Modeling Local Hygrothermal Interaction: Local surface transfer coefficients
Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten
2009-01-01
Current models to predict heat, air and moisture (HAM) conditions in building components assume uniform boundary conditions, both for the temperature and relative humidity of the air in an indoor space as well as for the heat and moisture surface transfer coefficients. In order to obtain a reliable...... prediction of the HAM conditions in a building component, an accurate description of the indoor boundary conditions is required. This paper presents the modelling of the local indoor environmental conditions, using a (sub)zonal airflow model, focussing on the prediction of the local interior surface heat and...... moisture transfer coefficients. The research showed that the developed model gives good agreement with the local convective surface transfer coefficients predicted from CFD. The main advantage of the presented (sub)zonal airflow model is that the computational effort is relatively small, while the...
Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten
2009-01-01
Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... HAM conditions. The paper focuses on the influence of the interior surface heat and moisture transfer coefficients, and investigates its effect on the hygrothermal performance. The parameter study showed that the magnitude of the convective surface transfer coefficients have a relatively large...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....
Piasecka Magdalena
2016-01-01
Full Text Available The aim of the paper is to estimate effect of the heating surface enhancement on FC-72 flow boiling heat transfer for a vertical minichannel 1.7 mm deep, 24 mm wide and 360 mm long. Two types of enhanced heating surfaces were used: one with minicavities distributed unevenly, and the other with capillary metal fibrous structure. It was to measure temperature field on the plain side of the heating surface by means of the infrared thermography and to observe the two-phase flow patterns on the enhanced foil side. The paper analyses mainly the impact of the microstructured heating surface on the heat transfer coefficient. The results are presented as heat transfer coefficient dependences on the distance along the minichannel length. The data obtained using two types of enhanced heating surfaces in experiments was compared with the data when smooth foil as the heating surface was used. The highest local values of heat transfer coefficient were obtained using enhanced foil with minicavities - in comparison to other cases. Local values of heat transfer coefficient received for capillary fibrous structure were the lowest, even compared with data obtained for smooth foil. Probably this porous structure caused local flow disturbances.
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
Mihálka, Peter; Matiašovský, Peter
2016-07-01
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity of an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.
Simpson, R; Abakarov, A; Almonacid, S; Teixeira, A
2008-10-01
This study attempts to examine the significance of recent research that has focused on efforts to estimate values for global and surface heat transfer coefficients under forced convection heating induced by end-over-end rotation in retorting of canned peas in brine. The study confirms the accuracy of regression analysis used to predict values for heat transfer coefficients as a function of rotating speed and headspace, and uses them to predict values over a range of process conditions, which make up the search domain for process optimization. These coefficients were used in a convective heat transfer model to establish a range of lethality-equivalent retort temperature-time processes for various conditions of retort temperature, rotating speed, and headspace. Then, they were coupled with quality factor kinetics to predict the final volume average and surface quality retention resulting from each process and to find the optimal thermal process conditions for canned fresh green peas. Results showed that maximum quality retention (surface and volume average retention) was achieved with the shortest possible process time (made possible with highest retort temperature), and reached the similar level in all cases with small difference between surface and volume average quality retention. The highest heat transfer coefficients (associated with maximum rotating speed and headspace) showed a 10% reduction in process time over that required with minimum rotating speed and headspace. The study concludes with a discussion of the significance of these findings and degree to which they were expected. PMID:19019110
Critical thickness of an optimum extended surface characterized by uniform heat transfer coefficient
Leontiou, Theodoros
2015-01-01
We consider the heat transfer problem associated with a periodic array of extended surfaces (fins) subjected to convection heat transfer with a uniform heat transfer coefficient. Our analysis differs from the classical approach as (i) we consider two-dimensional heat conduction and (ii) the base of the fin is included in the heat transfer process. The problem is modeled as an arbitrary two-dimensional channel whose upper surface is flat and isothermal, while the lower surface has a periodic array of extensions/fins which are subjected to heat convection with a uniform heat transfer coefficient. Using the generalized Schwarz-Christoffel transformation the domain is mapped onto a straight channel where the heat conduction problem is solved using the boundary element method. The boundary element solution is subsequently used to pose a shape optimization problem, i.e. an inverse problem, where the objective function is the normalized Shape Factor and the variables of the optimization are the parameters of the Sch...
Sivaraja Subramania Pillai
2013-06-01
Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k-ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.
Variation of Local Pool Boiling Heat Transfer Coefficient On 3-Degree Inclined Tube Surface
Experimental studies on both subcooled and saturated pool boiling of water were performed to obtain local heat transfer coefficients on a 3 .deg. inclined tube of 50.8 mm diameter at atmospheric pressure. The local values were determined at every 45 .deg. from the very bottom to the uppermost of the tube periphery. The maximum and minimum local coefficients were observed at the azimuthal angles of 0 .deg. and 180 .deg., respectively, in saturated water. The locations of the maxima and the minima were dependent on the inclination angle of the tube as well as the degree of subcooling. The major heat transfer mechanisms were considered to be liquid agitation generated by the sliding bubbles and the creation of big size bubbles through bubble coalescence. As a way of quantifying the heat transfer coefficients, an empirical correlation was suggested
Convective heat transfer at exterior building surfaces has an impact on the design and performance of building components such as double-skin facades, solar collectors, solar chimneys and ventilated photovoltaic arrays, and also affects the thermal climate and cooling load in urban areas. In this study, an overview is given of existing correlations of the exterior convective heat transfer coefficient (CHTC) with the wind speed, indicating significant differences between these correlations. As an alternative to using existing correlations, the applicability of CFD to obtain forced CHTC correlations is evaluated, by considering a cubic building in an atmospheric boundary layer. Steady Reynolds-averaged Navier-Stokes simulations are performed and, instead of the commonly used wall functions, low-Reynolds number modelling (LRNM) is used to model the boundary-layer region for reasons of improved accuracy. The flow field is found to become quasi independent of the Reynolds number at Reynolds numbers of about 105. This allows limiting the wind speed at which the CHTC is evaluated and thus the grid resolution in the near-wall region, which significantly reduces the computational expense. The distribution of the power-law CHTC-U10 correlation over the windward and leeward surfaces is presented (U10 = reference wind speed at 10 m height). It is shown that these correlations can be accurately determined by simulations with relatively low wind speed values, which avoids the use of excessively fine grids for LRNM, and by using only two or three discrete wind speed values, which limits the required number of CFD simulations.
Transfer coefficients for terrestrial foodchains
Transfer coefficients to predict the passage of isotopes from the environment to terrestrial foods have been derived for various radionuclides of importance in the nuclear fuel cycle. These data update and extend previously recommended handbook values. We derive transfer coefficients to terrestrial foods and describe the systematics of the derived transfer coefficients. Suggestions are offered for changes in the values of transfer coefficients to terrestrial foods that now appear in federal regulatory guides. Deficiencies in our present knowledge concerning transfer coefficients and limitations in the use of these values to ensure compliance with radiation protection standards are discussed. (orig.) 891 HP/orig. 892 MB
Santos, Jane Meri; Kreim, Virginie; Guillot, Jean-Michel; Reis, Neyval Costa; de Sá, Leandro Melo; Horan, Nigel John
2012-12-01
This study has investigated overall mass transfer coefficients of hydrogen sulphide from quiescent liquid surfaces under simulated laboratory conditions. Wind flow (friction velocity) has been correlated with the overall mass transfer coefficient (KL) of hydrogen sulphide in the liquid phase using a wind tunnel study. The experimental values for this coefficient have been compared with predicted KL values obtained from three different emission models that are widely used to determine volatilization rates from the quiescent surfaces of wastewater treatment unit processes. Friction velocity (in a range of 0.11 and 0.27 m s-1) was found to have a negligible influence on the overall mass transfer coefficients for hydrogen sulphide but by contrast two of the models predicted a stronger influence of friction velocity and overestimate the KL values by up to a factor of 12.5, thus risking unnecessary expenditure on odour control measures. However, at low wind speeds or friction velocities, when more odour complaints might be expected due to poor atmospheric dispersion, a better agreement of emission rates with experimental data was found for all the models.
Mass transfer coefficients and the film cooling effectiveness are measured downstream of a single row of holes inclined 30 degrees with the surface and inline with the main turbulent boundary layer flow. The mass transfer coefficients (based on the difference between the free stream and the surface concentrations) are measured using a naphthalene sublimation technique. The effectiveness is determined through the injection of a trace gas into the secondary (cooling jets) flow and measuring its concentration at the impermeable wall. Experiments are carried out in a subsonic, zero pressure gradient turbulent boundary layer, under isothermal conditions with three blowing ratios: 0.4, 0.8, and 1.2. The data is collected in a region 7 to 80 jet diameters downstream of the injection location
Wanninger, Andreas; Ceuca, Sabin Cristian; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering
2013-07-01
Different approaches for the calculation of Direct Contact Condensation (DCC) using Heat Transfer Coefficients (HTC) based on the Surface Renewal Theory (SRT) are tested using the CFD simulation tool ANSYS CFX. The present work constitutes a preliminary study of the flow patterns and conditions observed using different HTC models. A complex 3D flow pattern will be observed in the CFD simulations as well as a strong coupling between the condensation rate and the two-phase flow dynamics. (orig.)
Different approaches for the calculation of Direct Contact Condensation (DCC) using Heat Transfer Coefficients (HTC) based on the Surface Renewal Theory (SRT) are tested using the CFD simulation tool ANSYS CFX. The present work constitutes a preliminary study of the flow patterns and conditions observed using different HTC models. A complex 3D flow pattern will be observed in the CFD simulations as well as a strong coupling between the condensation rate and the two-phase flow dynamics. (orig.)
Measuring of heat transfer coefficient
Henningsen, Poul; Lindegren, Maria
Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure the h...
Drag and Bulk Transfer Coefficients Over Water Surfaces in Light Winds
Wei, Zhongwang; Miyano, Aiko; Sugita, Michiaki
2016-04-01
The drag coefficient (CD) , experimentally determined from observed wind speed and surface stress, has been reported to increase in the low wind-speed range (examined using high quality datasets selected from three-year continuous measurements obtained from the centre of Lake Kasumigaura, the second largest lake in Japan. Based on our analysis, suggested causes including (i) measurement errors, (ii) lake currents, (iii) capillary waves, (iv) the possibility of a measurement height within the interfacial/transition sublayer, and (v) a possible mismatch in the representative time scale used for mean and covariance averaging, are not considered major factors. The use of vector-averaged, instead of scalar-averaged, wind speeds and the presence of waves only partially explain the increase in CD under light winds. A small increase in turbulent kinetic energy due to buoyant production at low wind speeds is identified as the likely major cause for this increase in CD in the unstable atmosphere dominant over inland water surfaces.
Chan, T. L.
This paper presents the effect of viewing-angle variations on the accuracy of transient and heated-coating liquid-crystal methods for determining the local heat transfer coefficients on a curved surface. A developed liquid-crystal calibration technique using a true-color image processing system has been used to alleviate the effect of viewing angle on oblique/curved surfaces. The accuracy of heat transfer coefficients improved significantly with careful correction of the viewing-angle effect on the surface geometry. It is crucial to ensure the implementation of the suggested calibration technique to be used in wideband thermochromic liquid-crystal applications on the non-orthogonal surface.
A critical review of the assumptions, theoretical foundations, and supporting experimental evidence for the analytical procedures in current use for evaluation of the effects of artificial surface roughening on friction factor and Stanton number is provided. Recommendations are given concerning the application of these procedures to rough rod bundles. A new method is demonstrated for determination of the slope and intercept of the universal logarithmic dimensionless velocity distribution law for fully rough flow past roughened surfaces without the need for experimental measurement of the velocity profile. The slope is shown to vary with the nature of the roughened surface and to deviate significantly from the slope for turbulent flow past smooth walls in some cases. It is further shown that the intercept, which is a boundary condition equivalent to the roughness parameter for friction, is independent of the width of the velocity profile. A similar method is developed for determination of the slope and intercept of the temperature distribution law, but additional experimental investigation is required before the efficacy of this application can be conclusively established
Massman, William J.
1987-01-01
The semianalytical model outlined in a previous study (Massman, 1987) to describe momentum exchange between the atmosphere and vegetated surfaces is extended to include the exchange of heat. The methods employed are based on one-dimensional turbulent diffusivities, and use analytical solutions to the steady-state diffusion equation. The model is used to assess the influence that the canopy foliage structure and density, the wind profile structure within the canopy, and the shelter factor can have upon the inverse surface Stanton number (kB exp -1), as well as to explore the consequences of introducing a scalar displacement height which can be different from the momentum displacement height. In general, the triangular foliage area density function gives results which agree more closely with observations than that for constant foliage area density. The intended application of this work is for parameterizing the bulk aerodynamic resistances for heat and momentum exchange for use within large-scale models of plant-atmosphere exchanges.
Inverse determination of local heat transfer coefficient
The naphtalene sublimation and transient methods are widely used techniques which are particularly useful in complex flows and solid shapes. Both techniques have been widely used with considerable success but they are not appropriate for high temperatures. An alternative method to obtain the local convective heat transfer coefficient, that does not have any disadvantages noted above, is the inverse procedure. Determination of the space-variable heat transfer coefficient on a complex shape surface requires the solution of the nonlinear inverse heat conduction problem. The distribution of the heat transfer coefficient is calculated from temperature measurements at interior points of the solid and measured fluid temperature. The unknown parameters associated with the solution are selected to achieve the closest agreement in a least squares sense between the computed and measured temperatures using the Levenberg - Marquardt method. The nonlinear least - squares problem is parameterized by assuming the staircase changes of heat transfer coefficient on the boundary or expressing the space variations of the heat transfer coefficient in the functional form. The uncertainties in the estimated components of the heat transfer coefficient or in the estimated parameters are determined for the temperature measurements with known and unknown standard deviations. The determination of the circumferential heat transfer coefficient distribution on the heated tube with two longitudinal fins in cross flow demonstrates the accuracy of the developed method. The actual experimental data were used. Experiments were performed with an array of vertical tubes arranged in staggered pattern. The experimental results reported herein are among the first that show the variation of the local heat transfer coefficients over the circumference of the finned tube. Most data reported previously were acquired for smooth tubes at low temperatures. The main advantage of the method is that it does not
Sensitivity of the Heat Transfer Coefficient Calculation
Singer, Sasa
2014-01-01
The purpose of the Liscic/Petrofer probe is to determine the cooling intensity during liquid quenching in laboratory and workshop environments. The surface heat transfer coefficient is calculated by the one-dimensional finite volume method from the smoothed temperature curve, measured at a near-surface point in the probe. Smoothed reference temperature curves for oil and water, based on measurements made by the probe, are used in a series of numerical experiments to investigate the sensitivit...
In fire engineering analysis, one of the open problem is the transfer of thermal parameters obtained by fire CFD model to FEM models for structural analysis. In this study the new useful concept of “Adiabatic Surface Temperature” or more commonly known as AST, introduced by Wickström, is investigated. The adiabatic surface temperature offers the opportunity to transfer both thermal information of the gas and the net heat flux to the solid phase model, obtained by CFD analysis. In this study two CFD analyses are carried out in order to evaluate the effect of emissivity and of convective heat transfer coefficient to determine the AST. First one CFD analysis simulating a fire scenario, “conjugate heat transfer”, with a square steel beam exposed to hot surface is carried out to calculate AST, heat convective coefficient and temperature field in the beam. Second one, a conductive analysis is carried out on “standalone beam” imposing a third type boundary condition on its boundaries assuming the AST, evaluated in the conjugate analysis, as external temperature. Different heat convective coefficients are imposed on the beam walls. The comparison between results obtained by means of the two proposed analyses shows the use of AST as transfer thermal parameter between CFD (Computational Fluid Dynamic) and FEM (Finite Element Method) models is appropriate when the convective heat transfer coefficient is properly evaluated. -- Highlights: ► An open problem is to transfer parameters obtained by thermal to structural models. ► The useful concept of “Adiabatic Surface Temperature” (AST) is investigated. ► The AST use is right for properly evaluated convective heat transfer coefficient
Chan, T.L. [Dept. of Mechanical Engineering, Hong Kong Polytechnic Univ., Kowloon (Hong Kong)
2001-10-01
This paper presents the effect of viewing-angle variations on the accuracy of transient and heated-coating liquid-crystal methods for determining the local heat transfer coefficients on a curved surface. A developed liquid-crystal calibration technique using a true-color image processing system has been used to alleviate the effect of viewing angle on oblique/curved surfaces. The accuracy of heat transfer coefficients improved significantly with careful correction of the viewing-angle effect on the surface geometry. It is crucial to ensure the implementation of the suggested calibration technique to be used in wideband thermochromic liquid-crystal applications on the non-orthogonal surface. (orig.)
Heat transfer coefficient for boiling carbon dioxide
Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik
1998-01-01
Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...
Of the major radioactive selenium isotopes, Se-79, a beta emitter with a half-life of about 1.1 million years, is of special interest because it is one of the most important radionuclides for the long-term dose assessment of radioactive waste disposal. This radionuclide can reach human beings through several transfer paths in the environment. To predict Se-79 behavior from the environment to human beings, it would be useful to obtain the following information: stable Se concentration in environmental samples; soil-soil solution distribution coefficient (Kd); and soil-to-plant transfer factor (TF). In the present study, stable Se concentrations in river water, soil and crop samples collected in Japan, Kds and TFs were obtained. The results showed that geometric mean (GM) concentrations of river water, soil and crops were 0.057 μg/L (range: ds for paddy field soil and upland field soil samples were 116 and 67, respectively, whereas GMs of TFs for brown rice and upland field crops were 0.066 and 0.024, respectively. Probably due to longer growing period and different water management in the paddy fields for brown rice compared to those for upland field crops, the TF would be high in brown rice. (authors)
The Influence of Carburizing Parameters on Carbon Transfer Coefficient
Tadeusz Sobusiak
2004-01-01
Definition of coefficient of carbon transfer in European Standard (EN 10052) is presented as: "Mass of carbon transferred from carburizing medium into the steel, per unit surface area per second for a unit difference between the carbon potential, and actual surface carbon content".In this paper, a model is presented of carbon transfer from endothermic atmospheres to carbon steel. The carbon transfer coefficient values were determined experimentally by the foil technique and on specimens, taking into account the following parameters: chemical composition of atmospheres, carbon potential, temperature and time of the carburizing process. Some examples of the variation of the carbon transfer coefficient for two steps of the carburizing process,including soaking before quenching, are given, based on results obtained. The effect of carbon transfer coefficient on carbon content at the steel surface is given.
Coefficients of heat transfer in condensation
The authors analyze the problem of determining the coefficients of heat transfer in the condensation of steam on vertical walls in terms of the Prandtl hypothesis and the Reynolds analogy for distribution of the turbulent thermal conductivity across the condensate film. From the assumed model the authors derived expressions for the heat transfer coefficients
Transfer coefficients for turbulent flow between parallel plates
Average transfer coefficients in the turbulent forced convection entrance region between parallel plates, with asymmetrical conditions of the concentration profile, were determined experimentaly with the Naphthalene Sublimation Technique. In accordance with the analogy between heat and mass transfer, the tests correspond to a heat-transfer problem with uniform surface temperature at one plate and the other insulated. The Reynolds number ranges from 10900 to 91700. (Author)
Determination of the heat transfer coefficients in transient heat conduction
The determination of the space- or time-dependent heat transfer coefficient which links the boundary temperature to the heat flux through a third-kind Robin boundary condition in transient heat conduction is investigated. The reconstruction uses average surface temperature measurements. In both cases of the space- or time-dependent unknown heat transfer coefficient the inverse problems are nonlinear and ill posed. Least-squares penalized variational formulations are proposed and new formulae for the gradients are derived. Numerical results obtained using the nonlinear conjugate gradient method combined with a boundary element direct solver are presented and discussed. (paper)
Overall Heat and Mass Transfer Coefficient of Water Vapor Adsorption
Hamamoto, Yoshinori; Mori, Hideo; Godo, Masazumi; Miura, Kunio; Watanabe, Yutaka; Ishizawa, Toshihiko; Takatsuka, Takeshi
A fundamental investigation was performed to develop a compact and simple desiccant ventilation unit which is one of the main components of a novel energy saving air-conditioning system. Water vapor in the air is adsorbed and/or desorbed to be controlled the humidity of supply air through a unit of an adsorbent packed bed. A numerical simulation helps to understand the phenomena of heat and mass transfer in the bed. Overall transfer coefficients of them as properties for the simulation were estimated by performing both experiment and calculation. It was clarified that the transient overall equivalent heat and mass transfer does not strongly depend on the air flow rate through the packed bed, the averaged equivalent mass transfer is governed by surface and pore diffusion in a particle of adsorbent at low flow rate. Moreover, the coefficient during the adsorption process is slightly larger than desorption. An equation of the overall mass transfer coefficient is derived. It shows five times as large as the value estimated by experiment. Therefore, the correlation and fitting parameters are presented for prediction of the overall heat and mass transfer coefficients. The estimation accuracy was improved.
Heat transfer coefficient between UO2 and Zircaloy-2
This paper provides some experimental values of the heat-transfer coefficient between UO2 and Zircaloy-2 surfaces in contact under conditions of interfacial pressure, temperature, surface roughness and interface atmosphere, that are relevant to UO2/Zircaloy-2 fuel elements operating in pressurized-water power reactors. Coefficients were obtained from eight UO2/ Zircaloy-2 pairs in atmospheres of helium, argon, krypton or xenon, at atmosphere pressure and in vacuum. Interfacial pressures were varied from 50 to 550 kgf/cm2 while surface roughness heights were in the range 0.2 x 10-4 to 3.5 x 10-4 cm. The effect on the coefficients of cycling the interfacial pressure, of interface gas pressure and of temperature were examined. The experimental values of the coefficients were used to test the predictions of expressions for the heat-transfer between two solids in contact. For the particular UO2/ Zircaloy-2 pairs examined, numerical values were assigned to several parameters that related the surface roughnesses to either the radius of solid/solid contact spots or to the mean thickness of the interface voids and that accounted for the imperfect accommodation of the void gas on the test surfaces. (author)
The heat (mass) transfer characteristics on the blade surface of a high-turning first-stage turbine rotor for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is developed successfully for the measurements of local sublimation depth on the curved surface. In the leading edge region, there is a good agreement between the present heat (mass) transfer data and the previous result on a turbine blade with a moderate turning angle, but come discrepancies are found in the mid-chord heat (mass) transfer between the two results. The local heat (mass) transfer on the present suction surface is greatly enhanced due to an earlier boundary transition, compared with that on a turbine blade with a moderate turning angle, meanwhile there is only a slight change in the pressures-side heat (mass) transfer between the two different turbine rotors. In general, the heat (mass) transfer augmentation by the endwall vortices is found much higher on the suction surface than on the pressure surface
Effect of specimen geometry on heat transfer coefficient of rubber to air
Pongdhorn Sae-oui
2000-01-01
It is widely known that the heat transfer coefficient is not material specific but, on the contrary, it depends on several factors such as surface appearance, suface emissivity, fluid velocity and specimen geometry. In this study, the effect of geometry on heat transfer coefficient of rubber to air was investigated. Determination of heat transfer coefficient was undertaken by an indirect method, namely Finite Element Analysis (FEA). With this method, the best value of heat transfer coefficien...
Distortion effects on the spin transfer coefficient
Lee, S E; Hong, S W; Kim, B T
1999-01-01
We investigated the distortion effects on the spin transfer coefficient D sub n sub n for the intermediate energy (p,n) charge exchange reactions leading to the Gamow-Teller resonance in the continuum region. When the distortion is included, the imaginary parts of both the central and the tensor direct contributions are significantly changed. Also, the magnitude of T sub 0 sub 0 becomes smaller, which results in larger D sub n sub n values. We also found that when the distortion is included the phase difference between T sub 0 sub 0 and T sub 2 sub 0 in the complex plane remains almost the same for different Q-values.
Transfer coefficients for terrestrial foodchain: their derivation and limitations
Transfer coefficients to predict the passage of isotopes from the environment to terrestrial foods have been derived for various radionuclides of importance in the nuclear fuel cycle. These data update and extend previously recommended handbook values. We derive transfer coefficients to terrestrial foods and describe the systematics of the derived transfer coefficients. Suggestions are offered for changes in the values of transfer coefficients to terrestrial foods that now appear in federal regulatory guides. Deficiencies in our present knowledge concerning transfer coefficients and limitations in the use of these values to ensure compliance with radiation protection standards are discussed
Paper presents an analytical solution of the problem to determine the efficiency coefficient of a constant section fin at heat transfer coefficient changing along fin height. It is determined, that the commonly applied assumption about the constancy of a convectional coefficient of heat emission when calculating the efficiency of a fin based on the value of the reduced coefficient of heat emission results in the error reaching 15%. It is shown that to reduce it up to 2-3% when calculating the efficiency coefficient of a fin one should have the experimental values of both the reduced coefficient of heat emission and the convectional coefficient of heat emission at a surface supporting the fins
Radionuclide transfer to animal products: revised recommended transfer coefficient values
Howard, B.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LAI 4AP (United Kingdom)], E-mail: bjho@ceh.ac.uk; Beresford, N.A.; Barnett, C.L. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LAI 4AP (United Kingdom); Fesenko, S. [International Atomic Energy Agency, 1400 Vienna (Austria)
2009-03-15
A compilation has been undertaken of data which can be used to derive animal product transfer coefficients for radionuclides, including an extensive review of Russian language information. The resultant database has been used to provide recommended transfer coefficient values for a range of radionuclides to (i) cow, sheep and goat milk, (ii) meat (muscle) of cattle, sheep, goats, pigs and poultry and (iii) eggs. The values are used in a new IAEA handbook on transfer parameters which replaces that referred to as 'TRS 364'. The paper outlines the approaches and procedures used to identify and collate data, and assumptions used. There are notable differences between the TRS 364 'expected' values and the recommended values in the revised Handbook from the new database. Of the recommended values, three milk values are at least an order of magnitude higher than the TRS 364 values (Cr, Pu (cow) Pu (sheep)) and one milk value is lower (Ni (cow)). For meat, four values (Am, Cd, Sb (beef) I (pork)) are at least an order of magnitude higher than the TRS 364 values and eight values are at least an order of magnitude lower (Ru, Pu (beef), Ru, Sr, Zn (sheep), Ru, Sr (pork), Mn (poultry)). Many data gaps remain.
Radionuclide transfer to animal products: revised recommended transfer coefficient values
A compilation has been undertaken of data which can be used to derive animal product transfer coefficients for radionuclides, including an extensive review of Russian language information. The resultant database has been used to provide recommended transfer coefficient values for a range of radionuclides to (i) cow, sheep and goat milk, (ii) meat (muscle) of cattle, sheep, goats, pigs and poultry and (iii) eggs. The values are used in a new IAEA handbook on transfer parameters which replaces that referred to as 'TRS 364'. The paper outlines the approaches and procedures used to identify and collate data, and assumptions used. There are notable differences between the TRS 364 'expected' values and the recommended values in the revised Handbook from the new database. Of the recommended values, three milk values are at least an order of magnitude higher than the TRS 364 values (Cr, Pu (cow) Pu (sheep)) and one milk value is lower (Ni (cow)). For meat, four values (Am, Cd, Sb (beef) I (pork)) are at least an order of magnitude higher than the TRS 364 values and eight values are at least an order of magnitude lower (Ru, Pu (beef), Ru, Sr, Zn (sheep), Ru, Sr (pork), Mn (poultry)). Many data gaps remain
Determination of the surface drag coefficient
Mahrt, L.; Vickers, D.; Sun, J.L.;
2001-01-01
This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable ...... of calculation, partly due to meandering of the stress vector.......This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable...... conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease...
E C Monahan
2002-09-01
Stage A whitecaps (spilling wave crests) have a microwave emissivity of close to 1. Thus if even a small fraction of the sea surface is covered by these features there will be a detectable enhancement in the apparent microwave brightness temperature of that surface as determined by satellite-borne microwave radiometers. This increase in the apparent microwave brightness temperature can as a consequence be routinely used to estimate the fraction of the sea surface covered by stage A whitecaps. For all but the very lowest wind speeds it has been shown in a series of controlled experiments that the air-sea gas transfer coeffcient for each of a wide range of gases, including carbon dioxide and oxygen, is directly proportional to the fraction of the sea surface covered by these stage A whitecaps.
Bespalov Victor; Bespalov Vladimir; Melnikov Denis
2016-01-01
Is shown the influence of the heat transfer coefficient from the wet flue gas to the heat exchange surface on the overall heat transfer coefficient in the gas-air heat exchanger with the water vapor condensation. Experimental data are compared with calculations based on the mathematical model of the condensing heat exchanger.
任晓光; 李铁凤; 赵起
2006-01-01
This paper reports the influence of heat transfer surface treatment on the formation of calcium sulphate deposit during flow boiling heat transfer. The surface of several test heaters was treated by surface modification techniques,such as dynamic mixing magnetron sputtering [DLC (diamond-like carbon), DLC-F (diamond-like carbon-fluorine) and AC (amorphous carbon)] and polishing to reduce surface energy. The results showed that heat transfer surface with low surface energy experienced significant reduction of formation of CaSO4 deposit. (1) Magnetron sputtering stainless steel heat transfer surface with DLC, DLC-F and plasma arc sputtering with AC did not change the surface roughness, but they reduced surface energy and improved heat transfer coefficient, so hindered CaSO4 deposit formation significantly. The DLC-F surface performed better than the DLC surface. (2) Surface energy played an important pole in improving heat transfer coefficient. The less the surface energy the more significant the heat transfer coefficient improved with other experimental conditions identical. (3) The polished surface improved the roughness of the heater, but owing to the high surface energy it was not better than the DLC-F surface for a long-term consideration on improving the heat transfer coefficient.
Experimental evaluation of heat transfer coefficients between radiant ceiling and room
Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco; Olesen, Bjarne W.
2009-01-01
The heat transfer coefficients between radiant surfaces and room are influenced by several parameters: surfaces temperature distributions, internal gains, air movements. The aim of this paper is to evaluate the heat transfer coefficients between radiant ceiling and room in typical conditions of...... occupancy of an office or residential building. Internal gains were therefore simulated using heated cylinders and heat losses using cooled surfaces. Evaluations were developed by means of experimental tests in an environmental chamber. Heat transfer coefficient may be expressed separately for radiation and...
Transfer coefficients for plate fin and elliptical tube heat exchangers
In order to determine transfer coefficients for plate fin and elliptical tube exchangers, mass transfer experiments have been performed using the naphthalene sublimation technique. By means of the heat-mass transfer analogy, the results can be converted to heat transfer results. The transfer coefficients were compared with those for circular tube exchangers and the comparison revealed no major differences. This is a positive outcome, since the use of elliptical tubes may reduce substantially the pressure drop, without affecting the transfer characteristics.(Author)
Jones, Terry V.; Hippensteele, Steven A.
1988-08-01
Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained.
Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained
Jones, Terry V.; Hippensteele, Steven A.
1988-01-01
Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained.
Local heat transfer coefficient for turbulent flow in rod bundles
The correlation of the local heat transfer coefficients in heated triangular array of rod bundles, in terms of the flow hydrodynamic parameters is presented. The analysis is made first for fluid with Prandtl numbers varying from moderated to high (Pr>0.2), and then extended to fluids with low Prandtl numbers (0.004< Pr<0.2). Results of temperature and velocity fields distribution of slip coefficients and local heat transfer coefficients are obtained. (E.G.)
Heat transfer coefficient of wheel rim of large capacity steam turbines
Jinyuan SHI; Zhicheng DENG; Yu YANG; Ganwen JUN
2008-01-01
A way of calculating the overall equivalent heat transfer coefficient of wheel rims of large capacity steam turbines is presented. The method and formula to calculate the mean forced convection heat-transfer coefficient of the surface of the blade and for the bottom wall of the blade passage, are introduced. The heat transmission from the blade to the rim was simplified by analogy to heat transmission in the fins. A fin heat transfer model was then used to calculate the equivalent heat transfer coefficient of the blade passage. The overall equivalent heat transfer coefficient of the wheel rim was then calculated using a cylindrical surface model. A practical calculation example was presented. The pro-posed method helps determine the heat transfer bound-ary conditions in finite element analyses of temperature and thermal stress fields of steam turbine rotors.
Heat transfer coefficient for F.E analysis in the warm forging process
S.S. Kang
2007-01-01
Full Text Available Purpose: The Purpose of this paper is to obtain suitable convection and contact heat transfer coefficient forone-time finite element analysis in the warm forging process.Design/methodology/approach: To do this, the temperature of the tool used in the operation was measured witha thermocouple and repeated finite element analysis(FEA was performed using the experimentally calculatedcontact and cooling heat transfer coefficient. Also the surface temperature of the active tool was obtained bycomparing the measurement and analysis results and finally the contact heat transfer coefficient for one-time FEAwas completed by comparing the surface temperature between the repeated FEA and one-time FEA results.Findings: The acceptable convection heat transfer coefficients are from 0.3 to 0.8N/mm/s/K and the contactheat transfer coefficient of 6~9N/mm/s/K is appropriate for the warm forging process with flow-typelubrication conditions.Practical implications: A comparison of the temperatures from the repeated and one-time analysis allows anoptimum contact heat transfer coefficient for the one time finite element analysis to be determined.Originality/value: Several studies have been conducted with different conditions such as applied pressure andkind of lubricant, but no research has been conducted concerning the convection heat transfer coefficient in thewarm forging process. Also, comparative analysis concerning the reason for difference between experimentallydetermined contact heat transfer coefficient and practically adapted one has not been conducted, yet.
Dateo, Christopher E.; Arnold, James O. (Technical Monitor)
1994-01-01
A new analytic global potential energy surface describing the hydroperoxyl radical system H((sup 2)S) + O2(X (sup 3)Sigma((sup -)(sub g))) (reversible reaction) HO2 ((X-tilde) (sup 2)A'') (reversible reaction) O((sup 3)P) + O H (X (sup 2)Pi) has been fitted using the ab initio complete active space SCF (self-consistent-field)/externally contracted configuration interaction (CASSCF/CCI) energy calculations of Walch and Duchovic. Results of quasiclassical trajectory studies to determine the rate coefficients of the forward and reverse reactions at combustion temperatures will be presented. In addition, vibrational energy levels were calculated using the quantum DVR-DGB (discrete variable representation-distributed Gaussian basis) method and the splitting due to H atom migration is investigated. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.
Estimation of Volumetric Mass Transfer Coefficient in Bioreactor
Zainab Yaquob Atiya
2012-01-01
Full Text Available This study is concentrated to investigate the effects of aeration and stirring speed on the volumetric mass transfer coefficient (KLa. A dynamic technique was used in estimating KLa values in order to achieve the aim of this study.This study was done in 10L bioreactor by using two medias:-1. Dionized water2. Xanthan solution (1 g /LMoreover, the research covered a comparison between the obtained values of KLa.The Xanthan solution was used because of its higher viscosity in comparison with water. It behaves similarly to the cultivation medium when organisms are cultivated in a bioreactor. Growth of organisms in the reactor leads to a change in the viscosity of the medium which affects the mass transfer.Two variables, the effect of air flow rate (3-20 L/min and the effect of stirring speed (250-700rpm on KLa value were studied. Other parameters such as temperature, liquid volume, and stirrer shape and stirrer position were held constant; the results demonstrated an increase in KLa value and mass transfer with increasing stirrer speed. Thus at higher speed, better dispersion of the bubbles was obtained. Therefore, that increased the surface / volume ratio which increased the mass transfer area i.e. KLa value.
Seo, Jeong Sik; Kim, Kyoung Rock; Choi, Young Don [Korea Univ., Seoul (Korea, Republic of); Shin, Jong Keun [Hanzhong Univ., Donghae (Korea, Republic of)
2008-07-01
This paper is described for the measurement technique for local heat transfer coefficients using a copper sensor in rod bundles with mixing vanes. A copper sensor is defined as the device to measure the convective heat transfer coefficient using constant heat flux and surface temperatures. The copper sensor consists of a cartridge heater and four pieces of thermocouple. The copper sensors located at axial positions of rod bundles are able to measure the local heat transfer coefficients at its positions. The effect of local heated and full heated of copper sensors for rod bundles is investigated using CFD analysis. The decay of local heat transfer coefficients of locally heating condition such as a copper sensor is estimated to be higher value than that of fully heating condition. The calibration curve for local heat transfer coefficients measured is presented.
Overall mass-transfer coefficients in non-linear chromatography
Mollerup, Jørgen; Hansen, Ernst
1998-01-01
In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationshi...... shown in this paper. In this case one has to discard the use of over-all mass-transfer coefficients and calculate the rate of mass transfer from the two film theory using the appropriate non-linear relationship to calculate the equilibrium ratio at the interface between the two films....
Using a special rod built with a stack of UO2 pellets inside a thick Zircaloy clad, the authors report the measurement of the fuel-clad heat transfer coefficient when water vapour in intentionally introduced in the fuel rod at the beginning of its life. They describe the irradiation device, the measurement method (acquired data and mathematical determination of various values: temperature of the inner surface of the cladding, integrated thermal conductivity, fuel surface temperature, fuel-cladding heat transfer coefficient, thermal expansion of the cladding inner radius, UO2 thermal expansion). They finally report the experiment
Basketball Surfaces and Coefficient of Restitution
Kristyn Peacock; Faith Pearson
2015-01-01
A basketball was released from varying drop heights to simulate the impact speeds of a typical soft, medium, and hard dribble. This was repeated across four different surfaces that students typically play on–exposed aggregate concrete, maple wood flooring, EPI Outdoor Sport flooring, and playground rubber mesh. From the measured drop and bounce heights, the coefficient of restitution(COR)was calculated. It was concluded that only playground rubber mesh had COR’s below the regula...
Heat transfer coefficient for F.E analysis in the warm forging process
Kang, S S; Kang, J. H.; Lee, K. O.
2007-01-01
Purpose: The Purpose of this paper is to obtain suitable convection and contact heat transfer coefficient forone-time finite element analysis in the warm forging process.Design/methodology/approach: To do this, the temperature of the tool used in the operation was measured witha thermocouple and repeated finite element analysis(FEA) was performed using the experimentally calculatedcontact and cooling heat transfer coefficient. Also the surface temperature of the active tool was obtained bycom...
Heat transfer coefficient in serpentine coolant passage for CCDTL
A series of heat transfer experiments were conducted to refine the cooling passage design in the drift tubes of a coupled cavity drift tube linac (CCDTL). The experimental data were then compared to numerical models to derive relationships between heat transfer rates, Reynold's number, and Prandtl number, over a range of flow rates. Data reduction consisted of axisymmetric finite element modeling where the heat transfer coefficients were modified to match the experimental data. Unfortunately, the derived relationship is valid only for this specific geometry of the test drift tube. Fortunately, the heat transfer rates were much better (approximately 2.5 times) than expected
Heat transfer coefficient determination for flow boiling in vertical and horizontal minichannels
Piasecka Magdalena; Maciejewska Beata
2014-01-01
The paper presents the results of boiling heat transfer research during FC-72 laminar flow along a minichannel of 1 mm depth, positioned vertically and horizontally, with an enhanced heating surface. One glass pane allows to determine the temperature of the heating wall by liquid crystal thermography. Calculations are aimed at the evaluation of one- and two-dimensional heat transfer approaches to determine the local heat transfer coefficient. In the one-dimensional approach only the direction...
Estimation of bulk transfer coefficient for latent heat flux (Ce)
Sadhuram, Y.
The bulk transfer coefficient for latent heat flux (Ce) has been estimated over the Arabian Sea from the moisture budget during the pre-monsoon season of 1988. The computations have been made over two regions (A: 0-8 degrees N: 60-68 degrees E: B: 0...
CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Transfer coefficients of radionuclides from feed to livestock products
The accumulation of data on radionuclide transfer are poor in Japan and those are limited to 90Sr, 137Cs and 131I released from the previous atomic bomb experiments. However, in Europe, intensive studies on environment RI level which affects the restriction of the intake for meats and milk products have been made as the measures against the environment radioactivity due to Chernobyl accident. The transfer coefficients of radionuclides to meats and milk products were estimated on a basis of the data published in the Science of the Total Environment vol.85(1989), Oxford University and CEC Radiation Protection, EUR 12608 EN, Luxembourg, 1990 in addition to the data on Exclusion of Radioactivity from foods, Environment Parameter, series No. 4. On the other hand, the transfer coefficients for Japanese were estimated using the concerned data from published reports and the environment radioactivity data reported by national and local government bodies. In this book, many new data of transfer coefficient are presented in tables along with the previous data collected by international nuclear energy agencies and respective national facilities concerned. (M.N.)
Sodium-water reaction (SWR) in a steam generator of sodium-cooled fast reactor (SFR) is a significant phenomenon for safety assessment of the system. One of the top concerns in the SWR is an overheating rupture phenomenon in which a neighbor heat transfer tube fails instantaneously because of a deterioration of structural integrity under a high temperature condition. Hence, the heat transfer coefficient on the tube surface is of importance. Since hydrogen gas is generated in the SWR and liquid water will evaporate quickly due to depressurization, the reaction region is covered with a multi-phase flow structure, and thus the value of the heat transfer coefficient will vary widely. In the present paper, a correlation diagram has been developed between the heat transfer coefficient and the void fraction based on one dimensional homogeneous flow simulation. Furthermore, the transient of void fraction in SWAT-1R experiment is investigated using the diagram. (author)
Inverse estimation of the local heat transfer coefficient in curved tubes: a numerical validation
Wall curvature represents one of the most used passive techniques to enhance convective heat transfer. The effectiveness of wall curvature is due to the fact that it gives origin to the centrifugal force: this phenomenon induces local maxima in the velocity distribution that locally increase the temperature gradients at the wall by then maximizing the heat transfer. This fact brings to a significant variation of the wall temperature and of the wall heat flux along the circumferential coordinate. The convective heat transfer coefficient is consequently not uniformly distributed along the tube's perimeter and is characterized by higher values at the extrados wall surface in comparison to the ones at the intrados wall surface. Therefore, for predicting the overall performance of heat transfer apparatuses that involve the use of curved tubes, it becomes important to know the local distribution of the convective heat transfer coefficient not only along the axis of the heat transfer section, but also on the internal tube's surface along the cross section circumference. The present paper is intended to the assessment of a procedure developed to evaluate the local convective heat transfer coefficient, along the circumferential coordinate, at the internal wall of a coiled pipe.
Automatic optimization of the heat transfer coefficient in boiler setups
Automatic optimization of a boiler setup can be based on features of its static characteristic having the form of a maximum in the coefficient of heat transfer from the heater to evaporated medium. This is illustrated by the example of a conventional industrial vaporizer setup used for concentrating aqueous solutions of heavy metal salts, in which case the economy of a heating steam reaches 10 percent
Experimental Investigation on the Heat Transfer Coefficient of the Thermosyphon Cross Section Shape
Mohammed M. I. Hammad,
2015-03-01
Full Text Available Two phase closed thermosyphon is a good heat transfer device. A large heat is transferred from evaporator to condenser with relatively a small temperature difference. In the present work, the heat transfer performance of two phase closed thermosyphon is analyzed experimentally with different cross section shape for the thermosyphon tube. A copper thermosyphon has been constructed with three different cross section shape (circular, square and rectangular having the same hydraulic diameter and length. Methanol is used as the working fluid. The temperature distribution across the thermosyphon outer surface was measured and recorded using thermocouples. The results showed that the heat transfer coefficient increases with the increase of input power, thermal resistance is indirectly proportional to the input power. The maximum heat transfer coefficient (1815 W/m2C for square cross section at the input power (500 W.
Development of Inverse Analysis Methodology to Estimate Condensation Heat Transfer Coefficient (II)
The purpose of this work is to develop a method to estimate the heat transfer coefficient on the tube surface of PAFS (Passive Auxiliary Feedwater System) heat exchanger with the data of temperature/pressure measured at several preselected locations. The relationship between the temperatures measured at several preselected locations on the PAFS heat exchanger tube and the heat flux is formulated. The derived formulation is verified through 3 dimensional numerical heat transfer calculations
Heat transfer coefficient for lead matrixing in disposal containers for used reactor fuel
In the Canadian Nuclear Fuel Waste Management Program, metal matrices with low melting points are being evaluated for their potential to provide support for the shell of disposal containers for used fuel, and to act as an additional barrier to the release of radionuclides. The metal matrix would be incorporated into the container by casting. To study the heat transfer processes during solidification, a steady-state technique was used, involving lead as the cast metal, to determine the overall heat transfer coefficient between the lead and some of the candidate container materials. The existence of an air gap between the cast lead and the container material appeared to control the overall heat transfer coefficient. The experimental observations indicated that the surface topography of the container material influences the heat transfer and that a smoother surface results in a greater heat transfer than a rough surface. The experimental results also showed an increasing heat transfer coefficient with increasing temperature difference across the container base plates; a model developed to base-plate bending can explain the observed results
Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling
Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor
2014-01-01
The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V<0.3 m...
The difficulty in solving heat transfer tasks in machine structures is often involved in determination of heat transfer coefficient on the surface of the given part. The method considered enables this calculation when based only on values of temperature, measured at several arbitrary points within the part. The points may be placed even outside the exposed region. Let us consider a body of general shape with heat transfer on its surface S. Boundary conditions on the part S(4) of the surface S may be known, and on the other part S(B) of the surface S are given either in terms of surrounding temperature, which is supposed to be known, and of heat transfer coefficient. The spatially variable distribution of the latter can be expressed by Langrange's polynomial, determined by unknown values of the heat transfer coefficient in several points on the surface S(B). These values form the vector V, that describes the heat transfer coefficient distribution with accuracy, proportional to the chosen dimension of the vector. In this way the vector defines also a temperature field of the given body. the task is now to find a vector determining such temperature field, that proves the best agreement with experimental results. This is performed by Nelder and Meads direct search optimizing method. The method requires the evaluation of temperature fields, corresponding to the initial set of vectors V. The temperature field is computed by the finite element method using triangular elements with linear approximation of temperatures. In accordance with the foregoing outlines a FORTRAN program for the ICL 1905 computer was written
A correlation to the heat transfer coefficient in nucleate boiling
Nucleate boiling heat transfer is a complex phenomenon, making the development of a correlation for the heat transfer coefficient rather cumbersome due to the number of physical parameters involved in it. Some authors have followed a pragmatic approach to the problem by correlating the heat transfer coefficient in terms of reduced primitive properties. Two of the most knowledgeable authors who have followed this approach are Gorenflo and Cooper. Comparisons have been performed among results from the correlations proposed by these researchers and experimental results obtained elsewhere for refrigerants R-11, R-113 and R-114. These comparisons have shown that Cooper's correlation is best fitted for halocarbon refrigerants. The correlation proposed by Gorenflo ads the difficulty of including a numerical factor specific for each fluid. Leiner modified Gorenflo's correlation to determine the numerical factor as a function of known physical parameters of the fluid. In present study, the form of this function has been investigated for halocarbon refrigerants. The obtained correlation is written in terms of the following parameters: reduced pressure, eccentric and compressibility factors at the critical state, and a dimensionless specific heat of the vapor phase. The correlation compares well with experimental results. (author)
The Heat Transfer Coefficient of Recycled Concrete Bricks Combination with EPS Insulation Board Wall
Jianhua Li; Wanlin Cao
2015-01-01
Four tectonic forms samples were conducted to test their heat transfer coefficients. By analyzing and comparing the test values and theoretical values of the heat transfer coefficient, a corrected-value calculation method for determining the heat transfer coefficient was proposed; the proposed method was proved to be reasonably correct. The results indicated that the recycled concrete brick wall heat transfer coefficient is higher than that of the clay brick wall, the heat transfer coefficien...
Heat and mass transfer across phase boundaries: Estimates of coupling coefficients
Bedeaux, Dick
2008-02-01
Full Text Available Heat and mass transport across phase boundaries are central in many engineering problems. The systematic description offered by classical non-equilibrium thermodynamics theory, when extended to surfaces, gives the interaction between the two fluxes in terms of coupling coefficients. It is shown in this paper that these coupling coefficients are large. The few experimental and computational results that are available confirm this. Neglect of coupling coefficients, which is common in most models for surface transport, may lead to errors in the heat flux. We present values for the coupling coefficient in a one-component system in terms of the heat of transfer, as obtained from non-equilibrium molecular dynamics simulations, kinetic theory and the integrated non-equilibrium van der Waals' square gradient model.
Estimation of Volumetric Mass Transfer Coefficient in Bioreactor
Zainab Yaquob Atiya
2012-01-01
This study is concentrated to investigate the effects of aeration and stirring speed on the volumetric mass transfer coefficient (KLa). A dynamic technique was used in estimating KLa values in order to achieve the aim of this study.This study was done in 10L bioreactor by using two medias:-1. Dionized water2. Xanthan solution (1 g /L)Moreover, the research covered a comparison between the obtained values of KLa.The Xanthan solution was used because of its higher viscosity in comparison with w...
Confirmation of selected milk and meat radionuclide transfer coefficients. Progress report
The objectives are to determine transfer coefficients to milk, beef and chicken of four radionuclides for which transfer coefficients were either indetermined or based upon secondary data. The radionuclides are 99Mo, 99Tc, 140Ba, and 131Te. The transfer coefficient for 133I to eggs was also determined, because again only limited data was available in the literature
Fuel-to-cladding heat transfer coefficient into reactor fuel element
Models describing the fuel-to-cladding heat transfer coefficient in a reactor fuel element are reviewed critically. A new model is developed with contributions from solid, fluid and radiation heat transfer components. It provides a consistent description of the transition from an open gap to the contact case. Model parameters are easily available and highly independent of different combinations of material surfaces. There are no restrictions for fast transients. The model parameters are fitted to 388 data points under reactor conditions. For model verification another 274 data points of steel-steel and aluminium-aluminium interfaces, respectively, were used. The fluid component takes into account peak-to-peak surface roughnesses and, approximatively, also the wavelengths of surface roughnesses. For minor surface roughnesses normally prevailing in reactor fuel elements the model asymptotically yields Ross' and Stoute's model for the open gap, which is thus confirmed. Experimental contact data can be interpreted in very different ways. The new model differs greatly from Ross' and Stoute's contact term and results in better correlation coefficients. The numerical algorithm provides an adequate representation for calculating the fuel-to-cladding heat transfer coefficient in large fuel element structural analysis computer systems. (orig.)
Determining convective heat transfer coefficient using phoenics software package
Kostikov, A.; Matsevity, Y. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, Kharkov (Ukraine)
1997-12-31
The two methods of determination of such important quantity of heat exchange on a body surface using PHOENICS are suggested in the presentation. The first method consists in a post-processing of results of conjugate heat transfer problem solved by PHOENICS. The second one is solving an inverse heat conduction problem for solid body using PHOENICS. Comparative characteristic of these two methods is represented. (author) 4 refs.
Resonant charge transfer at dielectric surfaces
Marbach, Johannes; Fehske, Holger
2012-01-01
We report on the theoretical description of secondary electron emission due to resonant charge transfer occurring during the collision of metastable nitrogen molecules with dielectric surfaces. The emission is described as a two step process consisting of electron capture to form an intermediate shape resonance and subsequent electron emission by decay of this ion, either due to its natural life time or its interaction with the surface. The electron capture is modeled using the Keldysh Green's function technique and the negative ion decay is described by a combination of the Keldysh technique and a rate equation approach. We find the resonant capture of electrons to be very efficient and the natural decay to be clearly dominating over the surface-induced decay. Secondary electron emission coefficients are calculated for aluminum oxide, magnesium oxide, silicon oxide, and diamond at several kinetic energies of the projectile. With the exception of magnesium oxide the coefficients turn out to be of the order of...
Confirmation of selected milk and meat radionuclide-transfer coefficients
The elements selected for study of their transfer coefficients to eggs, poultry meat, milk and beef were Mo, Tc, Te, and Ba. The radionuclides used in the study were the gamma-emitting radionuclides 99Mo, /sup 123m/Te and 133Ba. 133Ba was selected because 140Ba-140La is produced infrequently and availability was uncertain. 133Ba has a great advantage for our type of experiment because of its longer physical half-life. 99Tc is a pure beta-emitter and was used in the first three animal experiments because we could not obtain the gamma-emitting /sup 95m/Tc. A supply of this nuclide was recently obtained, however, for the second cow experiment
Heat transfer coefficient determination for flow boiling in vertical and horizontal minichannels
Piasecka Magdalena
2014-03-01
Full Text Available The paper presents the results of boiling heat transfer research during FC-72 laminar flow along a minichannel of 1 mm depth, positioned vertically and horizontally, with an enhanced heating surface. One glass pane allows to determine the temperature of the heating wall by liquid crystal thermography. Calculations are aimed at the evaluation of one- and two-dimensional heat transfer approaches to determine the local heat transfer coefficient. In the one-dimensional approach only the direction of the flow in the channel is considered. In the two-dimensional approach the inverse problem in the heating wall and the direct problem in the glass barrier were solved by the finite element method with Trefftz functions as shape functions (FEMT. The developed flow boiling area was studied. Heat transfer coefficient values obtained for the horizontal minichannel were higher than those obtained for the vertical one. When the heat flux supplied to heating wall grows, the share of gas-phase increases leading to the heat transfer coefficient decreases. The same courses of the experiment were observed for the two applied methods, but the results obtained in the one-dimensional approach are considerably higher than in the two-dimensional one. One-dimensional approach seems to be less sensitive to measurement errors.
The Heat Transfer Coefficient of Recycled Concrete Bricks Combination with EPS Insulation Board Wall
Jianhua Li
2015-01-01
Full Text Available Four tectonic forms samples were conducted to test their heat transfer coefficients. By analyzing and comparing the test values and theoretical values of the heat transfer coefficient, a corrected-value calculation method for determining the heat transfer coefficient was proposed; the proposed method was proved to be reasonably correct. The results indicated that the recycled concrete brick wall heat transfer coefficient is higher than that of the clay brick wall, the heat transfer coefficient of recycled concrete brick wall could be effectively reduced when combined with the EPS insulation board, and the sandwich insulation type was better than that of external thermal insulation type.
Heat transfer from rough surfaces
Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.)
Cao Yongyou
2014-07-01
Full Text Available In this paper, the research progress of the interfacial heat transfer in high pressure die casting (HPDC is reviewed. Results including determination of the interfacial heat transfer coefficient (IHTC, influence of casting thickness, process parameters and casting alloys on the IHTC are summarized and discussed. A thermal boundary condition model was developed based on the two correlations: (a IHTC and casting solid fraction and (b IHTC peak value and initial die surface temperature. The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found.
Study of a high performance evaporative heat transfer surface
Saaski, E. W.; Hamasaki, R. H.
1977-01-01
An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.
Estimation of Extract Yield and Mass Transfer Coefficient in Solvent Extraction of Lubricating Oil
Hussain K. Hussain
2010-01-01
An investigation was conducted to suggest relations for estimating yield and properties of the improved light lubricating oil fraction produced from furfural extraction process by using specified regression.Mass transfer in mixer-settler has been studied. Mass transfer coefficient of continuous phase, mass transfer coefficient of dispersed phase and the overall mass transfer coefficient extraction of light lubes oil distillate fraction by furfural are calculated in addition to all physical pr...
Heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations
An experimental investigation is carried out study the behaviour of heat transfer in pool boiling from a vertical and inclined heated tube at atmospheric pressure. An imperial correlation joining the different parameters affecting the heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations is developed. Two test sections (zircaloy-4 and stainless steel) of 16 n n outer diameter and 120 nm length are investigated. Four levels of heat flux are used for heating the two lest sections (e.g. 381, 518, 721 and 929 k.watt/n 2). The maximum surface temperature achieved is 146.5 degree c for both materials, and the maximum bulk temperature is 95 degree C. It is found that the average heat transfer coefficient is inversely proportional with heated length l, where it reaches a constant value in the horizontal position. The heat transfer coefficient curves at various inclinations with respect to the heated tube length pass around one point which is defined as limit length
The effect of the heat transfer coefficient at the casting-mold interface is of prime importance to improve the casting quality, especially for castings in metal molds. However, it is difficult to determine the values of heat transfer coefficient from experiments due to the influence of various factors, such as contacting pressure, oxides on surfaces, roughness of surfaces, coating material, coating thickness and gap formation caused by the deformation of casting and mold, etc. In the present paper, the interfacial heat transfer coefficient (IHTC) between the casting and metal mold is identified by using the method of inverse analysis based on measured temperatures, neural network with back-propagation algorithm and numerical simulation. Then, by applying the identified IHTC in finite element analysis, the comparison between numerical calculated and experimental results is made to verify the correctness of method. The results show that the numerical calculated temperatures are in good agreement with experimental ones. These demonstrate that the method of inverse analysis is a feasible and effective tool for determination of the casting-mold IHTC. In addition, it is found that the identified IHTC varies with time during the casting solidification and varies in the range of about 100-3200 Wm-2K-1. The characteristics of the time-varying IHTC have also been discussed.
Determining heat transfer coefficients in radial flow through a polyethylene packed
Luís Patiño
2010-07-01
Full Text Available A numerical-experimental methodology was used for determining interstitial heat transfer coefficients in water flowing through po-rous media where it was not in heat balance with the solid phase. Heat transfer coefficients were obtained through the single blow transient test method, combining experimental test equipment results with a mathematical model’s numerical solution. The partial differential equation system produced by the mathematical model was resolved by a numerical finite volume method-ba-sed methodology. Experimental tests and numerical solutions were satisfactorily carried out for different values from the fluid’s surface speed from the entrance to the bed and for different porosity values, finding that Nusselt numbers increased when Reynolds numbers also increased and that Nusselt numbers increased when porosity decreased. A 650 Reynolds number and 0.375 porosity gave a Nusselt number of up to 2.8.
Stojanovic, B.; Janevski, J.; M. Stojiljkovic
2009-01-01
The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their us...
DMS gas transfer coefficients from algal blooms in the Southern Ocean
T. G. Bell
2014-11-01
Full Text Available Air/sea dimethylsulfide (DMS fluxes and bulk air/sea gradients were measured over the Southern Ocean in February/March 2012 during the Surface Ocean Aerosol Production (SOAP study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (>15 nM. Gas transfer coefficients were considerably scattered at wind speeds above 5 m s−1. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A~flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data shows no obvious modification of the gas transfer-wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.
Hsieh, S.; Bonilla, C.F.
1975-01-01
Mercury vapor up to 500 psia was condensed outside a cylindrical tube in both horizontal and vertical positions. Results show consistently low heat transfer coefficients compared to Nusselt's theory. Two auxiliary mercury vapor condensers downstream of the boiler vent were used to control and safeguard the system. Constantan wires were spot welded on the surface inside the test condenser tube. The heat flux ranged from 20,000 to 45,000 Btu/h-ft/sup 2/ and the temperature differences between vapor and condensing wall from 6 to 50/sup 0/F. The condensation heat transfer coefficients, ranging from 850 to 3,500 Btu/h-/sup 0/F-ft/sup 2/, are only about 3 to 9 percent of those predicted by Nusselt's theory. Due to the positive pressure in the system for most test runs, the chance of any in-leakage of noncondensable gases into the boiler is extremely small. Since no substantial change of heat transfer rate resulted from wide variations in the heat load on the reflux condenser at some specific heat flux on the test condenser tube, the low heat transfer rate of mercury vapor condensation was not due to the presence of any non-condensable gas. The test data for high vapor pressure up to 500 psia reveal that the heat transfer coefficient is independent of the vapor pressure level. The condensation coefficients calculated based on kinetic theory are much smaller than unity and decreasewith vapor pressure. It is hypothesized that dimer content in the metal vapor phase might behave as non-condensable or semi-condensable gas and create a diffusional barrier at the vapor-liquid interface near the condensate film. This dimer vapor could be the main cause of interfacial resistance during metal vapor condensation process. 41 figures, 7 tables, 58 references. (DLC)
Experimental investigation of drag coefficients of gobi surfaces
DONG; Zhibao; (董治宝); QU; Jianjun; (屈建军); LIU; Xiaoping; (刘小平),; ZHANG; Weiming; (张伟民); &; WANG; Xunming; (王训明)
2002-01-01
The response of gobi surfaces to the near-surface air flow can be characterized quantitatively by drag coefficients. By using wind tunnel tests, an attempt is made to define the relationship between the drag coefficients of gobi surfaces and gravel size and coverage. It is concluded that the drag coefficients of gobi surfaces tend to be constants when gravel coverage is over 40%-50%. Consequently, we think that the gobi deflation planes expanding vastly in the arid Northwestern China are aerodynamically stable, at least not the supplying sources of current dust storms, and therefore the emphasis on dust storm control should be paid on the so-called "earth gobi" that has low gravel coverage. The prediction model for drag coefficients of gobi surfaces has been developed by regressing drag coefficients on gravel size and coverage, the predicted results are in reasonably good agreement with wind tunnel results (R 2 = 0.94). The change of drag coefficients with gravel friction Reynolds number implies that the development extent of drag effect increases with gravel size and coverage.
Mass transfer coefficients in a hanson mixer-settler extraction column
M. Torab-Mostaedi
2008-09-01
Full Text Available The volumetric overall mass transfer coefficients in a pilot plant Hanson mixer-settler extraction column of seven stages have been measured using toluene-acetone-water system. The effects of agitation speed and dispersed and continuous phases flow rates on volumetric overall mass transfer coefficients have been investigated. The results show that the volumetric overall mass transfer coefficient increases with increase in agitation speed and reaches a maximum. After having reached its maximum, it falls with further increase in agitation speed. It was found that the volumetric overall mass transfer coefficient increases with increase in dispersed phase flow rate, while it decreases with increase in continuous phase flow rate. By using interfacial area, the overall mass transfer coefficients for continuous and dispersed phases are determined from volumetric coefficients. An empirical correlation for prediction of the continuous phase overall mass transfer coefficient is proposed in terms of Sherwood and Reynolds numbers. Also the experimental data of the column investigated are compared with data for various extraction columns. Comparison between theoretical models and experimental results for the dispersed phase mass transfer coefficient shows that these models do not have enough accuracy for column design. Using effective diffusivity in the Gröber equation results in more accurate prediction of overall mass transfer coefficient. The prediction of overall mass transfer coefficients from the presented equations is in good agreement with experimental results.
Hao, Weiqiang; Wang, Junde; Zhang, Xiangmin
2006-12-01
In order to investigate the concentration dependence of mass transfer coefficients in RPLC, experimental breakthrough curves obtained by staircase frontal analysis (FA) were fitted to the simplified models such as multiplate (MP) model, equilibrium dispersive (ED) model, and transport model, and the sophisticated models such as lumped pore diffusion (POR) model and general rate (GR) model. The MP model was used to obtain the initial guesses of the parameters of the ED and the transport models. Then the best values were obtained by minimizing the differences between theoretical and experimental values with a nonlinear fitting procedure. The values of the parameters of the POR and the GR models can be calculated by using the expressions derived from the plate height equations, which was further validated by using the fitting method. It was found that the mass transfer coefficients would depend on the solute concentration. This can be ascribed to the surface diffusivity, which correlates with the concentration and is lumped into the mass transfer coefficients for both simplified and sophisticated models. PMID:17305235
Ratkovich, Nicolas Rios; Berube, P.R.; Nopens, I.
2011-01-01
One of the operational challenges associated with membrane bioreactors (MBRs) is the fouling of the membranes. In tubular side-stream MBRs, fouling reduction can be achieved through controlling the hydrodynamics of the two-phase slug flow near the membrane surface. The two-phase slug flow induces......) cannot be applied directly. As an alternative, in this work, a multidisciplinary approach was selected, by exploiting dimensionless analysis using the Sherwood number. Mass transfer coefficients were measured at various superficial velocities of gas and liquid flow in a tubular system. Due to the...... variability of the mass transfer coefficient obtained for each experimental condition, the results were compiled into, mass transfer coefficient histograms (MTH) for analysis. A bimodal MTH was observed, with one peak corresponding to the mass transfer induced by the liquid flow, and the other peak induced by...
Adhesion coefficient of automobile tire and road surface
刘长生
2008-01-01
The adhesion coefficient of automobile tire and road surface was analyzed and the formula about it was derived.Some suggestions about highway construction,driving safety of the drivers and the judgment of the traffic accidents were presented.The results show that the adhesion coefficient is a function with the extreme value.If there is atmospheric pressure in the tire,the load of the vehicle and the degree of the coarse on the road surface is not selected properly,it will reach the least and affect the safety of the running automobile.
Estimation of grass to cow's milk transfer coefficients for emergency situations
Several studies have been reported on soil to grass equilibrium transfer factors and grass to cow's milk transfer coefficients for 137Cs for the environs of different nuclear power plants of both India and other parts of the world. In such studies, the activity concentration of 137Cs is measured in grass collected from different places. Cow's milk samples are collected from nearby localities or from milk dairies and analyzed for 137Cs and the grass to cow's milk transfer coefficient is estimated. In situation where 137Cs is not present in measurable activity concentrations, its stable counterpart (Cs) is measured for the estimation of transfer coefficients. These transfer coefficient values are generally used in theoretical models to estimate the dose to the population for hypothetical situation of emergency. It should be noted that the transfer coefficients obtained for equilibrium conditions may not be totally applicable for emergency situation. However, studies aimed at evaluating transfer coefficients for emergency situations are sparse because nuclear power plants do not release 137Cs during normal operating situations and therefore simulating situation of emergency release is not possible. Hence, the only method to estimate the grass to milk transfer coefficient for emergency situation is to spike the grass with small quantity of stable Cs. This paper reports the results of grass to milk transfer coefficients for stable isotope of Cesium (Cs) for emergency situation
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces
Betz, Amy Rachel; Kim, Chang-Jin 'CJ'; Attinger, Daniel
2012-01-01
With recent advances in micro- and nanofabrication, superhydrophilic and superhydrophobic surfaces have been developed. The statics and dynamics of fluids on these surfaces have been well characterized. However, few investigations have been made into the potential of these surfaces to control and enhance other transport phenomena. In this article, we characterize pool boiling on surfaces with wettabilities varied from superhydrophobic to superhydrophilic, and provide nucleation measurements. The most interesting result of our measurements is that the largest heat transfer coefficients are reached not on surfaces with spatially uniform wettability, but on biphilic surfaces, which juxtapose hydrophilic and hydrophobic regions. We develop an analytical model that describes how biphilic surfaces effectively manage the vapor and liquid transport, delaying critical heat flux and maximizing the heat transfer coefficient. Finally, we manufacture and test the first superbiphilic surfaces (juxtaposing superhydrophobic ...
Banerjee, S.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)
1995-09-01
Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.
Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology's (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values
Surface defects as transfer matrices
Maruyoshi, Kazunobu
2016-01-01
The supersymmetric index of the 4d $\\mathcal{N} = 1$ theory realized by a brane tiling coincides with the partition function of an integrable 2d lattice model. We propose that a class of half-BPS surface defects in brane tiling models are represented on the lattice model side by transfer matrices constructed from L-operators. For the simplest surface defect in theories with $\\mathrm{SU}(2)$ flavor groups, we identify the relevant L-operator as that discovered by Sklyanin in the context of the eight-vertex model. We verify our proposal by computing the indices of class-$\\mathcal{S}$ and -$\\mathcal{S}_k$ theories in the presence of the surface defect.
Heat transfer coefficient for flow boiling in an annular mini gap
Hożejowska, Sylwia; Musiał, Tomasz; Piasecka, Magdalena
2016-03-01
The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface - fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two-phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.
Heat transfer coefficient for flow boiling in an annular mini gap
Hożejowska Sylwia
2016-01-01
Full Text Available The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface – fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two–phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.
Turbulent transfer coefficient and roughness length in a high-altitude lake, Tibetan Plateau
Li, Zhaoguo; Lyu, Shihua; Zhao, Lin; Wen, Lijuan; Ao, Yinhuan; Wang, Shaoying
2016-05-01
A persistent unstable atmospheric boundary layer was observed over Lake Ngoring, caused by higher temperature on the water surface compared with the overlying air. Against this background, the eddy covariance flux data collected from Lake Ngoring were used to analyse the variation of transfer coefficients and roughness lengths for momentum, heat and moisture. Results are discussed and compared with parameterization schemes in a lake model. The drag coefficient and momentum roughness length rapidly decreased with increasing wind velocity, reached a minimum value in the moderate wind velocity and then increased slowly as wind velocity increased further. Under weak wind conditions, the surface tension or small scale capillary wave becomes more important and increases the surface roughness. The scalar roughness length ratio was much larger than unity under weak wind conditions, and it decreased to values near unity as wind velocity exceeded 4.0 m s-1. The lake model could not reproduce well the variation of drag coefficient, or momentum roughness length, versus wind velocity in Lake Ngoring, but it did simulate well the sensible heat and latent heat fluxes, as a result of complementary opposite errors.
Townsend coefficients for electron scattering over dielectric surfaces
Peck, Timothy L.; Kushner, Mark J.
1988-01-01
A method for describing the probability of initiating flashover discharges across dielectric surfaces is presented in which a transport coefficient for electron multiplication similar to the Townsend coefficient used for gas discharges is defined. The coefficient is a function of the scaling parameter (charge released from the cathode)/(cathode-anode separation) and is also a measure of the growth of the sheath on the dielectric surface resulting from electron scattering. Results are discussed as to when the source of seed electrons does not necessarily depend upon field emission at the cathode-vacuum-dielectric triple point. For these conditions, there is a different functional dependence of flashover probability on voltage and geometry than when field emission provides the seed electrons. As a result, criteria previously used to predict flashover discharges may not apply.
Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake
MacIntyre, Sally; Jonsson, Anders; Jansson, Mats; Aberg, Jan; Turney, Damon E.; Miller, Scott D.
2010-12-01
Gas fluxes from lakes and other stratified water bodies, computed using conservative values of the gas transfer coefficient k600, have been shown to be a significant component of the carbon cycle. We present a mechanistic analysis of the dominant physical processes modifying k600 in a stratified lake and resulting new models of k600 whose use will enable improved computation of carbon fluxes. Using eddy covariance results, we demonstrate that i) higher values of k600 occur during low to moderate winds with surface cooling than with surface heating; ii) under overnight low wind conditions k600 depends on buoyancy flux β rather than wind speed; iii) the meteorological conditions at the time of measurement and the inertia within the lake determine k600; and iv) eddy covariance estimates of k600 compare well with predictions of k600 using a surface renewal model based on wind speed and β.
Full text: Transfer coefficients are commonly used as an approximation to the problem of quantifying the transit of radionuclides between an ecosystem's different characteristic receptor media. These coefficients are traditionally defined as the quotient between the specific activities of the receptor and the donor compartments. In the present study, the receptors were edible mushrooms and the donor, the soil. However, not all the radioactive contents of a soil are in a condition to be transferred. Instead, the fraction that is available will depend intimately on the capacity of the different compounds to which the radionuclides are associated to be taken up by the fungus. To analyse the cited capacity, we carried out a scheme of chemical speciation of the surface layer (0-5 cm) of the soils corresponding to two forest ecosystems (pine woods) that present a high productivity of mushrooms. This scheme consists of the sequential extraction of the available soil fraction (extractable with NH4OAc), that soluble in dilute acid (extractable with HCl 1M), that soluble in strong acid (extractable with HCl 6M), and the residue. We analysed the presence of different man-made (137Cs, 90Sr) and natural (40K, 226Ra) radionuclides in each of the soil fractions enumerated above and in two representative species of mushroom from the aforementioned two ecosystems: Hebeloma cylindrosporum and Lactarius deliciosus. Specifically, more than 75% of the concentrations of 40K and 137Cs present in the soils studied were found bound to fractions not accessible to exchange reactions (the fraction soluble in strong acid and the residue). This implies that they are not associated to chemical compounds capable of being transferred to the fungi's fruiting bodies. Therefore, it is totally inappropriate to calculate the transfer coefficients in the usual way, since this uses the total activity found in the soil layer being considered. By way of example, for 40K the traditional method
Experimental study on the critical heat flux and heat transfer coefficient in nanofluid pool boiling
Nanofluid is the liquid with dilute dispersion of nano-meter sized solid particles. It is know that the critical heat flux in pool boiling is usually enhanced and the heat transfer coefficient changes rather complicatedly in the nanofluid comparing with the pure liquid. At present, it is believed that the CHF enhancement can mainly be attributed to the nano-particle layer formed on the heated surface during nucleate boiling. Since nano-particles are often agglomerated in the base liquid, it is expected that the dispersion condition of nano-particles in the base liquid has some impact on the formation process of the nano-particle layer and consequently the value of CHF. In this experimental work, systematic investigation was carried out for the effect of the particle dispersion condition in the base liquid on the CHF and the heat transfer coefficient in nucleate pool boiling of water-based nanofluids. In the present experiments using TiO2 nanofluids as the test fluid, the CHF was not influenced significantly by the particle dispersion condition whilst noticeable deterioration of the boiling heat transfer took place only in the case of fine particle dispersion. (author)
A Comparative Study of Heat Transfer Coefficients for Film Condensation
Wei, Xiaoyong; Fang, Xiande; Rongrong SHI
2012-01-01
Film condensation heat transfer has wide applications in a variety of industrial systems. A number of film condensation heat transfer correlations (FCHTCs) have been proposed. However, their predictions are often inconsistent. This paper presents a comparative study of existing FCHTCs. Totally 1214 experimental data points are obtained from 10 published papers, and 14 FCHTCs are reviewed, among which four correlations are used for horizontal flow outside smooth tubes, three for flow ...
Two-phase flow heat transfer has been exhaustively studied over recent years. However, in this field several questions remain unanswered. Heat transfer coefficient prediction related to nucleate and convective boiling have been studied using different approaches, numerical, analytical and experimental. In this work, an experimental analysis, data representation and heat transfer coefficient prediction on two-phase heat transfer on nucleate and convective boiling are presented. An empirical correlation is obtained based on genetic algorithms search engine over a dimensional analysis of the two-phase flow heat transfer problem. (author)
The usage of transfer coefficients to describe radionuclide transport from a cow's diet to its milk
The terms 'transfer coefficient', 'transfer function' and 'transfer rate' are used to describe the transport of radionuclides from a cow's diet to her milk. Simple derivation of these parameters, their interpretations and interrelationships are given, and possible misinterpretations of published values due to imprecise definitions or incorrectly supplied or omitted units are reviewed. (author)
Estimating the workpiece-backingplate heat transfer coefficient in friction stirwelding
Larsen, Anders; Stolpe, Mathias; Hattel, Jesper Henri
2012-01-01
Purpose - The purpose of this paper is to determine the magnitude and spatial distribution of the heat transfer coefficient between the workpiece and the backingplate in a friction stir welding process using inverse modelling. Design/methodology/approach - The magnitude and distribution of the heat...... yields optimal values for the magnitude and distribution of the heat transfer coefficient. Findings - It is found that the heat transfer coefficient between the workpiece and the backingplate is non-uniform and takes its maximum value in a region below the welding tool. Four different parameterisations...... of the spatial distribution of the heat transfer coefficient are analysed and a simple, two parameter distribution is found to give good results. Originality/value - The heat transfer from workpiece to backingplate is important for the temperature field in the workpiece, and in turn the mechanical...
Measurement of heat transfer coefficient using termoanemometry methods
Dančová, Petra; Sitek, P.; Vít, T.
Liberec : Technical University of Liberec, 2013 - (Vít, T.; Dančová, P.; Novotný, P.), s. 152-155 ISBN 978-80-260-5375-0. [Experimental Fluid Mechanics 2013. Kutná hora (CZ), 19.11.2013-22.11.2013] Institutional support: RVO:61388998 Keywords : syntetic jet * thermoanemometry * heat transfer Subject RIV: BJ - Thermodynamics
Experimental study of convective coefficient of mass transfer of avocado (Persia americana Mill.)
Alves, Suerda Bezerra; Luiz, Marcia Ramos; Amorim, Joselma Araujo de; Gusmao, Rennam Pereira de; Gurgel, Jose Mauricio [Universidade Federal da Paraiba (LES/UFPB), Joao Pessoa, PB (Brazil). Lab. de Energia Solar
2010-07-01
Most of all energy consumed worldwide comes from fossil fuels derived from petroleum. With the petroleum crisis in the 70 were sought new energy sources, among them renewable. One such source is biodiesel energy, organic matter originated from animal and/or vegetable. Among the various plant species is the avocado (Persia americana Mill.) showing great potential in the production of petroleum extracted from the pulp and the alcohol removed from the seed. The main obstacle for obtaining the petroleum is the high humidity found in the pulp, being necessary to the drying process, which involves the transfer of heat and mass. The aim of this study was to use the mathematical model represented by Newton's Law of Cooling to simulate the mass transfer on the surface of the avocado pulp during the drying process. The equation of the mathematical model was solved numerically and the method of least squares was identified convective coefficient of Mass Transfer. The dryer used in the experimental process was operated with air flow in the vertical, air flow average fixed 3m/s and temperatures of 50, 60 and 70 deg C. The scheme of the dryer used in the research is composed of the following equipment: centrifugal fan, which drives the air-drying; valve, which allows control of airflow; electrical resistance, used for heating air; the drying chamber, where enables measurement of temperature and relative humidity; support for smaller trays; trays smaller, where the samples of the pulp of the avocado are placed; exit of the air of drying for the environment. The result presented shows the ratio of moisture content as a function of temperature over time, where it is possible to also observe that how much bigger the temperature of drying, greater will be the convective coefficient of mass transfer of the avocado. (author)
The object of the experiments was to choose suitable particulate materials for a fluidised bed cooler, to test a deep fluidised bed for uniformity of heat transfer coefficient, and to explore the temperature distribution in a centrally heated annular fluidised bed. This memorandum records the techniques used and some of the practical aspects involved, together with the performance results obtained, for the assistance of other experimenters who may wish to use fluidised beds as a laboratory technique. Mathematical correlation of the results has not been attempted since some of the properties of the bed material were not known and to determine them was beyond the scope of the work programme. Rather, we have compared our results with those of other experimenters. Graphite tubes, for use in steady state thermal stress experiments, are to be heated by a graphite radiant heater situated in the bore and cooled on the outer surface. The tubes are 2 cm. bore, 8 cm. outside diameter and 48 cm. long. The outside temperature of the tubes is to be between 500 deg. C. and 1500 deg. C. It is estimated that the heat transfer rate required for fracture at the outer surface is 30 watts/cm2. This could readily be achieved by cooling with liquid metals, water or high velocity gas. However, serious problems of either materials compatibility or mechanical complexity make these undesirable. A water-cooled fluidised bed of compatible solids fluidised with nitrogen gas can overcome most of these problems and give heat transfer coefficients close to that required, vis. about 0.1 w/cm C . A coolant bed about 20'' long would be required and an annulus of about 2'' radial width round the specimen was considered to be practicable
Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result
Lee, Youho; Lee, Jeong Ik; Cheon, Hee [KAIST, Daejeon (Korea, Republic of)
2015-05-15
Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result
137Cs transfer coefficients from fodder to cow milk
The transfer of 137Cs from the components of cows' diets to milk was followed in detail on 10 farms in the north-eastern region of Italy (Friuli-Venezia Giulia) from June to July 1988. Samples of milk, grass and other components of the cows' diet were collected regularly and analysed for radiocaesium content. The transfer factors, calculated for 137Cs after a four-week feeding period with contaminated silage, were higher (0.0064) than those calculated in 1987 in the same area (0.0030). This may be attributable to the fact that the 137Cs associated to the forage administrated to cows in 1988 was completely incorporated in the plant and thus more assimilable to the cattle. (Author)
Vacca, Santiago; Martorano, Marcelo A.; Heringer, Romulo; Boccalini, Mário
2015-05-01
The heat transfer coefficient at the metal-mold interface ( h MM) has been determined for the first time during the centrifugal casting of a Fe-C alloy tube using the inverse solution method. To apply this method, a centrifugal casting experiment was carried out to measure cooling curves within the tube wall under a mold rotation speed of 900 rpm, imposing a centrifugal force 106 times as large as the gravity force (106 G). As part of the solution method, a comprehensive heat transfer model of the centrifugal casting was also developed and coupled to an optimization algorithm. Finally, the evolution of h MM with time that gives the minimum squared error between measured and calculated cooling curves was obtained. The determined h MM is approximately 870 W m-2 K-1 immediately after melt pouring, decreasing to about 50 W m-2 K-1 when the average temperature of the tube is ~973 K (700 °C), after the end of solidification. Despite the existence of a centrifugal force that could enhance the metal-mold contact, these values are lower than those generally reported for static molds with or without an insulating coating at the mold inner surface. The implemented model shows that the heat loss by radiation is dominant over that by convection at the tube inner surface, causing the formation of a solidification front that meets another front coming from the outer surface of the tube.
B. Stojanovic
2009-06-01
Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.
EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT OVER THE DIMPLED SURFACE
Dr. Sachin L. Borse
2012-08-01
Full Text Available Over the past couple of years the focus on using concavities or dimples provides enhanced heat transfer has been documented by a number of researchers. Dimples are used on the surface of internal flow passages because they produce substantial heat transfer augmentation. This project work is concerned with experimentalinvestigation of the forced convection heat transfer over the dimpled surface. The objective of the experiment is to find out the heat transfer and air flow distribution on dimpled surfaces and all the results obtained are compared with those from a flat surface. The varying parameters were i Dimple arrangement on the plate i.e.staggered and inline arrangement and ii Heat input iiiDimple density on the plate. Heat transfer coefficients and Nusselt number were measured in a channel with one side dimpled surface. Thespherical type dimples were fabricated, and the diameter and the depth of dimple were 6 mm and 3 mm, respectively. Channel height is 25.4mm, two dimple configurations were tested. The Reynolds number based on the channel hydraulic diameter was varied from 5000 to 15000.Study shown that thermal performance is increasing with Reynolds number. With the inline and staggered dimple arrangement, the heat transfer coefficients, Nusselt number and the thermal performance factors were higher for the staggered arrangement.
COMPUTATION OF MOMENTUM TRANSFER COEFFICIENT AND CONVEYANCE CAPACITY IN COMPOUND CHANNELS
WANG Hua; YANG Ke-jun; CAO Shu-you; LIU Xing-nian
2007-01-01
The momentum transfer coefficient is an important parameter for determining the apparent shear stress at the vertical interface between the main channel and its associated flood plains, the cross-sectional mean velocity and the discharge capacity in compound channels. In this article, under the Boussinesq assumption and through analyzing the characteristics of velocity distribution in the interacting region between the main channel and its associated flood plain, the expression of momentum transfer coefficient was theoretically derived. On the basis of force balance, the expression of vertical apparent shear stress was obtained. By applying the experimental data from the British Engineering Research Council Flood Channel Facility (SERC-FCF), the relationship between the momentum transfer coefficient with the relative depth and the ratio of the flood plain width to the main channel width, was established, And hence the conveyance capacity in compound channels was calculated with Liu and Dong's method. The computed results show that the momentum transfer coefficient relationship obtained is viable.
Kadhim S. K.
2016-01-01
Full Text Available The aim of this work is to investigate experimentally the effect of the forced vibrations on the free convection heat transfer coefficient using heated longitudinally finned cylinder made of Aluminium. The effect of the vibration frequency ranged from 2 to16 Hz with various heat fluxes ranged from 500-1500 W/m2. It was found that, the relation between the heat transfer coefficient and amplitude of vibration increased for all inclination angles from (0°-45°, while the increment of inclination angle decreases the values of convection heat transfer coefficient. The results show that the heat transfer coefficient ratio (hv/ho of longitudinal finned cylinders in (0° angle was (8% and (30% greater than those for the (30° and (45° respectively.
Measurement of Average Pool Boiling Heat Transfer Coefficient on Near-Horizontal Tube
An experimental study is performed to obtain an average heat transfer coefficient around the perimeter of a near horizontal tube. For the test a stainless steel tube of 50.8 mm diameter submerged in water at atmospheric pressure is used. Both subcooled and saturated pool boiling conditions are considered and the inclination angle of the tube is changed from the horizontal position to 9 .deg. in steps of 3 .deg.. In saturated water, the local boiling heat transfer coefficient at the azimuthal angle of 90 .deg. from the tube bottom can be regarded as the average of the coefficients regardless of the tube inclination angles. However, when the water is subcooled the location for the average heat transfer coefficient depends on the inclination angle and the heat flux. It is explained that the major mechanisms changing the heat transfer are closely related with the intensity of the liquid agitation and the generation of big size bubbles through bubble coalescence
Measurements of Heat Transfer Coefficients to Cylinders in Shallow Bubble Columns
Tow, Emily W.; Lienhard, John H.
2014-01-01
High heat transfer coefficients and large interfacial areas make bubble columns ideal for dehumidification. However, the effect of geometry on the heat transfer coefficients outside cooling coils in shallow bubble columns, such as those used in multi-stage bubble column dehumidifiers, is poorly understood. The generally-overlooked entry and coalescing regions become important in shallow bubble columns, and there is disagreement on the effects of the coil and column diameters. In this paper, a...
Experimental Investigation of Heat Transfer Coefficient in Vertical Tube Rising Film Evaporator
Syed Naveed Ul Hasan; Sultan Ali
2011-01-01
This paper reports the experimental evaluation of the heat transfer coefficient (U) in a VRF (Vertical Tube Rising Film Evaporator). The aim is to describe the variation of U against different process parameters. Experiments were carried out for laminar flow conditions. The experimental unit is a floor standing tubular framework for a rising film evaporation system. There are many parameters affecting heat transfer coefficient in evaporators, but it was not possible to consider all of them, s...
Measurement of heat transfer coefficient in the transition region of tube flow
Heat transfer coefficient and friction factor were obtained experimentally for a circular tube in the transition region from the laminar to the turbulent flow. The measurements were made for two different kinds of intermittently turbulent regions; i.e., puff and slug. A relation between the heat transfer coefficient and the intermittency was examined. Variation of gas temperature was observed and found to be also intermittent. (author)
Determination of the heat transfer coefficient from IRT measurement data using the Trefftz method
Maciejewska Beata; Strąk Kinga; Piasecka Magdalena
2016-01-01
The paper presents the method of heat transfer coefficient determination for boiling research during FC-72 flow in the minichannels, each 1.7 mm deep, 24 mm wide and 360 mm long. The heating element was the thin foil, enhanced on the side which comes into contact with fluid in the minichannels. Local values of the heat transfer coefficient were calculated from the Robin boundary condition. The foil temperature distribution and the derivative of the foil temperature were obtained by solving th...
Transfer coefficients have become virtually indispensible in the study of the fate of radioisotopes released from nuclear installations. These coefficients are used in equilibrium assessment models where they specify the degree of transfer in food chains of individual radioisotopes from soil to plant products and from feed or forage and drinking water to animal products and ultimately to man. Information on transfer coefficients for terrestrial food chain models is very piecemeal and occurs in a wide variety of journals and reports. To enable us to choose or determine suitable values for assessments, we have addressed the following aspects of transfer coefficients on a very broad scale: (1) definitions, (2) equilibrium assumption, which stipulates that transfer coefficients be restricted to equilibrium or steady rate conditions, (3) assumption of linearity, that is the idea that radioisotope concentrations in food products increase linearly with contamination levels in the soil or animal feed, (4) methods of determination, (5) variability, (6) generic versus site-specific values, (7) statistical aspects, (8) use, (9) sources of currently used values, (10) criteria for revising values, (11) establishment and maintenance of files on transfer coefficients, and (12) future developments. (auth)
Tao JIN; Jian-ping HONG; Hao ZHENG; Ke TANG; Zhi-hua GAN
2009-01-01
Inverse heat conduction method (IHCM)is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results.This paper focuses on its application in cryogenic boiling heat transfer.Experiments were conducted on the heattransfer of a stainless steel block in a liquid nitrogen bath.with the assumption of a ID conduction condition to realize fast acquisition of the temperature of the test points inside the block.With the inverse-heat conduction theory and the explicit finite difference model,a solving program was developed to calculate the heat flux and the boiling heat transfer coefficient of a stainless steel block in liquid nitrogen bath based on the temperature acquisition data.Considering the oscillating data and some unsmooth transition points in the inverse-heat-conduction calculation result of the heat-transfer coefficient,a two-step data-fitting procedure was proposed to obtain the expression for the boiling heat transfer coefficients.The coefficient was then verified for accuracy by a comparison between the simulation results using this expression and the verifying experimental results of a stainless steel block.The maximum error with a revised segment fitting iS around 6%.which verifies the feasibility of using IHCM to measure the boiling heat transfer coefficient in liquid nitrogen bath.
Measurement and Prediction of the Average Heat Transfer Coefficient on a Tube
Most results are for horizontal tubes of diameter ranging 7.6∼51 mm. Only Seethes et al. studied variations in local heat transfer coefficients along the tube periphery while controlling the inclination angle. The main result of the previous investigations is that there is a considerable difference among the local heat transfer coefficients along a tube periphery. This has been the major cause of the discrepancy among the results. It is very important to predict the exact heat transfer coefficient on a tube for the thermal design of tubular type heat exchangers. No results have been reported about the way to predict the average value on a tube except Kang who suggested a method for the horizontal tube. The present study is aimed to find out a way of predicting the average heat transfer coefficient with considering the degree of subcooling and the inclination angle. The average heat transfer coefficient was observed at θ =90 .deg in the saturated water regardless of the tube inclination angle. However, as the water was subcooled the location for the average heat transfer coefficient moves to the lower region of the tube
Determining the surface roughness coefficient by 3D Scanner
Karmen Fifer Bizjak
2010-12-01
Full Text Available Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D scanner as an alternative to current methods. For this study, the surfaces of ten samples oftuff were digitized by means of a 3D scanner, and the results were compared with the corresponding Rock JointCoefficient (JRC values. Up until now such 3D scanner have been mostly used in the automotive industry, whereastheir use for comparison with obtained JRC coefficient values in rock mechanics is presented here for the first time.The proposed new method is a faster, more precise and more accurate than other existing test methods, and is apromising technique for use in this area of study in the future.
Investigation of heat transfer coefficient during quenching in various cooling agents
Highlights: • The highest HTC during quenching in mineral oils occur in temperature 520–550 °C. • The peaks of HTC for polymers exist at lower temperature compared to mineral oils. • Temperature and utilization time of coolant affect the heat transfer coefficient. • Ageing of mineral oils affects their severities; a direction of change is equivocal. -- Abstract: Heat transfer coefficients, HTCs, at the surface of a metal sample during immersion quenching were measured and evaluated using numerical procedures. The boundary inverse heat conduction problem has been defined and solved. A FEM self-developed computer code has been used to obtain a solution to the direct problem. The sensitivity of the method enabled us to examine the effect of various quenching parameters on the heat transfer for two mineral oils and a polymer quenchant. At 800 °C the HTC values were equal to ∼0.5 kW/(m2 K) and ∼3.2 kW/(m2 K), for mineral oils and a polymer coolant, respectively. They increased to ∼4.7 kW/(m2 K) – oil A, ∼6.0 kW/(m2 K) – oil B and ∼7.4 kW/(m2 K) – polymer, respectively. The peak of HTC was sharp and occurred at a narrow temperature interval between 520 and 550 °C for the oils, whereas for the polymer, the peak was lower by approx. 100 K and flat over 100–120 K interval. Subsequently HTC decreased, and at ∼150 °C the values were ∼0.5 kW/(m2 K) and ∼2.0 kW/(m2 K), for mineral oils and a water polymer coolant, respectively
Sputtered metal source for rate coefficient measurements of asymmetric charge transfer reactions
Complete text of publication follows. Asymmetric charge transfer (ACT) reactions between noble gas ions and metal atoms play an important role in numerous glow discharge applications. Due to the sputtering effect of ions impinging on the cathode surface significant metal density can be created in the cathode area of dc noble gas discharges. These metal atoms are then ionized and excited in the negative glow region, which is utilized in glow discharge spectroscopy (GDS) applications. ACT represents an important source of excited metal ions in the negative glow. Numerical modeling of the cathode region of a sputtering discharge requires rate coefficient values of ACT reactions as input data [Bogaerts et al. J. Anal. Atom. Spectrom. 11 (1996) 841]. There are rate coefficient values available in the literature only for volatile metals - in combination with different noble gas ions - that can be evaporated at relatively low temperatures (e.g. Hg, Zn, Cd etc.). However, data for other metals (Cu, Fe, Ag, etc.) have not been measured yet. The aim of this work is to build a metal source that can be applied for rate coefficient measurements of ACT reactions. The new sputtered metal source operates at room temperature creating homogeneous spatial distribution of metal atoms in a 9 cm3 region. Four hollow-cathode discharges - placed symmetrically around the central region - provide the needed metal density in the order of 5 x 1011 cm-3 as determined by atomic absorption spectroscopy. The future work focuses on the ACT rate coefficient measurements. The authors kindly acknowledge the support by the MRTN-CT-035459.
Study of the measurement about the apparent heat transfer coefficient of solid uranium hexafluoride
In order to provide the conditions for designing the congealed accept container of uranium hexafluoride, a set of experiment system of measuring apparent heat transfer coefficient in which the small-sized congealed accept container was considered as main equipment was set up. Then the experiments of loading and unloading uranium hexafluoride were carried out. The process of loading and unloading uranium hexafluoride in small-sized congealed accept container were simulated by the barrel model of steady heat transfer in this paper, and the apparent heat transfer coefficient of solid uranium hexafluoride was obtained. (authors)
Study on heat transfer coefficients during cooling of PET bottles for food beverages
Liga, Antonio; Montesanto, Salvatore; Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio; Cammalleri, Marco
2016-08-01
The heat transfer properties of different cooling systems dealing with Poly-Ethylene-Terephthalate (PET) bottles were investigated. The heat transfer coefficient (Ug) was measured in various fluid dynamic conditions. Cooling media were either air or water. It was shown that heat transfer coefficients are strongly affected by fluid dynamics conditions, and range from 10 W/m2 K to nearly 400 W/m2 K. PET bottle thickness effect on Ug was shown to become relevant under faster fluid dynamics regimes.
Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient
Smakulski, P.; Pietrowicz, S.
2015-12-01
Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen.
Prediction of overall heat transfer coefficient for RMI insulation using the test and analysis
Both parts of shell and layers have different thermal transfer flow; shell-part is conductivity loss, layer is convective and radiative loss that would contribute to calculate the total heat value with difficulty. We developed the new method about prediction of RMI's total value by separating the shell and layer as a function of heat resistivity. Whereas heat transfer value at the insulation shell is calculated by CFD analysis according to various insulation sizes, multi-layer would be done by thermal test. These predicted models are compared with final insulation sample of overall heat transfer value for the validation. RMI insulation was investigated by GHP (guarded hot plate) measuring instrument (inner-layer) and thermal analysis simulation(CFD method) to predict the approximate value of overall heat transfer. The results are as follows. - Thickness of out-shell as same meaning of outshell ratio is determined very carefully at RMI design. Because it can lead to very large changes in heat transfer. For example, whereas thickness of out-shell with 0.1mm(0.13%) shows 0.16 W/m2K through surface of out-shell, that of 0.4mm(0.53%) thickness is 0.49 W/m2K which is increased nonlinearly. - Inner-layer and out-shell of RMI is arranged in parallel, so that overall heat transfer coefficient would be written with sum of each part. For example, at the condition of 70 .deg. C, inner-layer part(0.06mm) is 0.56 W/m2K and out-shell part(0.7mm) is 0.72 W/m2K, and overall value is 1.28 W/m2K. - We could expect that heat transfer value is changed according to out-shell ratio, because out-shell ratio as conductivity loss is connected with insulation size and inner-layer as radiation blocking is independent
Estimation of grass to milk transfer coefficient for Strontium for emergency situations
The grass to milk transfer coefficient is usually represented as Fm values. This paper reports the results of grass to cow milk transfer coefficients (Fm) for Strontium for emergency situation. An experimental grass field was developed in Kaiga region and 2 cows were adopted for collecting milk samples regularly. Grass was cut from the field and spiked with very low concentration of stable Strontium, taken in the form of Sr(No3)2, to simulate a sudden deposition of Strontium on grass and fed to the adopted cows. The milk samples were collected during normal milking periods (morning and evening) for several days and analyzed. The peak concentration of Sr in milk was observed during time period 12-36 hrs after the intake of spiked grass. The mean value of transfer coefficient was found to be 1.4 x 10-3 d L-1. The grass to milk transfer coefficient values observed under spiked conditions were similar to that observed for equilibrium transfer coefficient for Kaiga region. (author)
Taha, M.A.; El-Mahallawy, N.A. [Ain Shams University, Cairo (Egypt). Dept. of Design and Production Engineering; El-Mestekawi, M.T.; Hassan, A.A. [Higher Education Institute, Tenth Ramadan City (Egypt). Dept. of Mechanical Engineering
2001-07-01
In the casting processes, the heat transfer coefficient at the metal/mould interface is an important controlling factor for the solidification rate and the resulting structure and mechanical properties. Several factors interact to determine its value, among which are the type of metal/alloy, the mould material and surface conditions, the mould and pouring temperatures, casting configuration, and the type of gases at the interfacial air gap formed. It is also time dependent. In this work, the air gap formation was computed using a numerical model of solidification, taking into consideration the shrinkage and expansion of the metal and mould, gas film formation, and the metallostatic pressure. The variation of the air gap formation and heat transfer coefficient at the metal mould interface are studied at the top, bottom, and side surfaces of AI and AI-Si castings in a permanent mould in the form of a simple rectangular parallelepiped. The results show that the air gap formation and the heat transfer coefficient are different for the different casting surfaces. The bottom surface where the metallostatic pressure makes for good contact between the metal and the mould exhibits the highest heat transfer coefficient. For the sidewalls, the air gap was found to depend on the casting thickness as the larger the thickness the larger the air gap. The air gap and heat transfer coefficient also depend on the surface roughness of the mould, the alloy type, and the melt superheat. The air gap is relatively large for low values of melt superheat. The better the surface finish, the higher the heat transfer coefficient in the first few seconds after pouring. For AI-Si alloys, the heat transfer coefficient increases with increasing Si content. (author)
This technique provides a method of obtaining average fuel to coolant heat transfer coefficients for individual fuel subassemblies in fast reactors. A series of experiments on the UK prototype fast reactor (PFR) over the period 1977-1979 have demonstrated that the technique is simple, requires no special instrumentation other than thermocouples to monitor coolant outlet temperatures, and the measurement can be made during normal reactor operation. Thus it is possible to determine how heat transfer coefficients change with operating conditions and with the degree of burn-up in the fuel. The analysis of a single experiment is presented to illustrate the technique. This was conducted at a single reduced power level of 200 thermal megawatts for two different primary coolant flow rates, both steady fractions of the maximum (0.88 and 0.47). Cyclic and single-step perturbations of about 10% amplitude were impressed on the steady power and the delayed coolant temperature response at subassembly outlets was monitored. Burn-ups in the subassemblies ranged between 1.0% and 4.7%. From the measured delays at the two flows it was possible to determine the fuel time-constant and hence the fuel-to-coolant heat transfer coefficient. It was also shown that a simple, lumped-element, heat transfer model can be used to obtain sufficiently accurate estimates from measurements at just one coolant flow. Fuel surface-to-coolant thermal conductances (i.e. gap conductances) were subsequently derived from the heat transfer coefficients. These ranged between 2.4 kW m-2K-1 and 3.3 kW m-2K-1 with the smaller conductances being obtained for those fuel elements with the larger degree of burn-up. These values are lower than expected but consistent with a higher than expected value for the negative power coefficient of reactivity feedback which has been observed at reduced power. (orig.)
Purge and trap method to determine alpha factors of VOC liquid-phase mass transfer coefficients
无
2000-01-01
A theoretical approach and laboratory practice of determining the alpha factors of volatile organic compound (VOC) liquid-phase mass transfer coefficients are present in this study.Using Purge Trap Concentrator, VOC spiked water samples are purged by high-purity nitrogen in the laboratory, the VOC liquid-phase mass transfer rate constants under the laboratory conditions are then obtained by observing the variation of VOCs purged out of the water with the purge time.The alpha factors of VOC liquid-phase mass transfer coefficients are calculated as the ratios of the liquid-phase mass transfer rate constants in real water samples to their counterparts in pure water under the same experimental conditions. This direct and fast approach is easy to control in the laboratory, and would benefit mutual comparison among researchers, so might be useful for thestudy of VOC mass transfer across the liquid-gas interface.
Estimation of Extract Yield and Mass Transfer Coefficient in Solvent Extraction of Lubricating Oil
Hussain K. Hussain
2010-01-01
Full Text Available An investigation was conducted to suggest relations for estimating yield and properties of the improved light lubricating oil fraction produced from furfural extraction process by using specified regression.Mass transfer in mixer-settler has been studied. Mass transfer coefficient of continuous phase, mass transfer coefficient of dispersed phase and the overall mass transfer coefficient extraction of light lubes oil distillate fraction by furfural are calculated in addition to all physical properties of individual components and the extraction mixtures.The effect of extraction variables were studied such as extraction temperature which ranges from 70 to 110°C and solvent to oil ratio which ranges from 1:1 to 4:1 (wt/wt were studied.The results of this investigation show that the extract yield E decreased with decreasing solvent to oil ratio in extract layer and increased with increasing temperature. The fraction of total solvent in the raffinate phase decreased with increasing oil to solvent ratio in raffinate layer and increased with increasing temperature. Solvent to oil ratio in extract layer decreased with increasing temperature and increased with increasing solvent to charge oil ratio at constant temperature. Oil to solvent ratio in raffinate decreased with increasing temperature and increased with increasing solvent to charge oil ratio at constant temperature.Estimated functions are the best modeling function for prediction extraction data at various operating conditions. Mass transfer coefficient of continuous phase kc and mass transfer coefficient of dispersed phase kd are increased with increasing temperature and solvent charge to oil ratio at constant temperature. The over all mass transfer coefficient Kod is increased with increasing temperature and solvent to charge oil ratio; while Kod a is increased with temperature and decreased with solvent to charge oil ratio.
Bunyakan, C.
2002-04-01
Full Text Available Volatile organic compounds (VOCs have been found in wastewater of many chemical industries. Evaporation of VOCs from open water basin in waste treatment facilities causes air-pollution and has been regulated in many countries. Reduction or prevention of VOCs evaporation from open water basin is then necessary. The aim of this research was to investigate the influence of surface film generated by an insoluble surfactant on the mass transfer coefficient of VOCs evaporating from water. Hexadecanol and octadecanol were used as surfactant in this investigation with the amount in the range of 0 to 35 μg/cm2 and 0 to 25 μg/cm2, respectively. The VOCs used in this study were methanol, acetone, methyl ethyl ketone and toluene. The experimental results showed that the surfactant film can reduce the gas film and liquid coefficients by 56 and 80 %, respectively. The suitable amounts of the surfactant were 25 μg/cm2 for hexadecanol and 15 μg/cm2 for octadecanol. From this investigation we can conclude that covering the water surface with a film of hexadecanol or octadecanol could significantly reduce the VOCs evaporation rate.Finally, the empirical equations correlating gas film and liquid film coefficient to amount of surfactants were developed and verified against the experimental data. The predicted values of the overall mass transfer coefficients, obtained by using these empirical equations, were in good agreement with the measured values. Thus the empirical equations of mass transfer coefficients developed in this work can be used to predict the evaporation rates of VOCs from water surface covered by hexadecanol or octadecanol film.
Balla Hyder H.
2015-01-01
Full Text Available Cu and Zn-water nanofluid is a suspension of the Cu and Zn nanoparticles with the size 50 nm in the water base fluid for different volume fractions to enhance its Thermophysical properties. The determination and measuring the enhancement of Thermophysical properties depends on many limitations. Nanoparticles were suspended in a base fluid to prepare a nanofluid. A coated transient hot wire apparatus was calibrated after the building of the all systems. The vibro-viscometer was used to measure the dynamic viscosity. The measured dynamic viscosity and thermal conductivity with all parameters affected on the measurements such as base fluids thermal conductivity, volume factions, and the temperatures of the base fluid were used as input to the Artificial Neural Fuzzy inference system to modeling both dynamic viscosity and thermal conductivity of the nanofluids. Then, the ANFIS modeling equations were used to calculate the enhancement in heat transfer coefficient using CFD software. The heat transfer coefficient was determined for flowing flow in a circular pipe at constant heat flux. It was found that the thermal conductivity of the nanofluid was highly affected by the volume fraction of nanoparticles. A comparison of the thermal conductivity ratio for different volume fractions was undertaken. The heat transfer coefficient of nanofluid was found to be higher than its base fluid. Comparisons of convective heat transfer coefficients for Cu and Zn nanofluids with the other correlation for the nanofluids heat transfer enhancement are presented. Moreover, the flow demonstrates anomalous enhancement in heat transfer nanofluids.
Transfer coefficient study of Sr-90 in the soil-grass-milk chain for Cuba
One of the most important problems in modern radioecology is the lack of able information about the features of radionuclide migration in tropical and subtropical environment. The development of nuclear energy and the enhancing in the applications of nuclear techniques in those latitudes indicate that studies in this area are necessary. Cuba is carrying out studies on radioecological characterization of the principal food chains in the country. One of the objectives of these studies is to define the values of the transfer coefficients to be used in the evaluation programs for the assessment of the radiological impact of practices which involve ionizing radiation. This paper shows the results obtained in the determination of Sr-90 transfer coefficients in soil-grass-milk food chain in 'La Quebrada', a place near the Havana City where an important part of the milk that the citizens consume is produced. Transfer coefficients for Sr-90 were calculated on the basis of data collected during 5 years in the region. Soil-grass transfer coefficients are in the range 0.18-5 while grass-milk coefficients are in the range of 1.2x10-4 - 6x10-3 day/L. These values are in accordance with values reported by other authors in the literature. (authors). 4 refs., 2 tabs
Experimental determination of heat transfer coefficients in uranium zirconium hydride fuel rod
This work presents the experiments and theoretical analysis to determine the temperature parameter of the uranium zirconium hydride fuel elements, used in the TRIGA IPR-R1 Research Nuclear Reactor. The fuel thermal conductivity and the heat transfer coefficient from the cladding to the coolant were evaluated experimentally. It was also presented a correlation for the gap conductance between the fuel and the cladding. In the case of nuclear fuels the heat parameters become functions of the irradiation as a result of change in the chemical and physical composition. The value of the heat transfer coefficients should be determined experimentally. (author)
Experimental determination of heat transfer coefficients in uranium zirconium hydride fuel rod
Mesquita, Amir Z.; Rezende, Hugo C.; Costa, Antonio Carlos L. da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: amir@cdtn.br; hcr@cdtn.br; aclc@cdtn.br
2005-07-01
This work presents the experiments and theoretical analysis to determine the temperature parameter of the uranium zirconium hydride fuel elements, used in the TRIGA IPR-R1 Research Nuclear Reactor. The fuel thermal conductivity and the heat transfer coefficient from the cladding to the coolant were evaluated experimentally. It was also presented a correlation for the gap conductance between the fuel and the cladding. In the case of nuclear fuels the heat parameters become functions of the irradiation as a result of change in the chemical and physical composition. The value of the heat transfer coefficients should be determined experimentally. (author)
The variation with time in the transfer coefficient for radiocaesium transport to sheep's milk was measured during an entire lactation period. One hundred and forty ewes were used. The animals were segregated into groups of six ewes and throughout their lactation period, every week one of the groups was given a diet of ground wheat, contaminated with radiocaesium from the Chernobyl accident. The results showed an increase of radiocaesium activity concentration in the milk by a factor of three, over the 21-week lactation period. A significant correlation was found between transfer coefficients for radiocaesium and average daily milk yield. (Author)
Spin transfer coefficients for the (p suprho,n suprho) reaction in the plane wave approximation
Lee, H S; Kim, B T
1998-01-01
The spin transfer coefficients D sub n sub n (theta=0 .deg. ) for the intermediate energy charge exchange reaction (p suprho,n suprho) leading to the giant resonances in the continuum region are investigated. The dependence of the spin transfer coefficients on the nuclear wave function, the reaction Q-value, and the effective two-body interaction are studied using the plane wave approximation. It is shown that both the direct and the exchange parts of the tensor interaction play important roles in determining the D sub n sub n value.
Measuring the heat-transfer coefficient of nanofluid based on copper oxide in a cylindrical channel
Guzei, D. V.; Minakov, A. V.; Rudyak, V. Ya.; Dekterev, A. A.
2014-03-01
The heat-transfer coefficient of nanofluid during its flow in a cylindrical channel is studied experimentally. The studied nanofluid was prepared based on distilled water and CuO nanoparticles. Nanoparticle concentration varied in the range from 0.25 to 2% in the volume. The nanofluid was stabilized using a xanthane gum biopolymer the mass concentration of which did not exceed 0.03%. Considerable intensification of heat transfer was found. The nanofluid appeared to be Newtonian when particle concentrations exceeded 0.25%. Estimates for rheological parameters of the nanofluid and thermal conductivity coefficient have been obtained.
Hydrogen is expected to serve as a clean secondary energy, because it can be manufactured from water, used in a variety of energy end-use sectors as fuel, and returned to water after burning. For the realization of hydrogen energy system, development of efficient and economical hydrogen production methods is required to meet the future huge demand of hydrogen. The Iodine-Sulfur (IS) process is a promising candidate of such hydrogen production methods, in which water reacts with iodine and sulfur dioxide to produce hydrogen iodide and sulfuric acid (Bunsen reaction) and the produced acids are then decomposed to produce hydrogen and oxygen, respectively. This study is concerned with the development of IS process equipment named direct contact sulfuric acid concentrator, in which gaseous mixture produced by thermal decomposition of sulfuric acid contacts directly with sulfuric acid solution. In the concentrator, the high temperature heat of the decomposed gas is recovered and used to concentrate sulfuric acid solution and, at the same time, the undecomposed sulfuric acid is condensed and separated from the decomposition products of sulfur dioxide and oxygen. Although the concept is very attractive from the viewpoint of the development of compact and efficient sulfuric acid concentrator, little is known on the heat and mass transfer relevant to the concentrator. Therefore, experimental methods were discussed to acquire the gas-phase mass transfer coefficient required for the optimal design of the concentrator. Assuming the use of wetted-wall column and also of the sulfuric acid of azeotropic composition as the test solution which could eliminate the liquid-phase mass transfer resistance, the column specification and the measurement conditions were determined by which flooding could be avoided and surface wetting could be assured, as well. (author)
Local Mass Transfer Coefficient for Idealized 2D Urban Street Canyon Models
Leung, Ka Kit; Liu, Chun-Ho
2011-09-01
Human activities in urban areas is one of the major sources of anthropogenic releases in the atmospheric boundary layer (ABL). The mechanism of urban morphology for the heat and mass transfer in built environment is thus an attractive topic in the research community. In this paper, a series of laboratory measurements is conducted to elucidate the mass transfer from hypothetical urban roughness constructed by idealized 2D street canyons. The experiments are carried out in the wind tunnel in the University of Hong Kong. The urban ABL structure inside the wind tunnel is controlled by placing small cubic Styrofoam blocks upstream of the test section. The street canyons are fabricated by movable rectangular acrylic blocks so that different building height to street width (aspect) ratios are examined. The height of building blocks is kept minimum to make sure that the urban ABL over the street canyons is high enough for fully developed turbulent flows. The prevailing wind is normal to the street axis, demonstrating the scenario of least pollutant removal from the street canyons to the urban ABL. The sample street canyon is covered by soaked filter papers to represent uniform mass concentrations on the building facades and ground surface. The wet bulb temperature of the filter papers is continuously monitored to ensure saturated conditions. Their weight before and after an experiment is used to measure the amount of water evaporated. Preliminary results illustrate the local mass transfer coefficient distribution for aspect ratios 1/4, 1/2, 1, and 2, which are comparable with those available in literuatre.
Donne, M.D.; Piazza, G. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Goraieb, A.; Sordon, G.
1998-01-01
The four ITER partners propose to use binary beryllium pebble bed as neutron multiplier. Recently this solution has been adopted for the ITER blanket as well. In order to study the heat transfer in the blanket the effective thermal conductivity and the wall heat transfer coefficient of the bed have to be known. Therefore at Forschungszentrum Karlsruhe heat transfer experiments have been performed with a binary bed of beryllium pebbles and the results have been correlated expressing thermal conductivity and wall heat transfer coefficients as a function of temperature in the bed and of the difference between the thermal expansion of the bed and of that of the confinement walls. The comparison of the obtained correlations with the data available from the literature show a quite good agreement. (author)
Effect of Heat Transfer Coefficient on the Temperature Gradient for Hollow Fiber
王华平; 余晓蔚; 杨崇倡; 胡学超; 庄毅
2001-01-01
The heat transfer coefficient h caused by blowing affects the heat transfer of fiber greatly. Especially,unsymmetrical blowing forms the unsymmetrical temperature gradient on the fiber cross.section. Based on the results of spinning simulation by computer, the changes of heat transfer coefficient on the cross-section along the spinning line and the effects on distributions of temperature gradients were discussedl It is showed that for the spinning simulation of hollow fiber under strong blowing condition, the heat transfer coetticient should bemodified as: h=0.437×10-4[ G/Vρ ( R2/ R2-n2 ) ] -o.333(V2+ 64( VYsin (θ))2)0.167
Determination of the heat-transfer coefficient and current density profile of gas-discharge plasma
The spatial distribution of gas temperature in a cylindrical discharge tube is theoretically investigated in respect of heat transfer due to gas thermal conduction and heat exchange with surrounding medium. Based on the obtained results the facilities for experimental determination of the heat-transfer coefficient of gas-discharge plasma and radial profiles of the electron density, discharge current density and radiants are shown
Investigation of two-phase heat trnsfer in horizontal pipe flow have led to a new generalized correlation for the heat transfer coefficient. The proposed correlation equation is NUTP=3.04 [Pe]0.8 [Bo]0.6 This correlation was tested againts the existing and experimental data obtained on two-pahse heat transfer covering the entire possible flow regimes in a horizontal pipe flow. The correlation produces satisfactory result. (authors). 13 refs, 12 tabs, 2 figs
Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.
2004-10-01
A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.
2008-01-01
Based on several hypotheses about the process of supercritical carbon dioxide extraction, the onflow around the solute granule is figured out by the Navier-Stocks equation. In combination with the Higbie’s solute infiltration model, the link be-tween the mass-transfer coefficient and the velocity of flow is found. The mass-transfer coefficient with the ultrasonical effect is compared with that without the ultrasonical effect, and then a new parameter named the ultrasonic-enhanced fac-tor of mass-transfer coefficient is brought forward, which describes the mathe-matical model of the supercritical carbon dioxide extraction process enhanced by ultrasonic. The model gives out the relationships among the ultrasonical power, the ultrasonical frequency, the radius of solute granule and the ultrasonic-enhanced factor of mass-transfer coefficient. The results calculated by this model fit well with the experimental data, including the extraction of Coix Lacryma-jobi Seed Oil (CLSO) and Coix Lacryma-jobi Seed Ester (CLSE) from coix seeds and the extrac-tion of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from the alga by means of the ultrasonic-enhanced supercritical carbon dioxide extraction (USFE) and the supercritical carbon dioxide extraction (SFE) respectively. This proves the rationality of the ultrasonic-enhanced factor model. The model provides a theoretical basis for the application of ultrasonic-enhanced supercritical fluid extraction technique.
Y.K.Sklifus
2012-12-01
Full Text Available The article presents the calculation of heat transfer coefficient during condensation of steam, the mathematical model of temperature distribution in the gas and liquid phases of the coolant and the model of the formation of the condensate film on the walls of the tubes.
Luo, Benyi; Lu, Yigang
2008-10-01
Based on several hypotheses about the process of supercritical carbon dioxide extraction, the onflow around the solute granule is figured out by the Navier-Stocks equation. In combination with the Higbie’s solute infiltration model, the link between the mass-transfer coefficient and the velocity of flow is found. The mass-transfer coefficient with the ultrasonical effect is compared with that without the ultrasonical effect, and then a new parameter named the ultrasonic-enhanced factor of mass-transfer coefficient is brought forward, which describes the mathematical model of the supercritical carbon dioxide extraction process enhanced by ultrasonic. The model gives out the relationships among the ultrasonical power, the ultrasonical frequency, the radius of solute granule and the ultrasonic-enhanced factor of mass-transfer coefficient. The results calculated by this model fit well with the experimental data, including the extraction of Coix Lacryma-jobi Seed Oil (CLSO) and Coix Lacryma-jobi Seed Ester (CLSE) from coix seeds and the extraction of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from the alga by means of the ultrasonic-enhanced supercritical carbon dioxide extraction (USFE) and the supercritical carbon dioxide extraction (SFE) respectively. This proves the rationality of the ultrasonic-enhanced factor model. The model provides a theoretical basis for the application of ultrasonic-enhanced supercritical fluid extraction technique.
Evaluation of convective heat transfer coefficient of various crops in cyclone type dryer
Akpinar, E. Kavak [Mechanical Engineering Department, Firat University, 23279 Elazig (Turkey)]. E-mail: eakpinar@firat.edu.tr
2005-09-15
In this paper, an attempt was made to evaluate the convective heat transfer coefficient during drying of various crops and to investigate the influences of drying air velocity and temperature on the convective heat transfer coefficient. Drying was conducted in a convective cyclone type dryer at drying air temperatures of 60, 70 and 80 deg. C and velocities of 1 and 1.5 m/s using rectangle shaped potato and apple slices (12.5 x 12.5 x 25 mm) and cylindrical shaped pumpkin slices (35 x 5 mm). The temperature changes of the dried crops and the temperature of the drying air were measured during the drying process. It was found that the values of convective heat transfer coefficient varied from crop to crop with a range 30.21406 and 20.65470 W/m{sup 2} C for the crops studied, and it was observed that the convective heat transfer coefficient increased in large amounts with the increase of the drying air velocity but increased in small amounts with the rise of the drying air temperature.
An empirical correlation of volumetric mass transfer coefficient was developed for a pilot scale internal-loop rectangular airlift bioreactor that was designed for biotechnology. The empirical correlation combines classic turbulence theory, Kolmogorov’s isotropic turbulence theory with Higbie’s pen...
Evaluation of convective heat transfer coefficient of various crops in cyclone type dryer
In this paper, an attempt was made to evaluate the convective heat transfer coefficient during drying of various crops and to investigate the influences of drying air velocity and temperature on the convective heat transfer coefficient. Drying was conducted in a convective cyclone type dryer at drying air temperatures of 60, 70 and 80 deg. C and velocities of 1 and 1.5 m/s using rectangle shaped potato and apple slices (12.5 x 12.5 x 25 mm) and cylindrical shaped pumpkin slices (35 x 5 mm). The temperature changes of the dried crops and the temperature of the drying air were measured during the drying process. It was found that the values of convective heat transfer coefficient varied from crop to crop with a range 30.21406 and 20.65470 W/m2 C for the crops studied, and it was observed that the convective heat transfer coefficient increased in large amounts with the increase of the drying air velocity but increased in small amounts with the rise of the drying air temperature
Evaluation of the heat transfer coefficient at the metal-mould interface during flow
Z. Konopka
2007-12-01
Full Text Available Calculation results concerning the heat transfer coefficient at the metal-mould interface during flow of the AlMg10 alloy in the channel-like cavity of the spiral castability test mould. The experimental cooling curve as well as changes of metal flow velocity have been determined on the basis of the measured metal temperature during flow. The cooling curve equation for the examined alloy, derived from the heat balance condition in a casting-mould system and taking into account experimental data concerning changes in metal temperature and its flow velocity, has enabled evaluation of the heat transfer coefficient at a chosen point of a metal stream along the mould channel. Graphic representations of changes of this coefficient against time and the channel length have been shown.
Soil plant transfer coefficient of 14C-carbofuran in brassica sp. vegetable agroecosystem
The soil plant transfer coefficient or f factor of 14C-carbofuran pesticide was studied in outdoor lysimeter experiment consisting of Brassica sp. vegetable crop, riverine alluvial clayey soil and Bungor series sandy loam soil. Soil transfer coefficients at 0-10 cm soil depth were 4.38 ± 0.30, 5.76 ± 1.04, 0.99 ± 0.25 and 2.66 ± 0.71; from IX recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, IX recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 0-25 cm soil depth, soil plant transfer coefficients were 8.96 ± 0.91, 10.40 ± 2.63, 2.34 ± 0.68 and 619 ±1.40, from IX recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, IX recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 77 days after treatment (DAT), the soil plant transfer coefficient was significantly higher in riverine alluvial soil than Bungor soil whereas shoot and root growth was significantly higher in Bungor soil than in riverine alluvial soil. At both 0-10 cm Brassica sp. rooting depth and 0-25 cm soil depth, the soil plant transfer coefficient was significantly higher in 2X recommended application rate of 14C-carbofuran as compared to IX recommended application rate, in both Bungor and riverine alluvial soils. (Author)
A Study of the Heat Transfer Coefficient of a Mini Channel Evaporator with R-134a as Refrigerant
Dollera, E. B.; Villanueva, E. P.
2015-09-01
The present study is to evaluate the heat transfer coefficient of the minichannel copper blocks used as evaporator with R-134a as the refrigerant. Experiments were conducted using three evaporator specimens of different channel hydraulic diameters (1.0mm, 2.0mm, 3.0mm). The total length for each channel is 640 mm. The dimension of each is 100mm.x50mm.x20mm. and the outside surfaces were machined to have fins. They were connected to a standard vapour compression refrigeration system. During each run of the experiment, the copper block evaporator was placed inside a small wind tunnel where controlled flow of air from a forced draft fan was introduced for the cooling process. The experimental set-up used data acquisition software and computer-aided simulation software was used to simulate the pressure drop and temperature profiles of the evaporator during the experimental run. The results were then compared with the Shah correlation. The Shah correlation over predicted and under predicted the values as compared with the experimental results for all of the three diameters and high variation for Dh=1.0mm. This indicates that the Shah correlation at small diameters is not the appropriate equation for predicting the heat transfer coefficient. The trend of the heat transfer coefficient is increasing as the size of the diameter increases.
Determination of heat transfer coefficient between a fluid and a wall
The authors show the extent to which one can assume the existence of a constant heat transfer coefficient between a fluid and a wall in transient thermal conditions, and the means of estimating it. After reviewing investigations reported in the literature (coefficient assumed constant or not), they present two models based on a pulse method: sudden increase in wall temperature, cooling by fluid flow, temperature recording of the wall face not in contact with the fluid-wether or not the fluid is heated. They present the experimental system, define the tranfer coefficient, and make the calculation from the thermogram obtained. For water and air, they analyze the variations in coefficient as a function of fluid flow rate, initial pulse, temperature detector position, and show that the method proposed yields reproducible results
A recent VAMP (Validation of Environmental Model Predictions) report collated values for aggregated transfer coefficients (Tag) which can describe the integrated transfer of radiocaesium to food products from semi-natural ecosystems. Further Tag data are presented for sheep and mushrooms which suggest that subdivision of Tag values to take soil type and seasonal variation into account is potentially valuable. For sheep, Tag values for organic soils are generally one to two orders of magnitude higher than those for sandy and clay soils. For most other semi-natural foodstuffs there are currently inadequate data to make such subdivisions. (author). 19 refs, 1 fig., 4 tabs
Determination of drying kinetics and convective heat transfer coefficients of ginger slices
Akpinar, Ebru Kavak; Toraman, Seda
2015-12-01
In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient (R 2), reduced Chi-square (χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.
Determination of the heat transfer coefficient from IRT measurement data using the Trefftz method
Maciejewska, Beata; Strąk, Kinga; Piasecka, Magdalena
2016-03-01
The paper presents the method of heat transfer coefficient determination for boiling research during FC-72 flow in the minichannels, each 1.7 mm deep, 24 mm wide and 360 mm long. The heating element was the thin foil, enhanced on the side which comes into contact with fluid in the minichannels. Local values of the heat transfer coefficient were calculated from the Robin boundary condition. The foil temperature distribution and the derivative of the foil temperature were obtained by solving the two-dimensional inverse heat conduction problem, due to measurements obtained by IRT. Calculations was carried out by the method based on the approximation of the solution of the problem using a linear combination of Trefftz functions. The basic property of this functions is they satisfy the governing equation. Unknown coefficients of linear combination of Trefftz functions are calculated from the minimization of the functional that expresses the mean square error of the approximate solution on the boundary. The results presented as IR thermographs, two-phase flow structure images and the heat transfer coefficient as a function of the distance from the channel inlet, were analyzed.
Determination of the heat transfer coefficient from IRT measurement data using the Trefftz method
Maciejewska Beata
2016-01-01
Full Text Available The paper presents the method of heat transfer coefficient determination for boiling research during FC-72 flow in the minichannels, each 1.7 mm deep, 24 mm wide and 360 mm long. The heating element was the thin foil, enhanced on the side which comes into contact with fluid in the minichannels. Local values of the heat transfer coefficient were calculated from the Robin boundary condition. The foil temperature distribution and the derivative of the foil temperature were obtained by solving the two-dimensional inverse heat conduction problem, due to measurements obtained by IRT. Calculations was carried out by the method based on the approximation of the solution of the problem using a linear combination of Trefftz functions. The basic property of this functions is they satisfy the governing equation. Unknown coefficients of linear combination of Trefftz functions are calculated from the minimization of the functional that expresses the mean square error of the approximate solution on the boundary. The results presented as IR thermographs, two-phase flow structure images and the heat transfer coefficient as a function of the distance from the channel inlet, were analyzed.
A Rahmatnezamabad
2014-11-01
Full Text Available In this paper photonic band gaps of 1D photonic crystal are compared by using transfer matrix method and Fresnel coefficients method. In Fresnel coefficients method, the refractive indices of each layer and incidence light angle to the surface are used for calculating Fresnel coefficients, and then the necessary and sufficient condition for a 100% reflection from the surface of double layer dielectrics is applied in such a way that reflection coefficient tends to unity so that photonic band gaps are determined. But in transfer matrix method there are some complications needed for solving quadratic partial differential equations and applying continuity of tangent components of fields and Bloch’s condition, though the results are the same
Influence of surface tension to mass transfer
Based on the principle of pressure gradient diffusion, the mechanism of the influence of surface tension on interphase mass transfer was brought forward, and a mathematical description of the influence was presented exploringly. Finally, relating to industrial applications, the influence of surface tension on oxygen deaerating in the atomizing section and in the bubble sections was introduced, and the influence of surface tension on atomizing absorption was pointed out as well
Enhancement of solubility and mass transfer coefficient of salicylic acid through hydrotropy
S.THENESHKUMAR; D.GNANAPRAKASH; N.NAGENDRA GANDHI
2009-01-01
This study deals with the effect of hydrotropes on the solubility and mass transfer coefficient of salicylic acid.The solubility and mass transfer studies were performed using the hydrotropes,i.e.,sodium acetate,sodium salicylate,citric acid,and urea at concentrations of 0～3.0 mol/L and system temperatures of 303-333 K.It was found that the solubility and mass transfer coefficient of salicylic acid increases with increase in hydrotrope concentration and also with system temperature.All hydrotropes used in this work showed an enhancement in solubility and mass transfer coefficient to difierent degrees.The maximum enhancement factor values were determined for all hydrotropes used in this study.The highest value was 28.08 for solubility studies and 10.42 for mass trailsfer studies.The performance of hydrotropes Was measured in terms of the Setschenow constant(Ks).The highest value observed was 0.696.
In a high-level waste (HLW) repository, heat is generated by the radioactive decay of the waste. This can affect the safety of the repository because the surrounding environment can be changed by the heat transfer through the rock. Thus, it is important to determine the heat transfer coefficient of the atmosphere in the underground repository. In this study, the heat transfer coefficient was estimated by measuring the indoor environmental factors in the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT) under forced convection. For the experiment, a heater of 5 kw capacity, 2 meters long, was inserted through the tunnel wall in the heating section of KURT in order to heat up the inside of the rock to 90 .deg. C, and fresh air was provided by an air supply fan connected to the outside of the tunnel. The results showed that the average air velocity in the heating section after the provision of the air from outside of the tunnel was 0.81 m/s with the Reynolds number of 310,000 ∼ 340,000. The seasonal heat transfer coefficient in the heating section under forced convection was 7.68 W/m2 K in the summer and 7.24 W/mm2 K in the winter
Study for transfer coefficient of iodine from grass to cow milk
Radioiodine (131I) is one of the radio nuclides likely to get released into the atmosphere in case of a reactor accident, though chances of such an accident are very remote due to stringent engineering safety features. During the short initial phase of accidental release of radioactivity, 131I is transferred through grass-cow milk pathway, leading to significant thyroid dose to those consuming milk, especially infant and children. Transfer coefficients are important for quick evaluation of environmental contamination, during both normal and abnormal operational phases of a nuclear facility. Transfer coefficient of iodine from grass to milk is defined as ratio of iodine concentration in milk (Bq.L-1) obtained at equilibrium for a constant rate of intake of iodine in (Bq.D-1). During normal operation conditions of nuclear power reactor, the release of radioactive iodine isotopes is are too low that they are not present in measurable concentrations in the environment. Hence, studies are to be performed using stable iodine to estimate the transfer coefficient. A method has been developed based on thermal neutron activation analysis (NAA) to estimate the stable iodine concentration present in grass and cow milk. The method involves pre-concentration from matrix, neutron activation and gamma spectrometry and these were standardized
Baskakov, A. P.; Rakov, O. A.
2013-01-01
The analytical equations for the steady-state heat-and-mass transfer in the steam evaporation/condensation processes from the steam-gas mixtures on the planar and spherical surfaces are derived. The vapor flow through the motionless dry gas is considered according to the method proposed by Maxwell for the solution of the diffusion problems. The relationships for the calculation of the coefficients taking into account an increase in the mass output and an increase or a decrease in the heat emi...
The impact of air flow to the distribution of heat transfer coefficient on circular cylinder
Beran, Pavel
Vol. 1648. Melville, NY: AIP Publishing, 2015 - (Simos, T.; Tsitouras, C.), Č. 090006. (AIP Conference Proceedings. 1648). ISBN 978-0-7354-1287-3. ISSN 0094-243X. [International Conference on Numerical Analysis and Applied Mathematics (ICNAAM). Rhodes (GR), 22.09.2014-28.09.2014] R&D Projects: GA ČR(CZ) GBP105/12/G059 Keywords : transient heat transfer * heat transfer coefficient * air flow * finite element method * Reynolds number * climatic tunnel Subject RIV: JN - Civil Engineering http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4912394
Calculating the heat transfer coefficient of frame profiles with internal cavities
Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend
2004-01-01
Determining the energy performance of windows requires detailed knowledge of the thermal properties of their different elements. A series of standards and guidelines exist in this area. The thermal properties of the frame can be determined either by detailed two-dimensional numerical methods or by...... measurements in accordance to European or international standards. Comparing measured and calculated heat transfer coefficients for two typical frame profiles with cavities shows considerable differences. This investigation considers two typical frame profiles in aluminium and PVC with internal cavities. The...... heat transfer coefficient is determined by two-dimensional numerical calculations and by measurements. Calculations are performed in Therm (LBNL (2001)), which is developed at Lawrence Berkeley National Laboratory, USA. The calculations are performed in accordance with the future European standards and...
A hybrid diagnostic agent system is developed to detect and identify early an anomaly that happens in the fast-breeder reactor 'Monju'. The system outputs a diagnostic result by integrating the results of diagnosis by four diagnostic software agents. They are (1) an estimation agent of overall heat transfer coefficient of evaporator and superheater, (2) a state identification agent based on SVM (Support Vector Machine), (3) an anomaly detection agent by WT (Wavelet Transformation), and (4) a CBR (Case-Based Reasoning) agent using several attributes in both time and frequency domain. This paper describes the whole system and the estimation technique of overall heat transfer coefficient by simple physical models from 'Monju' process signals. (author)
The influence of temperature and concentration measurement errors on experimental determination of mass and heat transfer coefficients is analysed. Calculus model of coefficients and of measurement errors, the experimental data obtained on the water isotopic distillation plant and the results of determinations are presented. The experimental distillation column, with inner diameter of 108 mm, have been equipped with B7 structured packing on a height of 14 m. This column offers the possibility to measure vapour temperature and isotopic concentration in 12 locations. For error propagation analysis, the parameters measured for each packing bed, namely temperature and isotopic concentration of the vapour, were used. A relation for calculation of maximum error of experimental determinations of mass and heat transoprt coefficients is given. The experimental data emphasize the 'ending effects' and regions with bad thermal insulation. (author)
E. Hetmaniok; D. Słota; A. Zielonka
2012-01-01
A procedure based on the Artificial Bee Colony algorithm for solving the two-phase axisymmetric one-dimensional inverse Stefanproblem with the third kind boundary condition is presented in this paper. Solving of the considered problem consists in reconstruction of the function describing the heat transfer coefficient appearing in boundary condition of the third kind in such a way that the reconstructed values of temperature would be as closed as possible to the measurements of temperature giv...
Measurement of Mass Transfer Coefficient in Three Airlift Reactors of Different Scale
Blažej, M.; Juraščík, M.; Markoš, J.; Drahoš, Jiří
Bratislava: Slovak University of Technology, 2004 - (Markoš, J.; Štefuca, V.), s. 198 ISBN 80-227-2052-6. [International Conference of Slovak Society of Chemical Engineering /31./. Tatranské Matliare (SK), 24.05.2004-28.05.2004] Grant ostatní: GA SR(SK) VEGA 1/0066/03 Institutional research plan: CEZ:AV0Z4072921 Keywords : mass transfer coefficient * scale-up * internal loop airlift reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering
Development and calibration of heat transfer coefficient sensor for rotational state
QUAN Yong-kai; XU Guo-qiang; LUO Xiang; ZHANG Da
2011-01-01
A novel heat transfer coefficient sensor is introduced and the design,manufacture,and calibration are described.The intended application of this instrument was on a high rotational speed test disc.In the experiments,the heat transfer coefficient sensor was calibrated under static state and rotational state respectively.The calibration under the static state was accomplished in a pipe： the inside diameter（ID） was 0.048m and the total length was 4m,the distance between the sensor and the inlet of the pipe was 3.5m;the standard value was measured using a self-made calibrator.The calibration under the rotational state was accomplished using a rotating disc： the diameter and thickness of the stainless disc were 800mm and 25mm,respectively;the sensor was installed at the location of r=250mm;the rotating disc driven by a 30kW direct current motor can supply the maximum rotational speed of 3000r/min.The standard value under rotational state was provided by an approximate empirical formula.The results show that the designed sensor can measure heat transfer coefficient directly under rotational state and static state with good accuracy and stability;the correlation factor of K are constant under static state and rotational state.
Evaluation of heat transfer coefficient of tungsten filaments at low pressures and high temperatures
The paper presents an experimental method for the evaluation of the heat transfer coefficient of tungsten filaments at low pressures and high temperatures. For this purpose an electrode of a T5 fluorescent lamp was tested under low pressures with simultaneous heating in order to simulate the starting conditions in the lamp. It was placed in a sealed vessel in which the pressure was varied from 1 kM (kilo micron) to 760 kM. The voltage applied to the electrode was in the order of the filament's voltage of the lamp at the normal operation with the ballast during the preheating process. The operating frequency ranged from DC to 50 kHz. The experiment targeted on estimating the temperature of the electrode at the end of the first and the ninth second after initiating the heating process. Next, the heat transfer coefficient was calculated at the specific experimental conditions. A mathematical model based on the results was developed that estimates the heat transfer coefficient. The experiments under different pressures confirm that the filament's temperature strongly depends on the pressure.
Lüpkes, Christof; Gryanik, Vladimir M.
2015-01-01
The interaction between sea ice and atmosphere depends strongly on the near-surface transfer coefficients for momentum and heat. A parametrization of these coefficients is developed on the basis of an existing parametrization of drag coefficients for neutral stratification that accounts for form drag caused by the edges of ice floes and melt ponds. This scheme is extended to better account for the dependence of surface wind on limiting cases of high and low ice concentration and to include near-surface stability effects over open water and ice on form drag. The stability correction is formulated on the basis of stability functions from Monin-Obukhov similarity theory and also using the Louis concept with stability functions depending on the bulk Richardson numbers. Furthermore, a parametrization is proposed that includes the effect of edge-related turbulence also on heat transfer coefficients. The parametrizations are available in different levels of complexity. The lowest level only needs sea ice concentration and surface temperature as input, while the more complex level needs additional sea ice characteristics. An important property of our parametrization is that form drag caused by ice edges depends on the stability over both ice and water which is in contrast to the skin drag over ice. Results of the parametrization show that stability has a large impact on form drag and, thereby, determines the value of sea ice concentration for which the transfer coefficients reach their maxima. Depending on the stratification, these maxima can occur anywhere between ice concentrations of 20 and 80%.
Condensation heat transfer on superhydrophobic surfaces
Miljkovic, Nenad; Wang, Evelyn N.
2013-01-01
Condensation is a phase change phenomenon often encountered in nature, as well as used in industry for applications including power generation, thermal management, desalination, and environmental control. For the past eight decades, researchers have focused on creating surfaces allowing condensed droplets to be easily removed by gravity for enhanced heat transfer performance. Recent advancements in nanofabrication have enabled increased control of surface structuring for the development of su...
Mass transfer coefficient in ginger oil extraction by microwave hydrotropic solution
Handayani, Dwi; Ikhsan, Diyono; Yulianto, Mohamad Endy; Dwisukma, Mandy Ayulia
2015-12-01
This research aims to obtain mass transfer coefficient data on the extraction of ginger oil using microwave hydrotropic solvent as an alternative to increase zingiberene. The innovation of this study is extraction with microwave heater and hydrotropic solvent,which able to shift the phase equilibrium, and the increasing rate of the extraction process and to improve the content of ginger oil zingiberene. The experiment was conducted at the Laboratory of Separation Techniques at Chemical Engineering Department of Diponegoro University. The research activities carried out in two stages, namely experimental and modeling work. Preparation of the model postulated, then lowered to obtain equations that were tested and validated using data obtained from experimental. Measurement of experimental data was performed using microwave power (300 W), extraction temperature of 90 ° C and the independent variable, i.e.: type of hydrotropic, the volume of solvent and concentration in order, to obtain zingiberen levels as a function of time. Measured data was used as a tool to validate the postulation, in order to obtain validation of models and empirical equations. The results showed that the mass transfer coefficient (Kla) on zingiberene mass transfer models ginger oil extraction at various hydrotropic solution attained more 14 ± 2 Kla value than its reported on the extraction with electric heating. The larger value of Kla, the faster rate of mass transfer on the extraction process. To obtain the same yields, the microwave-assisted extraction required one twelfth time shorter.
Mobile, Michael; Widdowson, Mark; Stewart, Lloyd; Nyman, Jennifer; Deeb, Rula; Kavanaugh, Michael; Mercer, James; Gallagher, Daniel
2016-04-01
Better estimates of non-aqueous phase liquid (NAPL) mass, its persistence into the future, and the potential impact of source reduction are critical needs for determining the optimal path to clean up sites impacted by NAPLs. One impediment to constraining time estimates of source depletion is the uncertainty in the rate of mass transfer between NAPLs and groundwater. In this study, an innovative field test is demonstrated for the purpose of quantifying field-scale NAPL mass transfer coefficients (klN) within a source zone of a fuel-contaminated site. Initial evaluation of the test concept using a numerical model revealed that the aqueous phase concentration response to the injection of clean groundwater within a source zone was a function of NAPL mass transfer. Under rate limited conditions, NAPL dissolution together with the injection flow rate and the radial distance to monitoring points directly controlled time of travel. Concentration responses observed in the field test were consistent with the hypothetical model results allowing field-scale NAPL mass transfer coefficients to be quantified. Site models for groundwater flow and solute transport were systematically calibrated and utilized for data analysis. Results show klN for benzene varied from 0.022 to 0.60 d- 1. Variability in results was attributed to a highly heterogeneous horizon consisting of layered media of varying physical properties.
Parvataneni
2013-09-01
Full Text Available The present theoretical investigation deals with the problem of free convective heat transfer from a vertical plate having linear temperature gradient along its surface to the surrounding thermally stratified fluid. Integral method of analysis is adopted to investigate the effect of four parameters viz., the gradients of temperature in the fluid and the wall, Grashof number and Prandtl number on heat transfer coefficients. It is observed from the numerical results that an increase in the surface temperature gradient would result in higher heat transfer coefficients than those observed in isothermal wall case.
Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media
Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02-0.1 m/s), liquid viscosity (0.1-3 Pa·s) and surface tension (66.1-72.9x10-3 N/m) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; h=2502UG0.236L-0.250L-0.028 Nu=3.25Re0.180Pr-0.067We0.028
Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media
Kim, Wan Tae; Lim, Dae Ho; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)
2014-08-15
Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02-0.1 m/s), liquid viscosity (0.1-3 Pa·s) and surface tension (66.1-72.9x10{sup -3} N/m) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; h=2502U{sub G}{sup 0.236}{sub L}{sup -0.250}{sub L}{sup -}0{sup .028} Nu=3.25Re{sup 0.180}Pr{sup -0.067}We{sup 0.028}.
EMILA ŽIVKOVIĆ
2009-04-01
Full Text Available The evaporation heat transfer coefficient of the refrigerant R-134a in a vertical plate heat exchanger was investigated experimentally. The area of the plate was divided into several segments along the vertical axis. For each of the segments, the local value of the heat transfer coefficient was calculated and presented as a function of the mean vapor quality in the segment. Owing to the thermocouples installed along the plate surface, it was possible to determine the temperature distribution and vapor quality profile inside the plate. The influences of the mass flux, heat flux, pressure of system and the flow configuration on the heat transfer coefficient were also taken into account and a comparison with literature data was performed.
Although the heat transfer problem of pressurized supercritical water (SCW) flows in around tube has been studied for decades, the subject is still considerably of interest nowadays. This is partly because of the expanded investigation of using SCW for nuclear engineering applications like SCWR which is generation IV reactor and promising advanced nuclear systems because of their high thermal efficiency(i.e., about 45% as opposed to about 33% efficiency for current light water reactors LWRs) and considerable plant simplification. Literature survey shows that heat transfer coefficient (HTC) is sharply enhanced near the pseudo critical temperature. As the heat flux increases, the peak of the HTC decreases. When the heat flux reaches to some high values, heat transfer deterioration (HTD) occurs. CFD code with various turbulence models are being used to evaluate HTC. Modeling of Yamagata's experiment has been carried out for evaluation of HTC using CFD code FLUENT with standard kε turbulence model, nonequilibrium wall function,viscous heating, full buoyancy effect and including wall roughness effect.In this paper model constants for standard kε model have been derived. In the Yamagata experiment, investigations were made for HTC to supercritical water flowing vertically upward in vertical tubes of 10 and 7.5mm internal diameter, at pressures 22.6, 24.5 and 29.5 MPa, bulk temperature from 230 to 540 oC, heat flux 233, 465, 698 and 930kW/m2 and mass flux 1200 kg/m2.s. Two dimensional axisymmetry grid generation has been done using GAMBIT. Inbuilt boundary conditions in the FLUENT are invoked for mass flow rate at inlet,pressure outlet at the outlet of the tube and wall at the cylindrical surface where heat flux is given. Thermo-physical properties are taken from the (IAPWSIF97) and piecewise linear variation are given in the FLUENT for 30 temperature points. Bulk fluid temperature is obtained using user defined function. HTC are obtained based on heat flux, surface
Behzadian, Farnaz; Yerushalmi, Laleh; Alimahmoodi, Mahmood; Mulligan, Catherine N
2013-08-01
The hydrodynamic characteristics and the overall volumetric oxygen transfer coefficient of a new multi-environment bioreactor which is an integrated part of a wastewater treatment system, called BioCAST, were studied. This bioreactor contains several zones with different environmental conditions including aerobic, microaerophilic and anoxic, designed to increase the contaminant removal capacity of the treatment system. The multi-environment bioreactor is designed based on the concept of airlift reactors where liquid is circulated through the zones with different environmental conditions. The presence of openings between the aerobic zone and the adjacent oxygen-depleted microaerophilic zone changes the hydrodynamic properties of this bioreactor compared to the conventional airlift designs. The impact of operating and process parameters, notably the hydraulic retention time (HRT) and superficial gas velocity (U(G)), on the hydrodynamics and mass transfer characteristics of the system was examined. The results showed that liquid circulation velocity (V(L)), gas holdup (ε) and overall volumetric oxygen transfer coefficient (k(L)a(L)) increase with the increase of superficial gas velocity (U(G)), while the mean circulation time (t(c)) decreases with the increase of superficial gas velocity. The mean circulation time between the aerobic zone (riser) and microaerophilic zone (downcomer) is a stronger function of the superficial gas velocity for the smaller openings (1/2 in.) between the two zones, while for the larger opening (1 in.) the mean circulation time is almost independent of U(G) for U(G) ≥ 0.023 m/s. The smaller openings between the two zones provide higher mass transfer coefficient and better zone generation which will contribute to improved performance of the system during treatment operations. PMID:23142846
Heat Transfer in a Liquid-Solid Circulating Fluidized Bed Reactor with Low Surface Tension Media
HR Jin; H Lim; DH Lim; Y Kang; Ki-Won Jun
2013-01-01
Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid cir-culation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid veloc-ity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.
Heat transfer coefficient for flow boiling in an annular mini gap
Hożejowska Sylwia; Musiał Tomasz; Piasecka Magdalena
2016-01-01
The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the numbe...
Heat transfer of coolant flow through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, the heat transfer performance of the automobile radiator is evaluated experimentally by calculating the overall heat transfer coefficient (U) according to the conventional ε-NTU technique. Copper oxide (CuO) and Iron oxide (Fe2O3) nanoparticles are added to the water at three concentrations 0.15, 0.4, and 0.65 vol.% with considering the best pH for longer stability. In these experiments, the liquid side Reynolds number is varied in the range of 50–1000 and the inlet liquid to the radiator has a constant temperature which is changed at 50, 65 and 80 °C. The ambient air for cooling of the hot liquid is used at constant temperature and the air Reynolds number is varied between 500 and 700. However, the effects of these variables on the overall heat transfer coefficient are deeply investigated. Results demonstrate that both nanofluids show greater overall heat transfer coefficient in comparison with water up to 9%. Furthermore, increasing the nanoparticle concentration, air velocity, and nanofluid velocity enhances the overall heat transfer coefficient. In contrast, increasing the nanofluid inlet temperature, lower overall heat transfer coefficient was recorded. -- Highlights: ► Overall heat transfer coefficient in the car radiator measured experimentally. ► Nanofluids showed greater heat transfer performance comparing with water. ► Increasing liquid and air Re increases the overall heat transfer coefficient. ► Increasing the inlet liquid temperature decreases the overall heat transfer coefficient
Enhanced convective and film boiling heat transfer by surface gas injection
Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)
1992-04-01
Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.
Enhanced convective and film boiling heat transfer by surface gas injection
Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering
1992-04-01
Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.
In the Loss-of-RHR accident during mid-loop operation reflux condensation in U-tube riser is experimentally studied. The present experimental study handles with the reflux condensation in the presence of noncondensable gas in a vertical tube. The main interest is to investigate the parametric effects such as inlet air mass fraction, system pressure and inlet steam flow rate on reflux condensation heat transfer. The test facility is mainly composed of two parts: an air-steam mixture generation part and a reflux condensation part(test section). Air is used as a noncondensable gas. Experiments are performed under the system pressure of 1 ∼ 2.5bar, inlet steam flow rate of 1.04 ∼ 2.15kg/hr and inlet air mass fraction of 0 ∼ 57.9%. From experimental results, several characteristics of parametric effects are confirmed. The presence of air causes a decrease in heat transfer coefficients and, as a result, increases the active condensation length. As the inlet steam flow rate increases, the active length slightly increases during reflux condensation. As the system pressure increases, the active condensation length somehow decreases with an increase in heat transfer coefficients in that zone. And the flooding limit for inlet mixture flow rate is much less than that of Wallis' flooding formula
Condition monitoring of steam generator by estimating the overall heat transfer coefficient
This study develops a technique for monitoring in on-line the state of the steam generator of the fast-breeder reactor (FBR) “Monju”. Because the FBR uses liquid sodium as coolant, it is necessary to handle liquid sodium with caution due to its chemical characteristics. The steam generator generates steam by the heat of secondary sodium coolant. The sodium-water reaction may happen if a pinhole or crack occurs at the thin metal tube wall that separates the secondary sodium coolant and water/steam. Therefore, it is very important to detect an anomaly of the wall of heat transfer tubes at an early stage. This study aims at developing an on-line condition monitoring technique of the steam generator by estimating overall heat transfer coefficient from process signals. This paper describes simplified mathematical models of superheater and evaporator to estimate the overall heat transfer coefficient and a technique to diagnose the state of the steam generator. The applicability of the technique is confirmed by several estimations using simulated process signals with artificial noises. The results of the estimations show that the developed technique can detect the occurrence of an anomaly. (author)
Nielsen, Anders Michael; Nielsen, Lars Peter; Feilberg, Anders;
2009-01-01
A membrane inlet mass spectrometer (MIMS) was used in combination with a developed computer model to study and improve management of a biofilter (BF) treating malodorous ventilation air from a meat rendering facility. The MIMS was used to determine percentage removal efficiencies (REs) of selected...... sulfur gases and to provide toluene retention profiles for the model to determine the air velocity and overall mass-transfer coefficient of toluene. The mass-transfer coefficient of toluene was used as a reference for determining the mass transfer of sulfur gases. By presenting the model to scenarios of......, knowing the relationship between mass-transfer coefficients and air velocity for a given type of BF allows for an improved dimensioning and managing of this and similar BFs. This research demonstrates that it is possible to estimate mass-transfer coefficients and air velocity in BFs using MIMS in...
Diazo transfer for azido-functional surfaces
Laura Russo
2011-04-01
Full Text Available Preparation of azido-functionalized polymers is gaining increasing attention. We wish to report an innovative, novel strategy for azido functionalization of polymeric materials, coupling plasma technology and solution processed diazo transfer reactions. This novel approach allows the azido group to be introduced downstream of the material preparation, thus preserving its physicochemical and mechanical characteristics, which can be tailored a priori according to the desired application. The whole process involves the surface plasma functionalization of a material with primary amino groups, followed by a diazo transfer reaction, which converts the amino functionalities into azido groups that can be exploited for further chemoselective reactions. The diazo transfer reaction is performed in a heterogeneous phase, where the azido group donor is in solution. Chemical reactivity of the azido functionalities was verified by subsequent copper-catalyzed azide-alkyne cycloaddition.
The friction coefficient between surfaces depends not only on their roughness but also on their relative speed. The aim of this work is to show how the friction coefficient would vary with the relative speed of the two rough surfaces provided accounting affects of their reciprocal correlation. The reciprocal spectral density of the two surfaces is studied in addition to their structure function. It is shown that the reciprocal spectral density has important impacts on the friction coefficient of the surfaces, in a sense that a positive or a negative reciprocal correlation would cause a decrease or an increase in the friction coefficient. In addition, the friction is studied in the context of the relaxation time. It is shown that there is a threshold for the relative velocity of the two surfaces, where by exceeding the threshold velocity the friction coefficient would not increase, but decrease
Nikoofard, H. [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Vasheghani Farahani, S. [Department of Physics, Tafresh University, P.O. Box 39518-79611, Tafresh (Iran, Islamic Republic of); Jafari, G.R., E-mail: g_jafari@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531 Tehran (Iran, Islamic Republic of)
2014-11-01
The friction coefficient between surfaces depends not only on their roughness but also on their relative speed. The aim of this work is to show how the friction coefficient would vary with the relative speed of the two rough surfaces provided accounting affects of their reciprocal correlation. The reciprocal spectral density of the two surfaces is studied in addition to their structure function. It is shown that the reciprocal spectral density has important impacts on the friction coefficient of the surfaces, in a sense that a positive or a negative reciprocal correlation would cause a decrease or an increase in the friction coefficient. In addition, the friction is studied in the context of the relaxation time. It is shown that there is a threshold for the relative velocity of the two surfaces, where by exceeding the threshold velocity the friction coefficient would not increase, but decrease.
Hippensteele, Steven A.; Poinsatte, Philip E.
1993-08-01
In this transient technique the preheated isothermal model wall simulates the classic one-dimensional, semi-infinite wall heat transfer conduction problem. By knowing the temperature of the air flowing through the model, the initial temperature of the model wall, and the surface cooling rate measured at any location with time (using the fast-response liquid-crystal patterns recorded on video tape), the heat transfer coefficient can be calculated for the color isothermal pattern produced. Although the test was run transiently, the heat transfer coefficients are for the steady-state case. The upstream thermal boundary condition was considered to be isothermal. This transient liquid-crystal heat-transfer technique was used in a transient air tunnel in which a square-inlet, 3-to-1 exit transition duct was placed. The duct was preheated prior to allowing room temperature air to be suddenly drawn through it. The resulting isothermal contours on the duct surfaces were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the temperature and time data for all points on the duct surfaces during each test. The duct surfaces were uniformly heated using two heating systems: the first was an automatic temperature-controlled heater blanket completely surrounding the test duct like an oven, and the second was an internal hot-air loop through the inside of the test duct. The hot-air loop path was confined inside the test duct by insulated heat dams located at the inlet and exit ends of the test duct. A recirculating fan moved hot air into the duct inlet, through the duct, out of the duct exit, through the oven, and back to the duct inlet. The temperature nonuniformity of the test duct model wall was held very small. Test results are reported for two inlet Reynolds numbers of 200,000 and 1,150,000 (based on the square-inlet hydraulic diameter) and two free-stream turbulence
Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy
Fardi Ilkhchy, A.; Jabbari, Masoud; Davami, P.
2012-01-01
The aim of this paper is to correlate interfacial heat transfer coefficient (IHTC) to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of casting under different pressures were obtained using the inverse heat...... presented for correlation between external pressure and heat transfer coefficient. Acceptable agreement with data in literature shows the accuracy of the proposed formula....... conduction problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula was...
After TMI and Chernobyl accidents, many efforts have been made to enhance the nuclear safety with passive features. Among such passive features, the passive containment cooling system (PCCS) has been suggested by Westinghouse in the AP600 plant. The containment with PCCS is a dual containment, and consists of a stainless steel vessel and a concrete wall. In the gap between these structures, air and water can counter-currently pass and cool the steel surface. This paper experimentally investigates evaporative heat and mass transfer at the surface of a falling water film with counter-current air flow in a vertical duct with one-side heated plate. Experiments included various conditions of mass flow rate of film and air. Experimental results show the strong effects of water temperature and air mass flow rate, but little effect of the water flow rate. Also, simple analyses based on heat and mass transfer analogy were performed to evaluate the experimental results. With experimental data, a new correlation on evaporative mass transfer coefficient was developed, and with the correlation, the containment pressure and temperature was calculated for the design basis accident of AP600 by the use of CONTEMPT4/MOD5 code implementation
Program FREG series calculate temperature distribution in a fuel rod and the stored energy based on the distribution. The temperature distribution is calculated accordance with the fuel rod irradiation history. The temperature in the fuel rod is severely influenced with gap heat transfer coefficients between fuel pellet surface and cladding inner surface. Enphasis is placed on how to find the gap heat transfer coefficients. FREG-4 is a version-up program of FREG-3. Major modification from FREG-3 is handlings of fission product gas release, which have influences on the gap heat transfer. FREG-4 distingushed fission-product isotopes remained in pellets and fission-product gaseous isotopes released from the pellets, and considers that the released isotopes are transported for plenums to balance whole fuel rod internal pressure and transformed into another isotopes due to decay and the nuetron absorptions. The present report describes modified models from FREG-3 and user's manual for FREG-4. (author)
Mass transfer coefficient factor in pipe bend - 3 D CFD analysis
In power industries Flow Accelerated Corrosion (FAC) has been a concern for pipe wall thinning where high velocity fluid at elevated temperatures is used. Even straight pipes are found to have non uniform corrosion and this is enhanced in junctions such as bends, orifices etc. Mass transfer coefficient (MTC) which defines the amount of corrosion changes from its value in straight pipe (with same fluid parameters) for flow in bends, orifice etc due to changes in velocity profile in axial direction. In this paper, 3 D computational fluid dynamics (CFD) simulation is carried out for an experiment on 58° bend angle and 2D bend radius circular carbon steel pipe carrying water at 120°C under neutral pH conditions. The turbulent model K-ω with shear stress transport was used for this purpose. The mass transfer boundary layer (MTBL) thickness δmtbl depends on Schmidt number (Sc), as δmtbl ∼ δh/(Sc1/3). MTBL is significantly smaller than hydrodynamic boundary layer δh for large Sc, hence boundary layer meshing was carried out deep into δmtbl. Uniform velocity was applied at the inlet. The flow velocity was 3 m/s at room temperature while the experimental fluid velocity was 7 m/s. Lower value of fluid velocity is chosen due to the limitations of grid size since it depends inversely on fluid velocity. The ratio of MTC in bend to straight pipe is not strongly dependent on Sc. CFD simulation at lower temperature is sufficient to get approximate MTC in bends. The ratio of the mass transfer coefficient at some locations in bend to the straight pipe coefficient (MTCR) is determined through simulation. The MTC increased in the extrados of the bend towards the outlet. (author)
Determination of the interfacial heat transfer coefficient in the hot stamping of AA7075
Liu Xiaochuan; Ji Kang; Fakir Omer El; Liu Jun; Zhang Qunli; Wang Liliang
2015-01-01
The interfacial heat transfer coefficient (IHTC) is a key parameter in hot stamping processes, in which a hot blank is formed and quenched by cold dies simultaneously. The IHTC should therefore be identified and used in FE models to improve the accuracy of simulation results of hot stamping processes. In this work, a hot stamping simulator was designed and assembled in a Gleeble 3800 thermo-mechanical testing system and a FE model was built in PAM-STAMP to determine the IHTC value between a h...
Kárászová, Magda; Šimčík, Miroslav; Friess, K.; Randová, A.; Jansen, J. C.; Růžička, Marek; Sedláková, Zuzana; Izák, Pavel
2013-01-01
Roč. 118, 30 OCT (2013), s. 255-263. ISSN 1383-5866 R&D Projects: GA ČR GAP106/10/1194; GA MŠk(CZ) 7C11009 Grant ostatní: RFCS(XE) RFCR-CT-2010-00009; INP(IT) PON01_01840; HA MŠk(CZ) CZ.1.05/2.1.00/03.0071 Institutional support: RVO:67985858 Keywords : biogas purification * supported ionic liquid membranes * mass transfer coefficients Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.065, year: 2013
Blažej, Michal; Juraščík, M.; Markoš, J.; Drahoš, Jiří
Praha: Process Engineering Publisher, 2004, s. 1096. ISBN 80-86059-40-5. [International Congress of Chemical and Process Engineering CHISA 2004 /16./. Praha (CZ), 22.08.2004-26.08.2004] Grant ostatní: BEMUSAG(XE) G1MA/CT/2002/04019; GA SR(SK) VEGA 1/0066/03 Institutional research plan: CEZ:AV0Z4072921 Keywords : scale-up * pressure-step dynamic method * mass transfer coefficient Subject RIV: CI - Industrial Chemistry, Chemical Engineering
Determining the surface roughness coefficient by 3D Scanner
Karmen Fifer Bizjak
2010-01-01
Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D) scanner as an alternative to curren...
Lee, Kwon-Yeong; Kim, Moo Hwan [Pohang University of Science and Technology, Pohang (Korea, Republic of)
2006-07-01
Even a small amount of noncondensable gas can reduce the condensation heat transfer considerably. In the condenser tube, the condensate flows as an annular liquid film adjacent to the tube wall, while the vapor/noncondensable gas mixture flows in the core region. Consequently, the noncondensable gas layer that forms adjacent to the liquid/gas interface reduces the heat transfer capability. Several correlations were developed to evaluate steam condensation heat transfer with noncondensable gas in a vertical condenser tube. In this study, two empirical correlations proposed by Vierow and Schrock and Kuhn are considered and a new correlation is developed to improve the accuracy of prediction. In these correlations, the local heat transfer coefficient is simply expressed in the form of a 'degradation factor,' defined as the ratio of the experimental heat transfer coefficient to a reference heat transfer coefficient.
Highlights: ► Mass transfer coefficient does not depend on biomass concentration. ► The pulp density has a negative effect on mass transfer coefficient. ► The pulp density is the unique factor that affects maximum OUR. ► In this work, Neale’s correlation is corrected for prediction of mass transfer coefficient. ► Biochemical reaction is a limiting factor in the uranium bioleaching process. - Abstract: In this work, the volumetric oxygen mass transfer coefficient and the oxygen uptake rate (OUR) were studied for uranium ore bioleaching process by Acidthiobacillus ferrooxidans in a stirred tank reactor. The Box-Bohnken design method was used to study the effect of operating parameters on the oxygen mass transfer coefficient. The investigated factors were agitation speed (rpm), aeration rate (vvm) and pulp density (% weight/volume) of the stirred tank reactor. Analysis of experimental results showed that the oxygen mass transfer coefficient had low dependence on biomass concentration but had higher dependence on the agitation speed, aeration rate and pulp density. The obtained biological enhancement factors were equal to ones in experiments. On the other hand, the obtained values for Damkohler number (Da < 0.468) indicated that the process was limited by the biochemical reaction rate. Experimental results obtained for oxygen mass transfer coefficient were correlated with the empirical relations proposed by Garcia-Ochoa and Gomez (2009) and Neale and Pinches (1994). Due to the high relative error in the correlation of Neale and Pinches, that correlation was corrected and the coefficient of determination was calculated to be 89%. The modified correlation has been obtained based on a wide range of operating conditions, which can be used to determine the mass transfer coefficient in a bioreactor
Bennion, Kevin; Moreno, Gilberto
2015-09-29
Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.
Graphical abstract: - Highlights: • Application of enhanced surfaces in boiling heat transfer. • Flow and pool boiling heat transfer on the heating surfaces with mini-recesses. • Minichannel (horizontal) with the enhanced heating wall. • Determination of heat transfer coefficients and boiling curves. • Comparative experimental data analysis for flow and pool boiling heat transfer. - Abstract: The paper focuses on the analysis of the enhanced surfaces in such applications as boiling heat transfer. The surfaces have similar geometric parameters for the surface development. Two testing measurement modules with enhanced heating surfaces are used independently, one for flow boiling and the other – for pool boiling research. The heating surfaces with mini-recesses which contact boiling liquid are made by spark erosion. Flow boiling is studied when FC-72 flows through a horizontally positioned minichannel and its bottom wall is heated. These experiments were carried out during under a pressure slightly higher than the atmospheric one. Pool boiling experiments were conducted with FC-72 at atmospheric pressure in the vessel using enhanced sample as the bottom heating surface. Comparison of results for flow and pool boiling indicates that obtained heat transfer coefficients are a few times higher for pool boiling in the boiling incipience conditions. There are basic differences in the local heat transfer coefficients during the development of flow boiling in a minichannel, depending on the location along the flow in the channel. In the subcooled boiling area, heat transfer coefficients are low. In developed boiling, they are high, but they decrease when the amount of vapour in the liquid–vapour mixture rises
S. I. ANWAR
2012-10-01
Full Text Available In this paper, convective heat transfer coefficient of Indian gooseberry (Emblica officinalis, in three different forms (shreds, slices and pieces, under forced convection mode has been determined. These forms were dried in laboratory drier. Values of constants C and n have been determined using experimental data and regression analysis for calculating values of convective heat transfer coefficient. It was found that the convective heat transfer coefficient varies with form of commodity being dried and decreases as the drying progresses. The value of convective heat transfer coefficient was highest for shredded form (30.39 W/m2oC followed by slices (25.88 W/m2oC and pieces (18.67 W/m2oC when compared at certain final moisture content. The data were also analyzed for per cent uncertainty.
Distribution coefficient Kd in surface soils collected in Aomori prefecture
Tsukada, Hirofumi; Hasegawa, Hidenao; Hisamatsu, Shun' ichi; Inaba, Jiro [Institute for Environmental Sciences, Rokkasho, Aomori (Japan)
2000-07-01
Soil-solution distribution coefficients (Kds), which are the ratio of an element concentration in a soil solid phase to that in a solution phase, for 32 elements in Andosols, Wet Andosols and Gleyed Andosols collected throughout Aomori Prefecture were determined. A dried soil sample was mixed with a 10-fold amount of pure water in a PPCO centrifuge tube, and then gently shaken for 24 h. The Kd values were obtained by measurement of element concentrations in solid and solution phases (batch method). The Kd values in this work were up to three orders of magnitude higher than the IAEA reported values, and their 95% confidence intervals were within two orders of magnitude. Most Kd values of elements were decreasing with increasing electrical conductivity of the solution phase. The Kd of Ca had a good correlation with that of Sr. However, the correlation between the Kds of K and Cs was not good. The Kd values were also determined by another method. The soil solutions were separated from the fresh soil samples by means of high speed centrifuging. The Kd values were calculated from the element concentration in solid phase and soil solution (centrifugation method). The Kd values obtained by the centrifugation method agreed within one order of magnitude with those by the batch method, and both variation patterns in elements correlated well. (author)
Distribution coefficient Kd in surface soils collected in Aomori prefecture
Soil-solution distribution coefficients (Kds), which are the ratio of an element concentration in a soil solid phase to that in a solution phase, for 32 elements in Andosols, Wet Andosols and Gleyed Andosols collected throughout Aomori Prefecture were determined. A dried soil sample was mixed with a 10-fold amount of pure water in a PPCO centrifuge tube, and then gently shaken for 24 h. The Kd values were obtained by measurement of element concentrations in solid and solution phases (batch method). The Kd values in this work were up to three orders of magnitude higher than the IAEA reported values, and their 95% confidence intervals were within two orders of magnitude. Most Kd values of elements were decreasing with increasing electrical conductivity of the solution phase. The Kd of Ca had a good correlation with that of Sr. However, the correlation between the Kds of K and Cs was not good. The Kd values were also determined by another method. The soil solutions were separated from the fresh soil samples by means of high speed centrifuging. The Kd values were calculated from the element concentration in solid phase and soil solution (centrifugation method). The Kd values obtained by the centrifugation method agreed within one order of magnitude with those by the batch method, and both variation patterns in elements correlated well. (author)
THE EFFECT OF THE ALUMINIUM ALLOY SURFACE ROUGHNESS ON THE RESTITUTION COEFFICIENT
Stanisław Bławucki; Kazimierz Zaleski
2015-01-01
The paper presents the results of research on the effect of the surface roughness of aluminum alloy on its coefficient of restitution. It describes the current method of finishing the workpiece surface layer after cutting and innovative measuring device which was used in the research. The material used in the research was aluminium alloy EN AW 7075. The paper also presents a relationship between the coefficient of restitution and surface roughness of the milled samples as well as impressions ...
Reconstruction of the heat transfer coefficient on the grounds of experimental data
D. Słota
2009-05-01
Full Text Available Purpose: Solidification of pure metal can be modelled by a two-phase Stefan problem, in which the distribution of temperature in the solid and liquid phases is described by the heat conduction equation with initial and boundary conditions. The inverse Stefan problem can be applied to solve design problems in casting process.Design/methodology/approach: In numerical calculations the alternating phase truncation method, the Tikhonov regularization and the genetic algorithm were used. The featured examples of calculations show a very good approximation of the experimental data.Findings: The verification of the method of reconstructing the cooling conditions during the solidification of pure metals. The solution of the problem consists of selecting the heat transfer coefficient on the boundary, so that the temperature in selected points on the boundary of the domain assumes given values.Research limitations/implications: The method requires that it must be possible to describe the sought boundary condition by means of a finite number of parameters. It is not necessary, that the sought boundary condition should be linearly dependent on those parameters.Practical implications: The presented method can be easy applied to solve design problems of different types, e.g. for the design of continuous casting installations (incl. the selection of the length of secondary cooling zones, the number of jets installed in individual zones, etc..Originality/value: Verification, on the grounds of experimental data, the formerly devised method of determining the heat transfer coefficient during the solidification of pure metals.
Low-Flow Film Boiling Heat Transfer on Vertical Surfaces
Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.; Sun, K. H.
1976-01-01
The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....
LI Yan-bao; JIANG Xue-lian; GUO Hong-yi
2005-01-01
Experimental studies on the friction coefficient between concrete and the top surface of a rubble mound foundation in China are reviewed. Through comparison of different test results, the development of this research is comprehensively analyzed. An experiment is carried out in the condition similar to prototype. The process curve of friction coefficient with the test block sliding is analyzed and a standard for determination of the friction coefficient is defined. The variation features of the friction coefficient are analyzed on the basis of the present experimental results and other studies in China. It is shown that the friction coefficient between concrete and the top surface of a rubble mound foundation decreases with the increase of the foundation pressure, and the friction coefficient for a very fine leveling bed is smaller than that for a fine leveling bed.
Hindasageri, V; Vedula, R P; Prabhu, S V
2013-02-01
Temperature measurement by thermocouples is prone to errors due to conduction and radiation losses and therefore has to be corrected for precise measurement. The temperature dependent emissivity of the thermocouple wires is measured by the use of thermal infrared camera. The measured emissivities are found to be 20%-40% lower than the theoretical values predicted from theory of electromagnetism. A transient technique is employed for finding the heat transfer coefficients for the lead wire and the bead of the thermocouple. This method does not require the data of thermal properties and velocity of the burnt gases. The heat transfer coefficients obtained from the present method have an average deviation of 20% from the available heat transfer correlations in literature for non-reacting convective flow over cylinders and spheres. The parametric study of thermocouple error using the numerical code confirmed the existence of a minimum wire length beyond which the conduction loss is a constant minimal. Temperature of premixed methane-air flames stabilised on 16 mm diameter tube burner is measured by three B-type thermocouples of wire diameters: 0.15 mm, 0.30 mm, and 0.60 mm. The measurements are made at three distances from the burner tip (thermocouple tip to burner tip/burner diameter = 2, 4, and 6) at an equivalence ratio of 1 for the tube Reynolds number varying from 1000 to 2200. These measured flame temperatures are corrected by the present numerical procedure, the multi-element method, and the extrapolation method. The flame temperatures estimated by the two-element method and extrapolation method deviate from numerical results within 2.5% and 4%, respectively. PMID:23464237
Hindasageri, V.; Vedula, R. P.; Prabhu, S. V.
2013-02-01
Temperature measurement by thermocouples is prone to errors due to conduction and radiation losses and therefore has to be corrected for precise measurement. The temperature dependent emissivity of the thermocouple wires is measured by the use of thermal infrared camera. The measured emissivities are found to be 20%-40% lower than the theoretical values predicted from theory of electromagnetism. A transient technique is employed for finding the heat transfer coefficients for the lead wire and the bead of the thermocouple. This method does not require the data of thermal properties and velocity of the burnt gases. The heat transfer coefficients obtained from the present method have an average deviation of 20% from the available heat transfer correlations in literature for non-reacting convective flow over cylinders and spheres. The parametric study of thermocouple error using the numerical code confirmed the existence of a minimum wire length beyond which the conduction loss is a constant minimal. Temperature of premixed methane-air flames stabilised on 16 mm diameter tube burner is measured by three B-type thermocouples of wire diameters: 0.15 mm, 0.30 mm, and 0.60 mm. The measurements are made at three distances from the burner tip (thermocouple tip to burner tip/burner diameter = 2, 4, and 6) at an equivalence ratio of 1 for the tube Reynolds number varying from 1000 to 2200. These measured flame temperatures are corrected by the present numerical procedure, the multi-element method, and the extrapolation method. The flame temperatures estimated by the two-element method and extrapolation method deviate from numerical results within 2.5% and 4%, respectively.
The role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions
Dutt, Ishwar; Puri, Rajeev K.
2010-01-01
We discuss the effect of surface energy coefficients as well as nuclear surface diffuseness in the proximity potential and ultimately in the fusion of heavy-ions. Here we employ different versions of surface energy coefficients. Our analysis reveals that these technical parameters can influence the fusion barriers by a significant amount. A best set of these parameters is also given that explains the experimental data nicely.
Extensive studies on transfer of 131I through grass-cow-milk pathway after the Chernobyl accident were reported. But, under nor mal operational conditions of a power reactor, 131I is not present in measurable concentration in environmental matrices around a nuclear power generating station. Hence, database on 131I transfer coefficients for grass-cow-milk pathway in equilibrium conditions in the environment of a nuclear power plant are sparse. One of method to estimate the equilibrium transfer coefficient is to use stable iodine, which is present naturally in very low levels in the environmental matrices. By measuring the concentration of stable iodine concentration in grass and cow milk, the grass-to-milk transfer coefficient of iodine can be estimated. Since the metabolism of stable and radioiodine is same, the data obtained for transfer coefficient of stable iodine could be used for predicting the transfer for radioiodine to cow milk. The measurement of stable iodine in the environmental sample is very challenging because of its extremely low concentration. Neutron Activation Analysis (NAA) can be used to estimate stable iodine in the environment matrices after suitably optimizing the condition to minimize interferences. This paper presents the results of a systematic study on the transfer coefficients for grass-cow milk pathway of iodine in normal (equilibrium) situations as well as for a postulated (simulated) emergency condition in Kaiga region
Heat transfer coefficient calculation for analysis of ITER shield block using CFX and ANSYS
Highlights: → Benchmark HTC modeling in CFX and compare this modeling with empirical formulas. → Given the error formulas derived from theory. → Benchmark HTC modeling in ANSYS and the results is consistent with the conclusion of error estimate from theory. - Abstract: In thermal-mechanical analysis of ITER shield block using ANSYS code, it needs the real heat transfer coefficient (HTC) values which are computed by CFX. Because two kinds of HTC values can be gotten from CFX and which has some difference with ANSYS, so it is necessary to estimate the error caused by HTC transferred from CFX to ANSYS. In this paper, HTC values got from CFX was firstly benchmarked with the results got from empirical formulas, then estimated the error caused by HTC transferred from theory and gave the expressions of the error, thirdly benchmark work of ANSYS results in 4 cases was done, then compared the error with former error estimated formula derived from theory. In the end, conclusions will be given based on above benchmark works.
The paper analyses the influence of measuring errors of the operation parameters (flows, temperatures, pressures, and concentrations) in the experimental determination of the mass and heat transfer coefficients. Data obtained on experimental plants for hydrogen isotopes separation, by hydrogen distillation and water distillation, and calculus model for errors propagation are presented. The results are tabulated. The variation intervals of transfer coefficients are marked graphically. The study of the measuring errors is an intermediate stage, extremely important, in experimental determination of criterion relation coefficients, specific relations for B7 structured packing. (authors)
Leung, Juliana Y.; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It
Leung, Juliana Y; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It
Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re5). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.
Surface-particle-emulsion heat transfer model between fluidized bed and horizontal immersed tube
无
2002-01-01
A mathematical model, surface-particle-emulsion heat transfer model, is presented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heat transfer near the surface is treated by dispersed particles touching the surface and through the emulsion when the distance from the surface is greater than the diameter of a particle. A film with an adjustable thickness which separates particles from the surface is not introduced in this model. The coverage ratio of particles on the surface is calculated by a stochastic model of particle packing density on a surface. By comparison of theoretical solutions with experimental data from some references, the mathematical model shows better qualitative and quantitative prediction for local heat transfer coefficients around a horizontal immersed tube in a fluidized bed.
Retrieval of ocean surface wind stress and drag coefficient from spaceborne SAR
杨劲松; 黄韦艮; 周长宝
2001-01-01
A model for retrieval of wind stress and drag coefficient on the sea surface with the data measured by spacebome synthetic aperture radar (SAR) has been developed based on the SAR imaging mechanisms of ocean surface capillary waves and short gravity waves. This model consists of radiometric calibration, wind speed retrieval and wind stress and drag coefficient calculation. A Radarsat SAR image has been used to calculate wind stress and drag coeffi cient. Good results have been achieved.
Rong, Li; Nielsen, Peter V.; Zhang, Guoqiang
2010-01-01
transfer are investigated by using computational fluid dynamics (CFD) modeling and by a mechanism modeling using dissociation constant and Henry's constant models based on the parameters measured in the experiments performed in a wind tunnel. The validated CFD model by experimental data is used to...... constant and Henry's constant models. In addition, the results show that the liquid-air temperature difference has little impact on the simulated mass transfer coefficient by CFD modeling, whereas the mass transfer coefficient increases with higher liquid temperature using the other method under the...
The erosion-corrosion rate of steels should theoretically depend upon the mass transfer coefficient of the outflow. It is shown with 2 examples: 1) Erosion-corrosion after a steam generator orifice used in some nuclear plant. In this case actual thickness of metal erosion are available. Mass transfer is estimated by a polarographic method. 2) Erosion corrosion produced by impact of a jet. A parallel between the mass transfer coefficients obtained by polarography and the measurements of corrosion depths permits a verification of this dependence
Heat transfer for Leidenfrost drops bouncing onto a hot surface
When droplets impinge onto a hot wall, different regimes can be observed depending on the wall temperature and Weber number. In the case of interest, the temperature of the wall is more than the Leidenfrost temperature and the Weber number based on normal velocity of the droplet is less than the threshold value leading to the splashing regime (We ≤ 80). We particularly focused on the perfect bouncing regime (We ≤ 30) for which an impinging droplet levitates on a thin layer of its own vapour. This vapour is instantaneously created between the base of the deforming droplet and the heated surface so that direct contact with the hot solid is avoided. For these low Weber numbers, the droplet surface energy is high enough compared to its kinetic energy to permit the rebound, so that the droplet recovers its initial shape without breaking up after the bounce. Although the generated vapour insulates the droplet, some heat is exchanged with the wall during the interaction (i.e. during the resident time). In this paper, we report on experimental measurements of heat transfer due to droplet impact in the Leidenfrost regime. The energy released by the wall and measured using an inverse conduction method leads to an estimation of the heat transfer coefficient during impact in the Leidenfrost regime. For that, the time evolution of the droplet base surface is estimated using a simple modelling validated on experimental data. Finally, the energy measured is compared to existing models. (authors)
E. Hetmaniok
2012-12-01
Full Text Available A procedure based on the Artificial Bee Colony algorithm for solving the two-phase axisymmetric one-dimensional inverse Stefanproblem with the third kind boundary condition is presented in this paper. Solving of the considered problem consists in reconstruction of the function describing the heat transfer coefficient appearing in boundary condition of the third kind in such a way that the reconstructed values of temperature would be as closed as possible to the measurements of temperature given in selected points of the solid. A crucial part of the solution method consists in minimizing some functional which will be executed with the aid of one of the swarm intelligence algorithms - the ABC algorithm.
Distribution coefficient and transfer factor of stable iodine in agricultural soils in Aomori, Japan
Soil-to-solution distribution coefficient (Kd) and soil-to-plant transfer factor (TF) were determined for agricultural soils and selected plants in Aomori Prefecture, Japan, by means of analysis of stable I in soil and plant samples. The concentration of I in the soil samples varied between 0.52 and 82.8 mg kg-1 (geometric mean of 4.4 mg kg-1). The Kd, which was defined as the ratio of I concentration in soil to that in water extracted from the soil, was 1.5 x 103 in geometric mean (L/kg). The TF value was defined as the ratio of I concentration in plant to that in soil. Geometric means of the TF on dry weight base obtained in this study were 3.2 x 10-2 for komatsuna, 2.0 x 10-2 for Japanese radish and 2.3 x 10-2 for pasture grass. (author)
Determination of the interfacial heat transfer coefficient in the hot stamping of AA7075
Liu Xiaochuan
2015-01-01
Full Text Available The interfacial heat transfer coefficient (IHTC is a key parameter in hot stamping processes, in which a hot blank is formed and quenched by cold dies simultaneously. The IHTC should therefore be identified and used in FE models to improve the accuracy of simulation results of hot stamping processes. In this work, a hot stamping simulator was designed and assembled in a Gleeble 3800 thermo-mechanical testing system and a FE model was built in PAM-STAMP to determine the IHTC value between a hot aluminium alloy 7075 blank and cold dies. The IHTC was determined at different contact pressures under both dry and lubricated (Omega-35 conditions. In addition, a model to calculate the IHTC value at different contact pressures and area densities of lubricant was developed for the hot stamping process.
Multistep direct reactions 40Ca(p, p'x) at 392 MeV and 40Ca(p, nx) at 346 MeV are analyzed including up to three-step process. The double differential inclusive cross sections and the complete set of spin transfer coefficients Dij are calculated by the semiclassical distorted wave model and compared with experimental data. We use single particle wave functions in a Woods-Saxon potential incorporating the Wigner transform of a one-body density matrix and also introduce a phenomenological effective mass m* of a nucleon in the target. Analysis of Dij in terms of an effective interaction in nuclear medium is also done. (author)
Measurement of the transfer coefficient for radiocesium transport from a sheep's diet to its milk
The rate of increase and decay of radio contamination secreted in sheep's milk, resulting from a constant level of radiocesium in the animals' diet, was investigated. Ten lactating ewes were used in the experiment. For a period of 12 d the animals fed on contaminated grass, resulting in a daily radiocesium intake of 832 Bq per animal. They were subsequently returned to a contamination-free diet and were monitored for another 9 d. Throughout the period of the experiment, 134Cs and 137Cs concentrations in the animals' milk were measured daily with an 18% efficiency, high-resolution Ge detector. The data were in satisfactory agreement with the predictions of a simple two-compartment theory. The transfer coefficient, describing the steady-state equilibrium in this model, was measured as fm = 0.058 +/- 0.007 dL-1
Comparison of the methods for calculating the interfacial heat transfer coefficient in hot stamping
This paper presents a hot stamping experimentation and three methods for calculating the Interfacial Heat Transfer Coefficient (IHTC) of 22MnB5 boron steel. Comparison of the calculation results shows an average error of 7.5% for the heat balance method, 3.7% for the Beck's nonlinear inverse estimation method (the Beck's method), and 10.3% for the finite-element-analysis-based optimization method (the FEA method). The Beck's method is a robust and accurate method for identifying the IHTC in hot stamping applications. The numerical simulation using the IHTC identified by the Beck's method can predict the temperature field with a high accuracy. - Highlights: • A theoretical formula was derived for direct calculation of IHTC. • The Beck's method is a robust and accurate method for identifying IHTC. • Finite element method can be used to identify an overall equivalent IHTC
THE EFFECT OF THE ALUMINIUM ALLOY SURFACE ROUGHNESS ON THE RESTITUTION COEFFICIENT
Stanisław Bławucki
2015-08-01
Full Text Available The paper presents the results of research on the effect of the surface roughness of aluminum alloy on its coefficient of restitution. It describes the current method of finishing the workpiece surface layer after cutting and innovative measuring device which was used in the research. The material used in the research was aluminium alloy EN AW 7075. The paper also presents a relationship between the coefficient of restitution and surface roughness of the milled samples as well as impressions left by bead in function of velocity and a sample surface roughness.
Effect of heat transfer coefficient on sheath and fuel centreline temperatures in SCWRS
SuperCritical Water-cooled nuclear Reactors (SCWRs) utilize light water above the pseudocritical point as a reactor coolant. This Generation IV reactor concept is currently in its preliminary design phase. This paper discusses the variables that influence heat transfer from the fuel. The coolant Heat Transfer Coefficient (HTC). Axial Heat Flux Profile (AHFP), sheath (clad) geometry and fuel thermal conductivity all impact the sheath and fuel centreline temperatures. The presented analysis utilizes the most recent HTC correlation developed for supercritical water, the Mokry et al. correlation (2009). The proposed sheath geometry is based on smaller diameter fuel elements than that of the current design to accommodate more fuel rods. Both uniform and cosine AHFPs, at average channel power, are applied. The results presented describe a sensitivity analysis of the effect of incrementing the HTC on sheath and fuel centreline temperatures. With a uniform AHFP and increasing HTC increments from 50 - 200% HTC the average temperature difference compared to 100% HTC are decreases from 13 to -18%. With a cosine AHFP and HTC incremented from 50 - 200% HTC the average temperature difference compared to 100% HTC have the range of 20 to -10%. (author)
Simulation of Convective Heat-Transfer Coefficient in a Buried Exchanger
Taoufik Mnasri
2008-01-01
Full Text Available This study presents analytical models allowing to study a forced convection laminar flow in non-established dynamic and thermic regimes. We treated a flow in a bitubular exchanger in permanent thermal contact with a semi-infinite medium, such as the ground. The wall temperature as well as the wall heat flux evolve in the course of time until a quasi-steady mode. The theoretical method is original because it uses Green's functions method to determine the analytical solutions of the heat propagation equation on the wall during the heating phase. These analytical solutions allow to identify the temperature distribution versus time. The complexity of the system geometry as well as the infinity of the medium surrounding the exchanger make the traditional methods of numerical resolution unable to solve the problem. We used, to solve it, the finite volume method coupled with the finite element method at the boundary. We studied the effect of Reynolds number, the fluid entry temperature and the transfer duration on the axial evolution of the heat transfer coefficient. We illustrated also the profile of the temperature field in the fluid medium.