WorldWideScience

Sample records for supernova remnant shock

  1. Fermi acceleration at supernova remnant shocks

    CERN Document Server

    Caprioli, Damiano

    2012-01-01

    We investigate the physics of particle acceleration at non-relativistic shocks exploiting two different and complementary approaches, namely a semi-analytic modeling of cosmic-ray modified shocks and large hybrid (kinetic protons/fluid electrons) simulations. The former technique allows us to extract some information from the multi-wavelength observations of supernova remnants, especially in the gamma-ray band, while the latter returns fundamental insights into the details of particle injection and magnetic field amplification via plasma instabilities. In particular, we present the results of large hybrid simulations of non-relativistic shocks, discussing the properties of the transition from the thermal to the non-thermal component, the spectrum of which turns out to be the power-law predicted by first-order Fermi acceleration. Along with a rather effective magnetic field amplification, we find that more than 20% of the bulk energy is converted in non-thermal particles, altering significantly the dynamics of...

  2. Reverse-Shock in Tycho's Supernova Remnant

    CERN Document Server

    Lu, F J; Zheng, S J; Zhang, S N; Long, X; Aschenbach, B

    2015-01-01

    Thermal X-ray emission from young supernova remnants (SNRs) is usually dominated by the emission lines of the supernova (SN) ejecta, which are widely believed being crossed and thus heated by the inwards propagating reverse shock (RS). Previous works using imaging X-ray data have shown that the ejecta are heated by the RS by locating the peak emission region of the most recently ionized matter, which is found well separated towards the inside from the outermost boundary. Here we report the discovery of a systematic increase of the Sulfur (S) to Silicon (Si) K$\\alpha$ line flux ratio with radius in Tycho's SNR. This allows us, for the first time, to present continuous radial profiles of the ionization age and, furthermore, the elapsed ionization time since the onset of the ionization, which tells the propagation history of the ionization front into the SNR ejecta.

  3. Particle Acceleration at Shocks: Insights from Supernova Remnant Shocks

    Indian Academy of Sciences (India)

    T. W. Jones

    2011-12-01

    I review some basic properties of diffusive shock acceleration (DSA) in the context of young supernova remnants (SNRs). I also point out some key differences with cosmological, cluster-related shocks. DSA seems to be very efficient in strong, young SNR shocks. Provided the magnetic fields exceed some hundreds of Gauss (possibly amplified by CR related dynamics), these shocks can accelerate cosmic ray hadrons to PeV energies in the time available to them. Electron energies, limited by radiative losses, are likely limited to the TeV range. Injection of fresh particles at these shocks is poorly understood, but hadrons are much more easily injected than the more highly magnetized electrons. That seems supported by observational data, as well. So, while CR protons in young SNRs may play very major roles in the SNR evolution, the CR electron populations have minimal such impact, despite their observational importance.

  4. Mechanism for strong shock electron heating in supernova remnants

    International Nuclear Information System (INIS)

    It is shown that collisionless shock waves propagating away from a supernova may be directly responsible for the 10 keV X-ray emission seen in supernova remnants. A sequence of plasma instabilities (Buneman and ion acoustic) between the reflected and/or transmitted ions and the background electrons at the foot of the shock front can give rise to rapid anomalous heating of electrons. Hybrid simulations of a perpendicular collisionless shock are presented to demonstrate that this heating can arise within a self-consistently computed shock structure. 15 references

  5. Grain Destruction in a Supernova Remnant Shock Wave

    Science.gov (United States)

    Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi

    2014-01-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.

  6. Destruction of Interstellar Dust in Evolving Supernova Remnant Shock Waves

    CERN Document Server

    Slavin, Jonathan D; Jones, Anthony P

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al. (1996), we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities >~ 200 km/s for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are incre...

  7. Supernova Remnant Shock - Molecular Cloud Interactions: Masers as tracers of hadronic particle acceleration

    CERN Document Server

    Frail, Dale A

    2011-01-01

    We review the class of galactic supernova remnants which show strong interactions with molecular clouds, revealed through shock-excited hydroxyl masers. These remnants are preferentially found among the known GeV and TeV detections of supernova remnants. It has been argued that the masers trace out the sites of hadronic particle acceleration. We discuss what is known about the physical conditions of these shocked regions and we introduce a potential new maser tracer for identifying the sites of cosmic ray acceleration. This review includes a reasonably complete bibliography for researchers new to the topic of shock-excited masers and supernova remnants.

  8. On the plasma temperature in supernova remnants with cosmic-ray modified shocks

    CERN Document Server

    O'Connor-Drury, L; Malyshev, D; Gabici, S

    2008-01-01

    Context: Multiwavelength observations of supernova remnants can be explained within the framework of the diffusive shock acceleration theory, which allows effective conversion of the explosion energy into cosmic rays. Although the models of nonlinear shocks describe reasonably well the nonthermal component of emission, certain issues, including the heating of the thermal plasma and the related X-ray emission, remain still open. Aims: To discuss how the evolution and structure of supernova remnants is affected by strong particle acceleration at the forward shock. Methods: Analytical estimates combined with detailed discussion of the physical processes. Results: The overall dynamics is shown to be relatively insensitive to the amount of particle acceleration, but the post-shock gas temperature can be reduced to a relatively small multiple, even as small as six times, the ambient temperature with a very weak dependence on the shock speed. This is in marked contrast to pure gas models where the temperature is ins...

  9. Electron-Ion Temperature Equilibration in Collisionless Shocks: the Supernova Remnant-Solar Wind Connection

    CERN Document Server

    Ghavamian, Parviz; Mitchell, Jeremy; Masters, Adam; Laming, J Martin

    2013-01-01

    Collisionless shocks are loosely defined as shocks where the transition between pre-and post-shock states happens on a length scale much shorter than the collisional mean free path. In the absence of collision to enforce thermal equilibrium post-shock, electrons and ions need not have the same temperatures. While the acceleration of electrons for injection into shock acceleration processes to produce cosmic rays has received considerable attention, the related problem of the shock heating of quasi-thermal electrons has been relatively neglected. In this paper we review that state of our knowledge of electron heating in astrophysical shocks, mainly associated with supernova remnants (SNRs), shocks in the solar wind associated with the terrestrial and Saturnian bowshocks, and galaxy cluster shocks. The solar wind and SNR samples indicate that the ratio of electron temperature to ion temperature declines with increasing shock speed or Alfvenic Mach number. We discuss the extent to which such behavior can be unde...

  10. Chandra Observations of Shock Kinematics in Supernova Remnant 1987A

    CERN Document Server

    Zhekov, S A; Borkowski, K J; Burrows, D N; Park, S

    2005-01-01

    We report the first results from deep X-ray observations of the SNR 1987A with the Chandra LETG. Temperatures inferred from line ratios range from 0.1 - 2 keV and increase with ionization potential. Expansion velocities inferred from X-ray line profiles range from 300 - 1700 km/s, much less than the velocities inferred from the radial expansion of the radio and X-ray images. We can account for these observations with a scenario in which the X-rays are emitted by shocks produced where the supernova blast wave strikes dense protrusions of the inner circumstellar ring, which are also responsible for the optical hot spots.

  11. Postshock turbulence and diffusive shock acceleration in young supernova remnants

    CERN Document Server

    Marcowith, A

    2010-01-01

    The present article investigates magnetic amplification in the upstream medium of SNR blast wave through both resonant and non-resonant regimes of the streaming instability. It aims at a better understanding of the diffusive shock acceleration (DSA) efficiency considering various relaxation processes of the magnetic fluctuations in the downstream medium. Multi-wavelength radiative signatures coming from the SNR shock wave are used in order to put to the test the different downstream turbulence relaxation models. We confirm the result of Parizot et al (2006) that the maximum CR energies should not go well beyond PeV energies in young SNRs where X-ray filaments are observed. In order to match observational data, we derive an upper limit on the magnetic field amplitude insuring that stochastic particle reacceleration remain inefficient. Considering then, various magnetic relaxation processes, we present two necessary conditions to achieve efficient acceleration and X-ray filaments in SNRs: 1/the turbulence must ...

  12. Shock and Awe: Measuring the Expansion of the Shock Front of Supernova Remnant SN1006

    Science.gov (United States)

    Dills, Sidney; McKinney, L.; Moffett, D. A.; Reynoso, E.

    2014-01-01

    We have determined the expansion of the supernova remnant (SNR) of SN1006 over a seven-year period, using data collected in 2003 and 2010. The data was calibrated and imaged using Miriad and CASA programming before we stacked the two images to accurately assess the expansion rate. Our data was collected from the Very Large Array (VLA) in New Mexico and Australian Telescope Compact Array (ATCA). The 2003 epoch observations were conducted at the ATCA and the VLA. The 2010 epoch observations were conducted only at the ATCA. We processed the data using the Miriad and CASA software packages, which allowed us to perform calibration and imaging of radio interferometer visibility data. We deconvolved the raw images using CLEAN and MAXEN (maximum entropy deconvolution) to remove spurious side lobes, resulting in epoch images with a synthesized beamwidth of 6.0 arcseconds per beam. We used the 2010 image as a template to align the 2003 image and to match resolution. A difference image formed from the two epoch images reveals an obvious expansion of the SNR. We measured the expansion rate at nine points along the shell of the remnant. We found that the expansion rate varied across the remnant’s shell. The greatest amount of expansion measured was 5.71 arcseconds over seven years, which for a distance of 2.2 kpc, has the remnant moving at 8,500 km/s. The average expansion measured across the shell was 4.25 arcseconds over seven years.

  13. APEX observations of supernova remnants. I. Non-stationary magnetohydrodynamic shocks in W44

    Science.gov (United States)

    Anderl, S.; Gusdorf, A.; Güsten, R.

    2014-09-01

    Context. When supernova blast waves interact with nearby molecular clouds, they send slower shocks into these clouds. The resulting interaction regions provide excellent environments for the use of MHD shock models to constrain the physical and chemical conditions in these regions. Aims: The interaction of supernova remnants (SNRs) with molecular clouds gives rise to strong molecular emission in the far-IR and sub-mm wavelength regimes. The application of MHD shock models in the interpretation of this line emission can yield valuable information on the energetic and chemical impact of SNRs. Methods: New mapping observations with the APEX telescope in 12CO (3-2), (4-3), (6-5), (7-6), and 13CO (3-2) towards two regions in the SNR W44 are presented. Integrated intensities are extracted on five different positions, corresponding to local maxima of CO emission. The integrated intensities are compared to the outputs of a grid of models, which combine an MHD shock code with a radiative transfer module based on the large velocity gradient approximation. Results: All extracted spectra show ambient and line-of-sight components as well as blue- and red-shifted wings indicating the presence of shocked gas. Basing the shock model fits only on the highest-lying transitions that unambiguously trace the shock-heated gas, we find that the observed CO line emission is compatible with non-stationary shocks and a pre-shock density of 104 cm-3. The ages of the modelled shocks scatter between values of ~1000 and ~3000 years. The shock velocities in W44F are found to lie between 20 km s-1 and 25 km s-1, while in W44E fast shocks (30-35 km s-1) as well as slower shocks (~20 km s-1) are compatible with the observed spectral line energy diagrams. The pre-shock magnetic field strength components perpendicular to the line of sight in both regions have values between 100 ?G and 200 ?G. Our best-fitting models allow us to predict the full ladder of CO transitions, the shocked gas mass in one beam as well as the momentum and energy injection. The velocity-integrated CO maps shown in Figs. 3 and 4 are available as FITS files at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A81Appendix A is available in electronic form at http://www.aanda.org

  14. Electron Heating, Magnetic Field Amplification, and Cosmic Ray Precursor Length at Supernova Remnant Shocks

    CERN Document Server

    Laming, J Martin; Ghavamian, Parviz; Rakowski, Cara

    2014-01-01

    We investigate the observability, by direct and indirect means, of a shock precursor arising from magnetic field amplification by cosmic rays. We estimate the depth of such a precursor under conditions of nonresonant amplification, which can provide magnetic field strengths comparable to those inferred for supernova remnants. Magnetic field generation occurs as the streaming cosmic rays induce a plasma return current, and may be quenched either by nonresonant or resonant channels. In the case of nonresonant saturation, the cosmic rays become magnetized and amplification saturates at higher magnetic fields. The precursor can extend out to $10^{17} - 10^{18}$ cm and is potentially detectable. If resonant saturation occurs, the cosmic rays are scattered by turbulence and the precursor length will likely be much smaller. The dependence of precursor length on shock velocity has implications for electron heating. In the case of resonant saturation, this dependence is similar to that in the more familiar resonantly ...

  15. Time-dependent Diffusive Shock Acceleration in Slow Supernova Remnant Shocks

    CERN Document Server

    Tang, Xiaping

    2014-01-01

    Recent gamma ray observations show that middle aged supernova remnants interacting with molecular clouds can be sources of both GeV and TeV emission. Models involving re-acceleration of pre-existing cosmic rays in the ambient medium and direct interaction between supernova remnant and molecular clouds have been proposed to explain the observed gamma ray emission. For the re-acceleration process, standard DSA theory in the test particle limit produces a steady state particle spectrum that is too flat compared to observations, which suggests that the high energy part of the observed spectrum has not yet reached a steady state. We derive a time dependent DSA solution in the test particle limit for situations involving re-acceleration of pre-existing cosmic rays in the preshock medium. Simple estimates with our time dependent DSA solution plus a molecular cloud interaction model can reproduce the overall shape of the spectra of IC 443 and W44 from GeV to TeV energies through pure $\\pi^0$-decay emission. We allow ...

  16. Post-adiabatic supernova remnants in the interstellar magnetic field. Parallel and perpendicular shocks

    CERN Document Server

    Petruk, O; Beshley, V

    2015-01-01

    Gamma-rays from hadronic collisions are expected from supernova remnants (SNRs) located near molecular clouds. The temperature on the shock interacting with the dense environment quickly reaches $10^5$ K. The radiative losses of plasma become essential in the evolution of SNRs. They decrease the thermal pressure and essentially increase the density behind the shock. The presence of ambient magnetic field may considerably alter the behavior of the post-adiabatic SNRs comparing to hydrodynamic scenario. In the present paper, the magneto-hydrodynamic simulations of radiative shocks in magnetic field are performed. High plasma compression due to the radiative losses results also in the prominent increase of the strength of the tangential component of magnetic field behind the shock and the decrease of the parallel one. If the strength of the tangential field before the shock is higher than about $3\\mathrm{\\mu G}$ it prevents formation of the very dense thin shell. The higher the strength of the tangential magneti...

  17. Reverse and forward shock X-ray emission in an evolutionary model of supernova remnants undergoing efficient diffusive shock acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shiu-Hang [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Patnaude, Daniel J.; Slane, Patrick O. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ellison, Donald C. [Physics Department, North Carolina State University, Box 8202, Raleigh, NC 27695 (United States); Nagataki, Shigehiro, E-mail: slee@astro.isas.jaxa.jp, E-mail: shiu-hang.lee@riken.jp, E-mail: shigehiro.nagataki@riken.jp, E-mail: slane@cfa.harvard.edu, E-mail: dpatnaude@cfa.harvard.edu, E-mail: don_ellison@ncsu.edu [RIKEN, Astrophysical Big Bang Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-08-20

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  18. Broad Balmer line emission and cosmic ray acceleration efficiency in supernova remnant shocks

    CERN Document Server

    Morlino, G; Bandiera, R; Amato, E

    2013-01-01

    Balmer emission may be a powerful diagnostic tool to test the paradigm of cosmic ray (CR) acceleration in young supernova remnant (SNR) shocks. The width of the broad Balmer line is a direct indicator of the downstream plasma temperature. In case of efficient particle acceleration an appreciable fraction of the total kinetic energy of the plasma is channeled into CRs, therefore the downstream temperature decreases and so does the broad Balmer line width. This width also depends on the level of thermal equilibration between ions and neutral hydrogen atoms in the downstream. Since in general in young SNR shocks only a few charge exchange (CE) reactions occur before ionization, equilibration between ions and neutrals is not reached, and a kinetic description of the neutrals is required in order to properly compute Balmer emission. We provide a method for the calculation of Balmer emission using a self-consistent description of the shock structure in the presence of neutrals and CRs. We use a recently developed s...

  19. Broad Balmer line emission and cosmic ray acceleration efficiency in supernova remnant shocks

    Science.gov (United States)

    Morlino, G.; Blasi, P.; Bandiera, R.; Amato, E.

    2013-10-01

    Context. Balmer emission may be a powerful diagnostic tool for testing the paradigm of cosmic ray (CR) acceleration in young supernova remnant (SNR) shocks. The width of the broad Balmer line is a direct indicator of the downstream plasma temperature. In the case of efficient particle acceleration, an appreciable fraction of the total kinetic energy of the plasma is channeled into CRs, therefore the downstream temperature decreases and so does the broad Balmer line width. This width also depends on the level of thermal equilibration between ions and neutral hydrogen atoms in the downstream. Since generally only a few charge exchange (CE) reactions occur before ionization in young SNR shocks, equilibration between ions and neutrals is not reached, and a kinetic description of the neutrals is required to properly compute Balmer emission. Aims: We provide a method for calculating Balmer emission using a self-consistent description of the shock structure in the presence of neutrals and CRs, which also accounts for the non-Maxwellian distribution of neutrals. Methods: We use a recently developed semi-analytical approach, where neutral particles, ionized plasma, accelerated particles, and magnetic fields are all coupled together through the mass, momentum, and energy flux-conservation equations. The distribution of neutrals is obtained from the full Boltzmann equation in velocity space, coupled to Maxwellian ions through ionization and CE processes. The computation is also an improvement over previous work thanks to a better approximation of the atomic interaction rates. Results: We find that for shock speeds ?2500 km s-1, the distribution of broad neutrals never approaches a Maxwellian and its moments differ from those of the ionized component. These differences lead to a smaller FWHM than predicted in previous calculations, where thermalization was assumed. Conclusions: The method presented here provides a realistic estimate of particle acceleration efficiency in Balmer-dominated shocks.

  20. FISICA Integral Field Spectroscopy of the Shocked Iron Gas in the Supernova Remnant G11.2--0.3

    Science.gov (United States)

    Moon, Dae-Sik; Eikenberry, Stephen S.; Koo, Bon-Chul; Raines, S. Nicholas; Gruel, Nicolas

    2006-02-01

    We have recently discovered strong iron line ([Fe II] (lambda)1.644 (mu)m) emission in the young supernova remnant G11.2-0.3. The iron line emission occurs at the south-eastern shell edge of G11.2-0.3, and positionally overlaps with the very strong X-ray and radio emission of the supernova remnant. The iron line emission is most likely caused by the shock acceleration of G11.2-0.3 interacting with the ambient medium. We propose to carry out JH-band integral-field spectroscopy of the two iron line clumps in G11.2-0.3 with FISICA, an image-slicing integral-field unit for FLAMINGOS, which will give us a uniquely comprehensive view of the strong shock acceleration of a SNR.

  1. TWO-STEP ACCELERATION MODEL OF COSMIC RAYS AT MIDDLE-AGED SUPERNOVA REMNANTS: UNIVERSALITY IN SECONDARY SHOCKS

    International Nuclear Information System (INIS)

    Recent gamma-ray observations of middle-aged supernova remnants revealed a mysterious broken power-law spectrum. Using three-dimensional magnetohydrodynamic simulations, we show that the interaction between a supernova blast wave and interstellar clouds formed by thermal instability generates multiple reflected shocks. The typical Mach numbers of the reflected shocks are shown to be M? 2 depending on the density contrast between the diffuse intercloud gas and clouds. These secondary shocks can further energize cosmic-ray particles originally accelerated at the blast-wave shock. This 'two-step' acceleration scenario reproduces the observed gamma-ray spectrum and predicts the high-energy spectral index ranging approximately from 3 to 4.

  2. Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants

    OpenAIRE

    Zirakashvili, V. N.; Aharonian, F.

    2006-01-01

    %context {Recent observations of hard X-rays and very high energy gamma-rays from a number of young shell type supernova remnants indicate the importance of detailed quantitative studies of energy spectra of relativistic electrons formed via diffusive shock acceleration accompanied by intense nonthermal emission through synchrotron radiation and inverse Compton scattering.} %aim {The aim of this work was derivation of exact asymptotic solutions of the kinetic equation which ...

  3. Supernova remnants and the ISM

    International Nuclear Information System (INIS)

    Supernova remnants can reaccelerate cosmic rays and modify their distribution during the cosmic ray propagation in the galaxy. Cosmic ray observations (in particular the boron-to-carbon data) strongly limit the permitted amount of reacceleration, which is used to set an upper limit on the expansion of supernova remnants, and a lower limit on the effective density of the ISM swept up by supernova shocks. The constraint depends on the theory of cosmic ray propagation: the standard Leaky Box model requires a high effective density, > 1 -3, and is probably inconsistent with the present picture of the ISM. Modifying the Leaky Box model to include a moderate amount of weak-shock reacceleration, a self consistent solution is found, where the effective density in this solution is ? 0.1 cm-3

  4. GALACTIC AND EXTRAGALACTIC SUPERNOVA REMNANTS AS SITES OF PARTICLE ACCELERATION

    Directory of Open Access Journals (Sweden)

    Manami Sasaki

    2013-12-01

    Full Text Available Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.

  5. Radio emission from Supernova Remnants

    CERN Document Server

    Dubner, Gloria

    2015-01-01

    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances....

  6. Shocked Gas from the supernova remnant G357.7+0.3

    Science.gov (United States)

    Rho, Jeonghee; Hewitt, John; Reach, William T.; Bieging, John H.; Andersen, Morten; Güsten, Rolf

    2016-01-01

    We present detection of hydrogen molecular hydrogen (H2) in mid-infrared using the Spitzer IRS. The supernova remnant (SNR) G357.7+0.3 is one of relatively unknown and under-studied SNRs. We performed an IRS spectral mapping centered on the northwestern shell of G357.7+0.3. The observations covered an area of 75arcsec x 60arcsec with short-low (SL) and 170arcsec x 55arcsec with long-low (LL). All rotational H2 lines within the IRS wavelength range are detected except S(6) line. Interestingly, G357.7+0.3 shows lack of ionic lines compared with those in other SNRs observed. Only ionic line detected is [Si II] at 34.8micron. The detection of H2 line is an evidence that G357.7+0.3 is interacting with dense molecular clouds. This is the first evidence showing that G357.7+0.3 is an interacting SNR with clouds. We generated a H2 excitation diagram. A two-temperature fit yields a low temperature of 197 K with a column density 2.3E21/cm2 and and a high temperature of 663 K with a column density of 2.7E19/cm2. We preformed high-J CO and OH observations with The German REceiver for Astronomy at Terahertz Frequencies (GREAT) on board of Stratospheric Observatory for Infrared Astronomy (SOFIA), but no lines are detected. We provide the upper limits of the lines. We also present millimeter observations of the SNR. The observations were made with the Arizona-MPIfR Heinrich Hertz Submillimeter Telescope (HHT), Arizona 12 Meter Telescope, and Atacama Pathfinder Experiment (APEX) Telescope. We discuss physical conditions of shocked gas in G357.7+0.3.

  7. Cosmic Ray Acceleration at the Forward Shock in Tycho's Supernova Remnant: Evidence from Chandra X-ray Observations

    CERN Document Server

    Warren, J S; Badenes, C; Ghavamian, P; McKee, C F; Moffett, D; Plucinsky, P P; Rakowski, C; Reynoso, E; Slane, P O

    2005-01-01

    We present evidence for cosmic ray acceleration at the forward shock in Tycho's supernova remnant (SNR) from three X-ray observables: (1) the proximity of the contact discontinuity to the forward shock, or blast wave, (2) the morphology of the emission from the rim of Tycho, and (3) the spectral nature of the rim emission. We determine the locations of the blast wave (BW), contact discontinuity (CD), and reverse shock (RS) around the rim of Tycho's supernova remnant using a principal component analysis and other methods applied to new Chandra data. The azimuthal-angle-averaged radius of the BW is 251". For the CD and RS we find average radii of 241" and 183", respectively. Taking account of projection effects, we find ratios of 1:0.93:0.70 (BW:CD:RS). We show these values to be inconsistent with adiabatic hydrodynamical models of SNR evolution. The CD:BW ratio can be explained if cosmic ray acceleration of ions is occurring at the forward shock. The RS:BW ratio, as well as the strong Fe Ka emission from the T...

  8. Progenitors of Recombining Supernova Remnants

    OpenAIRE

    Moriya, Takashi J.

    2012-01-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with the ionization temperature higher than the electron temperature, is recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the t...

  9. Environmental impact of Supernova Remnants

    CERN Document Server

    Dubner, Gloria

    2015-01-01

    The explosion of a supernovae (SN) represents the sudden injection of about 10^51 ergs of thermal and mechanical energy in a small region of space, causing the formation of powerful shock waves that propagate through the interstellar medium at speeds of several thousands of km/s. These waves sweep, compress and heat the interstellar material that they encounter, forming the supernova remnants. Their evolution over thousands of years change forever, irreversibly, not only the physical but also the chemical properties of a vast region of space that can span hundreds of parsecs. This contribution briefly analyzes the impact of these explosions, discussing the relevance of some phenomena usually associated with SNe and their remnants in the light of recent theoretical and observational results.

  10. New Evidence for Efficient Collisionless Heating of Electrons at the Reverse Shock of a Young Supernova Remnant

    CERN Document Server

    Yamaguchi, Hiroya; Badenes, Carles; Hughes, John P; Brickhouse, Nancy S; Foster, Adam R; Patnaude, Daniel J; Petre, Robert; Slane, Patrick O; Smith, Randall K

    2013-01-01

    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe-K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect K-beta (3p->1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe K-alpha (2p->1s) emission dominated by a relatively highly-ionized component. Comparison with our hydrodynamical simulations implies instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating w...

  11. Supernova remnants: the X-ray perspective

    Science.gov (United States)

    Vink, Jacco

    2012-12-01

    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. Since X-ray synchrotron radiation requires 10-100 TeV electrons, which lose their energies rapidly, the study of X-ray synchrotron radiation has revealed those regions where active and rapid particle acceleration is taking place. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and X-ray spectroscopy of the hot plasmas they contain. This includes hydrodynamics, shock heating, thermal conduction, radiation processes, non-equilibrium ionization, He-like ion triplet lines, and cosmic ray acceleration. The second half offers a review of the advances made in field of X-ray spectroscopy of supernova remnants during the last 15 year. This period coincides with the availability of X-ray imaging spectrometers. In addition, I discuss the results of high resolution X-ray spectroscopy with the Chandra and XMM-Newton gratings. Although these instruments are not ideal for studying extended sources, they nevertheless provided interesting results for a limited number of remnants. These results provide a glimpse of what may be achieved with future microcalorimeters that will be available on board future X-ray observatories. In discussing the results of the last 15 years I have chosen to discuss a few topics that are of particular interest. These include the properties of Type Ia supernova remnants, which appear to be regularly shaped and have stratified ejecta, in contrast to core collapse supernova remnants, which have patchy ejecta distributions. For core collapse supernova remnants I discuss the spatial distribution of fresh nucleosynthesis products, but also their properties in connection to the neutron stars they contain. For the mature supernova remnants I focus on the prototypal supernova remnants Vela and the Cygnus Loop. And I discuss the interesting class of mixed-morphology remnants. Many of these mature supernova remnants contain still plasma with enhanced ejecta abundances. Over the last five years it has also become clear that many mixed-morphology remnants contain plasma that is overionized. This is in contrast to most other supernova remnants, which contain underionized plasmas. This text ends with a review of X-ray synchrotron radiation from shock regions, which has made it clear that some form of magnetic-field amplification is operating near shocks, and is an indication of efficient cosmic-ray acceleration.

  12. Spectral modeling of supernova remnants

    Science.gov (United States)

    Fontes, C. J.; Eriksen, K. A.; Colgan, J.; Zhang, H. L.; Hughes, J. P.

    2014-03-01

    We report on recent efforts to generate high quality, self-consistent atomic physics models for L-shell ion stages for iron and the use of these data in collisional-radiative modeling of X-ray spectra of supernova remnants. As a specific example, we present comparisons between observed and theoretical X-ray spectra produced by Tycho's supernova remnant.

  13. Supernova remnants: the X-ray perspective

    CERN Document Server

    Vink, Jacco

    2011-01-01

    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recen...

  14. Radio emission from supernova remnants

    Science.gov (United States)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  15. X-Ray Emission from Multi-Phase Shock in the Large Magellanic Cloud Supernova Remnant N49

    CERN Document Server

    Park, S; Garmire, G P; Nousek, J A; Hughes, J P; Williams, R M; Park, Sangwook; Burrows, David N.; Garmire, Gordon P.; Nousek, John A.; Hughes, John P.; Williams, Rosa Murphy

    2003-01-01

    The supernova remnant (SNR) N49 in the Large Magellanic Cloud has been observed with the Advanced CCD Imaging Spectrometer (ACIS) on board the {\\it Chandra X-Ray Observatory}. The superb angular resolution of the {\\it Chandra}/ACIS images resolves a point source, the likely X-ray counterpart of soft gamma-ray repeater SGR 0526$-$66, and the diffuse filaments and knots across the SNR. These filamentary features represent the blast wave sweeping through the ambient interstellar medium and nearby dense molecular clouds. We detect metal-rich ejecta beyond the main blast wave shock boundary in the southwest of the SNR, which appear to be explosion fragments or ``bullets'' ejected from the progenitor star. The detection of strong H-like Si line emission in the eastern side of the SNR requires multi-phase shocks in order to describe the observed X-ray spectrum, whereas such a multi-phase plasma is not evident in the western side. This complex spectral structure of N49 suggests that the postshock regions toward the e...

  16. ANTIPROTONS PRODUCED IN SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E. G.; Ksenofontov, L. T., E-mail: ksenofon@ikfia.sbras.ru [Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Avenue, 677891 Yakutsk (Russian Federation)

    2014-08-20

    We present the energy spectrum of an antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNRs). The model includes the reacceleration of antiprotons already existing in the interstellar medium as well as the creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shocks. It is shown that the production of antiprotons in SNRs produces a considerable effect in their resultant energy spectrum, making it essentially flatter above 10 GeV so that the spectrum at TeV energies increases by a factor of 5. The calculated antiproton spectrum is consistent with the PAMELA data, which correspond to energies below 100 GeV. As a consistency check, we have also calculated within the same model the energy spectra of secondary nuclei and show that the measured boron-to-carbon ratio is consistent with the significant SNR contribution.

  17. X-ray haloes around supernova remnants

    International Nuclear Information System (INIS)

    Recent observations of the Cas-A supernova remnant have shown X-ray emissions not only from the interior, but also from a fainter 'halo' extending beyond what is normally regarded as the outer boundary, or shock front. The authors suggest that this may be due to the diffusion of energetic, charged particles out of the remnant giving rise to precursor structure of the type predicted by the theory of diffusive shock acceleration. If this is the case we are seeing thermal emission from ambient gas heated by compression and wave dissipation. (author)

  18. Infrared Spectroscopy of Molecular Supernova Remnants

    CERN Document Server

    Reach, W T; Reach, William T.; Rho, Jeonghee

    2000-01-01

    We present Infrared Space Observatory spectroscopy of sites in the supernova remnants W28, W44, and 3C391, where blast waves are impacting molecular clouds. Atomic fine-structure lines were detected from C, N, O, Si, P, and Fe. The S(3) and S(9) lines of H2 were detected for all three remnants. The observations require both shocks into gas with moderate (~ 100 /cm3) and high (~10,000 /cm3) pre-shock densities, with the moderate density shocks producing the ionic lines and the high density shock producing the molecular lines. No single shock model can account for all of the observed lines, even at the order of magnitude level. We find that the principal coolants of radiative supernova shocks in moderate-density gas are the far-infrared continuum from dust grains surviving the shock, followed by collisionally-excited [O I] 63.2 and [Si II] 34.8 micron lines. The principal coolant of the high-density shocks is collisionally-excited H2 rotational and ro-vibrational line emission. We systematically examine the gro...

  19. Observing Supernovae and Supernova Remnants with JWST

    Science.gov (United States)

    Sonneborn, George; Temim, Tea; Williams, Brian J.; Blair, William P.

    2015-01-01

    The James Webb Space Telescope (JWST) will enable near- and mid-infrared studies of supernovae (SN) and supernova remnants (SNR) in the Milky Way and galaxies throughout the local universe and to high redshift. JWST's instrumentation provides imaging, coronography, and spectroscopy (RAriane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with consumables for 10 years of science operations. The first call for proposals for JWST observations will be released in 2017.

  20. X-Ray Emission from Multi-Phase Shock in the Large Magellanic Cloud Supernova Remnant N49

    OpenAIRE

    Park, Sangwook; Burrows, David N.; Garmire, Gordon P; Nousek, John A.; Hughes, John P.; Williams, Rosa Murphy

    2002-01-01

    The supernova remnant (SNR) N49 in the Large Magellanic Cloud has been observed with the Advanced CCD Imaging Spectrometer (ACIS) on board the {\\it Chandra X-Ray Observatory}. The superb angular resolution of the {\\it Chandra}/ACIS images resolves a point source, the likely X-ray counterpart of soft gamma-ray repeater SGR 0526$-$66, and the diffuse filaments and knots across the SNR. These filamentary features represent the blast wave sweeping through the ambient interstella...

  1. The Thermal Composite Supernova Remnant Kes 27 as Viewed by CHANDRA: Shock Reflection from a Cavity Wall

    CERN Document Server

    Chen, Yang; Sun, Ming; Li, Jiang-tao

    2007-01-01

    We present a spatially resolved spectroscopic study of the thermal composite supernova remnant Kes 27 with Chandra. The X-ray spectrum of Kes 27 is characterized by K lines from Mg, Si, S, Ar, and Ca. The X-ray emitting gas is found to be enriched in sulphur and calcium. The broadband and tri-color images show two incomplete shell-like features in the northeastern half and brightness fading with increasing radius in the southwest. There are over 30 unresolved sources within the remnant. None show characteristics typical of young neutron stars. The maximum diffuse X-ray intensity coincides with a radio bright region along the eastern border. In general, gas in the inner region is at higher temperature and emission is brighter than from the outer region. The gas in the remnant appears to approach ionization equilibrium. The overall morphology can be explained by the evolution of the remnant in an ambient medium with a density enhancement from west to east. We suggest that the remnant was born in a pre-existing ...

  2. Future GLAST observations of Supernova remnants and Pulsar Wind Nebulae

    OpenAIRE

    GLAST Collaboration; Funk, S

    2007-01-01

    Shell-type Supernova remnants (SNRs) have long been known to harbour a population of ultra-relativistic particles, accelerated in the Supernova shock wave by the mechanism of diffusive shock acceleration. Experimental evidence for the existence of electrons up to energies of ~100 TeV was first provided by the detection of hard X-ray synchrotron emission as e.g. in the shell of the young SNR SN1006. Furthermore using theoretical arguments shell-type Supernova remnants have lo...

  3. The Thermal Composite Supernova Remnant Kes 27 as Viewed by CHANDRA: Shock Reflection from a Cavity Wall

    OpenAIRE

    Chen, Yang; Seward, Frederick D.; Sun, Ming; Li, Jiang-Tao

    2007-01-01

    We present a spatially resolved spectroscopic study of the thermal composite supernova remnant Kes 27 with Chandra. The X-ray spectrum of Kes 27 is characterized by K lines from Mg, Si, S, Ar, and Ca. The X-ray emitting gas is found to be enriched in sulphur and calcium. The broadband and tri-color images show two incomplete shell-like features in the northeastern half and brightness fading with increasing radius in the southwest. There are over 30 unresolved sources within ...

  4. Supernova-Remnant Origin of Cosmic Rays?

    CERN Document Server

    Butt, Y M; Romero, G E; Dame, T M; Combi, J A; Butt, Yousaf M.; Torres, Diego F.; Romero, Gustavo E.; Dame, Thomas M.; Combi, Jorge A.

    2002-01-01

    It is thought that Galactic cosmic ray (CR) nuclei are gradually accelerated to high energies (up to ~300 TeV/nucleon, where 1TeV=10^12eV) in the expanding shock-waves connected with the remnants of powerful supernova explosions. However, this conjecture has eluded direct observational confirmation^1,2 since it was first proposed in 1953 (ref. 3). Enomoto et al.^4 claim to have finally found definitive evidence that corroborates this model, proposing that the very-high-energy, TeV-range, gamma-rays from the supernova remnant (SNR) RX J1713.7-3946 are due to the interactions of energetic nuclei in this region. Here we argue that their claim is not supported by the existing multiwavelength spectrum of this source. The search for the origin(s) of Galactic cosmic ray nuclei may be closing in on the long-suspected supernova-remnant sources, but it is not yet over.

  5. The X-ray Structure of the Pulsar Bow Shock G189.22+2.90 in the Supernova Remnant IC 443

    CERN Document Server

    Gaensler, B M; Slane, P O; Van der Swaluw, E; Camilo, F; Hughes, J P

    2006-01-01

    We present a deep observation with the Chandra X-ray Observatory of the neutron star bow shock G189.22+2.90, associated with the supernova remnant (SNR) IC 443. Our data confirm the cometary morphology and central point source seen previously, but also reveal considerable new structure. Specifically, we find that the X-ray nebula consists of two distinct components: a "tongue" of bright emission close to the neutron star, enveloped by a larger, fainter "tail". We interpret the tongue and tail as delineating the termination shock and the post-shock flow, respectively, as previously identified also in the pulsar bow shock G359.23-0.82 ("the Mouse"). However, for G189.22+2.90 the tongue is much less elongated than for the Mouse, while the tail is much broader. Both of these differences are consistent with the low Mach number expected for a neutron star moving through a SNR interior. We resolve the stand-off distance between the star and the head of the bow shock, which allows us to estimate a space velocity for ...

  6. The blast wave of Tycho's supernova remnant

    CERN Document Server

    Cassam-Chenai, G; Ballet, J; Decourchelle, A; Cassam-Chenai, Gamil; Hughes, John P.; Ballet, Jean; Decourchelle, Anne

    2007-01-01

    We use the Chandra X-ray Observatory to study the region in the Tycho supernova remnant between the blast wave and the shocked ejecta interface or contact discontinuity. This zone contains all the history of the shock-heated gas and cosmic-ray acceleration in the remnant. We present for the first time evidence for significant spatial variations of the X-ray synchrotron emission in the form of spectral steepening from a photon index of 2.6 right at the blast wave to a value of 3.0 several arcseconds behind. We interpret this result along with the profiles of radio and X-ray intensity using a self-similar hydrodynamical model including cosmic ray backreaction that accounts for the observed ratio of radii between the blast wave and contact discontinuity. Two different assumptions were made about the post-shock magnetic field evolution: one where the magnetic field (amplified at the shock) is simply carried by the plasma flow and remains relatively high in the post-shock region [synchrotron losses limited rim cas...

  7. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for the movie For the first time, a multiwavelength three-dimensional reconstruction of a supernova remnant has been created. This stunning visualization of Cassiopeia A, or Cas A, the result of an explosion approximately 330 years ago, uses data from several telescopes: X-ray data from NASA's Chandra X-ray Observatory, infrared data from NASA's Spitzer Space Telescope and optical data from the National Optical Astronomy Observatory 4-meter telescope at Kitt Peak, Ariz., and the Michigan-Dartmouth-MIT 2.4-meter telescope, also at Kitt Peak. In this visualization, the green region is mostly iron observed in X-rays. The yellow region is a combination of argon and silicon seen in X-rays, optical, and infrared including jets of silicon plus outer debris seen in the optical. The red region is cold debris seen in the infrared. Finally, the blue reveals the outer blast wave, most prominently detected in X-rays. Most of the material shown in this visualization is debris from the explosion that has been heated by a shock moving inwards. The red material interior to the yellow/orange ring has not yet encountered the inward moving shock and so has not yet been heated. These unshocked debris were known to exist because they absorb background radio light, but they were only recently discovered in infrared emission with Spitzer. The blue region is composed of gas surrounding the explosion that was heated when it was struck by the outgoing blast wave, as clearly seen in Chandra images. To create this visualization, scientists took advantage of both a previously known phenomenon the Doppler effect and a new technology that bridges astronomy and medicine. When elements created inside a supernova, such as iron, silicon and argon, are heated they emit light at certain wavelengths. Material moving towards the observer will have shorter wavelengths and material moving away will have longer wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and position with resp

  8. Neutron Stars in Supernova Remnants and Beyond

    CERN Document Server

    Gvaramadze, V V

    2002-01-01

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  9. Low Frequency Insights Into Supernova Remnants

    CERN Document Server

    Dyer, K K; Borkowski, K J; Dyer, Kristy K.; Reynolds, Stephen P; Borkowski, Kazik J.

    2000-01-01

    Low frequency observations at 330 and 74 MHz can provide new insights into supernova remnants (SNR). We can test theoretical predictions for spectral index variations. Nonlinear models of shock acceleration predict that the spectra from young SNR should be slightly concave rather than power laws -- flattening toward higher energies. However, few SNR are bright and compact enough to be studied at millimeter wavelengths, restricting studies to the small range from 6 to 20 cm (a factor of 1.7 in electron energies). Observations at 330 MHz increase the electron energy baseline to a factor of 4, while providing sensitivity to larger spatial scales that are resolved out by centimeter-wavelength interferometers. Such observations can also separate thermal from nonthermal emission and detect excess free-free absorption associated with cool gas in remnants. Wide field images also provide an efficient census of both thermal and nonthermal sources over a large region.

  10. Asymmetric supernova remnants generated by Galactic, massive runaway stars

    Science.gov (United States)

    Meyer, D. M.-A.; Langer, N.; Mackey, J.; Velázquez, P. F.; Gusdorf, A.

    2015-07-01

    After the death of a runaway massive star, its supernova shock wave interacts with the bow shocks produced by its defunct progenitor, and may lose energy, momentum and its spherical symmetry before expanding into the local interstellar medium (ISM). We investigate whether the initial mass and space velocity of these progenitors can be associated with asymmetric supernova remnants. We run hydrodynamical models of supernovae exploding in the pre-shaped medium of moving Galactic core-collapse progenitors. We find that bow shocks that accumulate more than about 1.5 M? generate asymmetric remnants. The shock wave first collides with these bow shocks 160-750 yr after the supernova, and the collision lasts until 830-4900 yr. The shock wave is then located 1.35-5 pc from the centre of the explosion, and it expands freely into the ISM, whereas in the opposite direction it is channelled into the region of undisturbed wind material. This applies to an initially 20 M? progenitor moving with velocity 20 km s-1 and to our initially 40 M? progenitor. These remnants generate mixing of ISM gas, stellar wind and supernova ejecta that is particularly important upstream from the centre of the explosion. Their light curves are dominated by emission from optically thin cooling and by X-ray emission of the shocked ISM gas. We find that these remnants are likely to be observed in the [O III] ? 5007 spectral line emission or in the soft energy-band of X-rays. Finally, we discuss our results in the context of observed Galactic supernova remnants such as 3C 391 and the Cygnus Loop.

  11. The molecular emission from old supernova remnants

    CERN Document Server

    Gusdorf, Antoine; Anderl, Sibylle; Hezareh, Talayeh

    2014-01-01

    Supernovae constitute a critical source of energy input to the interstellar medium (ISM). In this short review, we focus on their latest phase of evolution, the supernova remnants (SNRs). We present observations of three old SNRs that have reached the phase where they interact with the ambient ISM: W28, IC443, and 3C391. We show that such objects make up clean laboratories to constrain the physical and chemical processes at work in molecular shock environments. Our studies subsequently allow us to quantify the impact of SNRs on their environment in terms of mass, momentum, and energy dissipation. In turn, their contribution to the energy balance of galaxies can be assessed. Their potential to trigger a further generation of star formation can also be investigated. Finally, our studies provide strong support for the interpretation of gamma-ray emission in SNRs, a crucial step to answer questions related to cosmic rays population and acceleration.

  12. A simple model for electron plasma heating in supernova remnants

    CERN Document Server

    Malyshev, D; Drury, L O'C; Aharonian, F A

    2010-01-01

    Context: Multiwavelength observations of supernova remnants can be explained within the framework of diffusive shock acceleration theory, which allows effective conversion of the explosion energy into cosmic rays. Although the models of nonlinear shocks describe reasonably well the nonthermal component of emission, certain issues, including the heating of the thermal electron plasma and the related X-ray emission, still remain open. Methods: Numerical solution of the equations of the Chevalier model for supernova remnant evolution, coupled with Coulomb scattering heating of the electrons. Results: The electron temperature and the X-ray thermal Bremsstrahlung emission from supernova remnants have been calculated as functions of the relevant parameters. Since only the Coulomb mechanism was considered for electron heating, the values obtained for the electron temperatures should be treated as lower limits. Results from this work can be useful to constrain model parameters for observed SNRs.

  13. Magnetic field in supernova remnant SN 1987A

    OpenAIRE

    Berezhko, E. G.; Ksenofontov, L. T.

    2006-01-01

    A nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants is employed to investigate the properties of the remnant SN 1987A. It is shown that a large downstream magnetic field ~10 mG is required to fit the existing observational data. Such a strong field together with the strong shock modification due to CR backreaction provides the steep and concave radioemission spectrum and considerable synchrotron cooling of high energy electrons which diminish the...

  14. Einstein Observations of Galactic supernova remnants

    Science.gov (United States)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  15. Hot interstellar tunnels. I. Simulation of interacting supernova remnants

    International Nuclear Information System (INIS)

    Reexamining a suggestion of Cox and Smith, we find that intersecting supernova remnants can indeed generate and maintain hot interstellar regions with napproximately-less-than10-2 cm-3 and Tapprox.106 K. These regions are likely to occupy at least 30% of the volume of a spiral arm near the midplane of the gaseous disk if the local supernova rate there is greater than 1.5 x 10-7 Myr-1 pc-3. Their presence in the interstellar medium is supported by observations of the soft X-ray background. The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected for a variety of assumed conditions in the outer shells of old remnants. Extensive hot cavity regions or tunnels are built and enlarged by supernovae occurring in relatively dense gas which produce connections, but tunnels are kept hot primarily by supernovae occurring within the tunnels. The latter supernovae initiate fast shock waves which apparently reheat tunnels faster than they are destroyed by thermal conduction in a galactic magnetic field or by radiative cooling. However, the dispersal of these rejuvenating shocks over a wide volume is inhibited by motions of cooler interstellar gas in the interval between shocks. These motions disrupt the contiguity of the component cavities of a tunnel and may cause its death.The Monte Carlo simulations indicate that a quasi-equilibrium is reached within 107 years of the first supernova in a spiral arm. This equilibrium is characterized by a constant average filling fraction for cavities in the interstellar volume. Aspects of the equilibrium are discussed for a range of supernova rates. Two predictions of Cox and Smith are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities

  16. Cosmic ray production in Historical Supernova Remnants

    Science.gov (United States)

    Sinitsyna, V. G.; Y Sinitsyna, V.

    2013-02-01

    We present the results of observations of two types of Galactic supernova remnants with the SHALON mirror Cherenkov telescope of Tien-Shan high-mountain Observatory: the shell-type supernova remnants Tycho, Cas A and IC 443; plerions Crab Nebula, 3c58(SN1181) and Geminga (probably plerion). The experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy (800 GeV - 100 TeV) gamma-rays in Tycho's supernova remnant. The data obtained suggest that the very high energy gamma-ray emission in the objects being discussed is different in origin.

  17. Chandra Observations of Tycho’s Supernova Remnant

    Indian Academy of Sciences (India)

    U. Hwang; R. Petre; A. E. Szymkowiak; S. S. Holt

    2002-03-01

    We present a new Chandra observation of Tycho’s supernova remnant with the Advanced CCD Imaging Spectrometer. Multicolor X-ray imaging reveals new details of the outer shock and ejecta. At energies between 4 and 6 keV, the outline of the outer shock is clearly revealed in X-rays for the first time. The distribution of the emission from lines of Si and Fe are confirmed to have a different morphology from each other, and the Si ejecta are shown to extend to the blast shock at several locations. Characteristic spectra of the outer shock and ejecta are also presented.

  18. Asymmetric supernova remnants generated by Galactic, massive runaway stars

    CERN Document Server

    Meyer, D M -A; Mackey, J; Velazquez, P F; Gusdorf, A

    2015-01-01

    After the death of a runaway massive star, its supernova shock wave interacts with the bow shocks produced by its defunct progenitor, and may lose energy, momentum, and its spherical symmetry before expanding into the local interstellar medium (ISM). We investigate whether the initial mass and space velocity of these progenitors can be associated with asymmetric supernova remnants. We run hydrodynamical models of supernovae exploding in the pre-shaped medium of moving Galactic core-collapse progenitors. We find that bow shocks that accumulate more than about 1.5 Mo generate asymmetric remnants. The shock wave first collides with these bow shocks 160-750 yr after the supernova, and the collision lasts until 830-4900 yr. The shock wave is then located 1.35-5 pc from the center of the explosion, and it expands freely into the ISM, whereas in the opposite direction it is channelled into the region of undisturbed wind material. This applies to an initially 20 Mo progenitor moving with velocity 20 km/s and to our i...

  19. Origin of Radially Aligned Magnetic Fields in Young Supernova Remnants

    CERN Document Server

    Inoue, Tsuyoshi; Ohira, Yutaka; Yamazaki, Ryo

    2013-01-01

    It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic field in some young supernova remnants are oriented radially. We study magnetic field distribution of turbulent supernova remnant driven by the Richtmyer-Meshkov instability -- in other words, the effect of rippled shock -- by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The Richtmyer-Meshkov instability is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observation can distinguish the following candidates responsible for the upstream density fluctuations: (i) inhomogeneity caused by the cascade of large-scale turbulence in the ISM so-called the big-power-law-in-the-sky, (ii) structures generated by the Drury instability in the cosmic-ray modified shock, a...

  20. X-ray High Resolution and Imaging Spectroscopy of Supernova Remnants

    CERN Document Server

    Vink, J

    2006-01-01

    The launch of Chandra and XMM-Newton has led to important new findings concerning the X-ray emission from supernova remnants. These findings are a result of the high spatial resolution with which imaging spectroscopy is now possible, but also some useful results have come out of the grating spectrometers of both X-ray observatories, despite the extended nature of supernova remnants. The findings discussed here are the evidence for slow equilibration of electron and ion temperatures near fast supernova remnant shocks, the magnetic field amplification near remnant shocks due to cosmic ray acceleration, a result that has come out of studying narrow filaments of X-ray synchrotron emission, and finally the recent findings concerning Fe-rich ejecta in Type Ia remnants and the presence of a jet/counter jet system in the Type Ib supernova remnant Cas A.

  1. X-ray images of supernova remnants

    International Nuclear Information System (INIS)

    Einstein observations of supernova remnants have been review and analyzed. Images of 44 galactic remnants have been reprocessed, merged when necessary, and collected. Some bright remnants were viewed with both moderate and high resolution instruments (IPC with 1 ft. resolution and HRI with 4 in. resolution). Some IPC images of nearby remnants have been separated into 2 energy bands, 0.2-0.6 keV and 0.6-4.5 keV; whereas most images cover the band 0.2-4.5 keV. These images are illustrated in this paper

  2. Interaction of a Pulsar Wind with the Expanding Supernova Remnant

    CERN Document Server

    Jun, B I

    1997-01-01

    Recent HST observations of the Crab Nebula show filamentary structures that appear to originate from the Rayleigh-Taylor (R-T) instability operating on the supernova ejecta accelerated by the pulsar-driven wind. In order to understand the origin and formation of the filaments in the Crab Nebula, we study the interaction of a pulsar wind with the uniformly expanding supernova remnant by means of numerical simulation. By performing two-dimensional numerical simulations, we find three independent instabilities in the interaction region between the pulsar wind and the expanding supernova remnant. The most important instability develops as the shock driven by the pulsar bubble becomes accelerated ($r \\propto t^{6/5}$). The instability produces pronounced filamentary structures that resemble the observed filaments in the Crab Nebula. Our numerical simulations can reproduce important observational features of the Crab Nebula. The high density heads in the R-T finger tips are produced because of the compressibility o...

  3. Rayleigh-Taylor Instabilities in Type Ia Supernova Remnants undergoing Cosmic-Ray Particle Acceleration - Low Adiabatic Index Solutions

    CERN Document Server

    Wang, Chih-Yueh

    2010-01-01

    This study investigates the evolution of Rayleigh-Taylor (R-T) instabilities in Type Ia supernova remnants owing to a low adiabatic index $\\gamma$, where $\\gamma$=1.2. As a result of the age of the remnant, the unstable gas cannot extend sufficiently far to produce the metal-enriched filaments of ejecta material close to the periphery of Tycho's supernova remnant. The dynamical properties of Tycho's remnant reveal that the injection of cosmic rays is too weak to alter the shock structure. Even if efficient acceleration of cosmic rays at the shock suffice, significantly enhanced mixing is not expected in Type Ia supernova remnants.

  4. New evidence for strong nonthermal effects in Tycho's supernova remnant

    OpenAIRE

    Voelk, H J; Berezhko, E. G.; Ksenofontov, L. T.

    2005-01-01

    For the case of Tycho's supernova remnant (SNR) we present the relation between the blast wave and contact discontinuity radii calculated within the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is demonstrated that these radii are confirmed by recently published Chandra measurements which show that the observed contact discontinuity radius is so close to the shock radius that it can only be explained by efficient CR acceleration which in turn makes th...

  5. Gamma-Ray Emission From Crushed Clouds in Supernova Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Yasunobu; Blandford, Roger D.; Funk, Stefan; /SLAC; Tajima, Hiroyasu; /Nagoya U., Solar-Terrestrial Environ. Lab.; Tanaka, Takaaki; /KIPAC, Menlo Park

    2010-10-27

    It is shown that the radio and gamma-ray emission observed from newly-found 'GeV-bright' supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of {pi}{sup 0}-mesons produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons.

  6. Reacceleration of electrons in supernova remnants

    CERN Document Server

    Pohl, M; Telezhinsky, I

    2014-01-01

    The radio spectra of many shell-type supernova remnants show deviations from those expected on theoretical grounds. In this paper we determine the effect of stochastic reacceleration on the spectra of electrons in the GeV band and at lower energies, and we investigate whether or not reacceleration can explain the observed variation of radio spectral indices. We explicitely calculate the momentum diffusion coefficient for 3 types of turbulence expected downstream of the forward shock: fast-mode waves, small-scale non-resonant modes, and large-scale modes arising from turbulent dynamo activity. Noting that low-energy particles are efficiently coupled to the quasi-thermal plasma, a simplified cosmic-ray transport equation can be formulated and is numerically solved. Only fast-mode waves can provide momentum diffusion fast enough to significantly modify the spectra of particles. Using a synchrotron emissivity that accurately reflects a highly turbulent magnetic field, we calculate the radio spectral index and fin...

  7. Far Ultraviolet Spectral Images of the Vela Supernova Remnant

    CERN Document Server

    Nishikida, K; Feuerstein, W M; Jin, H; Korpela, E J; Lee, D H; Min, K W; Sankrit, R; Seon, K I; Shinn, J H; Yuk, I S

    2006-01-01

    We present far-ultraviolet (FUV) spectral-imaging observations of the Vela supernova remnant (SNR), obtained with the Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR) instrument, also known as FIMS. The Vela SNR extends 8 degrees in the FUV and its global spectra are dominated by shock-induced emission lines. We find that the global FUV line luminosities can exceed the 0.1-2.5 keV soft X-ray luminosity by an order of magnitude. The global O VI:C III ratio shows that the Vela SNR has a relatively large fraction of slower shocks compared with the Cygnus Loop.

  8. Chandra LETG Observations of Supernova Remnant 1987A

    OpenAIRE

    Zhekov, Svetozar A.; McCray, Richard; Borkowski, Kazimierz J.; Burrows, David N.; Park, Sangwook

    2006-01-01

    We discuss the results from deep Chandra LETG observations of the supernova remnant 1987A (SNR 1987A). We find that a distribution of shocks, spanning the same range of velocities (from 300 to 1700 km/s) as deduced in the first part of our analysis (Zhekov et al. 2005, ApJL, 628, L127), can account for the entire X-ray spectrum of this object. The post-shock temperature distribution is bimodal, peaking at kT 0.5 and 3 keV. Abundances inferred from the X-ray spectrum have val...

  9. Neutron Star/Supernova Remnant Associations

    OpenAIRE

    Kaspi, V.M.

    1999-01-01

    The evidence for associations between neutron stars and supernova remnants is reviewed. After summarizing the situation for young radio pulsars, I consider the evidence from associations that young neutron stars can have properties very different from those of radio pulsars. This, though still controversial, shakes our simple perception of the Crab pulsar as prototypical of the young neutron star population.

  10. Expected gamma-ray emission of supernova remnant SN 1987A

    OpenAIRE

    Berezhko, E. G.; Ksenofontov, L. T.; Voelk, H J

    2010-01-01

    A nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants is employed to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5--100 yr. It is shown that an efficient production of nuclear CRs leads to a strong modification of the outer supernova remnant shock and to a large downstream magnetic field $B_\\mathrm{d}\\approx 20$ mG. The shock modification and the strong field are required to yield the steep...

  11. Fermi LAT Observations of Supernova Remnants Interacting with Molecular Clouds

    CERN Document Server

    Castro, Daniel

    2010-01-01

    We report the detection of gamma-ray emission coincident with four supernova remnants (SNRs) using data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. G349.7+0.2, CTB 37A, 3C 391 and G8.7-0.1 are supernova remnants known to be interacting with molecular clouds, as evidenced by observations of hydroxyl (OH) maser emission at 1720 MHz in their directions. SNR shocks are expected to be sites of cosmic rays acceleration, and clouds of dense material can provide effective targets for production of gamma-rays from pion-decay. The observations reveal unresolved sources in the direction of G349.7+0.2, CTB 37A and 3C 391, and a possibly extended source coincident with G8.7-0.1, all with significance levels greater than 10 sigma.

  12. Spitzer Observations of Molecular Hydrogen in Interacting Supernova Remnants

    CERN Document Server

    Hewitt, John W; Andersen, Morten; Reach, William T

    2009-01-01

    With Spitzer IRS we have obtained sensitive low-resolution spectroscopy from 5 to 35 microns for six supernova remnants (SNRs) that show evidence of shocked molecular gas: Kes 69, 3C 396, Kes 17, G346.6-0.2, G348.5-0.0 and G349.7+0.2. Bright, pure-rotational lines of molecular hydrogen are detected at the shock front in all remnants, indicative of radiative cooling from shocks interacting with dense clouds. We find the excitation of H2 S(0)-S(7) lines in these SNRs requires two non-dissociative shock components: a slow, 10 km/s C- shock through clumps of density 10^6 cm^-3, and a faster, 40-70 km/s C- shock through a medium of density 10^4 cm^-3. The ortho-to-para ratio for molecular hydrogen in the warm shocked gas is typically found to be much less than the LTE value, suggesting that these SNRs are propagating into cold quiescent clouds. Additionally a total of thirteen atomic fine-structure transitions of Ar+, Ar++, Fe+, Ne+, Ne++, S++, and Si+ are detected. The ionic emitting regions are spatially segrega...

  13. Kepler's Supernova Remnant: The view at 400 Years

    OpenAIRE

    Blair, W. P.

    2004-01-01

    October 2004 marks the 400th anniversary of the sighting of SN 1604, now marked by the presence of an expanding nebulosity known as Kepler's supernova remnant. Of the small number of remnants of historical supernovae, Kepler's remnant remains the most enigmatic. The supernova type, and hence the type of star that exploded, is still a matter of debate, and even the distance to the remnant is uncertain by more than a factor of two. As new and improved multiwavength observation...

  14. A 3D numerical model for Kepler's supernova remnant

    Science.gov (United States)

    Toledo-Roy, J. C.; Esquivel, A.; Velázquez, P. F.; Reynoso, E. M.

    2014-07-01

    We present new 3D numerical simulations for Kepler's supernova remnant. In this work we revisit the possibility that the asymmetric shape of the remnant in X-rays is the product of a Type Ia supernova explosion which occurs inside the wind bubble previously created by an AGB companion star. Due to the large peculiar velocity of the system, the interaction of the strong AGB wind with the interstellar medium results in a bow shock structure. In this new model we propose that the AGB wind is anisotropic, with properties such as mass-loss rate and density having a latitude dependence, and that the orientation of the polar axis of the AGB star is not aligned with the direction of motion. The ejecta from the Type Ia supernova explosion is modelled using a power-law density profile, and we let the remnant evolve for 400 yr. We computed synthetic X-ray maps from the numerical results. We find that the estimated size and peculiar X-ray morphology of Kepler's supernova remnant are well reproduced by considering an AGB mass-loss rate of 10-5 M? yr-1, a wind terminal velocity of 10 km s-1, an ambient medium density of 10-3 cm-3 and an explosion energy of 7 × 1050 erg. The obtained total X-ray luminosity of the remnant in this model reaches 6 × 1050 erg, which is within a factor of 2 of the observed value, and the time evolution of the luminosity shows a rate of decrease in recent decades of ˜2.4 per cent yr-1 that is consistent with the observations.

  15. The Formation and Evolution of Mixed Morphology Supernova Remnants

    Science.gov (United States)

    Smith, Randall

    Supernovae inject metals at high velocities into the interstellar medium (ISM), leading to shocks, plasma heating, and dust destruction and creation in addition to host of other processes. Supernova remnants (SNR) themselves are generally categorized as shell-type, center-filled, or ``mixed morphology.'' These categories, which encapsulate both the structure and evolution of the remnant, seem to depend critically on the precursor star and the surrounding ISM. Mixed morphology remnants, in particular, show a radio shell with a central region that emits primarily thermal X-rays. Observations show that these SNR are typically found near or in molecular clouds and, since they usually contain compact objects, arise from high-mass precursors. However, our theoretical understanding of these remnants lags far behind our observational data. There are at least four distinct models for their appearance, usually explaining observations from one or at most a few of the remnants, but there is no general solution. However, there has been a recent breakthrough in mixed morphology remnants. Suzaku observations of three remnants show that a significant fraction of the thermal X-rays are from a non-equilibrium recombining plasma, a surprising result since SNR are expected to generate ionizing, not recombining, plasmas. This new discovery should severely constrains theoretical predictions. We propose a combined semi-analytic and computational approach to understanding how these remnants develop and evolve. A number of observational studies have already cataloged the emission characteristics and sizes of these remnants. Our study will therefore begin with an exploration of simple 1-D spherically symmetric hydrodynamic plasma models that can generate the observed emission in X-ray and other bandpasses as well as the approximate size of a range of mixed morphology remnants. We will expand these studies using both 2-D and 3-D magnetohydrodynamic explosion models combined with a non-equilibrium plasma code to calculate the thermal X-ray emission. These models will be able to capture the turbulence and ejecta mixing that must happen in these remnants that cannot be simulated in 1-D. We will then determine the emission as a function of position in various bandpasses for our models with a range of initial conditions. This will allow us to determining which observables are the key to understanding the origin and evolution of mixed morphology remnants, and their overall impact on the ISM and the Galaxy. This work will address NASA's Strategic Subgoal 3D, to discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets.

  16. AZIMUTHAL DENSITY VARIATIONS AROUND THE RIM OF TYCHO's SUPERNOVA REMNANT

    International Nuclear Information System (INIS)

    Spitzer images of Tycho's supernova remnant in the mid-infrared reveal limb-brightened emission from the entire periphery of the shell and faint filamentary structures in the interior. As with other young remnants, this emission is produced by dust grains, warmed to ?100 K in the post-shock environment by collisions with energetic electrons and ions. The ratio of the 70 to 24 ?m fluxes is a diagnostic of the dust temperature, which in turn is a sensitive function of the plasma density. We find significant variations in the 70/24 flux ratio around the periphery of Tycho's forward shock, implying order-of-magnitude variations in density. While some of these are likely localized interactions with dense clumps of the interstellar medium (ISM), we find an overall gradient in the ambient density surrounding Tycho, with densities 3-10 times higher in the northeast than in the southwest. This large density gradient is qualitatively consistent with the variations in the proper motion of the shock observed in radio and X-ray studies. Overall, the mean ISM density around Tycho is quite low (?0.1-0.2 cm–3), consistent with the lack of thermal X-ray emission observed at the forward shock. We perform two-dimensional hydrodynamic simulations of a Type Ia supernova expanding into a density gradient in the ISM, and find that the overall round shape of the remnant is still easily achievable, even for explosions into significant gradients. However, this leads to an offset of the center of the explosion from the geometric center of the remnant of up to 20%, although lower values of 10% are preferred. The best match with hydrodynamical simulations is achieved if Tycho is located at a large (3-4 kpc) distance in a medium with a mean preshock density of ?0.2 cm–3. Such preshock densities are obtained for highly (?> 50%) porous ISM grains.

  17. Future GLAST observations of Supernova remnants and Pulsar Wind Nebulae

    CERN Document Server

    Funk, S

    2007-01-01

    Shell-type Supernova remnants (SNRs) have long been known to harbour a population of ultra-relativistic particles, accelerated in the Supernova shock wave by the mechanism of diffusive shock acceleration. Experimental evidence for the existence of electrons up to energies of ~100 TeV was first provided by the detection of hard X-ray synchrotron emission as e.g. in the shell of the young SNR SN1006. Furthermore using theoretical arguments shell-type Supernova remnants have long been considered as the main accelerator of protons - Cosmic rays - in the Galaxy; definite proof of this process is however still missing. Pulsar Wind Nebulae (PWN) - diffuse structures surrounding young pulsars - are another class of objects known to be a site of particle acceleration in the Galaxy, again through the detection of hard synchrotron X-rays such as in the Crab Nebula. Gamma-rays above 100 MeV provide a direct access to acceleration processes. The GLAST Large Area telescope (LAT) will be operating in the energy range betwee...

  18. Future GLAST Observations of Supernova Remnants And Pulsar Wind Nebulae

    International Nuclear Information System (INIS)

    Shell-type Supernova remnants (SNRs) have long been known to harbour a population of ultra-relativistic particles, accelerated in the Supernova shock wave by the mechanism of diffusive shock acceleration. Experimental evidence for the existence of electrons up to energies of 100 TeV was first provided by the detection of hard X-ray synchrotron emission as e.g. in the shell of the young SNR SN1006. Furthermore using theoretical arguments shell-type Supernova remnants have long been considered as the main accelerator of protons - Cosmic rays - in the Galaxy; definite proof of this process is however still missing. Pulsar Wind Nebulae (PWN) - diffuse structures surrounding young pulsars - are another class of objects known to be a site of particle acceleration in the Galaxy, again through the detection of hard synchrotron X-rays such as in the Crab Nebula. Gamma-rays above 100 MeV provide a direct access to acceleration processes. The GLAST Large Area telescope (LAT) will be operating in the energy range between 30 MeV and 300 GeV and will provide excellent sensitivity, angular and energy resolution in a previously rather poorly explored energy band. We will describe prospects for the investigation of these Galactic particle accelerators with GLAST

  19. VHE Gamma-ray supernova remnants

    OpenAIRE

    Funk, S

    2007-01-01

    Increasing observational evidence gathered especially in X-rays and gamma-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ``knee'' in the energy spectrum of Cosmic rays. This review summarises the current status of VHE gamma-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with...

  20. Second Epoch Hubble Space Telescope Imaging of Kepler's Supernova Remnant

    Science.gov (United States)

    Sankrit, Ravi; Blair, William P.; Borkowski, Kazimierz J.; Long, Knox S.; Patnaude, Daniel; Raymond, John C.; Reynolds, Stephen P.; Williams, Brian J.

    2015-01-01

    We have obtained new HST/WFC3 images of Kepler's supernova remnant in H-alpha (F656N) and [N II] (F658N) emission line filters. The bright radiative shocks in dense clumps are detected in both filters, while non-radiative shocks are seen as faint filaments only in the H-alpha image. Most of these Balmer filaments lie around the periphery of the remnant where the blast wave encounters partially neutral interstellar gas. We compare the new images with HST/ACS images taken nearly 10 years previously, and find that these filaments tracing the forward shock have moved 0.6"-0.9" between the two epochs. Assuming a distance of 4 kpc to the remnant, these proper motions correspond to shock velocities of 1160-1740 km/s, which are consistent with the published values, 1550-2000 km/s (e.g. Blair et al. 1991, ApJ 366, 484). We also find a few Balmer filaments with highly non-radial proper motions. In one particularly interesting case in the projected interior of the remnant, SE of the center, the shock appears to have wrapped around a sharp density enhancement and moved about 0.3" in the period between the observations.The images allow us to study the evolution of the shock around an ejecta knot, which is punching through the remnant boundary in the northwest. The forward shock, visible as an arcuate Balmer filament, has moved about 1". At the trailing edges, the system of radiative knots formed by Rayleigh-Taylor instabilities have undergone significant changes - some knots have disappeared, new ones have appeared, and many have changed in brightness. Elsewhere in the remnant we find changes in the relative intensities of many small, bright knots over the 10 year baseline, indicating the short radiative lifetimes of these features.This work has been supported in part by grant HST-GO-12885 to the Universities Space Research Association.

  1. The Origin of Kepler's Supernova Remnant

    CERN Document Server

    Patnaude, Daniel J; Park, Sangwook; Laming, J Martin

    2012-01-01

    It is now well established that Kepler's supernova remnant is the result of a Type Ia explosion. With an age of 407 years, and an angular diameter of ~ 4', Kepler is estimated to be between 3.0 and 7.0 kpc distant. Unlike other Galactic Type Ia supernova remnants such as Tycho and SN 1006, and SNR 0509-67.5 in the Large Magellanic Cloud, Kepler shows evidence for a strong circumstellar interaction. A bowshock structure in the north is thought to originate from the motion of a mass-losing system through the interstellar medium prior to the supernova. We present results of hydrodynamical and spectral modeling aimed at constraining the circumstellar environment of the system and the amount of 56Ni produced in the explosion. Using models that contain either 0.3 M_sun (subenergetic) or 1 M_sun (energetic) of 56Ni, we simulate the interaction between supernova Ia ejecta and various circumstellar density models. Based on dynamical considerations alone, we find that the subenergetic models favor a distance to the SNR...

  2. Magnetic field in supernova remnant SN 1987A

    CERN Document Server

    Berezhko, E G

    2006-01-01

    A nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants is employed to investigate the properties of the remnant SN 1987A. It is shown that a large downstream magnetic field ~10 mG is required to fit the existing observational data. Such a strong field together with the strong shock modification due to CR backreaction provides the steep and concave radioemission spectrum and considerable synchrotron cooling of high energy electrons which diminish their X-ray synchrotron flux below the observed Chandra flux which has to be considered as an upper limit for nonthermal X-ray emission. The expected gamma-ray energy flux at TeV-energies at the current epoch is 2x10^{-13} erg/(cm^2 s).

  3. New Limits on Enhanced Turbulence at Supernova Remnants

    Science.gov (United States)

    Spitler, L.; Spangler, S.

    2004-12-01

    Theories of cosmic ray acceleration by supernova remnants predict the existence of regions of intense magnetohydrodynamic turbulence upstream and downstream of the shock wave. Such regions are observed in the case of shock waves in the interplanetary medium, and the interplanetary turbulence possesses substantial density fluctuations. In the interplanetary medium, such turbulent regions produce enhanced radio propagation effects such as scintillations and angular broadening. In this paper, we report a search for enhanced angular broadening of the radio sources J0547+273 and J0128+631, observed through the supernova remnants S147 and G127.1+0.5, respectively. The observations were made with the Very Long Baseline Array of the National Radio Astronomy Observatory in the Fall of 2002. Observations were made at wavelengths of 6, 13, 18, and 21 cm. These multifrequency observations allow the scattered and intrinsic structures of these sources to be distinguished. For both sources, angular broadening attributable to interstellar turbulence was measured. The scattering sizes correspond to 1 GHz angular diameters (FWHM) of 8.9 milliarcseconds (mas) for J0128+631 and 6.4 mas for J0547+273, with uncertainties of about 1 mas for both sources. The expected ``incidental'' angular broadening due to the interstellar medium along these lines of sight was estimated from an updated version of the model of Lazio and Cordes (ApJ 479, 238, 1998). The incidental angular size estimates are 9.5 mas and 6.5-7.0 mas for J0128+631 and J0547+273, respectively. We therefore find no evidence for an enhancement of scattering, and thus intense turbulence, associated with either supernova remnant. Quantitative limits on the properties of waves and turbulence will be presented. This work was supported by grant ATM03-54782 from the Division of Atmospheric Sciences, National Science Foundation.

  4. Asymmetries in the Expansion and Emission from Young Supernova Remnants

    Science.gov (United States)

    Vigh, Carlos D.; Velázquez, Pablo F.; Gómez, Daniel O.; Reynoso, Estela M.; Esquivel, Alejandro; Matias Schneiter, E.

    2011-01-01

    We present two-dimensional and three-dimensional numerical simulations of asymmetric young supernova remnants (SNRs) carried out with the hydrodynamical code YGUAZÚ, aiming to quantitatively assess the role of different factors that may give origin to such asymmetries in their expansion. In particular, we are interested in modeling the morphology of Tycho's SNR to address whether the companion star of a Type Ia supernova progenitor has played a role in the subsequent evolution of the remnant. With the results from the numerical simulations, we can not only study the morphology of the SNR but also compute the emission of the remnant in different spectral bands. In particular, we simulate X-ray maps, which can be directly compared to recent and previous observations of Tycho's SNR. Our results suggest that the most likely explanation for Tycho's morphology is that after the supernova (SN) explosion the shock front stripped the envelope of its companion. We represent this effect by adding a conical region with an enhanced density into the initial sphere immediately after the explosion. Assuming that Tycho's companion was a massive red giant star, we explore different values of the angle of aperture and mass excess of the conical region. A good agreement with observational data was found for the model with a mass excess of 0.3 M sun and an aperture of 90°. After the collision with the SN shock wave, the companion would become an He-rich star. This scenario would gain observational support if a star with these characteristics is found in the vicinity of the center of the SN explosion.

  5. Approximate supernova remnant dynamics with cosmic ray production

    International Nuclear Information System (INIS)

    Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probable sources of cosmic rays. Recent shock acceleration models treating the cosmic rays (CR's) as test particles nb a prescribed supernova remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the interstellar medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation

  6. Kinematics of Supernova Remnants: Status of X-Ray Observations

    CERN Document Server

    Dewey, Daniel

    2010-01-01

    A supernova (SN) explosion drives stellar debris into the circumstellar material (CSM) filling a region on a scale of parsecs with X-ray emitting plasma. The velocities involved in supernova remnants (SNRs), thousands of km/s, can be directly measured with medium and high-resolution X-ray spectrometers and add an important dimension to our understanding of the last stages of the progenitor, the explosion mechanism, and the physics of strong shocks. After touching on the ingredients of SNR kinematics, I present a summary of the still-growing measurement results from SNR X-ray observations. Given the advances in 2D/3D hydrodynamics, data analysis techniques, and especially X-ray instrumentation, it is clear that our view of SNRs will continue to deepen in the decades ahead.

  7. Supernovae. The bubble-like interior of the core-collapse supernova remnant Cassiopeia A.

    Science.gov (United States)

    Milisavljevic, Dan; Fesen, Robert A

    2015-01-30

    The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of these catastrophic explosions remain uncertain, due partly to limited observational constraints on asymmetries deep inside the star. Here we present near-infrared observations of the young supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimensional map of its interior unshocked ejecta. The remnant's interior has a bubble-like morphology that smoothly connects to and helps explain the multiringed structures seen in the remnant's bright reverse-shocked main shell of expanding debris. This internal structure may originate from turbulent mixing processes that encouraged outwardly expanding plumes of radioactive (56)Ni-rich ejecta. If this is true, substantial amounts of its decay product, (56)Fe, may still reside in these interior cavities. PMID:25635094

  8. Cosmic ray acceleration search in Supernova Remnants

    International Nuclear Information System (INIS)

    Galactic Supernova Remnants (SNRs) are among the best candidates as source of cosmic rays due to energetics, observed rate of explosion and as possible sites where the Fermi mechanisms naturally plays a key role. Evidence of hadronic acceleration processes taking place in SNRs are being collected with the Fermi-LAT, whose sensitivity in the range 100MeV–100GeV is crucial for disentangling possible hadronic contribution from inverse Compton or bremsstrahlung leptonic component. A survey of the detected SNRs will be given, focusing the attention on the role of the environment and the evolution stage of the SNR in the interpretation of the observed ?-ray spectra

  9. Chandra LETG Observations of Supernova Remnant 1987A

    CERN Document Server

    Zhekov, S A; Burrows, D N; McCray, R; Park, S; Borkowski, Kazimierz J.; Burrows, David N.; Cray, Richard Mc; Park, Sangwook; Zhekov, Svetozar A.

    2006-01-01

    We discuss the results from deep Chandra LETG observations of the supernova remnant 1987A (SNR 1987A). We find that a distribution of shocks, spanning the same range of velocities (from 300 to 1700 km/s) as deduced in the first part of our analysis (Zhekov et al. 2005, ApJL, 628, L127), can account for the entire X-ray spectrum of this object. The post-shock temperature distribution is bimodal, peaking at kT 0.5 and 3 keV. Abundances inferred from the X-ray spectrum have values similar to those for the inner circumstellar ring, except that the abundances of nitrogen and oxygen are approximately a factor of two lower than those inferred from the optical/UV spectrum. The velocity of the X-ray emitting plasma has decreased since 1999, apparently because the blast wave has entered the main body of the inner circumstellar ring.

  10. Azimuthal Density Variations Around the Rim of Tycho's Supernova Remnant

    CERN Document Server

    Williams, Brian J; Ghavamian, Parviz; Hewitt, John W; Mao, S Alwin; Petre, Robert; Reynolds, Stephen P; Blondin, John M

    2013-01-01

    {\\it Spitzer} images of Tycho's supernova remnant in the mid-infrared reveal limb-brightened emission from the entire periphery of the shell and faint filamentary structures in the interior. As with other young remnants, this emission is produced by dust grains, warmed to $\\sim 100$ K in the post-shock environment by collisions with energetic electrons and ions. The ratio of the 70 to 24 $\\mu$m fluxes is a diagnostic of the dust temperature, which in turn is a sensitive function of the plasma density. We find significant variations in the 70/24 flux ratio around the periphery of Tycho's forward shock, implying order-of-magnitude variations in density. While some of these are likely localized interactions with dense clumps of the interstellar medium, we find an overall gradient in the ambient density surrounding Tycho, with densities 3-10 times higher in the NE than in the SW. This large density gradient is qualitatively consistent with the variations in the proper motion of the shock observed in radio and X-r...

  11. Infrared [Fe II] and Dust Emissions from Supernova Remnants

    CERN Document Server

    Koo, Bon-Chul

    2013-01-01

    Supernova remnants (SNRs) are strong thermal emitters of infrared radiation. The most prominent lines in the near-infrared spectra of SNRs are [Fe II] lines. The [Fe II] lines are from shocked dense atomic gases, so they trace SNRs in dense environments. After briefly reviewing the physics of the [Fe II] emission in SNR shocks, I describe the observational results which show that there are two groups of SNRs bright in [Fe II] emission: middle-aged SNRs interacting with molecular clouds and young core-collapse SNRs in dense circumstellar medium. The SNRs belonging to the former group are also bright in near-infrared H$_2$ emission, indicating that both atomic and molecular shocks are pervasive in these SNRs. The SNRs belonging to the latter group have relatively small radii in general, implying that most of them are likely the remnants of SN IIL/b or SN IIn that had strong mass loss before the explosion. I also comment on the "[Fe II]-H$_2$ reversal" in SNRs and on using the [Fe II]-line luminosity as an indic...

  12. Radio evolution of young supernova remnants

    International Nuclear Information System (INIS)

    A one dimensional spherically symmetric magnetohydrodynamic code was developed to describe the evolution of the dynamical and radio properties of young supernova remnants. The code contains subroutines which treat the development of Rayleigh-Taylor instabilities wherever they arise in the remnant. Under the assumption of quasi-stationary equilibrium (dynamical changes considered slow in comparison to the time it takes the instability to achieve equilibrium) determined that the velocity of the instability is W approximately (a lambda)/sup 1/2/, where a is the Rayleigh-Taylor acceleration and lambda is the wavelength of the instability. Subsequent processing of the kinetic energy of expansion, through turbulence, resulted in an increase in temperature and magnetic field strength. The model was used to analyze instability effects of density inhomogeneities in the interstellar medium on magnetic field amplification. A model was constructed for Cassiopeia A which gave good agreement with the measured dynamics, radio structure, and secular flux density decrease for the remnant. In order to compare observation with theory a computer routine was written that convolves the surface brightness at the source. The resultant convolved surface brightness graph is in good agreement with Rosenberg's observed ''model profile;'' differences between the graphs can be attributed to the asymmetric expansion of Cassiopeia A

  13. Thermonuclear supernova explosions and their remnants: the case of Tycho

    OpenAIRE

    Badenes, Carles; Bravo, Eduardo; Borkowski, Kazimierz J.

    2003-01-01

    We propose to use the thermal X-ray emission from young supernova remnants (SNRs) originated in Type Ia supernovae (SNe) to extract relevant information concerning the explosion mechanism. We focus on the differences between numerical 1D and 3D explosion calculations, and the impact that these differences could have on young SNRs. We use the remnant of the Tycho supernova (SN 1572) as a test case to compare with our predictions, discussing the observational features that all...

  14. Spectrophotometry of HII Regions, Diffuse Ionized Gas and Supernova Remnants in M31 The Transition from Photo- to Shock-Ionization

    CERN Document Server

    Galarza, V C; Braun, R

    1999-01-01

    We present results of KPNO 4-m optical spectroscopy of discrete emission-line nebulae and regions of diffuse ionized gas (DIG) in M31. Long-slit spectra of 16 positions in the NE half of M31 were obtained over a 5-15 kpc range in radial distance from the center of the galaxy. The spectra have been used to confirm 16 supernova remnant candidates from the Braun & Walterbos (1993) catalog. The slits also covered 46 HII regions which show significant differences among the various morphological types (center-brightened, diffuse, rings). Radial gradients in emission-line ratios such as [OIII]/H$\\beta$ and [OII]/[OIII] are observed most prominently in the center-brightened HII regions. These line ratio trends are either much weaker or completely absent in the diffuse and ring nebulae. The line ratio gradients previously seen in M31 SNRs (Blair, Kirshner, & Chevalier 1981; 1982) are well reproduced by our new data. The spectra of center-brightened HII regions and SNRs confirm previous determinations of the ra...

  15. Discovery of optical candidate supernova remnants in Sagittarius

    CERN Document Server

    Alikakos, J; Christopoulou, P E; Goudis, C D

    2012-01-01

    During an [O III] survey for planetary nebulae, we identified a region in Sagittarius containing several candidate Supernova Remnants and obtained deep optical narrow-band images and spectra to explore their nature. The images of the unstudied area have been obtained in the light of Halpha+[N II], [S II] and [O III]. The resulting mosaic covers an area of 1.4x1.0 deg^2 where filamentary and diffuse emission was discovered, suggesting the existence of more than one supernova remnants (SNRs) in the area. Deep long slit spectra were also taken of eight different regions. Both the flux calibrated images and the spectra show that the emission from the filamentary structures originates from shock-heated gas, while the photo-ionization mechanism is responsible for the diffuse emission. Part of the optical emission is found to be correlated with the radio at 4850 MHz suggesting their association, while the WISE infrared emission found in the area at 12 and 22 micron marginally correlates with the optical. The presenc...

  16. Onion-shell model of cosmic ray acceleration in supernova remnants

    Science.gov (United States)

    Bogdan, T. J.; Volk, H. J.

    1983-01-01

    A method is devised to approximate the spatially averaged momentum distribution function for the accelerated particles at the end of the active lifetime of a supernova remnant. The analysis is confined to the test particle approximation and adiabatic losses are oversimplified, but unsteady shock motion, evolving shock strength, and non-uniform gas flow effects on the accelerated particle spectrum are included. Monoenergetic protons are injected at the shock front. It is found that the dominant effect on the resultant accelerated particle spectrum is a changing spectral index with shock strength. High energy particles are produced in early phases, and the resultant distribution function is a slowly varying power law over several orders of magnitude, independent of the specific details of the supernova remnant.

  17. The X-ray Iron Emission from Tycho's Supernova Remnant

    CERN Document Server

    Hwang, U; Petre, R; Hwang, Una; Hughes, John P.; Petre, Robert

    1997-01-01

    We present the results of broadband fits to the X-ray spectrum of Tycho's supernova remnant obtained by the Solid-State Imaging Spectrometers on the ASCA Observatory. We use single-temperature, single-ionization-age, nonequilibrium ionization models to characterize the ejecta and the blast-shocked interstellar medium. Based on the Fe K emission at 6.5 keV, previous spectral studies have suggested that the Fe ejecta in this Type Ia remnant are stratified interior to the other ejecta. The ASCA data provide important constraints from the Fe L emission near 1 keV as well as the Fe K emission. We find that the simplest models, with emission from the ejecta and blast wave each at a single temperature and ionization age, severely underestimate the Fe K flux. We show that there is little Fe emission associated with the Si and S ejecta shell. The blast-shocked interstellar medium has abundances roughly 0.3 times the solar value, while the ejecta, with the exception of Fe, have relative abundances that are typical of T...

  18. Connecting the high- and low-energy Universe: dust processing inside Supernova Remnants

    Science.gov (United States)

    Micelotta, Elisabetta; Dwek, Eli; Slavin, Jonathan

    2015-09-01

    The recent detection of large amounts of dust (> 10(7) M_?) at very high redshift (z > 6) raises a fundamental question about the origin of such dust. The main dust producers, i. e., the stars populating the Red Giant Branch and the Asymptotic Giant Branch (RGB and AGB stars) did not have time to evolve. From an evolutionary point of view, young supernovae (SNe) could represent a viable source of dust in high-redshift galaxies, however, a critical issue still needs to be addressed. While recent observations have demonstrated that supernovae are indeed efficient dust factories, at the same time SNe represent the major agent responsible for dust destruction. Supernova blast waves propagating into the interstellar medium destroy the dust residing there, while the fresh dust produced by the supernova itself is threatened by the reverse shock which propagates through the expanding ejecta towards the center of the remnant. We focus here on this second destruction mechanism, with the aim of quantifying the amount of dust able to survive the heavy processing by the reverse shock and to reach the interstellar medium. We present our results for the textbook supernova remnant Cassiopeia A (Cas A). Using recent X-ray and infrared observations, we have developed a model for the evolution of the remnant and the simultaneous processing of the dust by the reverse shock, and derived the expected amount of surviving dust. In addition, we will briefly illustrate the impact of the capabilities of the Athena mission on the variety of astrophysical problems involving the processing of dust particles in extreme environments characterized by the presence of shocked X-ray emitting gas. These range from individual supernova remnants, to starburst super winds up to AGN outflows and the hot intra-cluster medium. The study of dust processing by a shocked gas truly connects the high-energy Universe with the low-energy Universe, and Athena will play a major role in it.

  19. HST/ACS Narrowband Imaging of the Kepler Supernova Remnant

    Science.gov (United States)

    Sankrit, Ravi; Blair, William P.; Frattare, Lisa M.; Rudnick, Lawrence; DeLaney, Tracey; Harrus, Ilana M.; Ennis, Jessica A.

    2007-01-01

    We present narrowband images of the Kepler supernova remnant obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. The images, with an angular resolution of 0.05" reveal the structure of the emitting gas in unprecedented detail. Radiative and nonradiative shocks are found in close proximity, unresolvable in gromd-based spectra, indicating that the pre-shock medium is highly clumped. The ionization structure, traced by differences in the [0 111] to [N 11] flux ratio, varies on subarcsecond scales. The variation is due to 110th differences in shock velocity as well as gradients in the evolutionary stage of the shocks. A prollinent complex of knots protruding beyond the boundary of the rennallt in the northwest is found to consist of bright radiative knots, collected by arcuate nonradiative filaments. Based on the coincidence of the optical emission with a bright isolated knot of X-ray emission, we infer that this feature is due to a Rayleigh-Taylor finger that formed at the contact discontinuity and overtook the primary blast wave.

  20. Generation of Cosmic rays in Historical Supernova Remnants

    OpenAIRE

    Sinitsyna V.Y.; Sinitsyna V.G.

    2013-01-01

    We present the results of observations of two types of Galactic supernova remnants with the SHALON mirror Cherenkov telescope of Tien-Shan high-mountain Observatory: the shell-type supernova remnants Tycho, Cas A and IC 443; plerions Crab Nebula, 3c58(SN1181) and Geminga (probably plerion). The experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy (800 GeV - 100 TeV) gamma-rays in Tycho's supernova remnant. The data obtaineds...

  1. Generation of Cosmic rays in Historical Supernova Remnants

    Science.gov (United States)

    Sinitsyna, V. G.; Sinitsyna, V. Y.

    2013-06-01

    We present the results of observations of two types of Galactic supernova remnants with the SHALON mirror Cherenkov telescope of Tien-Shan high-mountain Observatory: the shell-type supernova remnants Tycho, Cas A and IC 443; plerions Crab Nebula, 3c58(SN1181) and Geminga (probably plerion). The experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy (800 GeV - 100 TeV) gamma-rays in Tycho's supernova remnant. The data obtainedsuggest that the very high energy gamma-ray emission in the objects being discussedis different in origin.

  2. Generation of Cosmic rays in Historical Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.Y.

    2013-06-01

    Full Text Available We present the results of observations of two types of Galactic supernova remnants with the SHALON mirror Cherenkov telescope of Tien-Shan high-mountain Observatory: the shell-type supernova remnants Tycho, Cas A and IC 443; plerions Crab Nebula, 3c58(SN1181 and Geminga (probably plerion. The experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy (800 GeV - 100 TeV gamma-rays in Tycho's supernova remnant. The data obtainedsuggest that the very high energy gamma-ray emission in the objects being discussedis different in origin.

  3. X-ray emission of the hot gas and of accelerated particles in supernova remnants

    International Nuclear Information System (INIS)

    The current observations seem to support the theory that the shock wave of supernova remnants accelerate electrons (representing about 1% of cosmic rays) of the interstellar medium up to energies of about 1015 eV. However there is still no solid evidence that supernova remnants also accelerate protons (major component of cosmic rays). The X-ray observations of those supernova remnants with the satellite XMM-Newton can provide crucial information on the acceleration mechanisms and on this population of accelerated particles. This thesis presents the X-ray analysis of the supernova remnants RX J1713.7-3946 and SN 1006 for which it has been shown that they accelerate electrons efficiently. As a result, these objects are very good targets to compare the theoretical models of acceleration to the observation. For the first object, I constructed through new XMM-Newton observations, the first high-angular resolution mosaic of the entire supernova remnant. I then compared the X- and gamma-ray emission of this object in order to understand the nature of the gamma-ray emission. This spectral and morphological comparison allowed me to discuss the two possible origins of the gamma-ray radiation (issued by electrons or by protons). For SN 1006, I studied the density of the ambient medium in which the shock wave propagates. This density is a key parameter for the hydrodynamical evolution of the remnant and for studying a future gamma-ray emission. The study of X-ray emission of the gas heated by the shock wave allowed me to better estimate of the value of the density so far poorly constrained for this object. (author)

  4. Multi-dimensional simulations of the expanding supernova remnant of SN 1987A

    CERN Document Server

    Potter, T M; Reville, B; Ng, C -Y; Bicknell, G V; Sutherland, R S; Wagner, A Y

    2014-01-01

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There are still a large number of outstanding questions, such the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove & McKee progenitor with an envelope mass of $10 M_{\\sun}$ and an energy of $1.5 \\times 10^{44} J$. A termination shock in the...

  5. Planck intermediate results. XXXI. Microwave survey of Galactic supernova remnants

    OpenAIRE

    Plank Collaboration; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Benabed, K.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bond, J.R.; F. R. Bouchet; Catalano, A.

    2014-01-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 17 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the emission mechanism for microwave emission. In only one case, IC 443, is the high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is...

  6. Multi-dimensional simulations of the expanding supernova remnant of SN 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Potter, T. M.; Staveley-Smith, L. [International center for Radio Astronomy Research (ICRAR) M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Reville, B. [Center for Plasma Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Bicknell, G. V.; Sutherland, R. S. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 0200 (Australia); Wagner, A. Y., E-mail: tobympotter@gmail.com [Center for Computational Sciences, Tsukuba University, Tsukuba, Ibaraki, 305-8577 (Japan)

    2014-10-20

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove and McKee progenitor with an envelope mass of 10 M {sub ?} and an energy of 1.5 × 10{sup 44} J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 10{sup 7} m{sup –3} produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  7. A Model Grid for the Spectral Analysis of X-ray Emission in Young Type Ia Supernova Remnants

    OpenAIRE

    Badenes, C.; Bravo, E; Borkowski, K.

    2005-01-01

    We address a new set of models for the spectral analysis of the X-ray emission from young, ejecta-dominated Type Ia supernova remnants. These models are based on hydrodynamic simulations of the interaction between Type Ia supernova explosion models and the surrounding ambient medium, coupled to self-consistent ionization and electron heating calculations in the shocked supernova ejecta, and the generation of synthetic spectra with an appropriate spectral code. The details ar...

  8. Interstellar and Ejecta Dust in the Cas A Supernova Remnant

    Science.gov (United States)

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jonghee; Hwang, Una

    2013-01-01

    The ejecta of the Cas A supernova remnant has a complex morphology, consisting of dense fast-moving line emitting knots and diffuse X-ray emitting regions that have encountered the reverse shock, as well as more slowly expanding, unshocked regions of the ejecta. Using the Spitzer 5-35 micron IRS data cube, and Herschel 70, 100, and 160 micron PACS data, we decompose the infrared emission from the remnant into distinct spectral components associated with the different regions of the ejecta. Such decomposition allows the association of different dust species with ejecta layers that underwent distinct nuclear burning histories, and determination of the dust heating mechanisms. Our decomposition identified three characteristic dust spectra. The first, most luminous one, exhibits strong emission features at approx. 9 and 21 micron, and a weaker 12 micron feature, and is closely associated with the ejecta knots that have strong [Ar II] 6.99 micron and [Ar III] 8.99 micron emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low MgO-to-SiO2 ratios. A second, very different dust spectrum that has no indication of any silicate features, is best fit by Al2O3 dust and is found in association with ejecta having strong [Ne II] 12.8 micron and [Ne III] 15.6 micron emission lines. A third characteristic dust spectrum shows features that best matched by magnesium silicates with relatively high MgO-to-SiO2 ratio. This dust is primarily associated with the X-ray emitting shocked ejecta and the shocked interstellar/circumstellar material. All three spectral components include an additional featureless cold dust component of unknown composition. Colder dust of indeterminate composition is associated with [Si II] 34.8 micron emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. The dust mass giving rise to the warm dust component is about approx. 0.1solar M. However, most of the dust mass is associated with the unidentified cold dust component. Its mass could be anywhere between 0.1 and 1 solar M, and is primarily limited by the mass of refractory elements in the ejecta. Given the large uncertainty in the dust mass, the question of whether supernovae can produce enough dust to account for ISM dust masses in the local and high-z universe remains largely unresolved.

  9. Rayleigh-Taylor instabilities in Type Ia supernova remnants undergoing cosmic ray particle acceleration - low adiabatic index solutions

    Science.gov (United States)

    Wang, Chih-Yueh

    2011-07-01

    This study investigates the evolution of Rayleigh-Taylor (R-T) instabilities in Type Ia supernova remnants that are associated with a low adiabatic index ?, where ? supernova shock structure as a result of cosmic ray particle acceleration. Extreme cases, such as the case with the maximum compression ratio that corresponds to ?= 1.1, are examined. As ? decreases, the shock compression ratio rises, and an increasingly narrow intershock region with a more pronounced initial mixture of R-T unstable gas is produced. Consequently, the remnant outline may be perturbed by small-amplitude, small-wavelength bumps. However, as the instability decays over time, the extent of convective mixing in terms of the ratio of the radius of the R-T fingers to the blast wave does not strongly depend on the value of ? for ?? 1.2. As a result of the age of the remnant, the unstable gas cannot extend sufficiently far to form metal-enriched filaments of ejecta material close to the periphery of Tycho's supernova remnant. The consistency of the dynamic properties of Tycho's remnant with the adiabatic model ?= 5/3 reveals that the injection of cosmic rays is too weak to alter the shock structure. Even with very efficient acceleration of cosmic rays at the shock, significantly enhanced mixing is not expected in Type Ia supernova remnants.

  10. Discovery of optical candidate supernova remnants in Sagittarius

    Science.gov (United States)

    Alikakos, J.; Boumis, P.; Christopoulou, P. E.; Goudis, C. D.

    2012-08-01

    During an [O III] survey of planetary nebulae, we identified a region in Sagittarius containing several candidate supernova remants (SNRs) and obtained deep optical narrow-band images and spectra to explore their nature. We obtained images of the area of interest by acquiring observations in the emission lines of H? + [N II], [S II] and [O III]. The resulting mosaic covers an area of 1.4° × 1.0°, where both filamentary and diffuse emission was discovered, suggesting that there is more than one SNR in the area. Deep long-slit spectra were also taken of eight different regions. Both the flux-calibrated images and the spectra show that the emission from the filamentary structures originates from shock-heated gas, while the photo-ionization mechanism is responsible for the diffuse emission. Part of the optical emission is found to be correlated with the radio at 4850 MHz suggesting that they are related, while the infrared emission found in the area at 12 ?m and 22 ?m marginally correlates with the optical. The presence of the [O III] emission line in one of the candidate SNRs implies that the shock velocities in the interstellar "clouds" are between 120 km s-1 and 200 km s-1, while its absence in the other candidate SNRs indicates that the shock velocities there are slower. For all candidate remnants, the [S II] ?? 6716/6731 ratio indicates that the electron densities are below 240 cm-3, while the H? emission is measured to be between 0.6 and 41 × 10-17 erg s-1 cm-2 arcsec-2. The existence of eight pulsars within 1.5° of the center of the candidate SNRs also implies that there are many SNRs in the area as well as that the detected optical emission could be part of a number of supernovae explosions.

  11. VERITAS Observations of the Geminga Supernova Remnant

    CERN Document Server

    ,

    2015-01-01

    Geminga was first detected as a gamma-ray point source by the SAS-2 gamma-ray satellite observatory and the COS-B X-ray satellite observatory. Subsequent observations have identified Geminga as a heavily obscured radio-quiet pulsar associated with a nearby (250 pc) late Sedov phase (300,000 year) supernova remnant. The Geminga pulsar is the second brightest source detected by the Large Area Telescope aboard the Fermi gamma-ray satellite (Fermi-LAT) and has been frequently advanced as a source of the anomalous excess of cosmic ray positrons reported by PAMELA, Fermi-LAT, and AMS-2. It is surrounded by a compact X-ray pulsar wind nebula. Observations above 10 TeV by the water Cherenkov observatory Milagro have also revealed a diffuse gamma-ray halo around Geminga extending over several square degrees. Since 2007 the VERITAS IACT observatory has performed observations of Geminga and the surrounding halo region. However, the standard methods of source detection in VERITAS data have insufficient sensitivity to ang...

  12. Magnetic fields in young supernova remnants

    Science.gov (United States)

    Lou, Yu-Qing

    1994-06-01

    Magnetic field strengths in several young Type I supernova remnants (SNRs), such as those associated with SN 1572, 1604, 1006, have been previously inferred from radio synchrotron observations to be of the order of approximately 10-4 - 10-3 G, which greatly exceeds the typical magnetic field strength of several microgauss in ambient interstellar media (ISM). Existing radio polarization studies indicate that projected large-scale magnetic fields tend to orient in the radial direction with several percent in excess within shells of these SNRs. We propose in this Letter that magnetic fields in these young SNRs could mainly originate from magnetized envelopes or magnetospheres of their presupernova progenitors, presumably magnetic white dwarfs, and that magnetic fields entrained in stellar ejecta roughly scale as approximately r-1. The inferred excess of radial alignment for magnetic fields in these young SNRs could result from the Rayleigh-Taylor instability and/or the presence of large-scale random helices of magnetic field lines with their axes meandering through the SNR shell. Molecular clouds and clumps of stellar materials surrounding the presupernova progenitor could also produce radial magnetic fields from transverse fields as the SNR expands into the ISM.

  13. Supernova Remnant Progenitor Masses in M31

    CERN Document Server

    Jennings, Zachary G; Murphy, Jeremiah W; Dalcanton, Julianne J; Gilbert, Karoline M; Dolphin, Andrew E; Fouesneau, Morgan; Weisz, Daniel R

    2012-01-01

    Using HST photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main sequence masses (MZAMS) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and use CMD fitting to measure the recent star formation history (SFH) of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star and assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the MZAMS from this age. Because our technique is not contingent on precise location of the progenitor star, it can be applied to the location of any known SNR. We identify significant young SF around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of 2 increase over currently measured progenitor masses. We consider the remaining 6 SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped ...

  14. Suzaku spectra of a Type II Supernova Remnant Kes 79

    CERN Document Server

    Sato, Tamotsu; Lee, Shiu-Hang; Takahashi, Tadayuki

    2015-01-01

    This paper reports results of a Suzaku observation of the supernova remnant (SNR) Kes 79 (G33.6+0.1). The X-ray spectrum is best fitted by a two-temperature model: a non-equilibrium ionization (NEI) plasma and a collisional ionization equilibrium (CIE) plasma. The NEI plasma is spatially confined within the inner radio shell with kT~0.8 keV, while the CIE plasma is found in more spatially extended regions associated with the outer radio shell with kT~0.2 keV and solar abundance. Therefore, the NEI plasma is attributable to the SN ejecta and the CIE plasma is forward shocked interstellar medium. In the NEI plasma, we discovered K-shell line of Al, Ar and Ca for the first time. The abundance pattern and estimated mass of the ejecta are consistent with the core-collapse supernova explosion of a ~30-40 solar mass progenitor star. An Fe line with center energy of ~6.4 keV is also found in the southeast (SE) portion of the SNR, a close peripheral region around dense molecular clouds. One possibility is that the lin...

  15. Acceleration of cosmic rays in supernova-remnants

    International Nuclear Information System (INIS)

    It is commonly accepted that supernova-explosions are the dominant source of cosmic rays up to an energy of 10 to the 14th power eV/nucleon. Moreover, these high energy particles provide a major contribution to the energy density of the interstellar medium (ISM) and should therefore be included in calcuations of interstellar dynamic phenomena. For the following the first order Fermi mechanism in shock waves are considered to be the main acceleration mechanism. The influence of this process is twofold; first, if the process is efficient (and in fact this is the case) it will modify the dynamics and evolution of a supernova-remnant (SNR), and secondly, the existence of a significant high energy component changes the overall picture of the ISM. The complexity of the underlying physics prevented detailed investigations of the full non-linear selfconsistent problem. For example, in the context of the energy balance of the ISM it has not been investigated how much energy of a SN-explosion can be transfered to cosmic rays in a time-dependent selfconsistent model. Nevertheless, a lot of progress was made on many aspects of the acceleration mechnism

  16. Supernova remnant W49B and its environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Tian, W. W.; Zuo, P., E-mail: zhuhui@bao.ac.cn, E-mail: tww@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-10-01

    We study gamma-ray supernova remnant (SNR) W49B and its environment using recent radio and infrared data. Spitzer Infrared Spectrograph low resolution data of W49B shows shocked excitation lines of H{sub 2} (0,0) S(0)-S(7) from the SNR-molecular cloud interaction. The H{sub 2} gas is composed of two components with temperatures of ?260 K and ?1060 K, respectively. Various spectral lines from atomic and ionic particles are detected toward W49B. We suggest that the ionic phase has an electron density of ?500 cm{sup –3} and a temperature of ?10{sup 4} K by the spectral line diagnoses. The mid- and far-infrared data from MSX, Spitzer, and Herschel reveal a 151 ± 20 K hot dust component with a mass of 7.5 ± 6.6 × 10{sup –4} M {sub ?} and a 45 ± 4 K warm dust component with a mass of 6.4 ± 3.2 M {sub ?}. The hot dust is likely from materials swept up by the shock of W49B. The warm dust may possibly originate from the evaporation of clouds interacting with W49B. We build the H I absorption spectra of W49B and four nearby H II regions (W49A, G42.90+0.58, G42.43-0.26, and G43.19-0.53) and study the relation between W49B and the surrounding molecular clouds by employing the 2.12 ?m infrared and CO data. We therefore obtain a kinematic distance of ?10 kpc for W49B and suggest that the remnant is likely associated with the CO cloud at about 40 km s{sup –1}.

  17. Slow Diffusion of Cosmic-Rays around a Supernova Remnant

    CERN Document Server

    Fujita, Yutaka; Takahara, Fumio

    2010-01-01

    We study the escape of cosmic-ray protons accelerated at a supernova remnant (SNR). We are interested in their propagation in interstellar medium (ISM) after they leave the shock neighborhood where they are accelerated, but when they are still near the SNR with their energy density higher than that in the average ISM. Using Monte-Carlo simulations, we found that the cosmic-rays with energies of <~TeV excite Alfven waves around the SNR on a scale of the SNR itself if the ISM is highly ionized. Thus, even if the cosmic-rays can leave the shock, scattering by the waves prevents them from moving further away from the SNR. The cosmic-rays form a slowly expanding cosmic-ray bubble, and they spend a long time around the SNR. This means that the cosmic-rays cannot actually escape from the SNR until a fairly late stage of the SNR evolution. This is consistent with some results of Fermi and H.E.S.S. observations.

  18. Supernova remnant W49B and its environment

    CERN Document Server

    Zhu, H; Zuo, P

    2014-01-01

    We study Gamma-ray supernova remnant W49B and its environment using recent radio and infrared data. {\\it Spitzer} IRS low resolution data of W49B shows shocked excitation lines of H$_{2}$ (0,0) S(0)-S(7) from the SNR-molecular cloud interaction. The H$_2$ gas is composed of two components with temperature of $\\sim$260 K and $\\sim$1060 K respectively. Various spectral lines from atomic and ionic particles are detected towards W49B. We suggest the ionic phase has an electron density of $\\sim$500 cm${}^{-3}$ and a temperature of $\\sim$${10^4}$ K by the spectral line diagnoses. The mid- and far-infrared data from {\\it MSX}, {\\it Spitzer} and {\\it Herschel} reveals a 151 $\\pm$ 20 K hot dust component with a mass of 7.5 $\\pm$ 6.6 $\\times$ ${10}^{-4} {\\Msol}$ and a 45 $\\pm$ 4 K warm dust component with a mass of 6.4 $\\pm$ 3.2 ${\\Msol}$. The hot dust is likely from materials swept up by the shock of W49B. The warm dust may possibly originate from the evaporation of clouds interacting with W49B. We build the HI absorp...

  19. XMM-Newton observation of the Tycho Supernova Remnant

    CERN Document Server

    Decourchelle, A; Audard, M; Aschenbach, B; Sembay, S; Rothenflug, R; Ballet, J; Stadlbauer, T; West, R G

    2001-01-01

    We present the observation of the Tycho supernova remnant obtained with the EPIC and RGS instruments onboard the XMM-Newton satellite. We compare images and azimuthally averaged radial profiles in emission lines from different elements (silicon and iron) and different transition lines of iron (Fe L and Fe K). While the Fe XVII L line and Si XIII K line images are globally spatially coincident, the Fe K emission clearly peaks at a smaller radius, indicating a higher temperature toward the reverse shock. This is qualitatively the profile expected when the reverse shock, after travelling through the outer power-law density profile, has entered the central plateau of the ejecta. The high energy continuum map has an overall smooth distribution, with a similar extent to the radio emission. Its radial profile peaks further out than the lines emission. Brighter and harder continuum regions are observed with a rough bipolar symmetry in the eastern and western edges. The spectral analysis of the southeastern knots supp...

  20. A New Evolutionary Phase of Supernova Remnant 1987A

    CERN Document Server

    Park, Sangwook; Burrows, David N; Racusin, Judith L; Dewey, Daniel; McCray, Richard

    2011-01-01

    We have been monitoring the supernova remnant (SNR) 1987A with {\\it Chandra} observations since 1999. Here we report on the latest change in the soft X-ray light curve of SNR 1987A. For the last $\\sim$1.5 yr (since day $\\sim$8000), the soft X-ray flux has significantly flattened, staying (within uncertainties) at $f_{\\rm X}$ $\\sim$ 5.7 $\\times$ 10$^{-12}$ erg cm$^{-2}$ s$^{-1}$ (corresponding to $L_{\\rm X}$ $\\sim$ 3.6 $\\times$ 10$^{36}$ erg s$^{-1}$) in the 0.5--2 keV band. This remarkable change in the recent soft X-ray light curve suggests that the forward shock is now interacting with a decreasing density structure, after interacting with an increasing density gradient over $\\sim$10 yr prior to day $\\sim$8000. Possibilities may include the case that the shock is now propagating beyond a density peak of the inner ring. We briefly discuss some possible implications on the nature of the progenitor and the future prospects of our {\\it Chandra} monitoring observations.

  1. Supernova Remnant Evolution in Wind Bubbles: A Closer Look at Kes 27

    CERN Document Server

    Dwarkadas, Vikram V

    2012-01-01

    Massive Stars (> 8 solar masses) lose mass in the form of strong winds. These winds accumulate around the star, forming wind-blown bubbles. When the star explodes as a supernova (SN), the resulting shock wave expands within this wind-blown bubble, rather than the interstellar medium. The properties of the resulting remnant, its dynamics and kinematics, the morphology, and the resulting evolution, are shaped by the structure and properties of the wind-blown bubble. In this article we focus on Kes 27, a supernova remnant (SNR) that has been proposed by Chen et al (2008) to be evolving in a wind-blown bubble, explore its properties, and investigate whether the properties could be ascribed to evolution of a SNR in a wind-blown bubble. Our initial model does not support this conclusion, due to the fact that the reflected shock is expanding into much lower densities.

  2. Supernova Shock Breakout from a Red Supergiant

    OpenAIRE

    Schawinski, K.; Justham, S.; de Wolf, C.; P. Podsiadlowski; Sullivan, M.; Steenbrugge, KC; Bell, T; Röser, H-J; Walker, ES; ASTIER, P; Balam, D; Balland, C.; Carlberg, R; Conley, A; D. Fouchez

    2008-01-01

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star...

  3. On the Nonthermal Emission from the Supernova Remnant W51C

    OpenAIRE

    Fang, Jun; Zhang, Li

    2010-01-01

    The middle-aged supernova remnant (SNR) W51C is an interesting source for the interaction of the shell with a molecular cloud. The shell emits intense radio synchrotron photons, and high-energy gamma-rays from the remnant have been detected using the {\\it Fermi} Large Area Telescope (LAT), the H.E.S.S. telescope, and the Milagro gamma-ray observatory. Based on a semi-analytical approach to the nonlinear shock acceleration process, we investigate the multiband nonthermal emis...

  4. Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants

    Science.gov (United States)

    Beck, R.; Drury, L. O.; Voelk, H. J.; Bogdan, T. J.

    1985-01-01

    The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium.

  5. Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants

    International Nuclear Information System (INIS)

    The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium

  6. The TeV Morphology of the Interacting Supernova Remnant IC 443

    CERN Document Server

    Humensky, Brian

    2015-01-01

    The middle-aged supernova remnant IC 443 is interacting with molecular gas in its surroundings. $Fermi$-LAT has established that its gamma-ray emission at low energies shows the "pion bump" that is characteristic of hadronic emission. TeV emission was previously established by MAGIC and VERITAS at a site of interaction between the shock front and a molecular cloud. VERITAS has continued to observe IC 443 and can now resolve the emission on few-arcmin scales. We will present results on the emission morphology and discuss possible sources of the emission, including the shell of the remnant and other gaseous structures in the vicinity.

  7. The bubble-like interior of the core-collapse supernova remnant Cassiopeia A

    Science.gov (United States)

    Milisavljevic, Dan; Fesen, Robert A.

    2015-01-01

    The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of these catastrophic explosions remain uncertain, due partly to limited observational constraints on asymmetries deep inside the star. Here we present near-infrared observations of the young supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimensional map of its interior unshocked ejecta. The remnant’s interior has a bubble-like morphology that smoothly connects to and helps explain the multiringed structures seen in the remnant's bright reverse-shocked main shell of expanding debris. This internal structure may originate from turbulent mixing processes that encouraged outwardly expanding plumes of radioactive 56Ni-rich ejecta. If this is true, substantial amounts of its decay product, 56Fe, may still reside in these interior cavities.

  8. Second Epoch Hubble Space Telescope Observations of Kepler's Supernova Remnant: The Proper Motions of Balmer Filaments

    CERN Document Server

    Sankrit, Ravi; Blair, William P; Long, Knox S; Williams, Brian J; Borkowski, Kazimierz J; Patnaude, Daniel J; Reynolds, Stephen P

    2015-01-01

    We report on the proper motions of Balmer-dominated filaments in Kepler's supernova remnant using high resolution images obtained with the Hubble Space Telescope at two epochs separated by about 10 years. We use the improved proper motion measurements and revised values of shock velocities to derive a distance to Kepler of 5.1 [+0.8, -0.7] kpc. The main shock around the northern rim of the remnant has a typical speed of 1690 km/s and is encountering material with densities of about 8 cm^-3. We find evidence for the variation of shock properties over small spatial scales, including differences in the driving pressures as the shock wraps around a curved cloud surface. We find that the Balmer filaments ahead of the ejecta knot on the northwest boundary of the remnant are becoming fainter and more diffuse. We also find that the Balmer filaments associated with circumstellar material in the interior regions of the remnant are due to shocks with significantly lower velocities and that the brightness variations amon...

  9. Far-Ultraviolet Cooling Features of the Antlia Supernova Remnant

    CERN Document Server

    Shinn, Jong-Ho; Sankrit, Ravi; Ryu, Kwang-Sun; Kim, Il-Joong; Han, Wonyong; Nam, Uk-Won; Park, Jang-Hyun; Edelstein, Jerry; Korpela, Eric J

    2007-01-01

    We present far-ultraviolet observations of the Antlia supernova remnant obtained with Far-ultraviolet IMaging Spectrograph (FIMS, also called SPEAR). The strongest lines observed are C IV 1548,1551 and C III 977. The C IV emission of this mixed-morphology supernova remnant shows a clumpy distribution, and the line intensity is nearly constant with radius. The C III 977 line, though too weak to be mapped over the whole remnant, is shown to vary radially. The line intensity peaks at about half the radius, and drops at the edge of the remnant. Both the clumpy distribution of C IV and the rise in the C IV to C III ratio towards the edge suggest that central emission is from evaporating cloudlets rather than thermal conduction in a more uniform, dense medium.

  10. Interstellar and ejecta dust in the cas a supernova remnant

    International Nuclear Information System (INIS)

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 ?m), and broad-band Herschel PACS imaging (70, 100, and 160 ?m), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ?9 and 21 ?m and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al2O3 dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ? 0.1 M ?. The mass of warmer dust is only ?0.04 M ?.

  11. 3D Simulations of the Emission from Young Supernova Remnants Including Efficient Particle Acceleration

    Science.gov (United States)

    Ferrand, Gilles; Safi-Harb, Samar; Decourchelle, Anne

    2015-08-01

    Within our Galaxy, supernova remnants (SNRs) are believed to be the major sources of cosmic rays up to the “knee” (~1 PeV). The detection of non-thermal radiation from these objects, in X-rays over the past two decades, and finally in gamma-rays over the past decade, has proved the presence of energetic particles. However important questions remain regarding the share of the hadronic and leptonic components as well as the fraction of the supernova energy channelled into these components. We will show how such questions can be addressed by means of 3D numerical simulations of SNRs that combine a hydrodynamic treatment of the shock wave with a kinetic treatment of particle acceleration. Performing 3D simulations of SNRs allows us to produce synthetic projected maps and spectra, that can be compared with observations (in X-rays for the thermal emission and multi-wavelength for the non-thermal emission). In particular, we will show how the presence of energetic protons can be inferred from the broadband emission of the remnant. We will contrast the properties of the remnants from the two different kinds of supernovae: thermonuclear supernovae (like Tycho) that usually occur in a mostly undisturbed medium, and core-collapse supernovae (like Cas A) that occur in a more complex medium bearing the imprint of the winds of the progenitor star.

  12. SUPERNOVA REMNANT PROGENITOR MASSES IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R. [Department of Astronomy, University of Washington Seattle, Box 351580, WA 98195 (United States); Murphy, Jeremiah W. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Dolphin, Andrew E., E-mail: zachjenn@uw.edu, E-mail: adolphin@raytheon.com [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States)

    2012-12-10

    Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a minimum mass for core collapse between 7.0 and 7.8 M{sub Sun }.

  13. A Possible Site of Cosmic Ray Acceleration in the Supernova Remnant IC 443

    CERN Document Server

    Keohane, J W; Gotthelf, E V; Ozaki, M; Koyama, K; Keohane, Jonathan W.

    1997-01-01

    We present evidence for shock acceleration of cosmic rays to high energies (about 10 TeV) in the supernova remnant IC 443. X-ray imaging spectroscopy with ASCA reveals two regions of particularly hard emission: an unresolved source embedded in an extended emission region, and a ridge of emission coincident with the southeastern rim. Both features are located on part of the radio shell where the shock wave is interacting with molecular gas, and together they account for a majority of the emission at 7 keV. Though we would not have noticed it a priori, the unresolved feature is coincident with one resolved by the ROSAT HRI. Because this feature overlaps a unique region of flat radio spectral index (alpha 5,000 km/s). We conclude that the anomalous feature is most likely tracing enhanced particle acceleration by shocks that are formed as the supernova blast wave impacts the ring of molecular clouds.

  14. Supernova Remnants Interacting with Molecular Clouds: X-ray and Gamma-ray Signatures

    CERN Document Server

    Slane, P; Ellison, D C; Dubner, G; Castro, D

    2014-01-01

    The giant molecular clouds (MCs) found in the Milky Way and similar galaxies play a crucial role in the evolution of these systems. The supernova explosions that mark the death of massive stars in these regions often lead to interactions between the supernova remnants (SNRs) and the clouds. These interactions have a profound effect on our understanding of SNRs. Shocks in SNRs should be capable of accelerating particles to cosmic ray (CR) energies with efficiencies high enough to power Galactic CRs. X-ray and gamma-ray studies have established the presence of relativistic electrons and protons is some SNRs and provided strong evidence for diffusive shock acceleration as the primary acceleration mechanism, including strongly amplified magnetic fields, temperature and ionization effects on the shock-heated plasmas, and modifications to the dynamical evolution of some systems. Because protons dominate the overall energetics of the CRs, it is crucial to understand this hadronic component even though electrons are ...

  15. Secondary Accceleration of Cosmic Rays by Supernova Shocks

    CERN Document Server

    Wandel, A

    1997-01-01

    In the common model supernova shock-acceleration of cosmic rays there are two open questions: 1. where does the high energy cosmic rays below the knee (10$^4-10^6$ Gev) come from, and 2. are cosmic ray accelerated only at their origin or contineuosly during their residence in the Galaxy. We show that $10^15$ eV light nuclei are probably accelerted by associations of supernovae. The ratio of the spectra of secondary to primary cosmic rays would be affected by repeated acceleration (also called reacceleration or secondary acceleration) in the ISM during their propagation in the galaxy. The observed secondary and primary CR spectra are used to constrain the amount of such reacceleration by supernova remnants (SNR). Two cases are considered: weak shocks ($13$) of relatively young remnants. It is shown that weak shocks produce more reacceleration than what is permitted in the framework of the standard leaky box (SLB) model, making it inconsistent with dispersed acceleration that should be produced by SNR. If the S...

  16. Supernova 1987A: a Template to Link Supernovae to their Remnants

    CERN Document Server

    Orlando, S; Pumo, M L; Bocchino, F

    2015-01-01

    The emission of supernova remnants reflects the properties of both the progenitor supernovae and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the supernova. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15000 after the supernova. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution reproduces also the X-ray emission of the subsequent expanding remnant, thus bridging the gap between supernovae and supernova remnants. By comparing model results with observations, we constrained the explosion energy in the range $1.2-1.4\\times 10^{51}$~erg and the envelope mass in the rang...

  17. New evidence for strong nonthermal effects in Tycho's supernova remnant

    CERN Document Server

    Völk, H J; Ksenofontov, L T

    2005-01-01

    We present for the case of Tycho's supernova remnant (SNR) the relation between the blast wave and contact discontinuity sizes calculated within the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is demonstrated that they are very well confirmed by recently published Chandra measurements, which show that the observed contact discontinuity radius is so close to the shock radius, that it can only be explained by the efficient CR acceleration which in turn makes the medium more compressible. Together with the recently determined new value E_{sn}=1.2x10^{51} erg of the SN explosion energy this gives an additional important confirmation that the predicted gamma-ray flux at TeV-energies (2-5)x10^{-13} erg/(cm^2 s), produced by accelerated nuclear CRs, is indeed expected from Tycho's SNR. Chandra measurements and the HEGRA upper limit of the TeV gamma-ray flux together limit the source distance d to 3.3 < d < 4 kpc.

  18. Exploring the supernova remnant G308.4-1.4

    CERN Document Server

    Prinz, Tobias

    2012-01-01

    Aims: We present a detailed X-ray and radio wavelength study of G308.4-1.4, a candidate supernova remnant (SNR) in the ROSAT All Sky Survey and the MOST supernova remnant catalogue. Methods: The SNR candidate and its central point sources were studied using observations from the Chandra X-ray Observatory, SWIFT, the Australian Telescope Compact Array (ATCA) at 1.4 and 2.5 GHz and WISE infrared observation at 24 $\\mu$m. Results: We conclude that G308.4-1.4 is indeed a supernova remnant by means of its morphology matching at X-ray, radio and infrared wavelength, its spectral energy distribution in the X-ray band and its emission characteristics in the radio band. G308.4-1.4 is a shell-type SNR. X-ray, radio and infrared emission is seen only in the eastern part of the remnant due to a strong spatial density variation of the interstellar medium around the remnant. The X-ray emission can best be described by an absorbed non-equilibrium collisional plasma with a hydrogen density of $n_\\text{H}=(1.02\\pm 0.04)$ cm$^...

  19. On the origin of two-shell supernova remnants

    CERN Document Server

    Gvaramadze, V V

    2007-01-01

    The proper motion of massive stars could cause them to explode far from the geometric centers of their wind-driven bubbles and thereby could affect the symmetry of the resulting diffuse supernova remnants. We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. Cygnus Loop, 3C 400.2, etc.).

  20. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    CERN Document Server

    Tran, Aaron; Petre, Robert; Ressler, Sean M; Reynolds, Stephen P

    2015-01-01

    Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths ~1--5% of remnant radius and magnetic field strengths ~50--...

  1. Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    CERN Document Server

    Borkowski, K J; Hwang, U; Green, D A; Petre, R; Krishnamurthy, K; Willett, R

    2013-01-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of about 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities larger than about 18,000 km/s have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe Kalpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating tha...

  2. The Bubble-like Interior of the Core-Collapse Supernova Remnant Cassiopeia A

    CERN Document Server

    Milisavljevic, Dan

    2015-01-01

    The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of how these catastrophic explosions proceed remain uncertain due, in part, to limited observational constraints on various processes that can introduce asymmetries deep inside the star. Here we present near-infrared observations of the young Milky Way supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimensional map of its interior, unshocked ejecta. The remnant's interior has a bubble-like morphology that smoothly connects to and helps explain the multi-ringed structures seen in the remnant's bright reverse shocked main shell of expanding debris. This internal structure may have originated from turbulent mixing processes that encouraged the development of outwardly expanding plumes of radioactive 56Ni-rich ejecta. If this is true, substantial amounts of its decay product, 56Fe, may still reside in these interior cavities.

  3. G306.3-0.9: A newly discovered young galactic supernova remnant

    CERN Document Server

    Reynolds, Mark; Murphy, Tara; Miller, Jon; Maitra, Dipankar; Gultekin, Kayhan; Gehrels, Neil; Kennea, Jamie; Siegel, Michael; Gelbord, Jonathan; Kuin, Paul; Moss, Vanessa; Reeves, Sarah; Robbins, William; Gaensler, Bryan; Reis, Rubens; Petre, Robert

    2013-01-01

    We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3-0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a young SNR in the Sedov phase, implying an age of 2500 yr for a distance of 8 kpc, plausibly identifying this as one of the 20 youngest Galactic SNRs. Australia Telescope Compact Array (ATCA) imaging reveals a prominent ridge of radio emission that correlates with the X-ray emission. We find a flux density of ~ 160 mJy at 1 GHz, which is the lowest radio flux recorded for a Galactic SNR to date. The remnant is also detected at 24microns, indicating the presence of irradiated warm dust. The data reveal no compelling evidence for the presence of a compact stellar remnant.

  4. G306.3-0.9: A NEWLY DISCOVERED YOUNG GALACTIC SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Mark T.; Miller, Jon M.; Maitra, Dipankar; Gueltekin, Kayhan; Reis, Rubens C. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Loi, Shyeh T.; Murphy, Tara; Moss, Vanessa; Reeves, Sarah; Robbins, William J.; Gaensler, B. M. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Gehrels, Neil; Petre, Robert [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kennea, Jamie A.; Siegel, Michael H.; Gelbord, Jonathan [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Kuin, Paul, E-mail: markrey@umich.edu [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2013-04-01

    We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3-0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a young SNR in the Sedov phase, implying an age of 2500 yr for a distance of 8 kpc, plausibly identifying this as one of the 20 youngest Galactic SNRs. Australia Telescope Compact Array imaging reveals a prominent ridge of radio emission that correlates with the X-ray emission. We find a flux density of {approx}160 mJy at 1 GHz, which is the lowest radio flux recorded for a Galactic SNR to date. The remnant is also detected at 24 {mu}m, indicating the presence of irradiated warm dust. The data reveal no compelling evidence for the presence of a compact stellar remnant.

  5. G306.3–0.9: A NEWLY DISCOVERED YOUNG GALACTIC SUPERNOVA REMNANT

    International Nuclear Information System (INIS)

    We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3–0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a young SNR in the Sedov phase, implying an age of 2500 yr for a distance of 8 kpc, plausibly identifying this as one of the 20 youngest Galactic SNRs. Australia Telescope Compact Array imaging reveals a prominent ridge of radio emission that correlates with the X-ray emission. We find a flux density of ?160 mJy at 1 GHz, which is the lowest radio flux recorded for a Galactic SNR to date. The remnant is also detected at 24 ?m, indicating the presence of irradiated warm dust. The data reveal no compelling evidence for the presence of a compact stellar remnant.

  6. Oxygen emission in remnants of thermonuclear supernovae as a probe for their progenitor system

    CERN Document Server

    Kosenko, D; Kromer, M; Blinnikov, S I; Pakmor, R; Kaastra, J S

    2014-01-01

    Recent progress in numerical simulations of thermonuclear supernova explosions brings up a unique opportunity in studying the progenitors of Type Ia supernovae. Coupling state-of-the-art explosion models with detailed hydrodynamical simulations of the supernova remnant evolution and the most up-to-date atomic data for X-ray emission calculations makes it possible to create realistic synthetic X-ray spectra for the supernova remnant phase. Comparing such spectra with high quality observations of supernova remnants could allow to constrain the explosion mechanism and the progenitor of the supernova. The present study focuses in particular on the oxygen emission line properties in young supernova remnants, since different explosion scenarios predict a different amount and distribution of this element. Analysis of the soft X-ray spectra from supernova remnants in the Large Magellanic Cloud and confrontation with remnant models for different explosion scenarios suggests that SNR 0509-67.5 could originate from a de...

  7. A Newly Recognized Very Young Supernova Remnant in M83

    Science.gov (United States)

    Blair, William P.; Winkler, P. Frank; Long, Knox S.; Whitmore, Bradley C.; Kim, Hwihyun; Soria, Roberto; Kuntz, K. D.; Plucinsky, Paul P.; Dopita, Michael A.; Stockdale, Christopher

    2015-01-01

    As part of a spectroscopic survey of supernova remnant candidates in M83 using the Gemini-South telescope and GMOS, we have discovered one object whose spectrum shows very broad lines at Halpha, [O I] 6300, and [O III] 5007, similar to those from other objects classified as `late time supernovae.' Although six historical supernovae have been observed in M83 since 1923, none were seen at the location of this object. Hubble Space Telescope Wide Field Camera 3 images show a nearly unresolved emission source, while Chandra and ATCA data reveal a bright X-ray source and nonthermal radio source at the position. Objects in other galaxies showing similar spectra are only decades post-supernova, which raises the possibility that the supernova that created this object occurred during the last century but was not observed. Using photometry of nearby stars from the HST data, we suggest the precursor was at least 17 M(sun), and the presence of broad Halpha in the spectrum makes a type II supernova likely. The supernova must predate the 1983 VLA radio detection of the object. We suggest examination of archival images of M83 to search for evidence of the supernova event that gave rise to this object, and thus provide a precise time since the explosion.We acknowledge STScI grants under the umbrella program ID GO-12513 to Johns Hopkins University, STScI, and Middlebury College. PFW acknowledges additional support from the National Science Foundation through grant AST-0908566.

  8. An Atomic and Molecular Study of the Interstellar Medium Around the Supernova Remnant RCW 103

    Science.gov (United States)

    Paron, Sergio A.; Reynoso, Estela M.; Purcell, Cormac; Dubner, Gloria M.; Green, Anne

    2006-05-01

    We report on the detection of HCO+ and 12CO emission in the rotational transition J = 1-0 in the vicinity of the shock front at the southern border of the supernova remnant RCW 103, where previous infrared observations suggest an interaction with a molecular cloud. The observations were carried out with the Australian Millimeter Radiotelescope at Mopra. We observed a depletion of HCO+ behind the supernova shock front. In addition, we studied the interstellar medium over an extended region towards RCW 103 based on archival ? 21 cm Hi line observations from the Australia Telescope Compact Array (ATCA) and the Parkes Telescope. No atomic gas was observed in emission in coincidence with the molecular feature. This absence was interpreted in terms of self-absorption processes.

  9. Supernova shock breakout from a red supergiant.

    Science.gov (United States)

    Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars. PMID:18556514

  10. Escape of cosmic-ray electrons from supernova remnants

    Science.gov (United States)

    Ohira, Yutaka; Yamazaki, Ryo; Kawanaka, Norita; Ioka, Kunihito

    2012-11-01

    We investigate the escape of cosmic ray (CR) electrons from a supernova remnant (SNR) to interstellar space. We show that CR electrons escape in order, from high energies to low energies, like CR nuclei. However, the escape starts later than the beginning of the Sedov phase at an SNR age of 103 to 7 × 103 yr, and the maximum energy of runaway CR electrons is below the knee at about 0.3-50 TeV because, unlike CR nuclei, CR electrons lose their energy as a result of synchrotron radiation. The highest-energy CR electrons might have already been detected by the High Energy Stereoscopic System (HESS) and MAGIC as a cut-off in the CR electron spectrum, and it will be probed by the Alpha Magnetic Spectrometer (AMS-02), the Calorimeteric Electron Telescope (CALET), the Cherenkov Telescope Array (CTA) and the Large High Altitude Air Shower Observatory (LHAASO) experiments. We also calculate the spatial distribution of runaway CR electrons and their radiation spectra around SNRs. Contrary to common belief, maximum-energy photons of synchrotron radiation around 1 keV are emitted by runaway CR electrons, which have been caught up by the shock. Inverse Compton scattering by runaway CR electrons can dominate the gamma-ray emission from runaway CR nuclei via pion decay. Both are detectable by CTA and LHAASO and they can give clues to the origin of CRs and the amplification of magnetic fluctuations around the SNR. We also discuss middle-aged and/or old SNRs as unidentified very-high-energy gamma-ray sources.

  11. ASTRO-H White Paper - Young Supernova Remnants

    CERN Document Server

    Hughes, J P; Bamba, A; Katsuda, S; Leutenegger, M; Long, K S; Maeda, Y; Mori, K; Nakajima, H; Sawada, M; Tanaka, T; Uchida, H; Yamaguchi, H; Aharonian, F; Funk, S; Hiraga, J; Ishida, M; Koyama, K; Matsumoto, H; Nobukawa, M; Ozaki, M; Tamagawa, T; Tsunemi, H; Tomida, H; Uchiyama, Y; Uno, S

    2014-01-01

    Thanks to the unprecedented spectral resolution and sensitivity of the Soft X-ray Spectrometer (SXS) to soft thermal X-ray emission, ASTRO-H will open a new discovery window for understanding young, ejecta-dominated, supernova remnants (SNRs). In particular we study how ASTRO-H observations will address, comprehensively, three key topics in SNR research: (1) using abundance measurements to unveil SNR progenitors, (2) using spatial and velocity distribution of the ejecta to understand supernova explosion mechanisms, (3) revealing the link between the thermal plasma state of SNRs and the efficiency of their particle acceleration.

  12. Geneva University: Particle Acceleration in supernova remnants and its implications for the origin of galactic cosmic rays

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 28 March 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE 11h15 - Science III, Auditoire 1S081 Particle Acceleration in supernova remnants and its implications for the origin of galactic cosmic rays Prof. Pasquale BLASI INAF, Arcetri Observatory, Firenze The process of cosmic ray energization in supernova remnant shocks is described by the theory of non linear diffusive shock acceleration (NLDSA). Such theory is able to describe the acceleration itself, the dynamical reaction of accelerated particles on the shock, and the crucial phenomenon of the magnetic field amplification, the very key to generate high energy cosmic rays. I will illustrate the basic aspects of this theoretical framework, as well as its successes and problems. I will then discuss the observations, in X-rays an...

  13. CHANDRA ACIS Spectroscopy of N157B -- A Young Composite Supernova Remnant in a Superbubble

    CERN Document Server

    Chen, Y; Gotthelf, E V; Jiang, B; Chu, Y H; Gruendl, R A; Chen, Yang; Gotthelf, Eric V.; Jiang, Bing; Chu, You-Hua; Gruendl, Robert

    2006-01-01

    We present Chandra ACIS observations of N157B, a young supernova remnant located in the 30 Doradus star-formation region of the LMC. This remnant contains the most energetic pulsar known (PSR J0537-6910), which is surrounded by a bright nonthermal nebula that likely represents a toroidal pulsar wind terminal shock observed edge-on. We confirm the non-thermal nature of the comet-shaped X-ray emission feature and show that the spectral steepening of this feature away from the pulsar is quantitatively consistent with synchrotron cooling of shocked pulsar wind particles flowing downstream at a bulk velocity close to the speed of light. Around the cometary nebula we unambiguously detect a thermal component, which accounts for about 1/3 of the total 0.5 - 10 keV flux from the remnant. This thermal component is distributed among various clumps of metal-enriched plasma embedded in the low surface brightness X-ray-emitting diffuse gas. The relative metal enrichment pattern suggests that the mass of the supernova proge...

  14. Evidence For Particle Acceleration to the Knee of the Cosmic Ray Spectrum in Tycho's Supernova Remnant

    CERN Document Server

    Eriksen, Kristoffer A; Badenes, Carles; Fesen, Robert; Ghavamian, Parviz; Moffett, David; Plucinsky, Paul P; Rakowski, Cara E; Reynoso, Estela M; Slane, Patrick

    2011-01-01

    Supernova remnants (SNRs) have long been assumed to be the source of cosmic rays (CRs) up to the "knee" of the CR spectrum at 10^15 eV, accelerating particles to relativistic energies in their blast waves by the process of diffusive shock acceleration (DSA). Since cosmic ray nuclei do not radiate efficiently, their presence must be inferred indirectly. Previous theoretical calculations and X-ray observations show that CR acceleration modifies significantly the structure of the SNR and greatly amplifies the interstellar magnetic field. We present new, deep X-ray observations of the remnant of Tycho's supernova (SN 1572, henceforth Tycho), which reveal a previously unknown, strikingly ordered pattern of non-thermal high-emissivity stripes in the projected interior of the remnant, with spacing that corresponds to the gyroradii of 10^14 - 10^15 eV} protons. Spectroscopy of the stripes shows the plasma to be highly turbulent on the (smaller) scale of the Larmor radii of TeV energy electrons. Models of the shock am...

  15. Expected gamma-ray emission of supernova remnant SN 1987A

    CERN Document Server

    Berezhko, E G; Voelk, H J

    2010-01-01

    A nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants is employed to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5-100 yr. It is shown that an efficient production of nuclear CRs leads to a strong modification of the outer supernova remnant shock and to a large downstream magnetic field $B_d\\approx$ 20 mG. The shock modification and the strong field are required to yield the steep and concave radio emission spectrum observed, as well as to considerable synchrotron cooling of high energy electrons which diminishes their X-ray synchrotron flux. These features are also consistent with the existing X-ray observations. The expected gamma-ray energy flux at TeV-energies at the current epoch is nearly $\\epsilon_{\\gamma}F_{\\gamma}\\approx 4\\times 10^{-13}$ erg cm$^2$s$^{-1}$ under reasonable assumptions about the overall magnetic field topology and the turbulent perturbations of this field. The general nonthermal strength of the sour...

  16. Planck intermediate results. XXXI. Microwave survey of Galactic supernova remnants

    CERN Document Server

    Arnaud, M

    2014-01-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 17 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the emission mechanism for microwave emission. In only one case, IC 443, is the high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. A single power law, as predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, is evident for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, $S_\

  17. Galactic Propagation of Cosmic Rays from Individual Supernova Remnants

    CERN Document Server

    Nierstenhoefer, Nils; Schuppan, Florian; Tjus, Julia Becker

    2015-01-01

    It is widely believed that supernova remnants are the best candidate sources for the observed cosmic ray flux up to the knee, i.e. up to ~PeV energies. Indeed, the gamma-ray spectra of some supernova remnants can be well explained by assuming the decay of neutral pions which are created in hadronic interactions. Therefore, fitting the corresponding gamma spectra allows us to derive the spectra of cosmic rays at the source which are locally injected into our Galaxy. Using these spectra as a starting point, we propagate the cosmic rays through the Galaxy using the publicly available GALPROP code. Here, we will present first results on the contribution of those SNRs to the total cosmic ray flux and discuss implications.

  18. Phosphorus in the Young Supernova Remnant Cassiopeia A

    OpenAIRE

    Koo, Bon-Chul; Lee, Yong-Hyun; Moon, Dae-Sik; Yoon, Sung-Chul; Raymond, John C.

    2013-01-01

    Phosphorus ($^{31}$P), which is essential for life, is thought to be synthesized in massive stars and dispersed into interstellar space when these stars explode as supernovae (SNe). Here we report on near-infrared spectroscopic observations of the young SN remnant Cassiopeia A, which show that the abundance ratio of phosphorus to the major nucleosynthetic product iron ($^{56}$Fe) in SN material is up to 100 times the average ratio of the Milky Way, confirming that phosphorus...

  19. High-energy antiprotons from old supernova remnants

    OpenAIRE

    Blasi, Pasquale; Serpico, Pasquale D

    2009-01-01

    A recently proposed model (arXiv:0903.2794) explains the rise in energy of the positron fraction measured by the PAMELA satellite in terms of hadronic production of positrons in aged supernova remnants, and acceleration therein. Here we present a preliminary calculation of the anti-proton flux produced by the same mechanism. While the model is consistent with present data, a rise of the antiproton to proton ratio is predicted at high energy, which strikingly distinguishes th...

  20. FERMI LARGE AREA TELESCOPE DETECTION OF SUPERNOVA REMNANT RCW 86

    International Nuclear Information System (INIS)

    Using 5.4 yr Fermi Large Area Telescope data, we report the detection of GeV ?-ray emission from the shell-type supernova remnant RCW 86 (G315.4-2.3) with a significance of ?5.1?. The data slightly favors an extended emission of this supernova remnant. The spectral index of RCW 86 is found to be very hard, ? ? 1.4, in the 0.4-300 GeV range. A one-zone leptonic model can well fit the multi-wavelength data from radio to very high energy ?-rays. The very hard GeV ?-ray spectrum and the inferred low gas density seem to disfavor a hadronic origin for the ?-rays. The ?-ray behavior of RCW 86 is very similar to several other TeV shell-type supernova remnants, e.g., RX J1713.7-3946, RX J0852.0-4622, SN 1006, and HESS J1731-347

  1. Discovery of a pre-existing molecular filament associated with supernova remnant G127.1+0.5

    International Nuclear Information System (INIS)

    We performed millimeter observations in CO lines toward the supernova remnant (SNR) G127.1+0.5. We found a molecular filament at 4-13 km s–1 consisting of two distinct parts: a straight part coming out of the remnant region and a curved part in the remnant region. The curved part is coincides well with the bright SNR shell detected in 1420 MHz radio continuum and mid-infrared observations in the northeastern region. In addition, redshifted line wing broadening is found only in the curved part of the molecular filament, which indicates a physical interaction. These provide strong evidences, for the first time, to confirm the association between an SNR and a pre-existing long molecular filament. Multi-band observations in the northeastern remnant shell could be explained by the interaction between the remnant shock and the dense molecular filament. RADEX radiative transfer modeling of the quiet and shocked components yield physical conditions consistent with the passage of a non-dissociative J-type shock. We argue that the curved part of the filament is fully engulfed by the remnant's forward shock. A spatial correlation between aggregated young stellar objects (YSOs) and the adjacent molecular filament close to the SNR is also found, which could be related to the progenitor's activity.

  2. CO observations toward supernova remnants with associated OH 1720 MHz masers

    OpenAIRE

    Reynoso, Estela M.; Mangum, Jeffrey G.

    2000-01-01

    The environs of three supernova remnants (SNR) with associated OH 1720 MHz masers, G349.7+0.2, CTB 37A and G16.7+0.1, have been surveyed in the CO J=1-0 transition with the 12 Meter Telescope of the NRAO, using the On-The-Fly technique. These observations have revealed a number of molecular clouds interacting with the SNR shock fronts. Most of the OH 1720 MHz masers have been found to lie over CO concentrations, and the maser velocities are coincident with the CO peak veloci...

  3. Ionization and Velocity Structure in the Supernova Remnant E0102-72

    CERN Document Server

    Flanagan, K A; Davis, D S; Dewey, D; Houck, J C; Markert, T H; Schattenburg, M L

    2001-01-01

    The High Energy Transmission Grating (HETG) Spectrometer aboard the Chandra X-Ray Observatory was used to observe E0102-72, a ~1000 year old, oxygen rich supernova in the Small Magellanic Cloud. The HETG disperses the image of the remnant into a spectrum of images in the light of individual X-ray emission lines. Doppler shifts in the strongest lines of oxygen and neon reveal bulk motions of up to 2000 km/sec with a complex morphology. Comparison of progressive ionization stages of magnesium, neon, oxygen and silicon provide new insights into the mechanism of the `reverse shock' that heats the stellar ejecta.

  4. Supernova remnants interacting with molecular clouds as seen with H.E.S.S

    CERN Document Server

    Fernandez, D; Eger, P; Laffon, H; Mehault, J; Ohm, S; Oya, I

    2013-01-01

    About 30 Galactic supernova remnants (SNRs) are thought to be physically associated with molecular clouds (MCs). These systems are prime \\g-ray source candidates as the accelerated particles from shock fronts collide with the surrounding high-density medium thus emitting gamma-rays through hadronic interactions. However only a handful of such interacting SNRs are detected at TeV energies. We report the current status of the High Energy Stereoscopic System (H.E.S.S.) observations towards these SNR-MC systems, with a particular emphasis on the latest results.

  5. A Newly Recognized Very Young Supernova Remnant in M83

    CERN Document Server

    Blair, William P; Long, Knox S; Whitmore, Bradley C; Kim, Hwihyun; Soria, Roberto; Kuntz, K D; Plucinsky, Paul P; Dopita, Michael A; Stockdale, Christopher

    2015-01-01

    As part of a spectroscopic survey of supernova remnant candidates in M83 using the Gemini-South telescope and GMOS, we have discovered one object whose spectrum shows very broad lines at H$\\alpha$, [O~I] 6300,6363, and [O~III] 4959,5007, similar to those from other objects classified as `late time supernovae.' Although six historical supernovae have been observed in M83 since 1923, none were seen at the location of this object. Hubble Space Telescope Wide Field Camera 3 images show a nearly unresolved emission source, while Chandra and ATCA data reveal a bright X-ray source and nonthermal radio source at the position. Objects in other galaxies showing similar spectra are only decades post-supernova, which raises the possibility that the supernova that created this object occurred during the last century but was missed. Using photometry of nearby stars from the HST data, we suggest the precursor was at least 17 $\\rm M_{sun}$, and the presence of broad H$\\alpha$ in the spectrum makes a type II supernova likely....

  6. A Chandra X-ray Survey of Ejecta in the Cassiopeia A Supernova Remnant

    CERN Document Server

    Hwang, Una

    2011-01-01

    We present a survey of the X-ray emitting ejecta in the Cassiopeia A supernova remnant based on an extensive analysis of over 6000 spectral regions extracted on 2.5-10" angular scales using the Chandra 1 Ms observation. We interpret these results in the context of hydrodynamical models for the evolution of the remnant. The distributions of fitted temperature and ionization age, and the implied mass coordinates, are highly peaked and suggest that the ejecta were subjected to multiple secondary shocks following reverse shock interaction with ejecta inhomogeneities. Based on the fitted emission measure and element abundances, and an estimate of the emitting volume, we derive masses for the X-ray emitting ejecta and also show the distribution of the mass of various elements over the remnant. An upper limit to the total shocked Fe mass visible in X-rays appears to be roughly 0.13 M_sun, which accounts for nearly all of the mass expected in Fe ejecta. We find two populations of Fe ejecta, that associated with norma...

  7. Spitzer IRS Observations of the XA Region in the Cygnus Loop Supernova Remnant

    CERN Document Server

    Sankrit, R; Bautista, M; Gaetz, T J; Williams, B J; Blair, W P; Borkowski, K J; Long, K S

    2014-01-01

    We report on spectra of two positions in the XA region of the Cygnus Loop supernova remnant obtained with the InfraRed Spectrograph on the Spitzer Space Telescope. The spectra span the 10-35 micron wavelength range, which contains a number of collisionally excited forbidden lines. These data are supplemented by optical spectra obtained at the Whipple Observatory and an archival UV spectrum from the International Ultraviolet Explorer. Coverage from the UV through the IR provides tests of shock wave models and tight constraints on model parameters. Only lines from high ionization species are detected in the spectrum of a filament on the edge of the remnant. The filament traces a 180 km/s shock that has just begun to cool, and the oxygen to neon abundance ratio lies in the normal range found for Galactic H II regions. Lines from both high and low ionization species are detected in the spectrum of the cusp of a shock-cloud interaction, which lies within the remnant boundary. The spectrum of the cusp region is mat...

  8. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    Science.gov (United States)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-10-01

    Several young supernova remnants (SNRs) exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's SNR in five energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths ˜1%-5% of remnant radius and magnetic field strengths ˜50-400 ?G assuming Bohm diffusion. X-ray rim widths are ˜1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields ?20 ?G, affirming the necessity of magnetic field amplification beyond simple compression.

  9. HFPK 334: An unusual supernova remnant in the Small Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, E. J.; Filipovi?, M. D. [University of Western Sydney (Australia); McEntaffer, R. L.; Brantseg, T.; Heitritter, K.; Roper, Q. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Haberl, F. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-85748 Garching (Germany); Uroševi?, D., E-mail: e.crawford@uws.edu.au [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade (Serbia)

    2014-11-01

    We present new Australia Telescope Compact Array radio-continuum and XMM-Newton/Chandra X-ray Observatory observations of the unusual supernova remnant (SNR) HFPK 334 in the Small Magellanic Cloud (SMC). The remnant follows a shell-type morphology in the radio continuum and has a size of ?20 pc at the SMC distance. The X-ray morphology is similar; however, we detect a prominent point source close to the center of the SNR exhibiting a spectrum with a best-fit power law with a photon index of ? = 2.7 ± 0.5. This central point source is most likely a background object and cannot be directly associated with the remnant. The high temperature, nonequilibrium conditions in the diffuse region suggest that this gas has been recently shocked and points toward a younger SNR with an age of ? 1800 yr. With an average radio spectral index of ? = –0.59 ± 0.09, we find that an equipartition magnetic field for the remnant is ?90 ?G, a value typical of younger SNRs in low-density environments. Also, we report the detection of scattered radio polarization across the remnant at 20 cm, with a peak fractional polarization level of 25% ± 5%.

  10. Molecular environment of the supernova remnant IC 443: Discovery of the molecular shells surrounding the remnant

    International Nuclear Information System (INIS)

    We have carried out 12CO, 13CO, and C18O observations toward the mixed morphology supernova remnant (SNR) IC 443. The observations cover a 1.°5 × 1.°5 area and allow us to investigate the overall molecular environment of the remnant. Some northern and northeastern partial shell structure of CO gas is around the remnant. One of the partial shells, about 5' extending beyond the northeastern border of the remnant's bright radio shell, seems to just confine the faint radio halo. On the other hand, some faint CO clumps can be discerned along the eastern boundary of the faint remnant's radio halo. Connecting the eastern CO clumps, the northeastern partial shell structures, and the northern CO partial shell, we can see that a half molecular ring structure appears to surround the remnant. The LSR velocity of the half-ring structure is in the range of –5 km s–1 to –2 km s–1, which is consistent with that of the –4 km s–1 molecular clouds. We suggest that the half-ring structure of the CO emission at V LSR ? –4 km s–1 is associated with the SNR. The structures are possibly swept up by the stellar winds of SNR IC 443's massive progenitor. Based on the Wide-field Infrared Survey Explorer and the Two Micron All Sky Survey near-IR database, 62 young stellar object (YSO) candidates are selected within the radio halo of the remnant. These YSO candidates concentrated along the boundary of the remnant's bright radio shell are likely to be triggered by the stellar winds from the massive progenitor of SNR IC 443.

  11. 3D simulations of the non-thermal broad-band emission from young supernova remnants including efficient particle acceleration

    CERN Document Server

    Ferrand, Gilles; Safi-Harb, Samar

    2014-01-01

    Supernova remnants are believed to be the major contributors to Galactic cosmic rays. In this paper, we explore how the non-thermal emission from young remnants can be used to probe the production of energetic particles at the shock (both protons and electrons). Our model couples hydrodynamic simulations of a supernova remnant with a kinetic treatment of particle acceleration. We include two important back-reaction loops upstream of the shock: energetic particles can (i) modify the flow structure and (ii) amplify the magnetic field. As the latter process is not fully understood, we use different limit cases that encompass a wide range of possibilities. We follow the history of the shock dynamics and of the particle transport downstream of the shock, which allows us to compute the non-thermal emission from the remnant at any given age. We do this in 3D, in order to generate projected maps that can be compared with observations. We observe that completely different recipes for the magnetic field can lead to sim...

  12. Constraining the Progenitor Masses of Core Collapse Supernova Remnants

    Science.gov (United States)

    Díaz Rodríguez, Mariangelly; Murphy, Jeremiah Wayne; Elwood, Benjamin; Williams, Benjamin F.; Rubin, David

    2016-01-01

    Understanding the progenitor mass distribution of supernova explosions is an important observational constraint of stellar evolution theory. Recently, a novel approach was proposed to significantly increase the number of progenitor masses: characterize the progenitor mass of supernova remnants (SNRs) by age-dating the local stellar population. Preliminary statistical analyses suggested that there is a lack of SNRs around the most massive of massive stars. This suggested that there is a maximum mass for core collapse supernova explosions, or there is a bias against finding SNRs associated with the most massive stars. We test for a bias by considering the distribution of SNRs sizes using a Monte Carlo simulation. We find that the distribution of remnants sizes is the same for low mass progenitors and high mass progenitors. This implies that there is no bias against finding SNRs around the most massive progenitors. Our next step is to apply Bayesian statistical inference and obtain the joint probability for all the parameters involved in the statistical distribution model: the minimum mass, maximum mass, and slope of the mass distribution.

  13. A method for computing synchrotron and inverse-Compton emission from hydrodynamic simulations of supernova remnants

    Science.gov (United States)

    Obergaulinger, M.; Chimeno, J. M.; Mimica, P.; Aloy, M. A.; Iyudin, A.

    2015-12-01

    The observational signature of supernova remnants (SNRs) is very complex, in terms of both their geometrical shape and their spectral properties, dominated by non-thermal synchrotron and inverse-Compton scattering. We propose a post-processing method to analyse the broad-band emission of SNRs based on three-dimensional hydrodynamical simulations. From the hydrodynamical data, we estimate the distribution of non-thermal electrons accelerated at the shock wave and follow the subsequent evolution as they lose or gain energy by adiabatic expansion or compression and emit energy by radiation. As a first test case, we use a simulation of a bipolar supernova expanding into a cloudy medium. We find that our method qualitatively reproduces the main observational features of typical SNRs and produces fluxes that agree with observations to within a factor of a few allowing for further use in more extended sets of models.

  14. Spectra of accelerated particles at supernova shocks in the presence of neutral hydrogen: the case of Tycho

    CERN Document Server

    Morlino, G

    2015-01-01

    The presence of neutral hydrogen in the shock proximity changes the structure of the shock and affects the spectra of particles accelerated through the first order Fermi mechanism. This phenomenon has profound implications for the interpretation of the multifrequency spectra of radiation from supernova remnants. Neutrals that undergo charge exchange with hot ions downstream of the shock may result in fast neutrals moving towards the upstream gas, where they can suffer additional charge exchange or ionisation reactions, thereby depositing energy and momentum upstream. Here we discuss the implications of this neutral return flux, already predicted in our previous work on neutral mediated supernova shocks and show how the spectra of accelerated particles turn out to be appreciably steeper than $p^{-4}$, thereby affecting the gamma ray spectra from supernova remnants in general and from Tycho specifically. The theory that describes non-linear diffusive shock acceleration in the presence of neutral hydrogen has be...

  15. 3D hydrodynamic simulations of the Galactic supernova remnant CTB 109

    Science.gov (United States)

    Bolte, J.; Sasaki, M.; Breitschwerdt, D.

    2015-10-01

    Context. Using detailed 3D hydrodynamic simulations we study the nature of the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0), which is well known for its semicircular shape and a bright diffuse X-ray emission feature inside the SNR. Aims: Our model has been designed to explain the observed morphology, with a special emphasis on the bright emission feature inside the SNR. Moreover, we determine the age of the remnant and compare our findings with X-ray observations. With CTB 109 we test a new method of detailed numerical simulations of diffuse young objects, using realistic initial conditions derived directly from observations. Methods: We performed numerical 3D simulations with the RAMSES code. The initial density structure has been directly taken from 12CO emission data, adding an additional dense cloud, which, when it is shocked, causes the bright emission feature. Results: From parameter studies we obtained the position (?,b) = (109.1545°,-1.0078°) for an elliptical cloud with ncloud = 25 cm-3 based on the preshock density from Chandra data and a maximum diameter of 4.54 pc, whose encounter with the supernova (SN) shock wave generates the bright X-ray emission inside the SNR. The calculated age of the remnant is about 11 000 yr according to our simulations. In addition, we can also determine the most probable site of the SN explosion. Conclusions: Hydrodynamic simulations can reproduce the morphology and the observed size of the SNR CTB 109 remarkably well. Moreover, the simulations show that it is very plausible that the bright X-ray emission inside the SNR is the result of an elliptical dense cloud shocked by the SN explosion wave. We show that numerical simulations using observational data for an initial model can produce meaningful results.

  16. Radio Emission from a Young Supernova Remnant Interacting with an Interstellar Cloud: MHD Simulation with Relativistic Electrons

    OpenAIRE

    Jun, Byung-Il; Jones, T.W.

    1998-01-01

    We present two-dimensional MHD simulations of the evolution of a young Type Ia supernova remnant during its interaction with an interstellar cloud of comparable size at impact. We include for the first time in such simulations explicit relativistic electron transport, including spectral information using a simple but effective scheme that follows their acceleration at shocks and subsequent transport. From this information we also model radio synchrotron emission, including s...

  17. Simulated X-Ray Emission for a Runaway Model of Kepler's Supernova Remnant

    Science.gov (United States)

    Velázquez, Pablo F.; Vigh, Carlos D.; Reynoso, Estela M.; Gómez, Daniel O.; Schneiter, E. Matías

    2006-10-01

    We present two-dimensional numerical simulations of a model for Kepler's supernova remnant (SNR) carried out with the YGUAZÚ-A code. Following previous studies, we have assumed that the peculiar shape of this young remnant arises as a consequence of the interaction of the SNR blast wave with the bow shock formed by the wind of its high velocity progenitor. Furthermore, from our numerical results we have obtained synthetic X-ray emission maps, which can be directly compared with recent and previous observations of this SNR. Our models show that a nice fit with respect to the X-ray morphology and luminosity is obtained for a SN progenitor with mass-loss rate of 5×10-5 Msolar yr-1, an ambient medium density of 10-2 cm-3, an initial explosion energy of 8×1050 ergs, and a total ejected mass within 1.4-2.5 Msolar. In our simulations, parameters typical of a young population progenitor have not been considered. This model also predicts a ~0.3% yearly decrease in the total X-ray luminosity, which is consistent with observed values. The parameters employed in our runs correspond to a Type Ia supernova. Based on our simulations, we find that the expansion rate increases after the SNR blast wave overruns the bow shock, and we discuss whether this can explain the observed difference between the expansion rates measured from sequences of radio and X-ray images.

  18. A molecular shell with star formation toward the supernova remnant G349.7+0.2

    CERN Document Server

    Reynoso, E M; Reynoso, Estela M; Mangum, Jeffrey G.

    2001-01-01

    A field of ~38"x38" around the supernova remnant (SNR) G349.7+0.2 has been surveyed in the CO J=1-0 transition with the 12 Meter Telescope of the NRAO, using the On-The-Fly technique. The resolution of the observations is 54". We have found that this remnant is interacting with a small CO cloud which, in turn, is part of a much larger molecular complex, which we call the ``Large CO Shell''. The Large CO Shell has a diameter of about 100 pc, an H_2 mass of 930,000 solar masses, and a density of 35 cm-3. We investigate the origin of this structure and suggest that an old supernova explosion ocurred about 4 million years ago, as a suitable hypothesis. Analyzing the interaction between G349.7+0.2 and the Large CO Shell, it is possible to determine that the shock front currently driven into the molecular gas is a non-dissociative shock (C-type), in agreement with the presence of OH 1720 MHz masers. The positional and kinematical coincidence among one of the CO clouds that constitute the Large CO Shell, an IRAS poi...

  19. Radio Properties of the Supernova Remnant N157B

    CERN Document Server

    Lazendic, J S; Haynes, R F; Jones, P A; White, G L

    2000-01-01

    A new investigation of the supernova remnant (SNR) N157B was carried out with the Australia Telescope Compact Array. Radio continuum images of the entire 30 Doradus region have been made at 3.5 and 6 cm wavelength with a resolution of 2". These data allow a high resolution study of the spectral index distribution and polarization properties of both N157B and the nearby 30 Doradus nebula (the latter will be reported in a subsequent paper). N157B is an extended Crab-type SNR which may be beginning the transition to a composite remnant. There is little apparent fine structure and the brightest radio region is several parsecs from the probable position of the X-ray pulsar. The SNR has a radio spectral index of -0.19 and is significantly polarized at 3.5 cm but not at longer wavelengths.

  20. Supernova Shock Breakout from a Red Supergiant

    CERN Document Server

    Schawinski, Kevin; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Roeser, Hermann-Josef; Walker, Emma; Astier, Pierre; Balam, Dave; Balland, Christophe; Basa, Stephane; Carlberg, Ray; Conley, Alex; Fouchez, Dominque; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, Andy; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-01-01

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic `core-collapse' supernova. Such events are usually detected long after the star has exploded. Here we report the first detection of the radiative precursor from a supernova shock before it has reached the surface of a star followed by the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve show that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a promising and novel way to probe the physics of core-collapse supernovae and the internal structures of their progenitors.

  1. The many sides of RCW 86: a Type Ia supernova remnant evolving in its progenitor's wind bubble

    Science.gov (United States)

    Broersen, Sjors; Chiotellis, Alexandros; Vink, Jacco; Bamba, Aya

    2014-07-01

    We present the results of a detailed investigation of the Galactic supernova remnant RCW 86 using the XMM-Newton X-ray telescope. RCW 86 is the probable remnant of SN 185 A.D., a supernova that likely exploded inside a wind-blown cavity. We use the XMM-Newton Reflection Grating Spectrometer to derive precise temperatures and ionization ages of the plasma, which are an indication of the interaction history of the remnant with the presumed cavity. We find that the spectra are well fitted by two non-equilibrium ionization models, which enables us to constrain the properties of the ejecta and interstellar matter plasma. Furthermore, we performed a principal component analysis on EPIC MOS and pn data to find regions with particular spectral properties. We present evidence that the shocked ejecta, emitting Fe K and Si line emission, are confined to a shell of approximately 2 pc width with an oblate spheroidal morphology. Using detailed hydrodynamical simulations, we show that general dynamical and emission properties at different portions of the remnant can be well reproduced by a Type Ia supernova that exploded in a non-spherically symmetric wind-blown cavity. We also show that this cavity can be created using general wind properties for a single degenerate system. Our data and simulations provide further evidence that RCW 86 is indeed the remnant of SN 185, and is the likely result of a Type Ia explosion of single degenerate origin.

  2. EVOLUTION OF SYNCHROTRON X-RAYS IN SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Ryoko; Bamba, Aya; Dotani, Tadayasu; Ishida, Manabu [ISAS/JAXA Department of High Energy Astrophysics, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yamazaki, Ryo [Department of Physics and Mathematics, Aoyama-Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Kohri, Kazunori [Theory Center, Institute of Particle and Nuclear Studies, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba 305-0801 (Japan)

    2012-02-20

    A systematic study of the synchrotron X-ray emission from supernova remnants (SNRs) has been conducted. We selected a total of 12 SNRs whose synchrotron X-ray spectral parameters are available in the literature with reasonable accuracy and studied how their luminosities change as a function of radius. It is found that the synchrotron X-ray luminosity tends to drop especially when the SNRs become larger than {approx}5 pc, despite large scatter. This may be explained by the change of spectral shape caused by the decrease of the synchrotron roll-off energy. A simple evolutionary model of the X-ray luminosity is proposed and is found to reproduce the observed data approximately, with reasonable model parameters. According to the model, the total energy of accelerated electrons is estimated to be 10{sup 47-48} erg, which is well below the supernova explosion energy. The maximum energies of accelerated electrons and protons are also discussed.

  3. Effect of stellar structure on supernova remnant evolution

    International Nuclear Information System (INIS)

    One-dimensional hydrodynamic calculations have been done of 1E51 erg explosions in 15M/sub sun/ stars. A steep external density gradient to the pre-supernova model of Weaver et al was appended with the results: (1) the outer shock wave decelerates throughout the pre-Sedov phase, (2) the expanding stellar envelope and the shocked interstellar material are Rayleigh-Taylor stable until the Sedov phase, and (3) steep internal density gradients are R-T unstable during the early expansion and may be the source of high velocity knots seen in Cas A

  4. Biermann Mechanism in Primordial Supernova Remnant and Seed Magnetic Fields

    OpenAIRE

    Hanayama, Hidekazu; Takahashi, Keitaro; Kotake, Kei; Oguri, Masamune; Ichiki, Kiyotomo; Ohno, Hiroshi

    2005-01-01

    We study generation of magnetic fields by the Biermann mechanism in the pair-instability supernovae explosions of first stars. The Biermann mechanism produces magnetic fields in the shocked region between the bubble and interstellar medium (ISM), even if magnetic fields are absent initially. We perform a series of two-dimensional magnetohydrodynamic simulations with the Biermann term and estimate the amplitude and total energy of the produced magnetic fields. We find that ma...

  5. Biermann Mechanism in Primordial Supernova Remnant and Seed Fields

    OpenAIRE

    Hanayama, Hidekazu; Takahashi, Keitaro; Kotake, Kei; Oguri, Masamune; Ichiki, Kiyotomo; Ohno, Hiroshi

    2005-01-01

    We have studied the generation of magnetic fields by the Biermann mechanism in the pair-instability supernovae explosions of the first stars. The Biermann mechanism produces magnetic fields in the shocked region between the bubble and interstellar medium (ISM), even if magnetic fields are absent initially. We have performed a series of two-dimensional magnetohydrodynamic simulations with the Biermann term and estimate the amplitude and total energy of the produced magnetic f...

  6. Molecules and dust in Cassiopeia A: II - Dust sputtering and diagnosis for dust survival in supernova remnants

    CERN Document Server

    Biscaro, Chiara

    2015-01-01

    We study the dust evolution in the supernova remnant Cassiopeia A. We follow the processing of dust grains formed in the Type II-b supernova by modelling the sputtering of grains located in dense ejecta clumps crossed by the reverse shock. Further sputtering in the inter-clump medium once the clumps are disrupted by the reverse shock is investigated. The dust evolution in the dense ejecta clumps of Type II-P supernovae and their remnants is also studied. We study oxygen-rich clumps that describe the ejecta oxygen core, and carbon-rich clumps that correspond to the outermost carbon-rich ejecta zone. We consider the dust components formed in the supernova, several reverse shock velocities and inter-clump gas temperatures, and derive dust grain size distributions and masses as a function of time. We find that non-thermal sputtering in clumps is important and accounts for reducing the grain population by ~ 40% to 80% in mass, depending on the clump gas over-density and the grain type and size. A Type II-b SN form...

  7. Supernova Remnants and the Interstellar Medium of M83: Imaging & Photometry with WFC3 on HST

    CERN Document Server

    Dopita, Michael A; Long, Knox S; Mutchler, Max; Whitmore, Bradley C; Kuntz, Kip D; Balick, Bruce; Bond, Howard E; Calzetti, Daniela; Carollo, Marcella; Disney, Michael; Frogel, Jay A; O'Connell, Robert; Hall, Donald; Holtzman, Jon A; Kimble, Randy A; MacKenty, John; McCarthy, Patrick; Paresce, Francesco; Saha, Abhijit; Silk, Joe; Sirianni, Marco; Trauger, John; Walker, Alistair R; Windhorst, Rogier; Young, Erick

    2010-01-01

    We present Wide Field Camera 3 images taken with the Hubble Space Telescope within a single field in the southern grand design star-forming galaxy M83. Based on their size, morphology and photometry in continuum-subtracted H$\\alpha$, [\\SII], H$\\beta$, [\\OIII] and [\\OII] filters, we have identified 60 supernova remnant candidates, as well as a handful of young ejecta-dominated candidates. A catalog of these remnants, their sizes and, where possible their H$\\alpha$ fluxes are given. Radiative ages and pre-shock densities are derived from those SNR which have good photometry. The ages lie in the range $2.62 < log(\\tau_{\\rm rad}/{\\rm yr}) < 5.0$, and the pre-shock densities at the blast wave range over $0.56 < n_0/{\\rm cm^{-3}} < 1680$. Two populations of SNR have been discovered. These divide into a nuclear and spiral arm group and an inter-arm population. We infer an arm to inter-arm density contrast of 4. The surface flux in diffuse X-rays is correlated with the inferred pre-shock density, indicati...

  8. Dust Formation Observed in Young Supernova Remnants with Spitzer

    CERN Document Server

    Rho, J; Tappe, A; Rudnick, L; Kozasa, T; Hwang, U; Andersen, M; Gomez, H; DeLaney, T; Dunne, L; Slavin, J

    2009-01-01

    We present dust features and masses observed in young supernova remnants (SNRs) with Spitzer IRS mapping and staring observations of four youngest supernova remnants: SNR 1E102.2-7219 (E0102) in the SMC, Cas A and G11.2-0.3 in our Galaxy, and N132D in the LMC. The spectral mapping data revealed a number of dust features which include 21 micron-peak dust and featureless dust in Cas A and 18-micron peak dust in E0102 and N132D. The 18 micron-peak feature is fitted by a mix of MgSiO$_3$ and solid Si dust grains, while the 21-micron peak dust is by a mix of silicates and FeO; we also explore dust fitting using Continuous Distribution of Ellipsoid grain models. We report detection of CO fundamental band from Cas A in near-infrared. We review dust features observed and identified in other SNRs. The dust emission is spatially correlated with the ejecta emission, showing dust is formed in SN ejecta. The spectra of E0102 show rich gas lines from ejecta including strong ejecta lines of Ne and O, including two [Ne III] ...

  9. The 1st Fermi Lat Supernova Remnant Catalog

    CERN Document Server

    Acero, Fabio; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, E; Blandford, Roger; Bloom, E D; Bonino, Raffaella; Bottacini, Eugenio; Bregeon, J; Bruel, Philippe; Buehler, Rolf; Buson, S; Caliandro, G A; Cameron, Rob A; Caputo, R; Caragiulo, Micaela; Caraveo, Patrizia A; Casandjian, Jean Marc; Cavazzuti, Elisabetta; Cecchi, Claudia; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, Stefano; Claus, R; Cohen, J M; Cohen-Tanugi, Johann; Cominsky, L R; Condon, B; Conrad, Jan; Cutini, S; D'Ammando, F; Angelis, A; Palma, F; Desiante, Rachele; Digel, S W; Venere, L; Drell, Persis S; Drlica-Wagner, Alex; Favuzzi, C; Ferrara, E C; Franckowiak, Anna; Fukazawa, Prof Yasushi; Funk, Prof Stefan; Fusco, P; Gargano, Fabio; Gasparrini, Dario; Giglietto, Nicola; Giommi, Paolo; Giordano, Francesco; Giroletti, Marcello; Glanzman, Tom; Godfrey, Gary; Gomez-Vargas, G A; Grenier, I A; Grondin, M -H; Guillemot, L; Guiriec, Sylvain; Gustafsson, M; Hadasch, D; Harding, A K; Hayashida, M; Hays, Elizabeth; Hewitt, J W; Hill, A B; Horan, Deirdre; Hou, X; Iafrate, Giulia; Jogler, Tobias; J'ohannesson, G; Johnson, Anthony S; Kamae, T; Katagiri, Hideaki; Kataoka, Prof Jun; Katsuta, Junichiro; Kerr, Matthew; Knodlseder, J; Kocevski, Prof Dale; Kuss, M; Laffon, Helene; Lande, J; Larsson, S; Latronico, Luca; Lemoine-Goumard, Marianne; Li, J; Li, L; Longo, Francesco; Loparco, Francesco; Lovellette, Michael N; Lubrano, Pasquale; Magill, J; Maldera, S; Marelli, Martino; Mayer, Michael; Mazziotta, M N; Michelson, Peter F; Mitthumsiri, Warit; Mizuno, Tsunefumi; Moiseev, Alexander A; Monzani, Maria Elena; Moretti, E; Morselli, Aldo; Moskalenko, Igor V; Murgia, Prof Simona; Nemmen, Prof Rodrigo; Nuss, Eric; Ohsugi, Takashi; Omodei, Nicola; Orienti, Monica; Orlando, Elena; Ormes, Jonathan F; Paneque, David; Perkins, J S; Pesce-Rollins, Melissa; Petrosian, Prof Vahe'; Piron, Frederic; Pivato, Giovanna; Porter, Troy; Rain`o, S; Rando, Riccardo; Razzano, Massimiliano; Razzaque, Soebur; Reimer, Anita; Reimer, Prof Olaf; Renaud, Matthieu; Reposeur, Thierry; Rousseau, Mr Romain; Parkinson, P M; Schmid, J; Schulz, A; Sgr`o, C; Siskind, Eric J; Spada, Francesca; Spandre, Gloria; Spinelli, Paolo; Strong, Andrew W; Suson, Daniel; Tajima, Hiro; Takahashi, Hiromitsu; Tanaka, T; Thayer, Jana B; Thompson, D J; Tibaldo, L; Tibolla, Omar; Torres, Prof Diego F; Tosti, Gino; Troja, Eleonora; Uchiyama, Yasunobu; Vianello, G; Wells, B; Wood, Kent; Wood, M; Yassine, Manal; Zimmer, Stephan

    2015-01-01

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope. Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude, allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavele...

  10. ISOCAM spectro-imaging of the $H_{2}$ rotational lines in the supernova remnant IC443

    CERN Document Server

    Cesarsky, D A; Pineau des Forêts, G; Van Dishoeck, E F; Boulanger, F; Wright, C M

    1999-01-01

    We report spectro-imaging observations of the bright western ridge of the supernova remnant IC 443 obtained with the ISOCAM circular variable filter (CVF) on board the Infrared Space Observatory (ISO). This ridge corresponds to a location where the interaction between the blast wave of the supernova and ambient molecular gas is amongst the strongest. The CVF data show that the 5 to 14 micron spectrum is dominated by the pure rotational lines of molecular hydrogen (v = 0--0, S(2) to S(8) transitions). At all positions along the ridge, the H2 rotational lines are very strong with typical line fluxes of 10^{-4} to 10^{-3} erg/sec/cm2/sr. We compare the data to a new time-dependent shock model; the rotational line fluxes in IC 443 are reproduced within factors of 2 for evolutionary times between 1,000 and 2,000 years with a shock velocity of 30 km/sec and a pre-shock density of 10^4 /cm3.

  11. AN EXTREME PULSAR TAIL PROTRUDING FROM THE FRYING PAN SUPERNOVA REMNANT

    International Nuclear Information System (INIS)

    The Frying Pan (G315.9–0.0) is a radio supernova remnant with a peculiar linear feature (G315.78–0.23) extending 10' radially outward from the rim of the shell. We present radio imaging and polarization observations obtained from the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array, confirming G315.78–0.23 as a bow-shock pulsar wind nebula (PWN) powered by the young pulsar J1437–5959. This is one of the longest pulsar tails observed in radio and it has a physical extent over 20 pc. We found a bow-shock standoff distance of 0.002 pc, smallest among similar systems, suggesting a large pulsar velocity over 1000 km s–1 and a high Mach number ?200. The magnetic field geometry inferred from radio polarimetry shows a good alignment with the tail orientation, which could be a result of high flow speed. There are also hints that the postshock wind has a low magnetization and is dominated by electrons and positrons in energy. This study shows that PWNe can offer a powerful probe of their local environment, particularly for the case of a bow shock where the parent supernova shell is also detected.

  12. Supernova Remnants Interacting with Molecular Clouds: X-Ray and Gamma-Ray Signatures

    Science.gov (United States)

    Slane, Patrick; Bykov, Andrei; Ellison, Donald C.; Dubner, Gloria; Castro, Daniel

    2015-05-01

    The giant molecular clouds (MCs) found in the Milky Way and similar galaxies play a crucial role in the evolution of these systems. The supernova explosions that mark the death of massive stars in these regions often lead to interactions between the supernova remnants (SNRs) and the clouds. These interactions have a profound effect on our understanding of SNRs. Shocks in SNRs should be capable of accelerating particles to cosmic ray (CR) energies with efficiencies high enough to power Galactic CRs. X-ray and ?-ray studies have established the presence of relativistic electrons and protons in some SNRs and provided strong evidence for diffusive shock acceleration as the primary acceleration mechanism, including strongly amplified magnetic fields, temperature and ionization effects on the shock-heated plasmas, and modifications to the dynamical evolution of some systems. Because protons dominate the overall energetics of the CRs, it is crucial to understand this hadronic component even though electrons are much more efficient radiators and it can be difficult to identify the hadronic component. However, near MCs the densities are sufficiently high to allow the ?-ray emission to be dominated by protons. Thus, these interaction sites provide some of our best opportunities to constrain the overall energetics of these particle accelerators. Here we summarize some key properties of interactions between SNRs and MCs, with an emphasis on recent X-ray and ?-ray studies that are providing important constraints on our understanding of cosmic rays in our Galaxy.

  13. Nonthermal radiation of young supernova remnants: The case of Cas A

    International Nuclear Information System (INIS)

    The processes responsible for the broadband radiation of the young supernova remnant Cas A are explored by using a new code that is designed for a detailed treatment of the diffusive shock acceleration of particles in the nonlinear regime. The model is based on spherically symmetric hydrodynamic equations complemented with transport equations for relativistic particles. Electrons, protons, and the oxygen ions accelerated by forward and reverse shocks are included in the numerical calculations. We show that the available multi-wavelength observations in the radio, X-ray, and gamma-ray bands can be best explained by invoking particle acceleration by both forward and reversed shocks. Although the TeV gamma-ray observations can be interpreted by interactions of both accelerated electrons and protons/ions, the measurements by Fermi Large Area Telescope at energies below 1 GeV give a tentative preference to the hadronic origin of gamma-rays. Then, the acceleration efficiency in this source, despite the previous claims, should be very high; 25% of the explosion energy (or approximately 3 × 1050 erg) should already be converted to cosmic rays, mainly by the forward shock. At the same time, the model calculations do not provide extension of the maximum energy of accelerated protons beyond 100 TeV. In this model, the acceleration of electrons is dominated by the reverse shock; the required 1048 erg can be achieved under the assumption that the injection of electrons (positrons) is supported by the radioactive decay of 44Ti.

  14. EVOLUTION OF THE RADIO REMNANT OF SUPERNOVA 1987A: MORPHOLOGICAL CHANGES FROM DAY 7000

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Zanardo, G.; Potter, T. M.; Staveley-Smith, L. [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia); Gaensler, B. M. [Australian Research Council, Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Manchester, R. N.; Tzioumis, A. K., E-mail: ncy@bohr.physics.hku.hk [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Marsfield, NSW 1710 (Australia)

    2013-11-10

    We present radio imaging observations of supernova remnant 1987A at 9 GHz, taken with the Australia Telescope Compact Array over 21 years from 1992 to 2013. By employing a Fourier modeling technique to fit the visibility data, we show that the remnant structure has evolved significantly since day 7000 (mid-2006): the emission latitude has gradually decreased such that the overall geometry has become more similar to a ring structure. Around the same time, we find a decreasing trend in the east-west asymmetry of the surface emissivity. These results could reflect the increasing interaction of the forward shock with material around the circumstellar ring, and the relative weakening of the interaction with the lower-density material at higher latitudes. The morphological evolution caused an apparent break in the remnant expansion measured with a torus model, from a velocity of 4600{sup +150}{sub -}200 km s{sup –1} between day 4000 and 7000 to 2400{sup +100}{sub -200} km s{sup –1} after day 7000. However, we emphasize that there is no conclusive evidence for a physical slowing of the shock at any given latitude in the expanding remnant, and that a change of radio morphology alone appears to dominate the evolution. This is supported by our ring-only fits which show a constant expansion of 3890 ± 50 km s{sup –1} without deceleration between days 4000 and 9000. We suggest that once the emission latitude no longer decreases, the expansion velocity obtained from the torus model should return to the same value as that measured with the ring model.

  15. Fermi LAT gamma-ray observations of the supernova remnant HB21

    CERN Document Server

    Pivato, G; Tibaldo, L

    2013-01-01

    We present the analysis of Fermi Large Area Telescope (LAT) \\g-ray observations of HB 21, a mixed-morphology supernova remnant. Such supernova remnants are characterized by an interior thermal X-ray plasma, surrounded by a wider nonthermal shell emitting at radio frequencies. HB 21 has a large angular size, making it a good candidate for detailed morphological and spectral studies with the LAT. The radio extension is $2^\\circ\\times1^\\circ$, compared to the LAT 68% containment angle of $\\sim1^\\circ$ at 1 GeV. To understand the origin of \\g-ray emission, we compare LAT observations with other wavelengths that trace non-thermal radio synchrotron, nearby molecular clouds, shocked molecular clumps, and the central X-ray plasma. Finally, we model possible hadronic and leptonic emission mechanisms. We conclude that \\g-rays from HB 21 are likely the result of electron bremsstrahlung or proton-proton collisions with dense material due to interaction with the nearby clouds.

  16. Radioactive Scandium in the Youngest Galactic Supernova Remnant G1.9+0.3

    CERN Document Server

    Borkowski, Kazimierz J; Green, David A; Hwang, Una; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2010-01-01

    We report the discovery of thermal X-ray emission from the youngest Galactic supernova remnant (SNR) G1.9+0.3, from a 237-ks Chandra observation. We detect strong K-shell lines of Si, S, Ar, Ca, and Fe. In addition, we detect a 4.1 keV line with 99.971% confidence which we attribute to 44Sc, produced by electron capture from 44Ti. Combining the data with our earlier Chandra observation allows us to detect the line in two regions independently. For a remnant age of 100 yr, our measured total line strength indicates synthesis of $(1 - 7) \\times 10^{-5}$ solar masses of 44Ti, in the range predicted for both Type Ia and core-collapse (CC) supernovae, but somewhat smaller than the $2 \\times 10^{-4}$ solar masses reported for Cas A. The line spectrum indicates supersolar abundances. The Fe emission has a width of about 26,000 km/s, consistent with an age of about 100 yr and with the inferred mean shock velocity of 14,000 km/s deduced assuming a distance of 8.5 kpc. Most thermal emission comes from regions of lower ...

  17. RADIOACTIVE SCANDIUM IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3

    International Nuclear Information System (INIS)

    We report the discovery of thermal X-ray emission from the youngest Galactic supernova remnant G1.9+0.3, from a 237 ks Chandra observation. We detect strong K? lines of Si, S, Ar, Ca, and Fe. In addition, we detect a 4.1 keV line with 99.971% confidence which we attribute to 44Sc, produced by electron capture from 44Ti. Combining the data with our earlier Chandra observation allows us to detect the line in two regions independently. For a remnant age of 100 yr, our measured total line strength indicates synthesis of (1-7) x 10-5 M sun of 44Ti, in the range predicted for both Type Ia and core-collapse supernovae (SNe), but somewhat smaller than the 2 x 10-4 M sun reported for Cas A. The line spectrum indicates supersolar abundances. The Fe emission has a width of about 28,000 km s-1, consistent with an age of ?100 yr and with the inferred mean shock velocity of 14,000 km s-1 deduced assuming a distance of 8.5 kpc. Most thermal emission comes from regions of lower X-ray but higher radio surface brightness. Deeper observations should allow more detailed spatial mapping of 44Sc, with significant implications for models of nucleosynthesis in Type Ia SNe.

  18. An Investigation into PAH Destruction in Nearby Supernova Remnants, North Polar Spur and Cygnus Loop

    Science.gov (United States)

    Burkhart, Sarah M.; Witt, Adolf N.

    2015-01-01

    Our goal in conducting this research was to look at the polycyclic aromatic hydrocarbon (PAH)/large dust grain emission intensity ratio in nearby supernova remnants to find evidence for selective PAH destruction by hot gas and high velocity shock waves within these regions, as predicted by the models of Arendt et al. (2010) and Micelotta et al. (2010a,b). Two supernova remnants were studied- the North Polar Spur (NPS) and the Cygnus Loop. The data for PAHs were obtained from the WISE W3 12 micron all-sky map processed by Meisner & Finkbeiner (2014), and the data for the larger grains come from the IRAS 100 micron all-sky map processed by Schlegel, Finkbeiner & Davis (1998). After obtaining a control PAH/large grain intensity ratio of ~2.8 (DN/px)/(MJy/sr) from two high latitude clouds, MBM 30 and MBM 32, we found that the intensity ratios across the NPS and Cygnus Loop were not far off- ~2.7 (DN/px)/(MJy/sr) and ~3.1 (DN/px)/(MJy/sr), respectively- showing no evidence of selective large-scale PAH destruction in supernova remnants. The individual intensities for both PAHs and large grains do decrease inside the Cygnus Loop, however, suggesting a decrease in abundances of both grain types, which could mean total dust grain destruction with the normal ratios coming from foreground and background dust located in the line of sight of the remnant. In addition, temperature and E(B-V) measurements taken from calibrated IRAS images show that while the dust column density increases in the Eastern Veil of the Cygnus Loop, the dust temperature reaches a local maximum, indicating the heating of large grains by interaction with the hot gas in the remnant. The PAH/large grain ratio in the Eastern Veil does decrease and could be indicative of currently ongoing active grain destruction there, with the PAHs being destroyed on a more rapid timescale than the large grains.We are grateful for financial support from the NSF REU Program grant to the Department of Physics & Astronomy at the University of Toledo.

  19. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    CERN Document Server

    Katsuda, Satoru; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K alpha triplets of He-like N, O, and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  20. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    Science.gov (United States)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  1. Two evolved supernova remnants with newly identified Fe-rich cores in the Large Magellanic Cloud

    CERN Document Server

    Kavanagh, Patrick J; Bozzetto, Luke M; Points, Sean D; Crawford, Evan J; Dickel, John; Filipovic, Miroslav D; Haberl, Frank; Maggi, Pierre; Whelan, Emma T

    2015-01-01

    Aims. We present a multi-wavelength analysis of the evolved supernova remnants MCSNR J0506-7025 and MCSNR J0527-7104 in the Large Magellanic Cloud. Methods. We used data from XMM-Newton, the Australian Telescope Compact Array, and the Magellanic Cloud Emission Line Survey to study their broadband emission and used Spitzer and HI data to gain a picture of their environments. We performed a multi-wavelength morphological study and detailed radio and X-ray spectral analyses to determine their physical characteristics. Results. Both remnants were found to have bright X-ray cores, dominated by Fe L-shell emission, consistent with reverse shock heated ejecta with determined Fe masses in agreement with Type Ia explosion yields. A soft X-ray shell, consistent with swept-up interstellar medium, was observed in MCSNR J0506-7025, suggestive of a remnant in the Sedov phase. Using the spectral fit results and the Sedov self-similar solution, we estimated the age of MCSNR J0506-7025 to be ~16-28 kyr, with an initial explos...

  2. Hard X-ray emission and $^{44}$Ti line features of Tycho Supernova Remnant

    CERN Document Server

    Wang, Wei

    2014-01-01

    A deep hard X-ray survey of the INTEGRAL satellite first detected the non-thermal emission up to 90 keV in the Tycho supernova (SN) remnant. Its 3 -- 100 keV spectrum is fitted with a thermal bremsstrahlung of $kT\\sim 0.81\\pm 0.45$ keV plus a power-law model of $\\Gamma \\sim 3.01\\pm 0.16$. Based on the diffusive shock acceleration theory, this non-thermal emission, together with radio measurements, implies that Tycho remnant may not accelerate protons up to $>$PeV but hundreds TeV. Only heavier nuclei may be accelerated to the cosmic ray spectral "knee". In addition, we search for soft gamma-ray lines at 67.9 and 78.4 keV coming from the decay of radioactive $^{44}$Ti in Tycho remnant by INTEGRAL. A bump feature in the 60-90 keV energy band, potentially associated with the $^{44}$Ti line emission, is found with a marginal significance level of $\\sim$ 2.6 $\\sigma$. The corresponding 3 $\\sigma$ upper limit on the $^{44}$Ti line flux amounts to 1.5 $\\times$ 10$^{-5}$ ph cm$^{-2}$ s$^{-1}$. Implications on the pro...

  3. Hard X-ray emission and 44Ti line features of the Tycho supernova remnant

    International Nuclear Information System (INIS)

    A deep hard X-ray survey of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected for the first time non-thermal emission up to 90 keV in the Tycho supernova (SN) remnant. Its 3-100 keV spectrum is fitted with a thermal bremsstrahlung of kT ? 0.81 ± 0.45 keV plus a power-law model of ? ? 3.01 ± 0.16. Based on diffusive shock acceleration theory, this non-thermal emission, together with radio measurements, implies that the Tycho remnant may not accelerate protons up to >PeV but to hundreds TeV. Only heavier nuclei may be accelerated to the cosmic ray spectral 'knee'. In addition, using INTEGRAL, we search for soft gamma-ray lines at 67.9 and 78.4 keV that come from the decay of radioactive 44Ti in the Tycho remnant. A bump feature in the 60-90 keV energy band, potentially associated with the 44Ti line emission, is found with a marginal significance level of ?2.6?. The corresponding 3? upper limit on the 44Ti line flux amounts to 1.5 × 10–5 photon cm–2 s–1. Implications on the progenitor of the Tycho SN, considered to be a Type Ia SN prototype, are discussed.

  4. Multi-wavelength analysis of the Galactic supernova remnant MSH 11-61A

    CERN Document Server

    Auchettl, Katie; Castro, Daniel; Foster, Adam R; Smith, Randall K

    2015-01-01

    Due to its centrally bright X-ray morphology and limb brightened radio profile, MSH 11-61A (G290.1-0.8) is classified as a mixed morphology supernova remnant (SNR). H$\\textsc{i}$ and CO observations determined that the SNR is interacting with molecular clouds found toward the north and southwest regions of the remnant. In this paper we report on the detection of $\\gamma$-ray emission coincident with MSH 11-61A, using 70 months of data from the Large Area Telescope on board the \\textit{Fermi Gamma-ray Space Telescope}. To investigate the origin of this emission, we perform broadband modelling of its non-thermal emission considering both leptonic and hadronic cases and concluding that the $\\gamma$-ray emission is most likely hadronic in nature. Additionally we present our analysis of a 111 ks archival \\textit{Suzaku} observation of this remnant. Our investigation shows that the X-ray emission from MSH 11-61A arises from shock-heated ejecta with the bulk of the X-ray emission arising from a recombining plasma, w...

  5. Phosphorus in the Young Supernova Remnant Cassiopeia A

    CERN Document Server

    Koo, Bon-Chul; Moon, Dae-Sik; Yoon, Sung-Chul; Raymond, John C

    2013-01-01

    Phosphorus ($^{31}$P), which is essential for life, is thought to be synthesized in massive stars and dispersed into interstellar space when these stars explode as supernovae (SNe). Here we report on near-infrared spectroscopic observations of the young SN remnant Cassiopeia A, which show that the abundance ratio of phosphorus to the major nucleosynthetic product iron ($^{56}$Fe) in SN material is up to 100 times the average ratio of the Milky Way, confirming that phosphorus is produced in SNe. The observed range is compatible with predictions from SN nucleosynthetic models but not with the scenario in which the chemical elements in the inner SN layers are completely mixed by hydrodynamic instabilities during the explosion.

  6. Gamma Rays from the Tycho Supernova Remnant: Leptonic or Hadronic?

    CERN Document Server

    Atoyan, Armen

    2011-01-01

    Recent Fermi and VERITAS observations of the prototypical Type Ia supernova remnant (SNR) Tycho have discovered gamma-rays with energies E in the range from ~0.4 GeV to 10 TeV. Crucial for the theory of Galactic cosmic-ray origin is whether the gamma-rays from SNRs are produced by accelerated hadrons (protons and ions), or by relativistic electrons. Here we show that the broadband radiation spectrum of Tycho can be explained within the framework of a two-zone leptonic model, which is likely to apply to every SNR. A model with hadrons can also fit the radiation spectrum. The hadronic origin of gamma-rays can be confirmed by Fermi spectral measurements of Tycho and other SNRs at energies below ~300 MeV.

  7. Origin of Galactic Cosmic Rays from Supernova Remnants

    International Nuclear Information System (INIS)

    We analyze the results of recent measurements of Galactic cosmic ray (GCRs) energy spectra and the spectra of nonthermal emission from supernova remnants (SNRs) in order to determine their consistency with GCR origin in SNRs. It is shown that the measured primary and secondary CR nuclei energy spectra as well as the observed positron-to-electron ratio are consistent with the origin of GCRs up to the energy 1017 eV in SNRs. Existing SNR emission data provide evidences for efficient CR production in SNRs accompanied by significant magnetic field amplification. In some cases the nature of the detected ?-ray emission is difficult to determine because key SNR parameters are not known or poorly constrained

  8. Type Ia Supernova Remnants: Shaping by Iron Bullets

    CERN Document Server

    Tsebrenko, Danny

    2015-01-01

    Using 2D numerical hydrodynamical simulations of type Ia supernova remnants (SNR Ia) we show that iron clumps few times denser than the rest of the SN ejecta might form protrusions in an otherwise spherical SNR. Such protrusions exist in some SNR Ia, e.g., SNR 1885 and Tycho. Iron clumps are expected to form in the deflagration to detonation explosion model. In SNR Ia where there are two opposite protrusions, termed ears, such as Kepler's SNR and SNR G1.9+0.3, our scenario implies that the dense clumps, or iron bullets, were formed along an axis. Such a preferred axis can result from a rotating white dwarf progenitor. If our claim holds, this offers an important clue to the SN Ia explosion scenario.

  9. Type Ia supernova remnants: shaping by iron bullets

    Science.gov (United States)

    Tsebrenko, Danny; Soker, Noam

    2015-10-01

    Using 2D numerical hydrodynamical simulations of Type Ia supernova remnants (SNR Ia) we show that iron clumps few times denser than the rest of the SN ejecta might form protrusions in an otherwise spherical SNR. Such protrusions exist in some SNR Ia, e.g. SNR 1885 and Tycho. Iron clumps are expected to form in the deflagration to detonation explosion model. In SNR Ia where there are two opposite protrusions, termed `ears', such as Kepler's SNR and SNR G1.9+0.3, our scenario implies that the dense clumps, or iron bullets, were formed along an axis. Such a preferred axis can result from a rotating white dwarf progenitor. If our claim holds, this offers an important clue to the SN Ia explosion scenario.

  10. Radio spectra of complete sample of galactic supernova remnants

    CERN Document Server

    Trushkin, S A

    1998-01-01

    We present compiled radio continuum spectra for 200 Galactic supernova remnants (SNRs) from 220 known and included in Green's (1998) catalog. These spectra include most of the measurements available in literature, as well as multi-frequency measurements of nearly 120 SNRs with the RATAN-600 radio telescope in 1, 2 and 4 Galactic quadrants and from the Galactic plane survey at 960 and 3900 MHz. The measurements have been placed on the same absolute flux density scale. The presented compilation has given a possibility of plotting quite accurate spectra with the thermal plasma free-free absorption in fitting the spectra accounted for. An analysis of 190 spectra showed that 70 SNRs (37%) have clear low-frequency turnover caused, apparently, by absorption in the thermal foreground of the Milky Way. We did not find considerable correlation between spectral index and Galactic coordinates $l$ and $b$ of SNRs. The turnover frequencies do not correlate with $l$ and $b$.

  11. Galactic Gamma-Ray Background Radiation from Supernova Remnants

    CERN Document Server

    Berezhko, E G; Berezhko, Evgeny G.; Völk, Heinrich J.

    2000-01-01

    The contribution of the Source Cosmic Rays (SCRs), confined in Supernova Remnants, to the diffuse high energy \\gr emission above 1 GeV from the Galactic disk is studied. \\grs produced by the SCRs have a much harder spectrum compared with those generated by the Galactic Cosmic Rays which occupy a much larger residence volume uniformly. SCRs contribute less than 10% at GeV energies and become dominant at \\gr energies above 100 GeV. The contributions from $\\pi^0$-decay and Inverse Compton \\grs have comparable magnitude and spectral shape, whereas the Bremsstrahlung component is negligible. At TeV energies the contribution from SCRs increases the expected diffuse \\gr flux almost by an order of magnitude. It is shown that for the inner Galaxy the discrepancy between the observed diffuse intensity and previous model predictions at energies above a few GeV can be attributed to the SCR contribution.

  12. HAWC Observation of Supernova Remnants and Pulsar Wind Nebulae

    CERN Document Server

    Hui, C M

    2015-01-01

    The majority of Galactic TeV gamma-ray sources are pulsar wind nebulae (PWNe) and supernova remnants (SNRs), and the most common association for unidentified sources is PWN. Many of these sources were discovered in TeV by imaging air Cherenkov telescopes using overlapping pointed observations over sections of the Galactic plane. The HAWC observatory is a survey type instrument in the Northern hemisphere with an energy range of 100 GeV to 100 TeV. Preliminary analysis of data recorded with the partially completed HAWC array taken since 2013 shows extended detections that are coincident with known TeV SNRs and PWNe. The full array became operational in early 2015 and has been steadily surveying the Northern sky since. I will discuss detections in HAWC data taken since 2013 associated with PWNe and SNRs.

  13. Escaping the accelerator; how, when and in what numbers do cosmic rays get out of supernova remnants?

    CERN Document Server

    Drury, Luke O'C

    2010-01-01

    The escape of charged particles accelerated by diffusive shock acceleration from supernova remnants is shown to be a more complex process than normally appreciated. Using a box model it is shown that the high-energy end of the spectrum can exhibit spectral breaks even with no formal escape as a result of geometrical dilution and changing time-scales. It is pointed out that the bulk of the cosmic ray particles at lower energies must be produced and released in the late stages of the remnant's evolution whereas the high energy particles are produced early on; this may explain recent observations of slight compositional variations with energy. Escape resulting from ion-neutral friction in dense and partially ionized media is discussed briefly and some comments made on the use of so-called "free escape boundary conditions". Finally estimates are made of the total production spectrum integrated over the life of the remnant.

  14. Casper--A Spooky Supernova Remnant/Pulsar Association?

    Science.gov (United States)

    Matthews, B. C.; Wallace, B. J.; Taylor, A. R.

    1997-01-01

    In order to determine the nature of an object identified as a potential supernova remnant (SNR) in a 327 MHz survey of the Galactic plane, continuum data have been taken at 1420 MHz with identical resolution to that of the survey. Additionally, HI spectral line data have been taken in order to determine the distance to the object. Multifrequency analysis shows that a shell feature in the southern part of this object is nonthermal and confirms earlier studies that identified the northern portion as an HII region. The nonthermal nature of the shell and the absence of infrared flux density confirms the speculation of Taylor et al. (1992) that this object, G55.0+0.3, is an SNR. From analysis of atomic hydrogen, its estimated distance is 14 kpc, yielding a radius of 62 pc. This makes it one of the largest known of this class of objects. Additionally, an age estimate of one million years exceeds the conventional limits in the literature by a factor of five. There also exists compelling evidence that the remnant could in fact be associated with the nearby pulsar, J1932+2020. The discovery of G55.0+0.3 implies that the radiative lifetimes of SNR could be much longer than previously suggested. The proposed pulsar/SNR association is older than any previously documented by an order of magnitude. If valid, it suggests that searches for associations should not be restricted to the regions about young pulsars.

  15. Searches for Continuous Gravitational Waves from Nine Young Supernova Remnants

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Gossler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.

    2015-11-01

    We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3–25.3 days using the matched-filtering {F}-statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 × 10?25 on intrinsic strain, 2 × 10?7 on fiducial ellipticity, and 4 × 10?5 on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.

  16. Searches for continuous gravitational waves from nine young supernova remnants

    CERN Document Server

    Aasi, J; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barclay, S; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C; Benacquista, M; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackburn, L; Blair, C D; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bojtos, P; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Carbognani, F; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio,, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dartez, L; Dattilo, V; Dave, I; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fuentes-Tapia, S; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gatto, A; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Gergely, L Á; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guido, C J; Guo, X; Gushwa, K; Gustafson, E K; Gustafson, R; Hacker, J; Hall, E D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Hee, S; Heidmann, A; Heintze, M; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Hopkins, P; Hosken, D J; Hough, J; Houston, E; Howell, E J; Hu, Y M; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Islas, G; Isler, J C; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Jawahar, S; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Key, J S; Khalaidovski, A

    2014-01-01

    We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as $4\\times10^{-25}$ on intrinsic strain, $2\\times10^{-7}$ on fiducial ellipticity, and $4\\times10^{-5}$ on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.

  17. Two Radio Supernova Remnants Discovered in the Outer Galaxy

    CERN Document Server

    Foster, Tyler; Reich, Wolfgang; Kothes, Roland; West, Jennifer; 10.1051/0004-6361/201220362

    2013-01-01

    We report on the discovery of two supernova remnants (SNRs) designated G152.4-2.1 and G190.9-2.2, using Canadian Galactic Plane Survey data. The aims of this paper are, first, to present evidence that favours the classification of both sources as SNRs, and, second, to describe basic parameters (integrated flux density, spectrum, and polarization) as well as properties (morphology, line-of-sight velocity, distance and physical size) to facilitate and motivate future observations. Spectral and polarization parameters are derived from multiwavelength data from existing radio surveys carried out at wavelengths between 6 and 92cm. In particular for the source G152.4-2.1 we also use new observations at 11cm done with the Effelsberg 100m telescope. The interstellar medium around the discovered sources is analyzed using 1-arcminute line data from neutral hydrogen (HI) and 45-arcsecond 12CO(J=1-0). G152.4-2.1 is a barrel shaped SNR with two opposed radio-bright polarized flanks on the North and South. The remnant, whi...

  18. Numerical Simulations of Dust Destruction in Supernova Reverse Shocks

    CERN Document Server

    Silvia, D W; Shull, J M

    2010-01-01

    We investigate through hydrodynamic simulations the destruction of newly-formed dust grains by sputtering in the reverse shocks of supernova remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We then post-process the simulation output to calculate the grain sputtering for a variety of species and size distributions. We explore the parameter space appropriate for this problem by altering the over-density of the ejecta clumps and the speed of the reverse shocks. Since radiative cooling could lower the temperature of the medium in which the dust is embedded and potentially protect the dust by slowing or halting grain sputtering, we study the effects of different cooling methods over the time scale of the simulations. In general, our results indicate that grains with radii less than 0.1 microns are sputtered to much smaller radii and often destroy...

  19. A Study of the Non-Thermal X-Ray Emission of Shell-Type Supernova Remnants

    Science.gov (United States)

    Allen, Glenn E.

    2002-01-01

    The term of the second year of the award is the period from March 15, 2001 to March 14, 2002. As was the specified goal of the second year, we analyzed the spatial and spectral X-ray data for several young supernova remnants. I published a paper about an analysis of the ROSAT, ASCA, and RXTE data for the supernova remnant SN 1006. A copy of this paper is enclosed. As described in the paper, we believe that we accurately modeled the nonthermal X-ray emission from the remnant. The results of this analysis are used to infer properties about the cosmic rays accelerated in the remnant and to argue that the strength of the magnetic field in the remnant is considerably larger than the value of about 10 micro G reported elsewhere. The results were presented at the August 2001 International Cosmic Ray Conference in Hamburg, German),. I began analyzing new Chandra X-ray data for SN 1006. This analysis will yield the first measure of the strength of the magnetic field in the remnant for the first time. Preliminary results support our previous conclusion that the magnetic field strength in the remnant is much larger than 10 micro G. The field strength seems to be about the strength expected based on an equipartition calculation. The result supports recent models that describe the how the shock structure is influenced by the efficient acceleration of cosmic rays. This work will be presented at the April 2002 High Energy Astrophysics Division meeting in Albuquerque and published this summer. A copy of the abstract for the talk is enclosed. I began studying new Chandra X-ray data for the supernova remnant Cas A. The results of this work show that the forward shock is a region where cosmic-ray electrons are accelerated, which is consistent with theoretical expectations. The work was presented at the September 2001 Two Years of Science with Chandra symposium in Washington, DC. A copy of the poster paper is enclosed. Dr. Thomas Pannuti, whose research work is supported by the award, analyzed ROSAT, ASCA, and RXTE data for the supernova remnant G347.3-0.5. The results show for the first time that thermal X-ray emission is produced in the remnant. As expected, the thermal emission is consistent with a model in which the remnant is expanding into a very low density environment. The results also provide an accurate description of the nonthermal emission from the remnant. Dr. Pannuti presented this work at several conferences. A copy of the paper for the proceedings of the August 2001 Neutron Stars in Supernova Remnants symposium in enclosed. The work will be submitted to the Astrophysical Journal in the next few months.

  20. Investigations of supernovae and supernova remnants in the era of SKA

    CERN Document Server

    Wang, Lingzhi; Zhu, Hui; Tian, Wenwu; Wang, Xiaofeng

    2015-01-01

    Two main physical mechanisms are used to explain supernova explosions: thermonuclear explosion of a white dwarf(Type Ia) and core collapse of a massive star (Type II and Type Ib/Ic). Type Ia supernovae serve as distance indicators that led to the discovery of the accelerating expansion of the Universe. The exact nature of their progenitor systems however remain unclear. Radio emission from the interaction between the explosion shock front and its surrounding CSM or ISM provides an important probe into the progenitor star's last evolutionary stage. No radio emission has yet been detected from Type Ia supernovae by current telescopes. The SKA will hopefully detect radio emission from Type Ia supernovae due to its much better sensitivity and resolution. There is a 'supernovae rate problem' for the core collapse supernovae because the optically dim ones are missed due to being intrinsically faint and/or due to dust obscuration. A number of dust-enshrouded optically hidden supernovae should be discovered via SKA1-...

  1. Search for surviving companions in type Ia supernova remnants

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Kuo-Chuan [Physik Department, Universität Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ricker, Paul M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Taam, Ronald E., E-mail: kuo-chuan.pan@unibas.ch, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu, E-mail: taam@asiaa.sinica.edu.tw [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2014-09-01

    The nature of the progenitor systems of type Ia supernovae (SNe Ia) is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions (SCs). Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- (MS-) and helium-rich SCs, the color and magnitude of MS- and helium-rich SCs are predicted as functions of time. The SC candidates in Galactic type Ia supernova remnants (Ia SNR) and nearby extragalactic Ia SNRs are discussed. We find that the maximum detectable distance of MS SCs (helium-rich SCs) is 0.6-4 Mpc (0.4-16 Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for SCs. However, only five Ia SNRs have been searched for SCs, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of SNe Ia, we encourage the search for SCs in other nearby Ia SNRs.

  2. Chandra X-ray Observatory Arcsecond Imaging of the Young, Oxygen-rich Supernova Remnant 1E0102.2-7219

    OpenAIRE

    Gaetz, T. J.; Butt, Yousaf M.; Edgar, Richard J.; Eriksen, Kristoffer A.; Plucinsky, Paul P.; Schlegel, Eric M.; Smith, Randall K

    2000-01-01

    We present observations of the young, Oxygen-rich supernova remnant 1E0102.2-7219 taken by the Chandra X-ray Observatory during Chandra's Orbital Activation and Checkout phase. The boundary of the blast wave shock is clearly seen for the first time, allowing the diameter of the remnant and the mean blast wave velocity to be determined accurately. The prominent X-ray bright ring of material may be the result of the reverse shock encountering ejecta; the radial variation of O ...

  3. The structure of supernova shock waves

    International Nuclear Information System (INIS)

    The structure of strong shock waves is calculated over the range of shock energies (1 to 100 MeV nucleon-1) and initial number densities (1015--1022 cm-3) believed likely to occur in the red-giant-like envelopes of stars undergoing Type II supernova explosions. The general equations governing the structure of such shocks are developed on the basis of a plasma composed of ions, electrons, positrons, and photons, making use of diffusion theory to evaluate the dissipative and transfer terms. The present treatment differs from previous calculations in that the effects of radiation transport on the energy and momentum balance in the shock are taken into account, as well as the relativistic contributions to radiative emission rates due to nondipole electron-ion bremsstrahlung, electron-electron bremsstrahlung, and radiative Compton scattering. An implicit treatment of inverse Compton scattering is also developed in terms of the creation and diffusion of effective photons.Severalmodels of strong shock structure are formulated and solved on the basis of these equations and physical processes

  4. Infrared Spectral Mapping of Supernova Remnants. I. N63A and Its Environment

    Science.gov (United States)

    Caulet, Adeline; Williams, Rosa M.

    2012-12-01

    We present Spitzer Space Telescope spectra of the supernova remnant (SNR) N63A and its native H II region N63 in the Large Magellanic Cloud. We measure nebular fine-structure lines, H2 lines, and polycyclic aromatic hydrocarbons (PAHs). The lines contribute half of the flux in the Spitzer 24 ?m image of N63A shocked lobes, but only Electron densities are low everywhere; the differences in mid-IR line ratios separate N63A plasma and its high-excitation surroundings from N63A low-excitation optical lobes. We compare the observed line fluxes and ratios within N63A's shocked lobes and plasma with the predictions from models for moderate and fast shocks to constrain pre-shock densities and shock velocities. N63A's photoionized lobe contains a warm photodissociation region in pressure equilibrium with optically ionized gas. We apply a physical dust model to our spectra supplemented by MIPS photometry. We derive the intensity of radiation heating the dust, the mass fraction due to PAHs, and the masses of dust within our sampled regions and of cooler grains in the diffuse interstellar medium. N63A's shocked lobes and plasma contain ~0.07 M ? of hot grains, comparable to amounts in other SNRs. Within N63A there is ~0.7 M ? of warm grains exposed to >=100 times the intensity of the local interstellar radiation field. Within the regions, 92% of the total dust mass resides in cool grains emitting <=27% of their mid-IR luminosity. In loving memory of Sylvie Caulet-Maugendre: "I used to believe in forever, but forever is too good to be true." A. A. Milne, Winnie-the-Pooh.

  5. Supernova remnant evolution in an interstellar medium with evaporating clouds

    Science.gov (United States)

    White, Richard L.; Long, Knox S.

    1991-01-01

    A new similarity solution that describes the evolution of an SNR expanding into a cloudy interstellar medium is expounded. The solution incorporates a reasonable model of the conductive evaporation of cold clouds embedded in the hot gas behind the shock. The model has two new parameters in addition to those describing the usual Sedov solution for a uniform interstellar medium. The X-ray, infrared, and optical luminosities of remnants with evaporating clouds are calculated, and some of the expected spectral characteristics in the various wavebands are discussed. The effects described may explain the class of remnants observed to have centrally peaked X-ray emission and shell-like radio emission. The total H-alpha luminosity from evaporating clouds predicted by this model is less than that observed for SNRs with centrally peaked thermal X-ray emission. A detailed calculation of the X-ray and optical line emission from evaporating clouds would be very useful in testing this model against the observations.

  6. CO observations toward supernova remnants with associated OH 1720 MHz masers

    CERN Document Server

    Reynoso, E M; Reynoso, Estela M; Mangum, Jeffrey G.

    2000-01-01

    The environs of three supernova remnants (SNR) with associated OH 1720 MHz masers, G349.7+0.2, CTB 37A and G16.7+0.1, have been surveyed in the CO J=1-0 transition with the 12 Meter Telescope of the NRAO, using the On-The-Fly technique. These observations have revealed a number of molecular clouds interacting with the SNR shock fronts. Most of the OH 1720 MHz masers have been found to lie over CO concentrations, and the maser velocities are coincident with the CO peak velocities to an accuracy better than 2 km/s. The present data trace the interstellar medium (ISM) structures interacting with the SNRs; however, to probe the shocked molecular gas in which the OH 1720 MHz emission originates, higher excitation transitions and more complex species should be observed. In CTB 37A, where the shock velocity into the molecular cloud could be determined, it has been found to be of C-type, in agreement with theoretical predictions. Part of the rim of G16.7+0.1 appears to be flattened by a dense external cloud, yet the ...

  7. THE ORIGIN OF RADIALLY ALIGNED MAGNETIC FIELDS IN YOUNG SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tsuyoshi; Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo, E-mail: inouety@phys.aoyama.ac.jp [Department of Physics and Mathematics, Aoyama-Gakuin University, Sagamihara, Kanagawa 252-5258 (Japan)

    2013-08-01

    It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic fields in some young supernova remnants (SNRs) are oriented radially. We study the magnetic field distribution of turbulent SNRs driven by the Richtmyer-Meshkov instability (RMI)-in other words, the effect of rippled shock-by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The RMI is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observations can distinguish the following candidates responsible for the upstream density fluctuations: (1) inhomogeneity caused by the cascade of large-scale turbulence in the interstellar medium, the so-called big power-law in the sky; (2) structures generated by the Drury instability in the cosmic-ray modified shock; and (3) fluctuations induced by the nonlinear feedback of the cosmic-ray streaming instability.

  8. From E. Fermi to Fermi-LAT: watching particle acceleration in supernova remnants

    CERN Document Server

    Caprioli, Damiano

    2013-01-01

    Supernova remnants (SNRs) have been regarded for many decades as the sources of Galactic cosmic rays (CRs) up to a few PeV. However, only with the advent of Fermi-LAT it has been possible to detect - at least in some SNRs - \\gamma-rays whose origin is unequivocally hadronic, namely due to the decay of neutral pions produced by collisions between relativistic nuclei and the background plasma. When coupled with observations in other bands (from radio to TeV \\gamma-rays), Fermi-LAT data present evidence for CR spectra significantly steeper than the standard prediction of diffusive shock acceleration, forcing us to rethink our theoretical understanding of efficient particle energization at strong shocks. We outline how, by including the effects of CR-triggered magnetic field amplification, it is possible to reconcile non-linear models of diffusive shock acceleration with \\gamma-ray observations, in particular providing a successful application of such a theory to Tycho's SNR. Finally, we show how kinetic simulati...

  9. The Fermi Bubbles as a Scaled-up Version of Supernova Remnants

    CERN Document Server

    Fujita, Yutaka; Yamazaki, Ryo

    2013-01-01

    In this study, we treat the Fermi bubbles as a scaled-up version of supernova remnants (SNRs). The bubbles are created through activities of the super-massive black hole (SMBH) or starbursts at the Galactic center (GC). Cosmic-rays (CRs) are accelerated at the forward shocks of the bubbles like SNRs, which means that we cannot decide whether the bubbles were created by the SMBH or starbursts from the radiation from the CRs. We follow the evolution of CR distribution by solving a diffusion-advection equation, considering the reduction of the diffusion coefficient by CR streaming. In this model, gamma-rays are created through hadronic interaction between CR protons and the gas in the Galactic halo. In the GeV band, we can well reproduce the observed flat distribution of gamma-ray surface brightness, because some amount of gas is left behind the shock. The edge of the bubbles is fairly sharp owing to the high gas density behind the shock and the reduction of the diffusion coefficient there. The latter also contr...

  10. X-ray ejecta kinematics of the Galactic core-collapse supernova remnant G292.0+1.8

    CERN Document Server

    Bhalerao, Jayant; Dewey, Daniel; Hughes, John P; Mori, Koji; Lee, Jae-Joon

    2014-01-01

    We report on the results from the analysis of our 114 ks Chandra HETGS observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the 3D structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of -2300 <~ v_r <~ 1400 km s^-1. The distribution of ejecta knots in velocity vs. projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ~90" (corresponding to ~3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ~4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 10^51 erg, we est...

  11. X-RAY EJECTA KINEMATICS OF THE GALACTIC CORE-COLLAPSE SUPERNOVA REMNANT G292.0+1.8

    Energy Technology Data Exchange (ETDEWEB)

    Bhalerao, Jayant; Park, Sangwook [Department of Physics, University of Texas at Arlington, P.O. Box 19059, Arlington, TX 76019 (United States); Dewey, Daniel [MIT Kavli Institute, Cambridge, MA 02139 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Mori, Koji [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Lee, Jae-Joon, E-mail: jayant.bhalerao@mavs.uta.edu [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-02-10

    We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of –2300 ? v{sub r}  ? 1400 km s{sup –1}. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ?90'' (corresponding to ?3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ?4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 10{sup 51} erg, we estimate the total ejecta mass to be ?8 M {sub ?}, and we propose an upper limit of ?35 M {sub ?} on the progenitor's mass.

  12. G 2.4 + 1.4: a supernova remnant or ring nebula around a peculiar star

    International Nuclear Information System (INIS)

    G2.4+1.4 is a probable nonthermal radio source and an optical nebula which appears to be a supernova remnant (SNR). It also contains an O vi sequence star of great excitation. We present new radiofrequency continuum and (nil) H 92? observations, optical spectroscopy, and Fabry-Perot scanner observations of the nebula. The object distance (5 kpc), origin of gas kinematics (SNR expansion), and mode of excitation of the gas (photoexcitation and/or shock wave) remain uncertain. We discuss the possible roles of the O vi star as ''runaway'' in a SNR, as a source of photoexcitation, and as an ejector of a ''counterfeit'' SNR

  13. Re-examination of the Expected gamma-ray emission of supernova remnant SN 1987A

    CERN Document Server

    Berezhko, E G; Voelk, H J

    2015-01-01

    A nonlinear kinetic theory, combining cosmic ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5-50 yr. This spherically symmetric model is approximately applied to the different features of the SNR which consist of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an HII region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. (2014) which use a significantly smaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock has recently swept up the ER which is the densest region in the immediate circumstellar environment. Therefore the expected gamma-ray energy f...

  14. Re-examination of the Expected Gamma-Ray Emission of Supernova Remnant SN 1987A

    Science.gov (United States)

    Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5-50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of ˜10-13 erg cm-2 s-1. This flux should decrease by a factor of about two over the next 10 years.

  15. 3D Hydrodynamic Simulations of the Galactic Supernova Remnant CTB 109

    CERN Document Server

    Bolte, Jan; Breitschwerdt, Dieter

    2015-01-01

    Using detailed 3D hydrodynamic simulations we study the nature of the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0), which is well-known for its semicircular shape and a bright diffuse X-ray emission feature inside the SNR. Our model has been designed to explain the observed morphology, with a special emphasis on the bright emission feature inside the SNR. Moreover, we determine the age of the remnant and compare our findings with X-ray observations. With CTB 109 we test a new method of detailed numerical simulations of diffuse young objects, using realistic initial conditions derived directly from observations. We performed numerical 3D simulations with the RAMSES code. The initial density structure has been directly taken from $^{12}$CO emission data, adding an additional dense cloud, which, when it is shocked, causes the bright emission feature. From parameter studies we obtained the position $(\\ell , b)=(109.1545^\\circ , -1.0078^\\circ)$ for an elliptical cloud with $n_\\text{cloud}=25~\\text{cm}^{-3...

  16. Numerical code for fitting radial emission profile of a shell supernova remnant: Application

    Directory of Open Access Journals (Sweden)

    Opsenica Slobodan

    2011-01-01

    Full Text Available We present IDL (Interactive Data Language codes for fitting a theoretical emission profile of a shell supernova remnant (SNR to the mean profile of an SNR obtained from radio observations. Two considered theoretical models are: 1 a shell with constant emissivity and 2 a synchrotron shell with radially aligned magnetic field. The codes were applied to several observed supernova remnants. Good results are obtained in five considered cases, which justify the use of our code for remnants that are bright (so that observational errors are not large and spherically symmetric enough.

  17. Grammage of cosmic rays around Galactic supernova remnants

    CERN Document Server

    D'Angelo, Marta; Amato, Elena

    2015-01-01

    The residence time of cosmic rays (CRs) in the Galaxy is usually inferred from the measurement of the ratio of secondary-to-primary nuclei, such as the boron (B)/carbon (C) ratio, which provides an estimate of the amount of matter traversed by CRs during their propagation, the so called CR grammage. However, after being released by their parent sources, for instance supernova remnants (SNRs), CRs must cross the disc of the Galaxy, before entering the much lower density halo, in which they are believed to spend most of the time before eventually escaping the Galaxy. In the near-source region, the CR propagation is shown to be dominated by the non-linear self-generation of waves. Here we show that due to this effect, the time that CRs with energies up to $\\sim$ 10 TeV spend within a distance $L_{c}\\sim 100$ pc from the sources is much larger than naive estimates would suggest. The corresponding grammage is close to current estimates of the total grammage traversed throughout the whole Galaxy. Moreover, there is...

  18. Escape of cosmic-ray electrons from supernova remnants

    CERN Document Server

    Ohira, Yutaka; Kawanaka, Norita; Ioka, Kunihito

    2011-01-01

    We investigate the escape of cosmic ray (CR) electrons from a supernova remnant (SNR) to the interstellar space. We show that CR electrons escape in order from high to low energy with a similar spectrum to CR nuclei, while the escape starts later than the beginning of the Sedov phase at an SNR age of 1-7 10^3 yrs and the maximum energy of runaway CR electrons is below the knee about 0.3-50 TeV because unlike CR nuclei, CR electrons lose their energy due to synchrotron radiation. Highest energy CR electrons will be directly probed by AMS-02, CALET, CTA and LHAASO experiments, or have been already detected by H.E.S.S. as the spectral cutoff. Furthermore, we also calculate the spatial distribution of runaway CR electrons and their radiation spectra around SNRs. Contrary to common belief, maximum-energy photons of synchrotron radiation around 1 keV are emitted by runaway CR electrons inside the SNR. Inverse Compton scattering by runaway CR electrons can dominate the gamma-ray emission from runaway CR nuclei via p...

  19. Discovery of New Interacting Supernova Remnants in the Inner Galaxy

    CERN Document Server

    Hewitt, John W

    2009-01-01

    OH(1720 MHz) masers are excellent signposts of interaction between supernova remnants(SNRs) and molecular clouds. Using the GBT and VLA we have surveyed 75 SNRs and six candidates for maser emission. Four new interacting SNRs are detected with OH masers: G5.4-1.2, G5.7-0.0, G8.7-0.1 and G9.7-0.0. The newly detected interacting SNRs G5.7-0.0 and G8.7-0.1 have TeV gamma-ray counterparts which may indicate a local cosmic ray enhancement. It has been noted that maser-emitting SNRs are preferentially distributed in the Molecular Ring and Nuclear Disk. We use the present and existing surveys to demonstrate that masers are strongly confined to within 50 degrees Galactic longitude at a rate of 15 percent of the total SNR population. All new detections are within 10 degrees Galactic longitude emphasizing this trend. Additionally, a substantial number of SNR masers have peak fluxes at or below the detection threshold of existing surveys. This calls into question whether maser surveys of Galactic SNRs can be considered ...

  20. Non-thermal emission from old supernova remnants

    CERN Document Server

    Fang, Jun

    2007-01-01

    We study the non-thermal emission from old shell-type supernova remnants (SNRs) on the frame of a time-dependent model. In this model, the time-dependent non-thermal spectra of both primary electrons and protons as well as secondary electron/positron ($e^{\\pm}$) pairs can be calculated numerically by taking into account the evolution of the secondary $e^{\\pm}$ pairs produced from proton-proton (p-p) interactions due to the accelerated protons collide with the ambient matter in an SNR. The multi-wavelength photon spectrum for a given SNR can be produced through leptonic processes such as electron/positron synchrotron radiation, bremsstrahlung and inverse Compton scattering as well as hadronic interaction. Our results indicate that the non-thermal emission of the secondary $e^{\\pm}$ pairs is becoming more and more prominent when the SNR ages in the radiative phase because the source of the primary electrons has been cut off and the electron synchrotron energy loss is significant for a radiative SNR, whereas the...

  1. Photoionization of Galactic Halo Gas by Old Supernova Remnants

    CERN Document Server

    Slavin, J D; Hollenbach, D J; Slavin, Jonathan D.; Kee, Christopher F. Mc; Hollenbach, David J.

    2000-01-01

    We present new calculations on the contribution from cooling hot gas to the photoionization of warm ionized gas in the Galaxy. We show that hot gas in cooling supernova remnants (SNRs) is an important source of photoionization, particularly for gas in the halo. We find that in many regions at high latitude this source is adequate to account for the observed ionization so there is no need to find ways to transport stellar photons from the disk. The flux from cooling SNRs sets a floor on the ionization along any line of sight. Our model flux is also shown to be consistent with the diffuse soft X-ray background and with soft X-ray observations of external galaxies. We consider the ionization of the clouds observed towards the halo star HD 93521, for which there are no O stars close to the line of sight. We show that the observed ionization can be explained successfully by our model EUV/soft X-ray flux from cooling hot gas. In particular, we can match the H alpha intensity, the S++/S+ ratio, and the C+* column. F...

  2. The likely Fermi Detection of the Supernova Remnant RCW 103

    CERN Document Server

    Xing, Yi; Zhang, Xiao; Chen, Yang

    2013-01-01

    We report on the results from our $\\gamma$-ray analysis of the supernova remnant (SNR) RCW 103 region. The data were taken with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. An extended source is found at a position consistent with that of RCW 103, and its emission was only detected above 1 GeV (10$\\sigma$ significance), having a power-law spectrum with a photon index of 2.0$\\pm$0.1. We obtain its 1--300 GeV spectrum, and the total flux gives a luminosity of 8.3$\\times 10^{33}$ erg s$^{-1}$ at a source distance of 3.3 kpc. Given the positional coincidence and property similarities of this source with other SNRs, we identify it as the likely Fermi $\\gamma$-ray counterpart to RCW 103. Including radio measurements of RCW 103, the spectral energy distribution (SED) is modeled by considering emission mechanisms based on both hadronic and leptonic scenarios. We find that models in the two scenarios can reproduce the observed SED, although in the hadronic scenario, the total proton energy (5...

  3. Dust Cooling in Supernova Remnants in the Large Magellanic Cloud

    CERN Document Server

    Seok, Ji Yeon; Hirashita, Hiroyuki

    2015-01-01

    The infrared-to-X-ray (IRX) flux ratio traces the relative importance of dust cooling to gas cooling in astrophysical plasma such as supernova remnants (SNRs). We derive IRX ratios of SNRs in the LMC using Spitzer and Chandra SNR survey data and compare them with those of Galactic SNRs. IRX ratios of all the SNRs in the sample are found to be moderately greater than unity, indicating that dust grains are a more efficient coolant than gas although gas cooling may not be negligible. The IRX ratios of the LMC SNRs are systematically lower than those of the Galactic SNRs. As both dust cooling and gas cooling pertain to the properties of the interstellar medium, the lower IRX ratios of the LMC SNRs may reflect the characteristics of the LMC, and the lower dust-to- gas ratio (a quarter of the Galactic value) is likely to be the most significant factor. The observed IRX ratios are compared with theoretical predictions that yield IRX ratios an order of magnitude larger. This discrepancy may originate from the dearth ...

  4. X-Rays from Supernova Shocks in Dense Mass Loss

    OpenAIRE

    Chevalier, Roger A.; Irwin, Christopher M.

    2012-01-01

    Type IIn and related supernovae show evidence for an interaction with a dense circumstellar medium that produces most of the supernova luminosity. X-ray emission from shock heated gas is crucial for the energetics of the interaction and can provide diagnostics on the shock interaction. Provided that the shock is at an optical depth tau_w\\la c/v_s in the wind, where c is the speed of light and v_s is the shock velocity, a viscous shock is expected that heats the gas to a high...

  5. The composite form of the supernova remnant 3C 400.2: two interacting supernova remnants or a single supernova remnant with a blow-out?

    Directory of Open Access Journals (Sweden)

    Patricia Ambrocio-Cruz

    2006-01-01

    Full Text Available 3C 400.2 es un remanente de supernova galáctico que presenta una morfología que asemeja dos cascarones de diámetros diferentes que se traslapan. Estudiamos la cinemática de ambos cascarones para saber si esta morfología especial es debida al resultado de dos explosiones de supernova diferentes, o bien, a la explosión de una única supernova en un medio que tenga un gradiente de densidad abrupto. Los datos cinemáticos concuerdan mejor con la segunda hipótesis.

  6. Theory of cosmic ray production in the supernova remnant RX J1713.7-3946

    CERN Document Server

    Berezhko, E G

    2006-01-01

    A nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants (SNRs) is employed to investigate the properties of SNR RX J1713.7-3946. Observations of the nonthermal radio and X-ray emission spectra as well as the H.E.S.S. measurements of the very high energy gamma-ray emission are used to constrain the astronomical and the particle acceleration parameters of the system. Under the assumptions that RX J1713.7-3946 was a core collapse supernova (SN) of type II/Ib with a massive progenitor, has an age of \\approx 1600 yr and is at a distance of \\approx 1 kpc, the theory gives indeed a consistent description for all the existing observational data. Specifically it is shown that an efficient production of nuclear CRs, leading to strong shock modification, and a large downstream magnetic field strength B_d ~ 100 mkG can reproduce in detail the observed synchrotron emission from radio to X-ray frequencies together with the gamma-ray spectral characteristics as observed by the H.E.S.S. telescopes. S...

  7. CHANDRA AND XMM OBSERVATIONS OF THE COMPOSITE SUPERNOVA REMNANT G327.1-1.1

    International Nuclear Information System (INIS)

    We present new X-ray imaging and spectroscopy of a composite supernova remnant G327.1-1.1 using the Chandra and XMM-Newton X-ray observatories. G327.1-1.1 has an unusual morphology consisting of a symmetric radio shell and an off center nonthermal component that indicates the presence of a pulsar wind nebula (PWN). Radio observations show a narrow finger of emission extending from the PWN structure toward the northwest. X-ray studies with ASCA, ROSAT, and BeppoSAX revealed elongated extended emission and a compact source at the tip of the finger that may be coincident with the actual pulsar. The high resolution Chandra observations provide new insight into the structure of the inner region of the remnant. The images show a compact source embedded in a cometary structure from which a trail of X-ray emission extends in the southeast direction. The Chandra images also reveal two prong-like structures that appear to originate from the vicinity of the compact source and extend into a large bubble that is oriented in the northwest direction, opposite from the bright radio PWN. The emission from the entire radio shell is detected in the XMM data and can be characterized by a thermal plasma model with a temperature of ? 0.3 keV, which we use to estimate the physical properties of the remnant. The peculiar morphology of G327.1-1.1 may be explained by the emission from a moving pulsar and a relic PWN that has been disrupted by the reverse shock.

  8. Saturated magnetic field amplification at supernova shocks

    CERN Document Server

    Luo, Qinghuan

    2009-01-01

    Cosmic-ray streaming instabilities at supernova shocks are discussed in the quasilinear diffusion formalism which takes into account the feedback effect of wave growth on the cosmic ray streaming motion. In particular, the nonresonant instability that leads to magnetic field amplification in the short wavelength regime is considered. The linear growth rate is calculated using kinetic theory for a streaming distribution. We show that the nonresonant instability is actually driven by a compensating current in the background plasma. The nonresonant instability can develop into a nonlinear regime generating turbulence. The saturation of the amplified magnetic fields due to particle diffusion in the turbulence is derived analytically. It is shown that the evolution of parallel and perpendicular cosmic-ray pressures is predominantly determined by nonresonant diffusion. However, the saturation is determined by resonant diffusion which tends to reduce the streaming motion through pitch angle scattering. The saturated...

  9. Diffusion in the Bohm limit and non-thermal electrons in the Cassiopeia A supernova remnant

    Science.gov (United States)

    Stage, Michael; Allen, Glenn; Houck, John; Davis, John

    Acceleration of cosmic rays in our Galaxy by means of diffusive shock acceleration (DSA) is believed to occur primarily in supernova remnants. Despite a strong theoretical foundation, the precise details are still unknown in part because of the difficulty in directly observing nucleons that are accelerated to TeV energies in, and modify the structure of, SNR shocks. X-ray telescopes give us the opportunity to trace the keV synchrotron radiation emitted by accelerated electrons in the shocks, and the non-thermal bremsstrahlung radiation emitted by accelerated electrons which escape the shocks and interact with interior reverse-shocked ejecta. In our spatially-resolved spectroscopic analysis of Chandra X-ray observations of the Galactic SNR Cassiopeia A in the 0.5-10 keV band, we constrained the the diffusion coefficient of electrons in the forward shock. We demonstrated that in some locations they are accelerated nearly as fast as possible - in the Bohm limit as predicted by efficient DSA (Stage et al. 2006). We mapped the cutoff frequencies and diffusion coefficient of electrons accelerated in the forward shock on arcsecond scale by fitting the spectrum at thousands of locations along the shock filaments with a synchrotron model. Further, we used these results to understand the 10-32 keV emission observed by the Rossi X-ray Timing Explorer: a high-energy power-law tail containing contributions from non-thermal bremsstrahlung. Estimating the total synchrotron flux based on our Chandra analysis, and employing a non-thermal bremsstrahlung model we have developed, we have constrained the particle dynamics by fitting the RXTE spectrum. We show that the fraction of the non-thermal X-ray emission in the RXTE band produced by non-thermal bremsstrahlung is about two-thirds, that about 5% of the electrons have been accelerated to non-thermal energies, and that these electrons carry about 30% of the total energy in the electron distribution.

  10. Spitzer observations of the type IA supernova remnant N103B: Kepler's older cousin?

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Brian J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borkowski, Kazimierz J.; Reynolds, Stephen P. [Physics Department, North Carolina State University, Raleigh, NC 27695-8202 (United States); Ghavamian, Parviz [Department of Physics, Chemistry, and Geosciences, Towson University, Towson, MD 21252 (United States); Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Long, Knox S. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Blair, William P. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Sankrit, Ravi [SOFIA Science Center, NASA AMES Research Center, M/S N211-3, Moffett Field, CA 94035 (United States); Winkler, P. Frank [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States); Hendrick, Sean P., E-mail: brian.j.williams@nasa.gov [Physics Department, Millersville University, P.O. Box 1002, Millersville, PA 17551 (United States)

    2014-08-01

    We report results from Spitzer observations of SNR 0509-68.7, also known as N103B, a young Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC) that shows interaction with a dense medium in its western hemisphere. Our images show that N103B has strong IR emission from warm dust in the post-shock environment. The post-shock gas density we derive, 45 cm{sup –3}, is much higher than in other Type Ia remnants in the LMC, though a lack of spatial resolution may bias measurements toward regions of higher than average density. This density is similar to that in Kepler's SNR, a Type Ia interacting with a circumstellar medium (CSM). Optical images show H? emission along the entire periphery of the western portion of the shock, with [O III] and [S II] lines emitted from a few dense clumps of material where the shock has become radiative. The dust is silicate in nature, though standard silicate dust models fail to reproduce the '18 ?m' silicate feature that peaks instead at 17.3 ?m. We propose that the dense material is circumstellar material lost from the progenitor system, as with Kepler. If the CSM interpretation is correct, this remnant would become the second member, along with Kepler, of a class of Type Ia remnants characterized by interaction with a dense CSM hundreds of years post-explosion. A lack of N enhancement eliminates symbiotic asymptotic giant branch progenitors. The white dwarf companion must have been relatively unevolved at the time of the explosion.

  11. Observational study of ion-electron equilibration and of cloud evaporation in supernova remnants under the HEAO-2 guest investigator program

    Science.gov (United States)

    Teske, R. G.

    1986-01-01

    Observations of three selected supernovae remnants (Cygnus Loop, IC 443, and Puppis A) were made in the forbidden coronal iron lines (Fe X) lambda 6374 and (Fe XIV) lambda 5303. The resulting data was compared quantitatively with Einstein images of the same objects, and an attempt was made to determine (a) the process by which ion and electron energies are equilibrated behind the shock front in the ISM and (b) whether cloud evaporation occurs within the hot remnant interiors. Spatially-resolved X ray emission were modeled for Sedov-Taylor blast wave models of supernovae remnants (SNR) under conditions of non-equlibrium ionization. The computations are intended to provide results that can be directly compared with Einstein high resolution image (HRI) and imaging proportional counter (IPS) data. The computer program for predicting the spatial distribution of HRI and IPS counting rates was completed, and final testing of it had begun.

  12. SUPERNOVA REMNANTS AND THE INTERSTELLAR MEDIUM OF M83: IMAGING AND PHOTOMETRY WITH THE WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    We present Wide Field Camera 3 images taken with the Hubble Space Telescope within a single field in the southern grand design star-forming galaxy M83. Based on their size, morphology, and photometry in continuum-subtracted H?, [S II], H?, [O III], and [O II] filters, we have identified 60 supernova remnant (SNR) candidates, as well as a handful of young ejecta-dominated candidates. A catalog of these remnants, their sizes and, where possible, their H? fluxes are given. Radiative ages and pre-shock densities are derived from those SNRs that have good photometry. The ages lie in the range 2.62 rad/yr) 0/cm-3 min = 16+7-5 Msun. Finally, we give evidence for the likely detection of the remnant of the historical supernova, SN1968L.

  13. Synchrotron X-ray diagnostics of cutoff shape of nonthermal electron spectrum at young supernova remnants

    CERN Document Server

    Yamazaki, Ryo; Sawada, Makoto; Bamba, Aya

    2014-01-01

    Context: The synchrotron X-rays can be a useful tool to investigate the electron acceleration at young supernova remnants (SNRs). Aims: At present, since the magnetic field configuration around the shocks of SNRs is uncertain, it is not clear whether the electron acceleration is limited by SNR age, synchrotron cooling, or even escape from the acceleration region. We study if the acceleration mechanism can be constrained by the cutoff shape of the electron spectrum around the maximum energy. Methods: We derive analytical formulae of the cutoff shape in each case where the maximum electron energy is determined by SNR age, synchrotron cooling and escape from the shock. They are related to the energy dependence of the electron diffusion coefficient. Next, we discuss whether information on the cutoff shape is provided by near future observations which gives simply the photon indices and the flux ratios in the soft and hard X-ray bands. Results: If the power-law index of the electron spectrum is independently deter...

  14. Dust Formation in the young core-collapse supernova remnant E0102

    CERN Document Server

    Rho, J; Tappe, A; Hwang, U; Slavin, J D; Kozasa, T; Dunne, L

    2009-01-01

    We present Spitzer IRS and IRAC observations of the young supernova remnant E0102 (SNR 1E0102.2-7219) in the Small Magellanic Cloud. The infrared spectra show strong ejecta lines of Ne and O, with the [Ne II] line at 12.8 microns having a large velocity dispersion of 2,000-4,500 km/s indicative of fast-moving ejecta. Unlike the young Galactic SNR Cas A, E0102 lacks emission from Ar and Fe. Diagnostics of the observed [Ne III] line pairs imply that [Ne III] emitting ejecta have a low temperature of 650 K, while [Ne V] line pairs imply that the infrared [Ne V] emitting ejecta have a high density of ~10^4/cm3. We have calculated radiative shock models for various velocity ranges including the effects of photoionization. The shock model indicates that the [Ne V] lines come mainly from the cooling zone, which is hot and dense, whereas [Ne II] and [Ne III] come mainly from the photoinization zone, which has a low temperature of 400-1000 K. We estimate an infrared emitting Ne ejecta mass of 0.04 Msun from the infrar...

  15. Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    CERN Document Server

    Borkowski, K J; Green, D A; Hwang, U; Petre, R; Krishnamurthy, K; Willett, R

    2014-01-01

    We report measurements of X-ray expansion of the youngest Galactic supernova remnant (SNR), G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60% along the X-ray bright SE-NW axis from 0."84% +/- 0."06% per yr to 0."52% +/- 0."03% per yr. This corresponds to undecelerated ages of 120-190 yr, confirming the young age of G1.9+0.3, and implying a significant deceleration of the blast wave. The spatially-integrated dominantly synchrotron X-ray flux increases at 1.9% +/- 0.4% per yr. We identify the outer and inner rims with the blast wave and reverse shock, respectively. Sudden large density gradients in either ejecta or ambient medium are required to produce the sudden deceleration of the reverse shock or the blast wave implied by the large spread in expansion ages. The blast wave could have been decelerated recently by an encounter with a modest density discontinuity in the ambient medium, such as found at a win...

  16. Gamma-Ray Emission from Supernova Remnant Interaction with Molecular Clumps

    CERN Document Server

    Tang, Xiaping

    2014-01-01

    Observations of the middle-aged supernova remnants IC 443, W28 and W51C indicate that the brightnesses at GeV and TeV energies are correlated with each other and with regions of molecular clump interaction, but not with the radio synchrotron brightness. We suggest that the radio emission is primarily associated with a radiative shell in the interclump medium of a molecular cloud, while the gamma-ray emission is primarily associated with the interaction of the radiative shell with molecular clumps. The shell interaction produces a high pressure region, so that the gamma-ray luminosity can be approximately reproduced even if shock acceleration of particles is not efficient, provided that energetic particles are trapped in the cooling region. In this model, the spectral shape \\ga 2 GeV is determined by the spectrum of cosmic ray protons. Models in which diffusive shock acceleration determines the spectrum tend to underproduce TeV emission because of the limiting particle energy that is attained.

  17. ASTRO-H White Paper - Older Supernova Remnants and Pulsar Wind Nebulae

    CERN Document Server

    Long, K S; Aharonian, F; Foster, A; Funk, S; Hiraga, J; Hughes, J; Ishida, M; Katsuda, S; Matsumoto, H; Mori, K; Nakajima, H; Nakamori, T; Ozaki, M; Safi-Harb, S; Sawada, M; Tamagawa, T; Tamura, K; Tanaka, T; Tsunemi, H; Uchida, H; Uchiyama, Y; Yamauchi, S

    2014-01-01

    Most supernova remnants (SNRs) are old, in the sense that their structure has been profoundly modified by their interaction with the surrounding interstellar medium (ISM). Old SNRs are very heterogenous in terms of their appearance, reflecting differences in their evolutionary state, the environments in which SNe explode and in the explosion products. Some old SNRs are seen primarily as a result of a strong shock wave interacting with the ISM. Others, the so-called mixed-morphology SNRs, show central concentrations of emission, which may still show evidence of emission from the ejecta. Yet others, the pulsar wind nebulae (PWNe), are seen primarily as a result of emission powered by a pulsar; these SNRs often lack the detectable thermal emission from the primary shock. The underlying goal in all studies of old SNRs is to understand these differences, in terms of the SNe that created them, the nature of the ISM into which they are expanding, and the fundamental physical processes that govern their evolution. He...

  18. THE FERMI BUBBLES AS A SCALED-UP VERSION OF SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Yutaka [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ohira, Yutaka; Yamazaki, Ryo, E-mail: fujita@vega.ess.sci.osaka-u.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Chuou-ku, Sagamihara 252-5258 (Japan)

    2013-09-20

    In this study, we treat Fermi bubbles as a scaled-up version of supernova remnants (SNRs). The bubbles are created through activities of the super-massive black hole (SMBH) or starbursts at the Galactic center (GC). Cosmic-rays (CRs) are accelerated at the forward shocks of the bubbles like SNRs, which means that we cannot decide whether the bubbles were created by the SMBH or starbursts from the radiation from the CRs. We follow the evolution of CR distribution by solving a diffusion-advection equation, considering the reduction of the diffusion coefficient by CR streaming. In this model, gamma rays are created through hadronic interaction between CR protons and the gas in the Galactic halo. In the GeV band, we can well reproduce the observed flat distribution of gamma-ray surface brightness because some amount of gas is left behind the shock. The edge of the bubbles is fairly sharp owing to the high gas density behind the shock and the reduction of the diffusion coefficient there. The latter also contributes the hard gamma-ray spectrum of the bubbles. We find that the CR acceleration at the shock began when the bubbles were small, and the time scale of the energy injection at the GC was much smaller than the age of the bubbles. We predict that if CRs are accelerated to the TeV regime, the apparent bubble size should be larger in the TeV band, which could be used to discriminate our hadronic model from other leptonic models. We also present neutrino fluxes.

  19. The many sides of RCW 86: a type Ia supernova remnant evolving in its progenitor's wind bubble

    CERN Document Server

    Broersen, Sjors; Vink, Jacco; Bamba, Aya

    2014-01-01

    We present the results of a detailed investigation of the Galactic supernova remnant RCW 86 using the XMM-Newton X-ray telescope. RCW 86 is the probable remnant of SN 185 A.D, a supernova that likely exploded inside a wind-blown cavity. We use the XMM-Newton Reflection Grating Spectrometer (RGS) to derive precise temperatures and ionization ages of the plasma, which are an indication of the interaction history of the remnant with the presumed cavity. We find that the spectra are well fitted by two non-equilibrium ionization models, which enables us to constrain the properties of the ejecta and interstellar matter plasma. Furthermore, we performed a principal component analysis on EPIC MOS and pn data to find regions with particular spectral properties. We present evidence that the shocked ejecta, emitting Fe-K and Si line emission, are confined to a shell of approximately 2 pc width with an oblate spheroidal morphology. Using detailed hydrodynamical simulations, we show that general dynamical and emission pro...

  20. Cosmic-ray-induced ionization in molecular clouds adjacent to supernova remnants - Tracing the hadronic origin of GeV gamma radiation

    OpenAIRE

    Schuppan, F.; J.K. Becker; Black, J.H.; Casanova, S.

    2012-01-01

    Energetic gamma rays (GeV to TeV photon energy) have been detected toward several supernova remnants (SNR) associated with molecular clouds. If the gamma rays are produced mainly by hadronic processes rather than leptonic processes like bremsstrahlung, then the flux of energetic cosmic ray (CR) nuclei (>1 GeV) required to produce the gamma rays can be inferred at the site where the particles are accelerated in SNR shocks. It is of great interest to understand the acceleratio...

  1. A model for OH(1720 MHz) masers associated with supernova remnants, and an application to Sgr A East

    CERN Document Server

    Wardle, M; Geballe, T R; Wardle, Mark; Yusef-Zadeh, Farhad

    1998-01-01

    OH(1720 MHz) masers unaccompanied by 1665/7 MHz line masers have recently been proposed as indicators of the interaction of supernova remnants (SNRs) and molecular clouds. We present a model for the masing region in which water produced in a C-type shock wave driven into the molecular cloud is dissociated as a result of the X-ray flux from the SNR. We note that the magnetic field strengths inferred from Zeeman splitting of the 1720 MHz line measure the internal pressure of the supernova remnant. In addition, we discuss the interaction of Sgr A East, a SNR candidate, with the 50 km/s cloud at the Galactic Centre and present near-infrared observations of H_2 emission towards the regions where OH(1720 MHz) maser emission is concentrated. The magnetic field strength obtained from earlier Zeeman measurements is consistent with rough pressure equilibrium between the postshock gas and the X-ray gas filling Sgr A East detected by ASCA. Further, the intensity of the v=1-0 S(1) line of H_2 is consistent with the shock ...

  2. Observations of supernova remnants and molecular clouds from the mm to the gamma-ray domain: bridging low and high energy cosmic rays

    CERN Document Server

    Gabici, Stefano

    2015-01-01

    New evidence that cosmic rays (hadronic component) are accelerated by supernova remnant shocks all the way from low energies to high energies, has come from recent works combining gamma-ray observations in the sub-GeV to TeV domain on the one hand, and in the submm-mm domain on the other hand. These observations concern the specific cases of supernova remnants interacting with molecular cloud complexes, that have long been suspected to be ideal laboratories to study in situ cosmic ray acceleration and diffusion. Indeed, enhanced gamma-ray emission from neutral pion decay, as well as enhanced ionization (both by at least one order of magnitude with respect to average galactic values) have been observed in several regions of massive star formation housing supernova remnants interacting with molecular cloud complexes. This paper summarizes the main physical and chemical processes at work, as well as recent observations, that further support the paradigm of cosmic ray acceleration by supernova remnants all the wa...

  3. Search for cosmic ray origins by the study of supernova remnants associated with molecular clouds with HESS and test of HESS II sampling system

    International Nuclear Information System (INIS)

    The H.E.S.S. telescope (High energy Stereoscopic System), located in Namibia, is currently the most efficient for the observation of very high energy (VHE) gamma-ray sources. It is composed of 4 large diameter telescopes working in stereoscopic mode and allows an unequaled survey of the galactic plane at these extreme wavelengths. The H.E.S.S. experiment showed the presence of high energy particles up to 100 TeV within supernova remnant. This astrophysical objects are believed to be the main particle accelerator within the Galaxy. However, the particle nature remains unclear. This thesis presents a new observational approach in order to show hadronic particles acceleration through diffusive shock within supernova remnant. A search of supernova remnant associated with molecular cloud have been led within the HESS source catalog and the H.E.S.S. observations. An analysis of the new VHE gamma-ray source in Monoceros and its interpretation are presented. As well, the analysis and interpretation of new observations of the unidentified source HESS J1745-303 are presented. The multi-wavelength analysis of the new source HESS J1714-385, coincident with the supernova remnant CTB37A is presented. A contribution to the H.E.S.S. phase II building is also presented. This second phase consists in the building of a fifth telescope at the center of the existing system. The series tests of the new camera sampling system are reported. (author)

  4. Optical identification and spectrum of the supernova remnant G292.0+1.8

    International Nuclear Information System (INIS)

    Optical nebulosity has been found coincident with the non-thermal radio source G292.0 + 1.8. The radio properties of the source are like those of other filled-centre supernova remnants. It is the third such supernova remnant discovered in the optical. The spectrum of the nebulosity shows forbidden lines of oxygen and neon, but no Balmer Lines. Interstellar reddening of the nebulosity is small, E(B-V) approximately 0.9 mag and its temperature high T approximately 36,000 K. The data are suggestive of G292.0 + 1.8 being the remnant of a comparatively recent supernova of a massive star (approximately 20 solar masses). (author)

  5. Four extended gamma-ray supernova remnants newly identified by Fermi-LAT Pass 8 data

    Science.gov (United States)

    Hewitt, John W.; Fermi-LAT Collaboration

    2015-01-01

    Identifying gamma-ray emission from supernova remnants is crucial to determine the origin of Galactic cosmic rays. Despite the excellent sensitivity and spatial resolution of the Fermi Gamma-ray Space Telescope, it has proven difficult to clearly identify these sources as they are buried in the bright diffuse Galactic background and may be confused with other gamma-ray sources, such as pulsars. Here we report the detection of extended emission from four supernova remnants - CTB 109, PKS 1209-51/52, CTB 37A, RCW 86 - using 5 years of observations with Fermi and the new Pass 8 event reconstruction developed by the LAT collaboration. The improvements with Pass 8 promise to rapidly grow the population of gamma-ray supernova remnants identified through their spatial extension.

  6. RX-J0852?4622: THE NEAREST HISTORICAL SUPERNOVA REMNANT – AGAIN

    Directory of Open Access Journals (Sweden)

    Bernd Aschenbach

    2013-12-01

    Full Text Available RX-J0852?4622, a supernova remnant, is demonstrated to be closer than 500 pc, based on the measurements of the angular radius, the angular expansion rate and the TeV g-ray flux. This is a new method of limiting the distance to any supernova remnant with hadronic induced TeV g-ray flux. The progenitor star of RX-J0852?4622 probably exploded in its blue supergiant wind, like SN 1987A, preceeded by a red supergiant phase. A cool dense shell, expected around the outskirts of the red wind, my have been identified. The distance (200 pc and age (680 yr of the supernova remnant, originally proposed, are supported.

  7. Modelling of X-ray emission supernova remnants observed by the European satellite XMM-Newton

    International Nuclear Information System (INIS)

    This thesis deals with the X-ray emission of supernova remnants (SNRs) observed by the European satellite XMM-Newton. In SNRs, the matter heated to millions of degrees shines brightly in X-rays. This emission depends on the hydrodynamical evolution of the SNR, on the chemical composition of the ejected matter and on the ambient medium. Moreover, the blast-wave is considered to be the prime site of the production and the acceleration of cosmic-rays in our Galaxy. XMM-Newton is one of the first to allow the investigation of these different aspects thanks to its spatially-resolved spectroscopy and its very good sensitivity. l first studied Kepler's SNR (SN 1604) whose X-ray emission is dominated by the ejecta. Its observation has allowed to obtain information on the nucleosynthesis products, on their spatial distribution and on the temperature structure in the shocked ejecta. This gives strong constraints on the physics of the explosion and on the progenitor's type. l have shown also that the X-ray emission at the shock is likely to be non-thermal. Then, l studied the SNR G347.3-0.5 whose X-ray emission is entirely due to the synchrotron radiation of relativistic (TeV) electrons accelerated at the shock. From five pointing, l made a full mapping of the X-ray emission characteristics (brightness, absorption and spectral index) at small scale. Combined to radio observations, these results have indicated a clear interaction between the SNR and molecular clouds located at 1 kpc and not at 6 kpc as previously estimated. Lastly, in the framework of a self-similar hydrodynamical model coupled with non-linear particle acceleration, l have obtained the synchrotron emission profile in SNRs, including the adiabatic and radiative losses of the accelerated electrons. (author)

  8. Monochromatic photography of the Cygnus Loop supernova remnant. Plotting of isophotes of partial nebula radiation in the [OIII] and [NII]+H? lines

    International Nuclear Information System (INIS)

    System of the isophotes of the 9' size in the west part of the Cyg Loop supernova remnant using monochromatic photographs in the [O3] and [N2]+Hsub(?) lines is obtained. A relative displacement of the regions of emission in these lines is discovered and explained by temperature reduction due to radiative losses behind the shock wave of the supernova explosion. The morphology difference between the [O3] and [N2]+Hsub(?) lxnes is explained. Anomalously large intensity ratios Isub([O3])/Isub(Hsub(?)) are supposed to be due to spatial separation of the corresponding emission regions

  9. High Resolution X-ray Imaging of Supernova Remnant 1987A

    OpenAIRE

    Ng, C. -Y.; Gaensler, B.M.; Murray, S. S.; Slane, P. O.; Park, S.; Staveley-Smith, L; Manchester, R N; Burrows, D.N.

    2009-01-01

    We report observations of the remnant of Supernova 1987A with the High Resolution Camera (HRC) onboard the Chandra X-ray Observatory. A direct image from the HRC resolves the annular structure of the X-ray remnant, confirming the morphology previously inferred by deconvolution of lower resolution data from the Advanced CCD Imaging Spectrometer. Detailed spatial modeling shows that the a thin ring plus a thin shell gives statistically the best description of the overall remna...

  10. Fermi LAT gamma-ray observations of the supernova remnant HB21

    OpenAIRE

    Pivato, G.; Hewitt, J. W.; collaboration, L. Tibaldo for the Fermi LAT

    2013-01-01

    We present the analysis of Fermi Large Area Telescope (LAT) {\\gamma}-ray observations of HB 21, a mixed-morphology supernova remnant. Such supernova remnants are characterized by an interior thermal X-ray plasma, surrounded by a wider nonthermal shell emitting at radio frequencies. HB 21 has a large angular size, making it a good candidate for detailed morphological and spectral studies with the LAT. The radio extension is 2{\\deg}x1{\\deg}.5, compared to the LAT 68% containme...

  11. TeV Neutrinos from SuperNova Remnants embedded in Giant Molecular Clouds

    OpenAIRE

    Vincenzo CavasinniPisa U. and INFN, Pisa; Dario GrassoSNS and INFN, Pisa; Luca MaccioneSISSA, Trieste, and INFN, Pisa

    2006-01-01

    The recent detection of $\\gamma$-rays with energy up to 10 TeV from dense regions surrounding some Supernova Remnants (SNR) provides strong, though still not conclusive, evidence that the nucleonic component of galactic Cosmic Rays is accelerated in the supernova outflows. Neutrino telescopes could further support the validity of such scenario by detecting neutrinos coming from the same regions. We re-evaluate the TeV range neutrino-photon flux ratio to be expected from pion...

  12. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Seward, F. D. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Charles, P. A. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Foster, D. L. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Dickel, J. R.; Romero, P. S. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Edwards, Z. I.; Perry, M.; Williams, R. M. [Department of Earth and Space Sciences, Columbus State University, Coca Cola Space Science Center, 701 Front Avenue, Columbus, GA 31901 (United States)

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  13. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    International Nuclear Information System (INIS)

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M ?

  14. Supernova Remnants in the Sedov Expansion Phase Thermal X-Ray Emission

    CERN Document Server

    Borkowski, K J; Reynolds, S P

    2001-01-01

    Improved calculations of X-ray spectra for supernova remnants (SNRs) in the Sedov-Taylor phase are reported, which for the first time include reliable atomic data for Fe L-shell lines. This new set of Sedov models also allows for a partial collisionless heating of electrons at the blast wave and for energy transfer from ions to electrons through Coulomb collisions. X-ray emission calculations are based on the updated Hamilton-Sarazin spectral model. The calculated X-ray spectra are succesfully interpreted in terms of three distribution functions: the electron temperature and ionization timescale distributions, and the ionization timescale averaged electron temperature distribution. The comparison of Sedov models with a frequently used single nonequilibrium ionization (NEI) timescale model reveals that this simple model is generally not an appropriate approximation to X-ray spectra of SNRs. We find instead that plane-parallel shocks provide a useful approximation to X-ray spectra of SNRs, particularly for youn...

  15. Suzaku study on the ejecta of the supernova remnant G272.2-3.2

    Science.gov (United States)

    Kamitsukasa, Fumiyoshi; Koyama, Katsuji; Nakajima, Hiroshi; Hayashida, Kiyoshi; Mori, Koji; Katsuda, Satoru; Uchida, Hiroyuki; Tsunemi, Hiroshi

    2015-11-01

    We report reanalyses of the Suzaku observations of the Galactic supernova remnant (SNR) G272.2-3.2, for which previous studies were limited below 3 keV. With careful data reduction and background subtraction, we discover the K-shell lines of Ar, Ca, and Fe above 3 keV. The X-ray spectrum of G272.2-3.2 consists of two components, a low-temperature collisional ionization equilibrium (CIE) plasma (kTe ˜ 0.2 keV) and a high-temperature non-equilibrium ionization (NEI) plasma (kTe = 0.6-3 keV). The CIE plasma has solar abundances over the entire area, hence it originates from the interstellar medium. On the other hand, the abundances of the NEI plasma increase toward the inner region, suggesting ejecta origin. The line center energy of the Fe K-shell emission (˜6.4 keV) suggests that the ejecta are recently heated by reverse shock, a common feature in Type Ia SNRs.

  16. Suzaku study on the Ejecta of the Supernova Remnant G272.2$-$3.2

    CERN Document Server

    Kamitsukasa, Fumiyoshi; Nakajima, Hiroshi; Hayashida, Kiyoshi; Mori, Koji; Katsuda, Satoru; Uchida, Hiroyuki; Tsunemi, Hiroshi

    2015-01-01

    We report re-analyses of the Suzaku observations of the Galactic supernova remnant (SNR), G272.2$-$3.2, for which the previous studies were limited below 3 keV. With careful data reduction and background subtraction, we discover the K-shell lines of Ar, Ca, and Fe above 3 keV. The X-ray spectrum of G272.2$-$3.2 consists of two components, a low-temperature collisional ionization equilibrium (CIE) plasma ($kT_{\\rm e} \\sim 0.2$ keV) and a high-temperature non-equilibrium ionization (NEI) plasma ($kT_{\\rm e} = 0.6$-$3$ keV). The CIE plasma has solar abundances over the entire area, hence it would originate from the interstellar medium. On the other hand, the abundances of the NEI plasma increase toward the inner region, suggesting the ejecta origin. The line center energy of the Fe K-shell emission ($\\sim 6.4$ keV) suggests that the ejecta are recently heated by the reverse shock, a common feature in Type Ia SNRs.

  17. Dust in the bright supernova remnant N49 in the LMC

    CERN Document Server

    Otsuka, M; Long, K S; Meixner, M; Matsuura, M; Reach, W T; Roman-Duval, J; Gordon, K; Sauvage, M; Hony, S; Misselt, K; Engelbracht, C; Panuzzo, P; Okumura, K; Woods, P M; Kemper, F; Sloan, G

    2010-01-01

    We investigate the dust associated with the supernova remnant (SNR) N49 in the Large Magellanic Cloud (LMC) as observed with the Herschel Space Observatory. N49 is unusually bright because of an interaction with a molecular cloud along its eastern edge. We have used PACS and SPIRE to measure the far IR flux densities of the entire SNR and of a bright region on the eastern edge of the SNR where the SNR shock is encountering the molecular cloud. Using these fluxes supplemented with archival data at shorter wavelengths, we estimate the dust mass associated with N49 to be about 10 Msun. The bulk of the dust in our simple two-component model has a temperature of 20-30 K, similar to that of nearby molecular clouds. Unfortunately, as a result of the limited angular resolution of Herschel at the wavelengths sampled with SPIRE, the uncertainties are fairly large. Assuming this estimate of the dust mass associated with the SNR is approximately correct, it is probable that most of the dust in the SNR arises from regions...

  18. Dust processing in Supernova Remnants: Spitzer MIPS SED and IRS Observations

    CERN Document Server

    Andersen, M; Reach, W T; Hewitt, J W; Bernard, J P

    2011-01-01

    We present Spitzer MIPS SED and IRS observations of 14 Galactic Supernova Remnants previously identified in the GLIMPSE survey. We find evidence for SNR/molecular cloud interaction through detection of [OI] emission, ionic lines, and emission from molecular hydrogen. Through black-body fitting of the MIPS SEDs we find the large grains to be warm, 29-66 K. The dust emission is modeled using the DUSTEM code and a three component dust model composed of populations of big grains, very small grains, and polycyclic aromatic hydrocarbons. We find the dust to be moderately heated, typically by 30-100 times the interstellar radiation field. The source of the radiation is likely hydrogen recombination, where the excitation of hydrogen occurred in the shock front. The ratio of very small grains to big grains is found for most of the molecular interacting SNRs to be higher than that found in the plane of the Milky Way, typically by a factor of 2--3. We suggest that dust shattering is responsible for the relative over-abu...

  19. Study of TeV shell supernova remnants at gamma-ray energies

    Science.gov (United States)

    Acero, F.; Lemoine-Goumard, M.; Renaud, M.; Ballet, J.; Hewitt, J. W.; Rousseau, R.; Tanaka, T.

    2015-08-01

    Context. The breakthrough developments of Cherenkov telescopes in the past decade have led to angular resolution of 0.1° and an unprecedented sensitivity. This has allowed the current generation of Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) to discover a population of supernova remnants (SNRs) radiating in very-high-energy (VHE; E > 100 GeV) ?-rays. A number of those VHE SNRs exhibit a shell-type morphology that is spatially coincident with the shock front of the SNR. Aims: The members of this VHE shell SNR club are RX J1713.7-3946, RX J0852.0-4622, RCW 86, SN 1006, and HESS J1731-347. The last two objects have been poorly studied in high-energy (HE; 0.1 5?. Results: With this Fermi analysis, we now have a complete view of the HE to VHE ?-ray emission of TeV shell SNRs. All five sources have a hard HE photon index (? < 1.8), which suggests a common scenario where the bulk of the emission is produced by accelerated electrons radiating from radio to VHE ?-rays through synchrotron and inverse Compton processes. In addition when correcting for the distance, all SNRs show a surprisingly similar ?-ray luminosity supporting the idea of a common emission mechanism. While the ?-ray emission is likely to be leptonic-dominated at the scale of the whole SNR, this does not rule out efficient hadron acceleration in those objects.

  20. Radio spectral characteristics of the supernova remnant Puppis A and nearby sources

    CERN Document Server

    Reynoso, E M

    2015-01-01

    This paper presents a new study of the spectral index distribution of the supernova remnant (SNR) Puppis A. The nature of field compact sources is also investigated according to the measured spectral indices. This work is based on new observations of Puppis A and its surroundings performed with the Australia Telescope Compact Array in two configurations using the Compact Array Broad-band Backend centered at 1.75 GHz. We find that the global spectral index of Puppis A is -0.563 +/- 0.013. Local variations have been detected, however this global index represents well the bulk of the SNR. At the SE, we found a pattern of parallel strips with a flat spectrum compatible with small-scale filaments, although not correlated in detail. The easternmost filament agrees with the idea that the SN shock front is interacting with an external cloud. There is no evidence of the previously suggested correlation between emissivity and spectral index. A number of compact features are proposed to be evolved clumps of ejecta based...

  1. Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, H.; /Ibaraki U., Mito; Tibaldo, L.; /INFN, Padua /Padua U. /Paris U., VI-VII; Ballet, J.; /Paris U., VI-VII; Giordano, F.; /Bari U. /Bari Polytechnic /INFN, Bari; Grenier, I.A.; /Paris U., VI-VII; Porter, T.A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Roth, M.; /Washington U., Seattle; Tibolla, O.; /Wurzburg U.; Uchiyama, Y.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Yamazaki, R.; /Sagamihara, Aoyama Gakuin U.

    2011-11-08

    We present an analysis of the gamma-ray measurements by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Cygnus Loop (G74.0-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2-100 GeV. The gamma-ray spectrum shows a break in the range 2-3 GeV. The gamma-ray luminosity is {approx} 1 x 10{sup 33} erg s{sup -1} between 1-100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0{sup o}.7 {+-} 0{sup o}.1 and 1{sup o}.6 {+-} 0{sup o}.1. Given the association among X-ray rims, H{alpha} filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.

  2. Study of TeV shell supernova remnants at gamma-ray energies

    CERN Document Server

    Acero, F; Renaud, M; Ballet, J; Hewitt, J W; Rousseau, R; Tanaka, T

    2015-01-01

    The breakthrough developments of Cherenkov telescopes in the last decade have led to angular resolution of 0.1{\\deg} and an unprecedented sensitivity. This has allowed the current generation of Cherenkov telescopes to discover a population of supernova remnants (SNRs) radiating in very-high-energy (VHE, E>100 GeV) gamma-rays. A number of those VHE SNRs exhibit a shell-type morphology spatially coincident with the shock front of the SNR. The members of this VHE shell SNR club are RX J1713.7-3946, Vela Jr, RCW 86, SN 1006, and HESS J1731-347. The latter two objects have been poorly studied in high-energy (HE, 0.1 5 sigma. With this Fermi analysis, we now have a complete view of the HE to VHE gamma-ray emission of TeV shell SNRs. All five sources have a hard HE photon index (<1.8) suggesting a common scenario where the bulk of the emission is produced by accelerated electrons radiating from radio to VHE gamma-rays through synchrotron and inverse Compton processes. In addition when correcting for the distance,...

  3. Radio spectral characteristics of the supernova remnant Puppis A and nearby sources

    Science.gov (United States)

    Reynoso, E. M.; Walsh, A. J.

    2015-08-01

    This paper presents a new study of the spectral index distribution of the supernova remnant (SNR) Puppis A. The nature of field compact sources is also investigated according to the measured spectral indices. This work is based on new observations of Puppis A and its surroundings performed with the Australia Telescope Compact Array in two configurations using the Compact Array Broad-band Backend centred at 1.75 GHz. We find that the global spectral index of Puppis A is ? = -0.563 ± 0.013. Local variations have been detected, however this global index represents well the bulk of the SNR. At the SE, we found a pattern of parallel strips with a flat spectrum compatible with small-scale filaments, although not correlated in detail. The easternmost filament agrees with the idea that the SNR shock front is interacting with an external cloud. There is no evidence of the previously suggested correlation between emissivity and spectral index. A number of compact features are proposed to be evolved clumps of ejecta based on their spectral indices, although dynamic measurements are needed to confirm this hypothesis. We estimate precise spectral indices for the five previously known field sources, two of which are found to be double (one of them, probably triple), and catalogue 40 new sources. In the light of these new determinations, the extragalactic nature previously accepted for some compact sources is now in doubt.

  4. A statistical study of the correlation of galactic supernova remnants and spiral arms

    International Nuclear Information System (INIS)

    A statistical study of the correlation of galactic supernova remnants with spiral arms and the disk is presented. SNR apparently have a larger radial scale length than disk stars. The authors estimate that only about 10 percent of the galactic SNR have been detected

  5. Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies

    CERN Document Server

    Hewitt, John W

    2015-01-01

    In the past few years, gamma-ray astronomy has entered a golden age thanks to two major breakthroughs: Cherenkov telescopes on the ground and the Large Area Telescope (LAT) onboard the Fermi satellite. The sample of supernova remnants (SNRs) detected at gamma-ray energies is now much larger: it goes from evolved supernova remnants interacting with molecular clouds up to young shell-type supernova remnants and historical supernova remnants. Studies of SNRs are of great interest, as these analyses are directly linked to the long standing issue of the origin of the Galactic cosmic rays. In this context, pulsar wind nebulae (PWNe) need also to be considered since they evolve in conjunction with SNRs. As a result, they frequently complicate interpretation of the gamma-ray emission seen from SNRs and they could also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current results and thinking on SNRs and PWNe and their connection to cosmic ray product...

  6. sup 4 sup 4 Ti decay gamma-ray emission from young galactic supernova remnants

    CERN Document Server

    Iyudin, A F

    1999-01-01

    The discovery by COMPTEL of the sup 4 sup 4 Ti line emission at 1.16 MeV from the youngest known Galactic supernova remnant (SNR) Cas A has opened a new window for the investigation of SNR properties. This discovery also shows a way that could help to uncover missing young remnants of Galactic SNe that might have occurred some hundred years ago. Contrary to the situation at other wavelengths, in the gamma-ray band the Galaxy is almost transparent, so that otherwise obscured supernova remnants may be detectable up to A sub v approx 10 sup 3 in gamma-ray line emission. This is one of the direct ways to complement historical observations of Galactic SNe. Here we present preliminary results of the 6 year sup 4 sup 4 Ti line emission survey performed by COMPTEL on-board the Compton Gamma-Ray Observatory (CGRO).

  7. New identifications of extended GeV gamma rays from Supernova Remnants with Fermi-LAT Pass 8 data

    Science.gov (United States)

    Hewitt, John; Caragiulo, Micaela; Condon, Benjamin; Giordano, Francesco; Lemoine-Goumard, Marianne; Fermi-LAT Collaboration

    2015-04-01

    Identifying gamma-ray emission from supernova remnants is crucial to test the paradigm for the origin of Galactic cosmic rays. Despite the excellent sensitivity and spatial resolution of the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope, it remains difficult to clearly identify cosmic ray sources buried within the diffuse Galactic background and possibly confused with other gamma-ray sources, such as pulsars. The LAT collaboration has developed a new Pass 8 event reconstruction with improved spatial resolution and acceptance that permits the first detection of extended emission in GeV gamma rays from several supernova remnants. These include the young TeV shell-type remnant RCW 86, and older supernova remnants that are interacting with molecular clouds, such as CTB 37A. The improvements with Pass 8 promise to rapidly grow the population of gamma-ray supernova remnants identified through their spatial extension.

  8. Identification campaign of supernova remnant candidates in the Milky Way. II. X-ray studies of G38.7-1.4

    CERN Document Server

    Huang, R H H; Hui, C Y; Seo, K A; Trepl, L; Kong, A K H

    2014-01-01

    We report on XMM-Newton and Chandra observations of the Galactic supernova remnant candidate G38.7-1.4, together with complementary radio, infrared, and gamma-ray data. An approximately elliptical X-ray structure is found to be well correlated with radio shell as seen by the Very Large Array. The X-ray spectrum of G38.7-1.4 can be well-described by an absorbed collisional ionization equilibrium plasma model, which suggests the plasma is shock heated. Based on the morphology and the spectral behaviour, we suggest that G38.7-1.4 is indeed a supernova remnant belongs to a mix-morphology category.

  9. X-ray emission from supernova remnants with particular reference to the Cygnus Loop

    International Nuclear Information System (INIS)

    Observational or theoretical results related to the study of supernova remnants (SNRs) are described. Some background information is given by reviewing the present status of our knowledge of supernovae and supernova remnants, both from theory and observations. Also the distribution of all known radio, optical, and X-ray SNRs in the Galaxy is shown and a comparison is made. The X-ray observations of the well-known X-ray SNR the Cygnus Loop are discussed in detail and the discovery of a new X-ray emitting SNR W44 is described. Other radio sources are investigated, and the observed X-ray emission of SNRs are analysed using thermal spectra like exponential or bremsstrahlung spectra. The X-ray line spectrum that emerges from SNRs is described in detail. (Auth.)

  10. 3D Simulations of the Thermal X-ray Emission from Young Supernova Remnants Including Efficient Particle Acceleration

    CERN Document Server

    Ferrand, Gilles; Safi-Harb, Samar

    2012-01-01

    Supernova remnants (SNRs) are believed to be the major contributors to Galactic cosmic rays. The detection of non-thermal emission from SNRs demonstrates the presence of energetic particles, but direct signatures of protons and other ions remain elusive. If these particles receive a sizeable fraction of the explosion energy, the morphological and spectral evolution of the SNR must be modified. To assess this, we run 3D hydrodynamic simulations of a remnant coupled with a non-linear acceleration model. We obtain the time-dependent evolution of the shocked structure, impacted by the Rayleigh-Taylor hydrodynamic instabilities at the contact discontinuity and by the back-reaction of particles at the forward shock. We then compute the progressive temperature equilibration and non-equilibrium ionization state of the plasma, and its thermal emission in each cell. This allows us to produce the first realistic synthetic maps of the projected X-ray emission from the SNR. Plasma conditions (temperature, ionization age) ...

  11. Kinematics of the galactic supernova remnant G206.9+2.3

    Scientific Electronic Library Online (English)

    P., Ambrocio-Cruz; M., Rosado; E., Le Coarer; A., Bernal; L., Gutiérrez.

    Full Text Available Se realizó un estudio cinemático del remanente de supernova galáctico G206.9+2.3 (PKS 0646+06) en las líneas [SII]?6717 y 6731 Å. Este es uno de los primeros pasos de un proyecto a largo plazo de determinación de distancias cinemáticas a RSN galácticos con contraparte óptica. Se obtuvo la distancia [...] cinemática a esta nebulosa, mostrando primero que los filamentos detectados son realmente la contraparte óptica del RSN en radio. La distancia estimada en este trabajo es ligeramente mayor que la distancia de Monoceros. Se estimó que G206.9+2.3 está localizada a 2.2 kpc del Sol, en una región del cielo donde se observan varias nebulosas superpuestas a diferentes velocidades. Se midió una velocidad de choque de 86 kms-1 y un diámetro lineal de 18 pe. Finalmente se calculó que la energía depositada al medio interestelar por la explosión de supernova es de 1.7 x 10(49) ergs por lo que se concluyó que G206.9+2.3 está en la fase radiativa de su evolución, con una edad de 6.4 x 10(4) años. Abstract in english We studied the kinematics of the galactic supernova remnant (SNR) G206.9+2.3 (PKS 0646+06) in the [SII]?6717 and 6731 Å lines, as one of the initial steps of a long-term project to determine kinematical distances to galactic SNRs with optical counterparts. We obtained the kinematic distance to this [...] nebula by first showing that the filaments detected were in fact the optical counterpart of the radio SNR. The distance estimated here is slightly greater than that of the Monoceros Loop. We estimate that G206.9+2.3 is located about 2.2 kpc from the Sun, in a zone where several background and foreground nebulae at different velocities are seen in projection. We measured a shock velocity of 86 kms-1 and a linear diameter of 18 pc. Finally, we calculated the energy deposited in the interstellar medium by the SN explosion as 1.7 x 10(49) ergs and concluded that the SNR is in the radiative phase of evolution with an age of 6.4 x 10(4) years.

  12. Detection of Extremely Broad Water Emission from the molecular cloud interacting Supernova Remnant G349.7+0.2

    CERN Document Server

    Rho, J; Boogert, A; Kaufman, M; Gusdorf, A

    2015-01-01

    We performed Herschel HIFI, PACS and SPIRE observations towards the molecular cloud interacting supernova remnant G349.7+0.2. An extremely broad emission line was detected at 557 GHz from the ground state transition 1_{10}-1_{01} of ortho-water. This water line can be separated into three velocity components with widths of 144, 27 and 4 km/s. The 144 km/s component is the broadest water line detected to date in the literature. This extremely broad line width shows importance of probing shock dynamics. PACS observations revealed 3 additional ortho-water lines, as well as numerous high-J carbon monoxide (CO) lines. No para-water lines were detected. The extremely broad water line is indicative of a high velocity shock, which is supported by the observed CO rotational diagram that was reproduced with a J-shock model with a density of 10^4 cm^{-3} and a shock velocity of 80 km/s. Two far-infrared fine-structure lines, [O~I] at 145 micron and [C~II] line at 157 micron, are also consistent with the high velocity J-...

  13. A high-resolution radio survey of the Vela supernova remnant

    CERN Document Server

    Bock, D; Green, A J

    1998-01-01

    This paper presents a high-resolution radio continuum (843 MHz) survey of the Vela supernova remnant. The contrast between the structures in the central pulsar-powered nebula of the remnant and the synchrotron radiation shell allows the remnant to be identified morphologically as a member of the composite class. The data are the first of a composite remnant at spatial scales comparable with those available for the Cygnus Loop and the Crab Nebula, and make possible a comparison of radio, optical and soft X-ray emission from the resolved shell filaments. The survey, made with the Molonglo Observatory Synthesis Telescope, covers an area of 50 square degrees at a resolution of 43'' x 60'', while imaging structures on scales up to 30'.

  14. Scaling laws for evaporative supernovae remnants in the Mc KEE and Ostriker theory of the interstellar medium

    International Nuclear Information System (INIS)

    The theory of the Interstellar Medium proposed by Mc Kee and Ostriker is dominated by the unusual properties of Evaporative Supernovae Remnants (ESNR). We present here the basic features of this model, with emphasis upon: (i) the evolution of supernovae remnants in an inhomogeneous evaporative medium, (ii) the collective effects of such ESNRs upon the structure of the interstellar medium. Following Mc Kee and Ostriker, we will derive the time dependent evolution of evaporative supernovae remnants, then determine the conditions for percolation and finally identify the mean physical properties of the medium with the mean properties inside ESNRs at percolation

  15. Star Formation Around the Youngest Supernova Remnants in the Large Magellanic Cloud: Implications for Type Ia Supernova Progenitors

    CERN Document Server

    Badenes, Carles; Zaritsky, Dennis; Prieto, Jose Luis

    2009-01-01

    We use the star formation history map of the Large Magellanic Cloud recently published by Harris & Zaritsky to study the sites of the youngest Type Ia supernova remnants. We find that most Type Ia remnants are associated with old, metal-poor stellar populations, with little or no recent star formation. These include SNR 0509-67.5 which is known to have been originated by an extremely bright SN 1991T-like event, and yet is located very far away from any star forming regions. The Type Ia remnant SNR N103B, however, is associated with vigorous star formation activity in the last 100 Myr, and might have had a relatively younger and more massive progenitor.

  16. Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Espinoza, C; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Katsuta, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Lyne, A G; Madejski, G M; Makeev, A; Mazziotta, M N; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Noutsos, A; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Stecker, F W; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yamazaki, R; Ylinen, T; Ziegler, M

    2010-02-26

    Recent observations of supernova remnants (SNRs) hint that they accelerate cosmic rays to energies close to ~10(15) electron volts. However, the nature of the particles that produce the emission remains ambiguous. We report observations of SNR W44 with the Fermi Large Area Telescope at energies between 2 x 10(8) electron volts and 3 x10(11) electron volts. The detection of a source with a morphology corresponding to the SNR shell implies that the emission is produced by particles accelerated there. The gamma-ray spectrum is well modeled with emission from protons and nuclei. Its steepening above approximately 10(9) electron volts provides a probe with which to study how particle acceleration responds to environmental effects such as shock propagation in dense clouds and how accelerated particles are released into interstellar space. PMID:20056857

  17. Four new X-ray-selected supernova remnants in the Large Magellanic Cloud

    CERN Document Server

    Maggi, P; Kavanagh, P J; Points, S D; Dickel, J; Bozzetto, L M; Sasaki, M; Chu, Y -H; Gruendl, R A; Filipovic, M D; Pietsch, W

    2013-01-01

    Aims: We present a detailed multi-wavelength study of four new supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). The objects were identified as SNR candidates in X-ray observations performed during the survey of the LMC with XMM-Newton. Methods: Data obained with XMM-Newton are used to investigate the morphological and spectral features of the remnants in X-rays. We measure the plasma conditions, look for supernova (SN) ejecta emission, and constrain some of the SNR properties (e.g. age and ambient density). We supplement the X-ray data with optical, infrared, and radio-continuum archival observations, which allow us to understand the conditions resulting in the current appearance of the remnants. Based on the spatially-resolved star formation history (SFH) of the LMC together with the X-ray spectra, we attempt to type the supernovae that created the remnants. Results: We confirm all four objects as SNRs, to which we assign the names MCSNR J0508-6830, MCSNR J0511-6759, MCSNR J0514-6840, and MCSNR...

  18. The complex relations between Supernova Remnants and Neutron Stars

    Directory of Open Access Journals (Sweden)

    G. Dubner

    2002-01-01

    Full Text Available Se espera que la mayor a de las supernovas (SN produzca una estrella de neutrones (EN observable como pulsar en ondas de radio. Las observaciones, sin embargo, muestran escasas coincidencias entre restos de supernovas (RSN y EN. Se presenta una puesta al d a de resultados de observaciones multiespectrales llevadas a cabo para investigar este aspecto. El trabajo se focaliza en la comprensi on actual de las nebulosas de viento de pulsares, as como en las diferentes formas en que puede manifestarse una estrella de neutrones, tales como pulsares an omalos en rayos X, estrellas de neutrones radio-quietas y repetidores en rayos blandos.

  19. INVESTIGATION OF THE PROGENITORS OF THE TYPE Ia SUPERNOVAE ASSOCIATED WITH THE LMC SUPERNOVA REMNANTS 0505-67.9 AND 0509-68.7

    Energy Technology Data Exchange (ETDEWEB)

    Pagnotta, Ashley [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States); Schaefer, Bradley E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2015-01-20

    Although Type Ia supernovae have been heavily scrutinized due to their use in making cosmological distance estimates, we are still unable to definitively identify the progenitors for the entire population. While answers have been presented for certain specific systems, a complete solution remains elusive. We present observations of two supernova remnants (SNRs) in the Large Magellanic Cloud, SNR 0505-67.9 and SNR 0509-68.7, for which we have identified the center of the remnant and the 99.73% containment central region in which any companion star left over after the supernova must be located. Both remnants have a number of potential ex-companion stars near their centers; all possible single and double degenerate progenitor models remain viable for these two supernovae. Future observations may be able to identify the true ex-companions for both remnants.

  20. Fermi-LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Baring, M.G.; /Rice U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bouvier, A.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Washington U., Seattle /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /NASA, Goddard /CSST, Baltimore /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U. /Stockholm U., OKC /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Ecole Polytechnique; /more authors..

    2012-03-30

    The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant ({approx}10{sup 4} yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10{sup 36} erg s{sup -1} given the distance constraint of D > 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral p mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to {bar n}{sub H} W{sub p} {approx_equal} 5 x 10{sup 51} (D/6 kpc){sup 2} erg cm{sup -3}. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.

  1. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, Estela M. [Instituto de Astronomia y Fisica del Espacio (IAFE), C. C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019 (United States); Moffett, David A., E-mail: ereynoso@iafe.uba.ar, E-mail: jph@physics.rutgers.edu, E-mail: david.moffett@furman.edu [Department of Physics, Furman University, Greenville, SC 29613 (United States)

    2013-04-15

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 {+-} 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of {approx}12 rad m{sup -2} is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while inefficient acceleration and little to no generation of magnetic turbulence are obtained for the quasi-perpendicular case.

  2. On the Radio Polarization Signature of Efficient and Inefficient Particle Acceleration in Supernova Remnant SN 1006

    Science.gov (United States)

    Reynoso, Estela M.; Hughes, John P.; Moffett, David A.

    2013-04-01

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 ± 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of ~12 rad m-2 is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while inefficient acceleration and little to no generation of magnetic turbulence are obtained for the quasi-perpendicular case.

  3. A molecular shell with star formation toward the supernova remnant G349.7+0.2

    OpenAIRE

    Reynoso, Estela M.; Mangum, Jeffrey G.

    2000-01-01

    A field of ~38'x38' around the supernova remnant (SNR) G349.7+0.2 has been surveyed in the CO J=1-0 transition with the 12 Meter Telescope of the NRAO, using the On-The-Fly technique. The resolution of the observations is 54". We have found that this remnant is interacting with a small CO cloud which, in turn, is part of a much larger molecular complex, which we call the ``Large CO Shell''. The Large CO Shell has a diameter of about 100 pc, an H_2 mass of 930,000 solar masse...

  4. Re-examination of the Expected gamma-ray emission of supernova remnant SN 1987A

    OpenAIRE

    Berezhko, E. G.; Ksenofontov, L. T.; Voelk, H J

    2015-01-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5-50 yr. This spherically symmetric model is approximately applied to the different features of the SNR which consist of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H II...

  5. SEARCH FOR GAMMA-RAY EMISSION FROM THE SUPERNOVA REMNANT IC 443 WITH THE MAGIC TELESCOPE

    Directory of Open Access Journals (Sweden)

    R. J. García López

    2009-01-01

    Full Text Available TeV observations of Supernova remnants (SNRs and, in particular, of SNRs which appear to be physically related to EGRET sources are a prime target for the MAGIC telescope. MAGIC's spatial resolution and sensi- tivity can probe the main mechanism responsible for producing high energy photons in the SNR neighbourhood. Based on a recent systematical analysis of the molecular environment of the vicinity of all SNR-EGRET source pairs, the IC 443 remnant was chosen for observations with MAGIC. We brie y describe the observational strategy which provided the detection of a new very-high energy gamma-ray source: MAGIC 0616+225.

  6. Radioactive Scandium in the Youngest Galactic Supernova Remnant G1.9+0.3

    OpenAIRE

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2010-01-01

    We report the discovery of thermal X-ray emission from the youngest Galactic supernova remnant G1.9+0.3, from a 237-ks Chandra observation. We detect strong K-shell lines of Si, S, Ar, Ca, and Fe. In addition, we detect a 4.1 keV line with 99.971% confidence which we attribute to 44Sc, produced by electron capture from 44Ti. Combining the data with our earlier Chandra observation allows us to detect the line in two regions independently. For a remnant age of 100 yr, our meas...

  7. Utilizing Supernova Remnants as Probes of Explosion Mechanisms and Progenitor Systems

    Science.gov (United States)

    Milisavljevic, Dan

    2015-08-01

    Theory and observation strongly favor the notion that asymmetric explosions drive core-collapse supernovae. Where and how this asymmetry is introduced is uncertain, in part because of limited constraints on the various processes that may be taking place deep inside massive stars. Observations of extragalactic supernovae have shed some light on the issue. However, distant supernovae, by nature, appear as unresolved point sources, which severely restricts our ability to extract key properties of the explosion dynamics via detailed knowledge of the three-dimensional kinematics of the expanding ejecta. Progress requires an alternative approach, and to this end there have been successful efforts towards understanding core-collapse supernova explosions through studies of their remnants in our own Milky Way galaxy. Such investigations provide information about the explosion-driven mixing of the progenitor star's chemically distinct layers, the star's mass loss history before explosion, and the fate of its remnant core - all at extremely fine scales. Particularly of note are observations of the young supernova remnant Cassiopeia A, which is the descendant of a massive star that was mostly stripped of its hydrogen envelope. Cassiopeia A's debris field has a bubble-like morphology that may have originated from turbulent mixing processes that encouraged the development of outwardly expanding plumes of radioactive 56Ni-rich ejecta. Important aspects of these observations conflict with sophisticated explosion models and we presently do not have a good understanding of how the 56Ni was mixed. Considering Cassiopeia A's kinematic properties are not unique and likely reflect a common phenomenon of core-collapse supernovae, this conflict represents a big problem that cannot be ignored. Unraveling whether the mixing that we see originates from an asymmetric explosion mechanism or is more tightly associated with a turbulent interior structure will be a challenge, but there is hope.

  8. The Progenitor of the New COMPTEL/ROSAT Supernova Remnant in Vela

    CERN Document Server

    Chen, W; Chen, Wan

    1998-01-01

    We propose that (1) the newly discovered supernova remnant (SNR), GRO J0852--4642/RX J0852.0--4622, was probably created by a core-collapse supernova of a massive star, and (2) the same supernova event which produced the $^{44}$Ti detected by COMPTEL from this source is probably also responsible for a large fraction of the observed $^{26}$Al emission in the Vela region detected by the same instrument. We show that the remnant is currently expanding too slowly for its young age to be due to a Type Ia supernova (SNIa). Even for a massive star progenitor, the SNR is required to be $\\sim250$ pc away in a dense environment at the edge of the Gum nebula. The progenitor has a preferred ejecta mass of $\\le10M_\\odot$ and a large kinetic energy of $\\ge 2\\times 10^{51}$ ergs, and therefore, it is probably a Type Ib or Type Ic supernova. The required high ambient density of $n_H > 300$ cm$^{-3}$, however, has yet to be confirmed by observations. An SNIa progenitor at the same distance may still be possible but it would n...

  9. A survey of infrared supernova remnants in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Ji Yeon [Academia Sinica Institute for Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Koo, Bon-Chul [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Onaka, Takashi, E-mail: jyseok@asiaa.sinica.edu.tw [Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2013-12-20

    We present a comprehensive infrared study of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) using near- to mid-infrared images taken by Infrared Array Camera (IRAC; 3.6, 4.5, 5.8, and 8 ?m) and Multiband Imaging Photometer (MIPS; 24 and 70 ?m) onboard the Spitzer Space Telescope. Among the 47 bona fide LMC SNRs, 29 were detected in infrared, giving a high detection rate of 62%. All 29 SNRs show emission at 24 ?m, and 20 out of 29 show emission in one or several IRAC bands. We present their 4.5, 8, 24, and 70 ?m images and a table summarizing their Spitzer fluxes. We find that the LMC SNRs are considerably fainter than the Galactic SNRs, and that, among the LMC SNRs, Type Ia SNRs are significantly fainter than core-collapse SNRs. We conclude that the MIPS emission of essentially all SNRs originates from dust emission, whereas their IRAC emissions originate from ionic/molecular lines, polycyclic aromatic hydrocarbons emission, or synchrotron emission. The infrared fluxes show correlation with radio and X-ray fluxes. For SNRs that have similar morphology in infrared and X-rays, the ratios of 24 to 70 ?m fluxes have good correlation with the electron density of hot plasma. The overall correlation is explained well by the emission from collisionally heated silicate grains of 0.1 ?m size, but for mature SNRs with relatively low gas temperatures, the smaller-sized grain population is favored more. For those that appear different between infrared and X-rays, the emission in the MIPS bands is probably from dust heated by shock radiation.

  10. The Morphology and Dynamics of Jet-Driven Supernova Remnants: the Case of W49B

    OpenAIRE

    Gonzalez-Casanova, Diego F.; De Colle, Fabio; Ramirez-Ruiz, Enrico; Lopez, Laura A.

    2013-01-01

    The circumstellar medium (CSM) of a massive star is modified by its winds before a supernova (SN) explosion occurs, and thus the evolution of the resulting supernova remnant (SNR) is influenced by both the geometry of the explosion as well as the complex structure of the CSM. Motivated by recent work suggesting the SNR W49B was a jet-driven SN expanding in a complex CSM, we explore how the dynamics and the metal distributions in a jet-driven explosion are modified by the int...

  11. Nonthermal properties of supernova remnant G1.9+0.3

    OpenAIRE

    Ksenofontov, L. T.; Voelk, H J; Berezhko, E. G.

    2010-01-01

    The properties of the - presumably - youngest Galactic supernova remnant (SNR) G1.9+0.3 are investigated within the framework of nonlinear kinetic theory of cosmic ray acceleration in SNRs. The observed angular size and expansion speed as well as the radio and X-ray emission measurements are used to determine relevant physical parameters of this SNR. Under the assumption that SNR G1.9+0.3 is the result of a Type Ia supernova near the Galactic center (at the distance d=8.5 kp...

  12. A Detailed X-Ray Investigation of PSR J2021+4026 and the ?-Cygni Supernova Remnant

    Science.gov (United States)

    Hui, C. Y.; Seo, K. A.; Lin, L. C. C.; Huang, R. H. H.; Hu, C. P.; Wu, J. H. K.; Trepl, L.; Takata, J.; Wang, Y.; Chou, Y.; Cheng, K. S.; Kong, A. K. H.

    2015-01-01

    We have investigated the field around the radio-quiet ?-ray pulsar, PSR J2021+4026, with a ~140 ks XMM-Newton observation and ~56 ks archival Chandra data. Through analyzing the pulsed spectrum, we show that the X-ray pulsation is purely thermal in nature, which suggests that the pulsation originated from a hot polar cap with T ~ 3 × 106 K on the surface of a rotating neutron star. On the other hand, the power-law (PL) component that dominates the pulsar emission in the hard band is originated from off-pulse phases, which possibly comes from a pulsar wind nebula. In re-analyzing the Chandra data, we have confirmed the presence of a bow-shock nebula that extends from the pulsar to the west by ~10 arcsec. The orientation of this nebular feature suggests that the pulsar is probably moving eastward, which is consistent with the speculated proper motion by extrapolating from the nominal geometrical center of the supernova remnant (SNR) G78.2+2.1 to the current pulsar position. For G78.2+2.1, our deep XMM-Newton observation also enables a study of the central region and part of the southeastern region with superior photon statistics. The column absorption derived for the SNR is comparable to that for PSR J2021+4026, which supports their association. The remnant emission in both of the examined regions is in a non-equilibrium ionization state. Also, the elapsed time of both regions after shock-heating is apparently shorter than the Sedov age of G78.2+2.1. This might suggest that the reverse shock has reached the center not long ago. Apart from PSR J2021+4026 and G78.2+2.1, we have also serendipitously detected an X-ray flash-like event, XMM J202154.7+402855, from this XMM-Newton observation.

  13. A DETAILED X-RAY INVESTIGATION OF PSR J2021+4026 AND THE ?-CYGNI SUPERNOVA REMNANT

    International Nuclear Information System (INIS)

    We have investigated the field around the radio-quiet ?-ray pulsar, PSR J2021+4026, with a ?140 ks XMM-Newton observation and ?56 ks archival Chandra data. Through analyzing the pulsed spectrum, we show that the X-ray pulsation is purely thermal in nature, which suggests that the pulsation originated from a hot polar cap with T ? 3 × 106 K on the surface of a rotating neutron star. On the other hand, the power-law (PL) component that dominates the pulsar emission in the hard band is originated from off-pulse phases, which possibly comes from a pulsar wind nebula. In re-analyzing the Chandra data, we have confirmed the presence of a bow-shock nebula that extends from the pulsar to the west by ?10 arcsec. The orientation of this nebular feature suggests that the pulsar is probably moving eastward, which is consistent with the speculated proper motion by extrapolating from the nominal geometrical center of the supernova remnant (SNR) G78.2+2.1 to the current pulsar position. For G78.2+2.1, our deep XMM-Newton observation also enables a study of the central region and part of the southeastern region with superior photon statistics. The column absorption derived for the SNR is comparable to that for PSR J2021+4026, which supports their association. The remnant emission in both of the examined regions is in a non-equilibrium ionization state. Also, the elapsed time of both regions after shock-heating is apparently shorter than the Sedov age of G78.2+2.1. This might suggest that the reverse shock has reached the center not long ago. Apart from PSR J2021+4026 and G78.2+2.1, we have also serendipitously detected an X-ray flash-like event, XMM J202154.7+402855, from this XMM-Newton observation

  14. A DETAILED X-RAY INVESTIGATION OF PSR J2021+4026 AND THE ?-CYGNI SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Hui, C. Y.; Seo, K. A. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Lin, L. C. C.; Huang, R. H. H.; Wu, J. H. K.; Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hu, C. P.; Chou, Y. [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Trepl, L. [Astrophysikalisches Institut und Universitäts-Sternwarte, Universität Jena, Schillergäßchen 2-3, D-07745 Jena (Germany); Takata, J.; Wang, Y.; Cheng, K. S., E-mail: cyhui@cnu.ac.kr [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2015-01-20

    We have investigated the field around the radio-quiet ?-ray pulsar, PSR J2021+4026, with a ?140 ks XMM-Newton observation and ?56 ks archival Chandra data. Through analyzing the pulsed spectrum, we show that the X-ray pulsation is purely thermal in nature, which suggests that the pulsation originated from a hot polar cap with T ? 3 × 10{sup 6} K on the surface of a rotating neutron star. On the other hand, the power-law (PL) component that dominates the pulsar emission in the hard band is originated from off-pulse phases, which possibly comes from a pulsar wind nebula. In re-analyzing the Chandra data, we have confirmed the presence of a bow-shock nebula that extends from the pulsar to the west by ?10 arcsec. The orientation of this nebular feature suggests that the pulsar is probably moving eastward, which is consistent with the speculated proper motion by extrapolating from the nominal geometrical center of the supernova remnant (SNR) G78.2+2.1 to the current pulsar position. For G78.2+2.1, our deep XMM-Newton observation also enables a study of the central region and part of the southeastern region with superior photon statistics. The column absorption derived for the SNR is comparable to that for PSR J2021+4026, which supports their association. The remnant emission in both of the examined regions is in a non-equilibrium ionization state. Also, the elapsed time of both regions after shock-heating is apparently shorter than the Sedov age of G78.2+2.1. This might suggest that the reverse shock has reached the center not long ago. Apart from PSR J2021+4026 and G78.2+2.1, we have also serendipitously detected an X-ray flash-like event, XMM J202154.7+402855, from this XMM-Newton observation.

  15. The Bubble-like Interior of the Core-Collapse Supernova Remnant Cassiopeia A

    OpenAIRE

    Milisavljevic, Dan; Fesen, Robert A.

    2015-01-01

    The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of how these catastrophic explosions proceed remain uncertain due, in part, to limited observational constraints on various processes that can introduce asymmetries deep inside the star. Here we present near-infrared observations of the young Milky Way supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimen...

  16. Unraveling the Origin of Overionized Plasma in the Galactic Supernova Remnant W49B

    OpenAIRE

    Lopez, Laura A.; Pearson, Sarah; Ramirez-Ruiz, Enrico; Castro, Daniel; Yamaguchi, Hiroya; Slane, Patrick O; Smith, Randall K

    2013-01-01

    Recent observations have shown several supernova remnants (SNRs) have overionized plasmas, those where ions are stripped of more electrons than they would be if in equilibrium with the electron temperature. Rapid electron cooling is necessary to produce this situation, yet the physical origin of that cooling remains uncertain. To assess the cooling scenario responsible for overionization, in this paper, we identify and map the overionized plasma in the Galactic SNR W49B base...

  17. Analytical and Monte Carlo results for the surface-brightness diameter relationship in supernova remnants

    OpenAIRE

    ZANINETTI, Lorenzo

    2012-01-01

    The surface brightness diameter relationship for supernovae remnants (SNRs) is explained by adopting a model of direct conversion of the flux of kinetic energy into synchrotron luminosity. Two laws of motion are adopted, a power law model for the radius-time relationship, and a model which uses the thin layer approximation. The fluctuations on the log-log surface diameter relationship are modeled by a Monte Carlo simulation. In this model a new probability density function f...

  18. A progenitor binary and an ejected mass donor remnant of faint type Ia supernovae

    OpenAIRE

    Geier, S.; Marsh, T. R.; Wang, B; Dunlap, B.; Barlow, B. N; Schaffenroth, V; Chen, X.; Irrgang, A.; Maxted, P. F. L; Ziegerer, E.; Kupfer, T; B. Miszalski; Heber, U.; Han, Z; Shporer, A.

    2013-01-01

    Type Ia supernovae (SN Ia) are the most important standard candles for measuring the expansion history of the universe. The thermonuclear explosion of a white dwarf can explain their observed properties, but neither the progenitor systems nor any stellar remnants have been conclusively identified. Underluminous SN Ia have been proposed to originate from a so-called double-detonation of a white dwarf. After a critical amount of helium is deposited on the surface through accre...

  19. The Interaction of Supernova Remnant G357.7+0.3 with the Interstellar Medium

    OpenAIRE

    Phillips, J. P.; Marquez-Lugo, R. A.

    2010-01-01

    The supernova remnant (SNR) G357.7+0.3 appears to have caused considerable shredding of the local interstellar medium (ISM), leading to the formation of multiple cloud fragments having bright rims and cometary structures. We investigate five of these regions using mid-infrared (MIR) imaging and photometry deriving from the Spitzer Space Telescope (SST), as well as photometry deriving from the 2MASS near-infrared all sky survey, the Mid-Course Science Experiment (MSX), and th...

  20. High-Energy Gamma Rays from Neutron Stars in Supernova Remnants: From EGRET to GLAST

    OpenAIRE

    Thompson, D. J.; Digel, S.W.; Nolan, P L; Reimer, O.

    2001-01-01

    At least three pulsars in supernova remnants were detected at E > 100 MeV by EGRET on the Compton Gamma Ray Observatory. Efforts to search for additional pulsars in the EGRET data have been unsuccessful due to limited statistics. An example is the recently-discovered radio pulsar J2229+6114, where efforts to search the EGRET data using several different methods failed to find significant evidence of pulsation. The GLAST Large Area Telescope (LAT) will have a much greater eff...

  1. Diffuse neutrinos from extragalactic supernova remnants: Dominating the 100 TeV IceCube flux

    Directory of Open Access Journals (Sweden)

    Sovan Chakraborty

    2015-05-01

    Full Text Available IceCube has measured a diffuse astrophysical flux of TeV–PeV neutrinos. The most plausible sources are unique high energy cosmic ray accelerators like hypernova remnants (HNRs and remnants from gamma ray bursts in star-burst galaxies, which can produce primary cosmic rays with the required energies and abundance. In this case, however, ordinary supernova remnants (SNRs, which are far more abundant than HNRs, produce a comparable or larger neutrino flux in the ranges up to 100–150 TeV energies, implying a spectral break in the IceCube signal around these energies. The SNRs contribution in the diffuse flux up to these hundred TeV energies provides a natural baseline and then constrains the expected PeV flux.

  2. Isothermal self-similar blast wave theory of supernova remnants driven by relativistic gas pressure

    International Nuclear Information System (INIS)

    The spherically symmetric, self-similar flow behind a blast wave from a point explosion in a medium whose density varies with distance as rsup(-?) is investigated with the assumption that the flow is both isothermal and contains a relativistic component of pressure. A self-similar solution is shown to exist only if both the blast wave speed, usub(s), and the local sound speed, w, are constant. If ? [equivalent to ?(1-w2/c2)] lies in 1 >?>0, there exists a critical point in the radial distance-flow velocity plane. To be physically acceptable, the solution must pass through the origin and through the critical point and then through to the blast front; solution branches between these points exist, although a proper connection at the critical point has not been demonstrated. It is concluded that isothermal self-similar blast waves do not provide a valid model for a supernova remnant driven by a relativistic gas pressure. Since the validity of the adiabatic blast wave models has elsewhere been shown to be questionable, it is doubtful whether the self-similar property can be involved at all in the case of supernova remnants. This raises serious questions of interpretation of quantities deduced for supernova remnants on the basis of the use of self-similar models. (Auth.)

  3. Discriminating the Progenitor Type of Supernova Remnants with Iron K-Shell Emission

    CERN Document Server

    Yamaguchi, Hiroya; Petre, Robert; Nakano, Toshio; Castro, Daniel; Enoto, Teruaki; Hiraga, Junko S; Hughes, John P; Maeda, Yoshitomo; Nobukawa, Masayoshi; Safi-Harb, Samar; Slane, Patrick O; Smith, Randall K; Uchida, Hiroyuki

    2014-01-01

    Supernova remnants (SNRs) retain crucial information about both their parent explosion and circumstellar material left behind by their progenitor. However, the complexity of the interaction between supernova ejecta and ambient medium often blurs this information, and it is not uncommon for the basic progenitor type (Ia or core-collapse) of well-studied remnants to remain uncertain. Here we present a powerful new observational diagnostic to discriminate between progenitor types and constrain the ambient medium density of SNRs solely using Fe K-shell X-ray emission. We analyze all extant Suzaku observations of SNRs and detect Fe K alpha emission from 23 young or middle-aged remnants, including five first detections (IC 443, G292.0+1.8, G337.2-0.7, N49, and N63A). The Fe K alpha centroids clearly separate progenitor types, with the Fe-rich ejecta in Type Ia remnants being significantly less ionized than in core-collapse SNRs. Within each progenitor group, the Fe K alpha luminosity and centroid are well correlate...

  4. The Nature of the Strong 24 micron Spitzer Source J222557+601148: Not a Young Galactic Supernova Remnant

    CERN Document Server

    Fesen, Robert

    2010-01-01

    The nebula J222557+601148, tentatively identified by Morris et al. (2006) as a young Galactic supernova remnant (SNR) from Spitzer Galactic First Look Survey images and a follow-up mid-infrared spectrum, is unlikely to be a SNR remnant based on Halpha, [O III], [S II] images and low dispersion optical spectra. The object is seen in Halpha and [O III] 5007 images as a faint, roughly circular ring nebula with dimensions matching that seen in 24 micron Spitzer images. Low-dispersion optical spectra show it to have narrow Halpha and [N II] 6548, 6583 line emissions with no evidence of broad or high-velocity (v > 300 km/s) line emissions. The absence of any high-velocity optical features, the presence of relatively strong [N II] emissions, a lack of detected [S II] emission which would indicate the presence of shock-heated gas, plus no coincident X-ray or nonthermal radio emissions indicate the nebula is unlikely to be a SNR, young or old. Instead, it is likely a faint, high-excitation planetary nebula (PN) as its...

  5. Multi-frequency study of the newly confirmed supernova remnant MCSNR J0512-6707 in the Large Magellanic Cloud

    CERN Document Server

    Kavanagh, P J; Bozzetto, L M; Points, S D; Filipovic, M D; Maggi, P; Haberl, F; Crawford, E J

    2015-01-01

    We present a study of the supernova remnant MCSNR J0512-6707 in the Large Magellanic Cloud. We used new data from XMM-Newton to characterise the X-ray emission and data from the Australian Telescope Compact Array, the Magellanic Cloud Emission Line Survey, and Spitzer to gain a picture of the environment into which the remnant is expanding. We performed a morphological study, determined radio polarisation and magnetic field orientation, and performed an X-ray spectral analysis. We estimated the its size to be 24.9 (\\pm1.5) x 21.9 (\\pm1.5) pc, with the major axis rotated ~29 deg east of north. Radio polarisation at 3 cm and 6 cm indicate a higher degree of polarisation in the NW and SE tangentially oriented to the SNR shock front, indicative of an SNR compressing the magnetic field threading the interstellar medium. The X-ray spectrum is unusual as it requires a soft (~0.2 keV) CIE thermal plasma of interstellar medium abundance, in addition to a harder component. Using our results and the Sedov dynamical mode...

  6. Dust-to-gas ratios in the Kepler supernova remnant

    OpenAIRE

    Contini, M

    2004-01-01

    A new method to evaluate the dust-to-gas ratios in the Kepler SNR is presented. Dust emission in the infrared and bremsstrahlung are calculated consistently, considering that dust grains are collisionally heated by the gas throughout the front and downstream of both the expanding and the reverse shocks. The dust-to-gas ratios are determined by the ratio of the dust emission bump and bremsstrahlung in the infrared. A maximum dust mass < 0.16 Mo is calculated.

  7. The Supernova Blast Wave and the Molecular Cloud: an Observational Study of Molecular Shock Emission.

    Science.gov (United States)

    Richter, Matthew Joseph

    1995-01-01

    Shock waves in molecular clouds heat, compress, accelerate, and chemically alter the gas they encounter. Despite their crucial role in determining the physical state of the dense interstellar medium and despite their making possible direct observations of H_2, molecular shocks are still poorly understood, as evidenced by the many discrepancies between theory and observations. In my dissertation, I use the supernova remnant IC 443 as a laboratory to test our understanding of shock -excited H_2 emission. By examining roughly 20 separate 2-4 ?m Ha transitions, I find the non-uniform temperature structure essentially reproduces that found in Orion Peak 1, and so is consistent with the partially dissociating J-shock model presented by Brand and collaborators. Subsequent mid-infrared observations of the pure rotational S(2) transition at 12 mu m strengthens these conclusions. Velocity resolved line profiles of the strong 1-0 S(1) transition uncover a relationship between the remnant's large-scale geometry and the line profile's full-width at 10% intensity, centroid, and shape. The relationship contradicts any model requiring local bow geometries to explain broad H_2 line widths. Comparing the 1-0 S(1) data with similar observations of the 2-1 S(1) line, I demonstrate that the excitation temperature in the shocked gas depends primarily on position, not velocity. Taken together, the identical velocity extent of the 1-0 S(1) and the 2-1 S(1) lines and their upper state energy separation of E/k ~ 6000 K proves the H_2 -emitting gas reaches its full velocity dispersion prior to cooling below roughly 1500 K. Finally, I compare, with similar spatial and spectral resolution, H_2 and HCO^+ J = 1 - 0 and find evidence for temperature gradients as a result of both preshock density inhomogeneities and postshock cooling.

  8. Secondary Accceleration of Cosmic Rays by Supernova Shocks

    OpenAIRE

    Wandel, Amri

    1997-01-01

    In the common model supernova shock-acceleration of cosmic rays there are two open questions: 1. where does the high energy cosmic rays below the knee (10$^4-10^6$ Gev) come from, and 2. are cosmic ray accelerated only at their origin or contineuosly during their residence in the Galaxy. We show that $10^15$ eV light nuclei are probably accelerted by associations of supernovae. The ratio of the spectra of secondary to primary cosmic rays would be affected by repeated acceler...

  9. Multi-frequency study of the newly confirmed supernova remnant MCSNR J0512-6707 in the Large Magellanic Cloud

    Science.gov (United States)

    Kavanagh, P. J.; Sasaki, M.; Bozzetto, L. M.; Points, S. D.; Filipovi?, M. D.; Maggi, P.; Haberl, F.; Crawford, E. J.

    2015-11-01

    Aims: We present a multi-frequency study of the supernova remnant MCSNR J0512-6707 in the Large Magellanic Cloud. Methods: We used new data from XMM-Newton to characterise the X-ray emission and data from the Australian Telescope Compact Array, the Magellanic Cloud Emission Line Survey, and Spitzer to gain a picture of the environment into which the remnant is expanding. We performed a morphological study, determined radio polarisation and magnetic field orientation, and performed an X-ray spectral analysis. Results: We estimated the remnant's size to be 24.9 ( ± 1.5) × 21.9 ( ± 1.5) pc, with the major axis rotated ~29° east of north. Radio polarisation images at 3 cm and 6 cm indicate a higher degree of polarisation in the northwest and southeast tangentially oriented to the SNR shock front, indicative of an SNR compressing the magnetic field threading the interstellar medium. The X-ray spectrum is unusual as it requires a soft (~0.2 keV) collisional ionisation equilibrium thermal plasma of interstellar medium abundance, in addition to a harder component. Using our fit results and the Sedov dynamical model, we showed that the thermal emission is not consistent with a Sedov remnant. We suggested that the thermal X-rays can be explained by MCSNR J0512-6707 having initially evolved into a wind-blown cavity and is now interacting with the surrounding dense shell. The origin of the hard component remains unclear. We could not determine the supernova type from the X-ray spectrum. Indirect evidence for the type is found in the study of the local stellar population and star formation history in the literature, which suggests a core-collapse origin. Conclusions: MCSNR J0512-6707 likely resulted from the core-collapse of high mass progenitor which carved a low density cavity into its surrounding medium, with the soft X-rays resulting from the impact of the blast wave with the surrounding shell. The unusual hard X-ray component requires deeper and higher spatial resolution radio and X-ray observations to confirm its origin. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  10. The Supernova Remnant G296.7-0.9 in X-rays

    CERN Document Server

    Prinz, Tobias

    2012-01-01

    Aims: We present a detailed study of the supernova remnant (SNR) G296.7-0.9 in the 0.2-12 keV X-ray band. Methods: Using data from XMM-Newton we performed a spectro-imaging analysis of G296.7-0.9 in order to deduce the basic parameters of the remnant and to search for evidence of a young neutron star associated with it. Results: In X-rays the remnant is characterized by a bright arc located in the south-west direction. Its X-ray spectrum can best be described by an absorbed non-equilibrium collisional plasma model with a hydrogen density of n_H=1.24_{-0.05}^{+0.07} x 10^{22} cm^{-2} and a plasma temperature of 6.2^{+0.9}_{-0.8} million Kelvin. The analysis revealed a remnant age of 5800 to 7600 years and a distance of 9.8_{-0.7}^{+1.1} kpc. The latter suggests a spatial connection with a close-by HII region. We did not find evidence for a young neutron star associated with the remnant.

  11. The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant

    CERN Document Server

    Vogt, Frédéric; 10.1007/s10509-010-0479-7

    2010-01-01

    We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at Siding Spring Observatory to map the [O III] 5007{\\AA} dynamics of the young oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the resultant data cube, we have been able to reconstruct the full 3D structure of the system of [O III] filaments. The majority of the ejecta form a ring of ~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We conclude that SNR N132D is approaching the end of the reverse shock phase before entering the fully thermalized Sedov phase of evolution. We speculate that the ring of oxygen-rich material comes from ejecta in the equatorial plane of a bipolar explosion, and that the overall shape of the SNR is strongly influenced by the pre-supernova mass loss from the progenitor star. We find tantalizing evidence of a polar jet associated with a very fast oxygen-rich knot, and clear evidence that the central star has interacted with one or more dense clouds in the surroundi...

  12. Fermi-LAT Observation of Supernova Remnant S147

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, J.; Uchiyama, Y.; Tanaka, T.; /SLAC /KIPAC, Menlo Park; Tajima, H.; /SLAC /KIPAC, Menlo Park /Nagoya U., Solar-Terrestrial Environ. Lab.; Bechtol, K.; Funk, S.; Lande, J.; /SLAC /KIPAC, Menlo Park; Ballet, J.; /AIM, Saclay; Hanabata, Y.; /Hiroshima U.; Lemoine-Goumard, M.; /CENBG, Gradignan; Takahashi, T.; /JAXA, Sagamihara

    2012-08-17

    We present an analysis of gamma-ray data obtained with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region around SNR S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5{sigma} confidence level. The gamma-ray flux is (3.8 {+-} 0.6) x 10{sup -8} photons cm{sup -2} s{sup -1}, corresponding to a luminosity of 1.3 x 10{sup 34} (d/1.3 kpc){sup 2} erg s{sup -1} in this energy range. The gamma-ray emission exhibits a possible spatial correlation with prominent H{alpha} filaments of S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral {pi} mesons produced through the proton-proton collisions in the filaments. Reacceleration of pre-existing CRs and subsequent adiabatic compression in the filaments is sufficient to provide the required energy density of high-energy protons.

  13. Fermi-LAT Observation of Supernova Remnant S147

    International Nuclear Information System (INIS)

    We present an analysis of gamma-ray data obtained with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region around SNR S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5? confidence level. The gamma-ray flux is (3.8 ± 0.6) x 10-8 photons cm-2 s-1, corresponding to a luminosity of 1.3 x 1034 (d/1.3 kpc)2 erg s-1 in this energy range. The gamma-ray emission exhibits a possible spatial correlation with prominent H? filaments of S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral ? mesons produced through the proton-proton collisions in the filaments. Reacceleration of pre-existing CRs and subsequent adiabatic compression in the filaments is sufficient to provide the required energy density of high-energy protons.

  14. Failed supernovae explain the compact remnant mass function

    International Nuclear Information System (INIS)

    One explanation for the absence of higher mass red supergiants (16.5 M ? ? M ? 25 M ?) as the progenitors of Type IIP supernovae (SNe) is that they die in failed SNe creating black holes. Simulations show that such failed SNe still eject their hydrogen envelopes in a weak transient, leaving a black hole with the mass of the star's helium core (5-8 M ?). Here we show that this naturally explains the typical masses of observed black holes and the gap between neutron star and black hole masses without any fine-tuning of stellar mass loss, binary mass transfer, or the SN mechanism, beyond having it fail in a mass range where many progenitor models have density structures that make the explosions more likely to fail. There is no difficulty including this ?20% population of failed SNe in any accounting of SN types over the progenitor mass function. And, other than patience, there is no observational barrier to either detecting these black hole formation events or limiting their rates to be well below this prediction.

  15. The Cassiopeia A Supernova Remnant in X-Rays

    Directory of Open Access Journals (Sweden)

    J. Martin Laming

    2007-01-01

    Full Text Available Revisamos el progreso alcanzado hasta la fecha en el an alisis del proyecto de observaci on \\1 million second Chandra Very Large Project (VLP" en el remanente de supernova Cassiopeia A. Exploramos la posibilidad de que Cas A explotase en un \\burbuja". El viento de supergigante roja dentro del cual se expande la onda de choque de la explosi on, fue posiblemente seguido por un per odo corto de viento tenue y r apido de Wolf-Rayet previo a la explosi on, dejando una regi on de baja densidad en el centro, rodeado por el viento de supergigante roja de mayor densidad. Tambi en revisamos el estado actual de las observaciones de rayos X duros y la determinaci on de la masa de 44Ti que se piensa que se eyect o en la explosi on, con miras a las restricciones que esto pone a la explosi on en si misma, y d onde se puedan encontrar los productos del decaimiento del 44Ti

  16. THREE-DIMENSIONAL SIMULATIONS OF THE THERMAL X-RAY EMISSION FROM YOUNG SUPERNOVA REMNANTS INCLUDING EFFICIENT PARTICLE ACCELERATION

    International Nuclear Information System (INIS)

    Supernova remnants (SNRs) are believed to be the major contributors to Galactic cosmic rays. The detection of non-thermal emission from SNRs demonstrates the presence of energetic particles, but direct signatures of protons and other ions remain elusive. If these particles receive a sizeable fraction of the explosion energy, the morphological and spectral evolution of the SNR must be modified. To assess this, we run three-dimensional hydrodynamic simulations of a remnant coupled with a nonlinear acceleration model. We obtain the time-dependent evolution of the shocked structure, impacted by the Rayleigh-Taylor hydrodynamic instabilities at the contact discontinuity and by the back-reaction of particles at the forward shock. We then compute the progressive temperature equilibration and non-equilibrium ionization state of the plasma, and its thermal emission in each cell. This allows us to produce the first realistic synthetic maps of the projected X-ray emission from the SNR. Plasma conditions (temperature and ionization age) can vary widely over the projected surface of the SNR, especially between the ejecta and the ambient medium owing to their different composition. This demonstrates the need for spatially resolved spectroscopy. We find that the integrated emission is reduced with particle back-reaction, with the effect being more significant for the highest photon energies. Therefore, different energy bands, corresponding to different emitting elements, probe different levels of the impact of particle acceleration. Our work provides a framework for the interpretation of SNR observations with current X-ray missions (Chandra, XMM-Newton, and Suzaku) and with upcoming X-ray missions (such as Astro-H).

  17. Four new X-ray-selected supernova remnants in the Large Magellanic Cloud

    Science.gov (United States)

    Maggi, P.; Haberl, F.; Kavanagh, P. J.; Points, S. D.; Dickel, J.; Bozzetto, L. M.; Sasaki, M.; Chu, Y.-H.; Gruendl, R. A.; Filipovi?, M. D.; Pietsch, W.

    2014-01-01

    Aims: We present a detailed multi-wavelength study of four new supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). The objects were identified as SNR candidates in X-ray observations performed during the survey of the LMC with XMM-Newton. Methods: Data obained with XMM-Newton are used to investigate the morphological and spectral features of the remnants in X-rays. We measure the plasma conditions, look for supernova (SN) ejecta emission, and constrain some of the SNR properties (e.g. age and ambient density). We supplement the X-ray data with optical, infrared, and radio-continuum archival observations, which allow us to understand the conditions resulting in the current appearance of the remnants. Based on the spatially-resolved star formation history (SFH) of the LMC together with the X-ray spectra, we attempt to type the supernovae that created the remnants. Results: We confirm all four objects as SNRs, to which we assign the names MCSNR J0508-6830, MCSNR J0511-6759, MCSNR J0514-6840, and MCSNR J0517-6759. In the first two remnants, an X-ray bright plasma is surrounded by very faint [S ii] emission. The emission from the central plasma is dominated by Fe L-shell lines, and the derived iron abundance is greatly in excess of solar. This establishes their type Ia (i.e. thermonuclear) SN origin. They appear to be more evolved versions of other Magellanic Cloud iron-rich SNRs which are centrally-peaked in X-rays. From the two other remnants (MCSNR J0514-6840 and MCSNR J0517-6759), we do not see ejecta emission. At all wavelengths at which they are detected, the local environment plays a key role in their observational appearance. We present evidence that MCSNR J0517-6759 is close to and interacting with a molecular cloud, suggesting a massive progenitor. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  18. A study of galactic supernova remnants, based on Molonglo-Parkes observational data

    International Nuclear Information System (INIS)

    Observations with the Molonglo and Parkes radio telescopes have recently produced improved radio frequency data for the southern galactic supernova remnants (SNRs). These observations have now been used to investigate the general evolutionary properties of SNRs - the first such large-scale analysis based on a near-homogeneous data set. Empirical relationships are derived which describe in general terms the expansion of SNRs, at least during the adiabatic phase of their evolution. An improved SNR distance scale is established, based largely on Parkes HI absorption measurements, and the resulting relationship between surface brightness and linear diameter for galactic SNRs is found to be compatible with that determined for the Magellanic Cloud SNRs, contrary to earlier conclusions. Completeness in the catalogue down to a uniform level of surace brightness permits an improved estimate of the number of SNRs in the Galaxy and suggests that this number has previously been overestimated. Consequently, a larger characteristic interval is inferred between supernova events (of a kind giving rise to typical radio remnants) of approximately 150 yr. Furthermore, on the assumption that most of the brighter SNRs are in the Sedov adiabatic expansion phase, the typical value of E0/n (ratio of energy released in a supernova outburst to the number density of H atoms in the surrounding interstellar medium) implied by the data is 5 x 1051 erg cm3, which is considerably higher than was commonly assumed in earlier work. (author)

  19. An X-ray View of the Zoo of Compact Objects and Associated Supernova Remnants

    Science.gov (United States)

    Safi-Harb, Samar

    2015-08-01

    Core-collapse explosions of massive stars leave behind some of the most exotic compact objects in the Universe. These include: rotation-powered pulsars like the Crab, powering pulsar wind nebulae (PWNe) observed across the electromagnetic spectrum; highly magnetized neutron stars ("magnetars") shining or bursting at high-energies; and X-ray emitting “Central Compact Objects” (CCOs) with intrinsic properties and emission mechanism that remain largely unknown. I will highlight this observed diversity of compact stellar remnants from an X-ray perspective, and address the connection between their properties and those of their hosting supernova remnants (SNRs). In particular I will highlight topics related to their formation and evolution, including: 1) which supernovae make magnetars and the shell-less PWNe?, 2) what can we learn from the apparent age discrepancy between SNRs and their associated pulsars? I will conclude with prospects for observations of SNRs with the upcoming ASTRO-H X-ray mission. The unprecedented spectral resolution on board of ASTRO-H’s micro-calorimeter will particularly open a new discovery window for supernova progenitors' science.

  20. Optical detection and spectroscopic confirmation of supernova remnant G213.0-0.6 (now re-designated as G213.3-0.4)

    CERN Document Server

    Stupar, M

    2011-01-01

    During a detailed search for optical counterparts of known Galactic supernova remnants (SNRs) using the Anglo Australian Observatory/United Kingdom Schmidt Telescope (AAO/UKST) HAlpha survey of the southern Galactic plane we have found characteristic optical HAlpha filaments and associated emission in the area of SNR G213.0-0.6. Although this remnant was previously detected in the radio as a non-thermal source, we also confirm emission at 4850 MHz in the Parkes-MIT-NRAO (PMN) survey and at 1400 MHz in the NRAO/VLA Sky Survey (NVSS). There is an excellent match in morphological structure between the optical (HAlpha) and radio emission. We subsequently obtained optical spectroscopy of selected HAlpha filaments using the South African Astronomical Observatory 1.9-m telescope which confirmed shock excitation typical of supernova remnants. Our discovery of HAlpha emission and the positional match with several radio frequency maps led us to reassign G213.0-0.6 as G213.3-0.4 as these co-ordinates more accurately ref...

  1. Multi-frequency study of supernova remnants in the Large Magellanic Cloud. Confirmation of the supernova remnant status of DEM L205

    CERN Document Server

    Maggi, P; Bozzetto, L M; Filipovi?, M D; Points, S D; Chu, Y -H; Sasaki, M; Pietsch, W; Gruendl, R A; Dickel, J; Smith, R C; Sturm, R; Crawford, E J; De Horta, A Y

    2012-01-01

    We present new X-ray and radio data of the LMC SNR candidate DEM L205, obtained by XMM-Newton and ATCA, along with archival optical and infrared observations. We use data at various wavelengths to study this object and its complex neighbourhood, in particular in the context of the star formation activity, past and present, around the source. We analyse the X-ray spectrum to derive some remnant's properties, such as age and explosion energy. Supernova remnant features are detected at all observed wavelengths: soft and extended X-ray emission is observed, arising from a thermal plasma with a temperature kT between 0.2 keV and 0.3 keV. Optical line emission is characterised by an enhanced [SII]/Halpha ratio and a shell-like morphology, correlating with the X-ray emission. The source is not or only tentatively detected at near-infrared wavelengths (< 10 microns), but there is a detection of arc-like emission at mid and far-infrared wavelengths (24 and 70 micron) that can be unambiguously associated with the re...

  2. Evolved Fe-rich supernova remnants in the Large Magellanic Cloud with Athena

    Science.gov (United States)

    Kavanagh, Patrick; Sasaki, Manami; Maggi, Pierre; Haberl, Frank

    2015-09-01

    Recently, a new class of evolved supernova remnants (SNRs) with centrally peaked Fe-rich emission has been identified in the Magellanic Clouds. The Fe-rich cores result from reverse shock-heated ejecta, the composition of which is consistent with a type Ia explosion, and are spectrally evident as very pronounced Fe L-shell emission lines. Observations with the current generation of X-ray facilities show that the interior Fe-rich plasmas exhibit long ionisation ages, requiring higher central densities than expected from standard type Ia models. It has been suggested that the high interior densities are the result of seeding of the circumstellar medium by the stellar companion leading up to the explosion, which could be facilitated by the most massive "prompt" type Ia progenitor systems. Thus far, these studies have focussed on integrated Fe-rich interior emission since these objects are too faint to allow spatially resolved spectral analysis. In addition, the spectral resolution of the current generation CCD detectors cannot resolve the individual lines in the Fe L-shell complex and spectral analysis is hampered by continuing uncertainties in the atomic data for Fe L-shell lines. Spatially resolved, high spectral resolution studies would reveal in detail the plasma conditions in the Fe-rich interior, shedding light on the possible progenitor systems of these objects, as well as providing a test of the Fe L-shell atomic data. The Fe L-shell line complex is known to be a powerful temperature, density, and ionisation condition diagnostic, and the effective area of Athena, coupled with the high spectral resolution of the X-IFU, provide access to this science space. The detections of such objects has grown significantly in recent years due to the XMM-Newton Very Large Programme survey of the Large Magellanic Cloud (LMC) and our ROSAT LMC SNR candidate follow-up programme. In this talk I will review the current sample of centrally peaked Fe-rich SNRs observed with XMM-Newton and illustrate how the Athena X-IFU can allow an unprecedented probe into the Fe-rich plasmas in these objects.

  3. AN X-RAY INVESTIGATION OF THREE SUPERNOVA REMNANTS IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    We have investigated three supernova remnants (SNRs) in the LMC using multi-wavelength data. These SNRs are generally fainter than the known sample (see Section 4) and may represent a previously missed population. One of our SNRs is the second LMC remnant analyzed which is larger than any Galactic remnant for which a definite size has been established. The analysis of such a large remnant contributes to the understanding of the population of highly evolved SNRs. We have obtained X-ray images and spectra of three of these recently identified SNRs using the XMM-Newton observatory. These data, in conjunction with pre-existing optical emission-line images and spectra, were used to determine the physical conditions of the optical- and X-ray-emitting gas in the SNRs. We have compared the morphologies of the SNRs in the different wavebands. The physical properties of the warm ionized shell were determined from the H? surface brightness and the SNR expansion velocity. The X-ray spectra were fit with a thermal plasma model and the physical conditions of the hot gas were derived from the model fits. Finally, we have compared our observations with simulations of SNR evolution.

  4. Radio-continuum study of Large Magellanic Cloud Supernova Remnant J0509-6731

    CERN Document Server

    Bozzetto, L M; Urosevic, D; Kothes, R; Crawford, E J

    2013-01-01

    We present a detailed study of Australia Telescope Compact Array (ATCA) observations of supernova remnant (SNR) J0509-6731 in the Large Magellanic Cloud (LMC). The remnant has a ring morphology with brightened regions towards the south-western limb. We also find a second brightened inner ring which is only seen in the radio-continuum. The SNR exhibits an almost circular shape of $D=8\\times7$ pc (1 pc uncertainty in each direction) and a steep radio spectral index between 36 and 3 cm of $\\alpha=-0.73\\pm0.02$, which is characteristic of younger SNRs. We also report detection of radially orientated polarisation across the remnant at 6 cm, with a mean fractional polarisation level of $P\\cong$ (26 $\\pm$ 13)%. We find that the magnetic field ($\\sim$168 $\\mu$G) and $\\Sigma$ - D (7.35 pc, $1.1\\times 10^{-19}$ W m$^{-2}$ Hz$^{-1}$ Sr$^{-1}$) are consistent with other young remnants.

  5. HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A

    International Nuclear Information System (INIS)

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between an SN blastwave and its circumstellar environment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 April and 2008 October, substantially extend the frequency range of an ongoing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.''3-0.''4, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.''85, and a 2008 October flux density of 27 ± 6 mJy at 36.2 GHz. The spectral index for the remnant at this epoch, determined between 1.4 GHz and 36.2 GHz, is ? = -0.83. There is tentative evidence for an unresolved central source with flatter spectral index.

  6. High Resolution X-ray Imaging of Supernova Remnant 1987A

    CERN Document Server

    Ng, C -Y; Murray, S S; Slane, P O; Park, S; Staveley-Smith, L; Manchester, R N; Burrows, D N

    2009-01-01

    We report observations of the remnant of Supernova 1987A with the High Resolution Camera (HRC) onboard the Chandra X-ray Observatory. A direct image from the HRC resolves the annular structure of the X-ray remnant, confirming the morphology previously inferred by deconvolution of lower resolution data from the Advanced CCD Imaging Spectrometer. Detailed spatial modeling shows that the a thin ring plus a thin shell gives statistically the best description of the overall remnant structure, and suggests an outer radius 0.96" +/- 0.05" +/- 0.03" for the X-ray-emitting region, with the two uncertainties corresponding to the statistical and systematic errors, respectively. This is very similar to the radius determined by a similar modeling technique for the radio shell at a comparable epoch, in contrast to previous claims that the remnant is 10-15% smaller at X-rays than in the radio band. The HRC observations put a flux limit of 0.010 cts/s (99% confidence level, 0.08-10 keV range) on any compact source at the rem...

  7. X-Ray Emission Line Imaging and Spectroscopy of Tycho's Supernova Remnant

    CERN Document Server

    Hwang, U; Hwang, Una; Gotthelf, Eric V.

    1996-01-01

    We present X-ray images of Tycho's supernova remnant in emission line features of Mg, Si, S, Ar, Ca, and Fe, plus the continuum, using data obtained by the imaging spectrometers onboard the ASCA X-ray satellite. All the images show the shell-like morphology characteristic of previously obtained broad-band X-ray images, but are clearly distinct from each other. We use image reconstruction techniques to achieve a spatial resolution of ~0.8'. Line intensity ratios are used to make inferences about the remnant's physical state, on average for the entire remnant, and with angular position around the rim. The average temperature (T) of the Si and S ejecta in the remnant is (0.8-1.1) X 10^7 K and the average ionization age (nt) is (0.8-1.3) X 10^11 cm^-3 s. For a constant nt, the observed relative brightness variations of Si and S line image profiles with azimuthalangle imply differences of roughly a factor of 1.3-1.8 in the temperature. We compare the radial brightness profiles of our images to simple geometrical m...

  8. Suzaku Studies of the Supernova Remnant CTB~109 Hosting the Magnetar 1E~2259+586

    CERN Document Server

    Nakano, Toshio; Hiraga, Junoko S; Uchiyama, Hideki; Kaneda, Hidehiro; Enoto, Teruaki

    2015-01-01

    Ages of the magnetar 1E 2259+586 and the associated supernova remnant CTB~109 were studied. Analyzing the Suzaku data of CTB~109, its age was estimated to be $\\sim$14~kyr, which is much shorter than the measured characteristic age of 1E 2259+586, 230 kyr. This reconfirms the previously reported age discrepancy of this magnetar/remnant association, and suggests that the characteristic ages of magnetars are generally over-estimated as compared to their true ages. This discrepancy is thought to arise because the former are calculated without considering decay of the magnetic fields. This novel view is supported independently by much stronger Galactic-plane concentration of magnetars than other pulsars. The process of magnetic field decay in magnetars is mathematically modeled. It is implied that magnetars are much younger objects than previously considered, and can dominate new-born neutron stars.

  9. X-ray characteristics of the Lupus Loop and SN1006 supernova remnants

    International Nuclear Information System (INIS)

    The spatial extent of the Lupus Loop and spectra for the Lupus Loop and SN1006 supernova remnants have been determined with a rocket-borne payload. The Lupus Loop is an extended source of soft X-rays (approx. 300' diam) that shows a correlation between its brightest X-ray and radio-emission regions. Its spectrum is characterized by a temperature of 350 eV. Thus, the Lupus Loop appears similar to Vela X and Cygnus Loop, although much weaker. Emission from SN1006 is spatially unresolved and exhibits a harder spectrum than that of the Lupus Loop. All spectral data (0.2 100 keV) from our observation and previous observations are satisfactorily fit with a power law (index = 2.15). This spectral dependence suggests the possibility that a rotating neutron star is the underlying source of the radiated energy although such an interpretation appears inconsistent with the remnant's morphology. (orig.)

  10. Peering into the heart of the M82 starburst: Type II supernova remnants and a possible relic GRB?

    Science.gov (United States)

    Fenech, Danielle Marie; Beswick, Robert; Muxlow, Tom; Argo, Megan

    2015-08-01

    M82 is considered the archetypal starburst galaxy and at a distance of ~3.6 Mpc is one of the closest examples of its kind. It therefore provides a unique opportunity to study a star-forming environment in detail and particularly the discrete products of star-formation such as supernova remnants (SNR) and HII regions. Supernovae and supernova remnants play an important role in the feedback of energy and material into the surrounding interstellar medium as evidenced in M82 by the galactic superwind driven by the numerous supernovae, SNR and massive stellar winds.Radio observations can be used to see into the core of the star-forming region in the centre of M82 as they are unaffected by the gas and dust associated with such an intense starburst environment. Since their discovery in the 1970s, radio observations have been used to study and monitor the evolution of the ~100 supernova remnants at the heart of this galaxy.We present multi-epoch millarcsecond resolution images of the most compact supernova remnants in M82, spanning 25 years of evolution. In particular, we will discuss one of the quintessential SNR 43.31+59.2 as well as the unusual object 41.95+57.5 and its potential as a GRB afterglow.

  11. Tachyonic cascade spectra of supernova remnants and TeV blazars

    International Nuclear Information System (INIS)

    The superluminal spectral densities of relativistic electrons in uniform motion are derived, semiclassically and in second quantization. The effect of electron spin on the tachyonic radiation field, a Proca field with negative mass-square, is studied. There is a longitudinally polarized spectral component due to the negative mass-square of the tachyonic quanta. The radiation densities are averaged with electron distributions, and high- and low-temperature expansions are obtained. Spectral fits to the ?-ray spectra of the Crab Nebula, the supernova remnant RX J1713.7-3946, and the BL Lacertae objects H1426+428, 1ES 1959+650, Mkn 501, and Mkn 421 are performed. In contrast to TeV photons, the extragalactic tachyon flux is not attenuated by interaction with the background light; there is no absorption of tachyonic ?-rays, as tachyons do not interact with infrared photons. The curvature of the TeV spectra in double-logarithmic plots is caused by the Boltzmann factor of the electron densities generating the tachyon flux. The extended spectral plateau in the GeV band, visible in the spectral maps of the two Galactic supernova remnants as well as in the flare spectra of the BL Lacertae objects, is reproduced by the tachyonic radiation densities. Estimates of the electron populations in the supernova remnants and active galactic nuclei are inferred from the spectral fits, such as power-law indices, electron temperatures, and source counts. Upper bounds on the Lorentz factors in the source populations are derived and compared to the breaks in the high-energy cosmic-ray spectrum. (orig.)

  12. Supernova Remnants in the Sedov Expansion Phase: Thermal X-Ray Emission

    OpenAIRE

    Borkowski, K. J.; Lyerly, W. J.; Reynolds, S. P

    2000-01-01

    Improved calculations of X-ray spectra for supernova remnants (SNRs) in the Sedov-Taylor phase are reported, which for the first time include reliable atomic data for Fe L-shell lines. This new set of Sedov models also allows for a partial collisionless heating of electrons at the blast wave and for energy transfer from ions to electrons through Coulomb collisions. X-ray emission calculations are based on the updated Hamilton-Sarazin spectral model. The calculated X-ray spec...

  13. G332.5-5.6, a new Galactic supernova remnant

    OpenAIRE

    Reynoso, E. M.; Green, A.J.

    2006-01-01

    We present radio observations of the source G332.5-5.6, a candidate supernova remnant (SNR). Observations have been performed with the Australia Telescope Compact Array (ATCA) at two frequencies, at 1.4 and 2.4 GHz. Our results confirm that G332.5-5.6 is an SNR, with a spectral index equal to -0.7 +/- 0.2 for the whole source and an average fractional polarization of ~35% at 2.4 GHz. The central component is coincident with extended X-ray emission and the distance to the SNR...

  14. Radio spectral characteristics of the supernova remnant Puppis A and nearby sources

    OpenAIRE

    E. M. Reynoso; Walsh, A. J.

    2015-01-01

    This paper presents a new study of the spectral index distribution of the supernova remnant (SNR) Puppis A. The nature of field compact sources is also investigated according to the measured spectral indices. This work is based on new observations of Puppis A and its surroundings performed with the Australia Telescope Compact Array in two configurations using the Compact Array Broad-band Backend centered at 1.75 GHz. We find that the global spectral index of Puppis A is -0.5...

  15. Possible optical counterparts to the X-ray point source in the supernova remnant CTB 80

    Science.gov (United States)

    Blair, W. P.; Schild, R. E.

    1985-01-01

    A three color CCD image of the central region of the supernova remnant CTB 80 is presented, along with astrometry and photometry of many stars in the field. The color image does not show evidence of heavy or variable dust absorption in the surrounding region. Using an Einstein High Resolution Imager position for the central X-ray point source, two possible optical counterparts have been identified at magnitudes V = 19.9 and V = 20.9. Comparison of the intrinsic colors and magnitudes of these candidates are made to the optical properties of Crab and Vela pulsars, and they are found to be viable candidates.

  16. Chandra and XMM Observations of the Composite Supernova Remnant G327.1-1.1

    OpenAIRE

    Temim, Tea; Slane, Patrick; Gaensler, B.M.; Hughes, John P.; van der Swaluw, Eric

    2008-01-01

    We present new X-ray imaging and spectroscopy of a composite supernova remnant G327.1-1.1 using the Chandra and XMM-Newton X-ray observatories. G327.1-1.1 has an unusual morphology consisting of a symmetric radio shell and an off center nonthermal component that indicates the presence of a pulsar wind nebula (PWN). Radio observations show a narrow finger of emission extending from the PWN structure towards the northwest. X-ray studies with ASCA, ROSAT, and BeppoSAX revealed ...

  17. On the population of X-ray supernova remnants in the Large Magellanic Cloud

    OpenAIRE

    P Maggi; Haberl, F.; Kavanagh, P.J.; Sasaki, M.; Bozzetto, L. M.; Filipovi?, M. D.; Vasilopoulos, G.; Pietsch, W.; Points, S. D.; Chu, Y.-H.; Dickel, J.; Ehle, M; Williams, R.; Greiner, J.

    2015-01-01

    We present a comprehensive X-ray study of the population of supernova remnants (SNRs) in the LMC. Using primarily XMM-Newton, we conduct a systematic spectral analysis of LMC SNRs to gain new insights on their evolution and the interplay with their host galaxy. We combine all the archival XMM observations of the LMC with those of our Very Large Programme survey. We produce X-ray images and spectra of 51 SNRs, out of a list of 59. Using a careful modeling of the background, w...

  18. Soft x-ray emission from the Lupus Loop and SN 1006 supernova remnants

    International Nuclear Information System (INIS)

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint, extended source of soft x-rays with a temperature about 2.5 x 106 K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2--1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star

  19. Cosmic ray positrons from a local, middle-aged supernova remnant

    CERN Document Server

    Erlykin, Anatoly

    2013-01-01

    We argue that the cosmic ray positron excess observed in ATIC-2, Fermi LAT, PAMELA, HESS and recently in the precision AMS-02 experiment can be attributed to the production in a local, middle-aged supernova remnant (SNR). Using the prediction of our model of cosmic ray acceleration in SNR we estimate that the SNR responsible for the observed positron excess is located between 250 and 320pc from the Sun and is 170-380 kyear old. The most probable candidate for such a source is the SNR which gave birth to the well-known Geminga pulsar, but is no longer visible. Other contenders are also discussed.

  20. Nonthermal properties of supernova remnant G1.9+0.3

    CERN Document Server

    Ksenofontov, L T; Berezhko, E G

    2010-01-01

    The properties of the - presumably - youngest Galactic supernova remnant (SNR) G1.9+0.3 are investigated within the framework of nonlinear kinetic theory of cosmic ray acceleration in SNRs. The observed angular size and expansion speed as well as the radio and X-ray emission measurements are used to determine relevant physical parameters of this SNR. Under the assumption that SNR G1.9+0.3 is the result of a Type Ia supernova near the Galactic center (at the distance d=8.5 kpc) the nonthermal properties are calculated. In particular, the expected TeV gamma-ray spectral energy density is predicted to be as low as $\\epsilon_{\\gamma}F_{\\gamma} \\approx 5\\times 10^{-15}$ erg cm$^{-2}$ s$^{-1}$, strongly dependent ($F_{\\gamma}\\propto d^{-11}$) upon the source distance d.

  1. Newly Synthesized Elements and Pristine Dust in the Cassiopeia A Supernova Remnant

    CERN Document Server

    Arendt, R G; Moseley, S H

    1999-01-01

    Spectroscopic observations at 2.4 - 45 microns of the young supernova remnant Cas A with the Infrared Space Observatory (ISO) Short Wavelength Spectrometer (SWS) reveal strong emission lines of O, Ne, Si, S, and Ar. These lines are observed at high velocities (several thousand km/s), and are therefore associated with the supernova ejecta known as the fast-moving knots (FMKs). Continuum emission from dust is also seen in the Cas A spectrum. The continuum strength is spatially well correlated with the O and Ar line strengths, indicating that the dust emission also arises from the FMKs. The dust continuum has an emission feature at ~22 microns which cannot be fit by typical astronomical silicates, but can be fit with a particular class of silicate minerals. This suggests that the dust in Cas A is silicate material that has freshly condensed from the Cas A ejecta into a mineral form that is uncharacteristic of typical ISM dust grains.

  2. Bilateral symmetry in supernova remnants and the connection to the Galactic magnetic field

    Science.gov (United States)

    West, Jennifer Lorraine; Safi-Harb, Samar; Jaffe, Tess; Kothes, Roland; Foster, Tyler; Landecker, Tom

    2015-08-01

    Supernova explosions are some of the most significant and transformative events in our Universe. Understanding Supernova Remnants (SNRs), the leftover remains of these explosions, is fundamental to our understanding of the chemical enrichment and magnetism in galaxies, including our own Milky Way. We model the radio synchrotron emission from Galactic SNRs using the “Hammurabi” synchrotron modelling code. We incorporate current models of Galactic magnetic field and electron density to simulate the emission from the SNRs as a function of their position in the Galaxy. We do this in an effort to understand the connection between SNRs and their environment and to investigate the relationship between the angle of the symmetry axis of the SNR and the Galactic Magnetic field. This relationship has implications for understanding the magnetic field geometry and cosmic ray electron distribution in SNRs, and possibly even a new method for determining or constraining the distances to SNRs.

  3. SWIFT/BAT DETECTION OF HARD X-RAYS FROM TYCHO'S SUPERNOVA REMNANT: EVIDENCE FOR TITANIUM-44

    Energy Technology Data Exchange (ETDEWEB)

    Troja, E.; Baumgartner, W.; Markwardt, C.; Barthelmy, S.; Gehrels, N. [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Segreto, A.; La Parola, V.; Cusumano, G. [INAF—IASF Palermo, Via Ugo La Malfa, I-90146 Palermo (Italy); Hartmann, D., E-mail: eleonora.troja@nasa.gov [Department of Physics and Astronomy, Clemson University, Clemson, SC 29631-0978 (United States)

    2014-12-10

    We report Swift/Burst Alert Telescope survey observations of the Tycho's supernova remnant, performed over a period of 104 months since the mission's launch. The remnant is detected with high significance (>10?) below 50 keV. We detect significant hard X-ray emission in the 60-85 keV band, above the continuum level predicted by a simple synchrotron model. The location of the observed excess is consistent with line emission from radioactive titanium-44, so far reported only for Type II supernova explosions. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type Ia supernova.

  4. Chandra X-ray Observatory Arcsecond Imaging of the Young, Oxygen-rich Supernova Remnant 1E0102.2-7219

    CERN Document Server

    Gaetz, T J; Edgar, R J; Eriksen, K A; Plucinsky, P P; Schlegel, E M; Smith, R K; Butt, Yousaf M.; Edgar, Richard J.; Eriksen, Kristoffer A.; Plucinsky, Paul P.; Schlegel, Eric M.; Smith, Randall K.

    2000-01-01

    We present observations of the young, Oxygen-rich supernova remnant 1E0102.2-7219 taken by the Chandra X-ray Observatory during Chandra's Orbital Activation and Checkout phase. The boundary of the blast wave shock is clearly seen for the first time, allowing the diameter of the remnant and the mean blast wave velocity to be accurately determined. The prominent X-ray bright ring of material may be the result of the reverse shock encountering ejecta; the radial variation of O VII vs. O VIII emission indicates an ionizing shock propagating inwards, possibly through a strong density gradient in the ejecta. We compare the X-ray emission to Australia Telescope Compact Array 6 cm radio observations (Amy and Ball 1993) and to archival Hubble Space Telescope [O III] observations. The ring of radio emission is predominantly inwards of the outer blast wave, consistent with an interpretation as synchrotron radiation originating behind the blast wave, but outwards of the bright X-ray ring of emission. Many (but not all) o...

  5. The Search for Faint Radio Supernova Remnants in the Outer Galaxy: Five New Discoveries

    CERN Document Server

    Gerbrandt, Stephanie; Kothes, Roland; Geisbuesch, Joern; Tung, Albert

    2014-01-01

    High resolution and sensitivity large-scale radio surveys of the Milky Way are critical in the discovery of very low surface brightness supernova remnants (SNRs), which may constitute a significant portion of the Galactic SNRs still unaccounted for (ostensibly the Missing SNR problem). The overall purpose here is to present the results of a systematic, deep data-mining of the Canadian Galactic Plane Survey (CGPS) for faint, extended non-thermal and polarized emission structures that are likely the shells of uncatalogued supernova remnants. We examine 5$\\times$5 degree mosaics from the entire 1420 MHz continuum and polarization dataset of the CGPS after removing unresolved point sources and subsequently smoothing them. Newly revealed extended emission objects are compared to similarly-prepared CGPS 408 MHz continuum mosaics, as well as to source-removed mosaics from various existing radio surveys at 4.8 GHz, 2.7 GHz, and 327 MHz, to identify candidates with non-thermal emission characteristics. We integrate fl...

  6. Chandra and H.E.S.S. observations of the Supernova Remnant CTB 37B

    CERN Document Server

    Aharonian, F; Barresde Almeida, U; Bazer-Bachi, A R; Behera, B; Beilicke, M; Benbow, W; Bernlöhr, K; Boisson, C; Borrel, V; Braun, I; Brion, E; Brucker, J; Buhler, R; Bulik, T; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Chaves, R C G; Chounet, L M; Clapson, A C; Coignet, G; Cornils, R; Costamante, L; Dalton, M; Degrange, B; Dickinson, H J; Djannati-Ata, A; Domainko, W; O'Connor-Drury, L; Dubois, F; Dubus, G; Dyks, J; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Funk, S; Fuling, M; Gabici, S; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, Y A; Gallant, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; De Jager, O C; Jung, I; Katarzynski, K; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khelifi, B; Keogh, D; Komin, Nu; Kosack, K; Lamanna, G; Latham, I J; Lemoine-Goumard, M; Lenain, J P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, D; McComb, T J L; Moderski, R; Moulin, E; Naumann-Godo, M; De Naurois, Mathieu; Nedbal, D; Nekrassov, D; Nolan, S J; Ohm, S; Olive, J P; de Ona Wilhelmi, E; Orford, K J; Osborne, J L; Ostrowski, M; Panter, M; Pedaletti, G; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, Andreas G; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Reimer, O; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Ruppel, J; Sahakian, V V; Santangelo, A; Schlickeiser, R; Schock, F M; Schroder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Skilton, J L; Sol, H; Spangler, D; Stawarz, L; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2008-01-01

    The >100 GeV gamma-ray source, HESS J1713-381, apparently associated with the shell-type supernova remnant (SNR) CTB 37B, was discovered using H.E.S.S. in 2006. X-ray follow-up observations with Chandra were performed in 2007 with the aim of identifying a synchrotron counterpart to the TeV source and/or thermal emission from the SNR shell. These new Chandra data, together with additional TeV data, allow us to investigate the nature of this object in much greater detail than was previously possible. The new X-ray data reveal thermal emission from a ~4' region in close proximity to the radio shell of CTB 37B. The temperature of this emission implies an age for the remnant of ~5000 years (assuming a spherical Sedov expansion), disfavouring a suggested association with the supernova of AD 373. A bright (approx 7 x10^-13erg cm^-2 s^-1) and unresolved (<1'') source (CXOU J171405.7-381031) with a soft (Gamma ~ 3.3) non -thermal spectrum is also detected in coincidence with the radio shell. Absorption indicates a ...

  7. Near-Infrared Spectroscopy of the Cassiopeia A and Kepler Supernova Remnants

    CERN Document Server

    Gerardy, C L

    2001-01-01

    Near-infrared spectra (0.95 - 2.4 micron) of the Cassiopeia A and Kepler supernova remnants (SNRs) are presented. Low-dispersion (R = 700) spectra were obtained for five bright fast-moving ejecta knots (FMKs) at two locations on the main shell and for three bright circumstellar knots (QSFs) near the southwest rim of Cas A. The main shell FMKs in Cas A exhibit a sparse near-infrared spectrum dominated by [S II] 1.03 micron emission with a handful of other, fainter emission lines. Among these are two high-ionization silicon lines, [Si VI] 1.96 micron and [Si X] 1.43 micron, which have been detected in AGNs and novae but never before in a supernova remnant. The near-infrared spectra of circumstellar QSFs in Cas A show a much richer spectrum, with strong He I 1.083 micron emission and over a dozen bright [Fe II] lines. Observed [Fe II] line ratios indicate electron densities of 5 - 9 * 10^4 cm^-3 in the QSFs. The Cas A QSF data are quite similar to the observed spectrum of a bright circumstellar knot along the no...

  8. Observation of Extended VHE Emission from the Supernova Remnant IC 443 with VERITAS

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Bautista, M; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Chow, Y C; Ciupik, L; Cogan, P; Colin, P; Cui, W; Daniel, M K; Dickherber, R; Duke, C; Dwarkadas, V V; Ergin, T; Fegan, S J; Finley, J P; Finnegan, G; Fortin, P; Fortson, L; Furniss, A; Gall, D; Gibbs, K; Gillanders, G H; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Hays, E; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, Philip; Karlsson, N; Kertzman, M; Kieda, D; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Theiling, M; Toner, J A; Valcarcel, L; Varlotta, A; Vasilev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Wood, M; Zitzer, B

    2009-01-01

    We present evidence that the very-high-energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best-studied sites of supernova remnant/molecular cloud interaction and the pulsar wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hours during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (sigma) before trials and 7.5 sigma after trials in a point-source search. The emission is centered at 06 16 51 +22 30 11 (J2000) +- 0.03_stat +- 0.08_sys degrees, with an intrinsic extension of 0.16 +- 0.03_stat +- 0.04_sys degrees. The VHE spectrum is well fit by a power law (dN/dE = N_0 * (E/TeV)^-Gamma) with a photon index of 2.99 +- 0.38_stat +- 0.3_sys and an integral flux above 300 GeV of (4.63 +- 0.90_stat +- 0.93_sys) * 10^-12 cm^-2 s^-1. These results are discussed in the context of existing ...

  9. The remnant of Supernova 1987A resolved at 3 mm wavelength

    CERN Document Server

    Lakicevic, Masha; van Loon, Jacco Th; Staveley-Smith, Lister; Potter, Toby; Ng, C -Y; Gaensler, B M

    2012-01-01

    The proximity of core-collapse Supernova 1987A (SN1987A) in the Large Magellanic Cloud (LMC) and its rapid evolution make it a unique case study of the development of a young supernova remnant. We aim at resolving the remnant of SN1987A for the first time in the 3-mm band (at 94 GHz). We observed the source at 3-mm wavelength with a 750-m configuration of the Australia Telescope Compact Array (ATCA). We compare the image with a recent 3-cm image and with archival X-ray images. We present a diffraction-limited image with a resolution of 0.7", revealing the ring structure seen at lower frequencies and at other wavebands. The emission peaks in the eastern part of the ring. The 3-mm image bears resemblance to early X-ray images (from 1999-2000). We place an upper limit of 1 mJy (2 \\sigma) on any discrete source of emission in the centre (inside of the ring). The integrated flux density at 3 mm has doubled over the six years since the previous observations at 3 mm. At 3 mm - i.e. within the operational domain of t...

  10. OBSERVATION OF EXTENDED VERY HIGH ENERGY EMISSION FROM THE SUPERNOVA REMNANT IC 443 WITH VERITAS

    International Nuclear Information System (INIS)

    We present evidence that the very high energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best studied sites of supernova remnant/molecular cloud interaction and the pulsar wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hr during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (?) before trials and 7.5? after trials in a point-source search. The emission is centered at 6h16m51s + 22030'11'' (J2000) ±0.003stat ± 0.008sys, with an intrinsic extension of 0.016 ± 0.003stat ± 0.004sys. The VHE spectrum is well fit by a power law (dN/dE = N 0 x (E/TeV)-?) with a photon index of 2.99 ± 0.38stat ± 0.3sys and an integral flux above 300 GeV of (4.63 ± 0.90stat ± 0.93sys) x 10-12 cm-2 s-1. These results are discussed in the context of existing models for gamma-ray production in IC 443.

  11. Interpretation of the Center-Filled Emission from the Supernova Remnant W44

    CERN Document Server

    Harrus, I M; Singh, K P; Koyama, K; Asaoka, I; Harrus, Ilana M.; Hughes, John P.

    1997-01-01

    (Abridged) We have investigated two evolutionary scenarios advanced to explain the centrally-brightened X-ray morphology of the supernova remnant (SNR) W44: (1) a model involving the slow thermal evaporation of clouds engulfed by a supernova blast wave as it propagates though a clumpy interstellar medium (ISM), and (2) a hydrodynamical simulation of a blast wave propagating through a homogeneous ISM, including the effects of radiative cooling. Both models can have their respective parameters tuned to approximate the remnant's morphology. The mean temperature of the hot plasma in W44 (~0.9 keV) as determined by our nonequilibrium ionization X-ray spectral analysis provides the essential key to discriminate between these scenarios. Based on the size (using the well established distance of 3 kpc) and temperature of W44, the dynamical evolution predicted by the cloud evaporation model gives an age for the SNR of merely 6500 yr. We argue that, because this age is inconsistent with the characteristic age (approx. 2...

  12. Comparison of the expected and observed supernova remnant counts with Fermi/LAT

    Directory of Open Access Journals (Sweden)

    Vovk Ie.

    2015-01-01

    Full Text Available SNRs are commonly believed to be the accelerators of the galactic cosmic rays – mainly protons – and are expected to produce ?-rays through the inelastic proton-proton collisions. Fermi/LAT was expected to detect many of those, but only a dozen is listed in the recent Fermi/LAT 2nd Source catalogue. To test whether the observed number of SNRs is in agreement with the above assumption, we use a simplified model of an SNR and calculate the predicted amount of the observable remnants taking into account their distribution in the Galaxy and the sensitivity of Fermi/LAT. We find that the observed number of SNRs agrees with the prediction of our model if we assume a low, ? 1 cm?3, number density of the SNR's ambient medium. The result, presented here, suggests, that on average the supernova explosions happen in the under-dense regions, such as bubbles, creating by the winds of the progenitor stars. Under this natural supposition our result finds an agreement with the assumption, that the observed population of supernovae remnants is indeed responsible for the production of the galactic cosmic rays.

  13. Chandra and XMM-Newton study of the supernova remnant Kes 73 hosting the magnetar 1E 1841-045

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Harsha S.; Safi-Harb, Samar [Department of Physics and Astronomy, University of Manitoba, Winnipeg MB R3T 2N2 (Canada); Slane, Patrick O. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Gotthelf, E. V., E-mail: harsha@physics.umanitoba.ca, E-mail: samar@physics.umanitoba.ca, E-mail: slane@cfa.harvard.edu, E-mail: eric@astro.columbia.edu [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States)

    2014-01-20

    We present a Chandra and XMM-Newton study of the supernova remnant (SNR) Kes 73 hosting the anomalous X-ray pulsar 1E 1841–045. The Chandra image reveals clumpy structures across the remnant with enhanced emission along the western rim. The X-ray emission fills the radio shell and spatially correlates with the infrared image. The global X-ray spectrum is described by a two-component thermal model with a column density N {sub H} = 2.6{sub ?0.3}{sup +0.4}×10{sup 22} cm{sup –2} and a total luminosity of L{sub X} = 3.3{sub ?0.5}{sup +0.7}×10{sup 37} erg s{sup –1} (0.5-10 keV, at an assumed distance of 8.5 kpc). The soft component is characterized by a temperature kT{sub s} = 0.5{sub ?0.2}{sup +0.1} keV, a high ionization timescale, and enhanced Si and S abundances, suggesting emission that is dominated by shocked ejecta. The hard component has a temperature kT{sub h} = 1.6{sub ?0.7}{sup +0.8} keV, a relatively low ionization timescale, and mostly solar abundances suggesting emission that is dominated by interstellar/circumstellar shocked material. A spatially resolved spectroscopy study reveals no significant variations in the spectral properties. We infer an SNR age ranging between 750 yr and 2100 yr, an explosion energy of 3.0{sub ?1.8}{sup +2.8}×10{sup 50} erg and a shock velocity of (1.2 ± 0.3)×10{sup 3} km s{sup –1} (under the Sedov phase assumption). We also discuss the possible scenario for Kes 73 expanding into the late red-supergiant wind phase of its massive progenitor. Comparing the inferred metal abundances to core-collapse nucleosynthesis model yields, we estimate a progenitor mass ?20 M {sub ?}, adding a candidate to the growing list of highly magnetized neutron stars proposed to be associated with very massive progenitors.

  14. A deep Chandra observation of oxygen-rich supernova remnant B0049-73.6 in the Small Magellanic Cloud

    International Nuclear Information System (INIS)

    We report on the initial results from our deep Chandra observation (450 ks) of O-rich supernova remnant (SNR) B0049-73.6 in the Small Magellanic Cloud. We detect small metal-rich ejecta features extending out to the outermost boundary of B0049-73.6, which were not seen in the previous data with a shorter exposure. The central nebula is dominated by emission from reverse-shocked ejecta material enriched in O, Ne, Mg, and Si. O-rich ejecta distribution is relatively smooth throughout the central nebula. In contrast, the Si-rich material is highly structured. These results suggest that B0049-73.6 was produced by an asymmetric core-collapse explosion of a massive star. The estimated abundance ratios among these ejecta elements are in plausible agreement with the nucleosynthesis products from the explosion of a 13-15 M? progenitor. The central ring-like (in projection) ejecta nebula extends to ?9 pc from the SNR center. This suggests that the contact discontinuity may be located at a further distance from the SNR center than the previous estimate. We estimate the Sedov age of ?17,000 yr and an explosion energy of E0 ?1.7 × 1051 erg for B0049-73.6. We place a stringent upper limit on the 2-7 keV band luminosity of LX ? 8.5 × 1031 erg s–1 for the embedded compact stellar remnant at the center of B0049-73.6

  15. A deep Chandra observation of oxygen-rich supernova remnant B0049-73.6 in the Small Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Schenck, Andrew; Park, Sangwook [Box 19059, Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Burrows, David N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Lee, Jae-Joon [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Mori, Koji, E-mail: andrew.schenck@mavs.uta.edu [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki 889-2192 (Japan)

    2014-08-10

    We report on the initial results from our deep Chandra observation (450 ks) of O-rich supernova remnant (SNR) B0049-73.6 in the Small Magellanic Cloud. We detect small metal-rich ejecta features extending out to the outermost boundary of B0049-73.6, which were not seen in the previous data with a shorter exposure. The central nebula is dominated by emission from reverse-shocked ejecta material enriched in O, Ne, Mg, and Si. O-rich ejecta distribution is relatively smooth throughout the central nebula. In contrast, the Si-rich material is highly structured. These results suggest that B0049-73.6 was produced by an asymmetric core-collapse explosion of a massive star. The estimated abundance ratios among these ejecta elements are in plausible agreement with the nucleosynthesis products from the explosion of a 13-15 M{sub ?} progenitor. The central ring-like (in projection) ejecta nebula extends to ?9 pc from the SNR center. This suggests that the contact discontinuity may be located at a further distance from the SNR center than the previous estimate. We estimate the Sedov age of ?17,000 yr and an explosion energy of E{sub 0} ?1.7 × 10{sup 51} erg for B0049-73.6. We place a stringent upper limit on the 2-7 keV band luminosity of L{sub X} ? 8.5 × 10{sup 31} erg s{sup –1} for the embedded compact stellar remnant at the center of B0049-73.6.

  16. H.E.S.S. upper limits for Kepler's supernova remnant

    CERN Document Server

    Aharonian, F; Barresde Almeida, U; Bazer-Bachi, A R; Behera, B; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brion, E; Brucker, J; Buhler, R; Bulik, T; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Chounet, L M; Clapson, A C; Coignet, G; Cornils, R; Costamante, L; Dalton, M; Degrange, B; Dickinson, H J; Djannati-Ata, A; Domainko, i W; O'Connor-Drury, L; Dubois, F; Dubus, G; Dyks, J; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Fuling, M; Gallant, Y A; Giebels, B; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, J F Glicenstein G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; De Jager, O C; Jung, I; Katarzynski, K; Kendziorra, E; Kerschhaggl, M; Khelifi, B; Keogh, D; Komin, Nu; Kosack, K; Lamanna, G; Latham, I J; Lemoine-Goumard, M; Lenain, J P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, D; McComb, T J L; Moderski, R; Moulin, E; Naumann-Godo, M; De Naurois, Mathieu; Nedbal, D; Nekrassov, D; Nolan, S J; Ohm, S; Olive, J P; de Ona Wilhelmi, E; Orford, K J; Osborne, J L; Ostrowski, M; Panter, M; Pedaletti, G; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, Andreas G; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Ruppel, J; Sahakian, V V; Santangelo, A; Schlickeiser, R; Schock, F M; Schroder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Stawarz, L; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Ward, M; Zdziarski, A A; Wagner, A; Zech, J

    2008-01-01

    Observations of Kepler's supernova remnant (G4.5+6.8) with the H.E.S.S. telescope array in 2004 and 2005 with a total live time of 13 h are presented. Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the energy and direction of the incident gamma rays. No evidence for a very high energy (VHE: >100 GeV) gamma-ray signal from the direction of the remnant is found. An upper limit (99% confidence level) on the energy flux in the range 230 GeV - 12.8 TeV of 8.6 x 10^{-13} erg cm^{-2} s^{-1} is obtained. In the context of an existing theoretical model for the remnant, the lack of a detectable gamma-ray flux implies a distance of at least 6.4 kpc. A corresponding upper limit for the density of the ambient matter of 0.7 cm^{-3} is derived. With this distance limit, and assuming a spectral index Gamma = 2, the total energy in accelerated protons is limited to E_p < 8.6 x 10^{49} erg. In the synchrotron/inverse Compton framework, extrapolating the power law measured by RX...

  17. An Archival X-ray Study of the Large Magellanic Cloud Supernova Remnant N132D

    Science.gov (United States)

    Plucinsky, Paul P.; Foster, Adam; Gaetz, Terrance; Jerius, Diab H.; Patnaude, Daniel; Edgar, Richard J.; Smith, Randall K.; Blair, William P.

    2016-01-01

    We present the results of an analysis of the archival XMM-Newton EPIC data (203ks for pn and 556/574ks for MOS1/MOS2) and the Chandra X-ray Observatory ACIS data (89ks) of the brightest X-ray supernova remnant (SNR) in the Large Magellanic Cloud (LMC) N132D. N132D has been classified as an ``O-rich'' remnant based on the UV and optical spectra which show emission from C, O, Ne, Mg, and Si. These spectra of the central optical knots do not show any emission from elements with Z higher than Si, yet the nucleosynthesis models predict significant quantities of these higher Z elements. Our spectral analysis of the deep XMM data clearly shows emission lines from S, Ar, Ca, and Fe, with indications of other possible features between Ca and Fe. We use a combination of the high resolution images from Chandra and the sensitive spectra from XMM to disentangle the emission from swept-up interstellar material and a possible hot ejecta component. We interpret these results in the context of a 3,000 year old remnant from a massive progenitor that has exploded into a cavity created by the progenitor.This research was supported by the NASA Astrophysics Data Analysis Program (ADAP) through grant number NNX11AD17G.

  18. High resolution 36 GHz imaging of the Supernova Remnant of SN1987A

    CERN Document Server

    Potter, T M; Ng, C -Y; Ball, Lewis; Gaensler, B M; Kesteven, M J; Manchester, R N; Tzioumis, A K; Zanardo, G

    2009-01-01

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between a SN blastwave and its circumstellar en- vironment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 Apr and 2008 Oct, substantially extend the frequency range of an ongo- ing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.3-0.4 arcseconds, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.85...

  19. Fermi Large Area Telescope observations of the supernova remnant HESS J1731-347

    CERN Document Server

    Yang, Rui-zhi; Yuan, Qiang; Liu, Siming

    2014-01-01

    Context: HESS J1731-347 has been identified as one of the few TeV-bright shell-type supernova remnants (SNRs). These remnants are dominated by nonthermal emission, and the nature of TeV emission has been continuously debated for nearly a decade. Aims: We carry out the detailed modeling of the radio to gamma-ray spectrum of HESS J1731-347 to constrain the magnetic field and energetic particles sources, which we compare with those of the other TeV-bright shell-type SNRs explored before. Methods: Four years of data from Fermi Large Area Telescope (LAT) observations for regions around this remnant are analyzed, leading to no detection correlated with the source discovered in the TeV band. The Markov Chain Monte Carlo method is used to constrain parameters of one-zone models for the overall emission spectrum. Results: Based on the 99.9% upper limits of fluxes in the GeV range, one-zone hadronic models with an energetic proton spectral slope greater than 1.8 can be ruled out, which favors a leptonic origin for the ...

  20. Constraints on cosmic-ray efficiency in the supernova remnant RCW 86 using multi-wavelength observations

    CERN Document Server

    Lemoine-Goumard, M; Vink, J; Allen, G E; Bamba, A; Giordano, F; Uchiyama, Y

    2012-01-01

    Several young supernova remnants (SNRs) have recently been detected in the high-energy and very-high-energy gamma-ray domains. As exemplified by RX J1713.7-3946, the nature of this emission has been hotly debated, and direct evidence for the efficient acceleration of cosmic-ray protons at the SNR shocks still remains elusive. We analyzed more than 40 months of data acquired by the Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE gamma-rays) information about the broadband nonthermal emission from RCW 86. For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional Counter Array (PCA). Beyond the expected Galactic diffuse background, no significant gamma-ray emission in the direction of RCW 86 is detected in any of the 0.1-1, 1-10 and 10-100 GeV Fermi-LAT maps. In the hadronic scenario, the derived HE upper lim...

  1. Far-Ultraviolet Spectral Images of the Vela Supernova Remnant: Supplements and Comparisons with other Wavelength Images

    CERN Document Server

    Kim, Il-Joong; Min, Kyoung-Wook; Han, Wonyong; Edelstein, Jerry

    2012-01-01

    We present the improved far-ultraviolet (FUV) emission-line images of the entire Vela supernova remnant (SNR) using newly processed SPEAR/FIMS data. The incomplete C III {\\lambda}977 and O VI {\\lambda}{\\lambda}1032, 1038 images presented in the previous study are updated to cover the whole region. The C IV {\\lambda}{\\lambda}1548, 1551 image with a higher resolution and new images at Si IV {\\lambda}{\\lambda}1394, 1403, O IV] {\\lambda}1404, He II {\\lambda}1640.5, and O III] {\\lambda}{\\lambda}1661, 1666 are also shown. Comparison of emission line ratios for two enhanced FUV regions reveals that the FUV emissions of the east enhanced FUV region may be affected by nonradiative shocks of another very young SNR, the Vela Jr. SNR (RX J0852.0-4622, G266.6-1.2). This result is the first FUV detection that is likely associated with the Vela Jr. SNR, supporting previous arguments that the Vela Jr. SNR is close to us. The comparison of the improved FUV images with soft X-ray images shows that a FUV filamentary feature for...

  2. Far-ultraviolet Emission-line Morphologies of the Supernova Remnant G65.3+5.7

    CERN Document Server

    Kim, I -J; Min, K -W; Shinn, J -H; Han, W; Edelstein, J

    2010-01-01

    We present the first far-ultraviolet (FUV) emission-line morphologies of the whole region of the supernova remnant (SNR) G65.3+5.7 using the FIMS/SPEAR data. The morphologies of the C IV {\\lambda}{\\lambda}1548, 1551, He II {\\lambda}1640, and O III] {\\lambda}{\\lambda}1661, 1666 lines appear to be closely related to the optical and/or soft X-ray images obtained in previous studies. Dramatic differences between the C IV morphology and the optical [O III] {\\lambda}5007 image provide clues to a large resonant-scattering region and a foreground dust cloud. The FUV morphologies also reveal the overall distribution of various shocks in different evolutionary phases and an evolutionary asymmetry between the east and the southwest sides in terms of Galactic coordinates, possibly due to a Galactic density gradient in the global scale. The relative X-ray luminosity of G65.3+5.7 to C IV luminosity is considerably lower than those of the Cygnus Loop and the Vela SNRs. This implies that G65.3+5.7 has almost evolved into the...

  3. Recombining Plasma and Hard X-ray Filament in the Mixed-Morphology Supernova Remnant W44

    CERN Document Server

    Uchida, Hiroyuki; Yamaguchi, Hiroya; Sawada, Makoto; Ohnishi, Takao; Tsuru, Takeshi Go; Tanaka, Takaaki; Yoshiike, Satoshi; Fukui, Yasuo

    2012-01-01

    We report new features of the typical mixed-morphology (MM) supernova remnant (SNR) W44. In the X-ray spectra obtained with Suzaku, radiative recombination continua (RRCs) of highly ionized atoms are detected for the first time. The spectra are well reproduced by a thermal plasma in a recombining phase. The best-fit parameters suggest that the electron temperature of the shock-heated matters cooled down rapidly from $\\sim1$,keV to $\\sim 0.5$,keV, possibly due to adiabatic expansion (rarefaction) occurred $\\sim20,000$ years ago. We also discover hard X-ray emission which shows an arc-like structure spatially-correlated with a radio continuum filament. The surface brightness distribution shows a clear anti-correlation with $^{12}$CO (J=2-1) emission from a molecular cloud observed with NANTEN2. While the hard X-ray is most likely due to a synchrotron enhancement in the vicinity of the cloud, no current model can quantitatively predict the observed flux.

  4. A Spatially Resolved Study of the Synchrotron Emission and Titanium in Tycho's Supernova Remnant with NuSTAR

    CERN Document Server

    Lopez, Laura A; Reynolds, Stephen P; An, Hongjun; Boggs, Steven E; Christensen, Finn E; Craig, William W; Eriksen, Kristoffer A; Fryer, Chris L; Hailey, Charles J; Harrison, Fiona A; Madsen, Kristin K; Stern, Daniel K; Zhang, William W; Zoglauer, Andreas

    2015-01-01

    We report results from deep observations (750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from 44Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity "stripes" associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of 44Ti, and we set tight limits on its presence which exclude the reported Swift/BAT and INTEGRAL detections and correspond to an upper-limit 44Ti mass of M44 < 8.4e-5 Msun for a distance of 2.3 kpc. We perform spatially resolved spectroscopic analysis of sixty-six regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We find that the highest energ...

  5. FERMI-LAT Observations of Supernova Remnant G5.7-0.1, Believed to be Interacting with Molecular Clouds

    CERN Document Server

    Joubert, Timothy; Slane, Patrick; Gelfand, Joseph

    2015-01-01

    We report the detection of $\\gamma$-ray emission coincident with the supernova remnant (SNR) G5.7-0.1 using data from the Large Area Telescope on board the {\\it Fermi Gamma-ray Space Telescope}. SNR shocks are expected to be sites of cosmic ray acceleration, and clouds of dense material can provide effective targets for production of $\\gamma$-rays from $\\pi^0$-decay. The SNR is known to be interacting with molecular clouds, as evidenced by observations of hydroxyl (OH) maser emission at 1720 MHz in its direction. The observations reveal a $\\gamma$-ray source in the direction of SNR G5.7-0.1, positioned nearby the bright $\\gamma$-ray source SNR W28. We model the broadband emission (radio to $\\gamma$-ray) using a one-zone model, and after considering scenarios in which the MeV-TeV sources originate from either $\\pi^0$-decay or leptonic emission, conclude that a considerable component of the $\\gamma$-ray emission comes from the $\\pi^0$-decay channel. Finally, constraints were placed on the reported ambiguity of ...

  6. H.E.S.S. reveals a lack of TeV emission from the supernova remnant Puppis A

    CERN Document Server

    :,; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Angüner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M -H; Grudzi?ska, M; Hadasch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung-Richardt, I; Kastendieck, M A; Katarzy?ski, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Klu?niak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, {? }; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H -S

    2014-01-01

    Puppis A is an interesting ~4 kyr-old supernova remnant (SNR) that shows strong evidence of interaction between the forward shock and a molecular cloud. It has been studied in detail from radio frequencies to high-energy (HE, 0.1-100 GeV) gamma-rays. An analysis of the Fermi-LAT data has shown an extended HE gamma-ray emission with a 0.2-100 GeV spectrum exhibiting no significant deviation from a power law, unlike most of the GeV-emitting SNRs known to be interacting with molecular clouds. This makes it a promising target for imaging atmospheric Cherenkov telescopes (IACTs) to probe the gamma-ray emission above 100 GeV. Very-high-energy (VHE, E >= 0.1 TeV) gamma-ray emission from Puppis A is for the first time searched for with the High Energy Stereoscopic System (H.E.S.S.). The analysis of the H.E.S.S. data does not reveal any significant emission towards Puppis A. The derived upper limits on the differential photon flux imply that its broadband gamma-ray spectrum must exhibit a spectral break or cutoff. By ...

  7. A detailed X-ray investigation of PSR J2021+4026 and $\\gamma$-Cygni supernova remnant

    CERN Document Server

    Hui, C Y; Lin, L C C; Huang, R H H; Hu, C P; Wu, J H K; Trepl, L; Takata, J; Wang, Y; Chou, Y; Cheng, K S; Kong, A K H

    2014-01-01

    We have investigated the field around the radio-quiet $\\gamma$-ray pulsar, PSR J2021+4026, with a ~140 ks XMM-Newton observation and a ~56 ks archival Chandra data. Through analyzing the pulsed spectrum, we show that the X-ray pulsation is purely thermal in nature which suggests the pulsation is originated from a hot polar cap with $T\\sim3\\times10^{6}$ K on the surface of a rotating neutron star. On the other hand, the power-law component that dominates the pulsar emission in the hard band is originated from off-pulse phases, which possibly comes from a pulsar wind nebula. In re-analyzing the Chandra data, we have confirmed the presence of bow-shock nebula which extends from the pulsar to west by ~10 arcsec. The orientation of this nebular feature suggests that the pulsar is probably moving eastward which is consistent with the speculated proper motion by extrapolating from the nominal geometrical center of the supernova remnant (SNR) G78.2+2.1 to the current pulsar position. For G78.2+2.1, our deep XMM-Newto...

  8. GMRT observations of four suspected supernova remnants near the Galactic Centre

    Science.gov (United States)

    Roy, Subhashis; Rao, A. Pramesh

    2002-02-01

    We have observed two fields - Field I (l=3.2°, b=-1.0°) and Field II (l=356.8°, b=-0.1°) - with the Giant Metrewave Radio Telescope (GMRT) at 330MHz. In the first field, we have studied the candidate supernova remnant (SNR) G3.1-0.6 and, based on its observed morphology, spectral index and polarization, confirmed it to be an SNR. We find this supernova to have a double ring appearance with a strip of emission on its western side passing through its centre. We have discovered two extended curved objects in the second field, which appears to be part of a large shell-like structure. It is possibly the remains of an old supernova in the region. Three suspected SNRs, G356.3-0.3, G356.6+0.1 and G357.1-0.2, detected in the MOST 843-MHz survey of the GC region appear to be located on this shell-like structure. While both G356.3-0.3 and G356.6+0.1 seem to be parts of this shell, G357.1-0.2, which has a steeper spectrum above 1GHz, could be a background SNR seen through the region. Our HI absorption observation towards the candidate SNR G357.1-0.2 indicates that it is at a distance of more than 6kpc from us.

  9. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    Science.gov (United States)

    Temim, Tea; Slane, Patrick; Arendt, Richard G.; Dwek, Eli

    2011-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approximately 1.5 keY, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approximately 140 K by a relatively dense, hot plasma that also gives rise to the hot X-my emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-my emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) x solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  10. PAIR INSTABILITY SUPERNOVAE: LIGHT CURVES, SPECTRA, AND SHOCK BREAKOUT

    International Nuclear Information System (INIS)

    For the initial mass range (140 Msun sun) stars die in a thermonuclear runaway triggered by the pair-production instability. The supernovae they make can be remarkably energetic (up to ?1053 erg) and synthesize considerable amounts of radioactive isotopes. Here we model the evolution, explosion, and observational signatures of representative pair instability supernovae (PI SNe) spanning a range of initial masses and envelope structures. The predicted light curves last for hundreds of days and range in luminosity from very dim to extremely bright (L ? 1044 erg s-1). The most massive events are bright enough to be seen at high redshift, but the extended light curve duration (?1 yr)-prolonged by cosmological time-dilation-may make it difficult to detect them as transients. A more promising approach may be to search for the brief and luminous outbreak occurring when the explosion shock wave first reaches the stellar surface. Using a multi-wavelength radiation-hydrodynamics code we calculate that, in the rest frame, the shock breakout transients of PI SNe reach luminosities of 1045-1046 erg s-1, peak at wavelengths ?30-170 A, and last for several hours. We discuss how observations of the light curves, spectra, and breakout emission can be used to constrain the mass, radius, and metallicity of the progenitor.

  11. The shocking development of lithium (and boron) in supernovae

    Science.gov (United States)

    Dearborn, David S. P.; Schramm, David N.; Steigman, Gary; Truran, James

    1989-01-01

    It is shown that significant amounts of Li-7 and B-11 are produced in Type 2 supernovae. The synthesis of these rare elements occurs as the supernova shock traverses the base of the hydrogen envelope burning He-3 to masses 7 and 11 via alpha capture. The yields in this process are sufficient to account for the difference in lithium abundance observed between Pop 2 and Pop 1 stars. Since lithium (and boron) would, in this manner, be created in the same stars that produce the bulk of the heavy elements, the lithium abundance even in old Pop 1 stars would be high (as observed). The B-11 production may remedy the long-standing problem of the traditional spallation scenario to account for the observed isotopic ratio of boron. Observational consequences of this mechanism are discussed, including the evolution of lithium and boron isotope ratios in the Galaxy and the possible use of the boron yields to constrain the number of blue progenitor Type 2 supernovae.

  12. Radio-continuum observations of small, radially polarised Supernova Remnant J0519-6902 in the large Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Bozzetto L.M.

    2012-01-01

    Full Text Available We report on new Australian Telescope Compact Array (ATCA observations of SNR J0519-6902. The Supernova Remnant (SNR is small in size (~8 pc and exhibits a typical SNR spectrum with ? = -0.53±0.07, with steeper spectral indices towards the northern limb of the remnant. SNR J0519-6902 contains a low level of radially orientated polarisation at wavelengths of 3 and 6 cm, which is typical of younger SNRs. A fairly strong magnetic field was estimated to ~171µG. The remnant appears to be the result of a typical Type Ia supernova, sharing many properties with another small and young Type Ia LMC SNR, J0509-6731. [Projekat Ministarstva nauke Republike Srbije, br. 176005

  13. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    CERN Document Server

    Abdo, A A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; De Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Kndlseder, J; Kocian, M L; Komin*, N; Kühn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepé, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rain, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F W; Sánchez, D; Sander, A; Saz-Parkinson, P M; Schalk, T L; Sellerholm, A; Sgr, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M

    2008-01-01

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10-13 s s-1 . Its characteristic age of 104 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sources associated with star-forming regions and SNRs are such young pulsars.

  14. A Dynamical Model for the Evolution of a Pulsar Wind Nebula inside a Non-Radiative Supernova Remnant

    CERN Document Server

    Gelfand, Joseph D; Zhang, Weiqun

    2009-01-01

    A pulsar wind nebula inside a supernova remnant provides a unique insight into the properties of the central neutron star, the relativistic wind powered by its loss of rotational energy, its progenitor supernova, and the surrounding environment. In this paper, we present a new semi-analytic model for the evolution of such a pulsar wind nebula which couples the dynamical and radiative evolution of the pulsar wind nebulae, traces the evolution of the pulsar wind nebulae throughout the lifetime of the supernova remnant produced by the progenitor explosion, and predicts both the dynamical and radiative properties of the pulsar wind nebula during this period. We also discuss the expected evolution for a particular set of these parameters, and show it reproduces many puzzling features of known young and old pulsar wind nebulae. The model also predicts spectral features during different phases of its evolution detectable with new radio and gamma-ray observing facilities. Finally, this model has implications for dete...

  15. DYNAMICS OF X-RAY-EMITTING EJECTA IN THE OXYGEN-RICH SUPERNOVA REMNANT PUPPIS A REVEALED BY THE XMM-NEWTON REFLECTION GRATING SPECTROMETER

    International Nuclear Information System (INIS)

    Using the unprecedented spectral resolution of the reflection grating spectrometer (RGS) on board XMM-Newton, we reveal dynamics of X-ray-emitting ejecta in the oxygen-rich supernova remnant Puppis A. The RGS spectrum shows prominent K-shell lines, including O VII He? forbidden and resonance, O VIII Ly?, O VIII Ly?, and Ne IX He? resonance, from an ejecta knot positionally coincident with an optical oxygen-rich filament (the so-called ? filament) in the northeast of the remnant. We find that the line centroids are blueshifted by 1480 ± 140 ± 60 km s–1 (the first and second term errors are measurement and calibration uncertainties, respectively), which is fully consistent with that of the optical ? filament. Line broadening at 654 eV (corresponding to O VIII Ly?) is obtained to be ? ?10 cm–3 s. We show that the oxygen and electron temperatures as well as the ionization timescale can be reconciled if the ejecta knot was heated by a collisionless shock whose velocity is ?600-1200 km s–1 and was subsequently equilibrated due to Coulomb interactions. The RGS spectrum also shows relatively weak K-shell lines of another ejecta feature located near the northeastern edge of the remnant, from which we measure redward Doppler velocities of 650 ± 70 ± 60 km s–1.

  16. Instabilities and the adiabatic and isothermal blast wave models for supernova remnants

    International Nuclear Information System (INIS)

    Isenberg as well as lerche and Vasyliunas proposed the existence of an instability to radial perturbations in adiabatic and isothermal models of self-similar supernova blast waves. Their derivations fail to impose the physical conservation laws at the shock (i.e., the Rankine-Hugoniot jump conditions) as boundary conditions, and their claim of an instability is unsubstantiated. Although as analytic demonstration of the stability of the adiabatic self-similar solution does not presently exist, the cumulative result of three decades of gas dynamic experimentation and numerical simulation provides unmistakable evidence for the stabilty of self-similar blast waves

  17. Supernova Remnants as a Probe of Dust Grains in the Interstellar Medium

    CERN Document Server

    Williams, Brian J

    2010-01-01

    Interstellar dust grains play a crucial role in the evolution of the galactic interstellar medium (ISM). Despite its importance, however, dust remains poorly understood in terms of its origin, composition, and abundance throughout the universe. Supernova remnants (SNRs) provide a laboratory for studying the evolution of dust grains, as they are one of the only environments in the universe where it is possible to observe grains being both created and destroyed. SNRs exhibit collisionally heated dust, allowing dust to serve as a diagnostic both for grain physics and for the plasma conditions in the SNR. I present theoretical models of collisionally heated dust which calculate grain emission as well as destruction rates. In these models, I incorporate physics such as nonthermal sputtering caused by grain motions through the gas, a more realistic approach to sputtering for small grains, and arbitrary grain compositions porous and composite grains. I apply these models to infrared and X-ray observations of Kepler'...

  18. Interstellar medium regulated by supernova remnants and bursts of star formation

    Energy Technology Data Exchange (ETDEWEB)

    Ikeuchi, S.; Habe, A.; Tanaka, Y.D.

    1984-04-15

    The time variation of the interstellar medium regulated by supernova remnants is studied by considering the interchange processes among six components: a warm gas, a general ambient gas, a hot gas, small clouds, molecular clouds and giant molecular clouds. Two interesting results are found. One is that the interstellar medium does not always attain a steady state such as a two- or three-phase model, but may exhibit a cyclic phase-change like a limit cycle or go to a runaway state. The other is that bursts of star formation from molecular clouds are expected if the gravitational instability of a cloud ensemble is considered. These results lead to a new picture of the evolution and structure of galaxies.

  19. C IV Emission-line Detection of the Supernova Remnant RCW 114

    CERN Document Server

    Kim, I -J; Seon, K -I; Han, W; Edelstein, J

    2009-01-01

    We report the detection of the C IV 1548, 1551 emission line in the region of the RCW 114 nebula using the FIMS/SPEAR data. The observed C IV line intensity indicates that RCW 114 is much closer to us than WR 90, a Wolf-Rayet star that was thought to be associated with RCW 114 in some of the previous studies. We also found the existence of a small H I bubble centered on WR 90, with a different local standard of rest velocity range from that of the large H I bubble which was identified previously as related to RCW 114. These findings imply that the RCW 114 nebula is an old supernova remnant which is not associated with WR 90. Additionally, the global morphologies of the C IV, H-alpha, and H I emissions show that RCW 114 has evolved in a non-uniform interstellar medium.

  20. G332.5-5.6, a new Galactic supernova remnant

    CERN Document Server

    Reynoso, E M

    2006-01-01

    We present radio observations of the source G332.5-5.6, a candidate supernova remnant (SNR). Observations have been performed with the Australia Telescope Compact Array (ATCA) at two frequencies, at 1.4 and 2.4 GHz. Our results confirm that G332.5-5.6 is an SNR, with a spectral index equal to -0.7 +/- 0.2 for the whole source and an average fractional polarization of ~35% at 2.4 GHz. The central component is coincident with extended X-ray emission and the distance to the SNR is estimated to be ~3.4 kpc. Based on its radio and X-ray morphology, this SNR should be classified as a composite, and we suggest that it belongs to a trident-shaped subclass like G291.0-0.1.

  1. G332.5-5.6, a new Galactic supernova remnant

    Science.gov (United States)

    Reynoso, E. M.; Green, A. J.

    2007-02-01

    We present radio observations of the source G332.5-5.6, a candidate supernova remnant (SNR). Observations have been performed with the Australia Telescope Compact Array (ATCA) at two frequencies, 1.4 and 2.4 GHz. Our results confirm that G332.5-5.6 is an SNR, with a spectral index ? = -0.7 +/- 0.2 for the whole source and an average fractional polarization of ~35per cent at 2.4 GHz. The central component is coincident with extended X-ray emission, and the distance to the SNR is estimated to be ~3.4 kpc. Based on its radio and X-ray morphology, this SNR should be classified as a composite, and we suggest that it belongs to a trident-shaped subclass like G291.0-0.1.

  2. Spectral and morphological analysis of the remnant of Supernova 1987A with ALMA & ATCA

    CERN Document Server

    Zanardo, Giovanna; Indebetouw, Remy; Chevalier, Roger A; Matsuura, Mikako; Gaensler, Bryan M; Barlow, Michael J; Fransson, Claes; Manchester, Richard N; Baes, Maarten; Kamenetzky, Julia R; Lakicevic, Masha; Lundqvist, Peter; Marcaide, Jon M; Marti-Vidal, Ivan; Meixner, Margaret; Ng, C -Y; Park, Sangwook; Sonneborn, George; Spyromilio, Jason; van Loon, Jacco Th

    2014-01-01

    We present a comprehensive spectral and morphological analysis of the remnant of Supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz ($\\lambda$ 3.2 mm to 450 $\\mu$m), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component ($S_{\

  3. A Study of Optical Observing Techniques for Extra-Galactic Supernova Remnants: Case of NGC 300

    CERN Document Server

    Millar, William C; Filipovic, Miroslav D

    2012-01-01

    We present the results of a study of observational and identification techniques used for surveys and spectroscopy of candidate supernova remnants (SNRs) in the Sculptor Group galaxy NGC 300. The goal of this study was to investigate the reliability of using [Sii]/Halpha > 0.4 in optical SNR surveys and spectra as an identifying feature of extra-galactic SNRs (egSNRs) and also to investigate the effectiveness of the observing techniques (which are hampered by seeing conditions and telescope pointing errors) using this criterion in egSNR surveys and spectrographs. This study is based on original observations of these objects and archival data obtained from the Hubble Space Telescope which contained images of some of the candidate SNRs in NGC 300. We found that the reliability of spectral techniques may be questionable and very high-resolution images may be needed to confirm a valid identification of some egSNRs.

  4. Detection of the Characteristic Pion-Decay Signature in Supernova Remnants

    CERN Document Server

    :,; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Busetto, G; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chaves, R C G; Chekhtman, A; Cheung, C C; Chiang, J; Chiaro, G; Cillis, A N; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Falletti, L; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M -H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Hewitt, J; Hill, A B; Hughes, R E; Jackson, M S; Jogler, T; Jóhannesson, G; Johnson, A S; Kamae, T; Kataoka, J; Katsuta, J; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Madejski, G M; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mignani, R P; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Romoli, C; Sánchez-Conde, M; Schulz, A; Sgrò, C; Simeon, P E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Stecker, F W; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Thorsett, S E; Tibaldo, L; Tibolla, O; Tinivella, M; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Werner, M; Winer, B L; Wood, K S; Wood, M; Yamazaki, R; Yang, Z; Zimmer, S; 10.1126/science.1231160

    2013-01-01

    Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.

  5. A Neutron Star with a Carbon Atmosphere in the Cassiopeia A Supernova Remnant

    CERN Document Server

    Ho, Wynn C G

    2009-01-01

    The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young (~330-year-old) neutron star.

  6. TOWARD UNDERSTANDING THE COSMIC-RAY ACCELERATION AT YOUNG SUPERNOVA REMNANTS INTERACTING WITH INTERSTELLAR CLOUDS: POSSIBLE APPLICATIONS TO RX J1713.7-3946

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tsuyoshi; Yamazaki, Ryo [Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Chuou-ku, Sagamihara 252-5258 (Japan); Inutsuka, Shu-ichiro; Fukui, Yasuo, E-mail: inouety@phys.aoyama.ac.jp [Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2012-01-01

    Using three-dimensional magnetohydrodynamic simulations, we investigate general properties of a blast wave shock interacting with interstellar clouds. The pre-shock cloudy medium is generated as a natural consequence of the thermal instability that simulates realistic clumpy interstellar clouds and their diffuse surrounding. The shock wave that sweeps the cloudy medium generates a turbulent shell through the vorticity generations that are induced by shock-cloud interactions. In the turbulent shell, the magnetic field is amplified as a result of turbulent dynamo action. The energy density of the amplified magnetic field can locally grow comparable to the thermal energy density, particularly at the transition layers between clouds and the diffuse surrounding. In the case of a young supernova remnant (SNR) with a shock velocity {approx}> 10{sup 3} km s{sup -1}, the corresponding strength of the magnetic field is approximately 1 mG. The propagation speed of the shock wave is significantly stalled in the clouds because of the high density, while the shock maintains a high velocity in the diffuse surrounding. In addition, when the shock wave hits the clouds, reflection shock waves are generated that propagate back into the shocked shell. From these simulation results, many observational characteristics of the young SNR RX J1713.7-3946 that is suggested to be interacting with molecular clouds can be explained as follows. The reflection shocks can accelerate particles in the turbulent downstream region where the magnetic field strength reaches 1 mG, which causes short-time variability of synchrotron X-rays. Since the shock velocity is stalled locally in the clouds, the temperature in the shocked cloud is suppressed far below 1 keV. Thus, thermal X-ray line emission would be faint even if the SNR is interacting with molecular clouds. We also find that the photon index of the {pi}{sup 0}-decay gamma rays generated by cosmic-ray protons can be 1.5 (corresponding energy flux is {nu}F{sub {nu}}{proportional_to}{nu}{sup 0.5}) because the penetration depth of high-energy particles into the clumpy clouds depends on their energy. This suggests that, if we rely only on the spectral study, the hadronic gamma-ray emission is indistinguishable from the leptonic inverse Compton emission. We propose that the spatial correlation of the gamma-ray, X-ray, and CO line-emission regions can be conclusively used to understand the origin of gamma rays from RX J1713.7-3946.

  7. Prediction of the diffuse neutrino flux from cosmic ray interactions near supernova remnants

    Science.gov (United States)

    Mandelartz, Matthias; Becker Tjus, Julia

    2015-05-01

    In this paper, we present high-energy neutrino spectra from 21 Galactic supernova remnants (SNRs), derived from gamma-ray measurements in the GeV-TeV range. We find that only the strongest sources, i.e. G40.5-0.5 in the north and Vela Junior in the south could be detected as single point sources by IceCube or KM3NeT, respectively. For the first time, it is also possible to derive a diffuse signal by applying the observed correlation between gamma-ray emission and radio signal. Radio data from 234 supernova remnants listed in Green's catalog are used to show that the total diffuse neutrino flux is approximately a factor of 2.5 higher compared to the sources that are resolved so far. We show that the signal at above 10 TeV energies can actually become comparable to the diffuse neutrino flux component from interactions in the interstellar medium. Recently, the IceCube collaboration announced the detection of a first diffuse signal of astrophysical high-energy neutrinos. Directional information cannot unambiguously reveal the nature of the sources at this point due to low statistics. A number of events come from close to the Galactic center and one of the main questions is whether at least a part of the signal can be of Galactic nature. In this paper, we show that the diffuse flux from well-resolved SNRs is at least a factor of 20 below the observed flux.

  8. Numerical simulations of diffusive shock acceleration in SNRs

    CERN Document Server

    Zirakashvili, V N

    2011-01-01

    A new numerical model of the nonlinear diffusive shock acceleration is presented. It is used for modeling of particle acceleration in supernova remnants. The model contains coupled spherically symmetric hydrodynamic equations and the transport equations for energetic protons, ions and electrons. The forward and reverse shocks are included in the consideration. The spectra of cosmic rays released into interstellar medium from a supernova remnant are determined. The role of the reverse shock in the production of CR ions and positrons is discussed.

  9. Discovery of a VHE gamma-ray source coincident with the supernova remnant CTB 37A

    CERN Document Server

    Aharonian, F; Barresde Almeida, U; Bazer-Bachi, A R; Behera, B; Beilicke, M; Benbow, W; Bernlöhr, K; Boisson, C; Borrel, V; Braun, I; Brion, E; Brucker, J; Buhler, R; Bulik, T; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Chaves, R; Chounet, L M; Clapson, A C; Coignet, G; Cornils, R; Costamante, L; Dalton, M; Degrange, B; Dickinson, H J; Djannati-Ata, A; Domainko, W; O'Connor-Drury, L; Dubois, F; Dubus, G; Dyks, J; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Funk, S; Fuling, M; Gabici, S; Gallant, Y A; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; De Jager, O C; Jung, I; Katarzynski, K; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khelifi, B; Keogh, D; Komin, Nu; Kosack, K; Lamanna, G; Latham, I J; Lemoine-Goumard, M; Lenain, J P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, D; McComb, T J L; Moderski, R; Moulin, E; Nakajima, H; Naumann-Godo, M; De Naurois, Mathieu; Nedbal, D; Nekrassov, D; Nolan, S J; Ohm, S; Olive, J P; de Ona Wilhelmi, E; Orford, K J; Osborne, J L; Ostrowski, M; Panter, M; Pedaletti, G; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, Andreas G; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, O; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Ruppel, J; Sahakian, V V; Santangelo, A; Schlickeiser, R; Schock, F M; Schroder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Skilton, J L; Sol, H; Spangler, D; Stawarz, L; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Tibolla, O; Van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2008-01-01

    The supernova remnant (SNR) complex CTB 37 is an interesting candidate for observations with Very High Energy (VHE) gamma-ray telescopes such as H.E.S.S. In this region, three SNRs are seen. One of them is potentially associated with several molecular clouds, a circumstance that can be used to probe the acceleration of hadronic cosmic rays. This region was observed with the H.E.S.S. Cherenkov telescopes and the data were analyzed with standard H.E.S.S. procedures. Recent X-ray observations with Chandra and XMM-Newton were used to search for X-ray counterparts. The discovery of a new VHE gamma-ray source HESS J1714-385 coincident with the remnant CTB 37A is reported. The energy spectrum is well described by a power-law with a photon index of Gamma =2.30pm0.13 and a differential flux at 1 TeV of Phi_0 = (8.7 pm 1.0_{stat} pm 1.8_{sys})x10^{-13}cm^{-2}s^{-1}TeV^{-1}. The integrated flux above 1 TeV is equivalent to 3% of the flux of the Crab nebula above the same energy. This VHE gamma-ray source is a counterpar...

  10. The X-ray Line Emission from the Supernova Remnant W49B

    CERN Document Server

    Hwang, U; Hughes, J P; Hwang, Una; Petre, Robert; Hughes, John P.

    1999-01-01

    The Galactic supernova remnant W49B has one of the most impressive X-ray emission line spectra obtained with the Advanced Satellite for Cosmology and Astronomy (ASCA). We use both plasma line diagnostics and broadband model fits to show that the Si and S emission lines require multiple spectral components. The spectral data do not necessarily require individual elements to be spatially stratified, as suggested by earlier work, although when ASCA line images are considered, it is possible that Fe is stratified with respect to Si and S. Most of the X-ray emitting gas is from ejecta, based on the element abundances required, but is surprisingly close to being in collisional ionization equilibrium. A high ionization age implies a high internal density in a young remnant. The fitted emission measure for W49B indicates a minimum density of 2 cm^-3, with the true density likely to be significantly higher. W49B probably had a Type Ia progenitor, based on the relative element abundances, although a low-mass Type II pr...

  11. Accounting for the Foreground Contribution to the Dust Emission towards Kepler's Supernova Remnant

    CERN Document Server

    Gomez, H L; Ivison, R; Reynoso, E M; Thompson, M A; Sibthorpe, B; Eales, S A; DeLaney, T M; Maddox, S; Isaak, K

    2009-01-01

    Whether or not supernovae contribute significantly to the overall dust budget is a controversial subject. Submillimetre (submm) observations, sensitive to cold dust, have shown an excess at 450 and 850 microns in young remnants Cassiopeia A (Cas A) and Kepler. Some of the submm emission from Cas A has been shown to be contaminated by unrelated material along the line of sight. In this paper we explore the emission from material towards Kepler using submm continuum imaging and spectroscopic observations of atomic and molecular gas, via HI, 12CO (J=2-1) and 13CO (J=2-1). We detect weak CO emission (peak TA* = 0.2-1K, 1-2km/s fwhm) from diffuse, optically thin gas at the locations of some of the submm clumps. The contribution to the submm emission from foreground molecular and atomic clouds is negligible. The revised dust mass for Kepler's remnant is 0.1--1.2 solar masses, about half of the quoted values in the original study by Morgan et al. (2003), but still sufficient to explain the origin of dust at high red...

  12. DISCOVERY OF TeV GAMMA-RAY EMISSION FROM TYCHO'S SUPERNOVA REMNANT

    International Nuclear Information System (INIS)

    We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's SNR. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at 00h25m27.s0, + 64010'50'' (J2000). The TeV photon spectrum measured by VERITAS can be described with a power law dN/dE = C(E/3.42 TeV)-? with ? = 1.95 ± 0.51stat ± 0.30sys and C = (1.55 ± 0.43stat ± 0.47sys) x 10-14 cm-2 s-1 TeV-1. The integral flux above 1 TeV corresponds to ?0.9% of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models that can describe the data. The lowest magnetic field allowed in these models is ?80 ?G, which may be interpreted as evidence for magnetic field amplification.

  13. Chandra and XMM Observations of the Composite Supernova Remnant G327.1-1.1

    CERN Document Server

    Temim, Tea; Gaensler, B M; Hughes, John P; van der Swaluw, Eric

    2008-01-01

    We present new X-ray imaging and spectroscopy of a composite supernova remnant G327.1-1.1 using the Chandra and XMM-Newton X-ray observatories. G327.1-1.1 has an unusual morphology consisting of a symmetric radio shell and an off center nonthermal component that indicates the presence of a pulsar wind nebula (PWN). Radio observations show a narrow finger of emission extending from the PWN structure towards the northwest. X-ray studies with ASCA, ROSAT, and BeppoSAX revealed elongated extended emission and a compact source at the tip of the finger that may be coincident with the actual pulsar. The high resolution Chandra observations provide new insight into the structure of the inner region of the remnant. The images show a compact source embedded in a cometary structure, from which a trail of X-ray emission extends in the southeast direction. The Chandra images also reveal two prong-like structures that appear to originate from the vicinity of the compact source and extend into a large bubble that is oriente...

  14. NONTHERMAL EMISSION FROM MIDDLE-AGED SUPERNOVA REMNANTS INTERACTING WITH MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Supernova remnants (SNRs) interacting with dense molecular clouds (MCs) are proven to be bright ?-ray emitters by recent observations in the GeV-TeV band. We theoretically investigate the multiband radiative properties of the four middle-aged SNRs IC443, W51C, W28, and W44 with a time-dependent injection model. In the model, part of the SNR shell transports into a dense MC, with the other part of the shell evolving in a relatively tenuous interstellar medium. We find a broken power law with a break energy of ?3-40 GeV that must be imposed to reproduce the observed multiwavelength spectra for the four remnants. The results indicate that the observed ?-ray spectra can be reproduced as a p-p interaction of the high-energy protons injected by the shell interacting with the MC with the dense matter, whereas the radio emission is produced via synchrotron radiation of the injected electrons from the other part of the shell for the four middle-aged SNRs.

  15. Radio-continuum emission from the young galactic supernova remnant G1.9+0.3

    Directory of Open Access Journals (Sweden)

    de Horta A.Y.

    2014-01-01

    Full Text Available We present an analysis of a new Australia Telescope Compact Array (ATCA radio-continuum observation of supernova remnant (SNR G1.9+0.3, which at an age of ~181±25 years is the youngest known in the Galaxy. We analysed all available radio-continuum observations at 6-cm from the ATCA and Very Large Array. Using this data we estimate an expansion rate for G1.9+0.3 of 0.563%±0.078% per year between 1984 and 2009. We note that in the 1980's G1.9+0.3 expanded somewhat slower (0.484% per year than more recently (0.641% per year. We estimate that the average spectral index between 20-cm and 6-cm, across the entire SNR is ?={0.72±0.26 which is typical for younger SNRs. At 6-cm, we detect an average of 6% fractionally polarised radio emission with a peak of 17%§3%. The polarised emission follows the contours of the strongest of X-ray emission. Using the new equipartition formula we estimate a magnetic field strength of B?273?G, which to date, is one of the highest magnetic field strength found for any SNR and consistent with G1.9+0.3 being a very young remnant.

  16. A New $\\Sigma-D$ Relation and Its Application to the Galactic Supernova Remnant Distribution

    CERN Document Server

    Case, G L; Case, Gary L.; Bhattacharya, Dipen

    1998-01-01

    Technological advances in radio telescopes and X-ray instruments over the last 20 years have greatly increased the number of known supernova remnants (SNRs) and led to a better determination of their properties. In particular, more SNRs now have reasonably determined distances. However, many of these distances were determined kinematically using old rotation curves (based on $R_{\\sun} = 10$ kpc and $V_{\\sun} = 250$ km/s). A more modern rotation curve (based on $R_{\\sun} = 8.5$ kpc and $V_{\\sun} = 220$ km/s) is used to verify or recalculate the distances to these remnants. We use a sample of 36 shell SNRs (37 including Cas A) with known distances to derive a new radio surface brightness-to-diameter ($\\Sigma-D$) relation. The slopes derived here ($\\beta = -2.64$ including Cas A, $\\beta = -2.38$ without Cas A) are significantly flatter than those derived in previous studies. An independent test of the accuracy of the $\\Sigma-D$ relation was performed by using the extragalactic SNRs in the Large and Small Magella...

  17. The clearing of dust by a possible supernova remnant in Lupus

    Science.gov (United States)

    Gahm, G. F.; Gebeyehu, M.; Lindgren, M.; Magnusson, P.; Modigh, P.; Nordh, H. L.

    1990-02-01

    The existence is reported of a void, 4.5 deg x 3 deg, in the 100 micron emission from dust in a region in Lupus observed by IRAS. The void is surrounded by a ring of enhanced emission and is coincident both in position and shape with an extended X-ray source suggested by Riegler et al. (1980) to be a 7000-10,000 yr old supernova remnant with unusual properties. This study renders support to this hypothesis and also to an estimated distance of a few hundred parsec to the object. The star formation regions in Lupus are unrelated to this feature. Attention is drawn to a more extended structure in the intensity contours of the 100 micron emission and also to filaments of faint visual light and to clouds of high velocity neutral hydrogen in the area. The remnant appears to be expanding in the center of a larger bubble with a radius of 7 deg the origin of this feature is discussed.

  18. Supernova Remnants Associated with Molecular Clouds in the Large Magellanic Cloud

    CERN Document Server

    Banas, K R; Bronfman, L; Nyman, L A A; Banas, Kenneth R.; Hughes, John P.

    1996-01-01

    We used the Swedish-ESO Submillimeter Telescope (SEST) to search for CO emission associated with three supernova remnants (SNRs) in the Large Magellanic Cloud: N49, N132D, and N23. Observations were carried out in the J=2-1 rotational transition of CO (230.5 GHz) where the half power beamwidth of the SEST is 23". Molecular clouds were discovered near N49 and N132D; no CO emission was discovered in the region we mapped near N23. The N49 cloud has a peak line temperature of 0.75 K, spatial scale of ~7 pc and virial mass of ~30,000 solar masses. The N132D cloud is brighter with a peak temperature of 5 K; it is also larger ~22 pc and considerably more massive 200,000 solar masses. The velocities derived for the clouds near N49 and N132D, +286.0 km/s and +264.0 km/s, agree well with the previously known velocities of the associated SNRs: +286 km/s and +268 km/s, respectively. ROSAT X-ray images show that the ambient density into which the remnants are expanding appears to be significantly increased in the directio...

  19. Late-time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    CERN Document Server

    Temim, Tea; Kolb, Christopher; Blondin, John; Hughes, John P; Bucciantini, Niccolo

    2015-01-01

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock (RS) that can occur as a result of a density gradient in the ambient medium and/or a moving pulsar that displaces the PWN from the center ...

  20. A Systematic Study of Evolved Supernova Remnants in the Large and Small Magellanic Clouds with Suzaku

    CERN Document Server

    Takeuchi, Yoko; Tamagawa, Toru

    2015-01-01

    Typing the origin (i.e., Type Ia or core-collapse) of supernova remnants (SNRs) is crucial to determine the rates of supernova (SN) explosions in a galaxy, which is a key to understand its recent chemical evolution. However, evolved SNRs in the so-called Sedov phase are dominated by the swept-up interstellar medium (ISM), making it difficult to determine their ejecta composition and thus SN type. Here we present a systematic X-ray study of nine evolved SNRs in the Magellanic Clouds, DEM L238, DEM L249, 0534-69.9, 0548-70.4, B0532-71.0, B0532-67.5, 0103-72.6, 0049-73.6, and 0104-72.3, using archival data of the Suzaku satellite. Although Suzaku does not spatially resolve the SN ejecta from the swept-up ISM due to the limited angular resolution, its excellent energy resolution has enabled clear separation of emission lines in the soft X-ray band. This leads to the finding that the `spatially-integrated' spectra of the evolved (~10^4 yr) SNRs are still significantly contributed by emission from the ejecta at the...

  1. Evidence of hadronic interaction in Tycho Supernova Remnant using Fermi-LAT data

    International Nuclear Information System (INIS)

    The Fermi Large Area Telescope (LAT) has observed Tycho Supernova Remnant in the MeV-GeV energy range. The spectrum has been studied using the first three years of data and new data are being collected. We present a multiwavelength model of the observed spectrum from radio to TeV energy range, based on the hypothesis of hadronic origin of ?-rays. As described by the Fermi acceleration theory, a single proton population was considered, modeled with a simple power-law in momentum. The photon emissivity is computed following Kamae et al (2006) [T. Kamae, et al., ApJ 647 (2006) 692]. The leptonic component is also taken into account according to Giordano et al. (2012) [F. Giordano, et al., ApJ 744 (2012) L2] prescriptions and it turns out to be negligible with respect to the hadronic one. The model returns a spectral index of 2.23(±0.05) and an acceleration efficiency of 5% of the total kinetic energy expelled in Supernova explosion and it may provide a hint of the acceleration processes in SNRs up to energies close to the knee of cosmic ray spectrum. This work shows that experimental data can be easily explained with a simple model, representing a good test for the acceleration theory

  2. Discovery of Recombining Plasma in the Supernova Remnant 3C 391

    CERN Document Server

    Sato, Tamotsu; Takahashi, Tadayuki; Odaka, Hirokazu; Nakashima, Shinya

    2014-01-01

    Recent X-ray study of middle-aged supernova remnants (SNRs) reveals strong radiative recombination continua (RRCs) associated with overionized plasmas, of which the origin still remains uncertain. We report our discovery of an RRC in the middle-aged SNR 3C 391. If the X-ray spectrum is fitted with a two-temperature plasma model in collisional ionization equilibrium (CIE), residuals of Si XIV Ly alpha line at 2.006 keV, S XVI Ly alpha line at 2.623 keV and the edge of RRC of Si XIII at 2.666 keV are found. The X-ray spectrum is better described by a composite model consisting of a CIE plasma and a recombining plasma (RP). The abundance pattern suggests that the RP is associated to the ejecta from a core-collapse supernova with a progenitor star of 15 solar mass. There is no significant difference of the recombining plasma parameters between the southeast region and the northwest region surrounded by dense molecular clouds. We also find a hint of Fe I K alpha line at 6.4 keV (~2.4 sigma detection) from the sout...

  3. Spectra of the HB 21 supernova remnant: Evidence of sprectrum flattening at the low frequencies

    Scientific Electronic Library Online (English)

    D., Borka; V., Borka Jovanovi& #263; ; D., Uro& #353; evi& #263; .

    2012-04-01

    Full Text Available Utilizamos observaciones de la emisión en radiocontinuo a 1420, 820, 408, 34.5 y 22 Mhz con objeto de estimar las temperaturas de brillo medias en cinco frecuencias para el remanente de supernova HB 21. También presentamos el índice espectral medio de Hb 21. Estimamos los espectros de HB 21 mediante [...] diagramas de temperatura media versus frecuencia, para 1420, 820, 408, 34.5 y 22 Mhz. Presentamos asimismo diagramas T - T para tres pares de frecuencias, entre 142034.5, 1420-22, 34.5-22 MHz. Notamos que los índices espectrales son menores para frecuencias por debajo de 408 Mhz. Probablemente esto se debe a la absorción por plasma térmico a bajas frecuencias. Abstract in english We use observations of the continuum radio emission at 1420, 820, 408, 34.5 and 22 MHz to estimate the mean brightness temperatures of the HB 21 supernova remnant (SNR) at five frequencies. We also present mean spectral index of HB 21. The spectra of HB 21 are estimated from mean temperatures versus [...] frequency plots for 1420, 820, 408, 34.5 and 22 MHz. We also present T - T plots of three frequency pairs: between 1420-34.5, 1420-22, 34.5-22 MHz. We notice flatter spectral indices at frequencies below 408 MHz. Probably this is due to the absorption by thermal plasma at low frequencies.

  4. A multi-wavelength study of the radio source G296.7-0.9: confirmation as a Galactic supernova remnant

    CERN Document Server

    Robbins, W J; Murphy, T; Reeves, S; Green, A J

    2011-01-01

    We present a multi-wavelength study of the radio source G296.7-0.9. This source has a bilateral radio morphology, a radio spectral index of -0.5 +/- 0.1, sparse patches of linear polarisation, and thermal X-rays with a bright arc near the radio boundary. Considering these characteristics, we conclude that G296.7-0.9 is a supernova remnant (SNR). The age and morphology of the SNR in the context of its environment suggest that the source is co-located with an HII region, and that portions of the shock front have broken out into a lower density medium. We see no evidence for a neutron star or pulsar wind nebula associated with SNR G296.7-0.9.

  5. Dense, Fe-rich Ejecta in Supernova Remnants DEM L238 and DEM L249: A New Class of Type Ia Supernova?

    OpenAIRE

    Borkowski, K. J.; Hendrick, S. P.; Reynolds, S. P

    2006-01-01

    We present observations of two LMC supernova remnants (SNRs), DEM L238 and DEM L249, with the Chandra and XMM-Newton X-ray satellites. Bright central emission, surrounded by a faint shell, is present in both remnants. The central emission has an entirely thermal spectrum dominated by strong Fe L-shell lines, with the deduced Fe abundance in excess of solar and not consistent with the LMC abundance. This Fe overabundance leads to the conclusion that DEM L238 and DEM L249 are ...

  6. Collisionless Shocks and TeV Neutrinos before Supernova Shock Breakout from an Optically Thick Wind

    CERN Document Server

    Giacinti, G

    2015-01-01

    During a supernova explosion, a radiation-dominated shock (RDS) travels through its progenitor. A collisionless shock (CS) is usually assumed to replace it during shock breakout (SB). We demonstrate here that for some realistic progenitors enshrouded in optically thick winds, such as possibly SN 2008D, a CS forms deep inside the wind, soon after the RDS leaves the core, and therefore significantly before SB. The RDS does not survive the transition from the core to the thick wind when the wind close to the core is not sufficiently dense to compensate for the $r^{-2}$ dilution of photons due to shock curvature. This typically happens when the shock velocity is $\\lesssim 0.1 {\\rm c} \\, (\\frac{u_{\\rm w}}{10\\,{\\rm km/s}}) (\\frac{\\dot{M}}{5 \\cdot 10^{-4} \\, {\\rm M}_\\odot {\\rm /yr}})^{-1} (\\frac{r_\\ast}{10^{13}\\,{\\rm cm}})$, where $u_{\\rm w}$, $\\dot{M}$ and $r_\\ast$ are respectively the wind velocity, mass-loss rate and radius of the progenitor star. The radiative CS results in a hard spectrum of the photon flash at...

  7. On the Magnetic Field Evolution in shell-like Supernova Remnants

    Scientific Electronic Library Online (English)

    B, Vukotic; B, Arbutina; D, Uroševic.

    Full Text Available En este artículo aplicamos y discutimos un método para la determinación de la evolución del campo magnético en los remanentes de supernova (SNRs) a partir de la relación entre la luminosidad en radio a la frecuencia v y el diámetro (Lv - D). Asumimos que H evoluciona como H ? D-?, donde D es el diám [...] etro del remanente. El valor ? 1.2 se obtiene con la hipótesis de equipartición a partir de las ecuaciones del cálculo revisado de equipartición (REC) y usando la muestra de datos de la galaxia de brote estelar M82. Intentamos investigar si los remanentes de la supernova en M82 están en estado de equipartición o no, comparando la 6 empíricamente obtenida con el valor teórico esperado para equipartición. La diferencia entre el valor obtenido teóricamente para la equipartición con expansión adiabática (? = 1.5) y el valor empírico obtenido aquí se puede explicar principalmente como debido a efectos de selección en la sensibilidad, que tienden a aplanar la pendiente de la relación Lv - D para las muestras extragalácticas. Abstract in english In this paper we apply and discuss a method for the determination of the magnetic field (H) evolution in supernova remnants (SNRs) from radio luminosity at given frequency v to diameter (Lv - D) correlation. We assumed that H evolves as H ? D-?, where D is the diameter of the remnant. A value ? [...] border=0 width=20 height=15 src="../../../../../img/revistas/rmaa/v43n1/a2s1.jpg"> 1.2 is obtained under the equipartition assumption from the equations for revised equipartition calculation (REC) and by using the data sample from the nearby starburst galaxy M82. We try to investigate whether or not SNRs in M82 are in the equipartition state. This is done by comparison of our empirically obtained ?with the theoretical value expected for equipartition conditions. The inconsistency between the value obtained for equipartition conditions and adiabatic expansion (? = 1.5) and the value empirically obtained herein can be explained mainly by the influence of sensitivity selection effects which tend to flatten the slope of the Lv - D relations for extragalactic samples.

  8. Late-Time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    Science.gov (United States)

    Temim, Tea; Slane, Patrick; Kolb, Christopher; Blondin, John; Hughes, John P.; Bucciantini, Niccolo

    2015-01-01

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock(RS) that can occur as a result of a density gradient in the ambient medium and or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a approx. 17,000 yr old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar's motion. We also show that the RSPWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to gamma-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  9. Fermi-LAT Discovery of Extended Gamma-ray Emission in the Direction of Supernova Remnant W51C

    OpenAIRE

    Fermi LAT Collaboration

    2009-01-01

    The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant (~10^4 yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV ba...

  10. The hard X-ray view of the young supernova remnant G1.9+0.3

    DEFF Research Database (Denmark)

    Zoglauer, Andreas; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Christensen, Finn Erland; Craig, William W.; Fryer, Chris L.; Grefenstette, Brian W.; Harrison, Fiona A.; Hailey, Charles J.; Krivonos, Roman A.; Madsen, Kristin K.; Miyasaka, Hiromasa; Stern, Daniel; Zhang, William W.

    2015-01-01

    NuSTAR observed G1.9+0.3, the youngest known supernova remnant in the Milky Way, for 350 ks and detected emission up to ~30 keV. The remnant's X-ray morphology does not change significantly across the energy range from 3 to 20 keV. A combined fit between NuSTAR and Chandra shows that the spectrum steepens with energy. The spectral shape can be well fitted with synchrotron emission from a power-law electron energy distribution with an exponential cutoff with no additional features. It can also be...

  11. Exploring the Central Compact Object in the RX J0852.0-4622 Supernova Remnant with XMM-Newton

    OpenAIRE

    Becker, W.; Hui, C. Y.; Aschenbach, B; Iyudin, A.

    2006-01-01

    The properties of the presumably young galactic supernova remnant (SNR) RX J0852.0-4622, discovered by ROSAT, are still uncertain. The data concerning the distance to the SNR, its age, and the presence of a compact remnant remain controversial. We report the results of several XMM-Newton observations of CXOU J085201.4-461753, the central compact source in RX J0852.0-4622. The currently prefered interpretation of CXOU J085201.4-461753 being a neutron star is in line with our ...

  12. FAR-ULTRAVIOLET SPECTRAL IMAGES OF THE VELA SUPERNOVA REMNANT: SUPPLEMENTS AND COMPARISONS WITH OTHER WAVELENGTH IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il-Joong; Seon, Kwang-Il; Han, Wonyong [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Min, Kyoung-Wook [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Edelstein, Jerry, E-mail: ijkim@kasi.re.kr [Space Sciences Laboratory, University of California, Berkeley, CA 94702 (United States)

    2012-12-20

    We present the improved far-ultraviolet (FUV) emission-line images of the entire Vela supernova remnant (SNR) using newly processed Spectroscopy of Plasma Evolution from Astrophysical Radiation/Far-Ultraviolet Imaging Spectrograph (SPEAR/FIMS) data. The incomplete C III {lambda}977 and O VI {lambda}{lambda}1032, 1038 images presented in the previous study are updated to cover the whole region. The C IV {lambda}{lambda}1548, 1551 image with a higher resolution and new images at Si IV {lambda}{lambda}1394, 1403, O IV] {lambda}1404, He II {lambda}1640.5, and O III] {lambda}{lambda}1661, 1666 are also shown. Comparison of emission-line ratios for two enhanced FUV regions reveals that the FUV emissions of the east-enhanced FUV region may be affected by nonradiative shocks of another very young SNR, the Vela Jr. SNR (RX J0852.0-4622, G266.6-1.2). This result is the first FUV detection that is likely associated with the Vela Jr. SNR, supporting previous arguments that the Vela Jr. SNR is close to us. The comparison of the improved FUV images with soft X-ray images shows that an FUV filamentary feature forms the boundary of the northeast-southwest asymmetrical sections of the X-ray shell. The southwest FUV features are characterized as the region where the Vela SNR is interacting with slightly denser ambient medium within the dim X-ray southwest section. From a comparison with the H{alpha} image, we identify a ring-like H{alpha} feature overlapped with an extended hot X-ray feature of similar size and two local peaks of C IV emission. Their morphologies are expected when the H{alpha} ring is in direct contact with the near or far side of the Vela SNR.

  13. THE METAL-ENRICHED THERMAL COMPOSITE SUPERNOVA REMNANT KESTEVEN 41 (G337.8-0.1) IN A MOLECULAR ENVIRONMENT

    International Nuclear Information System (INIS)

    The physical nature of thermal composite supernova remnants (SNRs) remains controversial. We have revisited the archival XMM-Newton and Chandra data of the thermal composite SNR Kesteven 41 (Kes 41 or G337.8–0.1) and performed a millimeter observation toward this source in the 12CO, 13CO, and C18O lines. The X-ray emission, mainly concentrated toward the southwestern part of the SNR, is characterized by distinct S and Ar He-like lines in the spectra. The X-ray spectra can be fitted with an absorbed nonequilibrium ionization collisional plasma model at a temperature of 1.3-2.6 keV and an ionization timescale of 0.1-1.2 × 1012 cm–3 s. The metal species S and Ar are overabundant, with 1.2-2.7 and 1.3-3.8 solar abundances, respectively, which strongly indicate the presence of a substantial ejecta component in the X-ray-emitting plasma of this SNR. Kes 41 is found to be associated with a giant molecular cloud (MC) at a systemic local standard of rest velocity of –50 km s–1 and confined in a cavity delineated by a northern molecular shell, a western concave MC that features a discernible shell, and an H I cloud seen toward the southeast of the SNR. The birth of the SNR in a preexisting molecular cavity implies a mass of ? 18 M ? for the progenitor if it was not in a binary system. Thermal conduction and cloudlet evaporation seem to be feasible mechanisms to interpret the X-ray thermal composite morphology, and the scenario of gas reheating by the shock reflected from the cavity wall is quantitatively consistent with the observations. An updated list of thermal composite SNRs is also presented in this paper

  14. THE METAL-ENRICHED THERMAL COMPOSITE SUPERNOVA REMNANT KESTEVEN 41 (G337.8-0.1) IN A MOLECULAR ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Gao-Yuan; Chen, Yang; Zhou, Ping [Department of Astronomy, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China); Su, Yang [Purple Mountain Observatory, CAS, 2 West Beijing Road, Nanjing 210008 (China); Zhou, Xin [Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing 210093 (China); Pannuti, Thomas G. [Space Science Center, Department of Earth and Space Sciences, Morehead State University, 235 Martindale Drive, Morehead, KY 40351 (United States)

    2015-01-20

    The physical nature of thermal composite supernova remnants (SNRs) remains controversial. We have revisited the archival XMM-Newton and Chandra data of the thermal composite SNR Kesteven 41 (Kes 41 or G337.8–0.1) and performed a millimeter observation toward this source in the {sup 12}CO, {sup 13}CO, and C{sup 18}O lines. The X-ray emission, mainly concentrated toward the southwestern part of the SNR, is characterized by distinct S and Ar He-like lines in the spectra. The X-ray spectra can be fitted with an absorbed nonequilibrium ionization collisional plasma model at a temperature of 1.3-2.6 keV and an ionization timescale of 0.1-1.2 × 10{sup 12} cm{sup –3} s. The metal species S and Ar are overabundant, with 1.2-2.7 and 1.3-3.8 solar abundances, respectively, which strongly indicate the presence of a substantial ejecta component in the X-ray-emitting plasma of this SNR. Kes 41 is found to be associated with a giant molecular cloud (MC) at a systemic local standard of rest velocity of –50 km s{sup –1} and confined in a cavity delineated by a northern molecular shell, a western concave MC that features a discernible shell, and an H I cloud seen toward the southeast of the SNR. The birth of the SNR in a preexisting molecular cavity implies a mass of ? 18 M {sub ?} for the progenitor if it was not in a binary system. Thermal conduction and cloudlet evaporation seem to be feasible mechanisms to interpret the X-ray thermal composite morphology, and the scenario of gas reheating by the shock reflected from the cavity wall is quantitatively consistent with the observations. An updated list of thermal composite SNRs is also presented in this paper.

  15. The role of the diffusive protons in the $\\gamma$-ray emission of supernova remnant RX J1713.7-3946 --- a lepto-hadronic hybrid model

    CERN Document Server

    Zhang, Xiao

    2015-01-01

    RX~J1713.7-3946 is a prototype in the $\\gamma$-ray-bright supernova remnants (SNRs) and is in continuing debates on its hadronic versus leptonic origin of the $\\gamma$-ray emission. We explore the role played by the diffusive relativistic protons that escape from the SNR shock wave in the $\\gamma$-ray emission. On the assumption that the shock wave is still propagating in the low-density medium within the molecular cavity and has not come into contact with the cavity wall, we calculate the hadronic emission from the cavity wall bombarded by the diffusive protons as well as the leptonic emission from the SNR shock. We show that the broad-band observational data can be well explained by a lepto-hadronic hybrid model, in which the leptonic process governs the TeV $\\gamma$-rays and the hadronic emission component substantially contributes to the GeV $\\gamma$-ray and naturally compensates the underestimate of the GeV flux in leptonic model. In the calculation, we present a simplified algorithm for Li & Chen's ...

  16. Damping of supernova neutrino transitions in stochastic shock-wave density profiles

    OpenAIRE

    G. L. FogliU. of Bari & INFN, Bari; E. LisiU. of Bari & INFN, Bari; A. MirizziU. of Bari & INFN, Bari; D. MontaninoU. of Lecce & INFN, Lecce

    2006-01-01

    Supernova neutrino flavor transitions during the shock wave propagation are known to encode relevant information not only about the matter density profile but also about unknown neutrino properties, such as the mass hierarchy (normal or inverted) and the mixing angle theta_13. While previous studies have focussed on "deterministic" density profiles, we investigate the effect of possible stochastic matter density fluctuations in the wake of supernova shock waves. In particula...

  17. Spectral and morphological analysis of the remnant of supernova 1987A with ALMA and ATCA

    International Nuclear Information System (INIS)

    We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (? 3.2 mm to 450 ?m), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S ???–0.73) and the thermal component originating from dust grains at T ? 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields –0.4 ? ? ? –0.1 across the western regions, with ? ? 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.

  18. Spectral and morphological analysis of the remnant of supernova 1987A with ALMA and ATCA

    Energy Technology Data Exchange (ETDEWEB)

    Zanardo, Giovanna; Staveley-Smith, Lister [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, Crawley, WA 6009 (Australia); Indebetouw, Remy; Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Matsuura, Mikako; Barlow, Michael J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Gaensler, Bryan M. [Australian Research Council, Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Fransson, Claes; Lundqvist, Peter [Department of Astronomy, Oskar Klein Center, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Manchester, Richard N. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Kamenetzky, Julia R. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Laki?evi?, Maša [Institute for the Environment, Physical Sciences and Applied Mathematics, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Marcaide, Jon M. [Departamento de Astronomía, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Martí-Vidal, Ivan [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ng, C.-Y. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Park, Sangwook, E-mail: giovanna.zanardo@gmail.com [Department of Physics, University of Texas at Arlington, 108 Science Hall, Box 19059, Arlington, TX 76019 (United States); and others

    2014-12-01

    We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (? 3.2 mm to 450 ?m), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S {sub ?}??{sup –0.73}) and the thermal component originating from dust grains at T ? 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields –0.4 ? ? ? –0.1 across the western regions, with ? ? 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.

  19. The Galactic Supernova Remnant W49B Likely Originates from a Jet-Driven, Core-Collapse Explosion

    OpenAIRE

    Lopez, Laura A.; Ramirez-Ruiz, Enrico; Castro, Daniel; Pearson, Sarah

    2013-01-01

    We present results from a 220-ks observation of the galactic supernova remnant (SNR) W49B using the Advanced CCD Imaging Spectrometer (ACIS) on board the Chanrda X-ray Observatory. We exploit these data to perform detailed spatially-resolved spectroscopic analyses across the SNR with the aim to investigate the thermodynamic properties and explosive origin of W49B. We find substantial variation in the electron temperature and absorbing column toward W49B, and we show that the...

  20. Chandra Observations of A Galactic Supernova Remnant Vela Jr.: A New Sample of Thin Filaments Emitting Synchrotron X-Rays

    CERN Document Server

    Bamba, A; Hiraga, J S; Bamba, Aya; Yamazaki, Ryo; Hiraga, Junko S.

    2005-01-01

    A galactic supernova remnant (SNR) Vela Jr. (RX J0852.0$-$4622, G266.6$-$1.2) shows sharp filamentary structure on the north-western edge of the remnant in the hard X-ray band. The filaments are so smooth and located on the most outer side of the remnant. We measured the averaged scale width of the filaments ($w_u$ and $w_d$) with excellent spatial resolution of {\\it Chandra}, which are in the order of the size of the point spread function of {\\it Chandra} on the upstream side and 49.5 (36.0--88.8) arcsec on the downstream side, respectively. The spectra of the filaments are very hard and have no line-like structure, and were well reproduced with an absorbed power-law model with $\\Gamma = $2.67 (2.55--2.77), or a {\\tt SRCUT} model with $\

  1. X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and Magnetic Field amplification in Supernova Remnants

    CERN Document Server

    Butt, Yousaf; Katz, Boaz; Waxman, Eli

    2008-01-01

    For more than fifty years, it has been believed that cosmic ray (CR) nuclei are accelerated to high energies in the rapidly expanding shockwaves created by powerful supernova explosions. Yet observational proof of this conjecture is still lacking. Recently, Uchiyama and collaborators reported the detection of small-scale X-ray flares in one such supernova remnant, dubbed 'RX J1713-3946' (a.k.a. G347.3-0.5), which also emits very energetic, TeV (10^12 eV) range, gamma-rays. They contend that the variability of these X-ray 'hotspots' implies that the magnetic field in the remnant is about a hundred times larger than normally assumed; and this, they say, means that the detected TeV range photons were produced in energetic nuclear interactions, providing 'a strong argument for acceleration of protons and nuclei to energies of 1 PeV (10^15 eV) and beyond in young supernova remnants.' We point out here that the existing multiwavelength data on this object certainly do not support such conclusions. Though intriguing...

  2. HESS J1818-154, a new composite supernova remnant discovered in TeV gamma rays and X-rays

    CERN Document Server

    Abramowski, A; Benkhali, F Ait; Akhperjanian, A G; Angüner, E; Anton, G; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Bernlöhr, K; Birsin, E; Bissaldi, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Chalme-Calvet, R; Chaves, R C G; Cheesebrough, A; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; de Wilt, P; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Grondin, M -H; Grudzi?ska, M; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung, I; Kastendieck, M A; Katarzynski, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Klu?niak, W; Kneiske, T; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Moderski, R; Mohamed, M; Moulin, E; Murach, T; Naumann, C L; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Ohm, S; Wilhelmi, E de Ona; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Raue, M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Rob, L; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spengler, G; Spies, F; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Zabalza, V; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2013-01-01

    Composite supernova remnants (SNRs) constitute a small subclass of remnants of massive stellar explosions where non-thermal radiation is observed from both the expanding shell-like shock front and from a pulsar wind nebula (PWN) located inside of the SNR. These systems represent a unique evolutionary phase of SNRs where observations in the radio, X-ray and gamma-ray regimes allow the study of the co-evolution of both of these energetic phenomena. In this article, we report results from observations of the shell-type SNR G15.4+0.1 performed with the High Energy Stereoscopic System (H.E.S.S.) and XMM-Newton. A compact TeV gamma-ray source, HESSJ1818-154, located in the center and contained within the shell of G15.4+0.1 is detected by H.E.S.S. featuring a spectrum best represented by a power-law model with a spectral index of $-2.3 \\pm 0.3_{stat} \\pm 0.2_{sys}$ and an integral flux of F$(>0.42\\,\\mathrm{TeV}$)=($0.9 \\pm 0.3_{\\mathrm{stat}} \\pm 0.2_{\\mathrm{sys}}) \\times 10^{-12}$ cm$^{-2}$ s$^{-1}$. Furthermore, ...

  3. Gamma-ray emitting supernova remnants as the origin of Galactic cosmic rays?

    CERN Document Server

    Tjus, Julia Becker; Kroll, Mike; Nierstenhöfer, Nils

    2015-01-01

    The origin of cosmic rays is one of the long-standing mysteries in physics and astrophysics. Simple arguments suggest that a scenario of supernova remnants (SNRs) in the Milky Way as the dominant sources for the cosmic ray population below the knee could work: in a generic calculation, it can be shown that these objects can provide the energy budget necessary to explain the observed flux of cosmic rays. However, this argument is based on the assumption that all sources behave in the same way, i.e.\\ they all have the same energy budget, spectral behavior and maximum energy. In this paper, we investigate if a realistic population of SNRs is capable of producing the cosmic ray flux as it is observed below the knee. We use 21 SNRs that are well-studied from radio wavelengths up to gamma-ray energies. It could be shown previously (Mandelartz & Becker Tjus 2015) that the high-energy bump in the energy spectrum of these 21 sources can be dominated by hadronic emission. Here, gamma-rays are produced via $\\pi^{0}-...

  4. Chandra X-Ray Study of Galactic Supernova Remnant G299.2-2.9

    CERN Document Server

    Park, Sangwook; Hughes, John P; Mori, Koji; Burrows, David N; Garmire, Gordon P

    2007-01-01

    We report on observations of the Galactic supernova remnant (SNR) G299.2$-$2.9 with the {\\it Chandra X-Ray Observatory}. The high resolution images with {\\it Chandra} resolve the X-ray-bright knots, shell, and diffuse emission extending beyond the bright shell. Interior to the X-ray shell is faint diffuse emission occupying the central regions of the SNR. Spatially-resolved spectroscopy indicates a large foreground absorption ($N_{\\rm H}$ $\\sim$ 3.5 $\\times$ 10$^{21}$ cm$^{-2}$), which supports a relatively distant location ($d$ $\\sim$ 5 kpc) for the SNR. The blast wave is encountering a highly inhomogeneous ambient medium with the densities ranging over more than an order of magnitude ($n_0$ $\\sim$ 0.1 $-$ 4 cm$^{-3}$). Assuming the distance of $d$ $\\sim$ 5 kpc, we derive a Sedov age of $\\tau$ $\\sim$ 4500 yr and an explosion energy of $E_0$ $\\sim$ 1.6 $\\times$ 10$^{50}$ ergs. The ambient density structure and the overall morphology suggest that G299.2$-$2.9 may be a limb-brightened partial shell extending to...

  5. A GeV source in the direction of Supernova Remnant CTB 37B

    CERN Document Server

    Xin, Yu-Liang; Li, Xiang; Yuan, Qiang; Liu, Si-Ming; Wei, Da-Ming

    2015-01-01

    Supernova remnants (SNRs) are the most attractive candidates for the acceleration sites of Galactic cosmic rays. We report the detection of GeV $\\gamma$-ray emission with the Pass 8 events recorded by Fermi Large Area Telescope (Fermi-LAT) in the vicinity of the shell type SNR CTB 37B that is likely associated with the TeV $\\gamma-$ray source HESS J1713-381. The energy spectrum of CTB 37B is consistent with a power-law with an index of $1.89\\pm0.08$ in the energy range of $0.5-500$ GeV, and the measured flux connects smoothly with that of HESS J1713-381 at a few hundred GeV. No significant spatial extension and time variation are detected. The multi-wavelength data can be well fitted with either a leptonic model or a hadronic one. However, parameters of both models suggest more efficient particle acceleration than typical SNRs.

  6. A Systematic Survey for Broadened CO Emission Toward Galactic Supernova Remnants

    CERN Document Server

    Kilpatrick, Charles D; Rieke, George H

    2015-01-01

    We present molecular spectroscopy toward 50 Galactic supernova remnants (SNRs) taken at millimeter wavelengths in 12CO and 13CO J=2-1 with the Heinrich Hertz Submillimeter Telescope as part of a systematic survey for broad molecular line (BML) regions indicative of interactions with molecular clouds (MCs). These observations reveal BML regions toward nineteen SNRs, including nine newly identified BML regions associated with SNRs (G08.3-0.0, G09.9-0.8, G11.2-0.3, G12.2+0.3, G18.6-0.2, G23.6+0.3, 4C-04.71, G29.6+0.1, G32.4+0.1). The remaining ten SNRs with BML regions confirm previous evidence for MC interaction in most cases (G16.7+0.1, Kes 75, 3C 391, Kes 79, 3C 396, 3C 397, W49B, Cas A, IC 443), although we confirm that the BML region toward HB 3 is associated with the W3(OH) HII region, not the SNR. Based on the systemic velocity of each MC, molecular line diagnostics, and cloud morphology, we test whether these detections represent SNR-MC interactions. One of the targets (G54.1+0.3) had previous indication...

  7. Search for new supernova remnant shells in the Galactic plane with H.E.S.S

    CERN Document Server

    Pühlhofer, G; Capasso, M; Chaves, R C G; Deil, C; Djannati-Ataï, A; Donath, A; Eger, P; Gottschall, D; Laffon, H; Marandon, V; Oakes, L; Renaud, M; Sasaki, M; Terrier, R; Vink, J; Bamba, A

    2015-01-01

    Amongst the population of TeV gamma-ray sources detected with the High Energy Stereoscopic System (H.E.S.S.) in the Galactic plane, clearly identified supernova remnant (SNR) shells constitute a small but precious source class. TeV-selected SNRs are prime candidates for sources of efficient cosmic-ray acceleration. In this work, we present new SNR candidates that have been identified in the entire H.E.S.S. phase I data set of the Galactic plane recorded over the past ten years. Identification with a known SNR shell candidate was successful for one new source, HESS J1534-571. In other cases, TeV-only shell candidates are challenging to firmly identify as SNRs due to their lack of detected non-thermal emission in lower energy bands. We will discuss how these objects may present an important link between young and evolved SNRs, since their shell emission may be dominated by hadronic processes.

  8. An analysis of the X-ray emission from the supernova remnant 3C397

    CERN Document Server

    Chen, Y; Wang, Z R; Yin, Q F; Chen, Yang; Sun, Ming; Wang, Zhen-Ru

    1999-01-01

    The ASCA SIS and the ROSAT PSPC spectral data of the SNR 3C397 are analysed with a two-component non-equilibrium ionization model. Besides, the ASCA SIS0 and SIS1 spectra are also fitted simultaneously in an equilibrium case. The resulting values of the hydrogen column density yield a distance of $\\sim8\\kpc$ to 3C397. It is found that the hard X-ray emission, containing S and Fe K$\\alpha$ lines, arises primarily from the hot component, while most of the soft emission, composed mainly of Mg, Si, Fe L lines, and continuum, is produced by the cool component. The emission measures suggest that the remnant evolves in a cloudy medium and imply that the supernova progenitor might not be a massive early-type star. The cool component is approaching ionization equilibrium. The ages estimated from the ionization parameters and dynamics are all much greater than the previous determination. We restore the X-ray maps using the ASCA SIS data and compare them with the ROSAT HRI and the NRAO VLA Sky Survey (NVSS) 20 cm maps. ...

  9. Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1

    CERN Document Server

    ,

    2011-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) onboard the \\emph{Fermi} Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV--100 GeV can be described by a broken power-law function with a break of 2.4 $\\pm$ 0.6 (stat) $\\pm$ 1.2 (sys) GeV, and photon indices of 2.10 $\\pm$ 0.06 (stat) $\\pm$ 0.10 (sys) below the break and 2.70 $\\pm$ 0.12 (stat) $\\pm$ 0.14...

  10. Suzaku observation of supernova remnant G332.5-5.6

    Science.gov (United States)

    Zhu, H.; Tian, W. W.; Wu, D.

    2015-10-01

    We analyse the Suzaku X-ray Imaging Spectrometer data of the central region of supernova remnant G332.5-5.6. The X-ray data are well described by a single non-equilibrium ionization thermal model, vnei, with an absorbing hydrogen column density of 1.4^{+0.4}_{-0.1} × 1021 cm-2. The plasma is characterized by an electron temperature of 0.49^{+0.08}_{-0.06} keV with subsolar abundances for O (0.58^{+0.06}_{-0.05} solar value) and Fe (0.72^{+0.06}_{-0.05} solar value) and slightly overabundance for Mg (1.23^{+0.14}_{-0.14} solar value). It seems that the central X-ray emission originates from a projection effect or evaporation of residual clouds inside G332.5-5.6. We estimate a distance of 3.0 ± 0.8 kpc for G332.5-5.6 based on the extinction-distance relation. G332.5-5.6 has an age of 7-9 kyr.

  11. Spectral observation of the composite supernova remnant G 29.7-0.3

    International Nuclear Information System (INIS)

    The X-ray properties of the supernova remnant G 29.7 - 0.3 are discussed based on spectral data from the EXOSAT satellite. In the 2 to 10 keV range a featureless power-law spectrum is obtained, the best-fit parameters being: energy spectral index ?=-0.77, hydrogen column density on the line of sight Nsub(H)=2.3.1022 cm-2. The incident X-ray flux from the source is (3.6+-0.1) 10-11 erg cm-2s-1 in the 2 to 10 keV range corresponding to an intrinsic luminosity of about 2.1036 erg s-1 for a distance of 19 kpc. The source was not seen with the imaging instrument thus contraining the hydrogen column density to be Nsub(H)=(3.3+-0.3) 1022 cm-2 and the energy spectral index ?=1.0+-0.15. This new observation is consistent with emission by a synchrotron nebula presumably fed by an active pulsar. An upper limit of approximately 1.5% for the pulsed fraction in the range of periods 32 ms to 104s has been obtained

  12. Recombining plasma in the gamma-ray-emitting mixed-morphology supernova remnant 3C 391

    Energy Technology Data Exchange (ETDEWEB)

    Ergin, T.; Sezer, A. [TUBITAK Space Technologies Research Institute, ODTU Campus, 06531 Ankara (Turkey); Saha, L.; Majumdar, P.; Chatterjee, A. [Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064 (India); Bayirli, A.; Ercan, E. N., E-mail: tulun.ergin@tubitak.gov.tr [Physics Department, Bogazici University, Bebek, 34342 Istanbul (Turkey)

    2014-07-20

    A group of middle-aged mixed-morphology (MM) supernova remnants (SNRs) interacting with molecular clouds (MCs) has been discovered to be strong GeV gamma-ray emitters by the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope (Fermi-LAT). The recent observations of the Suzaku X-ray satellite have revealed that some of these interacting gamma-ray-emitting SNRs, such as IC443, W49B, W44, and G359.1-0.5, have overionized plasmas. 3C 391 (G31.9+0.0) is another Galactic MM SNR interacting with MCs. It was observed in GeV gamma rays by Fermi-LAT as well as in the 0.3-10.0 keV X-ray band by Suzaku. In this work, 3C 391 was detected in GeV gamma rays with a significance of ?18? and we showed that the GeV emission is point-like in nature. The GeV gamma-ray spectrum was shown to be best explained by the decay of neutral pions assuming that the protons follow a broken power-law distribution. We revealed radiative recombination structures of silicon and sulfur from 3C 391 using Suzaku data. In this paper, we discuss the possible origin of this type of radiative plasma and hadronic gamma rays.

  13. The Supernova Remnant W44: confirmations and challenges for cosmic-ray acceleration

    CERN Document Server

    Cardillo, M; Giuliani, A; Yoshiike, S; Sano, H; Fukuda, T; Fukui, Y; Castelletti, G; Dubner, G

    2014-01-01

    The middle-aged supernova remnant (SNR) W44 has recently attracted attention because of its relevance regarding the origin of Galactic cosmic-rays. The gamma-ray missions AGILE and Fermi have established, for the first time for a SNR, the spectral continuum below 200 MeV which can be attributed to neutral pion emission. Confirming the hadronic origin of the gamma-ray emission near 100 MeV is then of the greatest importance. Our paper is focused on a global re-assessment of all available data and models of particle acceleration in W44, with the goal of determining on a firm ground the hadronic and leptonic contributions to the overall spectrum. We also present new gamma-ray and CO NANTEN2 data on W44, and compare them with recently published AGILE and Fermi data. Our analysis strengthens previous studies and observations of the W44 complex environment and provides new information for a more detailed modeling. In particular, we determine that the average gas density of the regions emitting 100 MeV - 10 GeV gamm...

  14. Recombining Plasma in the Gamma-ray Emitting Mixed-Morphology Supernova Remnant 3C 391

    CERN Document Server

    Ergin, Tülün; Saha, Lab; Majumdar, Pratik; Chatterjee, Anshu; Bay?rl?, Arif; Ercan, E Nihal

    2014-01-01

    A group of middle-aged mixed-morphology (MM) supernova remnants (SNRs) interacting with molecular clouds (MC) has been discovered as strong GeV gamma-ray emitters by Large Area Telescope on board Fermi Gamma Ray Space Telescope (Fermi-LAT). The recent observations of the Suzaku X-ray satellite have revealed that some of these interacting gamma-ray emitting SNRs, such as IC443, W49B, W44, and G359.1-0.5, have overionized plasmas. 3C 391 (G31.9+0.0) is another Galactic MM SNR interacting with MC. It was observed in GeV gamma rays by Fermi-LAT as well as in the 0.3 $-$ 10.0 keV X-ray band by Suzaku. In this work, 3C 391 was detected in GeV gamma rays with a significance of $\\sim$ 18 $\\sigma$ and we showed that the GeV emission is point-like in nature. The GeV gamma-ray spectrum was shown to be best explained by the decay of neutral pions assuming that the protons follow a broken power-law distribution. We revealed radiative recombination structures of silicon and sulfur from 3C 391 using Suzaku data. In this pap...

  15. Radio confirmation of Galactic supernova remnant G308.3-1.4

    CERN Document Server

    De Horta, A Y; Filipovic, M D; Crawford, E J; Urosevic, D; Stootman, F H; Tothill, N F H

    2012-01-01

    We present radio-continuum observations of the Galactic supernova remnant (SNR) candidate, G308.3-1.4, made with the Australia Telescope Compact Array, Molonglo Observatory Synthesis Telescope and the Parkes radio telescope. Our results combined with Chandra X-ray images confirm that G308.3-1.4 is a bona fide SNR with a shell morphology. The SNR has average diameter of D = 34 +- 19 pc, radio spectral index of alpha = -0.68 +- 0.16 and linear polarisation of 10 +- 1%; We estimate the SNR magnetic field B = 29 uG. Employing a Sigma-D relation, we estimate a distance to G308.3-1.4 of d = 19 +- 11 kpc. The radio morphology, although complex, suggests a smaller size for the SNR than previously implied in an X-Ray study. These results imply that G308.3-1.4 is a young to middle-aged SNR in the early adiabatic phase of evolution.

  16. Discovery of a transient magnetar near the supernova remnant Kes 79 with XMM-Newton

    CERN Document Server

    Zhou, Ping; LI, Xiang-Dong; Safi-Harb, Samar; Mendez, Mariano; Terada, Yukikatsu; Sun, Wei

    2013-01-01

    We report an XMM-Newton serendipitous discovery of an 11.56 s X-ray pulsar coinciding with 3XMM J185246.6+003317 and located south of the supernova remnant (SNR) Kes 79. The spin-down rate of 3XMM J185246.6+003317 is ~3.2e-11 s s^{-1}, which, together with the long period, indicates a high dipolar surface magnetic field of 6.2e14 G, a characteristic age of 5.7 kyr, and a spin-down luminosity of 8.2e32 erg s^{-1}. The X-ray spectrum of the source is best-fitted with a resonant Compton scattering model, and can be also adequately described by a blackbody model. The observations covering a 7-month span from 2008 to 2009 show variations in the spectral properties of the source, with the luminosity decreasing from 2.8e34 erg s^{-1} to 4.7e33 erg s^{-1} (at an assumed distance of 7.1 kpc), along with a decrease of the blackbody temperature from kT~0.8 keV to ~0.6 keV. The X-ray luminosity of the source is higher than its spin-down luminosity, ruling out rotation as a source of power. The combined timing and spectra...

  17. Suzaku observation of supernova remnant G332.5-5.6

    CERN Document Server

    Zhu, H; Wu, D

    2015-01-01

    We analyze the Suzaku XIS data of the central region of supernova remnant G332.5-5.6. The X-ray data are well described by a single non-equilibrium ionization thermal model, {\\tt vnei}, with an absorbing hydrogen column density of 1.4$^{+0.4}_{-0.1}$ $\\times$ 10$^{21}$ cm$^{-2}$. The plasma is characterized by an electron temperature of 0.49$^{+0.08}_{-0.06}$ keV with subsolar abundances for O (0.58$^{+0.06}_{-0.05}$ solar value) and Fe (0.72$^{+0.06}_{-0.05}$ solar value) and slightly overabundance for Mg (1.23$^{+0.14}_{-0.14}$ solar value). It seems that the central X-ray emission originates from projection effect or evaporation of residual clouds inside G332.5-5.6. We estimate a distance of 3.0 $\\pm$ 0.8 kpc for G332.5-5.6 based on the extinction-distance relation. G332.5-5.6 has an age of 7 - 9 kyr.

  18. TeV Gamma Rays Expected from Supernova Remnants in Different Uniform Interstellar Media

    CERN Document Server

    Berezhko, E G; Berezhko, Evgeny G.; Völk, Heinrich J.

    2000-01-01

    Calculations of the expected TeV $\\gamma$-ray emission, produced by accelerated cosmic rays (CRs) in nuclear collisions, from supernova remnants evolving in a uniform interstellar medium (ISM) are presented. The aim is to study the sensitivity of $\\gamma$-ray production to a physical parameter set. Apart from its general proportionality to N_H, it is shown that the $\\gamma$-ray production essentially depends upon the ratio of the CR diffusion coefficient $\\kappa$ to a critical value $\\kappa_{crit}=10(B_0/5 \\mu{G})(N_H/0.3 {cm}^{-3})^{-1/3}\\kappa_B$, where B_0 and N_H are the magnetic field and hydrogen number density of the ISM, and $\\kappa_B$ denotes the Bohm diffusion coefficient. If $\\kappa$ is of the same order or lower than $\\kappa_{crit}$, then the peak TeV $\\gamma$-ray flux in the Sedov evolutionary phase, normalized to a distance of 1 kpc, is about 10^{-10}(N_H/0.3 {cm}^{-3}) photons cm^{-2} s^{-1}. For a CR diffusion coefficient that is significantly larger than $\\kappa_{crit}$, the CR cutoff energy ...

  19. On the population of X-ray supernova remnants in the Large Magellanic Cloud

    CERN Document Server

    Maggi, P; Kavanagh, P J; Sasaki, M; Bozzetto, L M; Filipovi?, M D; Vasilopoulos, G; Pietsch, W; Points, S D; Chu, Y -H; Dickel, J; Ehle, M; Williams, R; Greiner, J

    2015-01-01

    We present a comprehensive X-ray study of the population of supernova remnants (SNRs) in the LMC. Using primarily XMM-Newton, we conduct a systematic spectral analysis of LMC SNRs to gain new insights on their evolution and the interplay with their host galaxy. We combine all the archival XMM observations of the LMC with those of our Very Large Programme survey. We produce X-ray images and spectra of 51 SNRs, out of a list of 59. Using a careful modeling of the background, we consistently analyse all the X-ray spectra and measure temperatures, luminosities, and chemical compositions. We investigate the spatial distribution of SNRs in the LMC and the connection with their environment, characterised by various SFHs. We tentatively type all LMC SNRs to constrain the ratio of core-collapse to type Ia SN rates in the LMC. We compare the X-ray-derived column densities to HI maps to probing the 3D structure of the LMC. This work provides the first homogeneous catalogue of X-ray spectral properties of LMC SNRs. It of...

  20. Size distribution of supernova remnants and the interstellar medium: the case of M33

    CERN Document Server

    Asvarov, Abdul I

    2013-01-01

    The size distribution of supernova remnants (SNRs) can help to clarify the various aspects of their evolution and interaction with the interstellar medium (ISM). Since the observed samples of SNRs are a collection of objects with very different ages and origin that evolve in different conditions of the ISM, statistical Monte Carlo methods can be used to model their statistical distributions. Based on very general assumptions on the evolution, we have modeled samples of SNRs at various initial and environmental conditions, which were then compared with observed collections of SNRs. In the evolution of SNRs the pressure of the ISM is taken into account, which determines their maximum sizes and lifetimes. When comparing the modeled and observed distributions, it is very important to have homogeneous observational data free from selection effects. We found that a recently published collection of SNRs in M33 (Long et al. 2010, ApJS,187,495) satisfies this requirement if we select the X-ray SNRs with hardness ratio...

  1. A progenitor binary and an ejected mass donor remnant of faint type Ia supernovae

    CERN Document Server

    Geier, S; Wang, B; Dunlap, B; Barlow, B N; Schaffenroth, V; Chen, X; Irrgang, A; Maxted, P F L; Ziegerer, E; Kupfer, T; Miszalski, B; Heber, U; Han, Z; Shporer, A; Telting, J H; Gaensicke, B T; Oestensen, R H; O'Toole, S J; Napiwotzki, R

    2013-01-01

    Type Ia supernovae (SN Ia) are the most important standard candles for measuring the expansion history of the universe. The thermonuclear explosion of a white dwarf can explain their observed properties, but neither the progenitor systems nor any stellar remnants have been conclusively identified. Underluminous SN Ia have been proposed to originate from a so-called double-detonation of a white dwarf. After a critical amount of helium is deposited on the surface through accretion from a close companion, the helium is ignited causing a detonation wave that triggers the explosion of the white dwarf itself. We have discovered both shallow transits and eclipses in the tight binary system CD-30 11223 composed of a carbon/oxygen white dwarf and a hot helium star, allowing us to determine its component masses and fundamental parameters. In the future the system will transfer mass from the helium star to the white dwarf. Modelling this process we find that the detonation in the accreted helium layer is sufficiently st...

  2. THE NATURE OF GAMMA-RAY EMISSION OF TYCHO'S SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E. G.; Ksenofontov, L. T. [Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Avenue, 677980 Yakutsk (Russian Federation); Voelk, H. J., E-mail: berezhko@ikfia.ysn.ru [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2013-01-20

    The nature of the recently detected high-energy and very high-energy {gamma}-ray emission of Tycho's supernova remnant (SNR) is studied. A nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs is employed to investigate the properties of Tycho's SNR and their correspondence with the existing experimental data, taking into account that the ambient interstellar medium (ISM) is expected to be clumpy. It is demonstrated that the overall steep {gamma}-ray spectrum observed can be interpreted as the superposition of two spectra produced by the CR proton component in two different ISM phases: the first {gamma}-ray component, extending up to about 10{sup 14} eV, originates in the diluted warm ISM, whereas the second component, extending up to 100 GeV, comes from numerous dense, small-scale clouds embedded in this warm ISM. Given the consistency between acceleration theory and the observed properties of the nonthermal emission of Tycho's SNR, very efficient production of nuclear CRs in Tycho's SNR is established. The excess of the GeV {gamma}-ray emission due to the clouds' contribution above the level expected in the case of a purely homogeneous ISM is inevitably expected in the case of Type Ia SNe.

  3. N49: the first robust discovery of a recombining plasma in an extra galactic supernova remnant

    CERN Document Server

    Uchida, Hiroyuki; Yamaguchi, Hiroya

    2015-01-01

    Recent discoveries of recombining plasmas (RPs) in supernova remnants (SNRs) have dramatically changed our understanding of SNR evolution. To date, a dozen of RP SNRs have been identified in the Galaxy. Here we present Suzaku deep observations of four SNRs in the Large Magellanic Cloud (LMC), N49, N49B, N23, and DEM L71, for accurate determination of their plasma state. Our uniform analysis reveals that only N49 is in the recombining state among them, which is the first robust discovery of a RP from an extra-galactic SNR. Given that RPs have been identified only in core-collapse SNRs, our result strongly suggests a massive star origin of this SNR. On the other hand, no clear evidence for a RP is confirmed in N23, from which detection of recombination lines and continua was previously claimed. Comparing the physical properties of the RP SNRs identified so far, we find that all of them are categorized into the "mixed-morphology" class and interacting with surrounding molecular clouds. This might be a key to sol...

  4. SUZAKU OBSERVATIONS OF THE NON-THERMAL SUPERNOVA REMNANT HESS J1731-347

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Aya; Yamazaki, Ryo [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Puehlhofer, Gerd; Klochkov, Dmitry [Institut fuer Astronomie und Astrophysik, Universitaet Tuebingen, Sand 1, D-72076 Tuebingen (Germany); Acero, Fabio [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, CC 72, Place Eugene Bataillon, F-34095 Montpellier (France); Tian Wenwu [National Astronomical Observatories, CAS, Beijing 100012 (China); Li Zhiyuan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Horns, Dieter [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Kosack, Karl [CEA Saclay, DSM/IRFU, F-91191 Gif-sur-Yvette (France); Komin, Nukri [Laboratoire d' Annecy-le-Vieux de Physique des Particules, Universite de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux (France)

    2012-09-10

    A detailed analysis of the non-thermal X-ray emission from the northwestern and southern parts of the supernova remnant (SNR) HESS J1731-347 with Suzaku is presented. The shell portions covered by the observations emit hard and lineless X-rays. The spectrum can be reproduced by a simple absorbed power-law model with a photon index {Gamma} of 1.8-2.7 and an absorption column density N{sub H} of (1.0-2.1) Multiplication-Sign 10{sup 22} cm{sup -2}. These quantities change significantly from region to region; the northwestern part of the SNR has the hardest and most absorbed spectrum. The western part of the X-ray shell has a smaller curvature than the northwestern and southern shell segments. A comparison of the X-ray morphology to the very high energy gamma-ray and radio images was performed. The efficiency of the electron acceleration and the emission mechanism in each portion of the shell are discussed. Thermal X-ray emission from the SNR was searched for but could not be detected at a significant level.

  5. The Interstellar Medium around the Supernova Remnant G320.4-1.2

    CERN Document Server

    Dubner, G M; Giacani, E B; Goss, W M; Green, A J

    2002-01-01

    Using the Australia Telescope Compact Array, we have carried out a survey of the HI emission in the direction of the ``barrel-shaped'' supernova remnant (SNR) G320.4-1.2 (MSH 15-52) and its associated young pulsar B1509-58. The angular resolution of the data is 4.0x2.7 arcmin, and the rms noise of the order of 30 mJy/beam (~0.5 K). The HI observations indicate that the N-NW radio limb has encountered a dense HI filament (density ~12 cm^-3) at the same LSR velocity than that of the SNR (V_LSR ~ -68 km/s). This HI concentration would be responsible for the flattened shape of the NW lobe of G320.4-1.2, and for the formation of the radio/optical/X-ray nebula RCW 89. The emission associated with the bright knots in the interior of RCW 89 can be explained as arising from the interaction between the collimated relativistic outflow from the pulsar and the denser part of this HI filament (density ~15 cm^-3). The S-SE half of the SNR, on the other hand, seems to have rapidly expanded across a lower density enviroment (...

  6. X-ray Spectroscopy of the Mixed Morphology Supernova Remnant W28 with XMM-Newton

    CERN Document Server

    Nakamura, Ryoko; Ishida, Manabu; Yamazaki, Ryo; Tatematsu, Ken'ichi; Kohri, Kazunori; uhlhofer{7}, Gerd P\\"; Wagner{8}, Stefan J; Sawada{2}, Makoto

    2014-01-01

    We report on spatially resolved X-ray spectroscopy of the north-eastern part of the mixed morphology supernova remnant (SNR) W28 with {\\it XMM-Newton}. The observed field of view includes a prominent and twisted shell emission forming the edge of this SNR as well as part of the center-filled X-ray emission brightening toward the south-west edge of the field of view. The shell region spectra are in general represented by an optically thin thermal plasma emission in collisional ionization equilibrium with a temperature of $\\sim$0.3~keV and a density of $\\sim$10~cm$^{-3}$, which is much higher than the density obtained for inner parts. In contrast, we detected no significant X-ray flux from one of the TeV $\\gamma$-ray peaks with an upper-limit flux of 2.1$\\times$10$^{-14}$ erg cm$^{-2}$ s$^{-1}$ in the 2--10~keV band. The large flux ratio of TeV to X-ray, larger than 16, and the spatial coincidence of the molecular cloud and the TeV $\\gamma$-ray emission site indicate that the TeV $\\gamma$-ray of W28 is $\\pi^{0}...

  7. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    International Nuclear Information System (INIS)

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (? 40, 000 km s–1) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, ?F ? = Const, in the X-ray range of 0.1 ? T ? 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  8. Dense Fe-Rich Ejecta in Supernova Remnants DEM L238 and DEM L249: A New Class of Type Ia Supernova?

    CERN Document Server

    Borkowski, K J; Reynolds, S P

    2006-01-01

    We present observations of two LMC supernova remnants (SNRs), DEM L238 and DEM L249, with the Chandra and XMM-Newton X-ray satellites. Bright central emission, surrounded by a faint shell, is present in both remnants. The central emission has an entirely thermal spectrum dominated by strong Fe L-shell lines, with the deduced Fe abundance in excess of solar and not consistent with the LMC abundance. This Fe overabundance leads to the conclusion that DEM L238 and DEM L249 are remnants of thermonuclear (Type Ia) explosions. The shell emission originates in gas swept up and heated by the blast wave. A standard Sedov analysis implies about 50 solar masses in both swept-up shells, SNR ages between 10,000 and 15,000 yr, low (< 0.05 cm^-3) preshock densities, and subluminous explosions with energies of 3x10^50 ergs. The central Fe-rich supernova ejecta are close to collisional ionization equilibrium. Their presence is unexpected, because standard Type Ia SNR models predict faint ejecta emission with short ionizati...

  9. DYNAMICS OF X-RAY-EMITTING EJECTA IN THE OXYGEN-RICH SUPERNOVA REMNANT PUPPIS A REVEALED BY THE XMM-NEWTON REFLECTION GRATING SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Katsuda, Satoru; Tamagawa, Toru [RIKEN - Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ohira, Yutaka [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe Sagamihara 252-5258 (Japan); Mori, Koji [Department of Applied Physics, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki 889-2192 (Japan); Tsunemi, Hiroshi; Koyama, Katsuji [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 60-0043 (Japan); Uchida, Hiroyuki [Department of Physics, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502 (Japan)

    2013-05-10

    Using the unprecedented spectral resolution of the reflection grating spectrometer (RGS) on board XMM-Newton, we reveal dynamics of X-ray-emitting ejecta in the oxygen-rich supernova remnant Puppis A. The RGS spectrum shows prominent K-shell lines, including O VII He{alpha} forbidden and resonance, O VIII Ly{alpha}, O VIII Ly{beta}, and Ne IX He{alpha} resonance, from an ejecta knot positionally coincident with an optical oxygen-rich filament (the so-called {Omega} filament) in the northeast of the remnant. We find that the line centroids are blueshifted by 1480 {+-} 140 {+-} 60 km s{sup -1} (the first and second term errors are measurement and calibration uncertainties, respectively), which is fully consistent with that of the optical {Omega} filament. Line broadening at 654 eV (corresponding to O VIII Ly{alpha}) is obtained to be {sigma} {approx}< 0.9 eV, indicating an oxygen temperature of {approx}< 30 keV. Analysis of XMM-Newton MOS spectra shows an electron temperature of {approx}0.8 keV and an ionization timescale of {approx}2 Multiplication-Sign 10{sup 10} cm{sup -3} s. We show that the oxygen and electron temperatures as well as the ionization timescale can be reconciled if the ejecta knot was heated by a collisionless shock whose velocity is {approx}600-1200 km s{sup -1} and was subsequently equilibrated due to Coulomb interactions. The RGS spectrum also shows relatively weak K-shell lines of another ejecta feature located near the northeastern edge of the remnant, from which we measure redward Doppler velocities of 650 {+-} 70 {+-} 60 km s{sup -1}.

  10. Numerical simulations of diffusive shock acceleration in SNRs

    OpenAIRE

    Zirakashvili, V. N.; V.S. Ptuskin

    2011-01-01

    A new numerical model of the nonlinear diffusive shock acceleration is presented. It is used for modeling of particle acceleration in supernova remnants. The model contains coupled spherically symmetric hydrodynamic equations and the transport equations for energetic protons, ions and electrons. The forward and reverse shocks are included in the consideration. The spectra of cosmic rays released into interstellar medium from a supernova remnant are determined. The role of th...

  11. RADIO DETECTION OF A CANDIDATE NEUTRON STAR ASSOCIATED WITH GALACTIC CENTER SUPERNOVA REMNANT SAGITTARIUS A EAST

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun-Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Morris, Mark R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Goss, W. M., E-mail: jzhao@cfa.harvard.edu, E-mail: morris@astro.ucla.edu, E-mail: mgoss@aoc.nrao.edu [NRAO, P.O. Box O, Socorro, NM 87801 (United States)

    2013-11-10

    We report the Very Large Array (VLA) detection of the radio counterpart of the X-ray object referred to as the 'Cannonball', which has been proposed to be the remnant neutron star resulting from the creation of the Galactic center supernova remnant, Sagittarius A East. The radio object was detected both in our new VLA image from observations in 2012 at 5.5 GHz and in archival VLA images from observations in 1987 at 4.75 GHz and in the period from 1990 to 2002 at 8.31 GHz. The radio morphology of this object is characterized as a compact, partially resolved point source located at the northern tip of a radio 'tongue' similar to the X-ray structure observed by Chandra. Behind the Cannonball, a radio counterpart to the X-ray plume is observed. This object consists of a broad radio plume with a size of 30''×15'', followed by a linear tail having a length of 30''. The compact head and broad plume sources appear to have relatively flat spectra (??{sup ?}) with mean values of ? = –0.44 ± 0.08 and –0.10 ± 0.02, respectively, and the linear tail shows a steep spectrum with the mean value of –1.94 ± 0.05. The total radio luminosity integrated from these components is ?8 × 10{sup 33} erg s{sup –1}, while the emission from the head and tongue amounts for only ?1.5 × 10{sup 31} erg s{sup –1}. Based on the images obtained from the two epochs' observations at 5 GHz, we infer the proper motion of the object: ?{sub ?} = 0.001 ± 0.003 arcsec yr{sup –1} and ?{sub ?} = 0.013 ± 0.003 arcsec yr{sup –1}. With an implied velocity of 500 km s{sup –1}, a plausible model can be constructed in which a runaway neutron star surrounded by a pulsar wind nebula was created in the event that produced Sgr A East. The inferred age of this object, assuming that its origin coincides with the center of Sgr A East, is approximately 9000 yr.

  12. THE EXTREMELY LONG-PERIOD X-RAY SOURCE IN A YOUNG SUPERNOVA REMNANT: A THORNE-?YTKOW OBJECT DESCENDANT?

    International Nuclear Information System (INIS)

    The origin of the 6.67 hr period X-ray source, 1E161348-5055, in the young supernova remnant RCW 103 is puzzling. We propose that it may be the descendant of a Thorne-?ytkow Object (T?O). A T?O may at its formation have a rapidly spinning neutron star as a core and a slowly rotating envelope. We found that the core could be braked quickly to an extremely long spin period by the coupling between its magnetic field and the envelope, and that the envelope could be disrupted by some powerful bursts or exhausted via stellar wind. If the envelope is disrupted after the core has spun down, the core will become an extremely long-period compact object, with a slow proper motion speed, surrounded by a supernova-remnant-like shell. These features all agree with the observations of 1E161348-5055. T?Os are expected to have produced extraordinarily high abundances of lithium and rapid proton process elements that would remain in the remnants and could be used to test this scenario

  13. THE EXTREMELY LONG-PERIOD X-RAY SOURCE IN A YOUNG SUPERNOVA REMNANT: A THORNE-?YTKOW OBJECT DESCENDANT?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. W. [School of Physics and Electronic Information, China West Normal University, Nanchong 637002 (China); Xu, R. X.; Qiao, G. J. [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Van den Heuvel, E. P. J. [Astronomical Institute Anton Pannekoek, University of Amsterdam (Netherlands); Han, J. L. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Han, Z. W. [Key Laboratory of the Structure and Evolution of Celestial Objects, Yunnan Observatory, Kunming 650011 (China); Li, X. D., E-mail: xiongwliu@163.com [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2015-02-01

    The origin of the 6.67 hr period X-ray source, 1E161348-5055, in the young supernova remnant RCW 103 is puzzling. We propose that it may be the descendant of a Thorne-?ytkow Object (T?O). A T?O may at its formation have a rapidly spinning neutron star as a core and a slowly rotating envelope. We found that the core could be braked quickly to an extremely long spin period by the coupling between its magnetic field and the envelope, and that the envelope could be disrupted by some powerful bursts or exhausted via stellar wind. If the envelope is disrupted after the core has spun down, the core will become an extremely long-period compact object, with a slow proper motion speed, surrounded by a supernova-remnant-like shell. These features all agree with the observations of 1E161348-5055. T?Os are expected to have produced extraordinarily high abundances of lithium and rapid proton process elements that would remain in the remnants and could be used to test this scenario.

  14. A high-resolution X-ray and optical study of SN 1006: asymmetric expansion and small-scale structure in a type IA supernova remnant

    International Nuclear Information System (INIS)

    We introduce a deep (670 ks) X-ray survey of the entire SN 1006 remnant from the Chandra X-Ray Observatory, together with a deep H? image of SN 1006 from the 4 m Blanco telescope at CTIO. Comparison with Chandra images from 2003 gives the first measurement of the X-ray proper motions around the entire periphery, carried out over a 9 yr baseline. We find that the expansion velocity varies significantly with azimuth. The highest velocity of ?7400 km s–1 (almost 2.5 times that in the northwest (NW)) is found along the southeast (SE) periphery, where both the kinematics and the spectra indicate that most of the X-ray emission stems from ejecta that have been decelerated little, if at all. Asymmetries in the distribution of ejecta are seen on a variety of spatial scales. Si-rich ejecta are especially prominent in the SE quadrant, while O and Mg are more uniformly distributed, indicating large-scale asymmetries arising from the explosion itself. Neon emission is strongest in a sharp filament just behind the primary shock along the NW rim, where the pre-shock density is highest. Here the Ne is likely interstellar, while Ne within the shell may include a contribution from ejecta. Within the interior of the projected shell we find a few isolated 'bullets' of what appear to be supernova ejecta that are immediately preceded by bowshocks seen in H?, features that we interpret as ejecta knots that have reached relatively dense regions of the surrounding interstellar medium, but that appear in the interior in projection. Recent three-dimensional hydrodynamic models for Type Ia supernovae display small-scale features that strongly resemble the ones seen in X-rays in SN 1006; an origin in the explosion itself or from subsequent hydrodynamic instabilities both remain viable options. We have expanded the search for precursor X-ray emission ahead of a synchrotron-dominated shock front, as expected from diffusive shock acceleration theory, to numerous regions along both the northeast and southwest rims of the shell. Our data require that a precursor be thinner than about 3'', and fainter than about 5% of the post-shock peak. These limits suggest that the magnetic field is amplified by a factor of seven or more in a narrow precursor region, promoting diffusive particle acceleration.

  15. A High-Resolution X-Ray and Optical Study of SN1006: Asymmetric Expansion and Small-Scale Structure in a Type Ia Supernova Remnant

    Science.gov (United States)

    Winkler, P. Frank; Williams, Brian J.; Reynolds, Stephen P.; Petre, Robert; Long, Knox S.; Katsuda, Satoru; Hwang, Una

    2014-01-01

    We introduce a deep (670 ks) X-ray survey of the entire SN 1006 remnant from the Chandra X-Ray Observatory, together with a deep Ha image of SN 1006 from the 4 m Blanco telescope at CTIO. Comparison with Chandra images from 2003 gives the first measurement of the X-ray proper motions around the entire periphery, carried out over a 9 yr baseline. We find that the expansion velocity varies significantly with azimuth. The highest velocity of approx.7400 km/s (almost 2.5 times that in the northwest (NW)) is found along the southeast (SE) periphery, where both the kinematics and the spectra indicate that most of the X-ray emission stems from ejecta that have been decelerated little, if at all. Asymmetries in the distribution of ejecta are seen on a variety of spatial scales. Si-rich ejecta are especially prominent in the SE quadrant, while O and Mg are more uniformly distributed, indicating large-scale asymmetries arising from the explosion itself. Neon emission is strongest in a sharp filament just behind the primary shock along the NWrim, where the pre-shock density is highest. Here the Ne is likely interstellar, while Ne within the shell may include a contribution from ejecta. Within the interior of the projected shell we find a few isolated "bullets" of what appear to be supernova ejecta that are immediately preceded by bowshocks seen in Ha, features that we interpret as ejecta knots that have reached relatively dense regions of the surrounding interstellar medium, but that appear in the interior in projection. Recent three-dimensional hydrodynamic models for Type Ia supernovae display small-scale features that strongly resemble the ones seen in X-rays in SN 1006; an origin in the explosion itself or from subsequent hydrodynamic instabilities both remain viable options. We have expanded the search for precursor X-ray emission ahead of a synchrotron-dominated shock front, as expected from diffusive shock acceleration theory, to numerous regions along both the northeast and southwest rims of the shell. Our data require that a precursor be thinner than about 3, and fainter than about 5% of the post-shock peak. These limits suggest that the magnetic field is amplified by a factor of seven or more in a narrow precursor region, promoting diffusive particle acceleration.

  16. Asymmetry in The Observed Metal-Rich Ejecta of Galactic Type Ia Supernova Remnant G299.2-2.9

    CERN Document Server

    Post, Seth; Badenes, Carles; Burrows, David N; Hughes, John P; Lee, Jae-Joon; Mori, Koji; Slane, Patrick O

    2014-01-01

    We have performed a deep Chandra observation of Galactic Type Ia supernova remnant G299.2-2.9. Here we report the initial results from our imaging and spectral analysis. The observed abundance ratios of the central ejecta are in good agreement with those predicted by delayed-detonation Type Ia supernovae models. We reveal inhomogeneous spatial and spectral structures of metal-rich ejecta in G299.2-2.9. The Fe/Si abundance ratio in the northern part of the central ejecta is higher than that in the southern part. An elongation of ejecta material extends out to the western outermost boundary of the remnant. In this western elongation, both the Si and Fe are enriched with a similar abundance ratio to that in the southern part of the central nebula. These structured distributions of metal-rich ejecta material suggest that this Type Ia supernova might have undergone a significantly asymmetric explosion and/or has been expanding into a structured medium.

  17. Electron acceleration in supernova remnants and diffuse gamma rays above 1 GeV

    DEFF Research Database (Denmark)

    Pohl, M.; Esposito, J.A.

    1998-01-01

    The recently observed X-ray synchrotron emission from four supernova remnants (SNRs) has strengthened the evidence that cosmic-ray electrons are accelerated in SNRs. We show that if this is indeed the case, the local electron spectrum will be strongly time-dependent, at least above roughly 30 GeV. The time dependence stems from the Poisson fluctuations in the number of SNRs within a certain volume and within a certain time interval. As far as cosmic-ray electrons are concerned, the Galaxy looks like actively bubbling Swiss cheese rather than a steady, homogeneously filled system. Our finding has important consequences for studies of the Galactic diffuse gamma-ray emission, for which a strong excess over model predictions above 1 GeV has recently been reported. While these models relied on an electron injection spectrum with index 2.4 (chosen to fit the local electron flux up to 1 TeV), we show that an electron injection index of around 2.0 would (1) be consistent with the expected Poisson fluctuations in the locally observable electron spectrum and (2) explain the above-mentioned gamma-ray excess above 1 GeV. An electron injection index of around 2 would also correspond to the average radio synchrotron spectrum of individual SNRs. We use a three-dimensional propagation code to calculate the spectra of electrons throughout the Galaxy and show that the longitude and latitude distribution of the leptonic gamma-ray production above 1 GeV is in accord with the respective distributions for the gamma-ray excess. Finally, we point out that our model implies a strong systematic uncertainty in the determination of the spectrum of the extragalactic gamma-ray background.

  18. H.E.S.S. reveals a lack of TeV emission from the supernova remnant Puppis A

    Science.gov (United States)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Grudzi?ska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzy?ski, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Klu?niak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, ?.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2015-03-01

    Context. Puppis A is an interesting ~4 kyr-old supernova remnant (SNR) that shows strong evidence of interaction between the forward shock and a molecular cloud. It has been studied in detail from radio frequencies to high-energy (HE, 0.1-100 GeV) ?-rays. An analysis of the Fermi-LAT data has shown extended HE ?-ray emission with a 0.2-100 GeV spectrum exhibiting no significant deviation from a power law, unlike most of the GeV-emitting SNRs known to be interacting with molecular clouds. This makes it a promising target for imaging atmospheric Cherenkov telescopes (IACTs) to probe the ?-ray emission above 100 GeV. Aims: Very-high-energy (VHE, E ? 0.1 TeV) ?-ray emission from Puppis A has been, for the first time, searched for with the High Energy Stereoscopic System (H.E.S.S.). Methods: Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the direction and energy of the incident ?-rays in order to produce sky images and source spectra. The profile likelihood method is applied to find constraints on the existence of a potential break or cutoff in the photon spectrum. Results: The analysis of the H.E.S.S. data does not reveal any significant emission towards Puppis A. The derived upper limits on the differential photon flux imply that its broadband ?-ray spectrum must exhibit a spectral break or cutoff. By combining Fermi-LAT and H.E.S.S. measurements, the 99% confidence-level upper limits on such a cutoff are found to be 450 and 280 GeV, assuming a power law with a simple exponential and a sub-exponential cutoff, respectively. It is concluded that none of the standard limitations (age, size, radiative losses) on the particle acceleration mechanism, assumed to be continuing at present, can explain the lack of VHE signal. The scenario in which particle acceleration has ceased some time ago is considered as an alternative explanation. The HE/VHE spectrum of Puppis A could then exhibit a break of non-radiative origin (as observed in several other interacting SNRs, albeit at somewhat higher energies), owing to the interaction with dense and neutral material, in particular towards the NE region.

  19. Fermi LAT Discovery of Extended Gamma-Ray Emissions in the Vicinity of the HB3 Supernova Remnant

    CERN Document Server

    Katagiri, H; Ballet, J; Grondin, M H; Hanabata, Y; Hewitt, J W; Kubo, H; Lemoine-Goumard, M

    2016-01-01

    We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB3 (G132.7+1.3) and the W3 HII complex adjacent to the southeast of the remnant. W3 is spatially associated with bright 12CO (J=1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB3.

  20. Structure of strong shock waves with implications for deuterium synthesis in supernovae

    International Nuclear Information System (INIS)

    The structure of strong shock waves is calculated over the range of shock energies (1 to 100 MeV/nucleon) and initial number densities (1015--1022 cm-3) believed likely to occur in the red-giant-like envelopes of stars undergoing type II supernovae explosions. The general equations governing the structure of such shocks are developed on the basis of a hydrodynamic treatment of a plasma composed of ions, electrons, positrons, and photons, making use of diffusion theory to evaluate the dissipative and transfer terms. Several strong shock structure models are formulated and solved on the basis of these equations and physical processes. A shock model dominated by radiation pressure and transport is considered and criteria for its self consistency deduced. For electron temperatures above approximately 70 keV, the ?? reversible e+e- reaction is found to give rise to a sufficient number of pairs to cause the principal source of shock dissipation to shift from radiative heat transport to ion-lepton Coulomb friction. The properties of such a pair-dominated model are discussed. The stability of radiation-dominated shocks and the lack of self-consistent hot-ion shocks is demonstrated. This demonstration leads to the conclusion that peak shock temperatures remain low enough to preclude production of a cosmologically significant amount of deuterium in supernova shock waves. The application of these concepts is considered. (U.S.)

  1. Diffusion of Cosmic Rays in a Multiphase Interstellar Medium Swept-Up by a Supernova Remnant Blast Wave

    OpenAIRE

    Roh, Soonyoung; Inutsuka, Shu-ichiro; Inoue, Tsuyoshi

    2015-01-01

    Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order t...

  2. INTEGRAL Studies of Nonthermal Emission From the Supernova Remnants Cassiopeia A, CTA 1, and MSH 11-61A

    Science.gov (United States)

    Sturner, S. J.; Beckmann, V.; Bykov, A.; Lebrun, F.; Terrier, R.

    2004-01-01

    We present the initial results from our study of the nonthermal continuum emission from the supernova remnants Cassiopeia A, MSB 11-61-4, a d CT-4 1. We used the INTEGRAL Core Program data to conduct this study. During the INTEGRAL mission a significant fraction of the total observing time (e.g. 35% in year one) is allocated to the Core Program and is analyzed under the auspices of the INTEGRAL Science Working Team. We report no statistically significant detections thus far but we will continue to analyze the data as more is taken. The results so far are consistent with previous measurements from e.g. RXTE and ASCA.

  3. Chandra reveals a black-hole X-ray binary within the ultraluminous supernova remnant MF 16

    OpenAIRE

    Roberts, T. P.; Colbert, E. J. M.

    2003-01-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraodinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black-hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black-hole X-ray binary systems, and the detection of rapid hard X-ray variability from the ...

  4. Discovery of 424 ms pulsations from the radio-quiet neutron star in the PKS 1209-52 supernova remnant

    OpenAIRE

    Zavlin, V. E.; Pavlov, G. G; Sanwal, D.; Truemper, J.

    2000-01-01

    The central source of the supernova remnant PKS 1209-52 was observed with the Advanced CCD Imaging Spectrometer aboard Chandra X-ray observatory on 2000 January 6-7. The use of the Continuos Clocking mode allowed us to perform the timing analysis of the data with time resolution of 2.85 ms and to find a period P=0.42412927+/-2.3e-7 s. The detection of this short period proves that the source is a neutron star. It may be either an active pulsar with unfavorably directed radio...

  5. Fermi large area telescope detection of a break in the gamma-ray spectrum of the supernova remnant Cassiopeia A

    International Nuclear Information System (INIS)

    We report on observations of the supernova remnant Cassiopeia A in the energy range from 100 MeV to 100 GeV using 44 months of observations from the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. We perform a detailed spectral analysis of this source and report on a low-energy break in the spectrum at 1.72?0.89+1.35 GeV. By comparing the results with models for the gamma-ray emission, we find that hadronic emission is preferred for the GeV energy range.

  6. Analytic Approach to the Stability of Standing Accretion Shocks: Application to Core-Collapse Supernovae

    CERN Document Server

    Laming, J Martin

    2009-01-01

    We explore an analytic model of the accretion shock in the post bounce phase of a core-collapse supernova explosion. We find growing oscillations of the shock in the l=1 and l=2 modes, in agreement with a variety of existing numerical simulations. For modest values of the ratio of the outer accretion shock to that of the inner boundary to the shocked flow, the instability appears to derive from the growth of trapped sound waves, whereas at higher values, postshock advection clearly plays a role. Thus the model described here may relate to the different mechanisms of instability recently advocated by Blondin & Mezzacappa, and by Foglizzo and collaborators.

  7. Young Remnants of Type Ia Supernovae and Their Progenitors: A Study of SNR G1.9+0.3

    CERN Document Server

    Chakraborti, Sayan; Soderberg, Alicia

    2015-01-01

    Type Ia supernovae, with their remarkably homogeneous light curves and spectra, have been used as standardizable candles to measure the accelerating expansion of the Universe. Yet, their progenitors remain elusive. Common explanations invoke a degenerate star (white dwarf) which explodes upon reaching close to the Chandrasekhar limit, by either steadily accreting mass from a companion star or violently merging with another degenerate star. We show that circumstellar interaction in young Galactic supernova remnants can be used to distinguish between these single and double degenerate progenitor scenarios. Here we propose a new diagnostic, the Surface Brightness Index, which can be computed from theory and compared with Chandra and VLA observations. We use this method to demonstrate that a double degenerate progenitor can explain the decades-long flux rise and size increase of the youngest known Galactic SNR G1.9+0.3. We disfavor a single degenerate scenario. We attribute the observed properties to the interact...

  8. Analysis of energy- and time-dependence of supernova shock effects on neutrino crossing probabilities

    OpenAIRE

    G. L. FogliU. of Bari & INFN, Bari; E. LisiU. of Bari & INFN, Bari; A. MirizziU. of Bari & INFN, Bari; D. MontaninoU. of Lecce & INFN, Lecce

    2014-01-01

    It has recently been realized that supernova neutrino signals may be affected by shock propagation over a time interval of a few seconds after bounce. In the standard three-neutrino oscillation scenario, such effects crucially depend on the neutrino level crossing probability P_H in the 1-3 sector. By using a simplified parametrization of the time-dependent supernova radial density profile, we explicitly show that simple analytical expressions for P_H accurately reproduce th...

  9. Non-thermal X-rays and interstellar gas toward the ?-ray supernova remnant RX J1713.7–3946: evidence for X-ray enhancement around CO and H I clumps

    Energy Technology Data Exchange (ETDEWEB)

    Sano, H.; Torii, K.; Fukuda, T.; Yoshiike, S.; Sato, J.; Horachi, H.; Kuwahara, T.; Hayakawa, T.; Matsumoto, H.; Inutsuka, S.; Kawamura, A.; Tachihara, K.; Yamamoto, H.; Okuda, T.; Mizuno, N.; Onishi, T. [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Tanaka, T. [Department of Physics, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Inoue, T.; Yamazaki, R. [Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Chuou-ku, Sagamihara 252-5258 (Japan); Mizuno, A., E-mail: sano@a.phys.nagoya-u.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); and others

    2013-11-20

    RX J1713.7–3946 is the most remarkable very high energy ?-ray supernova remnant that emits synchrotron X-rays without thermal features. We made a comparative study of CO, H I, and X-rays in order to better understand the relationship between the X-rays, and the molecular and atomic gas. The results indicate that the X-rays are enhanced around the CO and H I clumps on a pc scale, but are decreased inside the clumps on a 0.1 pc scale. Magnetohydrodynamic numerical simulations of the shock interaction with molecular and atomic gas indicate that the interaction between the shock waves and the clumps excite turbulence, which amplifies the magnetic field around the clumps. We suggest that the amplified magnetic field around the CO and H I clumps enhances the synchrotron X-rays and possibly the acceleration of cosmic-ray electrons.

  10. Discovery of a New X-ray Filled Radio Supernova Remnant Around the Pulsar Wind Nebula in 3EG J1809-2328

    CERN Document Server

    Roberts, Mallory S E

    2008-01-01

    We report the discovery of a partial ~2deg. diameter non-thermal radio shell coincident with Taz, the pulsar wind nebula (PWN) in the error box of the apparently variable gamma-ray source 3EG J1809-2328. We propose that this radio shell is a newly identified supernova remnant (SNR G7.5-1.7) associated with the PWN. The SNR surrounds an amorphous region of thermal X-rays detected in archival ROSAT and ASCA observations putting this system in the mixed-morphology class of supernova remnants. G7.5-1.7 is the fifth such supernova remnant coincident with a bright GeV source, and the fourth containing a pulsar wind nebulae.

  11. Turbulent Supernova Shock Waves and the Sterile Neutrino Signature in Megaton Water Detectors

    CERN Document Server

    Choubey, S; Ross, Graham G; Choubey, Sandhya

    2007-01-01

    The signatures of sterile neutrinos in the supernova neutrino signal in megaton water Cerenkov detectors are studied. Time dependent modulation of the neutrino signal emerging from the sharp changes in the oscillation probability due to shock waves is shown to be a smoking gun for the existence of sterile neutrinos. These modulations and indeed the entire neutrino oscillation signal is found to be different for the case with just three active neutrinos and the cases where there are additional sterile species mixed with the active neutrinos. The effect of turbulence is taken into account and it is found that the effect of the shock waves, while modifed, remain significant and measurable. Supernova neutrino signals in water detectors can therefore give unambiguous proof for the existence of sterile neutrinos, the sensitivity extending beyond that for terrestial neutrino experiments. In addition the time dependent modulations in the signal due to shock waves can be used to trace the evolution of the shock wave i...

  12. The search for faint radio supernova remnants in the outer Galaxy: five new discoveries

    Science.gov (United States)

    Gerbrandt, Stephanie; Foster, Tyler J.; Kothes, Roland; Geisbüsch, Jörn; Tung, Albert

    2014-06-01

    Context. High resolution and sensitivity large-scale radio surveys of the Milky Way are critical in the discovery of very low surface brightness supernova remnants (SNRs), which may constitute a significant portion of the Galactic SNRs still unaccounted for (ostensibly the "missing SNR problem"). Aims: The overall purpose here is to present the results of a systematic, deep data-mining of the Canadian Galactic plane Survey (CGPS) for faint, extended non-thermal and polarized emission structures that are likely the shells of uncatalogued SNRs. Methods: We examine 5 × 5 degree mosaics from the entire 1420 MHz continuum and polarization dataset of the CGPS after removing unresolved "point" sources and subsequently smoothing them. Newly revealed extended emission objects are compared to similarly prepared CGPS 408 MHz continuum mosaics, as well as to source-removed mosaics from various existing radio surveys at 4.8 GHz, 2.7 GHz, and 327 MHz, to identify candidates with non-thermal emission characteristics. We integrate flux densities at each frequency to characterise the radio spectra behaviour of these candidates. We further look for mid- and high-frequency (1420 MHz, 4.8 GHz) ordered polarized emission from the limb brightened "shell"-like continuum features that the candidates sport. Finally, we use IR and optical maps to provide additional backing evidence. Results: Here we present evidence that five new objects, identified as filling all or some of the criteria above, are strong candidates for new SNRs. These five are designated by their Galactic coordinate names G108.5+11.0, G128.5+2.6, G149.5+3.2, G150.8+3.8, and G160.1-1.1. The radio spectrum of each is presented, highlighting their steepness, which is characteristic of synchrotron radiation. CGPS 1420 MHz polarization data and 4.8 GHz polarization data also provide evidence that these objects are newly discovered SNRs. These discoveries represent a significant increase in the number of SNRs known in the outer Galaxy second quadrant of longitude (90° mining of other current and future Milky Way surveys will find even more objects and help to reconcile the difference between expected numbers of Galactic SNRs and the smaller number of currently known SNRs.

  13. Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1

    Science.gov (United States)

    Ferrara, E. C.; Hays, E.; Troja, E.; Moiseev, A. A.

    2012-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission ofG8.7-0.1, and the molecular clouds, the decay of pions produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS Jl804-2l6 and that the spectrum in the Ge V band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV-spectrum originates from the interaction of particles accelerated in G8.7-0.l with molecular clouds, and we constrain the diffusion coefficient of the particles.

  14. Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1

    International Nuclear Information System (INIS)

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 ± 0.6 (stat) ± 1.2 (sys) GeV, and photon indices of 2.10 ± 0.06 (stat) ± 0.10 (sys) below the break and 2.70 ± 0.12 (stat) ± 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of p0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  15. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT G8.7–0.1

    International Nuclear Information System (INIS)

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7–0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7–0.1 and the TeV unidentified source HESS J1804–216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7–0.1 and a lesser part located outside the western boundary of G8.7–0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 ± 0.6 (stat) ± 1.2 (sys) GeV, and photon indices of 2.10 ± 0.06 (stat) ± 0.10 (sys) below the break and 2.70 ± 0.12 (stat) ± 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7–0.1, and the molecular clouds, the decay of ?0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804–216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7–0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  16. Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; Allafort, A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Baldini, L.; /INFN, Pisa; Ballet, J.; /AIM, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Buson, S.; /INFN, Padua /Padua U.; Caliandro, G.A.; /CSIC, Catalunya; Cameron, R.A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Caraveo, P.A.; /IASF, Milan /AIM, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Unlisted, US /Naval Research Lab, Wash., D.C. /Perugia U. /ASDC, Frascati /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /ASDC, Frascati /Udine U. /INFN, Trieste /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Udine U. /INFN, Trieste /Trieste Observ. /Hiroshima U. /Nagoya U. /Bari Polytechnic /INFN, Bari /INFN, Bari /ASDC, Frascati /INFN, Perugia /Perugia U. /Bari Polytechnic /INFN, Bari /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Bologna Observ. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Naval Research Lab, Wash., D.C. /Alabama U., Huntsville /CSIC, Catalunya /Hiroshima U. /NASA, Goddard /Hiroshima U.; /more authors..

    2012-09-14

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of p0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  17. A detailed study of the supernova remnant RCW 86 in TeV {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Sebastian

    2012-03-29

    A detailed study of the supernova remnant RCW 86 is presented. RCW 86 encountered a shell-like structure in radio, X-rays and optical, whereas in the discovery paper of RCW 86 in the very high energy regime the structure could not be confirmed. In this thesis for the first time the shell was resolved in the very high energy gamma rays. The shell width was determined to be 0.125 {+-}0.014 , the radius to be 0.194 {+-} 0.016 and the center to be -62.433 {+-}0.014 in declination and 220.734 {+-}0.016 in rectascension. The spectral analysis was performed for the whole SNR and for the south-east part, which is more pronounced in X-rays separately. But the results were comparable within errors. Additionally a power-law with an exponential cut off described the spectra best with the parameters: an spectral index of 1.50{+-}0.28, a cut-off energy of (2.69{+-}0.99 TeV) and an integral flux above 1 TeV of (6.51{+-}2.69) . 10{sup -12} cm{sup -2}s{sup -1}. The study of the correlation of the X-ray and VHE {gamma}-ray data of RCW 86 was hampered by the poor angular resolution of the VHE data. Therefore detailed studies of the Richardson-Lucy deconvolution algorithm have been performed. The outcome is, that deconvolution techniques are applicable to strong VHE {gamma}-ray sources and that fine structure well below the angular resolution can be studied. The application to RX J1713-3946, the brightest SNR in the VHE regime, has shown, that the correlation coefficient of the X-ray data and the VHE data of is stable down to 0.01 and has a value of 0.85. On the other side the significance of the data set is not sufficient in the case of RCW 86 to apply the deconvolution technique.

  18. The molecular clouds in the environs of the supernova remnants G349.7+0.2 and G18.8+0.3

    Science.gov (United States)

    Dubner, G.; Giacani, E.; Reynoso, E.; Parón, S.

    2004-10-01

    We present the results of a new high-resolution study of the molecular gas associated with the supernova remnants (SNRs) G349.7+0.2 and G18.8+0.3. The observations were performed with the SEST telescope in the 12CO J = 1-0, 2-1 and 3-2 lines (beams of 45'', 23'' and 15'', respectively). The present observations have provided, for the two SNRs, new evidence in support of the existence of physical interaction between the SN shocks and the adjoining molecular clouds. In the case of G349.7+0.2, the new observations revealed for the first time the internal structure of the shocked cloud, as well as the kinematical consequences of the impact of the SNR shock on the molecular cloud. From these observations we were able to constrain the conditions of the pre-shocked gas. The molecular cloud associated with G349.7+0.2, centered near vLSR= +16.2 km s-1, has a linear size of about 7 pc, a mass of ˜ 104 M? and a volume density of ˜ 103 cm-3. The high line ratios derived are indicative of the existence of shocks in the cloud. From the asymmetries observed in the line shapes we propose that the SN shock cloud is running into the denser part of the cloud and has probably begun to disrupt it, pushing the eastern component clumps away from us, and the western fragments toward us. After comparing our estimates of the column density of the intervening gas with similar calculations based on ASCA X-rays spectral fitting we conclude that the best way to make these results compatible is by assuming that the associated cloud is placed behind G349.7+0.2 along the line of sight, and the SNR/molecular cloud encounter is taking place on the far side of the SNR. This model also provides a natural explanation for the lack of strong X-ray absorption in the central region of G349.7+0.2. Evaporation of part of the associated cloud must be responsible for the central X-ray emission. The comparison with IRAS infrared data provides additional support for the hypothesis of SNR/cloud physical interaction. From the study of the molecular gas in the neighborhood of the five OH (1720 MHz) masers detected in G349.7+0.2 we find that in three cases the maser peak velocity coincides with the local CO peak velocity, while in the remaining two cases the maser peak velocity agrees with a secondary, blended CO component. We conclude that the masers are excited at the sites where a non-dissociative C-type shock, locally transverse to the line of sight (or forming a large angle with it), hits a denser molecular clump. For the SNR G18.8+0.3, the new higher resolution observations have revealed excellent morphological agreement between one of the cloud components and the SNR shock front towards the eastern limb. The associated molecular mass is estimated to be ˜ 4.4× 104 M? and the cloud volume density ˜1200 cm-3. The analysis of the line ratios in this case revealed a maximum of R2-1/1-0 = 1.25 at a position that exactly matches an indentation in the radio continuum emission in the remnant's shell, providing additional evidence of SNR/molecular cloud interaction.

  19. Multifrequency Observations of One of the Largest Supernova Remnants in the Local Group of Galaxies, LMC - SNR J0450-709

    Directory of Open Access Journals (Sweden)

    Filipovi?, M. D.

    2009-12-01

    Full Text Available We present the results of new Australia Telescope Compact Array (ATCA observations of one of the largest supernova remnants, SNR J0450-709, in the Local Group of galaxies. We found that this Large Magellanic Cloud (LMC object exhibits a typical morphology of an old supernova remnant (SNR with diameter $D = 102 x 75 pm 1$ pc and radio spectral index $alpha = -0.43 pm 0.06$. Regions of high polarisation were detected with peak value of $sim$40 per cent.

  20. Chandra High-Resolution X-Ray Spectrum of Supernova Remnant 1E0102.2-7219

    CERN Document Server

    Flanagan, K A; Dewey, D; Houck, J C; Fredericks, A C; Schattenburg, M L; Markert, T H; Davis, D S

    2004-01-01

    Chandra High Energy Transmission Grating Spectrometer observations of the supernova remnant 1E0102.2-7219 in the Small Magellanic Cloud reveal a spectrum dominated by X-ray emission lines from hydrogen-like and helium-like ions of oxygen, neon, magnesium and silicon, with little iron. The dispersed spectrum shows a series of monochromatic images of the source in the light of individual spectral lines. Detailed examination of these dispersed images reveals Doppler shifts within the supernova remnant, indicating bulk matter velocities on the order of 1000 km/s. These bulk velocities suggest an expanding ring-like structure with additional substructure, inclined to the line of sight. A two-dimensional spatial/velocity map of the SNR shows a striking spatial separation of redshifted and blueshifted regions, and indicates a need for further investigation before an adequate 3D model can be found. The radii of the ring-like images of the dispersed spectrum vary with ionization stage, supporting an interpretation of ...