). Conclusions: Egr-1 participates in the UII-mediated proliferation and collagen synthesis of cultured rat PASMCs via activation of the ERK1/2 signaling pathway.

  3. Cell Signaling and Differential Protein Expression in Neuronal Differentiation of Bone Marrow Mesenchymal Stem Cells with Hypermethylated Salvador/Warts/Hippo (SWH Pathway Genes.

    Directory of Open Access Journals (Sweden)

    Hui-Hung Tzeng

    Full Text Available Human mesenchymal stem cells (MSCs modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF and the expression of BDNF receptor tyrosine receptor kinase B (TrkB correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε and kinesin heavy chain (KIF5B increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1 decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.

  4. Potential role of insulin signaling on vascular smooth muscle cell migration, proliferation, and inflammation pathways.

    Science.gov (United States)

    Cersosimo, Eugenio; Xu, Xiaojing; Musi, Nicolas

    2012-02-15

    To investigate the role of insulin signaling pathways in migration, proliferation, and inflammation of vascular smooth muscle cells (VSMCs), we examined the expression of active components of the phosphatidyl inositol 3 (PI-3) kinase (p-Akt) and mitogen-activated protein kinase (MAPK) (p-Erk) in primary cultures of VSMCs from human coronary arteries. VSMCs were treated in a dose-response manner with insulin (0, 1, 10, and 100 nM) for 20 min, and Akt and Erk phosphorylation were measured by Western blot analysis. In separate experiments, we evaluated the effect of 200 μM palmitate, in the presence and absence of 8 μM pioglitazone, on insulin-stimulated (100 nM for 20 min) Akt and Erk phosphorylation. The phosphorylation of Akt and Erk in VSMCs exhibited a dose dependency with a three- to fourfold increase, respectively, at the highest dose (100 nM). In the presence of palmitate, insulin-induced Akt phosphorylation was completely abolished, and there was a threefold increase in p-Erk. With addition of pioglitazone, the phosphorylation of Akt by insulin remained unchanged, whereas insulin-stimulated Erk phosphorylation was reduced by pioglitazone. These data in VSMCs indicate that high palmitate decreases insulin-stimulated Akt phosphorylation and stimulates MAPK, whereas preexposure peroxisome proliferator-activated receptor-γ agonist pioglitazone preserves Akt phosphorylation and simultaneously attenuates MAPK signaling. Our results suggest that metabolic and mitogenic insulin signals have different sensitivity, are independently regulated, and may play a role in arterial smooth muscle cells migration, proliferation, and inflammation in conditions of acute hyperinsulinemia.

  5. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells

    International Nuclear Information System (INIS)

    Sun, Qing; Liang, Ying; Zhang, Tianli; Wang, Kun; Yang, Xingsheng

    2017-01-01

    Objective: Estrogen receptor alpha 36 (ER-α36), a truncated variant of ER-α, is different from other nuclear receptors of the ER-α family. Previous findings indicate that ER-α36 might be involved in cell growth, proliferation, and differentiation in carcinomas and primarily mediates non-genomic estrogen signaling. However, studies on ER-α36 and cervical cancer are rare. This study aimed to detect the expression of ER-α36 in cervical cancer; the role of ER-α36 in 17-β-estradiol (E2)-induced invasion, migration and proliferation of cervical cancer; and their probable molecular mechanisms. Methods: Immunohistochemistry and immunofluorescence were used to determine the location of ER-α36 in cervical cancer tissues and cervical cell lines. CaSki and HeLa cell lines were transfected with lentiviruses to establish stable cell lines with knockdown and overexpression of ER-α36. Wound healing assay, transwell invasion assay, and EdU incorporation proliferation assay were performed to evaluate the migration, invasion, and proliferation ability. The phosphorylation levels of mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling molecules were examined with western blot analysis. Results: ER-α36 expression was detected in both cervical cell lines and cervical cancer tissues. Downregulation of ER-α36 significantly inhibited cell invasion, migration, and proliferation. Moreover, upregulation of ER-α36 increased the invasion, migration, and proliferation ability of CaSki and HeLa cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation. Conclusion: ER-α36 is localized on the plasma membrane and cytoplasm in both cervical cancer tissues and cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells. - Highlights: • ER-α36 is expressed on both cervical cell lines and cervical cancer tissues. • ER-α36 mediates estrogen

  6. Activation of Signaling Cascades by Weak Extremely Low Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Einat Kapri-Pardes

    2017-10-01

    Full Text Available Background/Aims: Results from recent studies suggest that extremely low frequency magnetic fields (ELF-MF interfere with intracellular signaling pathways related to proliferative control. The mitogen-activated protein kinases (MAPKs, central signaling components that regulate essentially all stimulated cellular processes, include the extracellular signal-regulated kinases 1/2 (ERK1/2 that are extremely sensitive to extracellular cues. Anti-phospho-ERK antibodies serve as a readout for ERK1/2 activation and are able to detect minute changes in ERK stimulation. The objective of this study was to explore whether activation of ERK1/2 and other signaling cascades can be used as a readout for responses of a variety of cell types, both transformed and non-transformed, to ELF-MF. Methods: We applied ELF-MF at various field strengths and time periods to eight different cell types with an exposure system housed in a tissue culture incubator and followed the phosphorylation of MAPKs and Akt by western blotting. Results: We found that the phosphorylation of ERK1/2 is increased in response to ELF-MF. However, the phosphorylation of ERK1/2 is likely too low to induce ELF-MF-dependent proliferation or oncogenic transformation. The p38 MAPK was very slightly phosphorylated, but JNK or Akt were not. The effect on ERK1/2 was detected for exposures to ELF-MF strengths as low as 0.15 µT and was maximal at ∼10 µT. We also show that ERK1/2 phosphorylation is blocked by the flavoprotein inhibitor diphenyleneiodonium, indicating that the response to ELF-MF may be exerted via NADP oxidase similar to the phosphorylation of ERK1/2 in response to microwave radiation. Conclusions: Our results further indicate that cells are responsive to ELF-MF at field strengths much lower than previously suspected and that the effect may be mediated by NADP oxidase. However, the small increase in ERK1/2 phosphorylation is probably insufficient to affect proliferation and oncogenic

  7. Different Expression of Extracellular Signal-Regulated Kinases (ERK) 1/2 and Phospho-Erk Proteins in MBA-MB-231 and MCF-7 Cells after Chemotherapy with Doxorubicin or Docetaxel.

    Science.gov (United States)

    Taherian, Aliakbar; Mazoochi, Tahereh

    2012-01-01

    Curative treatment of breast cancer patients using chemotherapy often fails as a result of intrinsic or acquired resistance of the tumor to the drug. ERK is one of the main components of the Ras/Raf/MEK/ERK cascade, which mediates signal from cell surface receptors to transcription factors to regulate different gene expression. In this study, cytotoxicity and the expression of Erk1/2 and phospho-ERK was compared in MDA-MB-231 (ER-) and MCF-7 (ER+) cell lines after treatment with doxorubicin (DOX) or docetaxel (DOCT). Cell cytotoxicity of DOX or DOCT was calculated using MTT assay. Immonofluorescent technique was used to show MDR-1 protein in MDA-MB-231 and MCF-7 cells after treatment with DOX or DOCT. The expression of ERK1/2 and phpspho-ERK was assayed with immunoblotting. Comparing IC50 values showed that MDA-MB-231 cells are more sensitive than MCF-7 cells to DOX or DOCT. Immonofluorescent results confirmed the expression of MDR-1 in these two cell lines after DOX or DOCT treatment. In MDA-MB-231 cells the expression of ERK1/2 and phospho-ERK was decreased after DOX treatment in a dose-dependent manner. In contrast in MCF-7 cells the expression of ERK1/2 and phospho-ERK was increased after DOX treatment. DOCT treatment demonstrated the same result with less significant differences than DOX. The heterogeneity seen in cell lines actually reflects the heterogeneity of breast cancers. That is why, patients categorized in one group respond differently to a single treatment. These results emphasize the importance of a more accurate classification and a more specific treatment of breast cancer subtypes.

  8. The anti-apoptotic and cardioprotective effects of salvianolic acid a on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway.

    Directory of Open Access Journals (Sweden)

    Tongda Xu

    +I/R group. SAA exerts an anti-apoptotic role against myocardial IRI by inhibiting DUSP2-mediated JNK dephosphorylation and activating DUSP4/16-mediated ERK1/2 phosphorylation.

  9. A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites

    DEFF Research Database (Denmark)

    Dang, Pham My-Chan; Stensballe, Allan; Boussetta, Tarek

    2006-01-01

    mass spectrometry to show that GM-CSF and TNF-alpha induce phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase, in human neutrophils. As Ser345 is located in the MAPK consensus sequence, we tested the effects of MAPK inhibitors. Inhibitors of the ERK1/2 pathway abrogated GM......Neutrophil NADPH oxidase plays a key role in host defense and in inflammation by releasing large amounts of superoxide and other ROSs. Proinflammatory cytokines such as GM-CSF and TNF-alpha prime ROS production by neutrophils through unknown mechanisms. Here we used peptide sequencing by tandem...

  10. [Effect of ERK1/2 Signaling Pathway Inhibitor PD98059 on the Expression of Ras, BRaf, MEK, ERK1/2 in Marrow Nucleated Red Blood Cells of CMS Patients].

    Science.gov (United States)

    Han, Yuan-Fang; Ji, Lin-Hua; Feng, Ting-Ting; Liu, Fang; Cui, Sen; Su, Juan

    2017-10-01

    To investigate the effect of ERK1 / 2 signaling pathway inhibitor PD98059 on Ras, Raf, MEK, ERK1, ERK2 expression in order to explore a new way for basic research and clinical treatment of the chronic mountain sickness(CMS). Sixteen CMS patients were selected, the bone marrow was collected for isolation of monomuclear cells (MNC), the cells were sorted by using CD71 and CD235a antibody magnetic beads, then positive cells were diveded into 5 groups: blank control, DMSO and PD98059 5, 10 and 20 µmol/L, and were cultured in hypoxid condition for 72 hours. The Ras-GTP levels in supernatant was detected by ELISA, the RT-PCR was used to determine the expression of BRaf, MEK, ERK1, ERK2 mRNA in nucleated red blood cells, and the Western blot method was used to detect expression of BRaf, MEK, ERK1, ERK2 protein. PD98059 had no effect on the level of Ras-GTP in each groups. Compared with the blank control group, the expression levels of BRaf, MEK mRNA in DMSO group were not statistically significant (P values were 0.826, 0.298). Compared with the PD98059 20 mol/L group, the expression level of ERK1/2 mRNA was statistically significant (P=0.001, 0.002). Compared with the blank control group, expression levels of p-BRaf, p-MEK protein in DMSO group were not statistically significant (P=0.370, 0.351). Compared with the PD98059 20 mol/L group, the difference of p-ERK1/2 protein level in other 4 groups were statistically significant (P values were <0.001, 0.007). PD98059 can up-regulate the expressions of ERK1/2 miRNA and p-ERK1/2 protein in bone marrow nucleated red blood cells, the Ras / Raf / MEK / ERK 1/2 pathway is the main signal transduction pathway in regulating bone marrow nucleated red blood cells, suggesting that Ras/Raf /MEK /ERK 1/2 pathway may be involved in the pathogenesis of chronic mountain sickness process.

  11. Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS Production

    Directory of Open Access Journals (Sweden)

    Abrar Ul Haq Khan

    2016-01-01

    Full Text Available Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS generate reactive oxygen species (ROS through mitochondrial activity. To limit the deleterious effects of excess ROS, certain gene promoters contain antioxidant response elements (ARE, e.g. the genes NQO-1 and HO-1. ROS induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and also the MAPK ERK5 and decreases KEAP1 mRNA. ERK5 activates the transcription factor MEF2, which binds to the promoter of the miR-23a–27a–24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding to its 3′UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1. Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant response to protect themselves from ROS.

  12. Membrane-Type 1 Matrix Metal loproteinase Is Regulated by Sp1 through the Differential Activation of AKT, JNK, and ERK Pathways in Human Prostate Tumor Cells

    Directory of Open Access Journals (Sweden)

    Isis C. Sroka

    2007-05-01

    Full Text Available We and other investigators have previously shown that membrane-type 1 matrix metalloproteinase (MT1-MMP is overexpressed in invasive prostate cancer cells. However, the mechanism for this expression is not known. Here, we show that MT1-MMP is minimally expressed in nonmalignant primary prostate cells, moderately expressed in DU-145 cells, and highly expressed in invasive PC-3 and PC-3N cells. Using human MT1-MMP promoter reporter plasmids and mobility shift assays, we show that Spi regulates MT1-MMP expression in DU-145, PC-3, and PC-3N cells and in PC3-N cells using chromatin immunoprecipitation analysis and silencing RNA. Investigation of signaling pathway showed that DU-145 cells express constitutively phosphorylated extracellular stress-regulated kinase (ERK, whereas PC-3 and PC-3N cells express constitutively phosphorylated AKT/PKB and c-Jun NH2 terminal kinase (JNK. We show that MT1-MMP and Spi levels are decreased in PC-3 and PC-3N cells when phosphatidylinositol-3 kinase and JNK are inhibited, and that MT1-MMP levels are decreased in DU-145 cells when MEK is inhibited. Transient transfection of PC-3 and PC-3N cells with a dominant-negative JNK or p85, and of DU-145 cells with a dominant negative ERK, reduces MT1-MMP promoter activity. These results indicate differential signaling control of Spi-mediated transcriptional regulation of MT1-MMP in prostate cancer cell lines.

  13. TIS21/(BTG2) negatively regulates estradiol-stimulated expansion of hematopoietic stem cells by derepressing Akt phosphorylation and inhibiting mTOR signal transduction.

    Science.gov (United States)

    Kim, Bong Cho; Ryu, Min Sook; Oh, S Paul; Lim, In Kyoung

    2008-09-01

    It has been known that 12-O-tetradecanoyl phorbol-13-acetate-inducible sequence 21 (TIS21), ortholog of human B-cell translocation gene 2, regulates expansions of stage-specific thymocytes and hematopoietic progenitors. In the present study, lineage-negative (Lin(-))/stem cell antigen-1-positive (Sca-1+)/c-Kit+ (LSK) cell content was significantly elevated in bone marrow (BM) of TIS21-knockout (TIS21(-/-)) female mice, suggesting 17beta-estradiol (E(2))-regulated progenitor expansion. E(2) induced DNA synthesis and cell proliferation of mouse embryonic fibroblasts (MEFs) isolated from TIS21(-/-) mice, but not wild type (WT). In contrast to WT, E(2) failed to activate protein kinase B (Akt) in the TIS21(-/-) MEFs, independent of extracellular signal-regulated kinase 1/2 (Erk1/2) activation. Despite attenuation of Akt activation, mammalian target of rapamycin (mTOR) was constitutively activated in the TIS21(-/-) MEFs. Furthermore, mitogen-activated protein kinase 1/2 inhibitor or knockdown of Erk1 could restore activation of Akt and downregulate mTOR. Immunoprecipitation showed Akt preferentially bound to phosphorylated Erk1/2 (p-Erk1/2) in TIS21(-/-) cells, but reconstitution of TIS21 inhibited their interaction. E(2)-injected TIS21(-/-) male mice also increased LSK cells in BM. Taken together, expansion of hematopoietic progenitors in TIS21(-/-) female mice might be through inhibition of Akt activation, and constitutive activation of mTOR via preferential binding of TIS21 to E(2)-induced p-Erk1/2, compared with that of Akt. Our results suggest that TIS21 plays a pivotal role in maintaining the hematopoietic stem cell compartment and hematopoiesis.

  14. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation

    Science.gov (United States)

    Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira

    2018-01-01

    Background Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. Methods We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. Results In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. Conclusions These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers. PMID:29629343

  15. HER2 induces cell proliferation and invasion of non-small-cell lung cancer by upregulating COX-2 expression via MEK/ERK signaling pathway

    Directory of Open Access Journals (Sweden)

    Chi F

    2016-05-01

    Full Text Available Feng Chi, Rong Wu, Xueying Jin, Min Jiang, Xike Zhu Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China Abstract: HER2 positivity has been well studied in various cancers, but its importance in non-small-cell lung cancer (NSCLC is still being explored. In this study, quantitative reverse transcription polymerase chain reaction (qRT-PCR was performed to detect HER2 and COX-2 expression in NSCLC tissues. Then, pcDNA3.1-HER2 was used to overexpress HER2, while HER2 siRNA and COX-2 siRNA were used to silence HER2 and COX-2 expression. MTT assay and invasion assay were used to detect the effects of HER2 on cell proliferation and invasion. Our study revealed that HER2 and COX-2 expression were upregulated in NSCLC tissues and HER2 exhibited a significant positive correlation with the levels of COX-2 expression. Overexpression of HER2 evidently elevated COX-2 expression, while silencing of HER2 evidently decreased COX-2 expression. Furthermore, overexpressed HER2 induced the ERK phosphorylation, and this was abolished by the treatment with U0126, a pharmacological inhibitor of MEK, an upstream kinase of ERK. HER2-induced expression and promoter activity of COX-2 were also suppressed by U0126, suggesting that the MEK/ERK signaling pathway regulates COX-2 expression. In addition, HER2 induced activation of AKT signaling pathway, which was reversed by pretreatment with U0126 and COX-2 siRNA. MTT and invasion assays revealed that HER2 induced cell proliferation and invasion that were reversed by pretreatment with U0126 and COX-2 siRNA. In this study, our results demonstrated for the first time that HER2 elevated COX-2 expression through the activation of MEK/ERK pathway, which subsequently induced cell proliferation and invasion via AKT pathway in NSCLC tissues. Keywords: HER2, MEK/ERK, COX-2, AKT signaling pathway, non-small-cell lung cancer

  16. [Effects of bushen jiannao recipe on the content of acetylcholine and the hippocampal ERK1 and ERK2 protein expressions of vascular dementia rats].

    Science.gov (United States)

    Liu, Yong-Hui; Li, Shao-Wei; Zheng, Qing-Lian

    2012-04-01

    To explore the effects of Bushen Jiannao Recipe (BJR) on the content of acetylcholine (Ach) and ERK1 and ERK2 protein expressions in the hippocampal CA1 region of vascular dementia (VD) rats, and to explore its possible mechanisms for treating VD. Eighty-three rats were selected. The VD model was established by permanent bilateral occlusion of both common carotid arteries (2-VO). Then the modeled rats were randomly divided into 5 groups, i. e., the memory deficit model group, the donepezil group, and the positive drug control groups [including high (n = 13), middle (n = 13), and low (n = 12) dose BJR group]. Besides, another 13 rats were chosen as the sham-operative group. The distilled water was given by gastrogavage to rats in the sham-operative group and the memory deficit model group (5 mL/kg). The donepezil hydrochloride suspension was given to rats in the donepezil group by gastrogavage (0.52 mg/kg). High (56 g/kg), middle (28 g/kg), and low (14 g/kg) dose of BJR were respectively given to rats in the other three groups. After 30 days of intervention, the escape latency period and platform crossing times were determined using Morris water maze experiment. The contents of Ach in the hippocampus and cortex were determined using colorimetry. The expressions of ERK1 and ERK2 in the CA1 region of the hippocampus were detected using immunohistochemical assay. The average escape latency of intervened rats showed an overall decreasing trend. From the third to the fifth day, the escape latency period was prolonged, the platform crossing times were reduced, the contents of Ach in the cortex and the hippocampus were lowered, the numbers of positive stained neuron of ERK1 and ERK2 in the hippocampus CA1 region were reduced, showing statistical difference when compared with the sham-operative group (P<0.01). Compared with the model group, the 4th day escape latency of the donepezil group and the high dose BJR group was shortened. The escape latency was shortened, and the

  17. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway.

    Science.gov (United States)

    González, Mariela Natacha; de Mello, Wallace; Butler-Browne, Gillian S; Silva-Barbosa, Suse Dayse; Mouly, Vincent; Savino, Wilson; Riederer, Ingo

    2017-10-10

    The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving

  18. The A2B Adenosine Receptor Modulates the Epithelial– Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells

    Science.gov (United States)

    Giacomelli, Chiara; Daniele, Simona; Romei, Chiara; Tavanti, Laura; Neri, Tommaso; Piano, Ilaria; Celi, Alessandro; Martini, Claudia; Trincavelli, Maria L.

    2018-01-01

    The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different

  19. The A2B Adenosine Receptor Modulates the Epithelial– Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells

    Directory of Open Access Journals (Sweden)

    Chiara Giacomelli

    2018-01-01

    Full Text Available The epithelial-mesenchymal transition (EMT is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1, which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin and the mesenchymal one (Vimentin, N-cadherin, respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to

  20. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer.

    Science.gov (United States)

    Castellvi, Josep; Garcia, Angel; Rojo, Federico; Ruiz-Marcellan, Carmen; Gil, Antonio; Baselga, Jose; Ramon y Cajal, Santiago

    2006-10-15

    Growth factor receptors and cell signaling factors play a crucial role in human carcinomas and have been studied in ovarian tumors with varying results. Cell signaling involves multiple pathways and a myriad of factors that can be mutated or amplified. Cell signaling is driven through the mammalian target of rapamycin (mTOR) and extracellular regulated kinase (ERK) pathways and by some downstream molecules, such as 4E binding protein 1 (4EBP1), eukaryotic initiation factor 4E, and p70 ribosomal protein S6 kinase (p70S6K). The objectives of this study were to analyze the real role that these pathways play in ovarian cancer, to correlate them with clinicopathologic characteristics, and to identify the factors that transmit individual proliferation signals and are associated with pathologic grade and prognosis, regardless specific oncogenic alterations upstream. One hundred twenty-nine ovarian epithelial tumors were studied, including 20 serous cystadenomas, 7 mucinous cystadenomas, 11 serous borderline tumors, 16 mucinous borderline tumors, 29 serous carcinomas, 16 endometrioid carcinomas, 15 clear cell carcinomas, and 15 mucinous carcinomas. Tissue microarrays were constructed, and immunohistochemistry for the receptors epidermal growth factor receptor (EGFR) and c-erb-B2 was performed and with phosphorylated antibodies for protein kinase B (AKT), 4EBP1, p70S6K, S6, and ERK. Among 129 ovarian neoplasms, 17.8% were positive for c-erb-B2, 9.3% were positive for EGFR, 47.3% were positive for phosphorylated AKT (p-AKT), 58.9% were positive for p-ERK, 41.1% were positive for p-4EBP1, 26.4% were positive for p70S6K, and 15.5% were positive for p-S6. Although EGFR, p-AKT, and p-ERK expression did not differ between benign, borderline, or malignant tumors, c-erb-B2, p-4EBP1, p-p70S6K, and p-S6 were expressed significantly more often in malignant tumors. Only p-4EBP1 expression demonstrated prognostic significance (P = .005), and only surgical stage and p-4EBP1 expression

  1. Metformin inhibits 17β-estradiol-induced epithelial-to-mesenchymal transition via βKlotho-related ERK1/2 signaling and AMPKα signaling in endometrial adenocarcinoma cells.

    Science.gov (United States)

    Liu, Zhao; Qi, Shasha; Zhao, Xingbo; Li, Mingjiang; Ding, Sentai; Lu, Jiaju; Zhang, Hui

    2016-04-19

    The potential role of metformin in treating endometrial cancer remains to be explored. The current study investigated the role of metformin in 17β-estradiol-induced epithelial-mesenchymal transition (EMT) in endometrial adenocarcinoma cells. We found that 17β-estradiol promoted proliferation and migration, attenuated apoptosis in both estrogen receptor (ER) positive and ER negative endometrial adenocarcinoma cells (Ishikawa and KLE cells, respectively). Metformin abolished 17β-estradiol-induced cell proliferation and reversed 17β-estradiol-induced EMT in Ishikawa cells. In addition, metformin increased the expression of βKlotho, a fibroblast growth factors (FGFs) coreceptor, and decreased ERK1/2 phosphorylation in both Ishikawa and KLE cells. Decreased expression of βKlotho was noted in human endometrial adenocarcinomas, and plasmid-driven expression of βKlotho in Ishikawa cells abolished 17β-estradiol-induced EMT via inhibiting ERK1/2 signaling. βKlotho expression and metformin show synergetic effects on the proliferation and the EMT in Ishikawa cells. Furthermore, we demonstrated that the anti-EMT effects of metformin could be partly abolished by introducing Compound C, a specific AMPKα signaling inhibitor. In conclusion, metformin abolishes 17β-estradiol-induced cell proliferation and EMT in endometrial adenocarcinoma cells by upregulating βKlotho expression, inhibiting ERK1/2 signaling, and activating AMPKα signaling. Our study provides novel mechanistic insight into the anti-tumor effects of metformin.

  2. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (-)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Wang, Bin; Chen, Linfeng; Ni, Zhenhong; Dai, Xufang; Qin, Liyan; Wu, Yaran; Li, Xinzhe; Xu, Liang; Lian, Jiqin; He, Fengtian

    2014-11-01

    Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1(Thr163) phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Secreted Clusterin protein inhibits osteoblast differentiation of bone marrow mesenchymal stem cells by suppressing ERK1/2 signaling pathway.

    Science.gov (United States)

    Abdallah, Basem M; Alzahrani, Abdullah M; Kassem, Moustapha

    2018-05-01

    Secreted Clusterin (sCLU, also known as Apolipoprotein J) is an anti-apoptotic glycoprotein involved in the regulation of cell proliferation, lipid transport, extracellular tissue remodeling and apoptosis. sCLU is expressed and secreted by mouse bone marrow-derived skeletal (stromal or mesenchymal) stem cells (mBMSCs), but its functional role in MSC biology is not known. In this study, we demonstrated that Clusterin mRNA expression and protein secretion in conditioned medium increased during adipocyte differentiation and decreased during osteoblast differentiation of mBMSCs. Treatment of mBMSC cultures with recombinant sCLU protein increased cell proliferation and exerted an inhibitory effect on the osteoblast differentiation while stimulated adipocyte differentiation in a dose-dependent manner. siRNA-mediated silencing of Clu expression in mBMSCs reduced adipocyte differentiation and stimulated osteoblast differentiation of mBMSCs. Furthermore, the inhibitory effect of sCLU on the osteoblast differentiation of mBMSCs was mediated by the suppression of extracellular signal-regulated kinase (ERK1/2) phosphorylation. In conclusion, we identified sCLU as a regulator of mBMSCs lineage commitment to osteoblasts versus adipocytes through a mechanism mediated by ERK1/2 signaling. Inhibiting sCLU is a possible therapeutic approach for enhancing osteoblast differentiation and consequently bone formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. ERK2 dependent signaling contributes to wound healing after a partial-thickness burn

    International Nuclear Information System (INIS)

    Satoh, Yasushi; Saitoh, Daizoh; Takeuchi, Atsuya; Ojima, Kenichiro; Kouzu, Keita; Kawakami, Saki; Ito, Masataka; Ishihara, Masayuki; Sato, Shunichi; Takishima, Kunio

    2009-01-01

    Burn healing is a complex physiological process involving multiple cell activities, such as cell proliferation, migration and differentiation. Although extracellular signal-regulated kinases (ERK) have a pivotal role in regulating a variety of cellular responses, little is known about the individual functions of ERK isoform for healing in vivo. This study investigated the role of ERK2 in burn healing. To assess this, Erk2 +/- mice generated by gene targeting were used. The resultant mice exhibited significant delay in re-epithelization of partial-thickness burns in the skin in comparison to wild-type. An in vitro proliferation assay revealed that keratinocytes from Erk2 +/- mice grew significantly slower than those prepared from wild-type. These results highlight the importance of ERK2 in the process of burn healing.

  5. Structure-Guided Strategy for the Development of Potent Bivalent ERK Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lechtenberg, Bernhard C. [Cancer; Mace, Peter D. [Cancer; Sessions, E. Hampton [Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States; Williamson, Robert [Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States; Stalder, Romain [Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States; Wallez, Yann [Cancer; Roth, Gregory P. [Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States; Riedl, Stefan J. [Cancer; Pasquale, Elena B. [Cancer; Pathology

    2017-06-13

    ERK is the effector kinase of the RAS-RAF-MEK-ERK signaling cascade, which promotes cell transformation and malignancy in many cancers and is thus a major drug target in oncology. Kinase inhibitors targeting RAF or MEK are already used for the treatment of certain cancers, such as melanoma. Although the initial response to these drugs can be dramatic, development of drug resistance is a major challenge, even with combination therapies targeting both RAF and MEK. Importantly, most resistance mechanisms still rely on activation of the downstream effector kinase ERK, making it a promising target for drug development efforts. Here, we report the design and structural/functional characterization of a set of bivalent ERK inhibitors that combine a small molecule inhibitor that binds to the ATP-binding pocket with a peptide that selectively binds to an ERK protein interaction surface, the D-site recruitment site (DRS). Our studies show that the lead bivalent inhibitor, SBP3, has markedly improved potency compared to the small molecule inhibitor alone. Unexpectedly, we found that SBP3 also binds to several ERK-related kinases that contain a DRS, highlighting the importance of experimentally verifying the predicted specificity of bivalent inhibitors. However, SBP3 does not target any other kinases belonging to the same CMGC branch of the kinome. Additionally, our modular click chemistry inhibitor design facilitates the generation of different combinations of small molecule inhibitors with ERK-targeting peptides.

  6. BMP6 down-regulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells.

    Science.gov (United States)

    Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi

    2018-05-09

    Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.

  7. Dual Inhibition of PI3K/AKT and MEK/ERK Pathways Induces Synergistic Antitumor Effects in Diffuse Intrinsic Pontine Glioma Cells

    Directory of Open Access Journals (Sweden)

    Y. Linda Wu

    2017-04-01

    Full Text Available Diffuse intrinsic pontine glioma (DIPG is a devastating disease with an extremely poor prognosis. Recent studies have shown that platelet-derived growth factor receptor (PDGFR and its downstream effector pathway, PI3K/AKT/mTOR, are frequently amplified in DIPG, and potential therapies targeting this pathway have emerged. However, the addition of targeted single agents has not been found to improve clinical outcomes in DIPG, and targeting this pathway alone has produced insufficient clinical responses in multiple malignancies investigated, including lung, endometrial, and bladder cancers. Acquired resistance also seems inevitable. Activation of the Ras/Raf/MEK/ERK pathway, which shares many nodes of cross talk with the PI3K/AKT pathway, has been implicated in the development of resistance. In the present study, perifosine, a PI3K/AKT pathway inhibitor, and trametinib, a MEK inhibitor, were combined, and their therapeutic efficacy on DIPG cells was assessed. Growth delay assays were performed with each drug individually or in combination. Here, we show that dual inhibition of PI3K/AKT and MEK/ERK pathways synergistically reduced cell viability. We also reveal that trametinib induced AKT phosphorylation in DIPG cells that could not be effectively attenuated by the addition of perifosine, likely due to the activation of other compensatory mechanisms. The synergistic reduction in cell viability was through the pronounced induction of apoptosis, with some effect from cell cycle arrest. We conclude that the concurrent inhibition of the PI3K/AKT and MEK/ERK pathways may be a potential therapeutic strategy for DIPG.

  8. Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available Neuronal cells are susceptible to many stresses, which will cause the apoptosis and neurodegenerative diseases. The precise molecular mechanism behind the neuronal protection against these apoptotic stimuli is necessary for drug discovery. In the present study, we have found that plasmalogens (Pls, which are glycerophospholipids containing vinyl ether linkage at sn-1 position, can protect the neuronal cell death upon serum deprivation. Interestingly, caspse-9, but not caspase-8 and caspase-12, was cleaved upon the serum starvation in Neuro-2A cells. Pls treatments effectively reduced the activation of caspase-9. Furthermore, cellular signaling experiments showed that Pls enhanced phosphorylation of the phosphoinositide 3-kinase (PI3K-dependent serine/threonine-specific protein kinase AKT and extracellular-signal-regulated kinases ERK1/2. PI3K/AKT inhibitor LY294002 and MAPK/ERK kinase (MEK inhibitor U0126 treatments study clearly indicated that Pls-mediated cell survival was dependent on the activation of these kinases. In addition, Pls also inhibited primary mouse hippocampal neuronal cell death induced by nutrient deprivation, which was associated with the inhibition of caspase-9 and caspase-3 cleavages. It was reported that Pls content decreased in the brain of the Alzheimer's patients, which indicated that the reduction of Pls content could endanger neurons. The present findings, taken together, suggest that Pls have an anti-apoptotic action in the brain. Further studies on precise mechanisms of Pls-mediated protection against cell death may lead us to establish a novel therapeutic approach to cure neurodegenerative disorders.

  9. Regulation of the autophagy protein LC3 by phosphorylation

    Science.gov (United States)

    Cherra, Salvatore J.; Kulich, Scott M.; Uechi, Guy; Balasubramani, Manimalha; Mountzouris, John; Day, Billy W.

    2010-01-01

    Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease–associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl–cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity. PMID:20713600

  10. CTGF enhances resistance to 5-FU-mediating cell apoptosis through FAK/MEK/ERK signal pathway in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Yang K

    2016-11-01

    Full Text Available Kai Yang, Kai Gao, Gui Hu, Yanguang Wen, Changwei Lin, Xiaorong Li Department of General Surgery, The Third Affiliated Hospital of Central South University, Central South University, Changsha, Hunan, People’s Republic of China Abstract: Colorectal cancer (CRC is one of the most commonly diagnosed cancers among both males and females; the chemotherapy drug 5-fluorouracil (5-FU is one of a doctors’ first lines of defense against CRC. However, therapeutic failures are common because of the emergence of drug resistance. Connective tissue growth factor (CTGF is a secreted protein that binds to integrins, and regulates the invasiveness and metastasis of certain carcinoma cells. Here, we found that CTGF was upregulated in drug-resistant phenotype of human CRC cells. Overexpression of CTGF enhanced the resistance to 5-FU-induced cell apoptosis. Moreover, downregulating the expression of CTGF promoted the curative effect of chemotherapy and blocked the cell cycle in the G1 phase. We also found that CTGF facilitated resistance to 5-FU-induced apoptosis by increasing the expression of B-cell lymphoma-extra large (Bcl-xL and survivin. Then we pharmacologically blocked MEK/ERK signal pathway and assessed 5-FU response by MTT assays. Our current results indicate that the expression of phosphorylated forms of MEK/ERK increased in high CTGF expression cells and MEK inhibited increases in 5-FU-mediated apoptosis of resistant CRC cells. Therefore, our data suggest that MEK/ERK signaling contributes to 5-FU resistance through upstream of CTGF, and supports CRC cell growth. Comprehending the molecular mechanism underlying 5-FU resistance may ultimately aid the fight against CRC. Keywords: connective tissue growth factor, 5-fluorouracil, mitogen-activated protein kinase/extracellular regulated protein kinases, phosphatidyl inositol 3-kinase/serine/threonine kinase Akt, colorectal cancer

  11. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion.

    Science.gov (United States)

    Lukács, M; Warfvinge, K; Kruse, L S; Tajti, J; Fülöp, F; Toldi, J; Vécsei, L; Edvinsson, L

    2016-12-01

    Neurogenic inflammation has for decades been considered an important part of migraine pathophysiology. In the present study, we asked the question if administration of a novel kynurenic acid analogue (SZR72), precursor of an excitotoxin antagonist and anti-inflammatory substance, can modify the neurogenic inflammatory response in the trigeminal ganglion. Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were investigated using immunohistochemistry and Western blot. Pretreatment with one dose of SZR72 abolished the CFA-induced pERK1/2 and IL-1β activation in the trigeminal ganglion. No significant change was noted in case of repeated treatment with SZR72 as compared to a single dose. This is the first study that demonstrates that one dose of KYNA analog before application of CFA can give anti-inflammatory response in a model of trigeminal activation, opening a new line for further investigations regarding possible effects of KYNA derivates.

  12. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    International Nuclear Information System (INIS)

    Arai, Roberto J.; Ogata, Fernando T.; Batista, Wagner L.; Masutani, Hiroshi; Yodoi, Junji; Debbas, Victor; Augusto, Ohara; Stern, Arnold; Monteiro, Hugo P.

    2008-01-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases

  13. Inhibition of Melanogenesis by Gallic Acid: Possible Involvement of the PI3K/Akt, MEK/ERK and Wnt/β-Catenin Signaling Pathways in B16F10 Cells

    Science.gov (United States)

    Su, Tzu-Rong; Lin, Jen-Jie; Tsai, Chi-Chu; Huang, Tsu-Kei; Yang, Zih-Yan; Wu, Ming-O; Zheng, Yu-Qing; Su, Ching-Chyuan; Wu, Yu-Jen

    2013-01-01

    Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin synthesis and tyrosinase activity in a dose- and time-dependent manner, and decreased the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and dopachrome tautomerase (Dct). In addition, gallic acid also acts by phosphorylating and activating melanogenesis inhibitory proteins such as Akt and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK). Using inhibitors against PI3K/Akt (LY294002) or MEK/ERK-specific (PD98059), the hypopigmentation effect was suppressed, and the gallic acid-initiated activation of MEK/ERK and PI3K/Akt was also revoked. Gallic acid also increased GSK3β and p-β-catenin expression but down-regulated p-GSK3β. Moreover, GSK3β-specific inhibitor (SB216763) restored gallic acid-induced melanin reduction. These results suggest that activation of the MEK/ERK, PI3K/Akt, and inhibition of Wnt/β-catenin signaling pathways is involved in the melanogenesis signaling cascade, and that activation by gallic acid reduces melanin synthesis via down-regulation of MITF and its downstream signaling pathway. In conclusion, gallic acid may be a potentially agent for the treatment of certain skin conditions. PMID:24129178

  14. Inhibition of Melanogenesis by Gallic Acid: Possible Involvement of the PI3K/Akt, MEK/ERK and Wnt/β-Catenin Signaling Pathways in B16F10 Cells

    Directory of Open Access Journals (Sweden)

    Yu-Jen Wu

    2013-10-01

    Full Text Available Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin synthesis and tyrosinase activity in a dose- and time-dependent manner, and decreased the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF, tyrosinase, tyrosinase-related protein-1 (TRP1, and dopachrome tautomerase (Dct. In addition, gallic acid also acts by phosphorylating and activating melanogenesis inhibitory proteins such as Akt and mitogen-activated protein kinase (MEK/extracellular signal-regulated kinase (ERK. Using inhibitors against PI3K/Akt (LY294002 or MEK/ERK-specific (PD98059, the hypopigmentation effect was suppressed, and the gallic acid-initiated activation of MEK/ERK and PI3K/Akt was also revoked. Gallic acid also increased GSK3β and p-β-catenin expression but down-regulated p-GSK3β. Moreover, GSK3β-specific inhibitor (SB216763 restored gallic acid-induced melanin reduction. These results suggest that activation of the MEK/ERK, PI3K/Akt, and inhibition of Wnt/β-catenin signaling pathways is involved in the melanogenesis signaling cascade, and that activation by gallic acid reduces melanin synthesis via down-regulation of MITF and its downstream signaling pathway. In conclusion, gallic acid may be a potentially agent for the treatment of certain skin conditions.

  15. Protein kinases mediate increment of the phosphorylation of cyclic AMP -responsive element binding protein in spinal cord of rats following capsaicin injection

    Directory of Open Access Journals (Sweden)

    Li Junfa

    2005-09-01

    Full Text Available Abstract Background Strong noxious stimuli cause plastic changes in spinal nociceptive neurons. Intracellular signal transduction pathways from cellular membrane to nucleus, which may further regulate gene expression by critical transcription factors, convey peripheral stimulation. Cyclic AMP-responsive element binding protein (CREB is a well-characterized stimulus-induced transcription factor whose activation requires phosphorylation of the Serine-133 residue. Phospho-CREB can further induce gene transcription and strengthen synaptic transmission by the activation of the protein kinase cascades. However, little is known about the mechanisms by which CREB phosphorylation is regulated by protein kinases during nociception. This study was designed to use Western blot analysis to investigate the role of mitogen-activated protein (MAP/extracellular signal-regulated kinase (ERK kinase (MEK 1/2, PKA and PKC in regulating the phosphorylation of CREB in the spinal cord of rats following intraplantar capsaicin injection. Results We found that capsaicin injection significantly increased the phosphorylation level of CREB in the ipsilateral side of the spinal cord. Pharmacological manipulation of MEK 1/2, PKA and PKC with their inhibitors (U0126, H89 and NPC 15473, respectively significantly blocked this increment of CREB phosphorylation. However, the expression of CREB itself showed no change in any group. Conclusion These findings suggest that the activation of intracellular MAP kinase, PKA and PKC cascades may contribute to the regulation of phospho-CREB in central nociceptive neurons following peripheral painful stimuli.

  16. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hofmann, Matthias [Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt (Germany); Kusachi, Shozo [Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama (Japan); Ninomiya, Yoshifumi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hirohata, Satoshi, E-mail: hirohas@cc.okayama-u.ac.jp [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); International Center, Okayama University, Okayama (Japan)

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  17. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    International Nuclear Information System (INIS)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi; Hofmann, Matthias; Kusachi, Shozo; Ninomiya, Yoshifumi; Hirohata, Satoshi

    2014-01-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC

  18. Cancer-promoting effect of capsaicin on DMBA/TPA-induced skin tumorigenesis by modulating inflammation, Erk and p38 in mice.

    Science.gov (United States)

    Liu, Zhaoguo; Zhu, Pingting; Tao, Yu; Shen, Cunsi; Wang, Siliang; Zhao, Lingang; Wu, Hongyan; Fan, Fangtian; Lin, Chao; Chen, Chen; Zhu, Zhijie; Wei, Zhonghong; Sun, Lihua; Liu, Yuping; Wang, Aiyun; Lu, Yin

    2015-07-01

    Epidemiologic and animal studies revealed that capsaicin (8-methyl-N-vanillyl-6-noneamide) can act as a carcinogen or cocarcinogen. However, the influence of consumption of capsaicin-containing foods or vegetables on skin cancer patients remains largely unknown. In the present study, we demonstrated that capsaicin has a cocarcinogenic effect on 9, 10-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis. Our results showed that topical application of capsaicin on the dorsal skin of DMBA-initiated and TPA-promoted mice could significantly accelerate tumor formation and growth and induce more and larger skin tumors than the model group (DMBA + TPA). Moreover, capsaicin could promote TPA-induced skin hyperplasia and tumor proliferation. Mechanistic study found that inflammation-related factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were highly elevated by pretreatment with capsaicin, suggesting an inflammation-dependent mechanism. Furthermore, mice that were administered capsaicin exhibited significant up-regulation of phosphorylation of nuclear factor kappaB (NF-κB), Erk and p38 but had no effect on JNK. Thus, our results indicated that inflammation, Erk and P38 collectively played a crucial role in cancer-promoting effect of capsaicin on carcinogen-induced skin cancer in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Inhibition of Spinal Interlukin-33/ST2 Signaling and Downstream ERK and JNK Pathways in Electroacupuncture Analgesia in Formalin Mice.

    Directory of Open Access Journals (Sweden)

    Ping Han

    Full Text Available Although acupuncture is widely used to manage pain, it remains highly controversial, largely due to the lack of a clear mechanism for its benefits. Here, we investigated the role of IL-33, a novel interleukin (IL-1 family member, and its receptor ST2 in the analgesic effects of electroacupuncture (EA on formalin-induced inflammatory pain. The results showed that 1 EA stimulation of ipsilateral Zusanli (ST 36 and Yanglingquan (GB 34 acupoints for 30 min remarkably suppressed the two phases of formalin-induced spontaneous pain; 2 subcutaneous or intrathecal administration of recombinant IL-33 (rIL-33 significantly inhibited the analgesic effect of EA, whereas the ST2 antibody potentiated EA analgesia in formalin mice; 3 EA treatment decreased the up-regulation of IL-33 and ST2 protein following formalin injection; and 4 the suppression of the formalin-induced expression of spinal phosphorylated ERK and JNK induced by EA treatment was significantly attenuated following subcutaneous rIL-33 delivery, and was further decreased by the ST2 antibody. These data suggest that EA alleviates formalin-induced inflammatory pain, at least partially, by inhibiting of spinal IL-33/ST2 signaling and the downstream ERK and JNK pathways.

  20. Inhibition of Spinal Interlukin-33/ST2 Signaling and Downstream ERK and JNK Pathways in Electroacupuncture Analgesia in Formalin Mice

    Science.gov (United States)

    Zhao, Jing; Wang, Yanqing; Wu, Gencheng; Mi, Wenli

    2015-01-01

    Although acupuncture is widely used to manage pain, it remains highly controversial, largely due to the lack of a clear mechanism for its benefits. Here, we investigated the role of IL-33, a novel interleukin (IL)-1 family member, and its receptor ST2 in the analgesic effects of electroacupuncture (EA) on formalin-induced inflammatory pain. The results showed that 1) EA stimulation of ipsilateral Zusanli (ST 36) and Yanglingquan (GB 34) acupoints for 30 min remarkably suppressed the two phases of formalin-induced spontaneous pain; 2) subcutaneous or intrathecal administration of recombinant IL-33 (rIL-33) significantly inhibited the analgesic effect of EA, whereas the ST2 antibody potentiated EA analgesia in formalin mice; 3) EA treatment decreased the up-regulation of IL-33 and ST2 protein following formalin injection; and 4) the suppression of the formalin-induced expression of spinal phosphorylated ERK and JNK induced by EA treatment was significantly attenuated following subcutaneous rIL-33 delivery, and was further decreased by the ST2 antibody. These data suggest that EA alleviates formalin-induced inflammatory pain, at least partially, by inhibiting of spinal IL-33/ST2 signaling and the downstream ERK and JNK pathways. PMID:26067287

  1. Chemoprotective effect of insulin-like growth factor I against acetaminophen-induced cell death in Chang liver cells via ERK1/2 activation

    International Nuclear Information System (INIS)

    Hwang, Hye-Jung; Kwon, Mi-Jin; Nam, Taek-Jeong

    2007-01-01

    The insulin-like growth factor (IGF) system and type-I IGF receptor (IGF-IR) signaling are involved in protecting against chemotherapeutic drug-induced cell death in human hepatoma cells. Acetaminophen (AAP) hepatotoxicity is the leading cause of liver failure, and the prevention of AAP-induced cell death has been the focus of many studies. We determined whether IGF-I could protect against AAP-induced cell death in Chang liver cells and investigated the protective mechanism. Based on the results of MTS assays, LDH release assays, Hoechst 33342 cell staining, and DNA fragmentation experiments, AAP induced cell death in a dose-dependent manner. According to Western blot analysis, treatment with AAP increased the level of poly(ADP-ribose) polymerase (PARP) fragments in cells compared with that in control cells; however, caspase-3, a critical signaling molecule in apoptosis, was not activated after AAP overdose. Moreover, combined treatment with AAP and IGF-I inhibited PARP cleavage, which was consistent with the ability of IGF-I to restore the level of glutathione (GSH) and cell viability in GSH and MTS assays, respectively. We investigated whether the protective effect of IGF-I against AAP cytotoxicity is related to the extracellular signal-related kinase ERK1/2, which is generally activated by mitogenic and proliferative stimuli such as growth factors. Compared with AAP treatment alone, IGF-I and AAP co-treatment increased ERK1/2 phosphorylation but inhibited PARP cleavage. Thus ERK1/2 activation is instrumental in the protective effect of IGF-I against AAP-induced cell death in Chang liver cells

  2. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex

    Science.gov (United States)

    Xing, Lei; Larsen, Rylan S; Bjorklund, George Reed; Li, Xiaoyan; Wu, Yaohong; Philpot, Benjamin D; Snider, William D; Newbern, Jason M

    2016-01-01

    Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as 'RASopathies' and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2+ neurons in layer 5. Loss of Map2k1/2 (Mek1/2) led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation, but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Map2k1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability. DOI: http://dx.doi.org/10.7554/eLife.11123.001 PMID:26848828

  3. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  4. Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways.

    Science.gov (United States)

    Kornasio, Reut; Riederer, Ingo; Butler-Browne, Gillian; Mouly, Vincent; Uni, Zehava; Halevy, Orna

    2009-05-01

    Beta-hydroxy-beta-methylbutyrate (HMB), a leucine catabolite, has been shown to prevent exercise-induced protein degradation and muscle damage. We hypothesized that HMB would directly regulate muscle-cell proliferation and differentiation and would attenuate apoptosis, the latter presumably underlying satellite-cell depletion during muscle degradation or atrophy. Adding various concentrations of HMB to serum-starved myoblasts induced cell proliferation and MyoD expression as well as the phosphorylation of MAPK/ERK. HMB induced differentiation-specific markers, increased IGF-I mRNA levels and accelerated cell fusion. Its inhibition of serum-starvation- or staurosporine-induced apoptosis was reflected by less apoptotic cells, reduced BAX expression and increased levels of Bcl-2 and Bcl-X. Annexin V staining and flow cytometry analysis showed reduced staurosporine-induced apoptosis in human myoblasts in response to HMB. HMB enhanced the association of the p85 subunit of PI3K with tyrosine-phosphorylated proteins. HMB elevated Akt phosphorylation on Thr308 and Ser473 and this was inhibited by Wortmannin, suggesting that HMB acts via Class I PI3K. Blocking of the PI3K/Akt pathway with specific inhibitors revealed its requirement in mediating the promotive effects of HMB on muscle cell differentiation and fusion. These direct effects of HMB on myoblast differentiation and survival resembling those of IGF-I, at least in culture, suggest its positive influence in preventing muscle wasting.

  5. Spontaneous chondroma formation in CD2-Cre-driven Erk-deficient mice.

    Science.gov (United States)

    Shiokawa, Moe; Lu, Xiuyuan; Miyake, Yasunobu; Ishikawa, Eri; Pagès, Gilles; Pouysségur, Jacques; Ogata, Masato; Yamasaki, Sho

    2017-12-18

    Lineage-specific Cre Tg mice are widely used to delineate the functions of genes in a tissue-specific manner. Several T-cell-specific promoter cassettes have been developed; however, the activities of those promoters in non-T cells have not been investigated extensively. Here, we report that CD2-Cre-mediated deletion of Erk proteins by generating CD2-Cre × Erk1-/-Erk2flox/flox (Erk∆CD2-Cre) mice results in abnormal cartilage hyperplasia. Histological analysis revealed that this abnormality is caused by aberrant hyperplasia of chondrocytes. The presence of Erk-deficient T cells is not required for this chondroma formation, as it was similarly observed in the absence of T cells in a CD3ε-deficient background. In addition, adoptive transfer of bone marrow cells from Erk∆CD2-Cre mice to wild-type recipients did not cause chondroma formation, suggesting that Erk-deficient non-immune cells are responsible for this abnormality. By tracing Cre-expressed tissues using a ROSA26-STOP-RFP allele, we found that the chondroma emitted RFP fluorescence, indicating that functional Cre is expressed in hyperplastic chondrocytes in Erk∆CD2-Cre mice. Furthermore, RFP+ chondrocytes were also found in an Erk-sufficient background, albeit without aberrant growth. These results suggest that unexpected expression of CD2-driven Cre in chondrocytes generates Erk-deficient chondrocytes, resulting in hyperplastic cartilage formation. Recently, two independent reports showed that CD4-Cre-mediated Ras-Erk signaling ablation led to similar abnormal cartilage formation (Guittard, G., Gallardo, D. L., Li, W. et al. 2017. Unexpected cartilage phenotype in CD4-Cre-conditional SOS-deficient mice. Front. Immunol. 8:343; Wehenkel, M., Corr, M., Guy, C. S. et al. 2017. Extracellular signal-regulated kinase signaling in CD4-expressing cells inhibits osteochondromas. Front. Immunol. 8:482). Together with these reports, our study suggests that an unexpected link exists between T-like cell and

  6. Beta1 integrin inhibits apoptosis induced by cyclic stretch in annulus fibrosus cells via ERK1/2 MAPK pathway.

    Science.gov (United States)

    Zhang, Kai; Ding, Wei; Sun, Wei; Sun, Xiao-jiang; Xie, You-zhuan; Zhao, Chang-qing; Zhao, Jie

    2016-01-01

    Low back pain is associated with intervertebral disc degeneration (IVDD) due to cellular loss through apoptosis. Mechanical factors play an important role in maintaining the survival of the annulus fibrosus (AF) cells and the deposition of extracellular matrix. However, the mechanisms that excessive mechanical forces lead to AF cell apoptosis are not clear. The present study was to look for how AF cells sense mechanical changes. In vivo experiments, the involvement of mechanoreceptors in apoptosis was examined by RT-PCR and/or immunoblotting in the lumbar spine of rats subjected to unbalanced dynamic and static forces. In vitro experiments, we investigated apoptotic signaling pathways in untransfected and transfected AF cells with the lentivirus vector for rat β1 integrin overexpression after cyclic stretch. Apoptosis in AF cells was assessed using flow cytometry, Hoechst 33258 nuclear staining. Western blotting was used to analyze expression of β1 integrin and caspase-3 and ERK1/2 MAPK signaling molecules. In the rat IVDD model, unbalanced dynamic and static forces induced apoptosis of disc cells, which corresponded to decreased expression of β1 integrin. Cyclic stretch-induced apoptosis in rat AF cells correlated with the activation of caspase-3 and with decreased levels of β1 integrin and the phosphorylation levels of ERK1/2 activation level. However, the overexpression of β1 integrin in AF cells ameliorated cyclic stretch-induced apoptosis and decreased caspase-3 activation. Furthermore, ERK1/2-specific inhibitor promotes apoptosis in vector β1-infected AF cells. These results suggest that the disruption of β1 integrin signaling may underlie disc cell apoptosis induced by mechanical stress. Further work is necessary to fully elucidate the pathophysiological mechanisms that underlie IVDD caused by unbalanced dynamic and static forces.

  7. [Baicalein promotes the apoptosis of HeLa cells by inhibiting ERK1/2 expression].

    Science.gov (United States)

    Wang, Yongzhou; Xia, Jiyi; Tang, Xiaoping; Tang, Li; Mao, Xiguang; Zhang, Yujiao; Yu, Xiaolan

    2016-11-01

    Objective To investigate the effects of baicalein and U0126 treatment on the apoptosis of human cervical carcinoma HeLa cells and the potential mechanism. Methods HeLa cells were subjected to (1, 2, 5, 10, 20, 50, 100, 200, 300) μmol/L baicalein or (1, 2, 5, 10, 20, 30) μmol/L U0126 treatment for 24 hours. The optimal concentrations of baicalein and U0126 for HeLa inhibition was determined by a cell counting Kit-8 assay. HeLa cells were then treated with these inhibitory concentrations for 24 hours separately or in combination. The cell cycle and the degree of apoptosis were analyzed by flow cytometry. The cell apoptosis index was evaluated by the TUNEL assay. The expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), Bax, and Bcl-2 at the mRNA and protein levels were examined by real-time PCR and Western blotting, respectively. Results Optimal inhibitory concentrations of baicalein and U0126 for HeLa cells were 200 μmol/L and 10 μmol/L, respectively. Compared with the control group, baicalein treatment increased the growth rate of cells in the G0/G1 phase but decreased the S phase. Combination treatment of 200 μmol/L baicalein and 10 μmol/L U0126 for 24 hours further reduced the S phase growth rate. Treatment with 10 μmol/L U0126 or 200 μmol/L baicalein for 24 hours induced cell apoptosis, and the combination treatment induced more apoptosis. Treatment by baicalein alone or in combination with U0126 for 24 hours significantly decreased ERK1/2 and Bcl-2 mRNA expressions, and upregulated Bax mRNA expression. It also downregulated ERK1/2 phosphorylation and Bcl-2 protein expression, while increasing Bax protein expression. Conclusion Both baicalein and U012 appear to inhibit proliferation, induce apoptosis, and increase the growth rate in the G0/G1 phase but reduce the S phase of HeLa cells. This effect is enhanced when they are used synergistically.

  8. Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression

    International Nuclear Information System (INIS)

    Woodfield, Sarah E.; Zhang, Linna; Scorsone, Kathleen A.; Liu, Yin; Zage, Peter E.

    2016-01-01

    Novel therapies are needed for children with high-risk and relapsed neuroblastoma. We hypothesized that MAPK/ERK kinase (MEK) inhibition with the novel MEK1/2 inhibitor binimetinib would be effective in neuroblastoma preclinical models. Levels of total and phosphorylated MEK and extracellular signal-regulated kinase (ERK) were examined in primary neuroblastoma tumor samples and in neuroblastoma cell lines by Western blot. A panel of established neuroblastoma tumor cell lines was treated with increasing concentrations of binimetinib, and their viability was determined using MTT assays. Western blot analyses were performed to examine changes in total and phosphorylated MEK and ERK and to measure apoptosis in neuroblastoma tumor cells after binimetinib treatment. NF1 protein levels in neuroblastoma cell lines were determined using Western blot assays. Gene expression of NF1 and MEK1 was examined in relationship to neuroblastoma patient outcomes. Both primary neuroblastoma tumor samples and cell lines showed detectable levels of total and phosphorylated MEK and ERK. IC 50 values for cells sensitive to binimetinib ranged from 8 nM to 1.16 μM, while resistant cells did not demonstrate any significant reduction in cell viability with doses exceeding 15 μM. Sensitive cells showed higher endogenous expression of phosphorylated MEK and ERK. Gene expression of NF1, but not MEK1, correlated with patient outcomes in neuroblastoma, and NF1 protein expression also correlated with responses to binimetinib. Neuroblastoma tumor cells show a range of sensitivities to the novel MEK inhibitor binimetinib. In response to binimetinib, sensitive cells demonstrated complete loss of phosphorylated ERK, while resistant cells demonstrated either incomplete loss of ERK phosphorylation or minimal effects on MEK phosphorylation, suggesting alternative mechanisms of resistance. NF1 protein expression correlated with responses to binimetinib, supporting the use of NF1 as a biomarker to identify

  9. Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP

    Science.gov (United States)

    Galic, Sandra; Hauser, Christine; Kahn, Barbara B.; Haj, Fawaz G.; Neel, Benjamin G.; Tonks, Nicholas K.; Tiganis, Tony

    2005-01-01

    The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell. PMID:15632081

  10. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development

    Science.gov (United States)

    Pfaff, Miles J.; Xue, Ke; Li, Li; Horowitz, Mark C.; Steinbacher, Derek M.; Eswarakumar, Jacob V.P.

    2017-01-01

    Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor’s gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. PMID:27034231

  11. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat

    Directory of Open Access Journals (Sweden)

    Maddahi Aida

    2009-06-01

    Full Text Available Abstract Background Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression of metalloproteinase-9 (MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1. Results Here, we found an infarct volume of 24.8 ± 2% and a reduced neurological function after two hours of middle cerebral artery occlusion (MCAO, followed by 48 hours of recirculation in rat. Immunocytochemistry and confocal microscopy revealed enhanced expression of MMP-9, TIMP-1, and phosphorylated ERK1/2 in the smooth muscle cells of the ischemic MCA and associated intracerebral microvessels. The specific MEK1/2 inhibitor U0126, given intraperitoneal zero or 6 hours after the ischemic event, reduced the infarct volume significantly (11.8 ± 2% and 14.6 ± 3%, respectively; P Conclusion These data are the first to show that the elevated vascular expression of MMP-9 and TIMP-1, associated with breakdown of the blood-brain barrier following focal ischemia, are transcriptionally regulated via the MEK/ERK pathway.

  12. The expression of ER, PR in endometrial cancer and analysis of their correlation with ERK signaling pathway.

    Science.gov (United States)

    Luo, Lan; Xu, Lina; Tang, Liang

    2017-12-12

    Endometrial carcinoma (EC) is a common malignant tumor in gynecology. Its incidence and development are closely associated with the levels of estrogenic and progesterone hormone. Extracellular signal-regulated kinase (ERK) signaling pathway abnormity is associated with a variety of tumors. This study detected estrogen receptor (ER), progesterone receptor (PR), ERK1, and ERK2 expression in EC and analyzed their correlations. A total of 40 EC patients in our hospital were selected as test group, while another 40 healthy volunteers were enrolled as control group. ER, PR, ERK1, and ERK2 expression in EC tissue, para-carcinoma tissue, and normal endometrial tissue were detected by immunohistochemistry and Western blot. The positive rate of ER, PR, ERK1, and ERK2 in the test group was 50%, 40%, 60%, and 65%, respectively, which were significantly higher than those in the control (PPR, ERK1, and ERK2 protein expressions in EC cell were significantly higher than those in the control (PPR (PPR, which were correlated with higher levels of ERK1 and ERK2, suggesting they might be involved in the pathogenesis of EC.

  13. Erk5 inhibits endothelial migration via KLF2-dependent down-regulation of PAK1.

    Science.gov (United States)

    Komaravolu, Ravi K; Adam, Christian; Moonen, Jan-Renier A J; Harmsen, Martin C; Goebeler, Matthias; Schmidt, Marc

    2015-01-01

    The MEK5/Erk5 pathway mediates beneficial effects of laminar flow, a major physiological factor preventing vascular dysfunction. Forced Erk5 activation induces a protective phenotype in endothelial cell (EC) that is associated with a dramatically decreased migration capacity of those cells. Transcriptional profiling identified the Krüppel-like transcription factors KLF2 and KLF4 as central mediators of Erk5-dependent gene expression. However, their downstream role regarding migration is unclear and relevant secondary effectors remain elusive. Here, we further investigated the mechanism underlying Erk5-dependent migration arrest in ECs. Our experiments reveal KLF2-dependent loss of the pro-migratory Rac/Cdc42 mediator, p21-activated kinase 1 (PAK1), as an important mechanism of Erk5-induced migration inhibition. We show that endothelial Erk5 activation by expression of a constitutively active MEK5 mutant, by statin treatment, or by application of laminar shear stress strongly decreased PAK1 mRNA and protein expression. Knockdown of KLF2 but not of KLF4 prevented Erk5-mediated PAK1 mRNA inhibition, revealing KLF2 as a novel PAK1 repressor in ECs. Importantly, both PAK1 re-expression and KLF2 knockdown restored the migration capacity of Erk5-activated ECs underscoring their functional relevance downstream of Erk5. Our data provide first evidence for existence of a previously unknown Erk5/KLF2/PAK1 axis, which may limit undesired cell migration in unperturbed endothelium and lower its sensitivity for migratory cues that promote vascular diseases including atherosclerosis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  14. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    International Nuclear Information System (INIS)

    Suzuki, Toshihide; Miyazaki, Koichi; Kita, Kayoko; Ochi, Takafumi

    2009-01-01

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvement of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.

  15. Ethanol Extracts of Fruiting Bodies of Antrodia cinnamomea Suppress CL1-5 Human Lung Adenocarcinoma Cells Migration by Inhibiting Matrix Metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Ying-Yi Chen

    2012-01-01

    Full Text Available Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea, a medicinal mushroom in Taiwan, has shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC exerted a concentration-dependent inhibitory effect on migration and motility of the highly metastatic CL1-5 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activities of matrix metalloproteinase-(MMP- 2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, that is, tissue inhibitors of MMP (TIMP-1 and TIMP-2 increased. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of Akt. Furthermore, treatment of CL1-5 cells with inhibitors specific for PI3K (LY 294002, ERK1/2 (PD98059, JNK (SP600125, and p38 MAPK (SB203580 decreased the expression of MMP-2 and MMP-9. This is the first paper confirming the antimigration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-5 cancer cells.

  16. GABAB receptor phosphorylation regulates KCTD12-induced K+ current desensitization

    DEFF Research Database (Denmark)

    Adelfinger, L; Turecek, R; Ivankova, K

    2014-01-01

    released from the G-protein. Receptor-activated K+ currents desensitize in the sustained presence of agonist to avoid excessive effects on neuronal activity. Desensitization of K+ currents integrates distinct mechanistic underpinnings. GABAB receptor activity reduces protein kinase-A activity, which...... reduces phosphorylation of serine-892 in GABAB2 and promotes receptor degradation. This form of desensitization operates on the time scale of several minutes to hours. A faster form of desensitization is induced by the auxiliary subunit KCTD12, which interferes with channel activation by binding to the G......-protein βγ subunits. Here we show that the two mechanisms of desensitization influence each other. Serine-892 phosphorylation in heterologous cells rearranges KCTD12 at the receptor and slows KCTD12-induced desensitization. Likewise, protein kinase-A activation in hippocampal neurons slows fast...

  17. ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity.

    Science.gov (United States)

    Winiarska, Katarzyna; Jarzyna, Robert; Dzik, Jolanta M; Jagielski, Adam K; Grabowski, Michal; Nowosielska, Agata; Focht, Dorota; Sierakowski, Bartosz

    2015-04-01

    The aim of this study was to elucidate the mechanisms involved in the inhibition of renal gluconeogenesis occurring under conditions of lowered activity of NADPH oxidase (Nox), the enzyme considered to be one of the main sources of reactive oxygen species in kidneys. The in vitro experiments were performed on primary cultures of rat renal proximal tubules, with the use of apocynin, a selective Nox inhibitor, and TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a potent superoxide radical scavenger. In the in vivo experiments, Zucker diabetic fatty (ZDF) rats, a well established model of diabetes type 2, were treated with apocynin solution in drinking water. The main in vitro findings are the following: (1) both apocynin and TEMPOL attenuate the rate of gluconeogenesis, inhibiting the step catalyzed by phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the process; (2) in the presence of the above-noted compounds the expression of PEPCK and the phosphorylation of transcription factor CREB and ERK1/2 kinases are lowered; (3) both U0126 (MEK inhibitor) and 3-(2-aminoethyl)-5-((4-ethoxyphenyl)methylene)-2,4-thiazolidinedione (ERK inhibitor) diminish the rate of glucose synthesis via mechanisms similar to those of apocynin and TEMPOL. The observed apocynin in vivo effects include: (1) slight attenuation of hyperglycemia; (2) inhibition of renal gluconeogenesis; (3) a decrease in renal PEPCK activity and content. In view of the results summarized above, it can be concluded that: (1) the lowered activity of the ERK1/2 pathway is of importance for the inhibition of renal gluconeogenesis found under conditions of lowered superoxide radical production by Nox; (2) the mechanism of this phenomenon includes decreased PEPCK expression, resulting from diminished activity of transcription factor CREB; (3) apocynin-evoked inhibition of renal gluconeogenesis contributes to the hypoglycemic action of this compound observed in diabetic animals. Thus, the study has

  18. Resveratrol Ameliorates Tau Hyperphosphorylation at Ser396 Site and Oxidative Damage in Rat Hippocampal Slices Exposed to Vanadate: Implication of ERK1/2 and GSK-3β Signaling Cascades.

    Science.gov (United States)

    Jhang, Kyoung A; Park, Jin-Sun; Kim, Hee-Sun; Chong, Young Hae

    2017-11-08

    The objective of this study was to investigate the effect of resveratrol (a natural polyphenolic phytostilbene) on tau hyperphosphorylation and oxidative damage induced by sodium orthovanadate (Na 3 VO 4 ), the prevalent species of vanadium (vanadate), in rat hippocampal slices. Our results showed that resveratrol significantly inhibited Na 3 VO 4 -induced hyperphosphorylation of tau at the Ser396 (p-S396-tau) site, which is upregulated in the hippocampus of Alzheimer's disease (AD) brains and principally linked to AD-associated cognitive dysfunction. Subsequent mechanistic studies revealed that reduction of ERK1/2 activation was involved in the inhibitory effect of resveratrol by inhibiting the ERK1/2 pathway with SL327 mimicking the aforementioned effect of resveratrol. Moreover, resveratrol potently induced GSK-3β Ser9 phosphorylation and reduced Na 3 VO 4 -induced p-S396-tau levels, which were markedly replicated by pharmacologic inhibition of GSK-3β with LiCl. These results indicate that resveratrol could suppress Na 3 VO 4 -induced p-S396-tau levels via downregulating ERK1/2 and GSK-3β signaling cascades in rat hippocampal slices. In addition, resveratrol diminished the increased extracellular reactive oxygen species generation and hippocampal toxicity upon long-term exposure to Na 3 VO 4 or FeCl 2 . Our findings strongly support the notion that resveratrol may serve as a potential nutraceutical agent for AD.

  19. Erk signaling suppresses embryonic stem cell self-renewal to specify endoderm

    DEFF Research Database (Denmark)

    Hamilton, William B; Brickman, Joshua M

    2014-01-01

    Fgf signaling via Erk activation has been associated with both neural induction and the generation of a primed state for the differentiation of embryonic stem cells (ESCs) to all somatic lineages. To dissect the role of Erk in both ESC self-renewal and lineage specification, we explored...

  20. Different effects of resveratrol on early and late passage mesenchymal stem cells through β-catenin regulation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dong Suk; Choi, Yoorim; Choi, Seong Mi [Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Park, Kwang Hwan [Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Jin Woo, E-mail: ljwos@yuhs.ac [Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul (Korea, Republic of)

    2015-11-27

    Resveratrol is a sirtuin 1 (SIRT1) activator and can function as an anti-inflammatory and antioxidant factor. In mesenchymal stem cells (MSCs), resveratrol enhances the proliferation and differentiation potential and has an anti-aging effect. However, contradictory effects of resveratrol on MSC cultures have been reported. In this study, we found that resveratrol had different effects on MSC cultures according to their cell passage and SIRT1 expression. Resveratrol enhanced the self-renewal potential and multipotency of early passage MSCs, but accelerated cellular senescence of late passage MSCs. In early passage MSCs expressing SIRT1, resveratrol decreased ERK and GSK-3β phosphorylation, suppressing β-catenin activity. In contrast, in late passage MSCs, which did not express SIRT1, resveratrol increased ERK and GSK-3β phosphorylation, activating β-catenin. We confirmed that SIRT1-deficient early passage MSCs treated with resveratrol lost their self-renewal potential and multipotency, and became senescent due to increased β-catenin activity. Sustained treatment with resveratrol at early passages maintained the self-renewal potential and multipotency of MSCs up to passage 10. Our findings suggest that resveratrol can be effectively applied to early passage MSC cultures, whereas parameters such as cell passage and SIRT1 expression must be taken into consideration before applying resveratrol to late passage MSCs. - Highlights: • Resveratrol enhances self-renewal potential and multipotency of early passage MSCs. • Resveratrol accelerates the cellular senescence of late passage MSCs. • The effects of resveratrol on MSCs are dependent on the presence of SIRT1. • SIRT1 modulates ERK/GSK-3β/β-catenin signaling. • Sustained resveratrol treatment maintains MSC stemness up to P10.

  1. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

    2012-04-15

    fractions from control, MVAL or propiconazole-treated cells revealed increased Ras protein in the cytoplasmic fraction of L-744,832-treated cells, while propiconazole or MVAL reversed these effects. Western blot analysis indicated that phosphorylation of Erk1/2, a protein downstream of Ras, was increased by propiconazole. These data indicate that propiconazole increases cell proliferation by increasing the levels of cholesterol biosynthesis intermediates presumably through a negative feedback mechanism within the pathway, a result of CYP51 inhibition. This feedback mechanism increases Erk1/2 signaling through mevalonate-mediated Ras activation. These results provide an explanation for the observed effects of propiconazole on hepatic cholesterol pathways and on the increased hepatic cell proliferation induced by propiconazole in mice. Highlights: ► Propiconazole increases cell proliferation in AML12 mouse hepatocytes. ► Propiconazole increases Ras farnesylation and alters Ras membrane localization. ► Propiconazole increases Erk1/2 phosphorylation. ► Dysregulation of the cholesterol biosynthesis pathway can explain these results. ► These results can explain similar effects induced by propiconazole in mice.

  2. Phosphorylated nano-diamond/ Polyimide Nanocomposites

    International Nuclear Information System (INIS)

    Beyler-Çiǧil, Asli; Çakmakçi, Emrah; Kahraman, Memet Vezir

    2014-01-01

    In this study, a novel route to synthesize polyimide (PI)/phosphorylated nanodiamond films with improved thermal and mechanical properties was developed. Surface phosphorylation of nano-diamond was performed in dichloromethane. Phosphorylation dramatically enhanced the thermal stability of nano-diamond. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized with 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydianiline (4,4'-ODA) in the solution of N,N- dimethylformamide (DMF). Pure BTDA-ODA polyimide films and phosphorylated nanodiamond containing BTDA-ODA PI films were prepared. The PAA displayed good compatibility with phosphorylated nano-diamond. The morphology of the polyimide (PI)/phosphorylated nano-diamond was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and polyimide (PI)/phosphorylated nano-diamond was characterized by FTIR. SEM and FTIR results showed that the phosphorylated nano-diamond was successfully prepared. Thermal properties of the polyimide (PI)/phosphorylated nanodiamond was characterized by thermogravimetric analysis (TGA). TGA results showed that the thermal stability of (PI)/phosphorylated nano-diamond film was increased

  3. Recombinant Uncarboxylated Osteocalcin Per Se Enhances Mouse Skeletal Muscle Glucose Uptake in both Extensor Digitorum Longus and Soleus Muscles

    Directory of Open Access Journals (Sweden)

    Xuzhu Lin

    2017-11-01

    Full Text Available Emerging evidence suggests that undercarboxylated osteocalcin (ucOC improves muscle glucose uptake in rodents. However, whether ucOC can directly increase glucose uptake in both glycolytic and oxidative muscles and the possible mechanisms of action still need further exploration. We tested the hypothesis that ucOC per se stimulates muscle glucose uptake via extracellular signal-regulated kinase (ERK, adenosine monophosphate-activated protein kinase (AMPK, and/or the mechanistic target of rapamycin complex 2 (mTORC2-protein kinase B (AKT-AKT substrate of 160 kDa (AS160 signaling cascade. Extensor digitorum longus (EDL and soleus muscles from male C57BL/6 mice were isolated, divided into halves, and then incubated with ucOC with or without the pretreatment of ERK inhibitor U0126. ucOC increased muscle glucose uptake in both EDL and soleus. It also enhanced phosphorylation of ERK2 (Thr202/Tyr204 and AS160 (Thr642 in both muscle types and increased mTOR phosphorylation (Ser2481 in EDL only. ucOC had no significant effect on the phosphorylation of AMPKα (Thr172. The inhibition of ucOC-induced ERK phosphorylation had limited effect on ucOC-stimulated glucose uptake and AS160 phosphorylation in both muscle types, but appeared to inhibit the elevation in AKT phosphorylation only in EDL. Taken together, ucOC at the physiological range directly increased glucose uptake in both EDL and soleus muscles in mouse. The molecular mechanisms behind this ucOC effect on muscle glucose uptake seem to be muscle type-specific, involving enhanced phosphorylation of AS160 but limitedly modulated by ERK phosphorylation. Our study suggests that, since ucOC increases muscle glucose uptake without insulin, it could be considered as a potential agent to improve muscle glucose uptake in insulin resistant conditions.

  4. A sustained increase in plasma NEFA upregulates the Toll-like receptor network in human muscle.

    Science.gov (United States)

    Hussey, Sophie E; Lum, Helen; Alvarez, Andrea; Cipriani, Yolanda; Garduño-Garcia, Jesús; Anaya, Luis; Dube, John; Musi, Nicolas

    2014-03-01

    Insulin-sensitive tissues (muscle, liver) of individuals with obesity and type 2 diabetes mellitus are in a state of low-grade inflammation, characterised by increased Toll-like receptor (TLR) expression and TLR-driven signalling. However, the cause of this mild inflammatory state is unclear. We tested the hypothesis that a prolonged mild increase in plasma NEFA will increase TLR expression and TLR-driven signalling (nuclear factor κB [NFκB] and mitogen-activated kinase [MAPK]) and impair insulin action in muscle of lean healthy individuals. Twelve lean, normal-glucose-tolerant participants were randomised to receive a 48 h infusion (30 ml/h) of saline or Intralipid followed by a euglycaemic-hyperinsulinaemic clamp. Vastus lateralis muscle biopsies were performed before and during the clamp. Lipid infusion impaired insulin-stimulated IRS-1 tyrosine phosphorylation and reduced peripheral insulin sensitivity (p < 0.01). The elevation in circulating NEFA increased expression of TLR3, TLR4 and TLR5, and several MAPK (MAPK8, MAP4K4, MAP2K3) and inhibitor of κB kinase-NFκB (CHUK [IKKA], c-REL [REL] and p65 [RELA, NFKB3, p65]) signalling genes (p < 0.05). The lipid infusion also increased extracellular signal-regulated kinase (ERK) phosphorylation (p < 0.05) and tended to reduce the content of inhibitor of kappa Bα (p = 0.09). The muscle content of most diacylglycerol, ceramide and acylcarnitine species was unaffected. In summary, insulin resistance induced by prolonged low-dose lipid infusion occurs together with increased TLR-driven inflammatory signalling and impaired insulin-stimulated IRS-1 tyrosine phosphorylation. A sustained, mild elevation in plasma NEFA is sufficient to increase TLR expression and TLR-driven signalling (NFκB and MAPK) in lean individuals. The activation of this pathway by NEFA may be involved in the pathogenesis of insulin resistance in humans. ClinicalTrials.gov NCT01740817.

  5. Myosin light chain phosphorylation is critical for adaptation to cardiac stress.

    Science.gov (United States)

    Warren, Sonisha A; Briggs, Laura E; Zeng, Huadong; Chuang, Joyce; Chang, Eileen I; Terada, Ryota; Li, Moyi; Swanson, Maurice S; Lecker, Stewart H; Willis, Monte S; Spinale, Francis G; Maupin-Furlowe, Julie; McMullen, Julie R; Moss, Richard L; Kasahara, Hideko

    2012-11-27

    Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress. We previously identified an enzyme that predominantly phosphorylates MLC2v in cardiomyocytes, cardiac myosin light-chain kinase (cMLCK), yet the role(s) played by cMLCK in regulating cardiac function in health and disease remain to be determined. We found that pressure overload induced by transaortic constriction in wild-type mice reduced phosphorylated MLC2v levels by ≈40% and cMLCK levels by ≈85%. To examine how a reduction in cMLCK and the corresponding reduction in phosphorylated MLC2v affect function, we generated Mylk3 gene-targeted mice and transgenic mice overexpressing cMLCK specifically in cardiomyocytes. Pressure overload led to severe heart failure in cMLCK knockout mice but not in mice with cMLCK overexpression in which cMLCK protein synthesis exceeded degradation. The reduction in cMLCK protein during pressure overload was attenuated by inhibition of ubiquitin-proteasome protein degradation systems. Our results suggest the novel idea that accelerated cMLCK protein turnover by the ubiquitin-proteasome system underlies the transition from compensated hypertrophy to decompensated heart failure as a result of reduced phosphorylation of MLC2v.

  6. Epstein-Barr virus-negative aggressive natural killer-cell leukaemia with high P-glycoprotein activity and phosphorylated extracellular signal-regulated protein kinases 1 and 2

    Directory of Open Access Journals (Sweden)

    Sanja Perkovic

    2012-09-01

    Full Text Available Aggressive natural killer-cell leukaemia (ANKL is a rare type of disease with fulminant course and poor outcome. The disease is more prevalent among Asians than in other ethnic groups and shows strong association with Epstein-Barr virus (EBV and P-glycoprotein (P-gp expression associated with multidrug resistance. Here we present a case of a 47 year old Caucasian female with a prior medical history of azathioprine treated ulcerative colitis who developed EBV-negative form of ANKL. The patient presented with hepatosplenomegaly, fever and nausea with peripheral blood and bone marrow infiltration with up to 70% of atypical lymphoid cells positive for cCD3, CD2, CD7, CD56, CD38, CD45, TIA1 and granzyme B, and negative for sCD3, CD4, CD5, CD8, CD34 and CD123 indicative of ANKL. Neoplastic CD56+ NK-cells showed high level of P-glycoprotein expression and activity, but also strong expression of phosphorylated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2 MAP kinase. The patient was treated with an intensive polychemotherapy regimen designed for treatment of acute lymphoblastic leukaemia, but one month after admission developed sepsis, coma and died of cardiorespiratory arrest. We present additional evidence that, except for the immunophenotype, leukaemic NK-cells resemble normal NK-cells in terms of P-gp functional capacity and expression of phosphorylated ERK1/2 signalling molecule. In that sense drugs that block P-glycoprotein activity and activated signalling pathways might represent new means for targeted therapy.

  7. ANGPTL3 is a novel biomarker as it activates ERK/MAPK pathway in oral cancer

    International Nuclear Information System (INIS)

    Koyama, Tomoyoshi; Ogawara, Katsunori; Kasamatsu, Atsushi; Okamoto, Atsushi; Kasama, Hiroki; Minakawa, Yasuyuki; Shimada, Ken; Yokoe, Hidetaka; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2015-01-01

    Angiopoietin-like 3 (ANGPTL3), which is involved in new blood vessel growth and stimulation of mitogen-activated protein kinase (MAPK), is expressed aberrantly in several types of human cancers. However, little is known about the relevance of ANGPTL3 in the behavior of oral squamous cell carcinoma (OSCC). In this study, we evaluated ANGPTL3 mRNA and protein in OSCC-derived cell lines (n = 8) and primary OSCCs (n = 109) and assessed the effect of ANGPTL3 on the biology and function of OSCCs in vitro and in vivo. Significant (P < 0.05) ANGPTL3 upregulation was detected in the cell lines and most primary OSCCs (60%) compared with the normal counterparts. The ANGPTL3 expression level was correlated closely (P < 0.05) with tumoral size. In patients with T3/T4 tumors, the overall survival rate with an ANGPTL3-positive tumor was significantly (P < 0.05) lower than that of ANGPTL3-negative cases. In vitro, cellular growth in ANGPTL3 knockdown cells significantly (P < 0.05) decreased with inactivated extracellular regulated kinase (ERK) and cell-cycle arrest at the G1 phase resulting from upregulation of the cyclin-dependent kinase inhibitors, including p21 Cip1 and p27 Kip1 . We also observed a marked (P < 0.05) reduction in the growth in ANGPTL3 knockdown-cell xenografts with decreased levels of phosphorylated ERK relative to control-cell xenografts. The current data indicated that ANGPTL3 may play a role in OSCCs via MAPK signaling cascades, making it a potentially useful diagnostic/therapeutic target for use in patients with OSCC

  8. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways.

    Science.gov (United States)

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-10-10

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.

  9. Importance of ERK activation in As2O3-induced differentiation and promyelocytic leukemia nuclear bodies formation in neuroblastoma cells.

    Science.gov (United States)

    Petit, A; Delaune, A; Falluel-Morel, A; Goullé, J-P; Vannier, J-P; Dubus, I; Vasse, M

    2013-11-01

    Neuroblastoma malignant cell growth is dependent on their undifferentiated status. Arsenic trioxide (As2O3) induces neuroblastoma cell differentiation in vitro, but its mechanisms still remains unknown. We used three human neuroblastoma cell lines (SH-SY5Y, IGR-N-91, LAN-1) that differ from their MYCN and p53 status to explore the intracellular events activated by As2O3 and involved in neurite outgrowth, a morphological marker of differentiation. As2O3 (2μM) induced neurite outgrowth in all cell lines, which was dependent on ERK activation but independent on MYCN status. This process was induced either by a sustained (3 days) or a transient (2h) incubation with As2O3, indicating that very early events trigger the induction of differentiation. In parallel, As2O3 induced a rapid assembly of promyelocytic leukemia nuclear bodies (PML-NB) in an ERK-dependent manner. In conclusion, mechanisms leading to neuroblastoma cell differentiation in response to As2O3 appear to involve the ERK pathway activation and PML-NB formation, which are observed in response to other differentiating molecules such as retinoic acid derivates. This open new perspectives based on the use of treatment combinations to potentiate the differentiating effects of each drug alone and reduce their adverse side effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The amoebal MAP kinase response to Legionella pneumophila is regulated by DupA.

    Science.gov (United States)

    Li, Zhiru; Dugan, Aisling S; Bloomfield, Gareth; Skelton, Jason; Ivens, Alasdair; Losick, Vicki; Isberg, Ralph R

    2009-09-17

    The amoeba Dictyostelium discoideum can support replication of Legionella pneumophila. Here we identify the dupA gene, encoding a putative tyrosine kinase/dual-specificity phosphatase, in a screen for D. discoideum mutants altered in allowing L. pneumophila intracellular replication. Inactivation of dupA resulted in depressed L. pneumophila growth and sustained hyperphosphorylation of the amoebal MAP kinase ERK1, consistent with loss of a phosphatase activity. Bacterial challenge of wild-type amoebae induced dupA expression and resulted in transiently increased ERK1 phosphorylation, suggesting that dupA and ERK1 are part of a response to bacteria. Indeed, over 500 of the genes misregulated in the dupA(-) mutant were regulated in response to L. pneumophila infection, including some thought to have immune-like functions. MAP kinase phosphatases are known to be highly upregulated in macrophages challenged with L. pneumophila. Thus, DupA may regulate a MAP kinase response to bacteria that is conserved from amoebae to mammals.

  11. Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/O-GlcNAcylation interplay.

    Science.gov (United States)

    Fourneau, Julie; Canu, Marie-Hélène; Cieniewski-Bernard, Caroline; Bastide, Bruno; Dupont, Erwan

    2018-05-28

    In human, a chronic sensorimotor perturbation (SMP) through prolonged body immobilization alters motor task performance through a combination of peripheral and central factors. Studies performed on a rat model of SMP have shown biomolecular changes and a reorganization of sensorimotor cortex through events such as morphological modifications of dendritic spines (number, length, functionality). However, underlying mechanisms are still unclear. It is well known that phosphorylation regulates a wide field of synaptic activity leading to neuroplasticity. Another post-translational modification that interplays with phosphorylation is O-GlcNAcylation. This atypical glycosylation, reversible and dynamic, is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, learning and memory. We examined potential roles of phosphorylation/O-GlcNAcylation interplay in synaptic plasticity within rat sensorimotor cortex after a SMP period. For this purpose, sensorimotor cortex synaptosomes were separated by sucrose gradient, in order to isolate a subcellular compartment enriched in proteins involved in synaptic functions. A period of SMP induced plastic changes at the pre- and postsynaptic levels, characterized by a reduction of phosphorylation (synapsin1, AMPAR GluA2) and expression (synaptophysin, PSD-95, AMPAR GluA2) of synaptic proteins, as well as a decrease in MAPK/ERK42 activation. Expression levels of OGT/OGA enzymes was unchanged but we observed a specific reduction of synapsin1 O-GlcNAcylation in sensorimotor cortex synaptosomes. The synergistic regulation of synapsin1 phosphorylation/O-GlcNAcylation could affect presynaptic neurotransmitter release. Associated with other pre- and postsynaptic changes, synaptic efficacy could be impaired in somatosensory cortex of SMP rat. Thus, synapsin1 O-GlcNAcylation/phosphorylation interplay also appears to be involved in this synaptic plasticity by finely regulating neural activity

  12. Differential NF-κB and MAPK activation underlies fluoride- and TPA-mediated CXCL8 (IL-8 induction in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Refsnes M

    2014-12-01

    Full Text Available Magne Refsnes, Tonje Skuland, Marit Låg, Per E Schwarze, Johan Øvrevik Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway Abstract: Different toxic agents have a varying potential to induce the production of the proinflammatory chemokine, CXCL8 (interleukin [IL]-8, in lung cells. A critical question is which mechanisms determine the magnitude and persistence of the CXCL8 responses to different stimuli. To approach this, we compared the potential of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA, and sodium fluoride (NaF to induce CXCL8 responses in A549 cells, with emphasis on the importance of nuclear factor kappa B (NF-κB- and mitogen-activated protein kinase (MAPK signaling. Notably, TPA induced a greater release of CXCL8 than did NaF. Furthermore, TPA induced a strong, rapid, but transient upregulation of CXCL8 messenger (mRNA, whereas NaF induced a weaker, more delayed, but persistent upregulation. With respect to signaling, TPA led to an early, strong, and relatively transient extracellular signal-regulated kinase (ERK1/2 phosphorylation, and a less marked and even more transient phosphorylation of c-jun-N-terminal kinases (JNK1/2 and p38. In contrast, NaF elicited a lower, but relatively sustained increase in phosphorylation of ERK1/2, and a marked phosphorylation of p38 and JNK1/2, with the JNK1/2 response as most transient. Only ERK1/2 inhibition affected the TPA response, whereas inhibition of all the three MAPK cascades reduced NaF-induced CXCL8 release. TPA also induced an early, marked phosphorylation/translocation of p65 (NF-κB, whereas NaF induced slower, less pronounced effects on p65. The CXCL8 responses by TPA and NaF were reduced by p65-siRNA. In conclusion, all MAPK cascades were involved in NaF-induced CXCL8 release, whereas only ERK1/2 activation was involved in response to TPA. Furthermore, NF-κB activation appeared to be

  13. Signal transduction of vitamin K3 for pancreas cancer therapy

    Directory of Open Access Journals (Sweden)

    Toshiyuki Tanahashi

    2011-10-01

    Full Text Available We characterized molecular mechanisms of vitamin K3 (VK3-induced inhibition of proliferation to evaluate VK3 effectiveness in treating advanced pancreatic cancer. A novel endoscopic drug delivery system, ultrasound injection technique, was used to study local effects of VK3. VK3 inhibited pancreas cancer cell growth by rapid phosphorylation of growth factor receptor and cellular signal factors such as extracellular signal-regulated kinase. VK3 also activated apoptosis, and apoptosis inhibitor antagonized the apoptosis pathway without inhibiting cell growth. Thiol antioxidant treatment completely abrogated VK3-induced ERK but not JNK phosphorylation or inhibition of proliferation. Non-thiol antioxidant did not affect ERK phosphorylation or growth inhibitory actions. Arylation was considered the main mechanism of VK3-induced growth inhibition through ERK activation. VK3 may lead to favorable outcomes in the treatment of pancreatic tumors. Detection of ERK phosphorylation in tissue is important to predict VK3 effect. Endoscopic ultrasound-guided fine-needle injection may be beneficial for treating pancreatic cancer with VK3.

  14. Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta T-cells.

    Directory of Open Access Journals (Sweden)

    Daniel V Correia

    Full Text Available BACKGROUND: The unique responsiveness of Vgamma9Vdelta2 T-cells, the major gammadelta subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current gammadelta T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human gammadelta T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vgamma9Vdelta2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, produced by Eubacteria and Protozoa, and examined its gammadelta T-cell activation and anti-tumor properties. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a comparative study between HMB-PP and the anti-CD3epsilon monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular gammadelta T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vgamma9(+ T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including gammadelta T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vgamma9(+ TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains gammadelta T-cell activation upon re-stimulation. This ultimately translates in potent human gammadelta T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, CONCLUSIONS/SIGNIFICANCE: The development of

  15. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    Science.gov (United States)

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. ERK pathway activation bidirectionally affects visual recognition memory and synaptic plasticity in the perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Davide eSilingardi

    2011-12-01

    Full Text Available ERK 1,2 pathway mediates experience-dependent gene transcription in neurons and several studies have identified its pivotal role in experience-dependent synaptic plasticity and in forms of long term memory involving hippocampus, amygdala or striatum. The perirhinal cortex (PRHC plays an essential role in familiarity-based object recognition memory. It is still unknown whether ERK activation in PRHC is necessary for recognition memory consolidation. Most important, it is unknown whether by modulating the gain of the ERK pathway it is possible to bidirectionally affect visual recognition memory and PRHC synaptic plasticity.We have first pharmacologically blocked ERK activation in the PRHC of adult mice and found that this was sufficient to impair long term recognition memory in a familiarity-based task, the Object Recognition Task (ORT. We have then tested performance in the ORT in Ras-GRF1 knock-out (KO mice, which exhibit a reduced activation of ERK by neuronal activity, and in ERK1 KO mice, which have an increased activation of ERK2 and exhibit enhanced striatal plasticity and striatal mediated memory. We found that Ras-GRF1 KO mice have normal short-term memory but display a long term memory deficit; memory reconsolidation is also impaired. On the contrary, ERK1 KO mice exhibit a better performance than WT mice at 72 hour retention interval, suggesting a longer lasting recognition memory. In parallel with behavioural data, LTD was strongly reduced and LTP was significantly smaller in PRHC slices from Ras-GRF1 KO than in WT mice while enhanced LTP and LTD were found in PRHC slices from ERK1 KO mice.

  17. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells

    International Nuclear Information System (INIS)

    Yonezawa, Tomo; Haga, Satoshi; Kobayashi, Yosuke; Katoh, Kazuo; Obara, Yoshiaki

    2008-01-01

    GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca 2+ concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation. Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival

  18. Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells

    DEFF Research Database (Denmark)

    Chen, Qing-wen; Edvinsson, Lars; Xu, Cang-Bao

    2009-01-01

    muscle cells (VSMCs) through activation of endothelin type A (ETA) and type B (ETB) receptors. The extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein kinases (MAPK) are involved in ET-1-induced VSMC contraction and proliferation. This study was designed to investigate...... agonist, Sarafotoxin 6c (S6c) caused a time-dependent ERK1/2 activation with a maximal effect by less than 20% of the ET-1-induced activation of ERK1/2. Increase in bosentan concentration up to 10 microM further inhibited ET-1-induced activation of ERK1/2 and had a stronger inhibitory effect than BQ123...

  19. Oxidative phosphorylation revisited

    DEFF Research Database (Denmark)

    Nath, Sunil; Villadsen, John

    2015-01-01

    The fundamentals of oxidative phosphorylation and photophosphorylation are revisited. New experimental data on the involvement of succinate and malate anions respectively in oxidative phosphorylation and photophosphorylation are presented. These new data offer a novel molecular mechanistic...

  20. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways

    International Nuclear Information System (INIS)

    Cao, Qin; Qin, Liyue; Huang, Fei; Wang, Xiaoshuang; Yang, Liu; Shi, Hailian; Wu, Hui; Zhang, Beibei; Chen, Ziyu; Wu, Xiaojun

    2017-01-01

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP + )-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AF enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP + in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1β and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP + -induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation. - Highlights: • AF protected dopaminergic neurons against MPTP/MPP + -induced neurotoxicity. • AF modulated PI3K/Akt and ERK signaling pathways. • AF could alleviate neuroinflammation in SN.

  1. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qin; Qin, Liyue; Huang, Fei, E-mail: Fei_H@hotmail.com; Wang, Xiaoshuang; Yang, Liu; Shi, Hailian; Wu, Hui; Zhang, Beibei; Chen, Ziyu; Wu, Xiaojun, E-mail: xiaojunwu320@126.com

    2017-03-15

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP{sup +})-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AF enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP{sup +} in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1β and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP{sup +}-induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation. - Highlights: • AF protected dopaminergic neurons against MPTP/MPP{sup +}-induced neurotoxicity. • AF modulated PI3K/Akt and ERK signaling pathways. • AF could alleviate neuroinflammation in SN.

  2. Convergence of BMI1 and CHD7 on ERK Signaling in Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Sara Badodi

    2017-12-01

    Full Text Available Summary: We describe molecular convergence between BMI1 and CHD7 in the initiation of medulloblastoma. Identified in a functional genomic screen in mouse models, a BMI1High;CHD7Low expression signature within medulloblastoma characterizes patients with poor overall survival. We show that BMI1-mediated repression of the ERK1/2 pathway leads to increased proliferation and tumor burden in primary human MB cells and in a xenograft model, respectively. We provide evidence that repression of the ERK inhibitor DUSP4 by BMI1 is dependent on a more accessible chromatin configuration in G4 MB cells with low CHD7 expression. These findings extend current knowledge of the role of BMI1 and CHD7 in medulloblastoma pathogenesis, and they raise the possibility that pharmacological targeting of BMI1 or ERK may be particularly indicated in a subgroup of MB with low expression levels of CHD7. : Badodi et al. find convergence of the chromatin modifiers BMI1 and CHD7 in medulloblastoma pathogenesis, and they show that this pathway regulates tumor proliferation and growth via ERK signaling. Keywords: BMI1, CHD7, DUSP4, ERK, medulloblastoma, PcG genes, mouse models, epigenetics, chromatin

  3. Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation and its recruitment to the membrane-localized Rac1/p38 complex.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2016-06-01

    Matrix metalloproteinases (MMPs) are a family of endopeptidases implicated in a wide rage of degenerative and inflammatory diseases, including Helicobacter pylori-associated gastritis, and gastric and duodenal ulcer. As gastric mucosal inflammatory responses to H. pylori are characterized by the rise in MMP-9 production, as well as the induction in mitogen-activated protein kinase (MAPK) and Rac1 activation, we investigated the role of Rac1/MAPK in the processes associated with the release of MMP-9. We show that H. pylori LPS-elicited induction in gastric mucosal MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A2 (cPLA2). Further, we demonstrate that the LPS-induced MMP-9 release requires ERK-mediated phosphorylation of cPLA2 on Ser(505) that is essential for its membrane localization with Rac1, and that this process necessitates p38 participation. Moreover, we reveal that the activation and membrane translocation of p38 to the Rac1-GTP complex plays a pivotal role in cPLA2-dependent enhancement in MMP-9 release. Hence, our findings provide a strong evidence for the role of ERK/cPLA2 and Rac1/p38/cPLA2 cascade in H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 release.

  4. Short-Term Exercise Training Improves Insulin Sensitivity but Does Not Inhibit Inflammatory Pathways in Immune Cells from Insulin-Resistant Subjects

    Directory of Open Access Journals (Sweden)

    Sara M. Reyna

    2013-01-01

    Full Text Available Background. Exercise has an anti-inflammatory effect against, and immune cells play critical roles in the development, of insulin resistance and atherosclerotic vascular disease (AVD. Thus, the goal of this study was to determine whether exercise improves insulin sensitivity in insulin-resistant subjects by downregulating proinflammatory signaling in immune cells. Methods. Seventeen lean, 8 obese nondiabetic, and 11 obese type 2 diabetic individuals underwent an aerobic exercise program for 15 days and an insulin clamp before and after exercise. Peripheral mononuclear cells (PMNC were obtained for determination of Toll-like receptor (TLR 2 and 4 protein content and mitogen-activated protein kinase phosphorylation. Results. Compared with that in lean individuals, TLR4 protein content was increased by 4.2-fold in diabetic subjects. This increase in TLR4 content was accompanied by a 3.0-fold increase in extracellular signal-regulated kinase (ERK phosphorylation. Exercise improved insulin sensitivity in the lean, obese, and type 2 diabetes groups. However, exercise did not affect TLR content or ERK phosphorylation. Conclusions. TLR4 content and ERK phosphorylation are increased in PMNC of type 2 diabetic individuals. While exercise improves insulin sensitivity, this effect is not related to changes in TLR2/TLR4 content or ERK phosphorylation in PMNC of type 2 diabetic individuals.

  5. Short-term exercise training improves insulin sensitivity but does not inhibit inflammatory pathways in immune cells from insulin-resistant subjects.

    Science.gov (United States)

    Reyna, Sara M; Tantiwong, Puntip; Cersosimo, Eugenio; Defronzo, Ralph A; Sriwijitkamol, Apiradee; Musi, Nicolas

    2013-01-01

    Background. Exercise has an anti-inflammatory effect against, and immune cells play critical roles in the development, of insulin resistance and atherosclerotic vascular disease (AVD). Thus, the goal of this study was to determine whether exercise improves insulin sensitivity in insulin-resistant subjects by downregulating proinflammatory signaling in immune cells. Methods. Seventeen lean, 8 obese nondiabetic, and 11 obese type 2 diabetic individuals underwent an aerobic exercise program for 15 days and an insulin clamp before and after exercise. Peripheral mononuclear cells (PMNC) were obtained for determination of Toll-like receptor (TLR) 2 and 4 protein content and mitogen-activated protein kinase phosphorylation. Results. Compared with that in lean individuals, TLR4 protein content was increased by 4.2-fold in diabetic subjects. This increase in TLR4 content was accompanied by a 3.0-fold increase in extracellular signal-regulated kinase (ERK) phosphorylation. Exercise improved insulin sensitivity in the lean, obese, and type 2 diabetes groups. However, exercise did not affect TLR content or ERK phosphorylation. Conclusions. TLR4 content and ERK phosphorylation are increased in PMNC of type 2 diabetic individuals. While exercise improves insulin sensitivity, this effect is not related to changes in TLR2/TLR4 content or ERK phosphorylation in PMNC of type 2 diabetic individuals.

  6. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module.

    Science.gov (United States)

    Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim

    2011-05-17

    Tissues that generate specialized cell types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the Caenorhabditis elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis and organization during oogenesis. We discovered repeated utilization of a self-contained negative regulatory module, consisting of NOS-3 translational repressor, FEM-CUL-2 (E3 ubiquitin ligase), and TRA-1 (Gli transcriptional repressor), which acts both in sex determination and in physiological demand control of oogenesis, coordinating these processes. In the distal germline, where MPK-1 is not activated, TRA-1 represses the male fate as NOS-3 functions in translational repression leading to inactivation of the FEM-CUL-2 ubiquitin ligase. In the proximal germline, sperm-dependent physiological MPK-1 activation results in phosphorylation-based inactivation of NOS-3, FEM-CUL-2-mediated degradation of TRA-1 and the promotion of membrane organization during oogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.

    Science.gov (United States)

    Takahashi, Chika; Miyatake, Koichi; Kusakabe, Morioh; Nishida, Eisuke

    2018-06-01

    Epithelia contribute to physical barriers that protect internal tissues from the external environment and also support organ structure. Accordingly, establishment and maintenance of epithelial architecture are essential for both embryonic development and adult physiology. Here, using gene knockout and knockdown techniques along with gene profiling, we show that extracellular signal-regulated kinase 3 (ERK3), a poorly characterized atypical mitogen-activated protein kinase (MAPK), regulates the epithelial architecture in vertebrates. We found that in Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight-junction protein distribution, as well as tight-junction barrier function, resulting in epidermal breakdown. Moreover, in human epithelial breast cancer cells, inhibition of ERK3 expression induced thickened epithelia with aberrant adherens and tight junctions. Results from microarray analyses suggested that transcription factor AP-2α (TFAP2A), a transcriptional regulator important for epithelial gene expression, is involved in ERK3-dependent changes in gene expression. Of note, TFAP2A knockdown phenocopied ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 was required for full activation of TFAP2A-dependent transcription. Our findings reveal that ERK3 regulates epithelial architecture, possibly together with TFAP2A. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Epinephrine modulates Na+/K+ ATPase activity in Caco-2 cells via Src, p38MAPK, ERK and PGE2.

    Directory of Open Access Journals (Sweden)

    Layla El Moussawi

    Full Text Available Epinephrine, a key stress hormone, is known to affect ion transport in the colon. Stress has been associated with alterations in colonic functions leading to changes in water movements manifested as diarrhea or constipation. Colonic water movement is driven by the Na+-gradient created by the Na+/K+-ATPase. Whether epinephrine acts via an effect on the Na+/K+-ATPase hasn't been studied before. The aim of this work was to investigate the effect of epinephrine on the Na+/K+-ATPase and to elucidate the signaling pathway involved using CaCo-2 cells as a model. The activity of the Na+/K+-ATPase was assayed by measuring the amount of inorganic phosphate released in presence and absence of ouabain, a specific inhibitor of the enzyme. Epinephrine, added for 20 minutes, decreased the activity of the Na+/K+-ATPase by around 50%. This effect was found to be mediated by α2 adrenergic receptors as it was fully abolished in the presence of yohimbine an α2-blocker, but persisted in presence of other adrenergic antagonists. Furthermore, treatment with Rp-cAMP, a PKA inhibitor, mimicked epinephrine's negative effect and didn't result in any additional inhibition when both were added simultaneously. Treatment with indomethacin, PP2, SB202190, and PD98059, respective inhibitors of COX enzymes, Src, p38MAPK, and ERK completely abrogated the effect of epinephrine. The effect of epinephrine did not appear also in presence of inhibitors of all four different types of PGE2 receptors. Western blot analysis revealed an epinephrine-induced increase in the phosphorylation of p38 MAPK and ERK that disappeared in presence of respectively PP2 and SB2020190. In addition, an inhibitory effect, similar to that of epinephrine's, was observed upon incubation with PGE2. It was concluded that epinephrine inhibits the Na+/K+-ATPase by the sequential activation of α2 adrenergic receptors, Src, p38MAPK, and ERK leading to PGE2 release.

  9. Insulin treatment promotes tyrosine phosphorylation of PKR and inhibits polyIC induced PKR threonine phosphorylation.

    Science.gov (United States)

    Swetha, Medchalmi; Ramaiah, Kolluru V A

    2015-11-01

    Tyrosine phosphorylation of insulin receptor beta (IRβ) in insulin treated HepG2 cells is inversely correlated to ser(51) phosphorylation in the alpha-subunit of eukaryotic initiation factor 2 (eIF2α) that regulates protein synthesis. Insulin stimulates interaction between IRβ and PKR, double stranded RNA-dependent protein kinase, also known as EIF2AK2, and phosphorylation of tyrosine residues in PKR, as analyzed by immunoprecipitation and pull down assays using anti-IRβ and anti-phosphotyrosine antibodies, recombinant IRβ and immunopurified PKR. Further polyIC or synthetic double stranded RNA-induced threonine phosphorylation or activation of immunopurified and cellular PKR is suppressed in the presence of insulin treated purified IRβ and cell extracts. Acute, but not chronic, insulin treatment enhances tyrosine phosphorylation of IRβ, its interaction with PKR and tyrosine phosphorylation of PKR. In contrast, lipopolysaccharide that stimulates threonine phosphorylation of PKR and eIF2α phosphorylation and AG 1024, an inhibitor of the tyrosine kinase activity of IRβ, reduces PKR association with the receptor, IRβ in HepG2 cells. These findings therefore may suggest that tyrosine phosphorylated PKR plays a role in the regulation of insulin induced protein synthesis and in maintaining insulin sensitivity, whereas, suppression of polyIC-mediated threonine phosphorylation of PKR by insulin compromises its ability to fight against virus infection in host cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis.

    Science.gov (United States)

    Pino, María Teresa Luján; Marotte, Clarisa; Verstraeten, Sandra Viviana

    2017-03-01

    We have reported recently that the proliferation of PC12 cells exposed to micromolar concentrations of Tl(I) or Tl(III) has different outcomes, depending on the absence (EGF - cells) or the presence (EGF + cells) of epidermal growth factor (EGF) added to the media. In the current work, we investigated whether EGF supplementation could also modulate the extent of Tl(I)- or Tl(III)-induced cell apoptosis. Tl(I) and Tl(III) (25-100 μM) decreased cell viability in EGF - but not in EGF + cells. In EGF - cells, Tl(I) decreased mitochondrial potential, enhanced H 2 O 2 generation, and activated mitochondrial-dependent apoptosis. In addition, Tl(III) increased nitric oxide production and caused a misbalance between the anti- and pro-apoptotic members of Bcl-2 family. Tl(I) increased ERK1/2, JNK, p38, and p53 phosphorylation in EGF - cells. In these cells, Tl(III) did not affect ERK1/2 and JNK phosphorylation but increased p53 phosphorylation that was related to the promotion of cell senescence. In addition, this cation significantly activated p38 in both EGF - and EGF + cells. The specific inhibition of ERK1/2, JNK, p38, or p53 abolished Tl(I)-mediated EGF - cell apoptosis. Only when p38 activity was inhibited, Tl(III)-mediated apoptosis was prevented in EGF - and EGF + cells. Together, current results indicate that EGF partially prevents the noxious effects of Tl by preventing the sustained activation of MAPKs signaling cascade that lead cells to apoptosis and point to p38 as a key mediator of Tl(III)-induced PC12 cell apoptosis.

  11. Basic Fibroblast Growth Factor Regulates Persistent ERK Osciliations in Premaligant but not Malignant JB6 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas J.; Shankaran, Harish; Wiley, H. S.; Opresko, Lee K.; Chrisler, William B.; Quesenberry, Ryan D.

    2010-05-02

    basic fibroblast growth factor (bFGF or FGF2) plays an important role in epidermal wound healing in vivo and is associated with a persistent increased in the extracellular signal-regulated kinase (ERK) pathway in vitro. Here we have examined whether bFGF induces the closure of an experimental scratch wound in JB6 mouse epidermal cells and have explored the regulation of the ERK pathway by bFGF in the context of kinase oscillations. bFGF stimulation is associated with increases in cellular phospho-ERK and phospho-c-Jun levels. In addition, bFGF increases cell proliferation and a change in cell morphology (stellate appearance) in a dose-dependent fashion (0.1 – 100 ng/ml). bFGF treatment also promoted the closure of an experimental scratch wound in vitro. JB6 cells were stably transfected with an ERK1-GFP chimera to follow temporal ERK subcellular distribution patterns. We observe a persistent upregulation of the ERK pathway, as evidenced by a significant increase in nuclear ERK1-GFP levels at time points up to 24 hr after bFGF treatment. Interestingly, at the single cell level, ERK is observed to oscillate between nuclear and cytosolic compartments in response to bFGF treatment. Because this oscillatory behavior is asynchronous in the cell population, it is only clearly resolved at the single cell level. Collectively, data presented here are consistent with an important role for bFGF in wound healing and suggest a more complex regulation of the ERK pathway by bFGF than has previously been appreciated.

  12. Thunbergia alata inhibits inflammatory responses through the inactivation of ERK and STAT3 in macrophages.

    Science.gov (United States)

    Cho, Young-Chang; Kim, Ye Rang; Kim, Ba Reum; Bach, Tran The; Cho, Sayeon

    2016-11-01

    Thunbergia alata (Acanthaceae) has been used traditionally to treat various inflammatory diseases such as fever, cough and diarrhea in East African countries including Uganda and Kenya. However, systemic studies elucidating the anti-inflammatory effects and precise mechanisms of action of T. alata have not been conducted, to the best of our knowledge. To address these concerns, we explored the anti-inflammatory effects of a methanol extract of T. alata (MTA) in macrophages. Non-cytotoxic concentrations of MTA (≤300 µg/ml) inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)‑stimulated RAW 264.7 macrophages by transcriptional regulation of inducible NO synthase in a dose-dependent manner. The expression of cyclooxygenase-2, the enzyme responsible for the production of prostaglandin E2, was unchanged by MTA at the mRNA and protein levels. MTA treatment inhibited interleukin (IL)-6 production and decreased the mRNA expression of pro‑inflammatory cytokines, including IL-6 and IL-1β. Tumor necrosis factor-α production and mRNA expression were not regulated by MTA treatment. The decreased production of inflammatory mediators by MTA was followed by the reduced phosphorylation of extracellular signal‑regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3). MTA treatment had no effect on activity of other mitogen‑activated protein kinases (MAPKs), p38, c-Jun N-terminal kinase (JNK), and nuclear factor-κB (NF-κB). These results indicate that MTA selectively inhibits the excessive production of inflammatory mediators in LPS-stimulated murine macrophages by reducing the activity of ERK and STAT3, suggesting that MTA plays an important inhibitory role in the modulation of severe inflammation.

  13. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects.

    Science.gov (United States)

    Sun, Wei-Lun; Quizon, Pamela M; Zhu, Jun

    2016-01-01

    Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction. Copyright © 2016. Published by Elsevier Inc.

  14. 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol negatively regulates activation of STAT3 and ERK pathways and exhibits anti-cancer effects in HepG2 cells.

    Science.gov (United States)

    Ai, Hui-Han; Zhou, Zi-Long; Sun, Lu-Guo; Yang, Mei-Ting; Li, Wei; Yu, Chun-Lei; Song, Zhen-Bo; Huang, Yan-Xin; Wu, Yin; Liu, Lei; Yang, Xiao-Guang; Zhao, Yu-Qing; Bao, Yong-Li; Li, Yu-Xin

    2017-11-01

    The pro-inflammatory cytokine interleukin 6 (IL-6), via activating its downstream JAK/STAT3 and Ras/ERK signaling pathways, is involved in cell growth, proliferation and anti-apoptotic activities in various malignancies. To screen inhibitors of IL-6 signaling, we constructed a STAT3 and ERK dual-pathway responsive luciferase reporter vector (Co.RE). Among several candidates, the natural compound 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol (25-OCH 3 -PPD, GS25) was identified to clearly inhibit the luciferase activity of Co.RE. GS25 was confirmed to indeed inhibit activation of both STAT3 and ERK pathways and expression of downstream target genes of IL-6, and to predominantly decrease the viability of HepG2 cells via induction of cell cycle arrest and apoptosis. Interestingly, GS25 showed preferential inhibition of HepG2 cell viability relative to normal liver L02 cells. Further investigation showed that GS25 could not induce apoptosis and block activation of STAT3 and ERK pathways in L02 cells as efficiently as in HepG2 cells, which may result in differential effects of GS25 on malignant and normal liver cells. In addition, GS25 was found to potently suppress the expression of endogenous STAT3 at a higher concentration and dramatically induce p38 phosphorylation in HepG2 cells, which could mediate its anti-cancer effects. Finally, we demonstrated that GS25 also inhibited tumor growth in HepG2 xenograft mice. Taken together, these findings indicate that GS25 elicits its anti-cancer effects on HepG2 cells through multiple mechanisms and has the potential to be used as an inhibitor of IL-6 signaling. Thus, GS25 may be developed as a treatment for hepatocarcinoma with low toxicity on normal liver tissues as well as other inflammation-associated diseases.

  15. BMP suppresses PTEN expression via RAS/ERK signaling.

    Science.gov (United States)

    Beck, Stayce E; Carethers, John M

    2007-08-01

    Bone morphogenetic protein (BMP), a member of the transforming growth factor beta family, classically utilizes the SMAD signaling pathway for its growth suppressive effects,and loss of this signaling cascade may accelerate cell growth. In the colon cancer predisposition syndrome Juvenile Polyposis, as well as in the late progression stages of nonsyndromic colorectal cancers, SMAD4 function is typically abrogated. Here, we utilized the SMAD4-null SW480 colon cancer cell line to examine BMPs effect on a potential target gene, PTEN, and how its expression might be regulated. Initial treatment of the SMAD4-null cells with BMP resulted in mild growth suppression, but with prolonged exposure to BMP, the cells become growth stimulatory, which coincided with observed decreases in transcription and translation of PTEN, and with corresponding increases in phospho-AKT protein levels. BMP-induced PTEN suppression was mediated via the RAS/ERK pathway, as pharmacologic inhibition of RAS/ERK, or interference with protein function in the cytosol by DN-RAS prevented BMP-induced growth promotion and changes in PTEN levels, as did treatment with noggin, a BMP ligand inhibitor. Thus, BMP downregulates PTEN via RAS/ERK in a SMAD4-null environment that contributes to cell growth, and constitutes a SMAD4-independent but BMP-responsive signaling pathway.

  16. Constitutive activation of the ERK pathway in melanoma and skin melanocytes in Grey horses.

    Science.gov (United States)

    Jiang, Lin; Campagne, Cécile; Sundström, Elisabeth; Sousa, Pedro; Imran, Saima; Seltenhammer, Monika; Pielberg, Gerli; Olsson, Mats J; Egidy, Giorgia; Andersson, Leif; Golovko, Anna

    2014-11-21

    Constitutive activation of the ERK pathway, occurring in the vast majority of melanocytic neoplasms, has a pivotal role in melanoma development. Different mechanisms underlie this activation in different tumour settings. The Grey phenotype in horses, caused by a 4.6 kb duplication in intron 6 of Syntaxin 17 (STX17), is associated with a very high incidence of cutaneous melanoma, but the molecular mechanism behind the melanomagenesis remains unknown. Here, we investigated the involvement of the ERK pathway in melanoma development in Grey horses. Grey horse melanoma tumours, cell lines and normal skin melanocytes were analyzed with help of indirect immunofluorescence and immunoblotting for the expression of phospho-ERK1/2 in comparison to that in non-grey horse and human counterparts. The mutational status of BRAF, RAS, GNAQ, GNA11 and KIT genes in Grey horse melanomas was determined by direct sequencing. The effect of RAS, RAF and PI3K/AKT pathways on the activation of the ERK signaling in Grey horse melanoma cells was investigated with help of specific inhibitors and immunoblotting. Individual roles of RAF and RAS kinases on the ERK activation were examined using si-RNA based approach and immunoblotting. We found that the ERK pathway is constitutively activated in Grey horse melanoma tumours and cell lines in the absence of somatic activating mutations in BRAF, RAS, GNAQ, GNA11 and KIT genes or alterations in the expression of the main components of the pathway. The pathway is mitogenic and is mediated by BRAF, CRAF and KRAS kinases. Importantly, we found high activation of the ERK pathway also in epidermal melanocytes, suggesting a general predisposition to melanomagenesis in these horses. These findings demonstrate that the presence of the intronic 4.6 kb duplication in STX17 is strongly associated with constitutive activation of the ERK pathway in melanocytic cells in Grey horses in the absence of somatic mutations commonly linked to the activation of this

  17. Efficient inhibition of the formation of joint adhesions by ERK2 small interfering RNAs

    International Nuclear Information System (INIS)

    Li, Fengfeng; Ruan, Hongjiang; Fan, Cunyi; Zeng, Bingfang; Wang, Chunyang; Wang, Xiang

    2010-01-01

    Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which extracellular signal-regulated kinase (ERK)2 is considered to be crucial. Based on these theories, we examined the effects of a lentivirus-mediated small interfering RNA (siRNA) targeting ERK2 on the suppression of joint adhesion formation in vivo. The effects were assessed in vivo from different aspects including the adhesion score, histology and joint contracture angle. We found that the adhesions in the ERK2 siRNA group became soft and weak, and were easily stretched. Accordingly, the flexion contracture angles in the ERK2 siRNA group were also reduced (P < 0.05 compared with the control group). The animals appeared healthy, with no signs of impaired wound healing. In conclusion, local delivery of a lentivirus-mediated siRNA targeting ERK2 can ameliorate joint adhesion formation effectively and safely.

  18. ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo.

    Science.gov (United States)

    Yin, Gang; Fan, Jin; Zhou, Wei; Ding, Qingfeng; Zhang, Jun; Wu, Xuan; Tang, Pengyu; Zhou, Hao; Wan, Bowen; Yin, Guoyong

    2017-10-10

    mTOR is a valuable oncotarget for osteosarcoma. The anti-osteosarcoma activity by a novel mTOR kinase inhibitor, CZ415, was evaluated. We demonstrated that CZ415 potently inhibited survival and proliferation of known osteosarcoma cell lines (U2OS, MG-63 and SaOs2), and primary human osteosarcoma cells. Further, CZ415 provoked apoptosis and disrupted cell cycle progression in osteosarcoma cells. CZ415 treatment in osteosarcoma cells concurrently blocked mTORC1 and mTORC2 activation. Intriguingly, ERK-MAPK activation could be a major resistance factor of CZ415. ERK inhibition (by MEK162/U0126) or knockdown (by targeted ERK1/2 shRNAs) dramatically sensitized CZ415-induced osteosarcoma cell apoptosis. In vivo , CZ415 oral administration efficiently inhibited U2OS tumor growth in mice. Its activity was further potentiated with co-administration of MEK162. Collectively, we demonstrate that ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo . CZ415 could be further tested as a promising anti-osteosarcoma agent, alone or in combination of ERK inhibition.

  19. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia.

    Science.gov (United States)

    Cao, Y; Hunter, Z R; Liu, X; Xu, L; Yang, G; Chen, J; Patterson, C J; Tsakmaklis, N; Kanan, S; Rodig, S; Castillo, J J; Treon, S P

    2015-01-01

    CXCR4(WHIM) somatic mutations are common Waldenstrom's Macroglobulinemia (WM), and are associated with clinical resistance to ibrutinib. We engineered WM cells to express the most common WHIM (Warts, Hypogammaglobulinemia, Infections and Myelokathexis), CXCR(S338X) mutation in WM. Following SDF-1a stimulation, CXCR4(S338X) WM cells exhibited decreased receptor internalization, enhanced and sustained AKT kinase (AKT) and extracellular regulated kinase (ERK) signaling, decreased poly (ADP-ribose) polymerase and caspase 3 cleavage, and decreased Annexin V staining versus CXCR4 wild-type (WT) cells. CXCR4(S338X)-related signaling and survival effects were blocked by the CXCR4 inhibitor AMD3100. SDF-1a-treated CXCR4(S338X) WM cells showed sustained AKT and ERK activation and decreased apoptotic changes versus CXCR4(WT) cells following ibrutinib treatment, findings which were also reversed by AMD3100. AKT or ERK antagonists restored ibrutinib-triggered apoptotic changes in SDF-1a-treated CXCR4(S338X) WM cells demonstrating their role in SDF-1a-mediated ibrutinib resistance. Enhanced bone marrow pAKT staining was also evident in CXCR4(WHIM) versus CXCR4(WT) WM patients, and remained active despite ibrutinib therapy in CXCR4(WHIM) patients. Last, CXCR4(S338X) WM cells showed varying levels of resistance to other WM relevant therapeutics, including bendamustine, fludarabine, bortezomib and idelalisib in the presence of SDF-1a. These studies demonstrate a functional role for CXCR4(WHIM) mutations, and provide a framework for investigation of CXCR4 inhibitors in WM.

  20. Role of a cysteine residue in the active site of ERK and the MAPKK family

    International Nuclear Information System (INIS)

    Ohori, Makoto; Kinoshita, Takayoshi; Yoshimura, Seiji; Warizaya, Masaichi; Nakajima, Hidenori; Miyake, Hiroshi

    2007-01-01

    Kinases of mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated protein kinase (ERK), represent likely targets for pharmacological intervention in proliferative diseases. Here, we report that FR148083 inhibits ERK2 enzyme activity and TGFβ-induced AP-1-dependent luciferase expression with respective IC 50 values of 0.08 and 0.05 μM. FR265083 (1'-2' dihydro form) and FR263574 (1'-2' and 7'-8' tetrahydro form) exhibited 5.5-fold less and no activity, respectively, indicating that both the α,β-unsaturated ketone and the conformation of the lactone ring contribute to this inhibitory activity. The X-ray crystal structure of the ERK2/FR148083 complex revealed that the compound binds to the ATP binding site of ERK2, involving a covalent bond to Sγ of ERK2 Cys166, hydrogen bonds with the backbone NH of Met108, Nζ of Lys114, backbone C=O of Ser153, Nδ2 of Asn154, and hydrophobic interactions with the side chains of Ile31, Val39, Ala52, and Leu156. The covalent bond motif in the ERK2/FR148083 complex assures that the inhibitor has high activity for ERK2 and no activity for other MAPKs such as JNK1 and p38MAPKα/β/γ/δ which have leucine residues at the site corresponding to Cys166 in ERK2. On the other hand, MEK1 and MKK7, kinases of the MAPKK family which also can be inhibited by FR148083, contain a cysteine residue corresponding to Cys166 of ERK2. The covalent binding to the common cysteine residue in the ATP-binding site is therefore likely to play a crucial role in the inhibitory activity for these MAP kinases. These findings on the molecular recognition mechanisms of FR148083 for kinases with Cys166 should provide a novel strategy for the pharmacological intervention of MAPK cascades