WorldWideScience

Sample records for structure properties relationships

  1. Structure-Property Relationships in Polycyanurate / Graphene Networks

    Science.gov (United States)

    2015-12-12

    Briefing Charts 3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015 4. TITLE AND SUBTITLE Structure-Property Relationships in Polycyanurate...ANSI Std. 239.18 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Structure-Property Relationships in...the attractive processing characteristics of LECy are retained in graphene oxide / LECy mixtures. Impurities, such as aryl phenols and transition metals

  2. Atomic-level structure and structure-property relationship in metallic glass

    Science.gov (United States)

    Cheng, Yongqiang

    One of the key tasks in material science is to understand the structure and structure-property relationship. The recently emerging bulk metallic glasses (BMGs) have demonstrated unique properties, especially intriguing mechanical properties such as their high strength and high propensity to localize deformation in shear bands. However, a comprehensive understanding of the structure of BMGs has been hindered by the complexity of these amorphous materials. Even more challenging is the structure-property correlation, which has been well established in crystals but has been seriously lacking for BMGs. This thesis presents a systematic study of the atomic-level structures of two representative BMGs, Cu-Zr and Cu-Zr-Al. The interpenetrating Cu-centered icosahedral clusters have been identified to be the primary structural feature. The fraction of icosahedra increases with increasing Cu or Al contents, and with decreasing cooling rate. The effect of Al in improving the icosahedral order is two-fold: the geometric effect due to the atomic-size mismatch and the chemical effect originated from the Cu-Al bond shortening. The resolved structure is used to study the structure-property relationship. The full icosahedra are found to be responsible for the dynamical slowdown of the supercooled liquid, which underlies the non-Arrhenius behavior, and explains the composition dependence of glass transition temperature, glass forming ability, and the room temperature strength. By simulated deformation, the initiation of plasticity and tendency for strain localization are also investigated. The full icosahedra are found to be the most rigid and resistant cluster with solid-like character, while the unstable clusters with liquid-like character serve as the fertile sites for initiating shear transformations. In addition, the elastic moduli are calculated and analyzed, and the origins of the different configurational dependence of shear modulus (G) and bulk modulus ( B) are explained. The

  3. Composition-Structure-Property Relationships in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, M.; Mauro, J.C.

    2012-01-01

    boroaluminosilicate glasses from peralkaline to peraluminous compositions by substituting Al2O3 for SiO2. Our results reveal a pronounced change in all the measured physical properties (density, elastic moduli, hardness, glass transition temperature, and liquid fragility) around [Al2O3]–[Na2O]=0. The structural......The complicated structural speciation in boroaluminosilicate glasses leads to a mixed network former effect yielding nonlinear variation in many macroscopic properties as a function of chemical composition. Here we study the composition–structure–property relationships in a series of sodium...

  4. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    Science.gov (United States)

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  5. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  6. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  7. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  8. Tools to Understand Structural Property Relationships for Wood Cell Walls

    Science.gov (United States)

    Joseph E. Jakes; Daniel J. Yelle; Charles R. Frihart

    2011-01-01

    Understanding structure-property relationships for wood cell walls has been hindered by the complex polymeric structures comprising these cell walls and the difficulty in assessing meaningful mechanical property measurements of individual cell walls. To help overcome these hindrances, we have developed two experimental methods: 1) two-dimensional solution state nuclear...

  9. Modeling process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-02-01

    This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.

  10. Structure/property relationships in multipass GMA welding of beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  11. Structure-Property Relationship in High Tg Thermosetting Polyimides

    Science.gov (United States)

    Chuang, Kathy C.; Meador, Mary Ann B.; HardyGreen, DeNise

    2000-01-01

    This viewgraph presentation gives an overview of the structure-property relationship in high glass transition temperatures (T(sub g)) thermosetting polyimides. The objectives of this work are to replace MDA in PMR-15 with 2,2-substituted benzidine and to evaluate the thermo-oxidative stability and mechanical properties of DMBZ-15 against PMR-15. Details are given on the T(sub g) of polyimide resins, the x-ray crystal structure of 2,2-Bis(trifluoro)benzidine (BFBZ), the isothermal aging of polyimide resins at 288 C under 1 atm of circulating air, the compressive strength of polyimide composites, and a gas evaluation profile of DMBZ-15 polyimide resins.

  12. Quantitative structure-property relationship (correlation analysis) of phosphonic acid-based chelates in design of MRI contrast agent.

    Science.gov (United States)

    Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K

    2009-07-01

    Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.

  13. Structure-Property Relationships and the Mixed Network Former Effect in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    compositions by substituting Al2O3 for SiO2. We also investigate the various roles of sodium in the glasses including charge compensation of tetrahedral aluminum and boron atoms and formation of non-bridging oxygen. We find that mechanical properties (density, elastic moduli, and hardness), glass transition......Boroaluminosilicate glasses are important materials for various applications, e.g., liquid crystal display substrates, glass fibers for reinforcement, and thermal shock-resistant glass containers. The complicated structural speciation in these glasses leads to a mixed network former effect yielding...... nonlinear variation in many macroscopic properties. It is therefore crucial to investigate and understand structure-property correlations in boroaluminosilicate glasses. Here we study the structure-property relationships of a range of sodium boroaluminosilicate glasses from peralkaline to peraluminous...

  14. Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins

    Directory of Open Access Journals (Sweden)

    Gheorghe Stan

    2017-04-01

    Full Text Available The exploitation of nanoscale size effects to create new nanostructured materials necessitates the development of an understanding of relationships between molecular structure, physical properties and material processing at the nanoscale. Numerous metrologies capable of thermal, mechanical, and electrical characterization at the nanoscale have been demonstrated over the past two decades. However, the ability to perform nanoscale molecular/chemical structure characterization has only been recently demonstrated with the advent of atomic-force-microscopy-based infrared spectroscopy (AFM-IR and related techniques. Therefore, we have combined measurements of chemical structures with AFM-IR and of mechanical properties with contact resonance AFM (CR-AFM to investigate the fabrication of 20–500 nm wide fin structures in a nanoporous organosilicate material. We show that by combining these two techniques, one can clearly observe variations of chemical structure and mechanical properties that correlate with the fabrication process and the feature size of the organosilicate fins. Specifically, we have observed an inverse correlation between the concentration of terminal organic groups and the stiffness of nanopatterned organosilicate fins. The selective removal of the organic component during etching results in a stiffness increase and reinsertion via chemical silylation results in a stiffness decrease. Examination of this effect as a function of fin width indicates that the loss of terminal organic groups and stiffness increase occur primarily at the exposed surfaces of the fins over a length scale of 10–20 nm. While the observed structure–property relationships are specific to organosilicates, we believe the combined demonstration of AFM-IR with CR-AFM should pave the way for a similar nanoscale characterization of other materials where the understanding of such relationships is essential.

  15. Connecting Structure-Property and Structure-Function Relationships across the Disciplines of Chemistry and Biology: Exploring Student Perceptions

    Science.gov (United States)

    Kohn, Kathryn P.; Underwood, Sonia M.; Cooper, Melanie M.

    2018-01-01

    While many university students take science courses in multiple disciplines, little is known about how they perceive common concepts from different disciplinary perspectives. Structure-property and structure-function relationships have long been considered important explanatory concepts in the disciplines of chemistry and biology, respectively.…

  16. Food structure: Its formation and relationships with other properties.

    Science.gov (United States)

    Joardder, Mohammad U H; Kumar, Chandan; Karim, M A

    2017-04-13

    Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food.

  17. [Relationships between microscope structure and thermodynamic properties

    International Nuclear Information System (INIS)

    Wu, R.S.; Lee, L.L.; Cochran, D.

    1990-01-01

    This paper exhibits on the molecular level, the relationships between the microscopic structure and thermodynamic properties of dilute supercritical solutions by application of the integral equation theories for molecular distribution functions. To solve the integral equations, the authors use Baxter's Wiener-Hopf factorization of the Ornstein-Zernike equations and then apply this method to binary Lennard-Jones mixtures. A number of closure relations have been used: such as the Percus-Yevick (PY), the reference hypernetted chain (RHNC), the hybrid mean spherical approximation (HMSA), and the reference interaction-site (RISM) methods. The authors examine the microstructures of several important classes of supercritical mixtures, including the usual attractive-type and the less known repulsive-type solutions. The clustering of solvent molecules for solvent-solute structures in the attractive mixtures and, correspondingly, the solvent cavitation in the repulsive mixtures are clearly demonstrated. These are shown to be responsible for the large negative growth of the solute partial molar volumes in the attractive case and the positive growth in the repulsive case

  18. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.

    Science.gov (United States)

    Kaija, A R; Wilmer, C E

    2017-09-08

    Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

  19. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    Science.gov (United States)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  20. Composition - structure - properties relationships of peraluminous glasses for nuclear waste containment

    International Nuclear Information System (INIS)

    Piovesan, Victor

    2016-01-01

    Part of the Research and Development program concerning high level nuclear waste conditioning aims to assess new glass formulations able to incorporate a high waste content with enhanced properties in terms of homogeneity, thermal stability, long term behavior and process ability. This study focuses on peraluminous glasses, defined by an excess of aluminum ions Al"3"+ in comparison with modifier elements such as Na"+, Li"+ or Ca"2"+. A Design of Experiment approach has been employed to determine relationships between composition of simplified peraluminous glasses (SiO_2 - B_2O_3 - Al_2O_3 - Na_2O - Li_2O - CaO - La_2O_3) and their physical properties such as viscosity, glass transition temperature and glass homogeneity. Moreover, some structural investigation (NMR) was performed in order to better understand the structural role of Na"+, Li"+ and Ca"2"+ and the structural organization of peraluminous glasses. Then, physical and chemical properties of fully simulated peraluminous glasses were characterized to evaluate transposition between simplified and fully simulated glasses and also to put forward the potential of peraluminous glasses for nuclear waste containment. (author) [fr

  1. Structure Property Relationships in Organic Conjugated Systems

    OpenAIRE

    O'Neill, Luke; Lynch, Patrick; McNamara, Mary

    2005-01-01

    A series of π conjugated oligomers were studied by absorption and photoluminescence spectroscopy. A linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Sto...

  2. Structure Property Relationships in Organic Conjugated Systems

    OpenAIRE

    O'Neill, Luke

    2008-01-01

    A series of pi(п) conjugated oligomers containing 1 to 6 monomer units were studied by absorption and photoluminescence spectroscopies. The results are discussed and examined with regard to the variation of the optical properties with the increase of effective conjugation length. It was found that there was a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length. The relationships are in good agreement with the si...

  3. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  4. Investigations on the structureProperty relationships of electron beam welded Inconel 625 and UNS 32205

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Sridhar, R.; Periwal, Saurabh; Oza, Smitkumar; Saxena, Vimal; Hidad, Preyas; Arivazhagan, N.

    2015-01-01

    Highlights: • Joining of dissimilar metals of Inconel 625 and UNS S32205 using electron beam welding. • Detailed structureproperty relationship of dissimilar welds. • Improved metallurgical and tensile properties from the EB welding. - Abstract: The metallurgical and mechanical properties of electron beam welded Ni based superalloy Inconel 625 and UNS S32205 duplex stainless steel plates have been investigated in the present study. Interface microstructure studies divulged the absence of any grain coarsening effects or the formation of any secondary phases at the heat affected zone (HAZ) of the electron beam (EB) weldments. Tensile studies showed that the fracture occurred at the weld zone in all the trials and the average weld strength was reported to be 850 MPa. Segregation of Mo rich phases was witnessed at the inter-dendritic arms of the fusion zone. The study recommended the use of EB welding for joining these dissimilar metals by providing detailed structureproperty relationships

  5. A Quantitative Structure-Property Relationship (QSPR Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    Directory of Open Access Journals (Sweden)

    Bin Cheng

    2011-04-01

    Full Text Available A quantitative structure–property relationship (QSPR analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP, n-octanol–water partition coefficient (lg POW, water solubility (lg W and the chromatographic retention indices (RI on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI, previously developed by Cao, the novel molecular polarizability effect index (MPEI combined with odd-even index (OEI, the sum eigenvalues of bond-connecting matrix (SX1CH previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99 and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable.

  6. Structure-Property Relationships in Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Moffitt, Stephanie Lucille

    Over the last 20 years a new field of amorphous transparent conducting oxides (a-TCOs) has developed. The amorphous nature of these films makes them well suited for large area applications. In addition, a-TCOs can be made at low temperatures and through solution processing methods. These assets provide promising opportunities to improve applications such as solar cells and back-lit displays where traditional crystalline TCOs are used. In addition, it opens the door for new technological applications including the possibility for transparent, flexible electronics. Despite the recent growth in this field, fundamental understanding of the true nature of conductivity and the amorphous structure in this materials system is still progressing. To develop a greater understanding of a-TCOs, structure-property relationships were developed in the a-IGO and a-IZO systems. From the combination of element-specific local structure studies and liquid quench molecular dynamics simulations it is clear that a degree of structure remains in a-TCOs. By understanding this structure, the effect of gallium on thermal stability, carrier concentration and carrier mobility is understood. The source of charge carriers in a-IZO is identified as oxygen vacancies through the application of in situ Brouwer analysis. The continued development of the Brouwer analysis technique for use in amorphous oxides adds to the available methods for studying defects in amorphous systems. Finally, the foundational knowledge gained from the in-depth study of a-IGO was extended to understand the role of combustion processing and pulsed laser deposition as growth methods for transistors based on a-IGO.

  7. Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS filled PS nanocomposites

    Directory of Open Access Journals (Sweden)

    J. J. Schwab

    2012-07-01

    Full Text Available The polyhedral oligomeric silsesquioxane (POSS additivated polystyrene (PS based nanocomposites were prepared by melt processing and the structure-properties relationships of the POSS-PS systems were compared to those of the neat PS. In order to investigate the effect of these structural parameters on the final properties of the polymer nanocomposites, five different kinds of POSS samples were used, in particular, POSS with different inorganic cage and with different organic pendent groups. The rheological investigation suggests clearly that the POSS acts as a plasticizer and that the processability of the PS was positively modified. The affinity between the POSS samples and the PS matrix was estimated by the calculated theoretical solubility parameters, considering the Hoy’s method and by morphology analysis. Minor difference between the solubility parameter of POSS and the matrix means better compatibility and no aggregation tendency. Furthermore, the POSS loading leads to a decrease of the rigidity, of the glass transition temperature and of the damping factor of the nanocomposite systems. The loading of different POSS molecules with open cage leads to a more pronounced effect on all the investigated properties that the loading of the POSS molecules with closed cage. Moreover, the melt properties are significantly influenced by the type of inorganic framework, by the type of the pendent organic groups and by the interaction between the POSS organic groups and the host matrix, while, the solid state properties appears to be influenced more by the kind of cage.

  8. Synthesis, quantitative structure-property relationship study of novel fluorescence active 2-pyrazolines and application

    Science.gov (United States)

    Girgis, Adel S.; Basta, Altaf H.; El-Saied, Houssni; Mohamed, Mohamed A.; Bedair, Ahmad H.; Salim, Ahmad S.

    2018-03-01

    A variety of fluorescence-active fluorinated pyrazolines 13-33 was synthesized in good yields through cyclocondensation reaction of propenones 1-9 with aryl hydrazines 10-12. Some of the synthesized compounds provided promising fluorescence properties with quantum yield (Φ) higher than that of quinine sulfate (standard reference). Quantitative structure-property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines (13, 15, 18, 19 and 23) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23, provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents.

  9. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.

    Science.gov (United States)

    Walsh, Tiffany R

    2017-07-18

    An in-depth appreciation of how to manipulate the molecular-level recognition between peptides and aqueous materials interfaces, including nanoparticles, will advance technologies based on self-organized metamaterials for photonics and plasmonics, biosensing, catalysis, energy generation and harvesting, and nanomedicine. Exploitation of the materials-selective binding of biomolecules is pivotal to success in these areas and may be particularly key to producing new hierarchically structured biobased materials. These applications could be accomplished by realizing preferential adsorption of a given biomolecule onto one materials composition over another, one surface facet over another, or one crystalline polymorph over another. Deeper knowledge of the aqueous abiotic-biotic interface, to establish clear structure-property relationships in these systems, is needed to meet this goal. In particular, a thorough structural characterization of the surface-adsorbed peptides is essential for establishing these relationships but can often be challenging to accomplish via experimental approaches alone. In addition to myriad existing challenges associated with determining the detailed molecular structure of any molecule adsorbed at an aqueous interface, experimental characterization of materials-binding peptides brings new, complex challenges because many materials-binding peptides are thought to be intrinsically disordered. This means that these peptides are not amenable to experimental techniques that rely on the presence of well-defined secondary structure in the peptide when in the adsorbed state. To address this challenge, and in partnership with experiment, molecular simulations at the atomistic level can bring complementary and critical insights into the origins of this abiotic/biotic recognition and suggest routes for manipulating this phenomenon to realize new types of hybrid materials. For the reasons outlined above, molecular simulation approaches also face

  10. Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-01-01

    Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.

  11. Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-05-01

    Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.

  12. Processing, structure, property and performance relationships for the thermal spray of the internal surface of aluminum cylinders

    Science.gov (United States)

    Cook, David James

    The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips

  13. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip

    2015-01-01

    step towards accurate identification and prediction of a variety of oxide/electrode interfacial structure-properties relationships, but also provides the foundation for rational design and control of ‘targeted active phases’ at catalytic interfaces. The successful design of bifunctional......In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... under alkaline electrochemical conditions. We demonstrate that the structure and oxidation state of the films can be systematically tuned by changing the applied electrode potential and/or the nature of substrates. Structural features determined from the theoretical calculations provide a wealth...

  14. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  15. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    Science.gov (United States)

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  16. Microstructure mechanical properties relationship in bainitic structures

    International Nuclear Information System (INIS)

    Altuna, M. A.; Gutierrez, I.

    2005-01-01

    In the present work, the microstructures and their mechanical properties have been studies in different bainitic structures. therefore, different bainitic morphologies have been produced by isothermal treatments carried out at different temperatures. For these steels, 400-450 degree centigree is the optimum range of temperatures in order to obtain bainitic structures. If the Temperature is higher, perlite is also formed and if it is lower, martensite is obtained during quenching. SEM and EBSD/OIM techniques were applied in order to study the microstructure. Tensile tests were carried out for mechanical characterization. (Author) 20 refs

  17. Elucidation of the structure-property relationship of p-type organic semiconductors through rapid library construction via a one-pot, Suzuki-Miyaura coupling reaction.

    Science.gov (United States)

    Fuse, Shinichiro; Matsumura, Keisuke; Wakamiya, Atsushi; Masui, Hisashi; Tanaka, Hiroshi; Yoshikawa, Susumu; Takahashi, Takashi

    2014-09-08

    The elucidation of the structure-property relationship is an important issue in the development of organic electronics. Combinatorial synthesis and the evaluation of systematically modified compounds is a powerful tool in the work of elucidating structure-property relationships. In this manuscript, D-π-A structure, 32 p-type organic semiconductors were rapidly synthesized via a one-pot, Suzuki-Miyaura coupling with subsequent Knoevenagel condensation. Evaluation of the solubility and photovoltaic properties of the prepared compounds revealed that the measured solubility was strongly correlated with the solubility parameter (SP), as reported by Fedors. In addition, the SPs were correlated with the Jsc of thin-film organic solar cells prepared using synthesized compounds. Among the evaluated photovoltaic properties of the solar cells, Jsc and Voc had strong correlations with the photoconversion efficiency (PCE).

  18. Relationship between pore structure and compressive strength

    Indian Academy of Sciences (India)

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and ...

  19. Synthetic Study on the Relationship Between Structure and Sweet Taste Properties of Steviol Glycosides

    Directory of Open Access Journals (Sweden)

    Grant Dubois

    2012-04-01

    Full Text Available The structure activity relationship between the C16-C17 methylene double bond on the aglycone of steviol glycosides and the corresponding impact on their sweet taste has been reported here for the first time. It has been observed that converting stevioside and rebaudioside A to their corresponding ketones by switching the doubly bonded methylene on C-17 for a ketone group actually removes the sweet taste properties of these molecules completely. Regenerating the original molecules tends to restore the sweet taste of both the steviol glycosides. Thus this C16-C17 methylene double bond in rebaudioside A and stevioside can be regarded as a pharmacophore essential for the sweetness property of these molecules.

  20. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    Science.gov (United States)

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  1. Research on the relationship between the structural properties of bedding layer in spring mattress and sleep quality.

    Science.gov (United States)

    Shen, Liming; Chen, Yu-xia; Guo, Yong; Zhong, ShiLu; Fang, Fei; Zhao, Jing; Hu, Tian-Yi

    2012-01-01

    Mattress, as a sleep platform, its types and physical properties has an important effect on sleep quality and rest efficiency. In this paper, by subjective evaluations, analysis of sleeping behaviors and tests of depth of sleep, the relationship between characteristics of the bedding materials, the structure of mattress, sleep quality and sleep behaviors were studied. The results showed that: (1) Characteristics of the bedding materials and structure of spring mattress had a remarkable effect on sleep behaviors and sleep quality. An optimum combination of the bedding materials, the structure of mattress and its core could improve the overall comfort of mattress, thereby improving the depth of sleep and sleep quality. (2) Sleep behaviors had a close relationship with sleeping postures and sleep habits. The characteristics of sleep behaviors vary from person to person.

  2. Process, structure, property and applications of metallic glasses

    Directory of Open Access Journals (Sweden)

    B. Geetha Priyadarshini

    2016-07-01

    Full Text Available Metallic glasses (MGs are gaining immense technological significance due to their unique structure-property relationship with renewed interest in diverse field of applications including biomedical implants, commercial products, machinery parts, and micro-electro-mechanical systems (MEMS. Various processing routes have been adopted to fabricate MGs with short-range ordering which is believed to be the genesis of unique structure. Understanding the structure of these unique materials is a long-standing unsolved mystery. Unlike crystalline counterpart, the outstanding properties of metallic glasses owing to the absence of grain boundaries is reported to exhibit high hardness, excellent strength, high elastic strain, and anti-corrosion properties. The combination of these remarkable properties would significantly contribute to improvement of performance and reliability of these materials when incorporated as bio-implants. The nucleation and growth of metallic glasses is driven by thermodynamics and kinetics in non-equilibrium conditions. This comprehensive review article discusses the various attributes of metallic glasses with an aim to understand the fundamentals of relationship process-structure-property existing in such unique class of material.

  3. Relationship between nano/micro structure and physical properties of TiO2-sodium caseinate composite films.

    Science.gov (United States)

    Montes-de-Oca-Ávalos, Juan Manuel; Altamura, Davide; Candal, Roberto Jorge; Scattarella, Francesco; Siliqi, Dritan; Giannini, Cinzia; Herrera, María Lidia

    2018-03-01

    Films obtained by casting, starting from conventional emulsions (CE), nanoemulsions (NE) or their gels, which led to different structures, with the aim of explore the relationship between structure and physical properties, were prepared. Sodium caseinate was used as the matrix, glycerol as plasticizer, glucono-delta-lactone as acidulant to form the gels, and TiO 2 nanoparticles as reinforcement to improve physical behavior. Structural characterization was performed by SAXS and WAXS (Small and Wide Angle X-ray Scattering, respectively), combined with confocal and scanning electron microscopy. The results demonstrate that the incorporation of the lipid phase does not notably modify the mechanical properties of the films compared to solution films. Films from NE were more stable against oil release than those from CE. Incorporation of TiO 2 improved mechanical properties as measured by dynamical mechanical analysis (DMA) and uniaxial tensile tests. TiO 2 macroscopic spatial distribution homogeneity and the nanostructure character of NE films were confirmed by mapping the q-dependent scattering intensity in scanning SAXS experiments. SAXS microscopies indicated a higher intrinsic homogeneity of NE films compared to CE films, independently of the TiO 2 load. NE-films containing structures with smaller and more homogeneously distributed building blocks showed greater potential for food applications than the films prepared from sodium caseinate solutions, which are the best known films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Materials science in microelectronics I the relationships between thin film processing and structure

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.The first volume of Materials Science in Microelectronics focuses on the first relationship - that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer - determines the ultimate structure of the thin film, and thus its properties. This

  5. Structure-function-property-design interplay in biopolymers: spider silk.

    Science.gov (United States)

    Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L

    2014-04-01

    Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Structure-function relationships of human meniscus.

    Science.gov (United States)

    Danso, Elvis K; Oinas, Joonas M T; Saarakkala, Simo; Mikkonen, Santtu; Töyräs, Juha; Korhonen, Rami K

    2017-03-01

    Biomechanical properties of human meniscus have been shown to be site-specific. However, it is not known which meniscus constituents at different depths and locations contribute to biomechanical properties obtained from indentation testing. Therefore, we investigated the composition and structure of human meniscus in a site- and depth-dependent manner and their relationships with tissue site-specific biomechanical properties. Elastic and poroelastic properties were analyzed from experimental stress-relaxation and sinusoidal indentation measurements with fibril reinforced poroelastic finite element modeling. Proteoglycan (PG) and collagen contents, as well as the collagen orientation angle, were determined as a function of tissue depth using microscopic and spectroscopic methods, and they were compared with biomechanical properties. For all the measurement sites (anterior, middle and posterior) of lateral and medial menisci (n=26), PG content and collagen orientation angle increased as a function of tissue depth while the collagen content had an initial sharp increase followed by a decrease across tissue depth. The highest values (pmeniscus. This location had also higher (pmeniscus, higher (pmeniscus) significantly higher (pmeniscus modulus and/or nonlinear permeability. This study suggests that nonlinear biomechanical properties of meniscus, caused by the collagen network and fluid, may be strongly influenced by tissue osmotic swelling from the deep meniscus caused by the increased PG content, leading to increased collagen fibril tension. These nonlinear biomechanical properties are suggested to be further amplified by higher collagen content at all tissue depths and superficial collagen fibril orientation. However, these structure-function relationships are suggested to be highly site-specific. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A New Variable Selection Method Based on Mutual Information Maximization by Replacing Collinear Variables for Nonlinear Quantitative Structure-Property Relationship Models

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Jahan B.; Zolfonoun, Ehsan [Toosi University of Technology, Tehran (Korea, Republic of)

    2012-05-15

    Selection of the most informative molecular descriptors from the original data set is a key step for development of quantitative structure activity/property relationship models. Recently, mutual information (MI) has gained increasing attention in feature selection problems. This paper presents an effective mutual information-based feature selection approach, named mutual information maximization by replacing collinear variables (MIMRCV), for nonlinear quantitative structure-property relationship models. The proposed variable selection method was applied to three different QSPR datasets, soil degradation half-life of 47 organophosphorus pesticides, GC-MS retention times of 85 volatile organic compounds, and water-to-micellar cetyltrimethylammonium bromide partition coefficients of 62 organic compounds.The obtained results revealed that using MIMRCV as feature selection method improves the predictive quality of the developed models compared to conventional MI based variable selection algorithms.

  8. A New Variable Selection Method Based on Mutual Information Maximization by Replacing Collinear Variables for Nonlinear Quantitative Structure-Property Relationship Models

    International Nuclear Information System (INIS)

    Ghasemi, Jahan B.; Zolfonoun, Ehsan

    2012-01-01

    Selection of the most informative molecular descriptors from the original data set is a key step for development of quantitative structure activity/property relationship models. Recently, mutual information (MI) has gained increasing attention in feature selection problems. This paper presents an effective mutual information-based feature selection approach, named mutual information maximization by replacing collinear variables (MIMRCV), for nonlinear quantitative structure-property relationship models. The proposed variable selection method was applied to three different QSPR datasets, soil degradation half-life of 47 organophosphorus pesticides, GC-MS retention times of 85 volatile organic compounds, and water-to-micellar cetyltrimethylammonium bromide partition coefficients of 62 organic compounds.The obtained results revealed that using MIMRCV as feature selection method improves the predictive quality of the developed models compared to conventional MI based variable selection algorithms

  9. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    Science.gov (United States)

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  10. Absorbability, Mechanism and Structure-Property Relationship of Three Phenolic Acids from the Flowers of Trollius chinensis

    Directory of Open Access Journals (Sweden)

    Xiu-Wen Wu

    2014-11-01

    Full Text Available The absorption properties, mechanism of action, and structure-property relationship of three phenolic acids isolated from the flowers of Trollius chinensis Bunge, namely, proglobeflowery acid (PA, globeflowery acid (GA and trolloside (TS, were investigated using the human Caco-2 cell monolayer model. The results showed that these three phenolic acids were transported across the Caco-2 cell monolayer in a time and concentration dependent manner at the Papp level of 10−5 cm/s, and their extent of absorption correlated with their polarity and molecular weight. In conclusion, all three of these compounds were easily absorbed through passive diffusion, which implied their high bioavailability and significant contribution to the effectiveness of T. chinensis.

  11. The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures

    Science.gov (United States)

    This report summarizes the results of a study of the relationship between microstructure and magnetic properties in a unique genre of ferromagnetic material characterized by a polysynthetically twinned structure which arises during solid state transformation. These results stem from the work over a period of approximately 27 months of a nominal 3 year grant period. The report also contains a proposal to extend the research project for an additional 3 years. The polytwinned structures produce an inhomogeneous magnetic medium in which the easy axis of magnetization varies quasi-periodically giving rise to special domain configurations which are expected to markedly influence the mechanism of magnetization reversal and hysteresis behavior of these materials in bulk or thin films. The extraordinary permanent magnet properties exhibited by the well-known Co-Pt alloys as well as the Fe-Pt and Fe-Pd systems near the equiatomic composition derive from the formation of a polytwinned microstructure.

  12. Distributing Correlation Coefficients of Linear Structure-Activity/Property Models

    Directory of Open Access Journals (Sweden)

    Sorana D. BOLBOACA

    2011-12-01

    Full Text Available Quantitative structure-activity/property relationships are mathematical relationships linking chemical structure and activity/property in a quantitative manner. These in silico approaches are frequently used to reduce animal testing and risk-assessment, as well as to increase time- and cost-effectiveness in characterization and identification of active compounds. The aim of our study was to investigate the pattern of correlation coefficients distribution associated to simple linear relationships linking the compounds structure with their activities. A set of the most common ordnance compounds found at naval facilities with a limited data set with a range of toxicities on aquatic ecosystem and a set of seven properties was studied. Statistically significant models were selected and investigated. The probability density function of the correlation coefficients was investigated using a series of possible continuous distribution laws. Almost 48% of the correlation coefficients proved fit Beta distribution, 40% fit Generalized Pareto distribution, and 12% fit Pert distribution.

  13. Perspective on Structural Evolution and Relations with Thermophysical Properties of Metallic Liquids.

    Science.gov (United States)

    Wang, Xiao-Dong; Jiang, Jian-Zhong

    2017-11-01

    The relationship between the structural evolution and properties of metallic liquids is a long-standing hot issue in condensed-matter physics and materials science. Here, recent progress is reviewed in several fundamental aspects of metallic liquids, including the methods to study their atomic structures, liquid-liquid transition, physical properties, fragility, and their correlations with local structures, together with potential applications of liquid metals at room temperature. Involved with more experimentally and theoretically advanced techniques, these studies provide more in-depth understanding of the structure-property relationship of metallic liquids and promote the design of new metallic materials with superior properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study on the structure-properties relationship of natural rubber/SiO2 composites modified by a novel multi-functional rubber agent

    Directory of Open Access Journals (Sweden)

    S. Y. Yang

    2014-06-01

    Full Text Available Vulcanization property and structure-properties relationship of natural rubber (NR/silica (SiO2 composites modified by a novel multi-functional rubber agent, N-phenyl- N'-(γ-triethoxysilane-propyl thiourea (STU, are investigated in detail. Results from the infrared spectroscopy (IR and X-ray photoelectron spectroscopy (XPS show that STU can graft to the surface of SiO2 under heating, resulting in a fine-dispersed structure in the rubber matrix without the connectivity of SiO2 particles as revealed by transmission electron microscopy (TEM. This modification effect reduces the block vulcanization effect of SiO2 for NR/SiO2/STU compounds under vulcanization process evidently. The 400% modulus and tensile strength of NR/SiO2/STU composites are much higher than that of NR/SiO2/TU composites, although the crystal index at the stretching ratio of 4 and crosslinking densities of NR/SiO2 composites are almost the same at the same dosage of SiO2. Consequently, a structure-property relationship of NR/SiO2/STU composites is proposed that the silane chain of STU can entangle with NR molecular chains to form an interfacial region, which is in accordance with the experimental observations quite well.

  15. Structural changes in latosols of the cerrado region: I - relationships between soil physical properties and least limiting water range

    Directory of Open Access Journals (Sweden)

    Eduardo da Costa Severiano

    2011-06-01

    Full Text Available The agricultural potential of Latosols of the Brazilian Cerrado region is high, but when intensively cultivated under inappropriate management systems, the porosity can be seriously reduced, leading to rapid soil degradation. Consequently, accelerated erosion and sedimentation of springs and creeks have been observed. Therefore, the objective of this study was to evaluate structural changes of Latosols in Rio Verde, Goiás, based on the Least Limiting Water Range (LLWR, and relationships between LLWR and other physical properties. Soil samples were collected from the B horizons of five oxidic Latosols representing the textural variability of the Latosols of the Cerrado biome. LLWR and other soil physical properties were determined at various soil compaction degrees induced by uniaxial compression. Soil compaction caused effects varying from enhanced plant growth due to higher water retention, to severe restriction of edaphic functions. Also, inverse relationships were observed between clay content and bulk density values (Bd under different structural conditions. Bd values corresponding to critical soil macroporosity (BdcMAC were more restrictive to a sustainable use of the studied Latosols than the critical Bd corresponding to LLWR (BdcLLWR. The high tolerable compression potential of these oxidic Latosols was related to the high aeration porosity associated to the granular structure.

  16. Uncovering the structure-function relationship in spider silk

    Science.gov (United States)

    Yarger, Jeffery L.; Cherry, Brian R.; van der Vaart, Arjan

    2018-03-01

    All spiders produce protein-based biopolymer fibres that we call silk. The most studied of these silks is spider dragline silk, which is very tough and relatively abundant compared with other types of spider silks. Considerable research has been devoted to understanding the relationship between the molecular structure and mechanical properties of spider dragline silks. In this Review, we overview experimental and computational studies that have provided a wealth of detail at the molecular level on the highly conserved repetitive core and terminal regions of spider dragline silk. We also discuss the role of the nanocrystalline β-sheets and amorphous regions in determining the properties of spider silk fibres, endowing them with strength and elasticity. Additionally, we outline imaging techniques and modelling studies that elucidate the importance of the hierarchical structure of silk fibres at the molecular level. These insights into structure-function relationships can guide the reverse engineering of spider silk to enable the production of superior synthetic fibres.

  17. Structure-property relationships of multiferroic materials: A nano perspective

    Science.gov (United States)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  18. Structural Characteristics and Physical Properties of Tectonically Deformed Coals

    OpenAIRE

    Yiwen Ju; Zhifeng Yan; Xiaoshi Li; Quanlin Hou; Wenjing Zhang; Lizhi Fang; Liye Yu; Mingming Wei

    2012-01-01

    Different mechanisms of deformation could make different influence on inner structure and physical properties of tectonically deformed coal (TDC) reservoirs. This paper discusses the relationship between macromolecular structure and physical properties of the Huaibei-Huainan coal mine areas in southern North China. The macromolecular structure and pore characteristics are systematically investigated by using techniques such as X-ray diffraction (XRD), high-resolution transmission electron mic...

  19. Probing structure-property relationships in perpendicularly magnetized Fe/Cu(001) using MXLD and XPD

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, T.R.; Waddill, G.D. [Univ. of Missouri, Rolla, MO (United States); Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Magnetic X-ray Linear Dichroism (MXLD) in Photoelectron Spectroscopy and X-Ray Photoelectron Diffraction (XPD) of the Fe 3p core level have been used to probe the magnetic structure-property relationships of perpendicularly magnetized Fe/Cu(001), in an element-specific fashion. A strong MEXLD effect was observed in the high resolution photoelectron spectroscopy of the Fe 3p at {open_quotes}normal{close_quotes} emission and was used to follow the loss of perpendicular ferromagnetic ordering as the temperature was raised toward room temperature. In parallel with this, {open_quotes}Forward Focussing{close_quotes} in XPD was used as a direct measure of geometric structure in the overlayer. These results and the implications of their correlation will be discussed. Additionally, an investigation of the effect of Mn doping of the Fe/Cu(001) will be described. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  20. Structure and properties of cell membranes. Volume 3: Methodology and properties of membranes

    International Nuclear Information System (INIS)

    Benga, G.

    1985-01-01

    This book covers the topics: Quantum chemical approach to study the mechanisms of proton translocation across membranes through protein molecules; monomolecular films as biomembrane models; planar lipid bilayers in relation to biomembranes; relation of liposomes to cell membranes; reconstitution of membrane transport systems; structure-function relationships in cell membranes as revealed by X-ray techniques; structure-function relationships in cell membranes as revealed by spin labeling ESR; structure and dynamics of cell membranes as revealed by NMR techniques; the effect of dietary lipids on the composition and properties of biological membranes and index

  1. Multivariate characterisation and quantitative structure-property relationship modelling of nitroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, S. [Man-Technology-Environment Research Centre, Department of Natural Sciences, Orebro University, 701 82 Orebro (Sweden)], E-mail: sofie.jonsson@nat.oru.se; Eriksson, L.A. [Department of Natural Sciences and Orebro Life Science Center, Orebro University, 701 82 Orebro (Sweden); Bavel, B. van [Man-Technology-Environment Research Centre, Department of Natural Sciences, Orebro University, 701 82 Orebro (Sweden)

    2008-07-28

    A multivariate model to characterise nitroaromatics and related compounds based on molecular descriptors was calculated. Descriptors were collected from literature and through empirical, semi-empirical and density functional theory-based calculations. Principal components were used to describe the distribution of the compounds in a multidimensional space. Four components described 76% of the variation in the dataset. PC1 separated the compounds due to molecular weight, PC2 separated the different isomers, PC3 arranged the compounds according to different functional groups such as nitrobenzoic acids, nitrobenzenes, nitrotoluenes and nitroesters and PC4 differentiated the compounds containing chlorine from other compounds. Quantitative structure-property relationship models were calculated using partial least squares (PLS) projection to latent structures to predict gas chromatographic (GC) retention times and the distribution between the water phase and air using solid-phase microextraction (SPME). GC retention time was found to be dependent on the presence of polar amine groups, electronic descriptors including highest occupied molecular orbital, dipole moments and the melting point. The model of GC retention time was good, but the precision was not precise enough for practical use. An important environmental parameter was measured using SPME, the distribution between headspace (air) and the water phase. This parameter was mainly dependent on Henry's law constant, vapour pressure, log P, content of hydroxyl groups and atmospheric OH rate constant. The predictive capacity of the model substantially improved when recalculating a model using these five descriptors only.

  2. Probing the Unique Role of Gallium in Amorphous Oxide Semiconductors through Structure-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Moffitt, Stephanie L.; Zhu, Qimin; Ma, Qing; Falduto, Allison F.; Buchholz, D. Bruce; Chang, Robert P.H.; Mason, Thomas O.; Medvedeva, Julia E.; Marks, Tobin J.; Bedzyk, Michael J. (NWU); (MUST)

    2017-09-01

    This study explores the unique role of Ga in amorphous (a-) In[BOND]Ga[BOND]O oxide semiconductors through combined theory and experiment. It reveals substitutional effects that have not previously been attributed to Ga, and that are investigated by examining how Ga influences structure–property relationships in a series of pulsed laser deposited a-In[BOND]Ga[BOND]O thin films. Element-specific structural studies (X-ray absorption and anomalous scattering) show good agreement with the results of ab initio molecular dynamics simulations. This structural knowledge is used to understand the results of air-annealing and Hall effect electrical measurements. The crystallization temperature of a-IO is shown to increase by as much as 325 °C on substituting Ga for In. This increased thermal stability is understood on the basis of the large changes in local structure that Ga undergoes, as compared to In, during crystallization. Hall measurements reveal an initial sharp drop in both carrier concentration and mobility with increasing Ga incorporation, which moderates at >20 at% Ga content. This decline in both the carrier concentration and mobility with increasing Ga is attributed to dilution of the charge-carrying In[BOND]O matrix and to increased structural disorder. The latter effect saturates at high at% Ga.

  3. RaptorX-Property: a web server for protein structure property prediction.

    Science.gov (United States)

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-07-08

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Structure-Composition-Property Relationships in Polymeric Amorphous Calcium Phosphate-Based Dental Composites

    Directory of Open Access Journals (Sweden)

    Drago Skrtic

    2009-11-01

    Full Text Available Our studies of amorphous calcium phosphate (ACP-based materials over the last decade have yielded bioactive polymeric composites capable of protecting teeth from demineralization or even regenerating lost tooth mineral. The anti-cariogenic/remineralizing potential of these ACP composites originates from their propensity, when exposed to the oral environment, to release in a sustained manner sufficient levels of mineral-forming calcium and phosphate ions to promote formation of stable apatitic tooth mineral. However, the less than optimal ACP filler/resin matrix cohesion, excessive polymerization shrinkage and water sorption of these experimental materials can adversely affect their physicochemical and mechanical properties, and, ultimately, limit their lifespan. This study demonstrates the effects of chemical structure and composition of the methacrylate monomers used to form the matrix phase of composites on degree of vinyl conversion (DVC and water sorption of both copolymers and composites and the release of mineral ions from the composites. Modification of ACP surface via introducing cations and/or polymers ab initio during filler synthesis failed to yield mechanically improved composites. However, moderate improvement in composite’s mechanical stability without compromising its remineralization potential was achieved by silanization and/or milling of ACP filler. Using ethoxylated bisphenol A dimethacrylate or urethane dimethacrylate as base monomers and adding moderate amounts of hydrophilic 2-hydroxyethyl methacrylate or its isomer ethyl-α-hydroxymethacrylate appears to be a promising route to maximize the remineralizing ability of the filler while maintaining high DVC. Exploration of the structure/composition/property relationships of ACP fillers and polymer matrices is complex but essential for achieving a better understanding of the fundamental mechanisms that govern dissolution/re-precipitation of bioactive ACP fillers, and

  5. Exploration of polyamide structure-property relationships by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Barrère, Caroline; Rejaibi, Majed; Curat, Aurélien; Hubert-Roux, Marie; Lavanant, Hélène; Afonso, Carlos; Kebir, Nasreddine; Desilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne

    2014-08-15

    Polyamides (PA) are among the most used classes of polymers because of their attractive properties. Depending on the nature and proportion of the co-monomers used for their synthesis, they can exhibit a very large range of melting temperatures (Tm ). This study aims at the correlation of data from mass spectrometry (MS) with differential scanning calorimetry (DSC) and X-ray diffraction analyses to relate molecular structure to physical properties such as melting temperature, enthalpy change and crystallinity rate. Six different PA copolymers with molecular weights around 3500 g mol(-1) were synthesized with varying proportions of different co-monomers (amino-acid AB/di-amine AA/di-acid BB). Their melting temperature, enthalpy change and crystallinity rate were measured by DSC and X-ray diffraction. Their structural characterization was carried out by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Because of the poor solubility of PA, a solvent-free sample preparation strategy was used with 2,5-dihydroxybenzoic acid (2,5-DHB) as the matrix and sodium iodide as the cationizing agent. The different proportions of the repeating unit types led to the formation of PA with melting temperatures ranging from 115°C to 185°C. The structural characterization of these samples by MALDI-TOF-MS revealed a collection of different ion distributions with different sequences of repeating units (AA, BB; AB/AA, BB and AB) in different proportions according to the mixture of monomers used in the synthesis. The relative intensities of these ion distributions were related to sample complexity and structure. They were correlated to DSC and X-ray results, to explain the observed physical properties. The structural information obtained by MALDI-TOF-MS provided a better understanding of the variation of the PA melting temperature and established a structure-properties relationship. This work will allow future PA designs to be monitored. Copyright

  6. Processing-structure-property relationships of carbon nanotube and nanoplatelet enabled piezoresistive sensors

    Science.gov (United States)

    Luo, Sida

    Individual carbon nanotubes (CNTs) possess excellent piezoresistive performance, which is manifested by the significant electrical resistance change when subject to mechanical deformation. In comparison to individual CNTs, the CNT thin films, formed by a random assembly of individual tubes or bundles, show much lower piezoresistive sensitivity. Given the progress made to date in developing CNT ensemble based-piezoresistive sensors, the related piezoresistive mechanism(s) are still not well understood. The crucial step to obtain a better understanding of this issue is to study the effects of CNT structure in the dispersion on the piezoresistivity of CNT ensemble based-piezoresistive sensors. To reach this goal, my Ph.D. research first focuses on establishing the processing-structure-property relationship of SWCNT thin film piezoresistive sensors. The key accomplishment contains: 1) developing the combined preparative ultracentrifuge method (PUM) and dynamic light scattering (DLS) method to quantitatively characterized SWCNT particle size in dispersions under various sonication conditions; 2) designing combined ultrasonication and microfluidization processing protocol for high throughput and large-scale production of high quality SWCNT dispersions; 3) fabricating varied SWCNT thin film piezoresistive sensors through spray coating technique and immersion-drying post-treatment; and 4) investigating the effect of microstructures of SWCNTs on piezoresistivity of SWCNT thin film sensors. This experimental methodology for quantitative and systematic investigation of the processing-structure-property relationships provides a means for the performance optimization of CNT ensemble based piezoresistive sensors. As a start to understand the piezoresistive mechanism, the second focus of my Ph.D. research is studying charge transport behaviors in SWCNT thin films. It was found that the temperature-dependent sheet resistance of SWCNT thin films could be explained by a 3D variable

  7. Structure-property relationship in dielectric mixtures: application of the spectral density theory

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    This paper presents numerical simulations performed on dielectric properties of two-dimensional binary composites. The influence of structural differences and intrinsic electrical properties of constituents on the composite's overall electrical properties is investigated. The structural differences are resolved by fitting the dielectric data with an empirical formula and by the spectral density representation approach. At low concentrations of inclusions (concentrations lower than the percolation threshold), the spectral density functions are delta-sequences, which corresponds to the predictions of the general Maxwell-Garnett (MG) mixture formula. At high concentrations of inclusions (close to the percolation threshold) systems exhibit non-Debye-type dielectric dispersions, and the spectral density functions differ from each other and that predicted by the MG expression. The analysis of the dielectric dispersions with an empirical formula also brings out the structural differences between the considered geometries, however, the information is not qualitative. The empirical formula can only be used to compare structures. The spectral representation method on the other hand is a concrete way of characterizing the structures of the dielectric mixtures. Therefore, as in other spectroscopic techniques, a look-up table might be useful to classify/characterize structures of composite materials. This can be achieved by generating dielectric data for known structures by using ab initio calculations, as presented and emphasized in this study. The numerical technique presented here is not based on any a priori assumption methods

  8. Structure modification and functionality of whey proteins: quantitative structure-activity relationship approach.

    Science.gov (United States)

    Nakai, S; Li-Chan, E

    1985-10-01

    According to the original idea of quantitative structure-activity relationship, electric, hydrophobic, and structural parameters should be taken into consideration for elucidating functionality. Changes in these parameters are reflected in the property of protein solubility upon modification of whey proteins by heating. Although solubility is itself a functional property, it has been utilized to explain other functionalities of proteins. However, better correlations were obtained when hydrophobic parameters of the proteins were used in conjunction with solubility. Various treatments reported in the literature were applied to whey protein concentrate in an attempt to obtain whipping and gelling properties similar to those of egg white. Mapping simplex optimization was used to search for the best results. Improvement in whipping properties by pepsin hydrolysis may have been due to higher protein solubility, and good gelling properties resulting from polyphosphate treatment may have been due to an increase in exposable hydrophobicity. However, the results of angel food cake making were still unsatisfactory.

  9. Quantitative structure-property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers.

    Science.gov (United States)

    Li, Linnan; Xie, Shaodong; Cai, Hao; Bai, Xuetao; Xue, Zhao

    2008-08-01

    Theoretical molecular descriptors were tested against logK(OW) values for polybrominated diphenyl ethers (PBDEs) using the Partial Least-Squares Regression method which can be used to analyze data with many variables and few observations. A quantitative structure-property relationship (QSPR) model was successfully developed with a high cross-validated value (Q(cum)(2)) of 0.961, indicating a good predictive ability and stability of the model. The predictive power of the QSPR model was further cross-validated. The values of logK(OW) for PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied molecular orbital and the net atomic charges on the oxygen atom. All these descriptors have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk property of the molecules represented by molecular surface area is the leading factor, and K(OW) values increase with the increase of molecular surface area. Higher energy of the lowest unoccupied molecular orbital and higher net atomic charge on the oxygen atom of PBDEs result in smaller K(OW). The energy of the lowest unoccupied molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in affecting the partition of PBDEs between octanol and water by influencing the interactions between PBDEs and solvent molecules.

  10. Combining Theoretical Perspectives on the Organizational Structure-Performance Relationship

    Directory of Open Access Journals (Sweden)

    Starling David Hunter

    2015-08-01

    Full Text Available Much of the literature linking organization structure to performance falls into two broad research streams. One stream concerns formal structure – the hierarchy of authority or reporting relationships as well as the degree of standardization, formalization, specialization, etc. The impact of formal structure and other elements of organization design on performance is typically contingent on factors such as strategic orientation, task characteristics, and environmental conditions. The other research stream focuses on informal structure – a network of interpersonal and intra-organizational relationships. Properties of informal structure are typically shown to have a more direct (less contingent impact on organizational performance. Despite these pronounced differences in the conceptualization of organization structure, considerable overlap and complementarity exist between the two research streams. In this article, I compare and contrast a pair of exemplars from each stream – the information processing perspective and the social network perspective – with respect to their conceptualizations of organization structure and its relationship to performance. Several recommendations for future research that combines the two approaches are offered.

  11. The Structure and Flexural Properties of Typha Leaves

    Directory of Open Access Journals (Sweden)

    Jingjing Liu

    2017-01-01

    Full Text Available The Typha leaf has a structure of lightweight cantilever beam, exhibiting excellent mechanical properties with low density. Especially, the leaf blade evolved high strength and low density with high porosity. In this paper, the structure of Typha leaf was characterized by microcomputed tomography (Micro-CT and scanning electron microscopy (SEM, and the relationship with flexural properties was analyzed. The three-point bending test was performed on leaves to examine flexural properties, which indicated that the flexural properties vary from the base to the apex in gradient. The cross-sectional geometry shape of the leaf blade presented a strong influence on the optimized flexural stiffness. The load carrying capacity of the leaf depended on the development level of the epidermal tissue, the vascular bundle, the mechanical tissue, and the geometric properties. The investigation can be the basis for lightweight structure design and the application in the bionic engineering field.

  12. The Relationship between Property Rights and Economic Growth: an Analysis of OECD and EU Countries

    Directory of Open Access Journals (Sweden)

    Haydaroğlu Ceyhun

    2015-12-01

    Full Text Available In recent years, institutions and institutional structure have become some of the most popular concepts analyzed by economics theory. New growth theories have especially focused on the effects of institutions and institutional structure on a macro level. Property rights are one of the most important elements of this institutional structure. The relationship between property rights and economic growth have drawn the attention of many researchers and policymakers in recent years. The aim of this study, covering the period 2007–2014, is to examine the relationship between property rights and economic growth with the help of PARDL in OECD and EU countries. According to the result of a bounds test, there is cointegration between the variables. The long- and short-term relationships between series were determined and the results taken from the analysis show that there is a positive effect on economic growth in those countries.

  13. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    Science.gov (United States)

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties.

  14. Adsorption of s-triazines onto polybenzimidazole: A quantitative structure-property relationship investigation

    Energy Technology Data Exchange (ETDEWEB)

    D' Archivio, Angelo Antonio, E-mail: angeloantonio.darchivio@univaq.it [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi dell' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Incani, Angela; Mazzeo, Pietro; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi dell' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2009-09-21

    The adsorption of 25 symmetric triazines (s-triazines) on polybenzimidazole (PBI) beads is investigated under equilibrium (batch) conditions. The observed adsorption isotherms of the selected compounds are accurately described by the Freundlich model, while the agreement between the Langmuir model and the experimental data is moderately worse, which seems to reflect the heterogeneous meso- and micro-porosity of PBI and polydispersion in the interaction mechanism. Methylthio- and methoxytriazines exhibit a greater adsorption tendency as compared with chlorotriazines, moreover, progressive dealkylation of amino groups results in a progressive increase of triazine uptake on PBI. Based on these evidences, the adsorption mechanism seems to be governed by a combination of {pi}-{pi} and hydrogen-bonding interactions. Genetic algorithm (GA) variable selection and multilinear regression (MLR) are combined in order to describe the effect of triazine structure on the extraction performance of PBI according to the quantitative structure-property relationship (QSPR) method. q{sub max}, the amount of triazine adsorbed per weight unit of PBI assuming homogeneous monolayer (Langmuir) mechanism, exhibits a great variability within the set of investigated triazines and is the quantity here modelled by QSPR. On the other hand, the Freundlich constant, K{sub F}, which expresses the adsorption efficiency under multilayer heterogeneous conditions, even if markedly increases passing from chloro- to methylthio- or methoxytriazines, is less noticeably affected by the fine details of the adsorbate structure, as the number or nature of alkyl fragments bound to the amino groups. To quantitatively relate q{sub max} with the triazine structure GA-MLR analysis is performed on the set of 1664 theoretical molecular descriptors provided by the software Dragon. Finally, a four-dimensional QSPR model is selected based on leave-one-out cross-validation and its prediction ability is further tested on

  15. Adsorption of s-triazines onto polybenzimidazole: A quantitative structure-property relationship investigation

    International Nuclear Information System (INIS)

    D'Archivio, Angelo Antonio; Incani, Angela; Mazzeo, Pietro; Ruggieri, Fabrizio

    2009-01-01

    The adsorption of 25 symmetric triazines (s-triazines) on polybenzimidazole (PBI) beads is investigated under equilibrium (batch) conditions. The observed adsorption isotherms of the selected compounds are accurately described by the Freundlich model, while the agreement between the Langmuir model and the experimental data is moderately worse, which seems to reflect the heterogeneous meso- and micro-porosity of PBI and polydispersion in the interaction mechanism. Methylthio- and methoxytriazines exhibit a greater adsorption tendency as compared with chlorotriazines, moreover, progressive dealkylation of amino groups results in a progressive increase of triazine uptake on PBI. Based on these evidences, the adsorption mechanism seems to be governed by a combination of π-π and hydrogen-bonding interactions. Genetic algorithm (GA) variable selection and multilinear regression (MLR) are combined in order to describe the effect of triazine structure on the extraction performance of PBI according to the quantitative structure-property relationship (QSPR) method. q max , the amount of triazine adsorbed per weight unit of PBI assuming homogeneous monolayer (Langmuir) mechanism, exhibits a great variability within the set of investigated triazines and is the quantity here modelled by QSPR. On the other hand, the Freundlich constant, K F , which expresses the adsorption efficiency under multilayer heterogeneous conditions, even if markedly increases passing from chloro- to methylthio- or methoxytriazines, is less noticeably affected by the fine details of the adsorbate structure, as the number or nature of alkyl fragments bound to the amino groups. To quantitatively relate q max with the triazine structure GA-MLR analysis is performed on the set of 1664 theoretical molecular descriptors provided by the software Dragon. Finally, a four-dimensional QSPR model is selected based on leave-one-out cross-validation and its prediction ability is further tested on four

  16. Understanding nanocellulose chirality and structure-properties relationship at the single fibril level

    Science.gov (United States)

    Usov, Ivan; Nyström, Gustav; Adamcik, Jozef; Handschin, Stephan; Schütz, Christina; Fall, Andreas; Bergström, Lennart; Mezzenga, Raffaele

    2015-06-01

    Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement.

  17. Three-dimensional quantitative structure-property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs): enthalpy of vaporization.

    Science.gov (United States)

    Puri, Swati; Chickos, James S; Welsh, William J

    2002-01-01

    Three-dimensional Quantitative Structure-Property Relationship (QSPR) models have been derived using Comparative Molecular Field Analysis (CoMFA) to correlate the vaporization enthalpies of a representative set of polychlorinated biphenyls (PCBs) at 298.15 K with their CoMFA-calculated physicochemical properties. Various alignment schemes, such as inertial, as is, and atom fit, were employed in this study. The CoMFA models were also developed using different partial charge formalisms, namely, electrostatic potential (ESP) charges and Gasteiger-Marsili (GM) charges. The most predictive model for vaporization enthalpy (Delta(vap)H(m)(298.15 K)), with atom fit alignment and Gasteiger-Marsili charges, yielded r2 values 0.852 (cross-validated) and 0.996 (conventional). The vaporization enthalpies of PCBs increased with the number of chlorine atoms and were found to be larger for the meta- and para-substituted isomers. This model was used to predict Delta(vap)H(m)(298.15 K) of the entire set of 209 PCB congeners.

  18. Structure and properties of interfaces in ceramics

    International Nuclear Information System (INIS)

    Bonnell, D.; Ruehle, M.; Chowdhry, U.

    1995-01-01

    The motivation for the symposium was the observation that interfaces in crystallographically and compositionally complex systems often dictate the performance and reliability of devices that utilize functional ceramics. The current level of understanding of interface-property relations in silicon-based devices required over 30 years of intensive research. Similar issues influence the relationship between atomic bonding at interfaces and properties in functional ceramic systems. The current understanding of these complex interfaces does not allow correlation between atomic structure and interface properties, in spite of their importance to a number of emerging technologies (wireless communications, radar-based positioning systems, sensors, etc.). The objective of this symposium was to focus attention on these fundamental issues by featuring recent theoretical and experimental work from various disciplines that impact the understanding of interface chemistry, structure, and properties. The emphasis was on relating properties of surfaces and interfaces to structure through an understanding of atomic level phenomena. Interfaces of interest include metal/ceramic, ceramic/ceramic, ceramic/vapor, etc., in electronic, magnetic, optical, ferroelectric, piezoelectric, and dielectric applications. Sixty one papers have been processed separately for inclusion on the data base

  19. Structure-properties relationships in melt reprocessed PLA/hydrotalcites nanocomposites

    Directory of Open Access Journals (Sweden)

    R. Scaffaro

    2017-07-01

    Full Text Available In this work the effect of multiple reprocessing was studied on molecular structure, morphology and properties of poly(lactic acid/hydrotalcites (PLA/HT nanocomposites compared to neat PLA. In addition, the influence of two different kinds of HT – organically modified (OM-HT and unmodified (U-HT – was evaluated. Thermo-mechanical degradation was induced by means of five subsequent extrusion cycles. The performance of the recycled materials was investigated by mechanical and rheological tests, differential scanning calorimetry (DSC, intrinsic viscosity measurements and SEM observation. The results indicated that the best morphology was achieved in the systems incorporating OM-HT. On increasing the extrusion reprocessing cycles, the properties showed behavior due to two opposite effects: i chain scission due to thermo-mechanical degradation and ii filler dispersion effect resulting from multiple processing. In particular, at low reprocessing cycles, both tensile and rheological properties seem to be mainly affected by HT dispersion, especially when OM-HT was added. After five reprocessing cycles, on the contrary, chain scission, i.e. thermo-mechanical degradation, dominated. As regards the effect of the presence of organic modifier in HT, the results indicated that this variable apparently did not affect the macroscopic performance of the nanocomposites, especially at high reprocessing cycles.

  20. A review of the structure-property relationships in lead-free piezoelectric (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–(x)BaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    McQuade, Ryan R.; Dolgos, Michelle R., E-mail: Michelle.Dolgos@oregonstate.edu

    2016-10-15

    Piezoelectric materials are increasingly being investigated for energy harvesting applications where (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–(x)BaTiO{sub 3} (NBT-BT) is an important lead-free piezoelectric material with potential to be used as an actuator in energy harvesting devices. Much effort has been put into modifying NBT-BT to tune the properties for specific applications, but there is currently no consensus regarding the structure-property relationships in this material, making targeted, rational design a major challenge. In this review, we will summarize the current body of knowledge of NBT-BT and discuss contradicting studies, unresolved problems, and future directions in the field. - Graphical abstract: This review of (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–(x)BaTiO{sub 3} (NBT-BT) summarizes the large body of literature regarding the structure-property relationships of this complex material. We highlight structural studies of the average and local structures of both unpoled and poled samples of NBT-BT at its morphotropic phase boundary and discuss them in context of the observed piezoelectric properties. - Highlights: • Local and average structure of NBT-BT at morphotropic phase boundary is reviewed. • Average structure of poled and unpoled samples of NBT-BT is discussed. • Structure-property relationships in NBT-BT and future directions are summarized.

  1. On the Development and Use of Large Chemical Similarity Networks, Informatics Best Practices and Novel Chemical Descriptors Towards Materials Quantitative Structure Property Relationships

    Science.gov (United States)

    Krein, Michael

    After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright cheating in the form of explicitly removing data to fit models. These actions do not serve the community well, nor are they beneficial to future predictions based on established models. In practice, in order to select combinations of descriptors and machine learning methods that might work best, one must consider the nature and size of the training and test datasets, be aware of existing hypotheses about the data, and resist the temptation to bias structure representation and modeling to explicitly fit the hypotheses. The definition and application of these best practices is important for obtaining actionable modeling outcomes, and for setting user expectations of modeling accuracy when predicting the endpoint values of unknowns. A wide variety of statistical learning approaches, descriptor types, and model validation strategies are explored herein, with the goals of helping end users understand the factors involved in creating and using QSPR models effectively, and to better understand relationships within the data, especially by looking at the problem space from multiple perspectives. Molecular relationships are commonly envisioned in a continuous high-dimensional space of numerical descriptors, referred to as chemistry space. Descriptor and similarity metric choice influence the partitioning of this space into regions corresponding to local structural similarity. These regions, known as domains of applicability, are most likely to be successfully modeled by a QSPR. In Chapter 2, the network topology and scaling relationships of several chemistry spaces are thoroughly investigated. Chemistry spaces studied include the

  2. Effect of Weave Structure on Thermo-Physiological Properties of Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Ahmad Sheraz

    2015-03-01

    Full Text Available This paper aims to investigate the relationship between fabric weave structure and its comfort properties. The two basic weave structures and four derivatives for each selected weave structure were studied. Comfort properties, porosity, air permeability and thermal resistance of all the fabric samples were determined. In our research the 1/1 plain weave structure showed the highest thermal resistance making it suitable for cold climatic conditions. The 2/2 matt weave depicted the lowest thermal resistance which makes it appropriate for hot climatic conditions.

  3. Relationship between the structural stability with the types and land uses in southeastern Spain

    International Nuclear Information System (INIS)

    Marin Sanleandro, P.; Sanchez Navarro, A.; Delgado Iniesta, M. J.; Fernandez-Delgado Juarez, M.

    2009-01-01

    Structural stability is one of the most important physical properties and is proposed as an indicator of quality. The aim of this study is to see the possible relationship between this property with soil types and uses of them. In this paper we have selected the Mazarron area based on their environmental characteristics and has taken forty-one topsoil samples, after analysis and study of the relationship between its structural stability with soil types and uses of same, we find a closer relationship in the case of uses that type, so that the natural soil as the percentage of stable aggregates close to 75%, while in soils anthropized this value reaches 44 %. (Author) 6 refs

  4. Kinetic Control of Aqueous Hydrolysis: Modulating Structure/Property Relationships in Inorganic Crystals

    Science.gov (United States)

    Neilson, James R.

    2011-12-01

    A grand challenge in materials science and chemistry revolves around the preparation of materials with desired properties by controlling structure on multiple length scales. Biology approaches this challenge by evolving tactics to transform soluble precursors into materials and composites with macro-scale and atomic precision. Studies of biomineralization in siliceous sponges led to the discovery of slow, catalytic hydrolysis of molecular precursors in the biogenesis of silica skeletal elements with well defined micro- and nano-scale architectures. However, the role of aqueous hydrolysis in the limit of kinetic control is not well understood; this allows us to form a central hypothesis: that the kinetics of hydrolysis modulate the structures of materials and their properties. As a model system, the diffusion of a simple hydrolytic catalyst (such as ammonia) across an air-water interface into a metal salt solution reproduces some aspects of the chemistry found in biomineralization, namely kinetic and vectorial control. Variation of the catalyst concentration modulates the hydrolysis rate, and thus alters the resulting structure of the inorganic crystals. Using aqueous solutions of cobalt(II) chloride, each product (cobalt hydroxide chloride) forms with a unique composition, despite being prepared from identical mother liquors. Synchrotron X-ray total scattering methods are needed to locate the atomic positions in the material, which are not aptly described by a traditional crystallographic unit cell due to structural disorder. Detailed definition of the structure confirms that the hydrolysis conditions systematically modulate the arrangement of atoms in the lattice. This tightly coupled control of crystal formation and knowledge of local and average structures of these materials provides insight into the unusual magnetic properties of these cobalt hydroxides. The compounds studied show significant and open magnetization loops with little variation with composition

  5. Process-Structure-Property Relationship in Magnesium-Based Biodegradable Alloy for Biomedical Applications

    Science.gov (United States)

    Trivedi, Pramanshu

    Magnesium alloys are considered to be the next generation of biomaterials because of their ability to degrade in the physiological environment. We elucidate here the impact of multiaxial forging of Mg-2Zn-2Gd alloy on grain refinement to sub-micron regime and relate the structure to mechanical properties and biological functionality. As-cast and annealed samples were multiaxial forged (MAF) for a total number of two passes with a true strain of 2/pass. Considering that the microstructure governs the biological response of materials, we studied the constituents of the microstructure in conjunction with the mechanical behavior. The antimicrobial behavior in a Mg-2Zn-2Gd alloy with different grain size in the range of 44 microm to 710 nm was studied by seeding. Surface energy and contact angle measurements using goniometer and wettability were assessed with water, SBF, n-Hexane, and DMEM. The structure-property relationship in Mg-2Zn-2Gd alloy to maintaining mechanical integrity during degradation was studied by seeding Escherichia coli ( E. coli). Furthermore, we studied the effect of degradation behavior in the presence and absence of cells. This was followed by the study of bioactivity in terms of phases present on the surface and degradation products in simulated body fluid (SBF). Magnesium coated with apatite using a biomimetic approach were placed in a 24-well culture plate with alpha-MEM media and the degradation behavior was studied in the absence and presence of cells (seeding density: 10,000 cells/cm2). The change in pH was monitored at regular intervals. Cell attachment was studied by seeding the cells for 4h and cell viability was studied by seeding the cells for up to 1, 3, and 7 days. The study underscores that the fine-grained alloys exhibited superior mechanical properties, antimicrobial resistance, and cell attachment. The degradation rate was also least for fine-grained alloy. The higher surface energy of ultrafine-grained Mg-2Zn-2Gd alloy led to the

  6. Chemical Structure and Properties: A Modified Atoms-First, One-Semester Introductory Chemistry Course

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jakubowski, Henry V.; McKenna, Anna G.; McIntee, Edward J.; Jones, T. Nicholas; Fazal, M. A.; Peterson, Alicia A.

    2015-01-01

    A one-semester, introductory chemistry course is described that develops a primarily qualitative understanding of structure-property relationships. Starting from an atoms-first approach, the course examines the properties and three-dimensional structure of metallic and ionic solids before expanding into a thorough investigation of molecules. In…

  7. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces

    International Nuclear Information System (INIS)

    Katz, J. Lawrence; Misra, Anil; Spencer, Paulette; Wang, Yong; Bumrerraj, Sauwanan; Nomura, Tsutomu; Eppell, Steven J.; Tabib-Azar, Massood

    2007-01-01

    This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin-enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level

  8. Specialists meeting on properties of primary circuit structural materials including environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials.

  9. Specialists meeting on properties of primary circuit structural materials including environmental effects

    International Nuclear Information System (INIS)

    1977-01-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials

  10. A compilation of structural property data for computer impact calculation (5/5)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-10-01

    The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 5 involve structural property data of wood. (author)

  11. Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Paul G.; Liu, Xiaogang; Zhao, Teng; Cole, Jacqueline M.

    2015-05-01

    The absorption and fluorescence properties of six boron dipyrromethene (BODIPY) laser dyes with simple non-aromatic substituents are rationalized by relating them to observable structural perturbations within the molecules of the dyes. An empirical relationship involving the structure and the optical properties is derived using a combination of single-crystal X-ray diffraction data, quantum chemical calculations and electronic constants: i.e. the tendency of the pyrrole bond lengths towards aromaticity and the UV-vis absorption and fluorescence wavelengths correlating with the electron-donor properties of the substituents. The effect of molecular conformation on the solid-state optical properties of the dyes is also discussed. The findings in this study also demonstrate the usefulness and limitations of using crystal structure data to develop structure-property relationships in this class of optical materials, contributing to the growing effort to design optoelectronic materials with tunable properties via molecular engineering.

  12. Development of Quantitative Structure-Property Relationship Models for Self-Emulsifying Drug Delivery System of 2-Aryl Propionic Acid NSAIDs

    Directory of Open Access Journals (Sweden)

    Chen-Wen Li

    2011-01-01

    Full Text Available We developed the quantative structure-property relationships (QSPRs models to correlate the molecular structures of surfactant, cosurfactant, oil, and drug with the solubility of poorly water-soluble 2-aryl propionic acid nonsteroidal anti-inflammatory drugs (2-APA-NSAIDs in self-emulsifying drug delivery systems (SEDDSs. The compositions were encoded with electronic, geometrical, topological, and quantum chemical descriptors. To obtain reliable predictions, we used multiple linear regression (MLR and artificial neural network (ANN methods for model development. The obtained equations were validated using a test set of 42 formulations and showed a great predictive power, and linear models were found to be better than nonlinear ones. The obtained QSPR models would greatly facilitate fast screening for the optimal formulations of SEDDS at the early stage of drug development and minimize experimental effort.

  13. A compilation of structural property data for computer impact calculation (1/5)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Nagata, Norio.

    1988-10-01

    The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 1 involve structural property data and data processing computer program. (author)

  14. A compilation of structural property data for computer impact calculation (3/5)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-10-01

    The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 3 involve structural property data of stainless steel. (author)

  15. A compilation of structural property data for computer impact calculation (2/5)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-10-01

    The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 2 involve structural property data of mild steel. (author)

  16. Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties.

    Science.gov (United States)

    Spurgeon, David J; Keith, Aidan M; Schmidt, Olaf; Lammertsma, Dennis R; Faber, Jack H

    2013-12-01

    Change in land use and management can impact massively on soil ecosystems. Ecosystem engineers and other functional biodiversity in soils can be influenced directly by such change and this in turn can affect key soil functions. Here, we employ meta-analysis to provide a quantitative assessment of the effects of changes in land use and land management across a range of successional/extensification transitions (conventional arable → no or reduced tillage → grassland → wooded land) on community metrics for two functionally important soil taxa, earthworms and fungi. An analysis of the relationships between community change and soil structural properties was also included. Meta-analysis highlighted a consistent trend of increased earthworm and fungal community abundances and complexity following transitions to lower intensity and later successional land uses. The greatest changes were seen for early stage transitions, such as introduction of reduced tillage regimes and conversion to grassland from arable land. Not all changes, however, result in positive effects on the assessed community metrics. For example, whether woodland conversion positively or negatively affects community size and complexity depends on woodland type and, potentially, the changes in soil properties, such as pH, that may occur during conversion. Alterations in soil communities tended to facilitate subsequent changes in soil structure and hydrology. For example, increasing earthworm abundances and functional group composition were shown to be positively correlated with water infiltration rate (dependent on tillage regime and habitat characteristics); while positive changes in fungal biomass measures were positively associated with soil microaggregate stability. These findings raise the potential to manage landscapes to increase ecosystem service provision from soil biota in relation to regulation of soil structure and water flow.

  17. Processing/structure/property Relationships of Barium Strontium Titanate Thin Films for Dynamic Random Access Memory Application.

    Science.gov (United States)

    Peng, Cheng-Jien

    The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could

  18. Selective extraction of americium(III) over europium(III) ions with pyridylpyrazole ligands. Structure-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dongping; Liu, Ying; Li, Shimeng; Ding, Songdong; Jin, Yongdong; Wang, Zhipeng; Hu, Xiaoyang; Zhang, Lirong [Department of chemistry, Sichuan University, Chengdu (China)

    2017-01-18

    To clarify the structure-property relationships of pyridylpyrazole ligands and provide guidance for the design of new and more efficient ligands for the selective extraction of actinides over lanthanides, a series of alkyl-substituted pyridylpyrazole ligands with different branched chains at different positions of the pyrazole ring were synthesized. Extraction experiments showed that the pyridylpyrazole ligands exhibited good selective extraction abilities for Am{sup III} ions, and the steric effects of the branched chain had a significant impact on the distribution ratios of Am{sup III} and Eu{sup III} ions as well as the separation factor. Moreover, both slope analyses and UV/Vis spectrometry titrations indicated the formation of a 1:1 complex of 2-(1-octyl-1H-pyrazol-3-yl)pyridine (C8-PypzH) with Eu{sup III} ions. The stability constant (log K) for this complex obtained from the UV/Vis titration was 4.45 ± 0.04. Single crystals of the complexes of 3-(2-pyridyl)pyrazole (PypzH) with Eu(NO{sub 3}){sub 3} and Sm(NO{sub 3}){sub 3} were obtained; PypzH acts as a bidentate ligand in the crystal structures, and the N atom with a bound H atom did not participate in the coordination. In general, this study revealed some interesting findings on the effects of the alkyl-chain structure and the special complexation between pyridylpyrazole ligands and Ln{sup III} ions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol.

    Science.gov (United States)

    Ahmed, Hamzah; Shimpi, Manishkumar R; Velaga, Sitaram P

    2017-01-01

    Objectives were to study mechanical properties of various solid forms of paracetamol and relate to their crystal structures. Paracetamol form I (PRA), its cocrystals with oxalic acid (PRA-OXA) and 4,4-bipyridine (PRA-BPY) and hydrochloride salt (PRA-HCL) were selected. Cocrystals and salt were scaled-up using rational crystallization methods. The resulting materials were subjected to different solid-state characterizations. The powders were sieved and 90-360 µm sieve fraction was considered. These powders were examined by scanning electron microscopy (SEM) and densities were determined. Tablets were made at applied pressures of 35-180 MPa under controlled conditions and the tablet height, diameter and hardness were measured. Tensile strength and porosity of the tablets were estimated using well known models. Crystal structures of these systems were visualized and slip planes were identified. Cocrystal and salt of PRA were physically pure. Sieved powders had comparable morphologies and particle size. The apparent and theoretical densities of powders were similar, but no clear trends were observed. The tensile strengths of these compacts were increased with increasing pressure whereas tabletability decreased in the order oxalic acid > PRA-HCL ≈ PRA-OXA > BPY > PRA-BPY. Tablet tensile strength decreases exponentially with increasing porosity with the exception of PRY-BPY and BPY. Slip plane prediction based on attachment energies may not be independently considered. However, it was possible to explain the improved mechanical properties of powders based on the crystal structure. Cocrystallization and salt formation have introduced structural features that are responsible for improved tableting properties of PRA.

  20. The Effect of Bedding Structure on Mechanical Property of Coal

    Directory of Open Access Journals (Sweden)

    Zetian Zhang

    2014-01-01

    Full Text Available The mechanical property of coal, influencing mining activity considerably, is significantly determined by the natural fracture distributed within coal mass. In order to study the effecting mechanism of bedding structure on mechanical property of coal, a series of uniaxial compression tests and mesoscopic tests have been conducted. The experimental results show that the distribution characteristic of calcite particles, which significantly influences the growth of cracks and the macroscopic mechanical properties of coal, is obviously affected by the bedding structure. Specifically, the uniaxial compression strength of coal sample is mainly controlled by bedding structure, and the average peak stress of specimens with axes perpendicular to the bedding planes is 20.00 MPa, which is 2.88 times the average amount of parallel ones. The test results also show a close relationship between the bedding structure and the whole deformation process under uniaxial loading.

  1. Trichothecenes: structure-toxic activity relationships.

    Science.gov (United States)

    Wu, Qinghua; Dohnal, Vlastimil; Kuca, Kamil; Yuan, Zonghui

    2013-07-01

    Trichothecenes comprise a large family of structurally related toxins mainly produced by fungi belonging to the genus Fusarium. Among trichothecenes, type A and type B are of the most concern due to their broad and highly toxic nature. In order to address structure-activity relationships (SAR) of trichothecenes, relationships between structural features and biological effects of trichothecene mycotoxins in mammalian systems are summarized in this paper. The double bond between C-9-C-10 and the 12,13-epoxide ring are essential structural features for trichothecene toxicity. Removal of these groups results in a complete loss of toxicity. A hydroxyl group at C-3 enhances trichothecene toxicity, while this activity decreases gradually when C-3 is substituted with either hydrogen or an acetoxy group. The presence of a hydroxyl group at C-4 promotes slightly lower toxicity than an acetoxy group at the same position. The toxicity for type B trichothecenes decreases if the substituent at C-4 is changed from acetoxy to hydroxyl or hydrogen at C-4 position. The presence of hydroxyl and hydrogen groups on C-15 decreases the trichothecene toxicity in comparison with an acetoxy group attached to this carbon. Trichothecenes toxicity increases when a macrocyclic ring exists between the C-4 and C-15. At C-8 position, an oxygenated substitution at C-8 is essential for trichothecene toxicity, indicating a decrease in the toxicity if substituent change from isovaleryloxy through hydrogen to the hydroxyl group. The presence of a second epoxy ring at C-7-C-8 reduces the toxicity, whereas epoxidation at C-9-C-10 of some macrocyclic trichothecenes increases the activity. Conjugated trichothecenes could release their toxic precursors after hydrolysis in animals, and present an additional potential risk. The SAR study of trichothecenes should provide some crucial information for a better understanding of trichothecene chemical and biological properties in food contamination.

  2. Structural properties of the self-conjugate SU(3) tensor operators

    International Nuclear Information System (INIS)

    Lohe, M.A.; Biedenharn, L.C.; Louck, J.D.

    1977-01-01

    Denominator functions for the set of self-conjugate SU(3) tensor operators are explicitly obtained and shown to be uniquely related to SU(3) -invariant structural properties. This relationship becomes manifest through the appearance of zeroes of the denominator functions which thereby express the fundamental null space properties of SU(3) tensor operators. It is demonstrated that there exist characteristic denominator functions whose zeroes, in position and multiplicity, possess the interesting, and unexpected, property of forming SU(3) weight space patterns

  3. PDMS Network Structure-Property Relationships: Influence of Molecular Architecture on Mechanical and Wetting Properties

    Science.gov (United States)

    Melillo, Matthew Joseph

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine-antifouling coatings to medical devices and absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into and leach out of PDMS networks is of critical importance for the design and use in another application - microfluidic devices. The growing use of PDMS in microfluidic devices raises the concern that some researchers may use this material without fully understanding all of its advantages, drawbacks, and intricacies. The primary goal of this Ph.D. dissertation is to elucidate PDMS network molecular structure to macroscopic property relationships and to demonstrate how molecular architecture can alter dynamic mechanical and wetting characteristics. We prepare PDMS materials by using vinyl/ tetrakis(dimethylsiloxy)silane (TDSS) and silanol/ tetraethylorthosilicate (TEOS) combinations of PDMS end-groups and crosslinkers as two model systems. Under constant curing conditions, we systematically study the effects of polymer molecular weight, loading of crosslinker, and end-group chemical functionality on the extent of gelation and the dynamic mechanical and water wetting properties of end-linked PDMS networks. The extent of the gelation reaction is determined using the Soxhlet extraction to quantify the amount of material that did and did not participate in the crosslinking reactions, termed the gel and sol fractions, respectively. We use the Miller-Macosko model in conjunction with the gel fraction and precise chemical composition (i.e., stoichiometric ratio and molecular weight) to determine the fractions of elastic and pendant material, the molecular weight between chemical crosslinks, and the average effective functionality of the crosslinker molecule. Based on dynamic mechanical testing, we find that the maximum storage moduli are achieved at optimal stoichiometric conditions in the vinyl

  4. Electromechanical actuation of buckypaper actuator: Material properties and performance relationships

    International Nuclear Information System (INIS)

    Cottinet, P.-J.; Souders, C.; Tsai, S.-Y.; Liang, R.; Wang, B.; Zhang, C.

    2012-01-01

    Carbon nanotubes can be assembled into macroscopic thin film materials called buckypapers. To incorporate buckypaper actuators into engineering systems, it is of high importance to understand their material property-actuation performance relationships in order to model and predict the behavior of these actuators. The electromechanical actuation of macroscopic buckypaper structures and their actuators, including single and multi-walled carbon nanotube buckypapers and aligned single-walled nanotube buckypapers, were analyzed and compared. From the experimental evidence, this Letter discusses the effects of the fundamental material properties, including Young modulus and electrical double layer properties, on actuation performance of the resultant actuators. -- Highlights: ► In this study we identified the figure of merit of the electromechanical conversion. ► Different type of buckypaper was realized and characterized for actuation properties. ► The results demonstrated the potential of Buckypapers/Nafion for actuation

  5. Environmental properties of long-chain alcohols. Structure-activity Relationship for Chronic Aquatic Toxicity

    DEFF Research Database (Denmark)

    Schaefers, Christoph; Sanderson, Hans; Boshof, Udo

    2009-01-01

    Daphnia magna reproduction tests were performed with C10, C12, C14 and C15 alcohols to establish a structure-activity relationship of chronic effects of long-chain alcohols. The data generation involved substantial methodological efforts due to the exceptionally rapid biodegradability of the test...

  6. Electron irradiation effects on partially fluorinated polymer films: Structure-property relationships

    CERN Document Server

    Nasef, M M

    2003-01-01

    The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures (T sub m and T sub c) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (DELTA H sub m) and the degree of crystallinity (X sub c) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved b...

  7. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    Science.gov (United States)

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL

    1992-01-01

    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  9. Quantitative structure-property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression

    International Nuclear Information System (INIS)

    Ghasemi, Jahanbakhsh; Saaidpour, Saadi

    2007-01-01

    A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structures of 150 drug organic compounds to their n-octanol-water partition coefficients (log P o/w ). Molecular descriptors derived solely from 3D structures of the molecular drugs. A genetic algorithm was also applied as a variable selection tool in QSPR analysis. The models were constructed using 110 molecules as training set, and predictive ability tested using 40 compounds. Modeling of log P o/w of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR). Four descriptors for these compounds molecular volume (MV) (geometrical), hydrophilic-lipophilic balance (HLB) (constitutional), hydrogen bond forming ability (HB) (electronic) and polar surface area (PSA) (electrostatic) are taken as inputs for the model. The use of descriptors calculated only from molecular structure eliminates the need for experimental determination of properties for use in the correlation and allows for the estimation of log P o/w for molecules not yet synthesized. Application of the developed model to a testing set of 40 drug organic compounds demonstrates that the model is reliable with good predictive accuracy and simple formulation. The prediction results are in good agreement with the experimental value. The root mean square error of prediction (RMSEP) and square correlation coefficient (R 2 ) for MLR model were 0.22 and 0.99 for the prediction set log P o/w

  10. 22 CFR 226.37 - Property trust relationship.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Property trust relationship. 226.37 Section 226.37 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Post-award Requirements Property Standards § 226.37 Property trust...

  11. Relationships between structural fat properties with sensory, physical and textural attributes of yeast-leavened laminated salty baked product.

    Science.gov (United States)

    de la Horra, Ana E; Barrera, Gabriela N; Steffolani, Eugenia M; Ribotta, Pablo D; León, Alberto E

    2017-08-01

    The aim of this study was to establish relationships between structural fat properties and sensory, physical and textural attributes of yeast-leavened laminated salty products. Refined bovine fat (MG1) and shortening (MG2), with a solid fat content (SFC) higher than 20% at temperature range of 15-35 °C were more viscous and less sensitive to temperature changes. The micrographs of dough|fat|dough sections corresponding to samples with MG1 and MG2 revealed a lower penetration of the fat sheet in the dough section due to the more entangled fat structures that did not allow a great flow throughout the dough layer. Consequently, the structure of laminated dough pieces made the systems highly resistant to deformation. The laminated dough pieces elaborated with these fats showed the highest increments in their height and maintained symmetry. Products with fat with least SFC and higher destructuration rate produced smoother laminated structures due to the presence of pores. While products with MG1 and MG2 showed tortuous images and complex structures, associated to layers and extended pores. MG1 and MG2 products were preferred (flavor and appearance) over those with MG3. The highest ranking samples in the acceptability analysis were symmetric, presented very flaky crusts and had a high level of lamination.

  12. Transport properties of electrons in fractal magnetic-barrier structures

    Science.gov (United States)

    Sun, Lifeng; Fang, Chao; Guo, Yong

    2010-09-01

    Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.

  13. Structure-Property Relationships in Aluminum-Copper alloys using Transmission X-Ray Microscopy (TXM) and Micromechanical Testing

    Science.gov (United States)

    Kaira, Chandrashekara Shashank

    Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy's solid solution and offer resistance to deformation. Although they have been extensively investigated in the last century, the traditional approaches employed in the past haven't rendered an authoritative microstructural understanding in such materials. The effect of the precipitates' inherent complex morphology and their three-dimensional (3D) spatial distribution on evolution and deformation behavior have often been precluded. In this study, for the first time, synchrotron-based hard X-ray nano-tomography has been implemented in Al-Cu alloys to measure growth kinetics of different nanoscale phases in 3D and reveal mechanistic insights behind some of the observed novel phase transformation reactions occurring at high temperatures. The experimental results were reconciled with coarsening models from the LSW theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. By using a unique correlative approach, a non-destructive means of estimating precipitation-strengthening in such alloys has been introduced. Limitations of using existing mechanical strengthening models in such alloys have been discussed and a means to quantify individual contributions from different strengthening mechanisms has been established. The current rapid pace of technological progress necessitates the demand for more resilient and high-performance alloys. To achieve this, a thorough understanding of the relationships between material properties and its structure is indispensable. To establish this correlation and achieve desired properties from structural alloys, microstructural response to mechanical stimuli needs to be understood in three-dimensions (3D). To

  14. The structure of new germanates, gallates, borates and silicates with laser, piezo, ferroelectric and ion conducting properties

    International Nuclear Information System (INIS)

    Belokonev, E.L.

    1994-01-01

    The results of structure investigation of more than 50 new crystalline germanates, gallates, borogermanates, borates, and silicates with laser, piezo, ferroelectric, and ion-conducting properties are described. The structure - properties relationship is examined. 71 refs.; 24 figs.; 10 tabs

  15. Electron beam crosslinked PVC : structure property relationships

    International Nuclear Information System (INIS)

    Gupta, Neeraj K.; Sabharwal, Sunil

    2001-01-01

    PVC is used extensively for its insulating properties for the manufacture of wires and cables and for other applications. Its gradual degradation, oxidation and even dehydro chlorination restricts use for long lasting period in installations such as high temperature zones, underground cables, communication systems, electro-nuclear facilities, etc. The technological properties and performance characteristics of PVC based insulation can be improved via crosslinking by high-energy electrons. PVC is however a polymer, which on irradiation predominantly undergoes degradation. To avoid degradation, it needs to be compounded with sensitizing agents or multifunctional monomers so that crosslinking is the predominant reaction. Radiation cross linkable formulations are complex mixtures of resin and various additives incorporated for achieving desired technological and performance characteristics, ease of processing and improving quality. The proper choice of additives and sensitizing agents enable low dose requirements for efficient crosslinking and improvements in various technological properties. The purposes of this work was to investigate the effect of using a binary sensitizer blend of a trifunctional monomer and a rubber in PVC, and develop suitable electron beam cross linkable formulations for wire insulation. This paper presents some aspects of the investigations and development of insulation demonstrated at industrial scale

  16. The structural properties of sustainable, continuous change

    DEFF Research Database (Denmark)

    Håkonsson, Dorthe Døjbak; Klaas, Johann Peter; Carroll, Timothy

    2013-01-01

    this relationship by exploring what structural properties enable continuous change in inertia-generating organizations and what their performance consequences are in dynamic environments. The article has three main findings: First, employing managers who anticipate change is not enough to generate continuous change......; it is also necessary to raise both the rate of responsiveness and desired performance. Second, continuous change increases average organizational performance and reduces its variation. Third, organizations’ capacity for continuous change is counterintuitively limited by the organizations’ capacity to build...

  17. Silver Matrix Composites - Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wieczorek J.

    2016-03-01

    Full Text Available Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting technology, followed by plastic work (the KOBO method. The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.

  18. Quantitative structure--property relationships for enhancing predictions of synthetic organic chemical removal from drinking water by granular activated carbon.

    Science.gov (United States)

    Magnuson, Matthew L; Speth, Thomas F

    2005-10-01

    Granular activated carbon is a frequently explored technology for removing synthetic organic contaminants from drinking water sources. The success of this technology relies on a number of factors based not only on the adsorptive properties of the contaminant but also on properties of the water itself, notably the presence of substances in the water which compete for adsorption sites. Because it is impractical to perform field-scale evaluations for all possible contaminants, the pore surface diffusion model (PSDM) has been developed and used to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into this model to account for kinetics of adsorption and competition for adsorption sites. This work further evaluates and expands this model, through the use of quantitative structure-property relationships (QSPRs) to predict the effect of natural organic matter fouling on activated carbon adsorption of specific contaminants. The QSPRs developed are based on a combination of calculated topographical indices and quantum chemical parameters. The QSPRs were evaluated in terms of their statistical predictive ability,the physical significance of the descriptors, and by comparison with field data. The QSPR-enhanced PSDM was judged to give results better than what could previously be obtained.

  19. Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Quantitative Structure-Activity Relationship for Skin Permeability.

    Science.gov (United States)

    Chen, Chen-Peng; Chen, Chan-Cheng; Huang, Chia-Wen; Chang, Yen-Ching

    2018-04-15

    The skin permeability ( Kp ) defines the rate of a chemical penetrating across the stratum corneum. This value is widely used to quantitatively describe the transport of molecules in the outermost layer of epidermal skin and indicate the significance of skin absorption. This study defined a Kp quantitative structure-activity relationship (QSAR) based on 106 chemical substances of Kp measured using human skin and interpreted the molecular interactions underlying transport behavior of small molecules in the stratum corneum. The Kp QSAR developed in this study identified four molecular descriptors that described the molecular cyclicity in the molecule reflecting local geometrical environments, topological distances between pairs of oxygen and chlorine atoms, lipophilicity, and similarity to antineoplastics in molecular properties. This Kp QSAR considered the octanol-water partition coefficient to be a direct influence on transdermal movement of molecules. Moreover, the Kp QSAR identified a sub-domain of molecular properties initially defined to describe the antineoplastic resemblance of a compound as a significant factor in affecting transdermal permeation of solutes. This finding suggests that the influence of molecular size on the chemical's skin-permeating capability should be interpreted with other relevant physicochemical properties rather than being represented by molecular weight alone.

  20. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles

    KAUST Repository

    Luxenhofer, Robert

    2011-07-01

    The family of poly(2-oxazoline)s (POx) is being increasingly investigated in the context of biomedical applications. We tested the relative cytotoxicity of POx and were able to confirm that these polymers are typically not cytotoxic even at high concentrations. Furthermore, we report structure-uptake relationships of a series of amphiphilic POx block copolymers that have different architectures, molar mass and chain termini. The rate of endocytosis can be fine-tuned over a broad range by changing the polymer structure. The cellular uptake increases with the hydrophobic character of the polymers and is observed even at nanomolar concentrations. Considering the structural versatility of this class of polymers, the relative ease of preparation and their stability underlines the potential of POx as a promising platform candidate for the preparation of next-generation polymer therapeutics.

  1. Electron irradiation effects on partially fluorinated polymer films: Structure-property relationships

    International Nuclear Information System (INIS)

    Nasef, Mohamed Mahmoud; Dahlan, Khairul Zaman M.

    2003-01-01

    The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures (T m and T c ) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (ΔH m ) and the degree of crystallinity (X c ) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved by irradiation compared to its rapid deterioration in ETFE films, which stemmed from the degradation prompted by the presence of radiation sensitive tetrafluoroethylene (TFE) comonomer units. The elongation at break of both films drops gradually with the dose increase indicating the formation of predominant crosslinked structures at high doses. However, the response of each polymer to crosslinking and main chain scission at various irradiation doses varies from PVDF to ETFE films

  2. Structure-property relationships of iron-hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method.

    Science.gov (United States)

    Nordin, Jamillah Amer; Prajitno, Djoko Hadi; Saidin, Syafiqah; Nur, Hadi; Hermawan, Hendra

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12h milling in the presence of HPO4(2-) ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Correlated structure-optical properties studies of plasmonic nanoparticles

    International Nuclear Information System (INIS)

    Ringe, Emilie; Duyne, Richard P Van; Marks, Laurence D

    2014-01-01

    Interest in nanotechnology is driven by unprecedented means to tailor the physical behaviour via structure and composition. Unlike bulk materials, minute changes in size and shape can affect the optical properties of nanoparticles. Characterization, understanding, and prediction of such structure-function relationships is crucial to the development of novel applications such as plasmonic sensors, devices, and drug delivery systems. Such knowledge has been recently vastly expanded through systematic, high throughput correlated measurements, where the localized surface plasmon resonance (LSPR) is probed optically and the particle shape investigated with electron microscopy. This paper will address some of the recent experimental advances in single particle studies that provide new insight not only on the effects of size, composition, and shape on plasmonic properties but also their interrelation. Plasmon resonance frequency and decay, substrate effects, size, shape, and composition will be explored for a variety of plasmonic systems

  4. Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications

    Science.gov (United States)

    Mehlem, Jeremy John

    Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well

  5. Structure and properties of copper after large strain deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, Kinga; Molak, Rafal M.; Pakiela, Zbigniew

    2010-05-15

    Structure and properties of Cu in dependence on strain (from {epsilon}{proportional_to} 0.9 to {epsilon}{proportional_to} 15) during multi-axial compression processing at room temperature was investigated. The evolution of dislocation structure, misorientation distribution and crystallite size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The mechanical properties of yield strength (YS), ultimate tensile strength (UTS) and uniform elongation was performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). The structure-flow stress relationship of multi-axial compression processing material at strains {epsilon}{proportional_to} 3.5 and {epsilon}{proportional_to} 5.5 is discussed. It is found that processing does not produce any drastic changes in deformation structure and the microstructural refinement is slow. These results indicate that dynamic recrystallization plays an important role during multi-axial compression process in this range of deformation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    Science.gov (United States)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  7. Psychometric Properties of the Persian Version of the Relationship Assessment Scale among Couples

    Directory of Open Access Journals (Sweden)

    غلامرضا دهشیری

    2016-06-01

    Full Text Available This research administrated to evaluate the psychometric properties of the Persian version of Relationship Assessment scale. Therefore, 315 married individuals (199 women and 116 men from Tehran city were volunteered to respond to four scales: the Relationship Assessment, the Kansas Marital Satisfaction, the Oxford Happiness and the Life Satisfaction. Results from exploratory & confirmatory factor analysis showed that factor structure of Relationship Assessment scale was unidimensional. The internal consistency of the scale in the total sample was 0.88. Significant correlations between scores of the Relationship Assessment scale with the scores of the Kansas Marital Satisfaction Scale, the Life Satisfaction Scale and the Oxford Happiness Questionnaire demonstrated good convergent validity of the scale. Also, the results showed that there was no significant gender difference between the mean scores of relationship satisfaction. In conclusion, the Relationship Assessment scale is a valid and reliable tool to measure marital satisfaction in Iran.

  8. Notes on quantitative structure-properties relationships (QSPR) (1): A discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution.

    Science.gov (United States)

    Carbó-Dorca, Ramon; Gallegos, Ana; Sánchez, Angel J

    2009-05-01

    Classical quantitative structure-properties relationship (QSPR) statistical techniques unavoidably present an inherent paradoxical computational context. They rely on the definition of a Gram matrix in descriptor spaces, which is used afterwards to reduce the original dimension via several possible kinds of algebraic manipulations. From there, effective models for the computation of unknown properties of known molecular structures are obtained. However, the reduced descriptor dimension causes linear dependence within the set of discrete vector molecular representations, leading to positive semi-definite Gram matrices in molecular spaces. To resolve this QSPR dimensionality paradox (QSPR DP) here is proposed to adopt as starting point the quantum QSPR (QQSPR) computational framework perspective, where density functions act as infinite dimensional descriptors. The fundamental QQSPR equation, deduced from employing quantum expectation value numerical evaluation, can be approximately solved in order to obtain models exempt of the QSPR DP. The substitution of the quantum similarity matrix by an empirical Gram matrix in molecular spaces, build up with the original non manipulated discrete molecular descriptor vectors, permits to obtain classical QSPR models with the same characteristics as in QQSPR, that is: possessing a certain degree of causality and explicitly independent of the descriptor dimension. 2008 Wiley Periodicals, Inc.

  9. Numerical calculations of effective elastic properties of two cellular structures

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    Young's moduli of regular two-dimensional truss-like and eye-shaped structures are simulated using the finite element method. The structures are idealizations of soft polymeric materials used in ferro-electret applications. In the simulations, the length scales of the smallest representative units are varied, which changes the dimensions of the cell walls in the structures. A power-law expression with a quadratic as the exponent term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data are divided into three regions with respect to the volume fraction: low, intermediate and high. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, the unit-cell dimensions. The expression presented can be used to predict a structure/property relationship in materials with similar cellular structures. The contribution of the cell-wall thickness to the elastic properties becomes significant at concentrations >0.15. The cell-wall thickness is the most significant factor in predicting the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, the eye-shaped structure yields a lower Young's modulus than a truss-like structure with similar anisotropy. Comparison of the numerical results with those of experimental data for poly(propylene) show good agreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films

  10. Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Quantitative Structure-Activity Relationship for Skin Permeability

    Directory of Open Access Journals (Sweden)

    Chen-Peng Chen

    2018-04-01

    Full Text Available The skin permeability (Kp defines the rate of a chemical penetrating across the stratum corneum. This value is widely used to quantitatively describe the transport of molecules in the outermost layer of epidermal skin and indicate the significance of skin absorption. This study defined a Kp quantitative structure-activity relationship (QSAR based on 106 chemical substances of Kp measured using human skin and interpreted the molecular interactions underlying transport behavior of small molecules in the stratum corneum. The Kp QSAR developed in this study identified four molecular descriptors that described the molecular cyclicity in the molecule reflecting local geometrical environments, topological distances between pairs of oxygen and chlorine atoms, lipophilicity, and similarity to antineoplastics in molecular properties. This Kp QSAR considered the octanol-water partition coefficient to be a direct influence on transdermal movement of molecules. Moreover, the Kp QSAR identified a sub-domain of molecular properties initially defined to describe the antineoplastic resemblance of a compound as a significant factor in affecting transdermal permeation of solutes. This finding suggests that the influence of molecular size on the chemical’s skin-permeating capability should be interpreted with other relevant physicochemical properties rather than being represented by molecular weight alone.

  11. Local structure and structural signature underlying properties in metallic glasses and supercooled liquids

    Science.gov (United States)

    Ding, Jun

    Metallic glasses (MGs), discovered five decades ago as a newcomer in the family of glasses, are of current interest because of their unique structures and properties. There are also many fundamental materials science issues that remain unresolved for metallic glasses, as well as their predecessor above glass transition temperature, the supercooled liquids. In particular, it is a major challenge to characterize the local structure and unveil the structure-property relationship for these amorphous materials. This thesis presents a systematic study of the local structure of metallic glasses as well as supercooled liquids via classical and ab initio molecular dynamics simulations. Three typical MG models are chosen as representative candidate, Cu64 Zr36, Pd82Si18 and Mg65Cu 25Y10 systems, while the former is dominant with full icosahedra short-range order and the prism-type short-range order dominate for latter two. Furthermore, we move to unravel the underlying structural signature among several properties in metallic glasses. Firstly, the temperature dependence of specific heat and liquid fragility between Cu-Zr and Mg-Cu-Y (also Pd-Si) in supercooled liquids are quite distinct: gradual versus fast evolution of specific heat and viscosity/relaxation time with undercooling. Their local structural ordering are found to relate with the temperature dependence of specific heat and relaxation time. Then elastic heterogeneity has been studied to correlate with local structure in Cu-Zr MGs. Specifically, this part covers how the degree of elastic deformation correlates with the internal structure at the atomic level, how to quantitatively evaluate the local solidity/liquidity in MGs and how the network of interpenetrating connection of icosahedra determine the corresponding shear modulus. Finally, we have illustrated the structure signature of quasi-localized low-frequency vibrational normal modes, which resides the intriguing vibrational properties in MGs. Specifically, the

  12. Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling

    Science.gov (United States)

    Martinetti, Luca

    relation between the observed power-law exponent and molecular structure was established. The measured low-frequency response, originating from the incipient glass transition of the A domains, was exploited and extrapolated to lower frequencies via a sequential application of the fractional Maxwell model and the fractional Zener model. With only a few, physically meaningful material parameters a realistic description of the A--B--A self-similar relaxation was obtained over a frequency range much broader than the experimental window and not accessible via time-temperature superposition. The relationship between large-strain response and network structure of A--B--A triblocks was investigated, by examining (1) the effect of linear relaxation mechanisms on the tensile behavior, (2) the sources of elastic and viscoelastic nonlinearities, and (3) the strain rate dependence of the ultimate properties. For the first time in the literature, the complex high-dimensional rheological signature of chewing gum was analyzed, especially in response to nonlinear and unsteady deformations in both shear and extension. A unique rheological fingerprint was obtained that is sufficient to provide a new robust definition of chewing gum that is independent of specific molecular composition. (Abstract shortened by ProQuest.).

  13. Structure property relationship of biological nano composites studies by combination of in-situ synchrotron scattering and mechanical tests

    International Nuclear Information System (INIS)

    Martinschitz, K.

    2005-06-01

    Biological materials represent hierarchical nano fibre composites with complicated morphology and architecture varying on the nm level. The mechanical response of those materials is influenced by many parameters like chemical composition and crystal structure of constituents, preferred orientation, internal morphology with specific sizes of features etc. In-situ wide-angle x-ray scattering (WAXS) combined with mechanical tests provide a unique means to evaluate structural changes in biological materials at specific stages of tensile experiments. In this way it is possible to identify distinct architectural/compositional elements responsible for specific mechanical characteristics of the biological materials. In this thesis, structure-property relationship is analyzed using in-situ WAXS in the tissues of Picea abies, coir fibre, bacterial cellulose and cellulose II based composites. The experiments were performed at the beamline ID01 of European synchrotron radiation facility in Grenoble, France. The tissues were strained in a tensile stage, while the structural changes were monitored using WAXS. Complex straining procedures were applied including cyclic straining. One of the main goals was to understand the stiffness recovery and strain hardening effects in the tissues. The results demonstrate that, in all cellulosics, the orientation of the cellulose crystallites is only the function of the external strain while the stiffness depends on the specific stage of the tensile experiment. Whenever the strain is increased, the tissues exhibit stiffness equal or larger than the initial one. The recovery of the mechanical function is attributed to the molecular mechanistic effects operating between the crystalline domains of the cellulose. (author)

  14. Structure-Property Relationships in Polymer Derived Amorphous/Nano-Crystalline Silicon Carbide for Nuclear Applications

    International Nuclear Information System (INIS)

    Zunjarrao, Suraj C.; Singh, Abhishek K.; Singh, Raman P.

    2006-01-01

    difficulties in interpreting 'true' properties from bulk measurements. Hence, hardness and modulus measurements are carried out using instrumented nano-indentation to establish property--structure relationship for SiC derived from the polymer precursor. It is seen that the presence of nanocrystalline domains in amorphous SiC significantly influences the modulus and hardness. (authors)

  15. 2D Quantitative Structure-Property Relationship Study of Mycotoxins by Multiple Linear Regression and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Fereshteh Shiri

    2010-08-01

    Full Text Available In the present work, support vector machines (SVMs and multiple linear regression (MLR techniques were used for quantitative structure–property relationship (QSPR studies of retention time (tR in standardized liquid chromatography–UV–mass spectrometry of 67 mycotoxins (aflatoxins, trichothecenes, roquefortines and ochratoxins based on molecular descriptors calculated from the optimized 3D structures. By applying missing value, zero and multicollinearity tests with a cutoff value of 0.95, and genetic algorithm method of variable selection, the most relevant descriptors were selected to build QSPR models. MLRand SVMs methods were employed to build QSPR models. The robustness of the QSPR models was characterized by the statistical validation and applicability domain (AD. The prediction results from the MLR and SVM models are in good agreement with the experimental values. The correlation and predictability measure by r2 and q2 are 0.931 and 0.932, repectively, for SVM and 0.923 and 0.915, respectively, for MLR. The applicability domain of the model was investigated using William’s plot. The effects of different descriptors on the retention times are described.

  16. The structure-property relationships of powder processed Fe-Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Paul D. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  17. Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Gwonchan Yoon

    Full Text Available Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain. Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture.

  18. Study of transport properties of bodies with a perovskite structure: application to the MgSiO3 perovskite

    International Nuclear Information System (INIS)

    Kapusta, Benedicte

    1990-01-01

    After some recalls on transport in ionic solids (Nernst-Einstein relationship, variation of ionic conductivity, hybrid conduction, fast ionic conduction), this research thesis presents the physical properties of perovskites and more particularly the structure and stability of the MgSiO 3 perovskite: structure and elastic properties, electric conductivity and transport properties in compounds with a perovskite structure. Then, the author reports the experimental study of the KZnF 3 perovskite (a structural analogous of MgSiO 3 ): measurements of electric conductivity under pressure, measurements under atmospheric pressure, result discussion. The next part addresses the numerical simulation of MgSiO 3 : simulation techniques (generalities on molecular dynamics, model description), investigation of structural, elastic and thermodynamic properties, diffusion properties in quadratic phase [fr

  19. Towards enamel biomimetics: Structure, mechanical properties and biomineralization of dental enamel

    Science.gov (United States)

    Fong, Hanson Kwok

    Dental enamel is the most mineralized tissue in the human body. This bioceramic, composed largely of hydroxyapatite (HAp), is also one of the most durable tissues despite a lifetime of masticatory loading and bacterial attack. The biosynthesis of enamel, which occurs in physiological conditions is a complex orchestration of protein assembly and mineral formation. The resulting product is the hardest tissue in the vertebrate body with the longest and most organized arrangement of hydroxyapatite crystals known to biomineralizing systems. Detail understanding of the structure of enamel in relationship to its mechanical function and the biomineralization process will provide a framework for enamel regeneration as well as potential lessons in the design of engineering materials. The objective of this study, therefore, is twofold: (1) establish the structure-function relationship of enamel as well as the dentine-enamel junction (DEJ) and (2) determine the effect of proteins on the enamel biomineralization process. A hierarchy in the enamel structure was established by means of various microscopy techniques (e.g. SEM, TEM, AFM). Mechanical properties (hardness and elastic modulus) associated with the microstructural features were also determined by nanoindentation. Furthermore, the DEJ was found to have a width in the range of micrometers to 10s of micrometers with continuous change in structure and mechanical properties. Indentation tests and contact fatigue tests using a spherical indenter have revealed that the structural features in the enamel and the DEJ played important roles in containing crack propagation emanating from the enamel tissue. To further understand the effect of this protein on the biominerailzation process, we have studied genetically engineered animals that express altered amelogenin which lack the known self-assembly properties. This in vivo study has revealed that, without the proper self-assembly of the amelogenin protein as demonstrated by the

  20. Effect of conditioners upon the thermodynamics and kinetics of methane hydrate formation. A preliminary structure-properties relationship study

    Energy Technology Data Exchange (ETDEWEB)

    Di Profio, Pietro; Arca, Simone; Germani, Raimondo; Savelli, Gianfranco

    2005-07-01

    The synthesis and stability of gas hydrates was found to be heavily affected by the presence of small quantities of additives, or conditioners, particularly surfactants. In a recent work, we showed that the enhancement of hydrate formation, both from previously described and newly synthesized surfactants, is probably due to surfactant monomers, rather than micelles, and that the features of hydrate induction time should not be used as a measure of critical micelle concentration. In the present paper, we discuss the results of a structure-properties relationship study in which a preliminary attempt to relate the structural features of several amphiphilic additives to some kinetic and thermodynamic parameters of methane hydrate formation - e.g., induction times, rate of formation, occupancy, etc. - is conducted. According to the present study, it is found that, for a particular conditioner, a reduction of induction time does not correlate to an increase of the formation rate and occupancy, and vice versa. This may be related to the nature of chemical moieties forming a particular amphiphile (e.g., the hydrophobic tail, head group, counterion, etc.). The understanding of the mechanisms by which those moieties play their differential role may be the key tool to the design and synthesis of tailored conditioners. (Author)

  1. Structural properties of silver nanoparticle agglomerates based on transmission electron microscopy: relationship to particle mobility analysis

    International Nuclear Information System (INIS)

    Shin, Weon Gyu; Wang Jing; Mertler, Michael; Sachweh, Bernd; Fissan, Heinz; Pui, David Y. H.

    2009-01-01

    In this work, the structural properties of silver nanoparticle agglomerates generated using condensation and evaporation method in an electric tube furnace followed by a coagulation process are analyzed using Transmission Electron Microscopy (TEM). Agglomerates with mobility diameters of 80, 120, and 150 nm are sampled using the electrostatic method and then imaged by TEM. The primary particle diameter of silver agglomerates was 13.8 nm with a standard deviation of 2.5 nm. We obtained the relationship between the projected area equivalent diameter (d pa ) and the mobility diameter (d m ), i.e., d pa = 0.92 ± 0.03 d m for particles from 80 to 150 nm. We obtained fractal dimensions of silver agglomerates using three different methods: (1) D f = 1.84 ± 0.03, 1.75 ± 0.06, and 1.74 ± 0.03 for d m = 80, 120, and 150 nm, respectively from projected TEM images using a box counting algorithm; (2) fractal dimension (D fL ) = 1.47 based on maximum projected length from projected TEM images using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633; and (3) mass fractal-like dimension (D fm ) = 1.71 theoretically derived from the mobility analysis proposed by Lall and Friedlander (2006) J Aerosol Sci 37:260-271. We also compared the number of primary particles in agglomerate and found that the number of primary particles obtained from the projected surface area using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633 is larger than that from using the relationship, d pa = 0.92 ± 0.03 d m or from using the mobility analysis.

  2. Structure-property relationships of new bismuth and lead oxide based perovskite ternary solid solutions

    Science.gov (United States)

    Dwivedi, Akansha

    Two new bismuth and lead oxide based perovskite ternary solid solutions, namely xBi(Zn1/2Ti1/2)O3-yPbZrO3-zPbTiO3 [xBZT-yPZ-zPT] and xBi(Mg1/2Ti1/2)O3-yBi(Zn 1/2Ti1/2)O3-zPbTiO3 [xBMT-yBZT-zPT] have been developed and their structural and electrical properties have been determined. Various characterization techniques such as X-ray diffraction, calorimetery, electron microscopy, dielectric and piezoelectric measurements have been performed to determine the details of the phase diagram, crystal structure, and domain structure. The selection of these materials is based on the hypothesis that the presence of BZT-PT (Case I ferroelectric (FE)) will increase the transition temperature of MPB systems BMT-PT (Case II FE), and PZ-PT (Case III FE), and subsequently a MPB will be observed in the ternary phase diagrams. The Case I, II, and III classification has been outlined by Stringer et al., is on the basis of the transition temperatures (TC) behavior with composition in the Bi and Pb oxide based binary systems. Several pseudobinary lines have been investigated across the xBZT-yPZ-zPT ternary phase diagram which exhibit varied TC behavior with composition, showing both Case I- and Case III-like TC trends in different regions. A MPB between rhombohedral to tetragonal phases has been located on a pseudobinary line 0.1BZT-0.9[xPT-(1-x)PZ]. Compositions near MPB exhibit mainly soft PZT-like properties with the TC around 60°C lower than the unmodified PZT near its MPB. Electrical properties are reported for the MPB composition, TC = 325°C, Pr = 35 microC/cm2, d33 = 300 pC/N and kP =0.45. Rhombohedral compositions show diffuse phase transition with small frequency dispersion, similar to relaxors. Two transition peaks in the permittivity as well as in the latent heat has been observed in some compositions near the BZT-PT binary. This leads to the speculation for the existence of miscibility gap in the solid solutions in these regions. Transmission electron microscopy (TEM

  3. Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hajilar, Shahin, E-mail: shajilar@iastate.edu [Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011-1066 (United States); Shafei, Behrouz, E-mail: shafei@iastate.edu [Department of Civil, Construction and Environmental Engineering, Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-1066 (United States)

    2016-12-15

    The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanical properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates. - Graphical abstract: Fracture mechanism of portlandite under uniaxial strain in the z-direction. - Highlights: • The structural, thermal, and mechanical properties of portlandite are investigated. • The coefficients of thermal expansion are determined. • The stress-strain relationships are studied in three orthogonal directions. • The effects of temperature and strain rate on mechanical properties are examined. • The plastic energy required for fracture in the crystalline structure is reported.

  4. Structure-terahertz property relationship in yttrium aluminum garnet ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Steere, D.W.; Clark, B.M.; Sundaram, S.K. [Alfred University, Terahertz and Millimeter Waves Laboratory (T-Lab), Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred, NY (United States); Gaume, R. [Townes Laser Institute and the NanoScience Technology Center, CREOL, The College of Optics and Photonics, Orlando, FL (United States)

    2017-08-15

    Terahertz (THz) transmission measurements on chemically variant yttrium aluminum garnet (YAG) ceramics are described. Chemical compositions and processing parameters were varied to determine the effect of stoichiometry, density, and pore volume distribution on the optical and dielectric properties in the THz frequency regime. Density has the largest effect on properties out of the parameters that were investigated. In addition, a linear correlation between cubic root of real permittivity at 1 THz and average density of these samples is observed. Our results show promise for design and fabrication of advanced optical materials and devices with desired THz properties via controlling density and porosity of the materials. (orig.)

  5. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.

    Science.gov (United States)

    Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen

    2009-01-30

    In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.

  6. Association of structural global brain network properties with intelligence in normal aging.

    Directory of Open Access Journals (Sweden)

    Florian U Fischer

    Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  7. Association of Structural Global Brain Network Properties with Intelligence in Normal Aging

    Science.gov (United States)

    Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994

  8. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    Science.gov (United States)

    Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.

    2017-04-01

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.

  9. Property-porosity relationships for polymer-impregnated superconducting ceramic composite

    International Nuclear Information System (INIS)

    Salib, S.; Vipulanandan, C.

    1990-01-01

    A thermoplastic polymer, poly(methyl methacrylate) (PMMA), was used to improve the flexural properties of the high-temperature superconducting ceramic (YBa 2 Cu 3 O 7-δ ). Ceramic specimens with different porosities were prepared by dry compacting 12.5-mm-diameter disk specimens at various uniaxial pressures. Density-pressure relationships have been developed for before- and after-sintering conditions. The PMMA polymer was impregnated into the porous ceramic at room temperature. The mechanical properties were evaluated by concentrically loading simply supported disk specimens. The load-displacement responses were analyzed using the finite-element method. Impregnation of PMMA polymer at room temperature increased the flexural strength and modulus of the superconducting ceramic without affecting its electrical properties. The flexural properties depended on the porosity of the ceramics, and, hence, linear and nonlinear property-porosity relationships have been used to characterize the behavior of superconducting ceramic with an without the polymer

  10. The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model

    NARCIS (Netherlands)

    Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.

    2010-01-01

    We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity

  11. Porous Materials - Structure and Properties

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete...

  12. The NBS: Processing/Microstructure/Property Relationships in 2024 Aluminum Alloy Plates

    Science.gov (United States)

    Ives, L. K.; Swartzendruber, W. J.; Boettinger, W. J.; Rosen, M.; Ridder, S. D.

    1983-01-01

    As received plates of 2024 aluminum alloy were examined. Topics covered include: solidification segregation studies; microsegregation and macrosegregation in laboratory and commercially cast ingots; C-curves and nondestructive evaluation; time-temperature precipitation diagrams and the relationships between mechanical properties and NDE measurements; transmission electron microscopy studies; the relationship between microstructure and properties; ultrasonic characterization; eddy-current conductivity characterization; the study of aging process by means of dynamic eddy current measurements; and Heat flow-property predictions, property degradations due to improve quench from the solution heat treatment temperature.

  13. Table of periodic properties of fullerenes based on structural parameters.

    Science.gov (United States)

    Torrens, Francisco

    2004-01-01

    The periodic table (PT) of the elements suggests that hydrogen could be the origin of everything else. The construction principle is an evolutionary process that is formally similar to those of Darwin and Oparin. The Kekulé structure count and permanence of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q and r. Let p be the number of edges common to two pentagons, q the number of vertices common to three pentagons, and r the number of pairs of nonadjacent pentagon edges shared between two other pentagons. Principal component analysis (PCA) of the structural parameters and cluster analysis (CA) of the fullerenes permit classifying them and agree. A PT of the fullerenes is built based on the structural parameters, PCA and CA. The periodic law does not have the rank of the laws of physics. (1) The properties of the fullerenes are not repeated; only, and perhaps, their chemical character. (2) The order relationships are repeated, although with exceptions. The proposed statement is the following: The relationships that any fullerene p has with its neighbor p + 1 are approximately repeated for each period.

  14. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    Science.gov (United States)

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  15. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    List, F.A., E-mail: listfaiii@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN (United States); Dehoff, R.R.; Lowe, L.E. [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN (United States); Sames, W.J. [Texas A and M University, College Station, TX (United States)

    2014-10-06

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology.

  16. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing

    International Nuclear Information System (INIS)

    List, F.A.; Dehoff, R.R.; Lowe, L.E.; Sames, W.J.

    2014-01-01

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology

  17. In silico prediction of nematic transition temperature for liquid crystals using quantitative structure-property relationship approaches.

    Science.gov (United States)

    Fatemi, Mohammad Hossein; Ghorbanzad'e, Mehdi

    2009-11-01

    Quantitative structure-property relationship models for the prediction of the nematic transition temperature (T (N)) were developed by using multilinear regression analysis and a feedforward artificial neural network (ANN). A collection of 42 thermotropic liquid crystals was chosen as the data set. The data set was divided into three sets: for training, and an internal and external test set. Training and internal test sets were used for ANN model development, and the external test set was used for evaluation of the predictive power of the model. In order to build the models, a set of six descriptors were selected by the best multilinear regression procedure of the CODESSA program. These descriptors were: atomic charge weighted partial negatively charged surface area, relative negative charged surface area, polarity parameter/square distance, minimum most negative atomic partial charge, molecular volume, and the A component of moment of inertia, which encode geometrical and electronic characteristics of molecules. These descriptors were used as inputs to ANN. The optimized ANN model had 6:6:1 topology. The standard errors in the calculation of T (N) for the training, internal, and external test sets using the ANN model were 1.012, 4.910, and 4.070, respectively. To further evaluate the ANN model, a crossvalidation test was performed, which produced the statistic Q (2) = 0.9796 and standard deviation of 2.67 based on predicted residual sum of square. Also, the diversity test was performed to ensure the model's stability and prove its predictive capability. The obtained results reveal the suitability of ANN for the prediction of T (N) for liquid crystals using molecular structural descriptors.

  18. MnO2 ultrathin films deposited by means of magnetron sputtering: Relationships between process conditions, structural properties and performance in transparent supercapacitors

    Science.gov (United States)

    Borysiewicz, Michał A.; Wzorek, Marek; Myśliwiec, Marcin; Kaczmarski, Jakub; Ekielski, Marek

    2016-12-01

    This study focuses on the relationships between the process parameters during magnetron sputter deposition of MnO2 and the resulting film properties. Three MnO2 phases were identified - γ, β and λ and the dependence of MnO2 phase presence on the oxygen content in the sputtering atmosphere was found. Selected MnO2 phases were subsequently applied as ultrathin coatings on top of nanostructured ZnO electrodes for transparent supercapacitors with LiCl-based gel electrolyte. The films containing λ-MnO2 exhibited both the highest optical transparency of 62% at 550 nm as well as the highest specific capacitance in the supercapacitor structure, equal to 73.1 μF/cm2. Initially lower, the capacitance was elevated by charge-discharge conditioning.

  19. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-11-01

    Full Text Available Composite polymer electrolytes (CPEs can significantly improve the performance in electrochemical devices such as lithium-ion batteries. This review summarizes property/performance relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim of this review to provide a knowledge network that elucidates the role of nano-additives in the CPEs. Central to the discussion is the impact on the CPE performance of properties such as crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant (ε determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions. Certain properties can be improved simultaneously by nanoparticle addition in order to optimize the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion battery applications.

  20. Structure-activity relationships for novel drug precursor N-substituted-6-acylbenzothiazolon derivatives: A theoretical approach

    Science.gov (United States)

    Sıdır, Yadigar Gülseven; Sıdır, İsa

    2013-08-01

    In this study, the twelve new modeled N-substituted-6-acylbenzothiazolon derivatives having analgesic analog structure have been investigated by quantum chemical methods using a lot of electronic parameters and structure-activity properties; such as molecular polarizability (α), dipole moment (μ), EHOMO, ELUMO, q-, qH+, molecular volume (Vm), ionization potential (IP), electron affinity (EA), electronegativity (χ), molecular hardness (η), molecular softness (S), electrophilic index (ω), heat of formation (HOF), molar refractivity (MR), octanol-water partition coefficient (log P), thermochemical properties (entropy (S), capacity of heat (Cv)); as to investigate activity relationships with molecular structure. The correlations of log P with Vm, MR, ω, EA, EHOMO - ELUMO (ΔE), HOF in aqueous phase, χ, μ, S, η parameters, respectively are obtained, while the linear relation of log P with IP, Cv, HOF in gas phase are not observed. The log P parameter is obtained to be depending on different properties of compounds due to their complexity.

  1. Relationship between Static Stiffness and Modal Stiffness of Structures

    Directory of Open Access Journals (Sweden)

    Tianjian Ji Tianjian Ji

    2010-02-01

    Full Text Available This paper derives the relationship between the static stiffness and modal stiffness of a structure. The static stiffness and modal stiffness are two important concepts in both structural statics and dynamics. Although both stiffnesses indicate the capacity of the structure to resist deformation, they are obtained using different methods. The former is calculated by solving the equations of equilibrium and the latter can be obtained by solving an eigenvalue problem. A mathematical relationship between the two stiffnesses was derived based on the definitions of two stiffnesses. This relationship was applicable to a linear system and the derivation of relationships does not reveal any other limitations. Verification of the relationship was given by using several examples. The relationship between the two stiffnesses demonstrated that the modal stiffness of the fundamental mode was always larger than the static stiffness of a structure if the critical point and the maximum mode value are at the same node, i.e. for simply supported beam and seven storeys building are 1.5% and 15% respectively. The relationship could be applied into real structures, where the greater the number of modes being considered, the smaller the difference between the modal stiffness and the static stiffness of a structure.

  2. A modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model for predicting liquid viscosity of pure organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongmin; Park, Kiho; Yang, Dae Ryook [Korea University, Seoul (Korea, Republic of); Kwon, Yunkyung; Park, Taeyun [ChemEssen Inc., Seoul (Korea, Republic of)

    2017-10-15

    Liquid viscosity is an important physical property utilized in engineering designs for transportation and processing of fluids. However, the measurement of liquid viscosity is not always easy when the materials have toxicity and instability. In this study, a modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model is suggested and analyzed in terms of its performance of prediction for liquid viscosity compared to the conventional SVRC-QSPR model and the other methods. The modification was conducted by changing the initial point from triple point to ambient temperature (293 K), and assuming that the liquid viscosity at critical temperature is 0 cP. The results reveal that the prediction performance of the modified SVRC-QSPR model is comparable to the other methods as showing 7.90% of mean absolute percentage error (MAPE) and 0.9838 of R{sup 2}. In terms of both the number of components and the performance of prediction, the modified SVRC-QSPR model is superior to the conventional SVRC-QSPR model. Also, the applicability of the model is improved since the condition of the end points of the modified model is not so restrictive as the conventional SVRC-QSPR model.

  3. A modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model for predicting liquid viscosity of pure organic compounds

    International Nuclear Information System (INIS)

    Lee, Seongmin; Park, Kiho; Yang, Dae Ryook; Kwon, Yunkyung; Park, Taeyun

    2017-01-01

    Liquid viscosity is an important physical property utilized in engineering designs for transportation and processing of fluids. However, the measurement of liquid viscosity is not always easy when the materials have toxicity and instability. In this study, a modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model is suggested and analyzed in terms of its performance of prediction for liquid viscosity compared to the conventional SVRC-QSPR model and the other methods. The modification was conducted by changing the initial point from triple point to ambient temperature (293 K), and assuming that the liquid viscosity at critical temperature is 0 cP. The results reveal that the prediction performance of the modified SVRC-QSPR model is comparable to the other methods as showing 7.90% of mean absolute percentage error (MAPE) and 0.9838 of R 2 . In terms of both the number of components and the performance of prediction, the modified SVRC-QSPR model is superior to the conventional SVRC-QSPR model. Also, the applicability of the model is improved since the condition of the end points of the modified model is not so restrictive as the conventional SVRC-QSPR model.

  4. Property taxes and economic development. An approach to the relationship between property taxes and the investment of Antioquia's municipalities

    Directory of Open Access Journals (Sweden)

    Santiago Tobón Zapata

    2013-06-01

    Full Text Available This paper discusses the relationship between the levels of investment in health and education made by the municipalities and the collection of property taxes. A data panel methodology was used with a sample of 97 municipalities in the department of Antioquia (Colombia for the period 2000 - 2008. According to the results, it is possible to conclude that there is no relationship between the levels of autonomous investment in education and the collection of property taxes. On the other hand, in relation to health investments, a negative relationship was found between property tax collection and autonomous investment in health. Finally, in addition to the initial scope proposed, a positive relationship was shown between the collection of property taxes and investments in the development of roads and infrastructure.

  5. Structure and property correlations in FeS

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, S.J. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Department of Physics , University of Notre Dame , Notre Dame , IN 46556 (United States); Kidder, M.K. [Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Parker, D.S. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Cruz, C. dela [Quantum Condensed Matter Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); McGuire, M.A.; Chance, W.M.; Li, Li [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Debeer-Schmitt, L. [Chemical and Engineering Materials Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Ermentrout, J. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Littrell, K.C. [Chemical and Engineering Materials Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Eskildsen, M.R. [Department of Physics , University of Notre Dame , Notre Dame , IN 46556 (United States); Sefat, A.S. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States)

    2017-03-15

    temperature, while t-Fe{sub 0.93}S shows coexistence of antiferromagnetism at T{sub N} = 116 and filamentary superconductivity below T{sub c} = 4 K. Low temperature neutron diffraction data reveals antiferromagnetic commensurate ordering with wave vector k{sub m} = (0.25,0.25,0) and 0.46(2) µ{sub B}/Fe. Additionally, neutron scattering measurements were used to find the particle size and iron vacancy arrangement of t-FeS and h-FeS. The structure of iron sulfide has a delicate relationship with the superconducting transition; while our sample with a = 3.6772(7) Å is a filamentary superconductor coexisting with an antiferromagnetic phase, previously reported samples with a > 3.68 Å are bulk superconductors with no magnetism, and those with a ≈ 3.674 Å show magnetic properties.

  6. Structure, processing, and properties of potatoes

    Science.gov (United States)

    Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; McCuen, Richard H.; Regan, Thomas M.

    1992-06-01

    The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.

  7. Structure, processing, and properties of potatoes

    Science.gov (United States)

    Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; Mccuen, Richard H.; Regan, Thomas M.

    1992-01-01

    The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.

  8. Further properties of causal relationship: causal structure stability, new criteria for isocausality and counterexamples

    International Nuclear Information System (INIS)

    Garcia-Parrado, Alfonso; Sanchez, Miguel

    2005-01-01

    Recently (Garcia-Parrado and Senovilla 2003 Class. Quantum Grav. 20 625-64) the concept of causal mapping between spacetimes, essentially equivalent in this context to the chronological map defined in abstract chronological spaces, and the related notion of causal structure, have been introduced as new tools to study causality in Lorentzian geometry. In the present paper, these tools are further developed in several directions such as (i) causal mappings-and, thus, abstract chronological ones-do not preserve two levels of the standard hierarchy of causality conditions (however, they preserve the remaining levels as shown in the above reference), (ii) even though global hyperbolicity is a stable property (in the set of all time-oriented Lorentzian metrics on a fixed manifold), the causal structure of a globally hyperbolic spacetime can be unstable against perturbations; in fact, we show that the causal structures of Minkowski and Einstein static spacetimes remain stable, whereas that of de Sitter becomes unstable, (iii) general criteria allow us to discriminate different causal structures in some general spacetimes (e.g. globally hyperbolic, stationary standard); in particular, there are infinitely many different globally hyperbolic causal structures (and thus, different conformal ones) on R 2 (iv) plane waves with the same number of positive eigenvalues in the frequency matrix share the same causal structure and, thus, they have equal causal extensions and causal boundaries

  9. S09 Symposium KK, Structure-Property Relationships in Biomineralized and Biomimetic Composites

    Energy Technology Data Exchange (ETDEWEB)

    David Kisailus; Lara Estroff; Himadri S. Gupta; William J. Landis; Pablo D. Zavattieri

    2010-06-07

    The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. This symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.

  10. A quantitative structure- property relationship of gas chromatographic/mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods

    Directory of Open Access Journals (Sweden)

    Sarkhosh Maryam

    2012-05-01

    Full Text Available Abstract A quantitative structure-property relationship (QSPR study is suggested for the prediction of retention times of volatile organic compounds. Various kinds of molecular descriptors were calculated to represent the molecular structure of compounds. Modeling of retention times of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR and artificial neural network (ANN. The stepwise regression was used for the selection of the variables which gives the best-fitted models. After variable selection ANN, MLR methods were used with leave-one-out cross validation for building the regression models. The prediction results are in very good agreement with the experimental values. MLR as the linear regression method shows good ability in the prediction of the retention times of the prediction set. This provided a new and effective method for predicting the chromatography retention index for the volatile organic compounds.

  11. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, Jamillah Amer [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Prajitno, Djoko Hadi [Nuclear Technology Center for Materials and Radiometry, National Nuclear Energy, Bandung 40132 (Indonesia); Saidin, Syafiqah [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Nur, Hadi, E-mail: hadi@kimia.fs.utm.my [Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Department of Physics, Institut Sains dan Teknologi Nasional, Jl. Moh. Kahfi II, Jagakarsa, Jakarta Selatan 12640 (Indonesia); Hermawan, Hendra, E-mail: hendra.hermawan@gmn.ulaval.ca [Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University, Québec City G1V 0A6 (Canada)

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone–implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12 h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12 h milling in the presence of HPO{sub 4}{sup 2−} ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12 h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis - Highlights: • Improvement of mechanical properties of HAp bioceramics by mechanosynthesis method • Structure–property relationship of iron–hydroxyapatite ceramic matrix nanocomposite • Milling time influenced the properties of iron–hydroxyapatite ceramic matrix nanocomposite.

  12. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method

    International Nuclear Information System (INIS)

    Nordin, Jamillah Amer; Prajitno, Djoko Hadi; Saidin, Syafiqah; Nur, Hadi; Hermawan, Hendra

    2015-01-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone–implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12 h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12 h milling in the presence of HPO 4 2− ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12 h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis - Highlights: • Improvement of mechanical properties of HAp bioceramics by mechanosynthesis method • Structure–property relationship of iron–hydroxyapatite ceramic matrix nanocomposite • Milling time influenced the properties of iron–hydroxyapatite ceramic matrix nanocomposite

  13. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    Science.gov (United States)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  14. DFT calculations on spectroscopic and structural properties of a NLO chromophore

    Science.gov (United States)

    Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf

    2016-03-01

    The molecular geometry optimization, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole as potential nonlinear optical (NLO) material were calculated using density functional theory (DFT) HSEh1PBE method with 6-311G(d,p) basis set. The best of our knowledge, this study have not been reported to date. Additionally, a detailed vibrational study was performed on the basis of potential energy distribution (PED) using VEDA program. It is noteworthy that NMR chemical shifts are quite useful for understanding the relationship between the molecular structure and electronic properties of molecules. The computed IR and NMR spectra were used to determine the types of the experimental bands observed. Predicted values of structural and spectroscopic parameters of the chromophore were compared with each other so as to display the effects of the different substituents on the spectroscopic and structural properties. Obtained data showed that there is an agreement between the predicted and experimental data.

  15. FOOD PROCESSING TECHNOLOGY AS A MEDIATOR OF FUNCTIONALITY. STRUCTURE-PROPERTY-PROCESS RELATIONSHIPS

    Directory of Open Access Journals (Sweden)

    Ester Betoret

    2015-02-01

    Full Text Available During the last years, the food industry has been facing technical and economic changes both in society and in the food processing practices, paying high attention to food products that meet the consumers´ demands. In this direction, the study areas in food process and products have evolved mainly from safety to other topics such as quality, environment or health. The improvement of the food products is now directed towards ensuring nutritional and specific functional benefits. Regarding the processes evolution, they are directed to ensure the quality and safety of environmentally friendly food products produced optimizing the use of resources, minimally affecting or even enhancing their nutritional and beneficial characteristics. The product structure both in its raw form and after processing plays an important role maintaining, enhancing and delivering the bioactive compounds in the appropriate target within the organism. The aim of this review is to make an overview on some synergistic technologies that can constitute a technological process to develop functional foods, enhancing the technological and/or nutritional functionality of the food products in which they are applied. More concretely, the effect of homogenization, vacuum impregnation and drying operations on bioactive compounds have been reviewed, focusing on the structure changes produced and its relationship on the product functionality, as well as on the parameters and the strategies used to quantify and increase the achieved functionality.

  16. γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications.

    Science.gov (United States)

    Castellano, Immacolata; Merlino, Antonello

    2012-10-01

    γ-Glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are involved in glutathione metabolism and play critical roles in antioxidant defense, detoxification, and inflammation processes. Moreover, γ-GTs have been recently found to be involved in many physiological disorders, such as Parkinson's disease and diabetes. In this review, the main biochemical and structural properties of γ-GTs isolated from different sources, as well as their conformational stability and mechanism of catalysis, are described and examined with the aim of contributing to the discussion on their structure-function relationships. Possible applications of γ-glutamyltranspeptidases in different fields of biotechnology and medicine are also discussed.

  17. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    Science.gov (United States)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  18. On the relationship between residue structural environment and sequence conservation in proteins.

    Science.gov (United States)

    Liu, Jen-Wei; Lin, Jau-Ji; Cheng, Chih-Wen; Lin, Yu-Feng; Hwang, Jenn-Kang; Huang, Tsun-Tsao

    2017-09-01

    Residues that are crucial to protein function or structure are usually evolutionarily conserved. To identify the important residues in protein, sequence conservation is estimated, and current methods rely upon the unbiased collection of homologous sequences. Surprisingly, our previous studies have shown that the sequence conservation is closely correlated with the weighted contact number (WCN), a measure of packing density for residue's structural environment, calculated only based on the C α positions of a protein structure. Moreover, studies have shown that sequence conservation is correlated with environment-related structural properties calculated based on different protein substructures, such as a protein's all atoms, backbone atoms, side-chain atoms, or side-chain centroid. To know whether the C α atomic positions are adequate to show the relationship between residue environment and sequence conservation or not, here we compared C α atoms with other substructures in their contributions to the sequence conservation. Our results show that C α positions are substantially equivalent to the other substructures in calculations of various measures of residue environment. As a result, the overlapping contributions between C α atoms and the other substructures are high, yielding similar structure-conservation relationship. Take the WCN as an example, the average overlapping contribution to sequence conservation is 87% between C α and all-atom substructures. These results indicate that only C α atoms of a protein structure could reflect sequence conservation at the residue level. © 2017 Wiley Periodicals, Inc.

  19. Cellulose nanomaterials review: structure, properties and nanocomposites

    Science.gov (United States)

    Robert J. Moon; Ashlie Martini; John Nairn; John Simonsen; Jeff Youngblood

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The...

  20. Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties.

    Science.gov (United States)

    Chen, Jin; Liang, Yi; Li, Xiaoxi; Chen, Ling; Xie, Fengwei

    2016-10-05

    The influence of supramolecular structure on the physicochemical properties and digestibility of jackfruit seed starch (JSS) were investigated. Compared with maize and cassava starches (MS and CS), JSS had smaller granules and higher amylose content (JSS: 24.90%; CS: 16.68%; and MS: 22.42%), which contributed to higher gelatinization temperature (To: 81.11°C) and setback viscosity (548.9mPas). From scanning electron microscopy, the digestion of JSS was observed mainly at the granule surface. Due to its higher crystallinity (JSS: 30.6%; CS: 30.3%; and MS: 27.4%) and more ordered semi-crystalline lamellae, JSS had a high RS content (74.26%) and melting enthalpy (19.61J/g). In other words, the supramolecular structure of JSS extensively determined its digestibility and resistance to heat and mechanical shear treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Processing-structure-properties relationships in PLA nanocomposite films

    Science.gov (United States)

    Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Incarnato, L.

    2014-05-01

    This work deals on the possibility to improve performances of PLA-based nanocomposite films, for packaging applications, through conveniently tuning materials and processing conditions in melt compounding technology. In particular, two types of polylactic acid and different types of filler selected from montmorillonites and bentonites families were used to prepare the hybrid systems by using a twin-screw extruder. The effect of biaxial drawing on morphology and properties of the nanocomposites, produced by film blowing, was investigated.

  2. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    Science.gov (United States)

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  3. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-01-01

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  4. Low-Dimensional Material: Structure-Property Relationship and Applications in Energy and Environmental Engineering

    Science.gov (United States)

    Xiao, Hang

    properties of P2S3 structure can be tuned by stacking into multilayer P2S3 structures, forming P2S3 nanoribbons or rolling into P2S3 nanotubes, expanding its potential applications for the emerging field of 2D electronics. Then we showed that the hydrolysis reaction is strongly affected by relative humidity. The hydrolysis of CO32- with n = 1-8 water molecules was investigated by ab initio method. For n = 1-5 water molecules, all the reactants follow a stepwise pathway to the transition state. For n = 6-8 water molecules, all the reactants undergo a direct proton transfer to the transition state with overall lower activation free energy. The activation free energy of the reaction is dramatically reduced from 10.4 to 2.4 kcal/mol as the number of water molecules increases from 1 to 6. Meanwhile, the degree of the hydrolysis of CO32- is significantly increased compared to the bulk water solution scenario. The incomplete hydration shells facilitate the hydrolysis of CO3 2- with few water molecules to be not only thermodynamically favorable but also kinetically favorable. We showed that the chemical kinetics is not likely to constrain the speed of CO2 air capture driven by the humidity-swing. (Abstract shortened by ProQuest.).

  5. Study of Chemistry and Structure-Property Relationship on Tunable Plasmonic Nanostructures

    Science.gov (United States)

    Jing, Hao

    In this dissertation, the rational design and controllable fabrication of an array of novel plasmonic nanostructures with geometrically tunable optical properties are demonstrated, including metal-semiconductor hybrid hetero-nanoparticles, bimetallic noble metal nanoparticles and hollow nanostructures (nanobox and nanocage). Firstly, I have developed a robust wet chemistry approach to the geometry control of Ag-Cu2O core-shell nanoparticles through epitaxial growth of Cu2O nanoshells on the surfaces of various Ag nanostructures, such as quasi-spherical nanoparticles, nanocubes, and nanocuboids. Precise control over the core and the shell geometries enables me to develop detailed, quantitative understanding of how the Cu2O nanoshells introduce interesting modifications to the resonance frequencies and the extinction spectral line shapes of multiple plasmon modes of the Ag cores. Secondly, I present a detailed and systematic study of the controlled overgrowth of Pd on Au nanorods. The overgrowth of Pd nanoshells with fine-controlled dimensions and architectures on single-crystalline Au nanorods through seed-mediated growth protocol in the presence of various surfactants is investigated. Thirdly, I have demonstrated that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, I have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high index facets abundant on the particle surfaces. And the nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time

  6. Structure-Property Relationships of Solid State Additive Manufactured Aluminum Alloy 2219 and Inconel 625

    Science.gov (United States)

    Rivera Almeyda, Oscar G.

    In this investigation, the processing-structure-property relations are correlated for solid state additively manufactured (SSAM) Inconel 625 (IN 625) and a SSAM aluminum alloy 2219 (AA2219). This is the first research of these materials processed by a new SSAM method called additive friction stir (AFS). The AFS process results in a refined grain structure by extruding solid rod through a rotating tool generating heat and severe plastic deformation. In the case of the AFS IN625, the IN625 alloy is known for exhibiting oxidation resistance and temperature mechanical stability, including strength and ductility. This study is the first to investigate the beneficial grain refinement and densification produced by AFS in IN625 that results in advantageous mechanical properties (YS, UTS, epsilonf) at both quasi-static and high strain rate. Electron Backscatter Diffraction (EBSD) observed dynamic recrystallization and grain refinement during the layer deposition in the AFS specimens, where the results identified fine equiaxed grain structures formed by dynamic recrystallization (DRX) with even finer grain structures forming at the layer interfaces. The EBSD quantified grains as fine as 0.27 microns in these interface regions while the average grain size was approximately 1 micron. Additionally, this is the first study to report on the strain rate dependence of AFS IN625 through quasi-static (QS) (0.001/s) and high strain rate (HR) (1500/s) tensile experiments using a servo hydraulic frame and a direct tension-Kolsky bar, respectively, which captured both yield and ultimate tensile strengths increasing as strain rate increased. Fractography performed on specimens showed a ductile fracture surface on both QS, and HR. Alternatively, the other AFS material system investigated in this study, AA2219, is mostly used for aerospace applications, specifically for rocket fuel tanks. EBSD was performed in the cross-section of the AA2219, also exhibiting DRX with equiaxed microstructure

  7. Structure-property relationships of mullite-SiC-Al{sub 2}O{sub 3}–ZrO{sub 2} composites developed during carbothermal reduction of aluminosilicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Seifollahzadeh, P., E-mail: Pseifollahzadeh.mat@stu.yazd.ac.ir; Kalantar, M.; Ghasemi, S.S.

    2015-10-25

    Evolution of SiC and ZrO{sub 2} in the matrix of Al{sub 2}O{sub 3} or mullite have been reported to enhance a higher toughness, good thermal shock resistance (lowering thermal expansion and improving thermal conductivity) and improved creep resistance of composite materials. In this study, the structure-property relationships of mullite-Al{sub 2}O{sub 3} matrix composites have been investigated in conjunction with the evolution of reinforcing phases such as SiC–ZrO{sub 2} by an economical heat treatment process called carbothermal reduction of inorganic minerals (Kaolinite, Andalusite, Zircon). The influence of starting materials in relation with the variation in molar ratio of C/SiO{sub 2} on the phase composition, microstructures, physical and mechanical properties have been studied. Light microscopy has been supplemented with scanning electron microscopy, XRD analysis, differential thermal and thermal gravity analysis to follow the structure-property relationships. The experimental results show that with increasing of C/SiO{sub 2} ratio in starting materials, very fine SiC whiskers have been formed in the microstructures. Moreover, the densification and strength are considerable higher for ZrO{sub 2} + SiC containing composites in comparison to that of only SiC added ones. Furthermore, it has been found that the appropriate ratio of C/SiO{sub 2} with the associated firing temperature to develop a higher densification and SiC crystallization have been related to the 3.5, 1550 °C for kaolinite, 3.5, 1450 °C for zircon and 5.5, 1600 °C for andalusite containing composite samples, respectively. - Highlights: • In-situ formation of SiC whiskers in matrix of alumina + mullite composites. • Advantage of availability, abundance and economical for starting materials. • Lack of environmental problems in comparable of utilization of whiskers directly. • A mixture of coke and alumina as a protective layer instead of inert atmosphere. • Fabrication of advanced

  8. Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts

    Science.gov (United States)

    Pretzer, Lori A.

    Transition metal nanomaterials are used to catalyze many chemical reactions, including those key to environmental, medicinal, and petrochemical fields. Improving their catalytic properties and lifetime would have significant economic and environmental rewards. Potentially expedient options to make such advancements are to alter the shape, size, or composition of transition metal nanocatalysts. This work investigates the relationships between structure and catalytic properties of synthesized Au, Pd-on-Au, and Au-enzyme model transition metal nanocatalysts. Au and Pd-on-Au nanomaterials were studied due to their wide-spread application and structure-dependent electronic and geometric properties. The goal of this thesis is to contribute design procedures and synthesis methods that enable the preparation of more efficient transition metal nanocatalysts. The influence of the size and composition of Pd-on-Au nanoparticles (NPs) was systematically investigated and each was found to affect the catalyst's surface structure and catalytic properties. The catalytic hydrodechlorination of trichloroethene and reduction of 4-nitrophenol by Pd-on-Au nanoparticles were investigated as these reactions are useful for environmental and pharmaceutical synthesis applications, respectively. Structural characterization revealed that the dispersion and oxidation state of surface Pd atoms are controlled by the Au particle size and concentration of Pd. These structural changes are correlated with observed Pd-on-Au NP activities for both probe reactions, providing new insight into the structure-activity relationships of bimetallic nanocatalysts. Using the structure-dependent electronic properties of Au NPs, a new type of light-triggered biocatalyst was prepared and used to remotely control a model biochemical reaction. This biocatalyst consists of a model thermophilic glucokinase enzyme covalently attached to the surface of Au nanorods. The rod-like shape of the Au nanoparticles made the

  9. Structure and Structure-activity Relationship of Functional Organic Molecules

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Research theme The group is made up of junior scientists from the State Key Laboratory of Elemento-organic Chemistry, Nankai University.The scientists focus their studis on the structure and structure-activity relationship of functional organic molecules not only because it has been the basis of their research, but also because the functional study of organic compounds is now a major scientific issue for organic chemists around the world.

  10. Antiplasmodial Activity, Cytotoxicity and Structure-Activity Relationship Study of Cyclopeptide Alkaloids

    Directory of Open Access Journals (Sweden)

    Emmy Tuenter

    2017-02-01

    Full Text Available Cyclopeptide alkaloids are polyamidic, macrocyclic compounds, containing a 13-, 14-, or 15-membered ring. The ring system consists of a hydroxystyrylamine moiety, an amino acid, and a β-hydroxy amino acid; attached to the ring is a side chain, comprised of one or two more amino acid moieties. In vitro antiplasmodial activity was shown before for several compounds belonging to this class, and in this paper the antiplasmodial and cytotoxic activities of ten more cyclopeptide alkaloids are reported. Combining these results and the IC50 values that were reported by our group previously, a library consisting of 19 cyclopeptide alkaloids was created. A qualitative SAR (structure-activity relationship study indicated that a 13-membered macrocyclic ring is preferable over a 14-membered one. Furthermore, the presence of a β-hydroxy proline moiety could correlate with higher antiplasmodial activity, and methoxylation (or, to a lesser extent, hydroxylation of the styrylamine moiety could be important for displaying antiplasmodial activity. In addition, QSAR (quantitative structure-activity relationship models were developed, using PLS (partial least squares regression and MLR (multiple linear regression. On the one hand, these models allow for the indication of the most important descriptors (molecular properties responsible for the antiplasmodial activity. Additionally, predictions made for interesting structures did not contradict the expectations raised in the qualitative SAR study.

  11. Quantitative Structure–Property Relationships for Aryldiazonia

    Directory of Open Access Journals (Sweden)

    Oxana I. Zhelezko

    2002-07-01

    Full Text Available Abstract: By the fact of finding 43 relationships, we have shown that the reduction potentials, dimerization potentials and potentials in half-equivalent point on titration of aryldiazonium cations XC6H4N+≡N (chemical reduction with K4[Fe(CN6] and TiCl3 in water, (C2H53N, (í-C4H94N+−OH, CH3OK and C10H8•−Na+ in acetone; polarographic reduction in nitromethane, sulfolane, and N,N-dimethylformamide are related linearly to the quantum chemically evaluated electron affinities (A and to the stabilization energies of radicals formed on diazonium cations reduction. Sixty six linear correlations of frequencies (ν characterizing a collection of bonds stretching vibrations of the C-N+≡N fragment in the XC6H4N+≡NY− salts with different anions in vaseline oil, N,N-dimethylformamide, acetone, ethylacetate, methanol, water, with the bonds orders of N≡N and C-N, with the charges on carbon atoms in para positions of the C6H5X molecules aromatic rings, with the mesomeric dipole moments (μm of X substituents have been found. Twelve quantitative relationships combining the μm and ν quantities with the A values have been established. The interrelations obtained have an explicitly expressed physical meaning, are featured by rather high correlation coefficients and have a predictive power in respect to redox properties, electron affinities, vibrational frequencies of aryldiazonia, as well as to mesomeric dipole moments of atomic groups in organic molecules.

  12. The relationship between energy consumption structure, economic structure and energy intensity in China

    International Nuclear Information System (INIS)

    Feng Taiwen; Sun Linyan; Zhang Ying

    2009-01-01

    This paper investigates the long-run equilibrium relationships, temporal dynamic relationships and causal relationships between energy consumption structure, economic structure and energy intensity in China. Time series variables over the periods from 1980 to 2006 are employed in empirical tests. Cointegration tests suggest that these three variables tend to move together in the long-run. In addition, Granger causality tests indicate that there is a unidirectional causality running from energy intensity to economic structure but not vice versa. Impulse response analysis provides reasonable evidences that one shock of the three variables will cause the periods of destabilized that followed. However, the impact of the energy consumption structure shock on energy intensity and the impact of the economic structure shock on energy consumption structure seem to be rather marginal. The findings have significant implications from the point of view of energy conservation and economic development. In order to decrease energy intensity, Chinese government must continue to reduce the proportion of coal in energy consumption, increase the utilization efficiency of coal and promote the upgrade of economic structure. Furthermore, a full analysis of factors that may relate to energy intensity (e.g. energy consumption structure, economic structure) should be conducted before making energy policies.

  13. Using nonlinearity and spatiotemporal property modulation to control effective structural properties: dynamic rods

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Blekhman, Iliya I.

    2007-01-01

    What are the effective properties of a generally nonlinear material or structure, whose local properties are modulated in both space and time? It has been suggested to use spatiotemporal modulation of structural properties to create materials and structures with adjustable effective properties......, and to call these dynamic materials or spatiotemporal composites. Also, according to theoretical predictions, structural nonlinearity enhances the possibilities of achieving specific effective properties. For example, with an elastic rod having cubical elastic nonlinearities, it seems possible to control......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...

  14. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kuperman, R.G. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  15. Structure and Properties of Compressed Borate Glasses

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauer, U.; Behrens, H.

    While the influence of thermal history on the structure and properties of glasses has been thoroughly studied in the past century, the influence of pressure history has received considerably less attention. In this study, we investigate the pressure-induced changes in structure and properties in ......, hardness and crack formation from nanoindentation experiments, and overshoot in isobaric heat capacity from DSC experiments at ambient pressure. The influence of the initial boron speciation on the degree of changes in structure and properties will also be discussed....

  16. Noncoded amino acids in protein engineering: Structure-activity relationship studies of hirudin-thrombin interaction.

    Science.gov (United States)

    De Filippis, Vincenzo; Acquasaliente, Laura; Pontarollo, Giulia; Peterle, Daniele

    2018-01-01

    The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  17. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models...... are proposed based on topological selection rules and experimentally verified. The relation between structure and properties is evaluated using topological constraint theory, which in its essence is a theory that quantifies the two intuitions of the glass scientist. The end result is a quantitative model...

  18. Hybrid carrageenans: isolation, chemical structure, and gel properties.

    Science.gov (United States)

    Hilliou, Loic

    2014-01-01

    Hybrid carrageenan is a special class of carrageenan with niche application in food industry. This polysaccharide is extracted from specific species of seaweeds belonging to the Gigartinales order. This chapter focuses on hybrid carrageenan showing the ability to form gels in water, which is known in the food industry as weak kappa or kappa-2 carrageenan. After introducing the general chemical structure defining hybrid carrageenan, the isolation of the polysaccharide will be discussed focusing on the interplay between seaweed species, extraction parameters, and the hybrid carrageenan chemistry. Then, the rheological experiments used to determine the small and large deformation behavior of gels will be detailed before reviewing the relationships between gel properties and hybrid carrageenan chemistry. © 2014 Elsevier Inc. All rights reserved.

  19. Structure-to-property relationships in addition cured polymers. II - Resin Tg and composite initial mechanical properties of norbornenyl cured polyimide resins

    Science.gov (United States)

    Alston, William B.

    1986-01-01

    PRM (polymerization of monomeric reactants) methodology was used to prepare thirty different polyimide oligomeric resins. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on glass transition temperature (Tg) of the cured/postcured resins. An almost linear correlation of Tg versus molecular distance between the crosslinks was observed. An attempt was made to correlate Tg with initial mechanical properties (flexural strength and interlaminar shear strength) of unidirectional graphite fiber composites prepared with these resins. However, the scatter in mechanical strength data prevented obtaining as clear a correlation as was observed for the structural modification/crosslink distance versus Tg. Instead, only a range of composite mechanical properties was obtained at the test temperatures studied (room temperature, 288 and 316 C). Perhaps more importantly, what did become apparent during the attempted correlation study was: (1) that PMR methodology could be used to prepare composites from resins that contain a wide variety of monomer modifications, and (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins selected were melt processable.

  20. Structure–property relationships of electroluminescent polythiophenes

    Indian Academy of Sciences (India)

    A series of conjugated polythiophenes containing nitrogen-containing heterocycles as side chain, with differing substituent nature and linkage have been studied using quantum-chemical calculations. The optical properties of synthesized polymers were compared with that of model compounds with intricate structural ...

  1. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hao [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States)]. E-mail: hao.jiang@wpafb.af.mil; Hong Lianggou [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States); Venkatasubramanian, N. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Grant, John T. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Eyink, Kurt [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Wiacek, Kevin [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Fries-Carr, Sandra [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Enlow, Jesse [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Bunning, Timothy J. [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States)

    2007-02-26

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant ({epsilon} {sub r}) and dielectric loss (tan {delta}) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F {sub b}) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F{sub b} of 610 V/{mu}m, an {epsilon} {sub r} of 3.07, and a tan {delta} of 7.0 x 10{sup -3} at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss.

  2. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    International Nuclear Information System (INIS)

    Jiang Hao; Hong Lianggou; Venkatasubramanian, N.; Grant, John T.; Eyink, Kurt; Wiacek, Kevin; Fries-Carr, Sandra; Enlow, Jesse; Bunning, Timothy J.

    2007-01-01

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant (ε r ) and dielectric loss (tan δ) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F b ) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F b of 610 V/μm, an ε r of 3.07, and a tan δ of 7.0 x 10 -3 at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss

  3. The relationship of whole human vertebral body creep to geometric, microstructural, and material properties.

    Science.gov (United States)

    Oravec, Daniel; Kim, Woong; Flynn, Michael J; Yeni, Yener N

    2018-05-17

    Creep, the time dependent deformation of a structure under load, is an important viscoelastic property of bone and may play a role in the development of permanent deformity of the vertebrae in vivo leading to clinically observable spinal fractures. To date, creep properties and their relationship to geometric, microstructural, and material properties have not been described in isolated human vertebral bodies. In this study, a range of image-based measures of vertebral bone geometry, bone mass, microarchitecture and mineralization were examined in multiple regression models in an effort to understand their contribution to creep behavior. Several variables, such as measures of mineralization heterogeneity, average bone density, and connectivity density persistently appeared as significant effects in multiple regression models (adjusted r 2 : 0.17-0.56). Although further work is needed to identify additional tissue properties to fully describe the portion of variability not explained by these models, these data are expected to help understand mechanisms underlying creep and improve prediction of vertebral deformities that eventually progress to a clinically observable fracture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties

    KAUST Repository

    Kelarakis, Antonios

    2010-01-01

    Structure-properties relationships in poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, clay nanocomposites are reported for the first time. Addition of organically modified clays to PVDF-HFP promotes an α to β transformation of the polymer crystals. The degree of transformation depends on the nature of the clay surface modifier and scales with the strength of the interactions between the clay and the polymer. The nanocomposites exhibit significant increases in elongation to failure compared to the neat copolymer. In addition, their dielectric permittivity is higher over a wide temperature range. Their mechanical and dielectric properties scale similar to the amount of the β phase present in the nanocomposites. © 2009 Elsevier Ltd. All rights reserved.

  5. Chemical structure and properties of low-molecular furin inhibitors

    Directory of Open Access Journals (Sweden)

    T. V. Osadchuk

    2016-12-01

    Full Text Available The review is devoted to the analysis of the relationship between a chemical structure and properties of low-molecular weight inhibitors of furin, the most studied proprotein convertase, which is involved in the development of some pathologies, such as oncologic diseases, viral and bacterial infections, etc. The latest data concerning the influence of peptides, pseudo-peptides, aromatic and heterocyclic compounds, some natural ones such as flavonoids, coumarins, and others on enzyme inactivation are considered. The power of furin inhibition is shown to rise with the increasing number of positively charged groups in the structure of these compounds. Peptidomimetics (Ki = 5-8 pM are shown to be the most effective furin inhibitors. The synthesized substances, however, have not been used in practical application yet. Nowadays it is very important to find more selective inhibitors, improve their stability, bioavailability and safety for the human organism.

  6. Structures and properties of spatially distorted porphyrins

    International Nuclear Information System (INIS)

    Golubchikov, Oleg A; Kuvshinova, Elizaveta M; Pukhovskaya, Svetlana G

    2005-01-01

    The published data on the structures and properties of porphyrins with distorted aromatic macrocycles are generalised and analysed. Data on the crystal structures, spectra and kinetics of formation and dissociation of their coordination derivatives are summarised. It is demonstrated that the distortion of the planar structure of the tetrapyrrole core is one of the most efficient means of controlling spectral, physicochemical and coordination properties of these compounds.

  7. Interfacial assembly structures and nanotribological properties of saccharic acids.

    Science.gov (United States)

    Shi, Hongyu; Liu, Yuhong; Zeng, Qingdao; Yang, Yanlian; Wang, Chen; Lu, Xinchun

    2017-01-04

    Saccharides have been recognized as potential bio-lubricants because of their good hydration ability. However, the interfacial structures of saccharides and their derivatives are rarely studied and the molecular details of interaction mechanisms have not been well understood. In this paper, the supramolecular assembly structures of saccharic acids (including galactaric acid and lactobionic acid), mediated by hydrogen bonds O-HN and O-HO, were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing pyridine modulators and were explicitly revealed by using scanning tunneling microscopy (STM). Furthermore, friction forces were measured in the saccharic acid/pyridine co-assembled system by atomic force microscopy (AFM), revealing a larger value than a pristine saccharic acid system, which could be attributed to the stronger tip-assembled molecule interactions that lead to the higher potential energy barrier needed to overcome. The effort on saccharide-related supramolecular self-assembly and nanotribological behavior could provide a novel and promising pathway to explore the interaction mechanisms underlying friction and reveal the structure-property relationship at the molecular level.

  8. Determination of Basic Structure-Property Relations for Processing and Modeling in Advanced Nuclear Fuel: Microstructure Evolution and Mechanical Properties

    International Nuclear Information System (INIS)

    Wheeler, Kirk; Parra, Manuel; Peralta, Pedro

    2009-01-01

    The project objective is to study structure-property relations in solid solutions of nitrides and oxides with surrogate elements to simulate the behavior of fuels of inert matrix fuels of interest to the Advanced Fuel Cycle Initiative (AFCI), with emphasis in zirconium-based materials. Work with actual fuels will be carried out in parallel in collaboration with Los Alamos National Laboratory (LANL). Three key aspects will be explored: microstructure characterization through measurement of global texture evolution and local crystallographic variations using Electron Backscattering Diffraction (EBSD); determination of mechanical properties, including fracture toughness, quasi-static compression strength, and hardness, as functions of load and temperature, and, finally, development of structure-property relations to describe mechanical behavior of the fuels based on experimental data. Materials tested will be characterized to identify the mechanisms of deformation and fracture and their relationship to microstructure and its evolution. New aspects of this research are the inclusion of crystallographic information into the evaluation of fuel performance and the incorporation of statistical variations of microstructural variables into simplified models of mechanical behavior of fuels that account explicitly for these variations. The work is expected to provide insight into processing conditions leading to better fuel performance and structural reliability during manufacturing and service, as well as providing a simplified testing model for future fuel production

  9. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships.

    Science.gov (United States)

    Gronau, Greta; Krishnaji, Sreevidhya T; Kinahan, Michelle E; Giesa, Tristan; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J

    2012-11-01

    Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials - elastin, silk, and collagen - and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Tribological properties of nanostripe surface structures-a design concept for improving tribological properties

    International Nuclear Information System (INIS)

    Miyake, K; Nakano, M; Korenaga, A; Mano, H; Ando, Y

    2010-01-01

    The tribological properties of nanostripe surface structures were investigated using a pin-on-plate tribometer in order to propose a design concept for improving the tribological properties. The authors used four kinds of nanostripe structures consisting of different combinations of materials (Fe-Au, C-SiC, Al-Al 2 O 3 and Al-Pt) fabricated by a process they had previously proposed. The frictional properties of the nanostripe structures depended on the materials that constituted the nanostripes. When the sliding direction in friction tests was parallel to the microgrooves, nanostripe structures remained on all surfaces even after friction tests. Based on the friction test results, the authors considered a design concept for nanostripe structures in tribological applications.

  11. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    Science.gov (United States)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and

  12. The correlation between composition, structure and properties of high-level waste solidification products

    International Nuclear Information System (INIS)

    Neumann, L.; Vojtech, O.; Santarova, M.; Stejskal, I.; Gulinskij, V.

    1977-01-01

    The final product of a high-level liquid waste solidification process must meet a number of quantitative criteria. The necessary data can be obtained by direct measurement of certain parameters of the product (leachability of important radionuclides from the basic matrix, total solubility of the final product, thermal conductivity, mechanical properties, the temperature dependence of viscosity, etc.). Some insight can also be obtained on the basis of a profound analysis of micro- and macrostructure of the solid product. Detailed knowledge of the structure makes it easier to evaluate the final product. In this paper an effort is made to find a relationship between composition and structure of the system and the properties of the product obtained under the specific conditions of the process. The results are demonstrated using a phosphate matrix in which fission products and corrosion products are included in a wide range of concentrations. For analysis of the structure properties, X-ray diffraction, microscopic and electron probe microanalysis (back-scattered electrons and characteristic X-radiation detection) have been used. Using standard methods, the hydrolytical resistance of the product and the selective leachability of caesium, strontium and rare-earth ions have been measured. The results obtained so far have confirmed the usefulness of structure analysis as a parallel method for product evaluation in the development of the process and probably also for large-scale application. (author)

  13. Free and Open Source Chemistry Software in Research of Quantitative Structure-Toxicity Relationship of Pesticides

    Directory of Open Access Journals (Sweden)

    Rastija Vesna

    2017-01-01

    Full Text Available Pesticides are toxic chemicals aimed for the destroying pest on crops. Numerous data evidence about toxicity of pesticides on aquatic organisms. Since pesticides with similar properties tend to have similar biological activities, toxicity may be predicted from structure. Their structure feature and properties are encoded my means of molecular descriptors. Molecular descriptors can capture quite simple two-dimensional (2D chemical structures to highly complex three-dimensional (3D chemical structures. Quantitative structure-toxicity relationship (QSTR method uses linear regression analyses for correlation toxicity of chemical with their structural feature using molecular descriptors. Molecular descriptors were calculated using open source software PaDEL and in-house built PyMOL plugin (PyDescriptor. PyDescriptor is a new script implemented with the commonly used visualization software PyMOL for calculation of a large and diverse set of easily interpretable molecular descriptors encoding pharmacophoric patterns and atomic fragments. PyDescriptor has several advantages like free and open source, can work on all major platforms (Windows, Linux, MacOS. QSTR method allows prediction of toxicity of pesticides without experimental assay. In the present work, QSTR analysis for toxicity of a dataset of mixtures of 5 classes of pesticides comprising has been performed.

  14. The relationship between structural and optical properties of Se-Ge-As glasses

    Science.gov (United States)

    Ghayebloo, M.; Rezvani, M.; Tavoosi, M.

    2018-05-01

    In this study, the structural and optical characterization of bulk Se-Ge-As glasses has been investigated. In this regards, six different Se60Ge40-xAsx (0 ≤ x ≤ 25) glasses were prepared by conventional melt quenching technique in quartz ampoule. The produced samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, differential thermal analysis (DTA), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. According to achieved results, fully amorphous phase can easily form in different Se-Ge-As systems. The thermal and optical characteristic of Se60Ge40-xAsx glasses shows anomalous behavior at 5 mol% of As for the glass transition temperature, transmittance, absorption edge, optical energy gap and Urbach energy. The highest glass transition temperature, transmittance, optical energy gap and Urbach energy properties were achieved in Se60Ge35As5 glass as a result of the highest connectivity of cations and anions in glass network.

  15. The influence of hydrostatic pressure on the electronic structure and optical properties of tin dioxide: A first-principle study

    International Nuclear Information System (INIS)

    Cai Lugang; Liu Famin; Zhang Dian; Zhong Wenwu

    2013-01-01

    The evolutions of electronic structure and optical properties of SnO 2 under hydrostatic pressure are studied theoretically using first-principle calculations. The calculation results show that the energy band gap of SnO 2 expands with increasing pressure, and the relationship between them can be fitted well by a second order polynomial expression. The complex dielectric functions are calculated and it is found that its imaginary part moves to higher photon energy levels with increasing pressure; meanwhile the static dielectric function constant decreases correspondingly. The dependences of other optical properties, such as the reflectivity spectra and loss function, on the hydrostatic pressure are also calculated and obtained, and the relationships between the optical properties and hydrostatic pressure are discussed and analyzed.

  16. Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting

    Science.gov (United States)

    Zhang, David Z.; Zhang, Peng; Zhao, Miao; Jafar, Salman

    2018-01-01

    Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress–strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength. PMID:29510492

  17. Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting.

    Science.gov (United States)

    Liu, Fei; Zhang, David Z; Zhang, Peng; Zhao, Miao; Jafar, Salman

    2018-03-03

    Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress-strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength.

  18. When Do Students Recognize Relationships between Molecular Structure and Properties? A Longitudinal Comparison of the Impact of Traditional and Transformed Curricula

    Science.gov (United States)

    Underwood, Sonia M.; Reyes-Gastelum, David; Cooper, Melanie M.

    2016-01-01

    The ability to use a chemical structure to predict and explain phenomenon is essential to a robust understanding of chemistry; however, previous research has shown that students find it difficult to make the connection between structure and properties. In this study we examine how student recognition of the connections between structure and…

  19. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  20. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure.

    Science.gov (United States)

    Zhang, Chang; Nie, Shuang; Liang, Jie; Zeng, Guangming; Wu, Haipeng; Hua, Shanshan; Liu, Jiayu; Yuan, Yujie; Xiao, Haibing; Deng, Linjing; Xiang, Hongyu

    2016-07-01

    Heavy metals (HMs) contamination is a serious environmental issue in wetland soil. Understanding the micro ecological characteristic of HMs polluted wetland soil has become a public concern. The goal of this study was to identify the effects of HMs and soil physicochemical properties on soil microorganisms and prioritize some parameters that contributed significantly to soil microbial biomass (SMB) and bacterial community structure. Bacterial community structure was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Relationships between soil environment and microorganisms were analyzed by correlation analysis and redundancy analysis (RDA). The result indicated relationship between SMB and HMs was weaker than SMB and physicochemical properties. The RDA showed all eight parameters explained 74.9% of the variation in the bacterial DGGE profiles. 43.4% (contain the variation shared by Cr, Cd, Pb and Cu) of the variation for bacteria was explained by the four kinds of HMs, demonstrating HMs contamination had a significant influence on the changes of bacterial community structure. Cr solely explained 19.4% (pstructure, and Cd explained 17.5% (pstructure changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Multiphase composite coatings: structure and properties

    International Nuclear Information System (INIS)

    Yurov, V M; Guchenko, S A; Platonova, E S; Syzdykova, A Sh; Lysenko, E N

    2015-01-01

    The paper discusses the results of the research into the formation of ion-plasma multiphase coatings. The types of the formed structures are found to be not so diverse, as those formed, for example, in alloy crystallization. The structures observed are basically of globular type and, more rarely, of unclosed dissipative and cellular structures. It is shown that the properties of the coating formed in deposition are largely determined by its surface energy or surface tension. Since the magnitude of the surface tension (surface energy) in most cases is an additive quantity, each of the elements of the coating composition contributes to the total surface energy. In case of simultaneous sputtering of multiphase cathodes, high entropy coatings with an ordered cellular structure and improved mechanical properties are formed. (paper)

  2. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    Science.gov (United States)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  3. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    Science.gov (United States)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  4. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography.

    Science.gov (United States)

    Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto

    2016-06-10

    The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Structural Properties of Ferroelectric Perovskites

    National Research Council Canada - National Science Library

    Vanderbilt, David

    1998-01-01

    Under this research grant, we carried out realistic first-principles computer calculations of the ground-state and finite-temperature structural and dielectric properties of cubic perovskite materials...

  6. Dynamic properties of vision-II : theoretical relationships between flicker and flash thresholds

    NARCIS (Netherlands)

    Roufs, J.A.J.

    1972-01-01

    On the basis of some general system properties theoretical relationships have been established between parameters which characterise the sensitivity and inertia of the visual system in flicker and flash experiments. The results are in good agreement with the experimental relationships found in Part

  7. Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling

    KAUST Repository

    Burkhardt, Stephen E.

    2013-01-22

    The full realization of a renewable energy strategy hinges upon electrical energy storage (EES). EES devices play a key role in storing energy from renewable sources (which are inherently intermittent), to efficient transmission (e.g., grid load-leveling), and finally into the electrification of transportation. Organic materials represent a promising class of electrode active materials for Li-ion and post-Li-ion batteries. Organics consist of low-cost, lightweight, widely available materials, and their properties can be rationally tuned using the well-established principles of organic chemistry. Within the class of organic EES materials, carboxylates distinguish themselves for Li-ion anode materials based on their observed thermal stability, rate capability, and high cyclability. Further, many of the carboxylates studied to date can be synthesized from renewable or waste feedstocks. This report begins with a preliminary molecular density-functional theory (DFT) study, in which the calculated molecular properties of a set of 12 known Li-ion electrode materials based on carboxylate and carbonyl redox couples are compared to literature data. Based on the agreement between theoretical and experimental data, an expanded study was undertaken to identify promising materials and establish design principles for anodes based on Li-carboxylate salts. Predictive computational studies represent an important step forward for the identification of organic anode materials. © 2012 American Chemical Society.

  8. Structure determination, electronic and optical properties of rubidium holmium polyphosphate RbHo(PO3)4

    Science.gov (United States)

    Zhu, Jing; Chen, Hui; Wang, Yude; Guan, Hongtao; Xiao, Xuechun

    2012-12-01

    Structural, optical, and electronic properties of a new alkali metal-rare earth polyphosphate, RbHo(PO3)4, have been investigated by means of single-crystal X-ray diffraction, power X-ray diffraction, elemental analysis, and spectral measurement. RbHo(PO3)4 crystallizes in the monoclinic with space group P21/n and Z = 4. It is described as a three-dimensional (3D) architecture built up of PO4 double spiral chains and HoO8 polyhedra by corner-sharing. The 11-coordinated rubidium atoms are located in infinite tunnels. Additionally, in order to gain further insight into the relationship between property and structure of RbHo(PO3)4, theoretical calculation based on the density functional theory (DFT) was performed using the total-energy code CASTEP.

  9. Investigations on the Mechanical Properties of Conducting Polymer Coating-Substrate Structures and Their Influencing Factors

    Directory of Open Access Journals (Sweden)

    Xin Hua

    2009-12-01

    Full Text Available This review covers recent advances and work on the microstructure features, mechanical properties and cracking processes of conducting polymer film/coatingsubstrate structures under different testing conditions. An attempt is made to characterize and quantify the relationships between mechanical properties and microstructure features. In addition, the film cracking mechanism on the micro scale and some influencing factors that play a significant role in the service of the film-substrate structure are presented. These investigations cover the conducting polymer film/coating nucleation process, microstructure-fracture characterization, translation of brittle-ductile fractures, and cracking processes near the largest inherent macromolecule defects under thermal-mechanical loadings, and were carried out using in situ scanning electron microscopy (SEM observations, as a novel method for evaluation of interface strength and critical failure stress.

  10. Quantitative Structure-Activity Relationship Analysis of the ...

    African Journals Online (AJOL)

    Erah

    Quantitative Structure-Activity Relationship Analysis of the Anticonvulsant ... Two types of molecular descriptors, including the 2D autocorrelation ..... It is based on the simulation of natural .... clustering anticonvulsant, antidepressant, and.

  11. Structural and dynamical properties of Yukawa balls

    International Nuclear Information System (INIS)

    Block, D; Kroll, M; Arp, O; Piel, A; Kaeding, S; Ivanov, Y; Melzer, A; Henning, C; Baumgartner, H; Ludwig, P; Bonitz, M

    2007-01-01

    To study the structural and dynamical properties of finite 3D dust clouds (Yukawa balls) new diagnostic tools have been developed. This contribution describes the progress towards 3D diagnostics for measuring the particle positions. It is shown that these diagnostics are capable of investigating the structural and dynamical properties of Yukawa balls and gaining insight into their basic construction principles

  12. Predicting structural properties of fluids by thermodynamic extrapolation

    Science.gov (United States)

    Mahynski, Nathan A.; Jiao, Sally; Hatch, Harold W.; Blanco, Marco A.; Shen, Vincent K.

    2018-05-01

    We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.

  13. Data base on structural materials aging properties

    International Nuclear Information System (INIS)

    Oland, C.B.

    1992-01-01

    The US Nuclear Regulatory Commission has initiated a Structural Aging Program at the Oak Ridge National Laboratory to identify potential structural safety issues related to continued service of nuclear power plants and to establish criteria for evaluating and resolving these issues. One of the tasks in this program focuses on the establishment of a Structural Materials Information Center where long-term and environment-dependent properties of concretes and other structural materials are being collected and assembled into a data base. These properties will be used to evaluate the current condition of critical structural components in nuclear power plants and to estimate the future performance of these materials during the continued service period

  14. Syntheses and absorption-structure relationships of some new ...

    Indian Academy of Sciences (India)

    New biheterocyclic compound was synthesized as starting material to prepare new photosensitizers mono-, tri-, substituted tri-, azadimethine and mixed cyanine dyes. Absorption-structure relationship of the synthesized cyanine dyes were determined by studying their electronic spectral behaviour in ethanol. The structure of ...

  15. Slope failure at Bukit Antarabangsa, Ampang, Selangor and its relationship to physical soil properties

    International Nuclear Information System (INIS)

    Muhammad Barzani Gasim; Sahibin Abd Rahim; Mohd Ekhwan Toriman; Diyana Ishnin

    2011-01-01

    Slope failure which occurred on 6 December 2008 at Bukit Antarabangsa, Ampang Selangor has caused mortalities and loss of properties whereas more than 20 houses were flattened. Prior to slope failure, it was heavily down poured for a few hours that increased the soil saturation and plasticity properties. A total of 10 soil samples were randomly taken from stable and unstable slopes to determine physical soil properties, infiltration rate and their relationship to rainfall pattern. Soils were analyzed in terms of their physical properties; five years (2005-2009) of daily rainfalls were analyzed to determine their relationship to infiltration rate at each sampling station. Infiltration rate is determined by using infiltrometer double ring. Analysis of physical soils properties shows that soil texture was dominated by sandy soil with relatively high percentage of sand. Values of clay dispersion coefficient were relatively stable to very stable from 0.013 % to 11.85 % and organic content from 1.38 % to 2.74 %. Range of porosity was from 50.12 % to 62.31 %, while the average levels of hydraulic conductivity was from level 2 to 5 or relatively slow to fast. Percentage of soil aggregate stability was from 5.12 % to 48.42 % and this value indicates that relative strength of soil mechanical pressure is inversely proportional to the percentage of water content. Soil plasticity value was high to very high but characterized by inactive colloids. Distribution of monthly rainfall was from 38 mm to 427 mm. The infiltration rate during sampling time was from 3.0 cm/ hr to 7.0 cm/ hr; but it was expected from 10.94 cm/ hr to 915.05 cm/ hr during slope failures. Overall, it was interpreted that physical soil properties was closely interrelated with slope stability, structure of sandy soil will enhanced soil porosity stage and enhance the infiltration process during heavy rainfall, and finally triggering of slope failure. (author)

  16. Mechanical properties of structural maritime pine sawn timber from Galicia (Pinus pinaster Ait. ssp. atlantica)

    Energy Technology Data Exchange (ETDEWEB)

    Carballo, J.; Hermoso, E.; Fernandez-Golfin, J. I.

    2009-07-01

    The use of maritime pine sawn timber in structural applications requires knowledge of its mechanical properties. Standards have changed, however, since the last research on this timber was performed. In the present study, 491 beams of maritime pine from Gaelic, of structural-use size but different cross-section, were tested according to these modified standards. Each beam was visually graded according to standard UNE 56.544 and subjected to a four point bending test. The strength classes assigned by the visual grades awarded suggest this material to have greater structural capacity than that currently assumed. The relationships between the modulus of elasticity, strength and density were also examined. (Author) 25 refs.

  17. Thermodynamic and structure-property study of liquid-vapor equilibrium for aroma compounds.

    Science.gov (United States)

    Tromelin, Anne; Andriot, Isabelle; Kopjar, Mirela; Guichard, Elisabeth

    2010-04-14

    Thermodynamic parameters (T, DeltaH degrees , DeltaS degrees , K) were collected from the literature and/or calculated for five esters, four ketones, two aldehydes, and three alcohols, pure compounds and compounds in aqueous solution. Examination of correlations between these parameters and the range values of DeltaH degrees and DeltaS degrees puts forward the key roles of enthalpy for vaporization of pure compounds and of entropy in liquid-vapor equilibrium of compounds in aqueous solution. A structure-property relationship (SPR) study was performed using molecular descriptors on aroma compounds to better understand their vaporization behavior. In addition to the role of polarity for vapor-liquid equilibrium of compounds in aqueous solution, the structure-property study points out the role of chain length and branching, illustrated by the correlation between the connectivity index CHI-V-1 and the difference between T and log K for vaporization of pure compounds and compounds in aqueous solution. Moreover, examination of the esters' enthalpy values allowed a probable conformation adopted by ethyl octanoate in aqueous solution to be proposed.

  18. Structural and magnetic properties of Mn nanoparticles prepared by arc-discharge

    International Nuclear Information System (INIS)

    Si, P.Z.; Brueck, E.; Zhang, Z.D.; Tegus, O.; Zhang, W.S.; Buschow, K.H.J.; KlAsse, J.C.P.

    2005-01-01

    Mn nanoparticles are prepared by arc discharge technique. MnO, α-Mn, β-Mn, and γ-Mn are detected by X-ray diffraction, while the presence of Mn 3 O 4 and MnO 2 is revealed by X-ray photoelectron spectroscopy. Transmission electron microscopy observations show that most of the Mn nanoparticles have irregular shapes, rough surfaces and a shell/core structure, with sizes ranging from several nanometers to 80 nm. The magnetic properties of the Mn nanoparticles are investigated between 2 and 350 K at magnetic fields up to 5 T. A magnetic transition occurring near 43 K is attributed to the formation of the ferrimagnetic Mn 3 O 4 . The coercivity of the Mn nanoparticles, arising mainly from Mn 3 O 4 , decreases linearly with increasing temperature below 40 K. Below the blocking temperature T B ∼ 34 K, the hysteresis loops exhibit large coercivity (up to 500 kA/m), owing to finite size effects, and irreversibility in the loops is found up to 4 T, and magnetization is not saturated up to 5 T. The relationship between structure and the magnetic properties are discussed

  19. Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties.

    Science.gov (United States)

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Rahman, M Aminur; Islam, Mohamad Tofazzal

    2017-10-17

    Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified as holostane and nonholostane depending on the presence or absence of a specific structural unit γ(18,20)-lactone in the aglycone. Triterpene glycosides contain a carbohydrate chain up to six monosaccharide units mainly consisting of d-xylose, 3-O-methy-d-xylose, d-glucose, 3-O-methyl-d-glucose, and d-quinovose. Cytotoxicity is the common biological property of triterpene glycosides isolated from sea cucumbers. Besides cytotoxicity, triterpene glycosides also exhibit antifungal, antiviral and hemolytic activities. This review updates and summarizes our understanding on diverse chemical structures of triterpene glycosides from various species of sea cucumbers and their important biological activities. Mechanisms of action and structural-activity relationships (SARs) of sea cucumber glycosides are also discussed briefly.

  20. Family Structures, Relationships, and Housing Recovery Decisions after Hurricane Sandy

    Directory of Open Access Journals (Sweden)

    Ali Nejat

    2016-04-01

    Full Text Available Understanding of the recovery phase of a disaster cycle is still in its infancy. Recent major disasters such as Hurricane Sandy have revealed the inability of existing policies and planning to promptly restore infrastructure, residential properties, and commercial activities in affected communities. In this setting, a thorough grasp of housing recovery decisions can lead to effective post-disaster planning by policyholders and public officials. The objective of this research is to integrate vignette and survey design to study how family bonds affected rebuilding/relocating decisions after Hurricane Sandy. Multinomial logistic regression was used to investigate respondents’ family structures before Sandy and explore whether their relationships with family members changed after Sandy. The study also explores the effect of the aforementioned relationship and its changes on households’ plans to either rebuild/repair their homes or relocate. These results were compared to another multinomial logistic regression which was applied to examine the impact of familial bonds on respondents’ suggestions to a vignette family concerning rebuilding and relocating after a hurricane similar to Sandy. Results indicate that respondents who lived with family members before Sandy were less likely to plan for relocating than those who lived alone. A more detailed examination shows that this effect was driven by those who improved their relationships with family members; those who did not improve their family relationships were not significantly different from those who lived alone, when it came to rebuilding/relocation planning. Those who improved their relationships with family members were also less likely to suggest that the vignette family relocate. This study supports the general hypothesis that family bonds reduce the desire to relocate, and provides empirical evidence that family mechanisms are important for the rebuilding/relocating decision

  1. Exploring the formation and electronic structure properties of the g-C3N4 nanoribbon with density functional theory.

    Science.gov (United States)

    Wu, Hong-Zhang; Zhong, Qing-Hua; Bandaru, Sateesh; Liu, Jin; Lau, Woon Ming; Li, Li-Li; Wang, Zhenling

    2018-04-18

    The optical properties and condensation degree (structure) of polymeric g-C 3 N 4 depend strongly on the process temperature. For polymeric g-C 3 N 4 , its structure and condensation degree depend on the structure of molecular strand(s). Here, the formation and electronic structure properties of the g-C 3 N 4 nanoribbon are investigated by studying the polymerization and crystallinity of molecular strand(s) employing first-principle density functional theory. The calculations show that the width of the molecular strand has a significant effect on the electronic structure of polymerized and crystallized g-C 3 N 4 nanoribbons, a conclusion which would be indirect evidence that the electronic structure depends on the structure of g-C 3 N 4 . The edge shape also has a distinct effect on the electronic structure of the crystallized g-C 3 N 4 nanoribbon. Furthermore, the conductive band minimum and valence band maximum of the polymeric g-C 3 N 4 nanoribbon show a strong localization, which is in good agreement with the quasi-monomer characters. In addition, molecular strands prefer to grow along the planar direction on graphene. These results provide new insight on the properties of the g-C 3 N 4 nanoribbon and the relationship between the structure and properties of g-C 3 N 4 .

  2. Structure-retention and mobile phase-retention relationships for reversed-phase high-performance liquid chromatography of several hydroxythioxanthone derivatives in binary acetonitrile-water mixtures

    International Nuclear Information System (INIS)

    Amiri, Ali Asghar; Hemmateenejad, Bahram; Safavi, Afsaneh; Sharghi, Hashem; Beni, Ali Reza Salimi; Shamsipur, Mojtaba

    2007-01-01

    The reversed-phase high-performance liquid chromatographic (RP-HPLC) behavior of some newly synthesized hydroxythioxanthone derivatives using binary acetonitrile-water mixtures as mobile phase has been examined. First, the variation in the retention time of each molecule as a function of mobile phase properties was studied by Kamlet-Taft solvatochromic equations. Then, the influences of molecular structure of the hydroxythioxanthone derivatives on their retention time in various mobile phase mixtures were investigated by quantitative structure-property relationship (QSPR) analysis. Finally, a unified model containing both the molecular structure parameters and mobile phase properties was developed to describe the chromatographic behavior of the systems studied. Among the solvent properties, polarity/polarizability parameter (π * ) and hydrogen-bond basicity (β), and among the solute properties, the most positive local charge (MPC), the sum of positive charges on hydrogen atoms contributing in hydrogen bonding (SPCH) and lipophilicity index (log P) were identified as controlling factors in the RP-HPLC behavior of hydroxythioxanthone derivatives in actonitrile-water binary solvents

  3. Do institutions matter in neighbourhood commons governance? A two-stage relationship between diverse property-rights structure and residential public open space (POS quality: Kota Kinabalu and Penampang, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Ling Gabriel Hoh Teck

    2016-02-01

    Full Text Available Despite the existing literature regarding institutional influence ontraditional commons, there is still a comparative dearth of research that theorisesproperty-rights structure and its impact on contemporary commons. This isparticularly true for public open space (POS governance: its management andutilisation and hence its quality, of which underinvestment and overexploitationleads to increasingly negative externalities and outcomes. An interdisciplinarystudy is employed here to depict the relationships of diverse property-rightsstructure attributes – POS title existence, community existence, POS title transfer and POS site handing-over period to local government – with quality ofresidential POS. A cross-sectional survey via direct structured observation witha POS quality audit tool was conducted to collect a randomly stratified sampleof 155 Country Lease (CL POS and entire 22 Native Title (NT POS, from thedistricts of Kota Kinabalu and Penampang, Sabah, respectively. Archival searchand document analysis on data of property-rights attributes were executed aswell. Next, 2-stage Pearson’s Chi-Square ( c2 and Lambda (λ with ProportionalReduction Error feature analyses were performed. Results showed that only thesethree property-rights attributes – title deed existence, community existence andPOS site handing-over period to local government- are significantly associatedwith POS quality at significance level (p≤0.05. It is found that, although POSwith title deed and community’s involvement might not contribute to goodquality, these attributes were likely to provide better quality. On the other hand,it is found that the more recent the POS site handing over to government, thehigher the likelihood of good POS quality and vice versa. Such empirical findingsprima facie infer that: (i current local property-rights structure does matter incontributing to POS condition, particularly the effective management right whichlikely leads to better

  4. Intermetallics structures, properties, and statistics

    CERN Document Server

    Steurer, Walter

    2016-01-01

    The focus of this book is clearly on the statistics, topology, and geometry of crystal structures and crystal structure types. This allows one to uncover important structural relationships and to illustrate the relative simplicity of most of the general structural building principles. It also allows one to show that a large variety of actual structures can be related to a rather small number of aristotypes. It is important that this book is readable and beneficial in the one way or another for everyone interested in intermetallic phases, from graduate students to experts in solid-state chemistry/physics/materials science. For that purpose it avoids using an enigmatic abstract terminology for the classification of structures. The focus on the statistical analysis of structures and structure types should be seen as an attempt to draw the background of the big picture of intermetallics, and to point to the white spots in it, which could be worthwhile exploring. This book was not planned as a textbook; rather, it...

  5. Structure-Activity Relationships of the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PF-46396.

    Science.gov (United States)

    Murgatroyd, Christopher; Pirrie, Lisa; Tran, Fanny; Smith, Terry K; Westwood, Nicholas J; Adamson, Catherine S

    2016-09-15

    HIV-1 maturation inhibitors are a novel class of antiretroviral compounds that consist of two structurally distinct chemical classes: betulinic acid derivatives and the pyridone-based compound PF-46396. It is currently believed that both classes act by similar modes of action to generate aberrant noninfectious particles via inhibition of CA-SP1 cleavage during Gag proteolytic processing. In this study, we utilized a series of novel analogues with decreasing similarity to PF-46396 to determine the chemical groups within PF-46396 that contribute to antiviral activity, Gag binding, and the relationship between these essential properties. A spectrum of antiviral activity (active, intermediate, and inactive) was observed across the analogue series with respect to CA-SP1 cleavage and HIV-1 (NL4-3) replication kinetics in Jurkat T cells. We demonstrate that selected inactive analogues are incorporated into wild-type (WT) immature particles and that one inactive analogue is capable of interfering with PF-46396 inhibition of CA-SP1 cleavage. Mutations that confer PF-46396 resistance can impose a defective phenotype on HIV-1 that can be rescued in a compound-dependent manner. Some inactive analogues retained the capacity to rescue PF-46396-dependent mutants (SP1-A3V, SP1-A3T, and CA-P157S), implying that they can also interact with mutant Gag. The structure-activity relationships observed in this study demonstrate that (i) the tert-butyl group is essential for antiviral activity but is not an absolute requirement for Gag binding, (ii) the trifluoromethyl group is optimal but not essential for antiviral activity, and (iii) the 2-aminoindan group is important for antiviral activity and Gag binding but is not essential, as its replacement is tolerated. Combinations of antiretroviral drugs successfully treat HIV/AIDS patients; however, drug resistance problems make the development of new mechanistic drug classes an ongoing priority. HIV-1 maturation inhibitors are novel as they

  6. Learning structure-property relationship in crystalline materials: A study of lanthanide-transition metal alloys

    Science.gov (United States)

    Pham, Tien-Lam; Nguyen, Nguyen-Duong; Nguyen, Van-Doan; Kino, Hiori; Miyake, Takashi; Dam, Hieu-Chi

    2018-05-01

    We have developed a descriptor named Orbital Field Matrix (OFM) for representing material structures in datasets of multi-element materials. The descriptor is based on the information regarding atomic valence shell electrons and their coordination. In this work, we develop an extension of OFM called OFM1. We have shown that these descriptors are highly applicable in predicting the physical properties of materials and in providing insights on the materials space by mapping into a low embedded dimensional space. Our experiments with transition metal/lanthanide metal alloys show that the local magnetic moments and formation energies can be accurately reproduced using simple nearest-neighbor regression, thus confirming the relevance of our descriptors. Using kernel ridge regressions, we could accurately reproduce formation energies and local magnetic moments calculated based on first-principles, with mean absolute errors of 0.03 μB and 0.10 eV/atom, respectively. We show that meaningful low-dimensional representations can be extracted from the original descriptor using descriptive learning algorithms. Intuitive prehension on the materials space, qualitative evaluation on the similarities in local structures or crystalline materials, and inference in the designing of new materials by element substitution can be performed effectively based on these low-dimensional representations.

  7. Rational interface design of epoxy-organoclay nanocomposites: role of structure-property relationship for silane modifiers.

    Science.gov (United States)

    Bruce, Alex N; Lieber, Danielle; Hua, Inez; Howarter, John A

    2014-04-01

    Montmorillonite was modified by three silane surfactants with different functionalities to investigate the role of surfactant structure on the properties of a final epoxy-organoclay nanocomposite. N-aminopropyldimethylethoxysilane (APDMES), an aminated monofunctional silane, was chosen as a promising surfactant for several reasons: (1) it will bond to silica in montmorillonite, (2) it will bond to epoxide groups, and (3) to overcome difficulties found with trifunctional aminosilane bonding clay layers together and preventing exfoliation. A trifunctional and non-aminated version of APDMES, 3-aminopropyltriethoxysilane (APTES) and n-propyldimethylmethoxysilane (PDMMS), respectively, was also studied to provide comparison to this rationally chosen surfactant. APDMES and APTES were grafted onto montmorillonite in the same amount, while PDMMS was barely grafted (nanocomposite gallery spacing was not dependent on the surfactant used. Different concentrations of APDMES modified montmorillonite yielded different properties, as concentration decreased glass transition temperature increased, thermal stability increased, and the storage modulus decreased. Storage modulus, glass transition temperature, and thermal stability were more similar for epoxy-organoclay composites modified with the same concentration of silane surfactant, neat epoxy, and epoxy-montmorillonite nanocomposite. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. A phenomenological model for the structure-composition relationship of the high Tc cuprates based on simple chemical principles

    International Nuclear Information System (INIS)

    Alarco, J.A.; Talbot, P.C.

    2012-01-01

    A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d 8 and d 9 ) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.

  9. Relationship Structures and Semantic Type Assignments of the UMLS Enriched Semantic Network

    Science.gov (United States)

    Zhang, Li; Halper, Michael; Perl, Yehoshua; Geller, James; Cimino, James J.

    2005-01-01

    Objective: The Enriched Semantic Network (ESN) was introduced as an extension of the Unified Medical Language System (UMLS) Semantic Network (SN). Its multiple subsumption configuration and concomitant multiple inheritance make the ESN's relationship structures and semantic type assignments different from those of the SN. A technique for deriving the relationship structures of the ESN's semantic types and an automated technique for deriving the ESN's semantic type assignments from those of the SN are presented. Design: The technique to derive the ESN's relationship structures finds all newly inherited relationships in the ESN. All such relationships are audited for semantic validity, and the blocking mechanism is used to block invalid relationships. The mapping technique to derive the ESN's semantic type assignments uses current SN semantic type assignments and preserves nonredundant categorizations, while preventing new redundant categorizations. Results: Among the 426 newly inherited relationships, 326 are deemed valid. Seven blockings are applied to avoid inheritance of the 100 invalid relationships. Sixteen semantic types have different relationship structures in the ESN as compared to those in the SN. The mapping of semantic type assignments from the SN to the ESN avoids the generation of 26,950 redundant categorizations. The resulting ESN contains 138 semantic types, 149 IS-A links, 7,303 relationships, and 1,013,876 semantic type assignments. Conclusion: The ESN's multiple inheritance provides more complete relationship structures than in the SN. The ESN's semantic type assignments avoid the existing redundant categorizations appearing in the SN and prevent new ones that might arise due to multiple parents. Compared to the SN, the ESN provides a more accurate unifying semantic abstraction of the UMLS Metathesaurus. PMID:16049233

  10. STRUCTURAL AND THERMOPHYSICAL PROPERTIES OF HARDENING CONCRETE

    Directory of Open Access Journals (Sweden)

    L. Krasulina

    2012-01-01

    Full Text Available Structural and thermophysical properties of thermally treated concrete have been studied in the paper. The paper demonstrates regularities of changes in structural and thermophysical properties of concrete during heat treatment process. It is established that stabilization of coefficient values for heat- and temperature conductivity of concrete corresponds to completion of the process pertaining to intensive formation of the material pore structure and indicates the possibility of transition from the stage of isothermal extraction to the stage of temperature decrease. The obtained results are confirmed by studies of strength growth kinetics of concrete samples.

  11. Structure and properties of alumino-boro-silicate glasses and melts

    Science.gov (United States)

    neuville, D. R.; Florian, P.; Cadars, S.; Massiot, D.

    2012-12-01

    The relationship between physical properties and structure of glasses and melts in the system MO-T2O3-SiO2 (with M= Na2, Ca and T= Al, B) are technologically and geologically important, in particular to understand the microscopic origin of the configurational thermodynamic properties. The connection of these network former is fundamental to understand the physical properties of magmatic liquids. The configurational properties of melts and glasses provide fundamental information needed to characterize magmatic processes. A principal difficulty, however is to link the "macroscopic" configurational entropy with the structure of melts. This has been done by combining viscometry with Raman and NMR spectroscopy studies. From the viscosity measurements at low and high temperatures, we have obtained the configurational entropy, Sconf (log η = Ae + Be/TSconf, were η is the viscosity, T the temperature and Ae, Be two constants). Silicon, aluminum, and boron are 3 network formers playing different role on the silicate network, whereas Si is the strongest network former in coordination 4, 5 or 6 as a function of T, P; Al can play different function as a network former in 4- or 5-fold coordination and probably as a network modifier in 6 fold coordination. Boron observed in 3 or 4 fold coordination is always a network former but for very "fragile" glasses. For the glass the Al/B substitution produce a small decrease of the molar volume while this substitution produced a strong decrease of viscosity and glass transition temperature while the fragility of the network is less affected by this chemical change. Raman spectra show significant change in the D1 and D2 bands. NMR spectroscopies show also significant change as a function of chemical change and temperature. All this observations will be discussed and interpreted in order to link microscopic versus macroscopic changes.

  12. Revealing the relationship between the photocatalytic property and structure characteristic of reduced TiO2 by hydrogen and carbon monoxide treatment.

    Science.gov (United States)

    Liu, Yunpeng; Li, Yuhang; Yang, Siyuan; Lin, Yuan; Zuo, Jianliang; Liang, Hong; Peng, Feng

    2018-06-04

    The hydrogenation (reduction) has been considered as an effective method to improve the photocatalytic activity of TiO2, however, the underlying relationship between structure and photocatalytic performance has still not been adequately unveiled so far. Herein, to obtain insight into the effect of structure on photocatalytic activity, two types of reduced TiO2 were prepared by CO (CO-TiO2) and H2 (H-TiO2), respectively. For H-TiO2, Ti-H bonds and oxygen vacancies are formed on the surface of H-TiO2, resulting in a more disorder surface lattice. However, for CO-TiO2, the more Ti-OH bonds are formed on the surface and the more bulk oxygen vacancies are introduced, the disorder layer of CO-TiO2 is relatively thin owing to the most of surface vacancies repaired by Ti-OH bonds. Under the simulated solar irradiation, the photocatalytic H2 evolution rate of CO-TiO2 reaches 7.17 mmol g-1 h-1, which is 4.14 and 1.50 times those of TiO2 and H-TiO2, respectively. The photocatalytic degradation rate constant of methyl orange on CO-TiO2 is 2.45 and 6.39 times those on H-TiO2 and TiO2. The superior photocatalytic activity of CO-TiO2 is attributed to the effective separation and transfer of the photo-generated electron-hole pairs, due to the synergistic effects of oxygen vacancies and surface Ti-OH bonds. This study reveals the relation between the photocatalytic property and structure, and provides a new method to prepare highly active TiO2 for H2 production and environmental treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural properties of small rhodium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    We report a systematic study of the structural properties of rhodium clusters at the atomistic level. A novel global-minimum search algorithm, known as parallel tempering multicanonical basin hopping plus genetic algorithm (PTMBHGA), is used to obtain the geometrical structures with lowest minima at the semi-empirical level where Gupta potential is used to describe the atomic interaction among the rhodium atoms. These structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The structures are optimized for different spin multiplicities. The ones with lowest energies will be taken as ground-state structures. In most cases, we observe only minor changes in the geometry and bond length of the clusters as a result of DFT-level re-optimization. Only in some limited cases, the initial geometries obtained from the PTMBHGA are modified by the re-optimization. The variation of structural properties, such as ground-state geometry, symmetry and binding energy, with respect to the cluster size is studied and agreed well with other results available in the literature.

  14. Comparative Study of Structure-Property Relationships in Polymer Networks Based on Bis-GMA, TEGDMA and Various Urethane-Dimethacrylates

    Directory of Open Access Journals (Sweden)

    Izabela Barszczewska-Rybarek

    2015-03-01

    Full Text Available The effect of various dimethacrylates on the structure and properties of homo- and copolymer networks was studied. The 2,2-bis-[4-(2-hydroxy-3- methacryloyloxypropoxyphenyl]-propane (Bis-GMA, triethylene glycol dimethacrylate (TEGDMA and 1,6-bis-(methacryloyloxy-2-ethoxycarbonylamino-2,4,4-trimethylhexane (HEMA/TMDI, all popular in dentistry, as well as five urethane-dimethacrylate (UDMA alternatives of HEMA/TMDI were used as monomers. UDMAs were obtained from mono-, di- and tri(ethylene glycol monomethacrylates and various commercial diisocyanates. The chemical structure, degree of conversion (DC and scanning electron microscopy (SEM fracture morphology were related to the mechanical properties of the polymers: flexural strength and modulus, hardness, as well as impact strength. Impact resistance was widely discussed, being lower than expected in the case of poly(UDMAs. It was caused by the heterogeneous morphology of these polymers and only moderate strength of hydrogen bonds between urethane groups, which was not high enough to withstand high impact energy. Bis-GMA, despite having the highest polymer morphological heterogeneity, ensured fair impact resistance, due to having the strongest hydrogen bonds between hydroxyl groups. The TEGDMA homopolymer, despite being heterogeneous, produced the smoothest morphology, which resulted in the lowest brittleness. The UDMA monomer, having diethylene glycol monomethacrylate wings and the isophorone core, could be the most suitable HEMA/TMDI alternative. Its copolymer with Bis-GMA and TEGDMA had improved DC as well as all the mechanical properties.

  15. Microstructure, process, and tensile property relationships in an investment cast near-γTiAl alloy

    International Nuclear Information System (INIS)

    Jones, P.E.; Porter, W.J. III.; Keller, M.M.; Eylon, D.

    1992-01-01

    The brittle nature of near-γ TiAl alloys makes fabrication difficult. This paper reports on developing near-net shape technologies, such as investment casting, for these alloys which is one of the essential approached to their commercial introduction. The near-γ TiAl alloy Ti-48Al-2Nb-2Cr (a%) is investment cast with two cooling rates. The effect of casting cooling rate on the fill and surface integrity was studied for complex shape thin walled components. Block and bar castings are hot isostatically pressed (HIP'd) and heat treated to produce duplex (lamellar + equiaxed) microstructures for mechanical property evaluation. The relationships between the casting conditions, microstructures, and tensile properties are studied. The strength and elongation below the ductile to brittle transition temperature are dependent on the casting cooling rate and section size. The tensile properties improved with faster cooling during the casting process as a result of microstructural refinement. Faster cooled castings are more fully transformed to a duplex structure during post-casting heat treatments. Above the ductile to brittle transition temperature the effect of casting cooling rate on tensile properties is less pronounced

  16. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  17. Relationship between the structural stability with the types and land uses in southeastern Spain; Relacion entre la estabilidad estructural con los tipos y usos del suelo en el sureste de Espana

    Energy Technology Data Exchange (ETDEWEB)

    Marin Sanleandro, P.; Sanchez Navarro, A.; Delgado Iniesta, M. J.; Fernandez-Delgado Juarez, M.

    2009-07-01

    Structural stability is one of the most important physical properties and is proposed as an indicator of quality. The aim of this study is to see the possible relationship between this property with soil types and uses of them. In this paper we have selected the Mazarron area based on their environmental characteristics and has taken forty-one topsoil samples, after analysis and study of the relationship between its structural stability with soil types and uses of same, we find a closer relationship in the case of uses that type, so that the natural soil as the percentage of stable aggregates close to 75%, while in soils anthropized this value reaches 44 %. (Author) 6 refs.

  18. [Volunteer satisfaction: Internal structure and relationship with permanence in organizations].

    Science.gov (United States)

    Vecina Jiménez, M L; Chacón Fuertes, Fernando; Sueiro Abad, Manuel J

    2009-02-01

    Volunteer satisfaction: Internal structure and relationship with permanence in organizations. The concept of satisfaction is considered theoretically relevant in practically all the studies that have investigated the factors that influence the permanence of volunteer participation in organizations. However, the practical results are not conclusive, perhaps due to the wide range of ways in which the concept is understood and measured. The object of this study is: to analyse the internal structure of satisfaction and to verify its relationship with volunteer duration in organizations. The results of the factor analysis yield a three-factor structure: Satisfaction with the management of the organization, Satisfaction with the tasks, Satisfaction of motivations. The three factors allow us to differentiate between individuals who remain in the organization for a period of 12 consecutive months, and those who leave earlier. The results of structural equation model analysis show that the relationship between satisfaction and the length of time that volunteers stay with the organization is affected by the intention to remain.

  19. Channeling Polyolefin Molecular Structure - Bulk Property Correlation Strategies for Industrial Applicability

    Science.gov (United States)

    Hule, Rohan; Thurman, Derek; Doufas, Antonios

    Polyolefins occupy a significant volume of the polymer products portfolio in commodity and high value applications. Quantifying and optimizing structure-property relationships enables growth in new markets. It is well recognized that coupling lab-based, comprehensive methodologies with bulk properties of interest to industrial environments offer the greatest potential of technology advancement, ultimately leading to commercial success. It is imperative to recognize the existing gap of knowledge translation between lab measurements and industrial-scale operability. This study highlights experimental HDPEs synthesized from dual, single-site, co-supported catalysts that exhibit enhanced solid-state properties such as stiffness, impact and ESCR surpassing conventional trends. Commercial resins across distinct sub-families were included as well. Commonality amongst these resins is bimodality and broad MW distribution with well-defined splits and spreads. Investigations on commercially relevant parameters such as melt strength, melt elasticity and shear thinning established excellent performance for experimental bimodals, corroborating potential benefits compared to commercial HDPEs. To summarize, the effort highlights well-recognized pathways such as improvements in mechanical and melt properties that can be attributed to apposite tuning of polymer chain architecture and MW distribution with implications across myriad markets. Ultimately, this may serve as a pathway for producing innovative products that deliver business success and growth.

  20. Determining the Mechanical Properties of Lattice Block Structures

    Science.gov (United States)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  1. Structure-activity relationship studies of citalopram derivatives

    DEFF Research Database (Denmark)

    Larsen, M Andreas B; Plenge, Per; Andersen, Jacob

    2016-01-01

    towards the S2 site. EXPERIMENTAL APPROACH: We performed a systematic structure-activity relationship study based on the scaffold of citalopram and the structurally closely related congener, talopram, that shows low-affinity S1 binding in SERT. The role of the four chemical substituents, which distinguish...... citalopram from talopram in conferring selectivity towards the S1 and S2 site, respectively, was assessed by determining the binding of 14 citalopram/talopram analogous to the S1 and S2 binding sites in SERT using membranes of COS7 cells transiently expressing SERT. KEY RESULTS: The structure-activity...

  2. Molecular structures and functional relationships in clostridial neurotoxins.

    Science.gov (United States)

    Swaminathan, Subramanyam

    2011-12-01

    The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here. Journal compilation © 2011 FEBS. No claim to original US government works.

  3. Structure/Property Relationships of Cyanate Ester Resins from Renewable Sources

    Science.gov (United States)

    2013-04-11

    derived from lignin . These materials possess favorable thermal and water uptake properties with dry glass transition temperatures above 200°C and wet...Differential scanning calorimetry showed that resins with more sterically restrictive bridge groups between the reactive moieties cure more slowly...distribution is unlimited. Creosol as a Monomer Source 7 • Input material cost is an important consideration for cyanate ester resins • Lignin is

  4. Structural disorder in metallic glass-forming liquids.

    Science.gov (United States)

    Pan, Shao-Peng; Feng, Shi-Dong; Wang, Li-Min; Qiao, Jun-Wei; Niu, Xiao-Feng; Dong, Bang-Shao; Wang, Wei-Min; Qin, Jing-Yu

    2016-06-09

    We investigated structural disorder by a new structural parameter, quasi-nearest atom (QNA), in atomistic configurations of eight metallic glass-forming systems generated through molecular dynamics simulations at various temperatures. Structural analysis reveals that the scaled distribution of the number of QNA appears to be an universal property of metallic liquids and the spatial distribution of the number of QNA displays to be clearly heterogeneous. Furthermore, the new parameter can be directly correlated with potential energy and structural relaxation at the atomic level. Some straightforward relationships between QNA and other properties (per-atom potential energy and α-relaxation time) are introduced to reflect structure-property relationship in metallic liquids. We believe that the new structural parameter can well reflect structure disorder in metallic liquids and play an important role in understanding various properties in metallic liquids.

  5. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer

    International Nuclear Information System (INIS)

    Huber, J.G.

    1996-01-01

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an α helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S γ -C β -H β )Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven instrumental in affording new

  6. Molecular Descriptors Family on Structure Activity Relationships 1. Review of the Methodology

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2005-01-01

    Full Text Available This review cumulates the knowledge about the use of Molecular Descriptors Family usage on Structure Activity Relationships. The methodology is augmented through the general Structure Activity Relationships methodology. The obtained models in a series of five papers are quantitatively analyzed by comparing with previous reported results by using of the correlated correlations tests. The scores for a series of 13 data sets unpublished yet results are presented. Two unrestricted online access portals to the Molecular Descriptors Family Structure Activity Relationship models results are given.

  7. Property Outlaws in Cyberspace and Meatspace? Examining the Relationship between Online Peer Production and Support for Private Property Violations

    Directory of Open Access Journals (Sweden)

    Timothy Gibson

    2014-11-01

    Full Text Available Marxian theory has long viewed the institution of private property as central to labour exploitation. After all, private property laws allow those who control the means of production to expropriate surplus value from the dispossessed. An analogous relationship arguably defines life on the Internet, where users are forced to venture onto privately owned digital enclosures to access key services. Yet these online property relationships are anything but settled and uncontested. Outside the digital enclosures of Apple and Google, the Internet has fostered the development of “commons-based peer production”, where key resources (e.g. software are produced without anyone claiming exclusive property rights. In fact, some scholars have argued that the rise of peer production on the web has begun to re-shape popular attitudes concerning the legitimacy of property exclusions more broadly. In short, as we become “property outlaws” on the web, we come to question the inevitability and legitimacy of private property elsewhere in life. This paper explores this hypothesis by reporting data from a survey of Internet users at an East Coast university. Are users who engage in more peer production activities on the web also more likely to approve of “property outlaw” behaviours not just in the online context, but in the offline world as well (e.g. squatting? The data provide only partial support for the hypothesis: active online peer producers were indeed more likely to support violations of intangible (intellectual properties, but not violations of tangible or “real-world” properties.

  8. Electronic structure and optical properties of AIN under high pressure

    International Nuclear Information System (INIS)

    Li Zetao; Dang Suihu; Li Chunxia

    2011-01-01

    We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)

  9. Investigation of the composition-structure-property relationship of AsxTe100 - x films prepared by plasma deposition

    Science.gov (United States)

    Mochalov, Leonid; Dorosz, Dominik; Nezhdanov, Aleksey; Kudryashov, Mikhail; Zelentsov, Sergey; Usanov, Dmitry; Logunov, Alexandr; Mashin, Aleksandr; Gogova, Daniela

    2018-02-01

    AsxTe100 - x amorphous films of different chemical content were prepared by Plasma-Enhanced Chemical Vapor Deposition (PECVD). For the first time the optical properties of As-Te chalcogenide materials have been measured in UV-VIS-IR ranges (from 0.2 to 25 μm) for a very wide range of chemical compositions (20-80 at.% As). As-Te films have been tuned from 0.80 to 1.10 eV. The IR results obtained have been juxtaposed with the Raman spectroscopy findings to establish the correlation between optical and structural properties of the materials developed. Reversible and irreversible changes in the phase composition of the As-Te films under annealing of the surface by laser irradiation have been demonstrated and studied. In order to determine the potential areas of application of the prepared As-Te films the thermal and photo sensitivity has been also investigated.

  10. Structural and reliability analysis of quality of relationship index in cancer patients.

    Science.gov (United States)

    Cousson-Gélie, Florence; de Chalvron, Stéphanie; Zozaya, Carole; Lafaye, Anaïs

    2013-01-01

    Among psychosocial factors affecting emotional adjustment and quality of life, social support is one of the most important and widely studied in cancer patients, but little is known about the perception of support in specific significant relationships in patients with cancer. This study examined the psychometric properties of the Quality of Relationship Inventory (QRI) by evaluating its factor structure and its convergent and discriminant validity in a sample of cancer patients. A total of 388 patients completed the QRI. Convergent validity was evaluated by testing the correlations between the QRI subscales and measures of general social support, anxiety and depression symptoms. Discriminant validity was examined by testing group comparison. The QRI's longitudinal invariance across time was also tested. Principal axis factor analysis with promax rotation identified three factors accounting for 42.99% of variance: perceived social support, depth, and interpersonal conflict. Estimates of reliability with McDonald's ω coefficient were satisfactory for all the QRI subscales (ω ranging from 0.75 - 0.85). Satisfaction from general social support was negatively correlated with the interpersonal conflict subscale and positively with the depth subscale. The interpersonal conflict and social support scales were correlated with depression and anxiety scores. We also found a relative stability of QRI subscales (measured 3 months after the first evaluation) and differences between partner status and gender groups. The Quality of Relationship Inventory is a valid tool for assessing the quality of social support in a particular relationship with cancer patients.

  11. Structural and optical properties of solid-state synthesized Au dendritic structures

    International Nuclear Information System (INIS)

    Gentile, A.; Ruffino, F.; Romano, L.; Boninelli, S.; Reitano, R.; Piccitto, G.; Grimaldi, M.G.

    2014-01-01

    Graphical abstract: - Highlights: • Au dendritic structures were produced on surfaces. • The chemical and structural properties of the dendritic structures are presented. • The optical properties of the dendritic structures are presented. • The ability of the dendritic structures to serve as light scattering centers is presented. - Abstract: Au dendrites (Au Ds) are synthesized, on various substrates, by a simple physical methodology involving the deposition of a thin Au film on a Si surface followed by thermal processes at high temperatures (>1273 K) in an inert ambient (N 2 ), using fast heating and cooling rates (1273 K/min). Microscopic analyses reveal the evolution, thanks to the thermal processes, of the Au film from a continuous coating to dendritic structures covering the entire sample surface. In particular, transmission electron microscopy analyses indicate that, below the Au surface, the dendritic structures consist of Si atoms originating from the substrate. Furthermore, optical characterizations reveal the ability of the Au Ds to serve as scattering centers in the infrared region. Finally, on the basis of the experimental observations, a phenomenological model for the growth of the Au Ds is proposed

  12. Structure-activity relationships of novel salicylaldehyde isonicotinoyl hydrazone (SIH analogs: iron chelation, anti-oxidant and cytotoxic properties.

    Directory of Open Access Journals (Sweden)

    Eliška Potůčková

    Full Text Available Salicylaldehyde isonicotinoyl hydrazone (SIH is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved hydrolytic stability. Their structure-activity relationships were assessed with respect to their stability in plasma, iron chelation efficacy, redox effects and cytotoxic activity against MCF-7 breast adenocarcinoma cells. Furthermore, studies assessed the cytotoxicity of these chelators and their ability to afford protection against hydrogen peroxide-induced oxidative injury in H9c2 cardiomyoblasts. The ligands with a reduced hydrazone bond, or the presence of bulky alkyl substituents near the hydrazone bond, showed severely limited biological activity. The introduction of a bromine substituent increased ligand-induced cytotoxicity to both cancer cells and H9c2 cardiomyoblasts. A similar effect was observed when the phenolic ring was exchanged with pyridine (i.e., changing the ligating site from O, N, O to N, N, O, which led to pro-oxidative effects. In contrast, compounds with long, flexible alkyl chains adjacent to the hydrazone bond exhibited specific cytotoxic effects against MCF-7 breast adenocarcinoma cells and low toxicity against H9c2 cardiomyoblasts. Hence, this study highlights important structure-activity relationships and provides insight into the further development of aroylhydrazone iron chelators with more potent and selective anti-neoplastic effects.

  13. Structure-activity relationships of rosiglitazone for peroxisome proliferator-activated receptor gamma transrepression.

    Science.gov (United States)

    Toyota, Yosuke; Nomura, Sayaka; Makishima, Makoto; Hashimoto, Yuichi; Ishikawa, Minoru

    2017-06-15

    Anti-inflammatory effects of peroxisome proliferator-activated receptor gamma (PPRAγ) ligands are thought to be largely due to PPARγ-mediated transrepression. Thus, transrepression-selective PPARγ ligands without agonistic activity or with only partial agonistic activity should exhibit anti-inflammatory properties with reduced side effects. Here, we investigated the structure-activity relationships (SARs) of PPARγ agonist rosiglitazone, focusing on transrepression activity. Alkenic analogs showed slightly more potent transrepression with reduced efficacy of transactivating agonistic activity. Removal of the alkyl group on the nitrogen atom improved selectivity for transrepression over transactivation. Among the synthesized compounds, 3l exhibited stronger transrepressional activity (IC 50 : 14μM) and weaker agonistic efficacy (11%) than rosiglitazone or pioglitazone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  15. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  16. Bank Image Structure: The Relationship to Consumer Behaviour

    Directory of Open Access Journals (Sweden)

    Lukasova Ruzena

    2014-03-01

    Full Text Available This paper presents the results of a study of the relationship between the bank image, its structure as a reflection in the minds of individuals and behavioural tendencies in relation to banks. Attitudinal scales were used to identify the contents of the particular banks’ image. The structure of the image was identified by means of factor analysis. The study found that the respondents’ behavioural tendencies, i.e. their willingness to be a client of or to recommend a particular bank, are related to different content components of particular banks and mainly to respondents’ needs. Based on the results, the study identifies the danger that the results of the bank image analysis can be misinterpreted if the respondents’ relationship to the bank is underestimated.

  17. Diamond nanowires: fabrication, structure, properties, and applications.

    Science.gov (United States)

    Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2014-12-22

    C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structural and optical properties of electro-optic material. Sputtered (Ba,Sr)TiO3

    International Nuclear Information System (INIS)

    Suzuki, Masato; Xu, Zhimou; Tanushi, Yuichiro; Yokoyama, Shin

    2006-01-01

    In order to develop a novel ring resonator optical switch, we have studied the structural and optical properties of the electro-optic material (Ba,Sr)TiO 3 (BST) deposited by RF sputtering on a SiO 2 cladding layer (1.0 μm). The crystallinity of the BST films is evaluated by X-ray diffraction and the optical propagation loss of the waveguides is measured using a He-Ne laser. As a result, it is found that there is a strong relationship between the optical propagation loss and crystallinity of the sputtered film. It is suggested that the propagating light is influenced by the crystal property, for example, the grain size and density of the polycrystalline BST film. (author)

  19. Relationship Structure, Relationship Texture: Case Studies in Non/Monogamies Research

    Directory of Open Access Journals (Sweden)

    Jessica Joan Kean

    2017-05-01

    Full Text Available This article develops case studies from qualitative interviews with people in negotiated non-monogamous relationships to ask what discursive or practical factors besides non/monogamy might play a role in assessments of a relationship’s structure or worth. Beginning with an auto-ethnographic reflection on the way the ‘significance’ was recognised and misrecognised in one polyamorous ‘thrupple’, I introduce three case studies of people in negotiated non-monogamous relationships in order to bring a cultural studies method of the particular to the study of intimacy. For the individuals in these case studies, the practice and experience of non/monogamy is inextricably linked to the ideas and practices surrounding gender, sexuality, sex work, friendship, HIV status and ability. Sketching a middle path between the romantic’s dream of love as a state of exception or exemption from the social and the theorist’s map of the patterned effects of hetero- and mono-normativities, this article attends to the contingency, flexibility and incoherence which so often underpins the sense we make of relationships, even as that sense is shaped by the practices, ideals and institutions of intimacy, love and friendship.

  20. Structure and properties of diamond and diamond-like films

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E. [Oak Ridge National Lab., TN (United States)

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  1. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    International Nuclear Information System (INIS)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien; Deleporte, Emmanuelle; Audebert, Pierre; Galmiche, Laurent

    2009-01-01

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH 2 ) n NH 3 ) 2 PbX 4 . These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH 2 ) n NH 3 + ) to study the relationship between their structures and the optical properties of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  2. Structural relationships in high temperature superconductors

    International Nuclear Information System (INIS)

    Schuller, I.K.; Segre, C.U.; Hinks, D.G.; Jorgensen, J.D.; Soderholm, L.; Beno, M.; Zhang, K.

    1987-09-01

    The recent discovery of two types of metallic copper oxide compounds which are superconducting to above 90 0 K has renewed interest in the search for new high temperature superconducting materials. It is significant that both classes of compounds, La/sub 2-x/Sr/sub x/CuO/sub 4-y/ and YBa 2 Cu 3 O/sub 7-δ/ are intimately related to the extensively studied perovskite family. Both compounds contain highly oxidized, covalently bonded Cu-O sublattices, however, they differ in geometry. In this paper we discuss the relationship of these features to the superconducting properties. 30 refs., 6 figs

  3. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    International Nuclear Information System (INIS)

    Zhou Changsong; Zemanova, Lucia; Zamora-Lopez, Gorka; Hilgetag, Claus C; Kurths, Juergen

    2007-01-01

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks

  4. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Changsong [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zemanova, Lucia [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zamora-Lopez, Gorka [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Hilgetag, Claus C [Jacobs University Bremen, Campus Ring 6, Rm 116, D-28759 Bremen (Germany); Kurths, Juergen [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany)

    2007-06-15

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

  5. The brief family relationship scale: a brief measure of the relationship dimension in family functioning.

    Science.gov (United States)

    Fok, Carlotta Ching Ting; Allen, James; Henry, David

    2014-02-01

    The Relationship dimension of the Family Environment Scale, which consists of the Cohesion, Expressiveness, and Conflict subscales, measures a person's perception of the quality of his or her family relationship functioning. This study investigates an adaptation of the Relationship dimension of the Family Environment Scale for Alaska Native youth. The authors tested the adapted measure, the Brief Family Relationship Scale, for psychometric properties and internal structure with 284 12- to 18-year-old predominately Yup'ik Eskimo Alaska Native adolescents from rural, remote communities. This non-Western cultural group is hypothesized to display higher levels of collectivism traditionally organized around an extended kinship family structure. Results demonstrate a subset of the adapted items function satisfactorily, a three-response alternative format provided meaningful information, and the subscale's underlying structure is best described through three distinct first-order factors, organized under one higher order factor. Convergent and discriminant validity of the Brief Family Relationship Scale was assessed through correlational analysis.

  6. Comparative genomics of the relationship between gene structure and expression

    NARCIS (Netherlands)

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene

  7. Structural and dynamical properties of the porins OmpF and OmpC: insights from molecular simulations

    International Nuclear Information System (INIS)

    Kumar, Amit; Hajjar, Eric; Ruggerone, Paolo; Ceccarelli, Matteo

    2010-01-01

    In this paper we investigate the structural and dynamical properties of the two major porins (OmpF and OmpC) in Escherichia coli, using molecular dynamics (MD) simulations. In particular we characterized the atomic fluctuations, correlated motions, temperature dependence, solvent-accessible cross-sectional area and water dynamics in the key regions of the two channels. Our in-depth analysis allows us to highlight the importance of both the key conserved and substituted residues between OmpF and OmpC. The latter is characterized by a narrower and longer constriction region with respect to OmpF. OmpC also showed a higher stability upon increasing temperature. We then present the results of transport properties by using accelerated MD simulations to probe the diffusion of norfloxacin (a fluoroquinolone antibiotic) through the two porins OmpF/OmpC. Our study constitutes a step forward towards understanding the structure-function relationship of the two porins' channels. This will benefit the research of antibacterials with improved permeation properties and nanopores that aim to use these porins as sensing systems.

  8. Structure and property relationships of amorphous CN sub x a joint experimental and theoretical study

    CERN Document Server

    Santos, M C D

    2000-01-01

    Amorphous CN sub x and CN sub x :H have been prepared by the ion beam assisted deposition technique. Samples were characterized through X-ray and UV photoemission, IR absorption and Raman spectroscopies. These spectra have been interpreted with the aid of quantum chemical calculations based upon the Hartree-Fock theory on several molecular models. The understanding of the electronic and structural properties of the amorphous alloy as a function of nitrogen content could help in the task of synthesizing the metastable silicon-nitride like-phase beta-C sub 3 N sub 4 , a solid which has been predicted to be as hard as diamond. The physical picture emerging from the present study helps to clarify the difficulties in obtaining the crystalline phase of the material, suggesting new experimental directions for syntheses.

  9. High temperature structural and magnetic properties of cobalt nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ait Atmane, Kahina [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Zighem, Fatih [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Soumare, Yaghoub [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Ibrahim, Mona; Boubekri, Rym [Universite de Toulouse, LPCNO, INSA CNRS UMR 5215, 135 av. de Rangueil, 31077 Toulouse Cedex 4 (France); Maurer, Thomas [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Margueritat, Jeremie [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Piquemal, Jean-Yves, E-mail: jean-yves.piquemal@univ-paris-diderot.fr [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Ott, Frederic; Chaboussant, Gregory [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Schoenstein, Frederic; Jouini, Noureddine [LSPM, CNRS UPR 9001, Universite Paris XIII, Institut Galilee, 99 av. J.-B. Clement, 93430 Villetaneuse (France); Viau, Guillaume, E-mail: gviau@insa-toulouse.fr [Universite de Toulouse, LPCNO, INSA CNRS UMR 5215, 135 av. de Rangueil, 31077 Toulouse Cedex 4 (France)

    2013-01-15

    We present in this paper the structural and magnetic properties of high aspect ratio Co nanoparticles ({approx}10) at high temperatures (up to 623 K) using in-situ X ray diffraction (XRD) and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. The coercivity can be modelled by {mu}{sub 0}H{sub C}=2(K{sub MC}+K{sub shape})/M{sub S} with K{sub MC} the magnetocrystalline anisotropy constant, K{sub shape} the shape anisotropy constant and M{sub S} the saturation magnetization. H{sub C} decreases linearly when the temperature is increased due to the loss of the Co magnetocrystalline anisotropy contribution. At 500 K, 50% of the room temperature coercivity is preserved corresponding to the shape anisotropy contribution only. We show that the coercivity drop is reversible in the range 300-500 K in good agreement with the absence of particle alteration. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. - Graphical abstract: We present in this paper the structural and magnetic properties of high aspect ratio Co nanorods ({approx}10) at high temperatures (up to 623 K) using in-situ X-ray diffraction and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. Highlights: Black-Right-Pointing-Pointer Ferromagnetic Co nanorods are prepared using the polyol process. Black-Right-Pointing-Pointer The structural and texture properties of the Co nanorods are preserved up to 500 K. Black-Right-Pointing-Pointer The magnetic properties of the Co nanorods are irreversibly altered above 525 K.

  10. Influence of isothermal thermomechanical treatment on structure and properties of structural steels

    International Nuclear Information System (INIS)

    Smirnov, M.A.; Kaletin, A.Yu.; Schastlivthev, V.M.; Kaletina, Yu.V.

    1997-01-01

    A study is made into the structure and mechanical properties of steel 35KhGSA and 37KhN3A after isothermal hardening resulting in bainitic structure formation as well as after low-temperature thermomechanical treatment (LTTMT) combining the plastic deformation at the temperature of bainitic transformation and subsequent isothermal hardening. It is shown that LTTMT permits and essential enhancement of strength properties in steel 35KhGSA, high plasticity and impact strength being reserved. This is associated with bainitic structure refinement. In steel 37KhN3A the process of carbide formation takes place along with bainitic transformation, and LTTMT results in lesser strengthening. LTTMT is fount to not practically affect the tendency of structural steels to bainitic brittleness. This treatment promotes some shift of brittleness manifestation to lower temperatures

  11. Studies on densification, mechanical, micro-structural and structure–properties relationship of magnesium aluminate spinel refractory aggregates prepared from Indian magnesite

    International Nuclear Information System (INIS)

    Ghosh, Chandrima; Ghosh, Arup; Haldar, Manas Kamal

    2015-01-01

    The present work intends to study the development of magnesium aluminate spinel aggregates from Indian magnesite in a single firing stage. The raw magnesite has been evaluated in terms of chemical analysis, differential thermal analysis, thermogravimetric analysis, infrared spectroscopy, and X-ray diffraction. The experimental batch containing Indian magnesite and calcined alumina has been sintered in the temperature range of 1550 °C–1700 °C. The sintered material has been characterized in terms of physico-chemical properties like bulk density, apparent porosity, true density, relative density and thermo-mechanical/mechanical properties like hot modulus of rupture, thermal shock resistance, cold modulus of rupture and structural properties by X-ray diffraction in terms of phase identification and evaluation of crystal structure parameters of corresponding phases by Rietveld analysis. The microstructures developed at different temperatures have been analyzed by field emission scanning electron microscope study and compositional analysis of the developed phase has been carried out by energy dispersive X-ray study. - Highlights: • The studies have been done to characterize the developed magnesium aluminate spinel. • The studies reveal correlation between refractory behavior of spinel and developed microstructures. • The studies show the values of lattice parameters of developed phases

  12. Meso-decorated self-healing gels: network structure and properties

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Igarashi, Susumu; Furukawa, Hidemitsu

    2013-04-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  13. Mapping the structure, composition and mechanical properties of human teeth

    International Nuclear Information System (INIS)

    Low, I.M.; Duraman, N.; Mahmood, U.

    2008-01-01

    The structure-property relationship in human adult and baby teeth was characterised by grazing-incidence synchrotron radiation diffraction, optical and atomic-force microscopy, in addition to Vickers indentation. Similarities and differences between both types of teeth have been highlighted and discussed. Depth-profiling results indicated the existence of contrasting but distinct gradual changes in crystal disorder, phase abundance, crystallite size and hardness within the baby and adult enamel, thus confirming the graded nature of human teeth. When compared to the adult tooth, the baby enamel is softer, more prone to fracture, but has larger hydroxyapatite grains. Vickers hardness of the enamel was load-dependent but load-independent in the dentine. The use of a 'bonded-interface' technique revealed the nature and evolution of deformation-microfracture damage around and beneath Vickers contacts

  14. Mapping the structure, composition and mechanical properties of human teeth

    Energy Technology Data Exchange (ETDEWEB)

    Low, I.M. [Materials Research Group, Department of Applied Physics, Curtin University of Technology, Perth, WA 6845 (Australia)], E-mail: j.low@curtin.edu.au; Duraman, N.; Mahmood, U. [Materials Research Group, Department of Applied Physics, Curtin University of Technology, Perth, WA 6845 (Australia)

    2008-03-10

    The structure-property relationship in human adult and baby teeth was characterised by grazing-incidence synchrotron radiation diffraction, optical and atomic-force microscopy, in addition to Vickers indentation. Similarities and differences between both types of teeth have been highlighted and discussed. Depth-profiling results indicated the existence of contrasting but distinct gradual changes in crystal disorder, phase abundance, crystallite size and hardness within the baby and adult enamel, thus confirming the graded nature of human teeth. When compared to the adult tooth, the baby enamel is softer, more prone to fracture, but has larger hydroxyapatite grains. Vickers hardness of the enamel was load-dependent but load-independent in the dentine. The use of a 'bonded-interface' technique revealed the nature and evolution of deformation-microfracture damage around and beneath Vickers contacts.

  15. Composition-Structure-Property Relations of Compressed Borosilicate Glasses

    Science.gov (United States)

    Svenson, Mouritz N.; Bechgaard, Tobias K.; Fuglsang, Søren D.; Pedersen, Rune H.; Tjell, Anders Ø.; Østergaard, Martin B.; Youngman, Randall E.; Mauro, John C.; Rzoska, Sylwester J.; Bockowski, Michal; Smedskjaer, Morten M.

    2014-08-01

    Hot isostatic compression is an interesting method for modifying the structure and properties of bulk inorganic glasses. However, the structural and topological origins of the pressure-induced changes in macroscopic properties are not yet well understood. In this study, we report on the pressure and composition dependences of density and micromechanical properties (hardness, crack resistance, and brittleness) of five soda-lime borosilicate glasses with constant modifier content, covering the extremes from Na-Ca borate to Na-Ca silicate end members. Compression experiments are performed at pressures ≤1.0 GPa at the glass transition temperature in order to allow processing of large samples with relevance for industrial applications. In line with previous reports, we find an increasing fraction of tetrahedral boron, density, and hardness but a decreasing crack resistance and brittleness upon isostatic compression. Interestingly, a strong linear correlation between plastic (irreversible) compressibility and initial trigonal boron content is demonstrated, as the trigonal boron units are the ones most disposed for structural and topological rearrangements upon network compaction. A linear correlation is also found between plastic compressibility and the relative change in hardness with pressure, which could indicate that the overall network densification is responsible for the increase in hardness. Finally, we find that the micromechanical properties exhibit significantly different composition dependences before and after pressurization. The findings have important implications for tailoring microscopic and macroscopic structures of glassy materials and thus their properties through the hot isostatic compression method.

  16. Dislocations in single hemp fibres-investigations into the relationship of structural distortions and tensile properties at the cell wall level

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Eder, M.; Burgert, I.

    2007-01-01

    The relationship between dislocations and mechanical properties of single hemp fibres (Cannabis sativa L. var. Felina) was studied using a microtensile testing setup in a 2-fold approach. In a first investigation the percentage of dislocations was quantified using polarized light microscopy (PLM......) prior to microtensile testing of the fibres. In a second approach PLM was used to monitor the dislocations while straining single fibres. The first part of the study comprised 53 hemp fibres with up to 20% of their cell wall consisting of dislocations. For this data set the percentage of dislocations...

  17. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds

    International Nuclear Information System (INIS)

    Helguera, Aliuska Morales; Cordeiro, M. Natalia D.S.; Perez, Miguel Angel Cabrera; Combes, Robert D.; Gonzalez, Maykel Perez

    2008-01-01

    In this work, Quantitative Structure-Activity Relationship (QSAR) modelling was used as a tool for predicting the carcinogenic potency of a set of 39 nitroso-compounds, which have been bioassayed in male rats by using the oral route of administration. The optimum QSAR model provided evidence of good fit and performance of predicitivity from training set. It was able to account for about 84% of the variance in the experimental activity and exhibited high values of the determination coefficients of cross validations, leave one out and bootstrapping (q 2 LOO = 78.53 and q 2 Boot = 74.97). Such a model was based on spectral moments weighted with Gasteiger-Marsilli atomic charges, polarizability and hydrophobicity, as well as with Abraham indexes, specifically the summation solute hydrogen bond basicity and the combined dipolarity/polarizability. This is the first study to have explored the possibility of combining Abraham solute descriptors with spectral moments. A reasonable interpretation of these molecular descriptors from a toxicological point of view was achieved by means of taking into account bond contributions. The set of relationships so derived revealed the importance of the length of the alkyl chains for determining carcinogenic potential of the chemicals analysed, and were able to explain the difference between mono-substituted and di-substituted nitrosoureas as well as to discriminate between isomeric structures with hydroxyl-alkyl and alkyl substituents in different positions. Moreover, they allowed the recognition of structural alerts in classical structures of two potent nitrosamines, consistent with their biotransformation. These results indicate that this new approach has the potential for improving carcinogenicity predictions based on the identification of structural alerts

  18. Organic bulk heterojunction photovoltaic structures: design, morphology and properties

    International Nuclear Information System (INIS)

    Bulavko, G V; Ishchenko, A A

    2014-01-01

    Main approaches to the design of organic bulk heterojunction photovoltaic structures are generalized and systematized. Novel photovoltaic materials based on fullerenes, organic dyes and related compounds, graphene, conjugated polymers and dendrimers are considered. The emphasis is placed on correlations between the chemical structure and properties of materials. The effect of morphology of the photoactive layer on the photovoltaic properties of devices is analyzed. Main methods of optimization of the photovoltaic properties are outlined. The bibliography includes 338 references

  19. Processing–microstructure–properties relationship in a CuNiZn ferrite

    Directory of Open Access Journals (Sweden)

    Carolina Clausell

    2018-01-01

    The electromagnetic properties of the sintered ferrites were observed to improve as sintered relative density and average grain size increased, provided there was no evidence of exaggerated grain growth. In this sense, it seems there is a threshold of the grain size as of which the electromagnetic properties of the sintered specimens get worse. A linear relationship was observed between the imaginary part of the complex magnetic permeability and average grain size, provided each of the different magnetization mechanisms contributing to the complex permeability of the ferrite are taken into account (i.e. spin rotation and wall motion mechanisms.

  20. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    Science.gov (United States)

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  1. Electrochemically Deposited Nickel Membranes; Process-Microstructure-Property Relationships

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl; Pantleon, Karen; Somers, Marcel A.J.

    2003-01-01

    This paper reports on the manufacturing, surface morphology, internal structure and mechanical properties of Ni-foils used as membranes in reference-microphones. Two types of foils, referred to as S-type and 0-type foils, were electrochemically deposited from a Watts-type electrolyte, with (S...

  2. Imidazole derivatives as angiotensin II AT1 receptor blockers: Benchmarks, drug-like calculations and quantitative structure-activity relationships modeling

    Science.gov (United States)

    Alloui, Mebarka; Belaidi, Salah; Othmani, Hasna; Jaidane, Nejm-Eddine; Hochlaf, Majdi

    2018-03-01

    We performed benchmark studies on the molecular geometry, electron properties and vibrational analysis of imidazole using semi-empirical, density functional theory and post Hartree-Fock methods. These studies validated the use of AM1 for the treatment of larger systems. Then, we treated the structural, physical and chemical relationships for a series of imidazole derivatives acting as angiotensin II AT1 receptor blockers using AM1. QSAR studies were done for these imidazole derivatives using a combination of various physicochemical descriptors. A multiple linear regression procedure was used to design the relationships between molecular descriptor and the activity of imidazole derivatives. Results validate the derived QSAR model.

  3. Structural and electronic properties of ScxAl1−xN: First principles study

    International Nuclear Information System (INIS)

    Berkok, Houria; Tebboune, Abdelghani; Saim, Asmaa; Belbachir, Ahmed H

    2013-01-01

    The structural and electronic properties of Sc x Al 1−x N ternary semiconductor alloys are investigated in the rocksalt, zinc blend and wurtzite structures using the full potential linear muffin tin orbitals (FP-LMTO) method. The local density approximation (LDA) was used for the exchange and correlation energy density functional. In particular, the lattice constant, bulk modulus and band gap energies of ScN and AlN compounds and their ternary alloys Sc x Al 1−x N are calculated in rocksalt, zinc blend and wurtzite structures and discussed. A linear relationship has obtained for equilibrium lattice constants versus Sc concentration for rocksalt and zinc blend structures. The band gap is decreased with the increasing of Sc concentration in the rocksalt phase. For ZB-Sc x Al 1−x N, the band gap is the largest one at x=0.25 and changes from indirect to direct when x is more than 0.25

  4. The Ghosts of Acetylcholine : structure-activity relationships of ...

    African Journals Online (AJOL)

    The Ghosts of Acetylcholine : structure-activity relationships of muscle relaxants : registrar communication. ... AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  5. Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model.

    Science.gov (United States)

    Gordon, J A; Freedman, B R; Zuskov, A; Iozzo, R V; Birk, D E; Soslowsky, L J

    2015-07-16

    Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Solid-state synthesis, structural and magnetic properties of CoPd films

    Science.gov (United States)

    Myagkov, V. G.; Bykova, L. E.; Zhigalov, V. S.; Tambasov, I. A.; Bondarenko, G. N.; Matsynin, A. A.; Rybakova, A. N.

    2015-05-01

    The results of the investigation of the structural and magnetic properties of CoPd films with equiatomic composition have been presented. The films have been synthesized by vacuum annealing of polycrystalline Pd/Co and epitaxial Pd/α-Co(110) and Pd/β-Co(001) bilayer samples. It has been shown that, for all samples, the annealing to 400°C does not lead to the mixing of layers and the formation of compounds. A further increase in the annealing temperature results in the formation of a disordered CoPd phase at the Pd/Co interface, which is fully completed after annealing at 650°C. The epitaxial relationships between the disordered CoPd phase and the MgO(001) substrate are determined as follows: CoPd(110)<

  7. Structural properties of the Hugoniot curve

    International Nuclear Information System (INIS)

    Chaisse, F.

    2002-01-01

    This report is devoted to the structural properties analysis of the HUGONIOT curve, independently of the equation of state (E 0 S) display. The general properties so coming out are applied to the shock waves interacting studies. When phase transitions are present we investigate the splitting of shock waves and also the rarefaction waves. To end with, we present the shock instabilities and the non-uniqueness of solutions when specific E 0 S are present. (author)

  8. CRITICAL MECHANICAL PROPERTIES OF STRUCTURAL LIGHT-WEIGHT CONCRETE AND THE EFFECTS OF THESE PROPERTIES ON THE DESIGN OF THE PAVEMENT STRUCTURE.

    Science.gov (United States)

    1965-01-01

    In this study, critical mechanical properties of structural lightweight concrete were determined and utilized in the evaluation of a design of concrete pavements. Also presented are the critical mechanical properties resulting from unrestrained and r...

  9. Investigation of optical properties of Ag: PMMA nanocomposite structures

    Science.gov (United States)

    Ponelyte, S.; Palevicius, A.; Guobiene, A.; Puiso, J.; Prosycevas, I.

    2010-05-01

    In the recent years fundamental research involving the nanodimensional materials has received enormous momentum for observing and understanding new types of plasmonic materials and their physical phenomena occurring in the nanoscale. Mechanical and optical properties of these polymer based nanocomposite structures depend not only on type, dimensions and concentration of filler material, but also on a kind of polymer matrix used. By proper selection of polymer matrix and nanofillers, it is possible to engineer nanocomposite materials with certain favorable properties. One of the most striking features of nanocomposite materials is that they can expose unique optical properties that are not intrinsic to natural materials. In these researches, nanocomposite structures were formed using polymer (PMMA) as a matrix, and silver nanoparticles as fillers. By hot embossing procedure a diffraction grating was imprinted on formed layers. The effect of UV exposure time on nanocomposite structures morphology, optical (diffraction effectiveness, absorbance) and mechanical properties was investigated. Results were confirmed by UV-VIS spectrometer, Laser Diffractometer, PMT- 3 and AFM. Investigations proposed new nanocomposite structures as plasmonic materials with improved optical and mechanical properties, which may be applied for a number of technological applications: micro-electro-mechanical devices, optical devices, various plasmonic sensors, or even in DNA nanotechnology.

  10. Relationships between structural complexity, coral traits, and reef fish assemblages

    Science.gov (United States)

    Darling, Emily S.; Graham, Nicholas A. J.; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.; Pratchett, Morgan S.; Wilson, Shaun K.

    2017-06-01

    With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.

  11. Family structure and its relationship to travel

    Science.gov (United States)

    Christine Cornell McCreedy; Joseph T. O' Leary; Daniel Fesenmaier

    1992-01-01

    This paper examines the relationship between family structure and travel to further understand what differences exist between family groups. Results indicate that the absence of a husband delays travel for single mothers and that they are not as well-off as their married counterparts. We examine other travel and leisure studies to make comparisons with these data,...

  12. Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels.

    Science.gov (United States)

    Claudio-Rizo, Jesús A; Rangel-Argote, Magdalena; Castellano, Laura E; Delgado, Jorge; Mata-Mata, José L; Mendoza-Novelo, Birzabith

    2017-10-01

    In this work, hydrolysates of extracellular matrix (hECM) were obtained from rat tail tendon (TR), bovine Achilles tendon (TAB), porcine small intestinal submucosa (SIS) and bovine pericardium (PB), and they were polymerized to generate ECM hydrogels. The composition of hECM was evaluated by quantifying the content of sulphated glycosaminoglycans (sGAG), fibronectin and laminin. The polymerization process, structure, physicochemical properties, in vitro degradation and biocompatibility were studied and related to their composition. The results indicated that the hECM derived from SIS and PB were significantly richer in sGAG, fibronectin and laminin, than those derived from TAB and TR. These differences in hECM composition influenced the polymerization and the structural characteristics of the fibrillar gel network. Consequently, the swelling, mechanics and degradation of the hydrogels showed a direct relationship with the remaining composition. Moreover, the cytocompatibility and the secretion of transforming growth factor beta-1 (TGF-β1) by macrophages were enhanced in hydrogels with the highest residual content of ECM biomolecules. The results of this work evidenced the role of the ECM molecules remaining after both decellularization and hydrolysis steps to produce tissue derived hydrogels with structure and properties tailored to enhance their performance in tissue engineering and regenerative medicine applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 40 CFR 312.29 - The relationship of the purchase price to the value of the property, if the property was not...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false The relationship of the purchase price... COMMUNITY RIGHT-TO-KNOW PROGRAMS INNOCENT LANDOWNERS, STANDARDS FOR CONDUCTING ALL APPROPRIATE INQUIRIES Standards and Practices § 312.29 The relationship of the purchase price to the value of the property, if the...

  14. Structure-property-processing correlations in freeze-cast composite scaffolds.

    Science.gov (United States)

    Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K

    2013-05-01

    Surprisingly few reports have been published, to date, on the structure-property-processing correlations observed in freeze-cast materials directionally solidified from polymer solutions, or ceramic or metal slurries. The studies that exist focus on properties of sintered ceramics, that is materials whose structure was altered by further processing. In this contribution, we report first results on correlations observed in alumina-chitosan-gelatin composites, which were chosen as a model system to test and compare the effect of particle size and processing parameters on their mechanical properties at a specific composition. Our study reveals that highly porous (>90%) hybrid materials can be manufactured by freeze casting, through the self-assembly of a polymer and a ceramic phase that occurs during directional solidification, without the need of additional processing steps such as sintering or infiltration. It further illustrates that the properties of freeze-cast hybrid materials can independently be tailored at two levels of their structural hierarchy, allowing for the simultaneous optimization of both mechanical and structural requirements. An increase in freezing rate resulted in decreases in lamellar spacing, cell wall thickness, pore aspect ratio and cross-sectional area, as well as increases in both Young's modulus and compressive yield strength. The mechanical properties of the composite scaffolds increased with an increasing particle size. The results show that both structure and mechanical properties of the freeze-cast composites can be custom-designed and that they are thus ideally suited for a large variety of applications that require high porosity at low or medium load-bearing capacity. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  16. Understanding Structure-Property Relations of Compressed Glasses through Relaxation Studies

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Svenson, Mouritz Nolsøe; Youngman, Randall E.

    under high pressure from both scientific and technological perspectives, since the glass structures frozen-in under elevated pressure may give rise to properties unattainable under ambient pressure. However, the structural and topological origins of the pressure-induced changes in macroscopic properties...

  17. Structure and properties of Titanium for dental implants

    Directory of Open Access Journals (Sweden)

    M. Greger

    2009-10-01

    Full Text Available This paper describes manufacture of nano-structural titanium, its structure and properties. Nano-titanium has higher specific strength properties than ordinary (coarse-grained titanium. Nano-titanium was produced by the equal-channel angular pressing (ETAP process. The research it self was focused on physical base of strengthening and softening processes and developments occurring at the grain boundaries during the ECAP process at half-hot temperature. Strength of nano-titanium varies around 960 MPa, grain size around 300 nm.

  18. Surface morphology, structural and electrical properties of RF ...

    Indian Academy of Sciences (India)

    2018-05-19

    May 19, 2018 ... ITO thin films; sputtering; structure; electrical properties; AFM; Hall effect. 1. Introduction ... ness range (61–768 nm) and to see if this system present properties that .... using the Bragg equation, and the relation linking the inter-.

  19. Structural phase transition and elastic properties of samarium monopnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Chouhan, Sunil Singh; Soni, Pooja; Sanyal, Sankar P.

    2011-01-01

    In recent years the monopnictides and monochalcogenides of the rare-earth elements with rocksalt structure (B 1 ) have aroused intensive interest due to the presence of strongly correlated f electrons in them. Under pressure, the nature of f-electrons of these compounds can be changed from localized to itinerant leading to significant changes in physical and chemical properties. These unusual structural, electronic, and high-pressure properties make them candidates for advanced industrial applications. For these applications they provide unique physical properties which cannot be achieved with other materials

  20. Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2-b][1]benzothiophene.

    Science.gov (United States)

    Tsutsui, Yusuke; Schweicher, Guillaume; Chattopadhyay, Basab; Sakurai, Tsuneaki; Arlin, Jean-Baptiste; Ruzié, Christian; Aliev, Almaz; Ciesielski, Artur; Colella, Silvia; Kennedy, Alan R; Lemaur, Vincent; Olivier, Yoann; Hadji, Rachid; Sanguinet, Lionel; Castet, Frédéric; Osella, Silvio; Dudenko, Dmytro; Beljonne, David; Cornil, Jérôme; Samorì, Paolo; Seki, Shu; Geerts, Yves H

    2016-09-01

    The structural and electronic properties of four isomers of didodecyl[1]-benzothieno[3,2-b][1]benzothiophene (C12-BTBT) have been investigated. Results show the strong impact of the molecular packing on charge carrier transport and electronic polarization properties. Field-induced time-resolved microwave conductivity measurements unravel an unprecedented high average interfacial mobility of 170 cm(2) V(-1) s(-1) for the 2,7-isomer, holding great promise for the field of organic electronics. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structural properties of matrix metalloproteinases.

    Science.gov (United States)

    Bode, W; Fernandez-Catalan, C; Tschesche, H; Grams, F; Nagase, H; Maskos, K

    1999-04-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation. Their proteolytic activity must be precisely regulated by their endogenous protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumour growth and metastasis. Knowledge of the tertiary structures of the proteins involved is crucial for understanding their functional properties and interference with associated dysfunctions. Within the last few years, several three-dimensional MMP and MMP-TIMP structures became available, showing the domain organization, polypeptide fold and main specificity determinants. Complexes of the catalytic MMP domains with various synthetic inhibitors enabled the structure-based design and improvement of high-affinity ligands, which might be elaborated into drugs. A multitude of reviews surveying work done on all aspects of MMPs have appeared in recent years, but none of them has focused on the three-dimensional structures. This review was written to close the gap.

  2. Powder compression properties of paracetamol, paracetamol hydrochloride, paracetamol cocrystals and coformers.

    Science.gov (United States)

    Persson, Ann-Sofie; Ahmed, Hamzah; Velaga, Sitaram; Alderborn, Göran

    2018-03-31

    The objective was to study the relationship between crystal structure, particle deformation properties and tablet-forming ability for the monoclinic form of paracetamol (PRA), two cocrystals and a salt crystal of PRA in addition to two coformers (oxalic acid and 4,4'-bipyridine). Thus, the structure - property - performance relationship was investigated. Analytical powder compression was used for determination of effective plasticity, as inferred from the Heckel yield pressure and the Frenning parameter, and the elastic deformation was determined from in-die tablet elastic recovery. plasticity could not be linked to the crystal lattice structure as crystals containing zig-zag layers displayed similar plasticity as cThe rystals containing slip planes. In addition, crystals containing slip-planes displayed both high and low plasticity. The mechanical properties could neither be linked to the tablet-forming ability as the tablet tensile strength, unexpectedly, displayed a tendency to reduce with increased plasticity stiffness. Furthermore, the elastic deformation could not explain the tablet forming ability. It was concluded that no relationship between structure - property - performance for paracetamol and its cocrystals and salt could be established. Thus, it was indicated that to establish such a relationship an improved knowledge of crystallographic structure and inter-particle bonding during compaction is needed. Copyright © 2018. Published by Elsevier Inc.

  3. Different behavioral effect dose–response profiles in mice exposed to two-carbon chlorinated hydrocarbons: Influence of structural and physical properties

    International Nuclear Information System (INIS)

    Umezu, Toyoshi; Shibata, Yasuyuki

    2014-01-01

    The present study aimed to clarify whether dose–response profiles of acute behavioral effects of 1,2-dichloroethane (DCE), 1,1,1-trichloroethane (TCE), trichloroethylene (TRIC), and tetrachloroethylene (PERC) differ. A test battery involving 6 behavioral endpoints was applied to evaluate the effects of DCE, TCE, TRIC, and PERC in male ICR strain mice under the same experimental conditions. The behavioral effect dose–response profiles of these compounds differed. Regression analysis was used to evaluate the relationship between the dose–response profiles and structural and physical properties of the compounds. Dose–response profile differences correlated significantly with differences in specific structural and physical properties. These results suggest that differences in specific structural and physical properties of DCE, TCE, TRIC, and PERC are responsible for differences in behavioral effects that lead to a variety of dose–response profiles. - Highlights: • We examine effects of 4 chlorinated hydrocarbons on 6 behavioral endpoints in mice. • The behavioral effect dose–response profiles for the 4 compounds are different. • We utilize regression analysis to clarify probable causes of the different profiles. • The compound's physicochemical properties probably produce the different profiles

  4. Different behavioral effect dose–response profiles in mice exposed to two-carbon chlorinated hydrocarbons: Influence of structural and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Umezu, Toyoshi, E-mail: umechan2@nies.go.jp; Shibata, Yasuyuki, E-mail: yshibata@nies.go.jp

    2014-09-01

    The present study aimed to clarify whether dose–response profiles of acute behavioral effects of 1,2-dichloroethane (DCE), 1,1,1-trichloroethane (TCE), trichloroethylene (TRIC), and tetrachloroethylene (PERC) differ. A test battery involving 6 behavioral endpoints was applied to evaluate the effects of DCE, TCE, TRIC, and PERC in male ICR strain mice under the same experimental conditions. The behavioral effect dose–response profiles of these compounds differed. Regression analysis was used to evaluate the relationship between the dose–response profiles and structural and physical properties of the compounds. Dose–response profile differences correlated significantly with differences in specific structural and physical properties. These results suggest that differences in specific structural and physical properties of DCE, TCE, TRIC, and PERC are responsible for differences in behavioral effects that lead to a variety of dose–response profiles. - Highlights: • We examine effects of 4 chlorinated hydrocarbons on 6 behavioral endpoints in mice. • The behavioral effect dose–response profiles for the 4 compounds are different. • We utilize regression analysis to clarify probable causes of the different profiles. • The compound's physicochemical properties probably produce the different profiles.

  5. Crystal structure, electrical properties and electronic band structure of tantalum ditelluride

    CERN Document Server

    Vernes, A; Bensch, W; Heid, W; Naether, C

    1998-01-01

    Motivated by the unexpectedly strong influence of the Te atoms on the structural and bonding properties of the transition metal tellurides, we have performed a detailed study of TaTe sub 2. Experimentally, this comprises a crystal structure determination as well as electrical resistivity measurements. The former analysis leads to an accurate update of the structural data reported in the 1960s, while the latter provides evidence for the mainly electronic character of scattering processes leading to the electrical conductivity. In addition, the electronic properties of TaTe sub 2 have been calculated using the TB-LMTO method. The partial density of states reflects the close connection of the Ta zigzag chains and the Te-Te network. This finding explains the charge transfer in the system in a rather simple way. The orthogonal-orbital character of the bands proved the existence of pi-bonds. The Fermi-surface study supports the interpretation of the experimental resistivity measurements. (author)

  6. Evolution of the international workshops on quantitative structure-activity relationships (QSARs) in environmental toxicology.

    Science.gov (United States)

    Kaiser, K L E

    2007-01-01

    This presentation will review the evolution of the workshops from a scientific and personal perspective. From their modest beginning in 1983, the workshops have developed into larger international meetings, regularly held every two years. Their initial focus on the aquatic sphere soon expanded to include properties and effects on atmospheric and terrestrial species, including man. Concurrent with this broadening of their scientific scope, the workshops have become an important forum for the early dissemination of all aspects of qualitative and quantitative structure-activity research in ecotoxicology and human health effects. Over the last few decades, the field of quantitative structure/activity relationships (QSARs) has quickly emerged as a major scientific method in understanding the properties and effects of chemicals on the environment and human health. From substances that only affect cell membranes to those that bind strongly to a specific enzyme, QSARs provides insight into the biological effects and chemical and physical properties of substances. QSARs are useful for delineating the quantitative changes in biological effects resulting from minor but systematic variations of the structure of a compound with a specific mode of action. In addition, more holistic approaches are being devised that result in our ability to predict the effects of structurally unrelated compounds with (potentially) different modes of action. Research in QSAR environmental toxicology has led to many improvements in the manufacturing, use, and disposal of chemicals. Furthermore, it has led to national policies and international agreements, from use restrictions or outright bans of compounds, such as polychlorinated biphenyls (PCBs), mirex, and highly chlorinated pesticides (e.g. DDT, dieldrin) for the protection of avian predators, to alternatives for ozone-depleting compounds, to better waste treatment systems, to more powerful and specific acting drugs. Most of the recent advances

  7. Improving the precision of the structure-function relationship by considering phylogenetic context.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available Understanding the relationship between protein structure and function is one of the foremost challenges in post-genomic biology. Higher conservation of structure could, in principle, allow researchers to extend current limitations of annotation. However, despite significant research in the area, a precise and quantitative relationship between biochemical function and protein structure has been elusive. Attempts to draw an unambiguous link have often been complicated by pleiotropy, variable transcriptional control, and adaptations to genomic context, all of which adversely affect simple definitions of function. In this paper, I report that integrating genomic information can be used to clarify the link between protein structure and function. First, I present a novel measure of functional proximity between protein structures (F-score. Then, using F-score and other entirely automatic methods measuring structure and phylogenetic similarity, I present a three-dimensional landscape describing their inter-relationship. The result is a "well-shaped" landscape that demonstrates the added value of considering genomic context in inferring function from structural homology. A generalization of methodology presented in this paper can be used to improve the precision of annotation of genes in current and newly sequenced genomes.

  8. Structuring strategy and relationships in North American gas markets

    International Nuclear Information System (INIS)

    Fisher, J.

    1998-01-01

    Duke Energy's experience in strategy development and structuring relationships with other companies were described. Included was a description of their partnership with PanEnergy and Mobil and a merger between PanEnergy and Duke. In developing their growth strategy, Duke Energy was guided by the following considerations: (1) an assessment of the market, (2) the identification of opportunities, (3) a self-assessment, (4) the establishment of goals, and (5) determining strategic alternatives. The advantages and disadvantages of different structuring relationships were reviewed. Duke Energy's approach to Ontario's residential market and their agreement with Alliance Gas Management were also discussed. The goal of the Alliance Gas management agreement was to simplify Alliance's wholesale gas supply management needs and to allow Alliance access to diverse gas supplies. figs

  9. General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types

    Science.gov (United States)

    Birkhofer, Klaus; Schöning, Ingo; Alt, Fabian; Herold, Nadine; Klarner, Bernhard; Maraun, Mark; Marhan, Sven; Oelmann, Yvonne; Wubet, Tesfaye; Yurkov, Andrey; Begerow, Dominik; Berner, Doreen; Buscot, François; Daniel, Rolf; Diekötter, Tim; Ehnes, Roswitha B.; Erdmann, Georgia; Fischer, Christiane; Foesel, Bärbel; Groh, Janine; Gutknecht, Jessica; Kandeler, Ellen; Lang, Christa; Lohaus, Gertrud; Meyer, Annabel; Nacke, Heiko; Näther, Astrid; Overmann, Jörg; Polle, Andrea; Pollierer, Melanie M.; Scheu, Stefan; Schloter, Michael; Schulze, Ernst-Detlef; Schulze, Waltraud; Weinert, Jan; Weisser, Wolfgang W.; Wolters, Volkmar; Schrumpf, Marion

    2012-01-01

    Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider

  10. Unraveling the Solution-State Supramolecular Structures of Donor-Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties.

    Science.gov (United States)

    Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Dou, Jin-Hu; Yang, Chi-Yuan; Zou, Lin; Meng, Xiangyi; Ma, Wei; Wang, Jie-Yu; Pei, Jian

    2017-11-01

    Polymer self-assembly in solution prior to film fabrication makes solution-state structures critical for their solid-state packing and optoelectronic properties. However, unraveling the solution-state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution-state structure and the charge-transport properties in field-effect transistors. Here, for the first time, it is revealed that the thin-film morphology of a conjugated polymer inherits the features of its solution-state supramolecular structures. A "solution-state supramolecular structure control" strategy is proposed to increase the electron mobility of a benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based polymer. It is shown that the solution-state structures of the BDOPV-based conjugated polymer can be tuned such that it forms a 1D rod-like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution-state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm 2 V -1 s -1 . This work demonstrates that "solution-state supramolecular structure" control is critical for understanding and optimization of the thin-film morphology and charge-transport properties of conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Systematic Study of the Relationship among the Morphological, Structural and Photoelectrochemical Properties of ZnO Nanorods Grown Using the Microwave Chemical Bath Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sungjin; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2017-08-15

    In this study, zinc oxide (ZnO) nanostructures were grown on a ZnO seed layer/fluorine-doped tin oxide (FTO) substrate for different growth durations ranging from 5 to 40 min using the microwave chemical bath deposition method. We studied the effect of growth duration on the morphological, structural, optical and photoelectrochemical properties of the ZnO nanostructures. From this study, we found that the photoelectrochemical properties of the ZnO nanostructures were largely affected by their morphological and structural properties. As a result, we obtained the highest photocurrent density of 0.46 mA/cm{sup 2} (at 1.5 V vs. SCE) from the sample grown for 30 min.

  12. Structural, compositional, and sensorial properties of United States commercial ice cream products.

    Science.gov (United States)

    Warren, Maya M; Hartel, Richard W

    2014-10-01

    Commercial vanilla ice cream products from the United States (full fat, low fat, and nonfat) were analyzed for their structural, behavioral (i.e., melt rate and drip-through), compositional, and sensorial attributes. Mean size distributions of ice crystals and air cells, drip-through rates, percent partially coalesced fat, percent overrun and total fat, and density were determined. A trained panel carried out sensory analyses in order to determine correlations between ice cream microstructure attributes and sensory properties using a Spectrum(TM) descriptive analysis. Analyses included melt rate, breakdown, size of ice particulates (iciness), denseness, greasiness, and overall creaminess. To determine relationships and interactions, principle component analysis and multivariate pairwise correlation were performed within and between the instrumental and sensorial data. Greasiness and creaminess negatively correlated with drip-through rate and creaminess correlated with percent total fat and percent fat destabilization. Percent fat did not determine the melt rate on a sensorial level. However, drip-through rate at ambient temperatures was predicted by total fat content of the samples. Based on sensory analysis, high-fat products were noted to be creamier than low and nonfat products. Iciness did not correlate with mean ice crystal size and drip-through rate did not predict sensory melt rate. Furthermore, on a sensorial level, greasiness positively correlated with total percent fat destabilization and mean air cell size positively correlated with denseness. These results indicate that commercial ice cream products vary widely in composition, structure, behavior, and sensory properties. There is a wide range of commercial ice creams in the United States market, ranging from full fat to nonfat. In this research we showed that these ice creams vary greatly in their microstructures, behaviors (the melt/drip-though, collapse, and/or stand up properties of ice cream

  13. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Deleporte, Emmanuelle, E-mail: Emmanuelle.Deleporte@lpqm.ens-cachan.fr [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Audebert, Pierre; Galmiche, Laurent [Laboratoire de Photophysique et Photochimie Supramoleculaires et Macromoleculaires de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France)

    2009-06-15

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH{sub 2}){sub n}NH{sub 3}{sup +}) to study the relationship between their structures and the optical properties of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  14. Relationships of flour solvent retention capacity, secondary structure and rheological properties with the cookie making characteristics of wheat cultivars.

    Science.gov (United States)

    Kaur, Amritpal; Singh, Narpinder; Kaur, Seeratpreet; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2014-09-01

    The relationships of grain, flour solvent retention capacity (SRC) and dough rheological properties with the cookie making properties of wheat cultivars were evaluated. Cultivars with higher proportion of intermolecular-β-sheets+antiparallel β sheets and lower α-helix had greater gluten strength. The grain weight and diameter positively correlated with the proportion of fine particles and the cookie spread factor (SF) and negatively to the grain hardness (GH) and Na2CO3 SRC. The SF was higher in the flour with a higher amount of fine particle and with a lower Na2CO3 SRC and dough stability (DS). The breaking strength (BS) of cookies was positively correlated to lactic acid (LA) SRC, DS, peak time, sedimentation value (SV), G' and G″. Na2CO3 SRC and GH were strongly correlated. The gluten performance index showed a strong positive correlation with SV, DS, G' and G″. The water absorption had a significant positive correlation with sucrose SRC and LASRC. Cultivars with higher GH produced higher amount of coarse particles in flours that had higher Na2CO3 SRC and lower cookie SF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Prediction of the Formulation Dependence of the Glass Transition Temperature for Amine-Epoxy Copolymers Using a Quantitative Structure-Property Relationship Based on the AM1 Method

    National Research Council Canada - National Science Library

    Morrill, Jason

    2004-01-01

    A designer Quantitative Structure-Property Relationsbip (QSPR) based upon molecular properties calculated using the AM1 semi-empirical quantum mechanical metbod was developed to predict the glass transition temperature (Tg...

  16. Processing–microstructure–properties relationship in a CuNiZn ferrite

    International Nuclear Information System (INIS)

    Clausell, C.; Barba, A.

    2018-01-01

    CuNiZn ferrites are polycrystalline ceramic materials that are used widely in electronic devices for a number of reasons, including their high permeability in the RF frequency region, electrical resistivity, mechanical hardness and chemical stability. One of their main applications is in the production of specimens to prevent possible interferences between electronic devices, thanks to their ability to absorb electromagnetic waves. However, their electromagnetic properties are not solely dependent on their chemical composition, but also on the microstructure of the final piece (relative density or total porosity, grain size distribution, pore size distribution, the nature of the grain boundary, presence of secondary phases, dopants, etc.) and, therefore, on the morphology and size of the starting particles, and the processing method. The microstructure of the sintered specimens was designed in such a way as to optimize the electromagnetic properties of this ferrite. The solid-state sintering stage was also modeled with this optimization in mind. This sintering model enabled to propose the material transport mechanisms that controlled the densification and grain-growth rates, as well as the relative rates of these two simultaneous processes. The established relationships facilitate the design of a thermal cycle suitable for the manufacture of ferrite pieces with maximum relative density and the necessary microstructure. Together with the pre-configured chemical composition, the idea is that this ensures a strong set of final electromagnetic properties. The electromagnetic properties of the sintered ferrites were observed to improve as sintered relative density and average grain size increased, provided there was no evidence of exaggerated grain growth. In this sense, it seems there is a threshold of the grain size as of which the electromagnetic properties of the sintered specimens get worse. A linear relationship was observed between the imaginary part of the

  17. Reconstructing Data Flow Diagrams from Structure Charts Based on the Input and Output Relationship

    OpenAIRE

    YAMAMOTO, Shuichiro

    1995-01-01

    The traceability of data flow diagrams against structure charts is very important for large software development. Specifying if there is a relationship between a data flow diagram and a structure chart is a time consuming task. Existing CASE tools provide a way to maintain traceability. If we can extract the input-output relationship of a system from a structure chart, the corresponding data flow diagram can be automatically generated from the relationship. For example, Benedusi et al. propos...

  18. The structural and optical properties of metal ion-implanted GaN

    Energy Technology Data Exchange (ETDEWEB)

    Macková, A.; Malinský, P. [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Řež (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, České Mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Sofer, Z.; Šimek, P.; Sedmidubský, D. [Department of Inorganic Chemistry, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Veselý, M. [Dept. of Organic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Böttger, R. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden – Rossendorf, 01328 Dresden (Germany)

    2016-03-15

    The practical development of novel optoelectronic materials with appropriate optical properties is strongly connected to the structural properties of the prepared doped structures. We present GaN layers oriented along the (0 0 0 1) crystallographic direction that have been grown by low-pressure metal–organic vapour-phase epitaxy (MOVPE) on sapphire substrates implanted with 200 keV Co{sup +}, Fe{sup +} and Ni{sup +} ions. The structural properties of the ion-implanted layers have been characterised by RBS-channelling and Raman spectroscopy to obtain a comprehensive insight into the structural modification of implanted GaN layers and to study the subsequent influence of annealing on crystalline-matrix recovery. Photoluminescence was measured to control the desired optical properties. The post-implantation annealing induced the structural recovery of the modified GaN layer depending on the introduced disorder level, e.g. depending on the ion implantation fluence, which was followed by structural characterisation and by the study of the surface morphology by AFM.

  19. Structure–mechanics property relationship of waste derived biochars

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik, E-mail: odas566@aucklanduni.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Bhattacharyya, Debes, E-mail: d.bhattacharyya@auckland.ac.nz [Department of Mechanical Engineering, Center for Advanced Composite Materials, University of Auckland, Auckland 1142 (New Zealand)

    2015-12-15

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X–ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900 °C and 60 min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01 GPa, respectively. It was shown that a combination of higher heat treatment (≥ 500 °C) temperature and longer residence time (~ 60 min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. - Highlights: • Characterization was done on waste based biochars which included nanoindentation. • Pine saw dust biochar made at 900 °C for 60 min had highest hardness/modulus. • Combination of temperature/residence time affect biochar's mechanical propertie.s • Aromaticity and crystallinity positively affected biochar's mechanical properties.

  20. Structure–mechanics property relationship of waste derived biochars

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.; Bhattacharyya, Debes

    2015-01-01

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X–ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900 °C and 60 min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01 GPa, respectively. It was shown that a combination of higher heat treatment (≥ 500 °C) temperature and longer residence time (~ 60 min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. - Highlights: • Characterization was done on waste based biochars which included nanoindentation. • Pine saw dust biochar made at 900 °C for 60 min had highest hardness/modulus. • Combination of temperature/residence time affect biochar's mechanical propertie.s • Aromaticity and crystallinity positively affected biochar's mechanical properties.

  1. A Quantitative Property-Property Relationship for Estimating Packaging-Food Partition Coefficients of Organic Compounds

    DEFF Research Database (Denmark)

    Huang, L.; Ernstoff, Alexi; Xu, H.

    2017-01-01

    Organic chemicals encapsulated in beverage and food packaging can migrate to the food and lead to human exposures via ingestion. The packaging-food (Kpf) partition coefficient is a key parameter to estimate the chemical migration from packaging materials. Previous studies have simply set Kpf to 1...... or 1000, or provided separate linear correlations for several discrete values of ethanol equivalencies of food simulants (EtOH-eq). The aim of the present study is to develop a single quantitative property-property relationship (QPPR) valid for different chemical-packaging combinations and for water...... because only two packaging types are included. This preliminary QPPR demonstrates that the Kpf for various chemicalpackaging-food combinations can be estimated by a single linear correlation. Based on more than 1000 collected Kpf in 15 materials, we will present extensive results for other packaging types...

  2. Relation between photochromic properties and molecular structures in salicylideneaniline crystals.

    Science.gov (United States)

    Johmoto, Kohei; Ishida, Takashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2012-06-01

    The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.

  3. Electronic structure and properties of rare earth and actinide intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.R.

    1984-01-01

    There are 188 contributions, experimental and theoretical, a few on rare earth and actinide elements but mostly on rare earth and actinide intermetallic compounds and alloys. The properties dealt with include 1) crystal structure, 2) magnetic properties and magnetic structure, 3) magnetic phase transformations and valence fluctuations, 4) electrical properties and superconductivity and their temperature, pressure and magnetic field dependence. A few papers deal with crystal growth and novel measuring methods. (G.Q.)

  4. The Relationship between Bureaucratic School Structures and Teacher Self-Efficacy

    Science.gov (United States)

    Kilinç, Ali Çagatay; Kosar, Serkan; Er, Emre; Ögdem, Zeki

    2016-01-01

    The purpose of this study was to examine the relationship between bureaucratic school structures and teachers' self-efficacy. Participants included 252 teachers from 15 primary schools in Ankara, Turkey. Mean, standard deviation, correlation, and regression analyses were conducted. Results indicated that bureaucratic school structures and teacher…

  5. Optical properties of the semiconductor quantum structure

    International Nuclear Information System (INIS)

    Haratizadeh, H.; Holtz, P.O.; Monemar, B.; Karlsoon, K.F.; Moskalenko, E.S.; Amano, H.; Akasaki, I.; Schoenfeld, W.V.; Garcia, J.M.; Petroff, P.M.

    2004-01-01

    Optical properties of the quantum structures have been discussed with emphasize of the AlGaN/GaN multiple quantum wells and InAs/GaAs quantum dot structures. We report on a detailed study of low temperature photoluminescence in Al 0 .07Ga 0 .93 N/GaN multiple quantum wells. The structures were nominally undoped multiple quantum well grown on sapphire substrate. The structure from discrete well width variations is here resolved in photoluminescence spectra. The results demonstrate that the theoretically estimated fields in this work are consistent with the experimental spectra

  6. Molecular structure based property modeling: Development/ improvement of property models through a systematic property-data-model analysis

    DEFF Research Database (Denmark)

    Hukkerikar, Amol Shivajirao; Sarup, Bent; Sin, Gürkan

    2013-01-01

    models. To make the property-data-model analysis fast and efficient, an approach based on the “molecular structure similarity criteria” to identify molecules (mono-functional, bi-functional, etc.) containing specified set of structural parameters (that is, groups) is employed. The method has been applied...

  7. Mechanical Properties and Structures of Pyrolytic Carbon Coating Layer in HTR Coated Particle Fuel

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, Young Min; Kim, Woong Ki; Cho, Moon Sung

    2009-01-01

    The TRISO(tri-isotropic)-coated fuel particle for a HTR(High Temperature gas-cooled Reactor) has a diameter of about 1 mm, composed of a nuclear fuel kernel and four different outer coating layers, consisting of a buffer PyC (pyrolytic carbon) layer, inner PyC layer, SiC layer, and outer PyC layer with different coating thicknesses following a specific fuel design. While the fuel kernel is a source for a heat generation by a nuclear fission of fissile uranium, each of the four coating layers acts as a different role in view of retaining the generated fission products and the other interactions during an in-reactor service. Among these coating layers, PyC properties are scarcely in agreement among various investigators and the dependency of their changes upon the deposition condition is comparatively large due to their additional anisotropic properties. Although a recent review work has contributed to an establishment of relationship between the material properties and QC measurements, the data on the mechanical properties and structural parameters of PyC coating layers remain still unclearly evaluated. A review work on dimensional changes of PyC by neutron irradiation was one of re-evaluative works recently attempted by the authors. In this work, an attempt was made to analyze and re-evaluate the existing data of the experimental results of the mechanical properties, i.e., Young's modulus and fracture stress, in relation with the coating conditions, density and the BAF (Bacon Anisotropy Factor), an important structural parameter, of PyC coating layers obtained from various experiments performed in the early periods of the HTR coated particle development

  8. Relationship between coal and coke microstructure and the high temperature properties of coke. [Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Tsuyuguchi, K; Yamaji, M; Sugimoto, Y

    1980-02-01

    This paper considers the relationship of the properties of coke and parent coal with the high temperature properties, including reactivity, of coke. Aspects considered include coke texture and grade, and the optical reflectivity of coal and coke. (8 refs.) (In Japanese)

  9. Structure and properties of microcrystalline chitosan

    International Nuclear Information System (INIS)

    Pighinelli, Luciano; Guimaraes, Fernando Machado; Paz, Luan Rios; Zanin, Gabrielle Brehm; Kmiec, Marzena; Tedesco, Felipe Melleu; Reis, Victoria Oliva dos; Silva, Matheus Machado; Becker, Cristiane Miotto; Zehetmeyer, Gislene; Rasia, Gisele

    2016-01-01

    Full text: The microcrystalline chitosan is a modified form of chitosan; it has been elaborated from obtaining method of chitosan salts. It is characterized by special properties of the initial chitosan such as biocompatibility, bioactivity, non-toxic, biodegradability [1]. The objective of this study is to develop a different method to obtain the microcrystalline chitosan and the following characterization of the initial chitosan and MCCh. The material was characterized by FTIR, scanning of electron microscopy, SEM, nuclear magnetic resonance, NMR, and x-ray diffraction. The results indicate that the process to obtain MCCh, did not change the structure of the initial chitosan. The MCCh shows the same functional groups of the initial chitosan. The NMR results shows the acetylated and deacetylated groups. The morphology shows a homogeneous structure of surface. The X-ray diffraction shows the reduction of the crystallinity in the MCCh, indicating a bigger amorphous structure of the MCCh. The chitosan and its derivatives are polymers with excellent properties to be used in regenerative medicine because of ensure efficiency in healing process. This polysaccharide has a great potential to develop a new generation of biomaterials that can be used in regenerative medicine and tissue engineering [2]. References: [1]. LI, Q. et al. Applications and properties of chitosan. In: GOOSEN, M. F. A. (Ed.). Applications of chitin and chitosan. Basel: Technomic, 1997. p. 3-29; [2]. Luciano Pighinelli, Magdalena Kucharska, Dariuz Wawro. Preparation of Microcrystalline chitosan: (MCCh0/tricalcium phosphate complex with Hydroxyapatite in sponge and fibre from for hard tissue regeneration. (author)

  10. Structure and properties of microcrystalline chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Luciano; Guimaraes, Fernando Machado; Paz, Luan Rios; Zanin, Gabrielle Brehm; Kmiec, Marzena; Tedesco, Felipe Melleu; Reis, Victoria Oliva dos; Silva, Matheus Machado, E-mail: lpighinelli@hotmail.com [Universidade Luterana, Sao Paulo, SP (Brazil); Becker, Cristiane Miotto; Zehetmeyer, Gislene; Rasia, Gisele [Centro Universitario SENAI CIMATEC, Salvador, BA (Brazil). Instituto de Engenharia de Materiais Polimericos

    2016-07-01

    Full text: The microcrystalline chitosan is a modified form of chitosan; it has been elaborated from obtaining method of chitosan salts. It is characterized by special properties of the initial chitosan such as biocompatibility, bioactivity, non-toxic, biodegradability [1]. The objective of this study is to develop a different method to obtain the microcrystalline chitosan and the following characterization of the initial chitosan and MCCh. The material was characterized by FTIR, scanning of electron microscopy, SEM, nuclear magnetic resonance, NMR, and x-ray diffraction. The results indicate that the process to obtain MCCh, did not change the structure of the initial chitosan. The MCCh shows the same functional groups of the initial chitosan. The NMR results shows the acetylated and deacetylated groups. The morphology shows a homogeneous structure of surface. The X-ray diffraction shows the reduction of the crystallinity in the MCCh, indicating a bigger amorphous structure of the MCCh. The chitosan and its derivatives are polymers with excellent properties to be used in regenerative medicine because of ensure efficiency in healing process. This polysaccharide has a great potential to develop a new generation of biomaterials that can be used in regenerative medicine and tissue engineering [2]. References: [1]. LI, Q. et al. Applications and properties of chitosan. In: GOOSEN, M. F. A. (Ed.). Applications of chitin and chitosan. Basel: Technomic, 1997. p. 3-29; [2]. Luciano Pighinelli, Magdalena Kucharska, Dariuz Wawro. Preparation of Microcrystalline chitosan: (MCCh0/tricalcium phosphate complex with Hydroxyapatite in sponge and fibre from for hard tissue regeneration. (author)

  11. Anti-trypanosomal activities and structural chemical properties of selected compound classes.

    Science.gov (United States)

    Ponte-Sucre, Alicia; Bruhn, Heike; Schirmeister, Tanja; Cecil, Alexander; Albert, Christian R; Buechold, Christian; Tischer, Maximilian; Schlesinger, Susanne; Goebel, Tim; Fuß, Antje; Mathein, Daniela; Merget, Benjamin; Sotriffer, Christoph A; Stich, August; Krohne, Georg; Engstler, Markus; Bringmann, Gerhard; Holzgrabe, Ulrike

    2015-02-01

    Potent compounds do not necessarily make the best drugs in the market. Consequently, with the aim to describe tools that may be fundamental for refining the screening of candidates for animal and preclinical studies and further development, molecules of different structural classes synthesized within the frame of a broad screening platform were evaluated for their trypanocidal activities, cytotoxicities against murine macrophages J774.1 and selectivity indices, as well as for their ligand efficiencies and structural chemical properties. To advance into their modes of action, we also describe the morphological and ultrastructural changes exerted by selected members of each compound class on the parasite Trypanosoma brucei. Our data suggest that the potential organelles targeted are either the flagellar pocket (compound 77, N-Arylpyridinium salt; 15, amino acid derivative with piperazine moieties), the endoplasmic reticulum membrane systems (37, bisquaternary bisnaphthalimide; 77, N-Arylpyridinium salt; 68, piperidine derivative), or mitochondria and kinetoplasts (88, N-Arylpyridinium salt; 68, piperidine derivative). Amino acid derivatives with fumaric acid and piperazine moieties (4, 15) weakly inhibiting cysteine proteases seem to preferentially target acidic compartments. Our results suggest that ligand efficiency indices may be helpful to learn about the relationship between potency and chemical characteristics of the compounds. Interestingly, the correlations found between the physico-chemical parameters of the selected compounds and those of commercial molecules that target specific organelles indicate that our rationale might be helpful to drive compound design toward high activities and acceptable pharmacokinetic properties for all compound families.

  12. Transitional grain boundary structures and the influence on thermal, mechanical and energy properties from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    The thermo-kinetic characteristics that dictate the activation of atomistic crystal defects significantly influence the mechanical properties of crystalline materials. Grain boundaries (GBs) primarily influence the plastic deformation of FCC metals through their interaction with mobile dislocation defects. The activation thresholds and atomic mechanisms that dictate the thermo-kinetic properties of grain boundaries have been difficult to study due to complex and highly variable GB structure. This paper presents a new approach for modelling GBs which is based on a systematic structural analysis of metastable and stable GBs. GB structural transformation accommodates defect interactions at the interface. The activation energy for such structural transformations was evaluated with nudged elastic band analysis of bi-crystals with several metastable 0 K grain boundary structures in pure FCC Aluminium (Al). The resultant activation energy was used to evaluate the thermal stability of the metastable grain boundary structures, with predictions of transition time based on transition state theory. The predictions are in very good agreement with the minimum time for irreversible structure transformation at 300 K obtained with molecular dynamics simulations. Analytical methods were used to evaluate the activation volume, which in turn was used to predict and explain the influence of stress and strain rate on the thermal and mechanical properties. Results of molecular dynamics simulations show that the GB structure is more closely related to the elastic strength at 0 K than the GB energy. Furthermore, the thermal instability of the GB structure directly influences the relationship between bi-crystal strength, temperature and strain rate. Hence, theoretically consistent models are established on the basis of activation criteria, and used to make predictions of temperature-dependent yield stress at a low strain rate, in agreement with experimental results.

  13. Assessment of the electronic structure and properties of trichothecene toxins using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Appell, Michael, E-mail: michael.appell@ars.usda.gov [Bacterial Foodborne Pathogens and Mycology Research USDA, ARS, National Center for Agricultural Utilization Research 1815 N. University St., Peoria, IL 61604 (United States); Bosma, Wayne B., E-mail: bosma@bumail.bradley.edu [Mund-Lagowski Department of Chemistry and Biochemistry Bradley University 1501 W. Bradley Ave., Peoria, IL 61625 (United States)

    2015-05-15

    Highlights: • Quantum-based properties of type A and B trichothecenes are related to toxicity. • Deoxynivalenol and nivalenol exhibit complex hydrogen bonding schemes. • QSAR models explain trichothecene toxicity and immunochemical detection. • False-positive detection is associated with spatial autocorrelation indices. - Abstract: A comprehensive quantum chemical study was carried out on 35 type A and B trichothecenes and biosynthetic precursors, including selected derivatives of deoxynivalenol and T-2 toxin. Quantum chemical properties, Natural Bond Orbital (NBO) analysis, and molecular parameters were calculated on structures geometry optimized at the B3LYP/6-311+G** level. Type B trichothecenes possessed significantly larger electrophilicity index compared to the type A trichothecenes studied. Certain hydroxyl groups of deoxynivalenol, nivalenol, and T-2 toxin exhibited considerable rotation during molecular dynamics simulations (5 ps) at the B3LYP/6-31G** level in implicit aqueous solvent. Quantitative structure activity relationship (QSAR) models were developed to evaluate toxicity and detection using genetic algorithm, principal component, and multilinear analyses. The models suggest electronegativity and several 2-dimensional topological descriptors contain important information related to trichothecene cytotoxicity, phytotoxicity, immunochemical detection, and cross-reactivity.

  14. Assessment of the electronic structure and properties of trichothecene toxins using density functional theory

    International Nuclear Information System (INIS)

    Appell, Michael; Bosma, Wayne B.

    2015-01-01

    Highlights: • Quantum-based properties of type A and B trichothecenes are related to toxicity. • Deoxynivalenol and nivalenol exhibit complex hydrogen bonding schemes. • QSAR models explain trichothecene toxicity and immunochemical detection. • False-positive detection is associated with spatial autocorrelation indices. - Abstract: A comprehensive quantum chemical study was carried out on 35 type A and B trichothecenes and biosynthetic precursors, including selected derivatives of deoxynivalenol and T-2 toxin. Quantum chemical properties, Natural Bond Orbital (NBO) analysis, and molecular parameters were calculated on structures geometry optimized at the B3LYP/6-311+G** level. Type B trichothecenes possessed significantly larger electrophilicity index compared to the type A trichothecenes studied. Certain hydroxyl groups of deoxynivalenol, nivalenol, and T-2 toxin exhibited considerable rotation during molecular dynamics simulations (5 ps) at the B3LYP/6-31G** level in implicit aqueous solvent. Quantitative structure activity relationship (QSAR) models were developed to evaluate toxicity and detection using genetic algorithm, principal component, and multilinear analyses. The models suggest electronegativity and several 2-dimensional topological descriptors contain important information related to trichothecene cytotoxicity, phytotoxicity, immunochemical detection, and cross-reactivity

  15. Chemical Modification and Structure-property Relationships of Acrylic and Ionomeric Thermoplastic Elastomer Gels

    Science.gov (United States)

    Vargantwar, Pruthesh Hariharrao

    Block copolymers (BCs) have remained at the forefront of materials research due to their versatility in applications ranging from hot-melt/pressure-sensitive adhesives and impact modifiers to compatibilizing agents and vibration-dampening/nanotemplating media. Of particular interest are macromolecules composed of two or more chemically dissimilar blocks covalently linked together to form triblock or pentablock copolymers. If the blocks are sufficiently incompatible and the copolymer behaves as a thermoplastic elastomer, the molecules can spontaneously self-assemble to form nanostructured materials that exhibit shape memory due to the formation of a supramolecular network. The BCs of these types are termed as conventional. When BCs contain blocks having ionic moieties such as sulfonic acid groups, they are termed as block ionomers. Designing new systems based on either conventional or ionic BCs, characterizing their structure-property relationships and later using them as electroacive polymers form the essential objectives of this work. Electroactive polymers (EAPs) exhibit electromechanical actuation when stimulated by an external electric field. In the first part of this work, it is shown that BCs resolve some of the outstanding problems presently encountered in the design of two different classes of EAP actuators: dielectric elastomers (DEs) and ionic polymer metal composites (IPMCs). All-acrylic triblock copolymer gels used as DEs actuate with high efficacy without any requirement of mechanical prestrain and, thus, eliminate the need for bulky and heavy hardware essential with prestrained dielectric actuators, as well as material problems associated with stress relaxation. The dependence of actuation behavior on gel morphology as evaluated from mechanical and microstructure studies is observed. In the case of IPMCs, ionic BCs employed in this study greatly facilitate processing compared to other contenders such as NafionRTM, which is commonly used in this class

  16. Structural Diversity and Close Interracial Relationships in College

    Science.gov (United States)

    Bowman, Nicholas A.

    2012-01-01

    Recent legal and political actions have challenged the use of race-conscious college admissions policies. Earlier research offers mixed evidence about the link between an institution's racial/ethnic composition (i.e., structural diversity) and the formation of close interracial relationships, so the present study examines this topic directly for…

  17. Structures and physicochemical properties of molecular aggregates of lipids

    International Nuclear Information System (INIS)

    Iwahashi, Makio

    2005-01-01

    Structures and physicochemical properties of lipids such as fatty acids, alcohols, acylglycerols and steroids in their two- or three-dimensional states were studied through the measurements of surface pressure (π), surface-molecular area (A), vapor-pressure osmosis, radioactivity (R), self-diffusion coefficient (D), density, viscosity, near-infrared spectroscopy (NIR), 13 C-NMR spin-lattice relaxation time (T 1 ), ESR, SEM, DSC, X-ray diffraction and small-angle neutron scattering (SANS). Following results are obtained: (1) π-A and R-A relationships indicate that the explanation, being widely believed, of the reaction occurred in the oleic acid or the trioleylglycerol monolayer on the aqueous KMnO 4 solution is incorrect. (2) By using the LB film of 3 H-labelled fatty acid, the upper limit of the neutrino mass was determined. In addition, by using the LB film of 14 C-labelled fatty acid, a new type of crystal-transformation process was found, in which fatty-acid crystal transforms from its unstable state to its stable one by the transfer of the fatty acid molecules through the vapor phase. (3) Fatty acids always exist as their dimers in their liquid state and mostly in non-polar solvents; the dimers are the units of the molecular movements in the molten liquid and in solvents. T 1 results clearly showed the internal molecular movements of the dimers. In addition, D and SANS results indicated that two different kinds of fatty acids in their binary mixture make only each homodimers. (4) Furthermore, the study on the liquid structure of fatty acids such as cis-6-, cis-9-, cis-11-, trans-9-octadecenoic acids and stearic acid indicated that these fatty-acid dimers construct the clusters resemble to the smectic-liquid crystal in the liquid state. The clusters determine the physicochemical properties of the liquid of the fatty acid. (author)

  18. [The relationship between eyeball structure and visual acuity in high myopia].

    Science.gov (United States)

    Liu, Yi-Chang; Xia, Wen-Tao; Zhu, Guang-You; Zhou, Xing-Tao; Fan, Li-Hua; Liu, Rui-Jue; Chen, Jie-Min

    2010-06-01

    To explore the relationship between eyeball structure and visual acuity in high myopia. Totally, 152 people (283 eyeballs) with different levels of myopia were tested for visual acuity, axial length, and fundus. All cases were classified according to diopter, axial length, and fundus. The relationships between diopter, axial length, fundus and visual acuity were studied. The mathematical models were established for visual acuity and eyeball structure markers. The visual acuity showed a moderate correlation with fundus class, comus, axial length and diopter ([r] > 0.4, P eyeball structure markers. The visual acuity should decline with axial length extension, diopter deepening and pathological deterioration of fundus. To detect the structure changes by combining different kinds of objective methods can help to assess and to judge the vision in high myopia.

  19. Controlling microstructure of pentacene derivatives by solution processing: impact of structural anisotropy on optoelectronic properties.

    Science.gov (United States)

    James, David T; Frost, Jarvist M; Wade, Jessica; Nelson, Jenny; Kim, Ji-Seon

    2013-09-24

    The consideration of anisotropic structural properties and their impact on optoelectronic properties in small-molecule thin films is vital to understand the performance of devices incorporating crystalline organic semiconductors. Here we report on the important relationship between structural and optoelectronic anisotropy in aligned, functionalized-pentacene thin films fabricated using the solution-based zone-casting technique. The microstructure of thin films composed of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and 6,13-bis(triethylsilylethynyl)pentacene (TES-pentacene) is systematically controlled by varying the casting speed. By controlling the structural alignment, we were able to experimentally decouple, for the first time in these films, an intramolecular absorption transition dipole (at ∼440 nm) oriented close to the pentacene short axis and an intermolecular absorption transition dipole (at ∼695 nm) oriented predominantly along the conjugated pentacene-pentacene core stacking axis (crystallographic a-axis) in both films. Using the intermolecular absorption as a signature for intermolecular delocalization, much higher optical dichroism was obtained in TES-pentacene (16 ± 6) than TIPS-pentacene (3.2 ± 0.1), which was attributed to the 1D packing structure of TES-pentacene compared to the 2D packing structure of TIPS-pentacene. This result was also supported by field-effect mobility anisotropy measurements of the films, with TES-pentacene exhibiting a higher anisotropy (∼21-47, depending on the casting speed) than TIPS-pentacene (∼3-10).

  20. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-01-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of our knowledge of these fundamentals is given. Included are the following: (1) structure of ideal perfect boundaries; (2) defect structure of grain boundaries; (3) diffusion at grain boundaries; (4) grain boundaries as sources/sinks for point defects; (5) grain boundary migration; (6) dislocation phenomena at grain boundaries; (7) atomic bonding and cohesion at grain boundaries; (8) non-equilibrium properties of grain boundaries; and (9) techniques for studying grain boundaries

  1. Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions

    Science.gov (United States)

    Hales, Stephen J.; Hafley, Robert A.

    2001-01-01

    The objective of this investigation was to establish the relationship between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-stiffened extruded panels fabricated from the Al-Li alloys 2195, 2098 and 2096. In-plane properties were measured as a function of orientation at two locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T' stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the most isotropic. All three alloys exhibited highly elongated grain structures and similar location-dependent variations in grain morphology. The textural characteristics comprised a beta + fiber texture, similar to rolled product, in the Skin regions and alpha + fiber texture, comparable to axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with yield strength anisotropy, the original 'full constraint' Taylor model and a variant of the 'relaxed constraint' model, explored by Wert et al., were applied to the data. A comparison of the results revealed that the Wert model was consistently more accurate than the Taylor model.

  2. Brush-Coated Nanoparticle Polymer Thin Films: structure-mechanical-optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter F. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Materials Science and Engineering

    2014-08-15

    Our work was devoted to understanding the structure and properties of a class of thin film polymer nanocomposites (PNCs). PNCs are composed of polymer hosts into which nanoparticles (metallic nanoparticles, quantum dots, nanorods, C60, nanotubes) are incorporated. PNCs exhibit a diverse range of functional properties (optical, electronic, mechanical, biomedical, structural), determined in part by the chemical composition of the polymer host and the type of nanoparticle. The properties PNCs rely not only on specific functional, size-dependent, behavior of the nanoparticles, but also on the dispersion, and organizational order in some cases, inter-nanoparticle separation distances, and on relative interactions between the nanoparticles and the host. Therefore the scientific challenges associated with understanding the interrelations between the structure and function/properties of PNCs are far more complex than may be understood based only on the knowledge of the compositions of the constituents. The challenges of understanding the structure-function behavior of PNCs are further compounded by the fact that control of the dispersion of the nanoparticles within the polymer hosts is difficult; one must learn how to disperse inorganic particles within an organic host. The goal of this proposal was to develop an understanding of the connection between the structure and the thermal (glass transition), mechanical and optical properties of a specific class of PNCs. Specifically PNCs composed of polymer chain grafted gold nanoparticles within polymer hosts. A major objective was to understand how to develop basic principles that enable the fabrication of functional materials possessing optimized morphologies and combinations of materials properties.

  3. Studying the effect of thermal processing on the structure and several properties of thermoanthracite intended for the carbon in self-baking electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gasik, M.I.; Grinshpunt, A.G.

    1981-07-01

    Effect of temperature in the 1200-2600 C range on changes in structural parameters and some properties of thermoanthracites for the carbon in continuous self-baking electrodes is studied. The results of studies on thermoanthracite samples removed from the operating end of an industrial oven electrode are discussed and analyzed. Correlation-regression analysis was used to analyze experimental data on a computer. Functional relationships between processing temperature and structural parameters (distance between reflection layers, dimension of crystallites, electroresistance, change in ash content) were obtained. The character of temperature distribution on the operating end of self-baking electrodes in a RPEh-63 ore reducing oven was determined from the relationships obtained. (12 refs.) (In Russian)

  4. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility.

    Science.gov (United States)

    Liu, Y; Vrana, N E; Cahill, P A; McGuinness, G B

    2009-08-01

    Polyvinyl alcohol (PVA) hydrogels have been considered potentially suitable for applications as engineered blood vessels because of their structure and mechanical properties. However, PVA's hydrophilicity hinders its capacity to act as a substrate for cell attachment. As a remedy, PVA was blended with chitosan, gelatin, or starch, and hydrogels were formed by subjecting the solutions to freeze-thaw cycles followed by coagulation bath immersion. The structure-property relationships for these hydrogels were examined by measurement of their swelling, rehydration, degradation, and mechanical properties. For the case of pure PVA hydrogels, the equilibrium swelling ratio was used to predict the effect of freeze thaw cycles and coagulation bath on average molecular weights between crosslinks and on mesh size. For all hydrogels, trends for the reswelling ratio, which is indicative of the crosslinked polymer fraction, were consistent with relative tensile properties. The coagulation bath treatment increased the degradation resistance of the hydrogels significantly. The suitability of each hydrogel for cell attachment and proliferation was examined by protein adsorption and bovine vascular endothelial cell culture experiments. Protein adsorption and cell proliferation was highest on the PVA/gelatin hydrogels. This study demonstrates that the potential of PVA hydrogels for artificial blood vessel applications can be improved by the addition of natural polymers, and that freeze-thawing and coagulation bath treatment can be utilized for fine adjustment of the physical characteristics.

  5. Structure-activity relationship of crustacean peptide hormones.

    Science.gov (United States)

    Katayama, Hidekazu

    2016-01-01

    In crustaceans, various physiological events, such as molting, vitellogenesis, and sex differentiation, are regulated by peptide hormones. To understanding the functional sites of these hormones, many structure-activity relationship (SAR) studies have been published. In this review, the author focuses the SAR of crustacean hyperglycemic hormone-family peptides and androgenic gland hormone and describes the detailed results of our and other research groups. The future perspectives will be also discussed.

  6. Structure and photoluminescence property of complexes of aromatic carboxylic acid-functionalized polysulfone with Eu(Ⅲ) and Tb(Ⅲ)

    International Nuclear Information System (INIS)

    Gao, Baojiao; Qiao, Zongwen; Chen, Tao

    2014-01-01

    With chloromethylated polysulfone as starting substance, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polysulfone (PSF) via polymer reactions, obtaining two kinds of aromatic carboxyl acid-functionalized polysulfone, PSFNA and PSFBA. Subsequently, the luminescent binary and ternary polymer-rare earth complexes of Eu(Ⅲ) and Tb(Ⅲ) were prepared through coordination reactions, respectively, with PSFNA and PSFBA as macromolecule ligands and with 1,10-phenanthroline (Phen) and 4,4′-bipyridine (Bipy) as small-molecule co-ligands. This work focuses on investigating the relationship between structure and photoluminescence property of these complexes. The experimental results indicate that the macromolecule ligands PSFNA and PSFBA can strongly sensitize the fluorescence emissions of Eu 3+ ion or Tb 3+ ion, and the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions. The fluorescence emission of the binary complex PSF–(NA) 3 –Eu(Ⅲ) is stronger than that PSF–(BA) 3 –Eu(Ⅲ), suggesting the bonded ligand NA has stronger sensitization action for Eu 3+ ion than ligand BA; The binary complex PSF–(BA) 3 –Tb(Ⅲ) emit very strong characteristic fluorescence of Tb 3+ ion, displaying that ligand BA can strongly sensitize Tb 3+ ion, whereas PSF–(NA) 3 –Tb(Ⅲ) does not emit the characteristic fluorescence of Tb 3+ ion, showing that the bonded ligand NA does not sensitize Tb 3+ ion. The fluorescence intensity of the ternary complexes is stronger than that of the binary complexes in the same series. The solid films of these complexes also emit the strong characteristic fluorescence of Eu 3+ ion or Tb 3+ ion. - Highlights: • We prepared two kinds of aromatic carboxyl acid-functionalized polysulfone, PSFNA and PSFBA via polymer reaction. • Various binary and ternary luminescent polymer-rare earth complexes of Eu(Ⅲ) and Tb (Ⅲ) were obtained. • The relationship

  7. Optimisation by plastic deformation of structural and mechanical uranium alloys properties

    International Nuclear Information System (INIS)

    Prunier, Claude.

    1981-08-01

    Structural and mechanical properties evolution of rich and poor uranium alloys are investigated. Good usual properties are obtained with few metallic additions with a limited effect giving a fine and isotrope grain structure. Amelioration is observed with heat treatment from β and γ phases high temperature range. However, dynamic recrystallisation, related to hot working, is the better phenomena to maximize the usual mechanical and structural properties. So high temperature behaviour of rich and poor uranium alloys in α, β and γ crystalline structure is studied: - dynamic recrystallisation phenomena begins only in α, and β phases high temperature range; - high strength and brittle β phase shows a very large ductility above 700 deg C. Recrystallisation is a thermal actived phenomena localised at grain boundary, dependant with alloys concentration and crystalline structure. β phase activation energy and deformation rate for dynamic recrystallisation beginning are most important, than α and γ phases in relation with quadratic structure complexity. Both temperature and deformation rate are the main dynamic recrystallisation factors. Optimal usual mechanical and structural properties obtained by hot working (forging, milling) are sensible to hydrogen embrittlement [fr

  8. A short review of nanographenes: structures, properties and applications

    Science.gov (United States)

    Dai, Yafei; Liu, Yi; Ding, Kai; Yang, Jinlong

    2018-04-01

    Graphene has attracted great interest in the science and technology since it was exfoliated mechanically from the graphite in 2004. Although graphene has various potential applications, its practical applications are constrained enormously by its serious drawbacks, such as zero band gap, tendency of aggregation between layers and hydrophobicity, which mainly caused by the infinite planar hexagonal structure of graphene. Considering that the structural defects in the honeycomb lattice and the edges of graphene break the infinite structure and thus change the properties, which may improve the application efficiency, nanographene (NG) is proposed and attracts extensive attention. In this work, we review the structures of multifarious well-defined NGs synthesised in recent experiments. The effects of the shape, size, edges and substituents of NGs to the properties are discussed in detail and the regulation for various properties of NG is analysed. For the well-defined NGs, including planar and non-planar ones, the challenges and perspectives of their potential applications in nonlinear optical material, gas molecular detector and gas separation material, hydrogen storage material, and hole-transporting material in perovskite solar cells are envisioned.

  9. Structural, optical and thermal properties of nanoporous aluminum

    International Nuclear Information System (INIS)

    Ghrib, Taher

    2015-01-01

    Highlights: • A simple electrochemical technique is presented and used to manufacture a porous aluminum layer. • Manufactured pores of 40 nm diameter and 200 nm depth are filled by nanocrystal of silicon and graphite. • Dimensions of pores increase with the anodization current which ameliorate the optical and thermal properties. • A new thermal method is presented which permit to determine the pores density and the layer thickness. • All properties show that the manufactured material can be used with success in solar cells. - Abstract: In this work the structural, thermal and optical properties of porous aluminum thin film formed with various intensities of anodization current in sulfuric acid are highlighted. The obtained pores at the surface are filled by sprayed graphite and nanocrystalline silicon (nc-Si) thin films deposited by plasma enhancement chemical vapor deposition (PECVD) which the role is to improve its optical and thermal absorption giving a structure of an assembly of three different media such as deposited thin layer (graphite or silicon)/(porous aluminum layer filled with the deposited layer)/(Al sample). The effect of anodization current on the microstructure of porous aluminum and the effect of the deposited layer were systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectroscopy. The thermal properties such as the thermal conductivity (K) and thermal diffusivity (D) are determined by the photothermal deflection (PTD) technique which is a non destructive technique. Based on this full characterization, it is demonstrated that the thermal and optical characteristics of these films are directly correlated to their micro-structural properties

  10. Preliminary analysis of the relationship between structure and anthelmintic activity of condensed tannins in cattle nemaotdes

    DEFF Research Database (Denmark)

    Desrues, Olivier; Larsen Enemark, Heidi; Mueller-Harvey, Irene

    2013-01-01

    Some plant secondary metabolites as tannins have direct anthelminthic properties and may play a role in the control of nematodes in livestock. However, their great diversity in structural characteristics and different levels of content in plants are responsible for a highly variable response...... in anthelmintic activity, as measured in vitro. The aim of the present study was to assess the relationship between structure and anthelmintic activity using an in vitro assay. We used a series of purified tannins (from 65% to 100% of purity) characterized for their degree of polymerization (mDP), prodelphinidin....../procyanidin ratio and cis/trans ratio by thiolytic degradation. Tannins diluted in two concentrations in water, epigallocatechin gallate, positive (ivermectin) and negative (water) controls were examined by the Larval Feeding Inhibition Assay (LFIA) with first stage larvae (L1) of the cattle nematode Cooperia...

  11. Preliminary analysis of the relationship between structure and anthelmintic activity of condensed tannins in cattle nematodes

    DEFF Research Database (Denmark)

    Desrues, Oliver; Enemark, Heidi L.; Mueller-Harvey, I.

    2013-01-01

    Some plant secondary metabolites as tannins have direct anthelminthic properties and may play a role in the control of nematodes in livestock. However, their great diversity in structural characteristics and different levels of content in plants are responsible for a highly variable response...... in anthelmintic activity, as measured in vitro. The aim of the present study was to assess the relationship between tannin structure and anthelmintic activity using an in vitro assay. We used a series of purified tannins (from 65% to 100% of purity) characterized for their degree of polymerization (m......DP), prodelphinidin/procyanidin (PC/PD) ratio and cis/trans ratio by thiolytic degradation. Tannins diluted in two concentrations in water, epigallocatechin gallate (EGCG), positive (ivermectin) and negative (water) controls were examined by the Larval Feeding Inhibition Assay (LFIA) with first stage larvae (L1...

  12. Quantitative Structure-Activity Relationships and Docking Studies of Calcitonin Gene-Related Peptide Antagonists

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Mehrabian, Mohadeseh; Kyani, Anahita

    2012-01-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range...... of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression....... The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model...

  13. STRUCTURAL CHARACTERISTICS & DIELECTRIC PROPERTIES OF TANTALUM OXIDE DOPED BARIUM TITANATE BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Md. Fakhrul Islam

    2013-01-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mole % Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90 % was achieved for 0.5 and 1.0 mole %Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0.5 mole % Ta2O5. Although fine grain size down to 200 - 300 nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000 - 14000 was found in the temperature range of 55 to 80 °C, for 1.0 mole % Ta2O5 doped samples with corresponding shift of Curie point to ~82 °C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  14. Structural material properties for fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A-A. F.

    2008-10-15

    Materials properties requirements for structural applications in the forthcoming and future fusion machines are analyzed with emphasis on safety requirements. It is shown that type 316L(N) used in the main structural components of ITER is code qualified and together with limits imposed on its service conditions and neutron radiation levels, can adequately satisfy ITER vacuum vessel licensing requirements. For the in-vessel components, where nonconventional fabrication methods, such as HIPing, are used, design through materials properties, data is combined with tests on representative mockups to meet the requirements. For divertor parts, where the operating conditions are too severe for components to last throughout the reactor life, replacement of most exposed parts is envisaged. DEMO operating conditions require extension of ITER design criteria to high temperature and high neutron dose rules, as well as to compatibility with cooling and tritium breeding media, depending on the blanket concept retained. The structural material favoured in EU is Eurofer steel, low activation martensitic steel with good ductility and excellent resistance to radiation swelling. However, this material, like other ferritic / martensitic steels, requires post-weld annealing and is sensitive to low temperature irradiation embrittlement. Furthermore, it shows cyclic softening during fatigue, complicating design against fatigue and creep-fatigue. (au)

  15. Quantitative Structure-Activity Relationships Predicting the Antioxidant Potency of 17β-Estradiol-Related Polycyclic Phenols to Inhibit Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Katalin Prokai-Tatrai

    2013-01-01

    Full Text Available The antioxidant potency of 17β-estradiol and related polycyclic phenols has been well established. This property is an important component of the complex events by which these types of agents are capable to protect neurons against the detrimental consequences of oxidative stress. In order to relate their molecular structure and properties with their capacity to inhibit lipid peroxidation, a marker of oxidative stress, quantitative structure-activity relationship (QSAR studies were conducted. The inhibition of Fe3+-induced lipid peroxidation in rat brain homogenate, measured through an assay detecting thiobarbituric acid reactive substances for about seventy compounds were correlated with various molecular descriptors. We found that lipophilicity (modeled by the logarithm of the n-octanol/water partition coefficient, logP was the property that influenced most profoundly the potency of these compounds to inhibit lipid peroxidation in the biological medium studied. Additionally, the important contribution of the bond dissociation enthalpy of the phenolic O-H group, a shape index, the solvent-accessible surface area and the energy required to remove an electron from the highest occupied molecular orbital were also confirmed. Several QSAR equations were validated as potentially useful exploratory tools for identifying or designing novel phenolic antioxidants incorporating the structural backbone of 17β-estradiol to assist therapy development against oxidative stress-associated neurodegeneration.

  16. Polymer property modeling using grid technology for design of structured products

    DEFF Research Database (Denmark)

    Chelakara Satyanarayana, Kavitha; Gani, Rafiqul; Abildskov, Jens

    2007-01-01

    Property prediction for a given polymer structure using group contribution models require that the structure can be fully represented by groups with well-defined contributions for that particular property. Frequently this cannot be accomplished. To overcome this limitation a group contribution(+)...

  17. Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina

    Science.gov (United States)

    Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya

    Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.

  18. Relationship between electronic structure and radioprotective activity of some indazoles

    International Nuclear Information System (INIS)

    Sokolov, Yu.A.

    2000-01-01

    The quantum-chemical study of electronic structure of 29 indasoles with complete optimization of geometry and search of quantitative link between the established characteristics and radioprotective activity (RPA) was carried out through the MNDO method with application of multiple linear and nonlinear regression analysis and the basic component method. The equations of correlation relationship between the RPA and electronic characteristics are presented. 10 indasole structures, the forecasted RPA values whereof (survival rate, %) equal 50% and above, are selected. The statistic significance of the obtained correlation equations and their regression coefficients make it possible to conclude, that the established relationships are not accidental and are prospective for forecasting RPA of other close compounds of the indasole series [ru

  19. Synthesis, characterization, and property studies of (La, Ag) FeO{sub 3} (0.0 {<=} x {<=} 0.3) perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Bellakki, Manjunath B.; Kelly, Brandon J. [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Manivannan, V., E-mail: mani@engr.colosate.ed [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2010-01-07

    Applying a solution - based combustion process, Ag-doped LaFeO{sub 3} orthoferrites were synthesized. The samples were characterized by multiple techniques to establish structure - property relationships. Specifically, for structural characterization, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Fourier transmission infrared spectroscopy (FTIR), Thermo-gravimetric analysis (TGA), and X-ray photoelectron microscopy (XPS) were carried out. For properties, squid magnetometer measurements (for magnetic properties), titrations (for chemical analysis), and diffuse reflectance (for optical band gap properties) measurements were carried out to elucidate structure-property relationship.

  20. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    Science.gov (United States)

    Shaharyar, Yaqoot

    first attempt to establish composition-structure-property relationships for these biomaterials.

  1. GirlPOWER! Strengthening Mentoring Relationships through a Structured, Gender-Specific Program

    Science.gov (United States)

    Pryce, Julia M.; Silverthorn, Naida; Sanchez, Bernadette; DuBois, David L.

    2010-01-01

    The authors examine GirlPOWER! an innovative program that uses structure and group-based activities to enhance one-to-one mentoring relationships for young adolescent girls from the perspective of the focus, purpose, and authorship dimensions of mentoring relationships that Karcher and Nakkula described. The discussion draws on several sources of…

  2. Structure-cytotoxicity relationships for dietary flavonoids

    DEFF Research Database (Denmark)

    Breinholt, V.; Dragsted, L.O.

    1998-01-01

    The cytotoxicity of a large series of dietary flavonoids was tested in a non-tumorigenic mouse and two human cancer cell lines, using the neutral red dye exclusion assay. All compounds tested exhibited a concentration-dependent cytotoxic action in the employed cell lines. The relative cytotoxicity...... of the flavonoids, however, Tvas found to vary greatly among the different cell Lines. With a few exceptions, the investigated flavonoids were more cytotoxic to the human cancer cell lines, than the mouse cell line. The differences in cytotoxicity were accounted for in part by differences in cellular uptake...... and metabolic capacity among the different cell types. In 3T3 cells fairly consistent structure-cytotoxicity relationships were found. The most cytotoxic structures tested in 3T3 cells were flavonoids with adjacent 3',4' hydroxy groups on the B-ring, such as luteolin, quercetin, myricetin, fisetin, eriodictyol...

  3. Theoretical investigation of structural and electronic properties of ultrathin nickle nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Deobrat; Sonvane, Y. A. [Department of Applied Physics, S. V. National Institute of Technology, Surat, 395007 (India)

    2016-04-13

    We have performed first principles calculations for structural and electronic properties of ultrathin Nickle nanowire. We have systematically investigated the equilibrium structure and electronic properties of 4-Ni square, 5-Ni pentagonal, 5- Ni Pyramidal, 6- Ni pentagonal, 6-Ni Hexagonal and 7-Ni Hexagonal structure nanowires having different cross-sections with 4-7 Ni atoms per unit cell. The structural properties of the studied Ni nanowires were greatly different from those of face centered cubic bulk Ni. For each wire the equilibrium lattice constant was obtained. In the present result all the nanowires are found to be metallic. The density of charge revealed delocalized metallic bonding for all studied Ni nanowires.

  4. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials

    NARCIS (Netherlands)

    Amin Yavari, S.; Ahmadi, S. M.; Wauthle, R.; Pouran, B.; Schrooten, J.; Weinans, H.; Zadpoor, A. A.

    2015-01-01

    Meta-materials are structures when their small-scale properties are considered, but behave as materials when their homogenized macroscopic properties are studied. There is an intimate relationship between the design of the small-scale structure and the homogenized properties of such materials. In

  5. Structural properties of Cd–Co ferrites

    Indian Academy of Sciences (India)

    36, No. 5, October 2013, pp. 919–922. c Indian Academy of Sciences. Structural properties of Cd–Co ferrites. S P DALAWAIa,∗. , T J SHINDEb, A B GADKARIc and P N VASAMBEKARa. aDepartment of Electronics, Shivaji University, Kolhapur 416 004, India. bDepartment of Physics, KRP Kanya Mahavidyalaya, Islampur ...

  6. Structural stability properties of Friedman cosmology

    International Nuclear Information System (INIS)

    Szydlowski, M.; Heller, M.; Pontificial Academy of Cracow, Krakow; Golda, Z.

    1984-01-01

    A dynamical system with Robertson-Walker symmetries and the equation of the state p = γepsilon, O <= γ <= 1, considered both as a conservative and nonconservative system, is studied with respect to its structural properties. Different cases are shown and analyzed on the phase space (x = Rsup(D), γ = (dx/dt)). (author)

  7. Glass science tutorial: Lecture number-sign 1, Chemistry and properties of oxide glasses. Professor William C. LaCourse, Lecturer

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1994-10-01

    The tutorial covers the following topics: Definitions and terminology; Introduction to glass structure and properties; The glass transition; Structure/property relationships in oxide glasses; Generalized models for predicting structure/properties; Glass surfaces; Chemical durability; and Mechanical properties

  8. Children's representations of multiple family relationships: organizational structure and development in early childhood.

    Science.gov (United States)

    Schermerhorn, Alice C; Cummings, E Mark; Davies, Patrick T

    2008-02-01

    The authors examine mutual family influence processes at the level of children's representations of multiple family relationships, as well as the structure of those representations. From a community sample with 3 waves, each spaced 1 year apart, kindergarten-age children (105 boys and 127 girls) completed a story-stem completion task, tapping representations of multiple family relationships. Structural equation modeling with autoregressive controls indicated that representational processes involving different family relationships were interrelated over time, including links between children's representations of marital conflict and reactions to conflict, between representations of security about marital conflict and parent-child relationships, and between representations of security in father-child and mother-child relationships. Mixed support was found for notions of increasing stability in representations during this developmental period. Results are discussed in terms of notions of transactional family dynamics, including family-wide perspectives on mutual influence processes attributable to multiple family relationships.

  9. Structural and Interfacial Properties of Hyperbranched-Linear Polymer Surfactant.

    Science.gov (United States)

    Qiang, Taotao; Bu, Qiaoqiao; Huang, Zhaofeng; Wang, Xuechuan

    2014-01-01

    With oleic acid grafting modification, a series of hyperbranched-linear polymer surfactants (HLPS) were prepared by hydroxyl-terminated hyperbranched polymer (HBP), which was gained through a step synthesis method using trimethylolpropane and AB 2 monomer. The AB 2 monomers were obtained through the Michael addition reaction of methyl acrylate and diethanol amine. The structures of HLPS were characterised by Fourier transform infrared spectrophotometer and nuclear magnetic resonance (NMR), which indicated that HBP was successfully modified by oleic acid. Furthermore, the properties of surface tension and critical micelle concentration of HLPS solution showed that HLPS can significantly reduce the surface tension of water. The morphology of the HLPS solution was characterised by dynamic light scattering, which revealed that HLPS exhibited a nonmonotonic appearance in particle size at different scattering angles owing to the different replaced linear portions. The relationships of the surface pressure to monolayer area and time were measured using the Langmuir-Blodgett instrument, which showed that the surface tension of monolayer molecules increased with the increasing of hydrophobic groups. In addition, the interface conditions of different replaced HLPS solutions were simulated.

  10. Relationship of material properties to seismic coupling. Part I. Shock wave studies of rock and rock-like materials

    International Nuclear Information System (INIS)

    Larson, D.B.; Rodean, H.C.

    1975-01-01

    Our research seeks an understanding of the relationship of material properties to explosive-energy coupling in various earth media by integrating experimental observations with computer calculational models to obtain a predictive capability. The procedure chosen consists of: first, selecting materials exhibiting interesting values of the properties that are believed to control coupling; second, experimentally determining material behavior under various types of loading and unloading; third, development of constitutive relationships; fourth, adapting these constitutive relationships to computer calculational models; and fifth, verifying the calculational models through comparison with small-scale and field high-strain-rate experiments. The object of this report is to present the shock-wave data and to make a preliminary evaluation of the results in terms of material properties, coupling, and their interactions. (U.S.)

  11. Review of Differences of Steel related Properties between Proposals of European Structural Codes

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    Differences of Steel related Properties between fire chapters of the Proposals of European Structural Codes are indicated for the same physical properties, the right properties are found and it is proposed to use these properties in all codes.......Differences of Steel related Properties between fire chapters of the Proposals of European Structural Codes are indicated for the same physical properties, the right properties are found and it is proposed to use these properties in all codes....

  12. Relation between rheological and structural properties of suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Barcal, M; Sebor, G; Volsicky, Z

    1982-01-01

    The paper discusses results of investigations into separation processes for coal and kaolin suspensions. Effects of potassium chlorides and methanol additives on electrostatic potential of solid particles and on sedimentation rate are analyzed. Investigation results are shown in 5 diagrams. The relation between rheological and structural properties of coal and clay suspensions is investigated. Investigations show that the non-Newtonian behavior of suspensions cannot be attributed exclusively to the electrostatic and mechanical action of the solid phase particles. It is also caused by structure of the liquid phase, particularly on the surface of the solid particles, which depends mostly on hydrogen bonds. The internal structure of the liquid phase influences differential viscosity much more than the electrical surface properties of the solid phase. Bonds between the molecules of water and methanol are much stronger than bonds between water molecules alone. (9 refs.)

  13. Atomistic simulation of the structural and elastic properties of ...

    Indian Academy of Sciences (India)

    experimental data and previous theoretical results, showing no phase transition ... and theoretical [2,9–11] studies have been dedicated to deter- ..... [33] introduced a simple relationship that empirically links the plastic properties of materials with their elastic moduli. The shear modulus G represents the resistance to plastic.

  14. Mechanical Properties for Reliability Analysis of Structures in Glassy Carbon

    CERN Document Server

    Garion, Cédric

    2014-01-01

    Despite its good physical properties, the glassy carbon material is not widely used, especially for structural applications. Nevertheless, its transparency to particles and temperature resistance are interesting properties for the applications to vacuum chambers and components in high energy physics. For example, it has been proposed for fast shutter valve in particle accelerator [1] [2]. The mechanical properties have to be carefully determined to assess the reliability of structures in such a material. In this paper, mechanical tests have been carried out to determine the elastic parameters, the strength and toughness on commercial grades. A statistical approach, based on the Weibull’s distribution, is used to characterize the material both in tension and compression. The results are compared to the literature and the difference of properties for these two loading cases is shown. Based on a Finite Element analysis, a statistical approach is applied to define the reliability of a structural component in gl...

  15. The properties and structure of Sn---Ca---P---O---F glasses

    International Nuclear Information System (INIS)

    Ding, J.Y.; Shih, P.Y.; Yung, S.W.; Hsu, K.L.; Chin, T.S.

    2003-01-01

    Low melting modified calcium stannous fluorophosphate glasses based on a basic composition 40P 2 O 5 -25SnO-30SnF 2 -5CaF 2 (in mol%) with glass transition temperature T g ranging 220-240 deg. C have been prepared. The effect of Al(OH) 3 or SiO 2 addition on the properties of these glasses has also been determined. Aluminum and silicon compounds decrease the dissolution rate in water and thermal expansion coefficient while increase the density, T g and softening temperature. The effect of Al(OH) 3 addition on the increase of chemical durability is better for these glasses, due to the partial crystallization effect in stannous calcium silicofluorophosphate glasses. With an addition of 4 wt.% Al(OH) 3 , the dissolution rate of the glass in 30 deg. C water decreases from 1.0x10 -5 to 1.3x10 -7 g cm -2 min. The structure of Al(OH) 3 added glasses was studied by 27 Al and 31 P MAS NMR and Fourier transform IR (FTIR) spectroscopies to explain the relationship between glass properties and composition. The 27 Al spectra show three different aluminum environments [Al(OP) 6 , Al(OP) 5 and Al(OP) 4 ], and Al(OP) 6 species seem to be predominant in these glasses. The formation of P---O-Al covalent bond and more strongly ionic bonds increase the strength of the glass network in stannous calcium aluminofluorophosphate glasses. FTIR spectra indicate the presence of P--F bond in the short range glass structure

  16. Floor response spectra of buildings with uncertain structural properties

    International Nuclear Information System (INIS)

    Chen, P.C.

    1975-01-01

    All Category I equipment, such as reactors, vessels, and major piping systems of nuclear power plants, is required to withstand earthquake loadings in order to minimize risk of seismic damage. The equipment is designed by using response spectra of the floor on which the equipment is mounted. The floor response spectra are constructed usually from the floor response time histories which are obtained through a deterministic dynamic analysis. This analysis assumes that all structural parameters, such as mass, stiffness, and damping have been calculated precisely, and that the earthquakes are known. However, structural parameters are usually difficult to determine precisely if the structures are massive and/or irregular, such as nuclear containments and its internal structures with foundation soil incorporated into the analysis. Faced with these uncertainties, it has been the practice to broaden the floor response spectra peaks by +-10 percent of the peak frequencies on the basis of conservatism. This approach is based on engineering judgement and does not have an analytical basis to provide a sufficient level of confidence in using these spectra for equipment design. To insure reliable design, it is necessary to know structural response variations due to variations in structural properties. This consideration leads to the treatment of structural properties as random variables and the use of probabilistic methods to predict structural response more accurately. New results on floor response spectra of buildings with uncertain structural properties obtained by determining the probabilistic dynamic response from the deterministic dynamic response and its standard deviation are presented. The resulting probabilistic floor response spectra are compared with those obtained deterministically, and are shown to provide a more reliable method for determining seismic forces

  17. Study of electronic and structural properties of CaS

    International Nuclear Information System (INIS)

    Mirfenderski, M.; Akbarzdeh, H.; Mokhtari, A.

    2003-01-01

    The electronic and structural properties of CaS are calculated using full potential linearized augmented plane wave method within the local density approximation and generalized gradient approximation for the exchange -correlation energy. For both structures, NaCl structure (B1) and CsCl structure (B2), the obtained values for lattice parameters, bulk modulus and its pressure derivative and transition pressure are in reasonable agreement with the experimental values. For electronic properties, the obtained value for band gap is smaller than the experimental value as well as other calculated results based on density functional theory. Engel and Vosko calculated an exchange potential for some atoms within the so-called optimize-potential model and then used the virial relation and constructed a new exchange-correlation functional. We used that functional and obtained reasonable results for band gap. Finally we investigated the possibility for a third phase ( Zinc Blend structure) for this crystal

  18. Density functional theory study of structural and electronic properties of trans and cis structures of thiothixene as a nano-drug.

    Science.gov (United States)

    Noori Tahneh, Akram; Bagheri Novir, Samaneh; Balali, Ebrahim

    2017-11-25

    The geometrical structure, electronic and optical properties, electronic absorption spectra, vibrational frequencies, natural charge distribution, MEP analysis and thermodynamic properties of the trans and cis structures of the drug thiothixene were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) methods with the B3LYP hybrid functional and 6-311 + G(d,p) basis set. The results of the calculations demonstrate that the cis structure of thiothixene has appropriate quantum properties that can act as an active medicine. The relative energies of trans and cis structures of thiothixene shows that the cis structure is more stable than the trans structure, with a small energy difference. TDDFT calculations show that the cis structure of thiothixene has the best absorption properties. The calculated NLO properties show that the NLO properties of the cis structure of thiothixene are higher than the trans structure, and the fact that the chemical hardness of the cis structure is lower than that of the trans structure that indicates that the reactivity and charge transfer of the cis isomer of thiothixene is higher than that of trans thiothixene. The molecular electrostatic potential (MEP) maps of both structures of thiothixene demonstrate that the oxygen atoms of the molecule are appropriate areas for electrophilic reactions. The vibrational frequencies of the two conformations of thiothixene demonstrate that both structures of thiothixene have almost similar modes of vibrations. The calculated thermodynamic parameters show that these quantities increase with enhancing temperature due to the enhancement of molecular vibrational intensities with temperature. Graphical abstract Trans/Cis isomerization of thiothixene drug.

  19. Modeling of microstructure property relationships in titanium-aluminum-vanadium

    Science.gov (United States)

    Tiley, Jaimie Scott

    Fuzzy logic neural network models were developed to predict the room temperature tensile behavior of Ti-6Al-4V. This involved the development of a database relating microstructure to properties. This necessitated establishing heat treatment processes to develop microstructural features, mechanical testing of samples, creating rigorous stereology procedures, developing numerical models to predict mechanical behavior, and determining trends and inter-relationships relating microstructural features to mechanical properties. Microstructural features were developed using a Gleeble(TM) 1500 Thermal-mechanical simulator. Samples were obtained from mill annealed plate material and both alpha + beta forged and beta forged materials. A total of 72 samples were beta solutionized and heat treated using different heating and cooling conditions. Rigorous stereology procedures were developed to characterize the important microstructural features. The features included Widmanstatten alpha lath thickness, volume fraction of total alpha, volume fraction of Widmanstatten alpha, grain boundary alpha thickness, mean edge length, colony scale factor, and prior beta grain size factor. Chemical composition was also determined using standard chemical analysis and microscopy techniques. The samples were tested for yield strength, ultimate tensile strength, and elongation at room temperature. Results from the tests and the characterization were used to develop fuzzy logic neural network models to predict the mechanical behaviors and develop relationships between the microstructural features (using CubiCalc RTC(TM)). Results were compared to standard multi-variable regression models. The fuzzy logic neural network models were able to predict the yield, and ultimate tensile strength, within acceptable error ranges with a limited number of input data samples. The models also predicted the elongation values but with larger errors. Of particular importance, the models identified the importance of

  20. Sandwich Structured Composites for Aeronautics: Methods of Manufacturing Affecting Some Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aneta Krzyżak

    2016-01-01

    Full Text Available Sandwich panels are composites which consist of two thin laminate outer skins and lightweight (e.g., honeycomb thick core structure. Owing to the core structure, such composites are distinguished by stiffness. Despite the thickness of the core, sandwich composites are light and have a relatively high flexural strength. These composites have a spatial structure, which affects good thermal insulator properties. Sandwich panels are used in aeronautics, road vehicles, ships, and civil engineering. The mechanical properties of these composites are directly dependent on the properties of sandwich components and method of manufacturing. The paper presents some aspects of technology and its influence on mechanical properties of sandwich structure polymer composites. The sandwiches described in the paper were made by three different methods: hand lay-up, press method, and autoclave use. The samples of sandwiches were tested for failure caused by impact load. Sandwiches prepared in the same way were used for structural analysis of adhesive layer between panels and core. The results of research showed that the method of manufacturing, more precisely the pressure while forming sandwich panels, influences some mechanical properties of sandwich structured polymer composites such as flexural strength, impact strength, and compressive strength.

  1. Croatian banking sector research: relationship between ownership structure, concentration, owners’ type and bank performance

    Directory of Open Access Journals (Sweden)

    Igor Tomičić

    2012-12-01

    Full Text Available Banks are important financial intermediaries of any national economy, and corporate governance has an important role in banking sector; especially due to processes of the globalization and the internationalization, and also because of the sensitivity of the activities between the interest groups. The objective of this paper is to examine the relationship between ownership structure, concentration, owners’ type and bank performance. The authors made a research of banks' ownership structure using publicly available data. Using statistical tools authors discovered relationships between bank ownership structure and bank performance indicators (average asset, total asset, average equity, profit (loss before taxes, profit (loss after taxes, ROAA, ROAE. Further they discuss the relationships between ownership structure and a number of consequences for the bank performance. The authors discovered significant correlation between bank ownership structure and performance indicators variables that are described in the paper.

  2. Probabilistic considerations on the effects of random soil properties on the stability of ground structures of nuclear power plants

    International Nuclear Information System (INIS)

    Ootori, Yasuki; Ishikawa, Hiroyuki; Takeda, Tomoyoshi

    2004-01-01

    In the JEAG4601-1987 (Japan Electric Association Guide for earthquake resistance design), either the conventional deterministic method or probabilistic method is used for evaluating the stability of ground foundations and surrounding slopes in nuclear power plants. The deterministic method, in which the soil properties of 'mean ± coefficient x standard deviation' is adopted for the calculations, is generally used in the design stage to data. On the other hand, the probabilistic method, in which the soil properties assume to have probabilistic distributions, is stated as a future method. The deterministic method facilitates the evaluation, however, it is necessary to clarify the relationship between the deterministic and probabilistic methods. In order to investigate the relationship, a simple model that can take into account the dynamic effect of structures, and a simplified method for taking the spatial randomness into account are proposed in this study. As a result, it is found that the shear strength of soil is the most important factor for the stability of grounds and slopes, and the probability below the safety factor evaluated with the soil properties of mean - 1.0 x standard deviation' by the deterministic methods of much lower. (author)

  3. The structural heterogeneity and optical properties in chalcogenide glass films

    International Nuclear Information System (INIS)

    Shurgalin, Max; Fuflyigin, Vladimir N; Anderson, Emilia G

    2005-01-01

    The microscopic structure and optical properties of glassy films prepared by vapour phase deposition process from the germanium-arsenic-selenium family of chalcogenide glasses have been studied. A number of different molecular clusters or domains that can exist in the glass structure are found to play a significant role in determining the absorption characteristics and refractive index of the glass films. Modifications of the glass structure can be described by a variation of relative concentrations of the clusters and can be effected by modifications of film chemical composition and deposition conditions. Changes in absorption spectra are directly correlated with variation in relative concentrations of the structural fragments with different electronic bandgap properties. Experimental results suggest structural heterogeneity and support validity of the cluster structural model for the chalcogenide glasses

  4. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells

    KAUST Repository

    Ma, Zaifei

    2014-01-01

    A series of alternating oligothiophene (nT)-isoindigo (I) copolymers (PnTI) were synthesized to investigate the influence of the oligothiophene block length on the photovoltaic (PV) properties of PnTI:PCBM bulk-heterojunction blends. Our study indicates that the number of thiophene rings (n) in the repeating unit alters both polymer crystallinity and polymer-fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force for electron transfer. Instead, blends based on P5TI and P6TI feature large polymer domains, which limit charge generation and thus Jsc. The best PV performance with a power conversion efficiency of up to 6.9% was achieved with devices based on P3TI, where a combination of a favorable morphology and an optimal interfacial energy level offset ensures efficient exciton separation and charge generation. The structure-property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing for the fabrication of efficient solar cells that combine a minimal loss in Voc with a high Jsc. © 2014 The Royal Society of Chemistry.

  5. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    Science.gov (United States)

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  6. Structural and morphological properties of electroceramics for chemical sensors

    International Nuclear Information System (INIS)

    Tor Vergata, Via della Ricerca Scientifica, Roma (Italy). Dipartimento di Scienze e Tecnologie Chimiche)" data-affiliation=" (Universita' di Roma Tor Vergata, Via della Ricerca Scientifica, Roma (Italy). Dipartimento di Scienze e Tecnologie Chimiche)" >Enrico Traversa

    1996-01-01

    Ceramic materials possess a unique structure consisting of grains, grain boundaries, surfaces and pores, which makes them suitable for chemical sensors. The control of the chemical composition and microstructure of electrochemicals is fundamental for controlling their properties. Ceramics with a given composition and microstructure can be produced by controlling the different steps of their processing. The chemical processing of ceramics offer many advantages in terms of control and reproducibility, with respect to the conventional ceramics processing. Results are reported about the chemical processing of perovskite-type oxides for gas sensors and about the novel humidity-sensitive electrical properties of sol-gel processed alkali-doped titania films. The structural and morphological characterization of these materials permits the understanding of the sensitive electrical properties of the ceramics (71 refs.)

  7. A Systematic Review of the Psychometric Properties of the Sexual Relationship Power Scale in HIV/AIDS Research

    Science.gov (United States)

    McMahon, James M.; Volpe, Ellen M.; Klostermann, Keith; Trabold, Nicole; Xue, Ying

    2014-01-01

    The Sexual Relationship Power Scale (SRPS) was developed over a decade ago to address the lack of reliable and valid measures of relationship power in social, behavioral and medical research. The SRPS and its two subscales (relationship control [RC], decision-making dominance [DMD]) have been used extensively in the field of HIV prevention and sexual risk behavior. We performed a systematic review of the psychometric properties of the SRPS and subscales as reported in the HIV/AIDS literature from 2000 to 2012. A total of 54 published articles were identified that reported reliability or construct validity estimates of the scales. Description of the psychometric properties of the SRPS and subscales are reported according to study population, and several cross-population trends were identified. In general, the SRPS and RC subscale exhibited sound psychometric properties across multiple study populations and research settings. By contrast, the DMD subscale had relatively weak psychometric properties, especially when used with specific populations and research settings. Factors that influenced the psychometric properties of the various scales and subscales included the study population, mean age of the sample, number of items retained in the scale, and modifications to the original scales. We conclude with recommendations for (a) the application and use of the SRPS and subscales, (b) reporting of psychometric properties of the scales in the literature, and (c) areas for future research. PMID:25331613

  8. ODS steel fabrication: relationships between process, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Couvrat, M.

    2011-01-01

    Oxide Dispersion Strengthened (ODS) steels are promising candidate materials for generation IV and fusion nuclear energy systems thanks to their excellent thermal stability, high-temperature creep strength and good irradiation resistance. Their superior properties are attributed both to their nano-structured matrix and to a high density of Y-Ti-O nano-scale clusters (NCs). ODS steels are generally prepared by Mechanical Alloying of a pre-alloyed Fe-Cr-W-Ti powder with Y 2 O 3 powder. A fully dense bar or tube is then produced from this nano-structured powder by the mean of hot extrusion. The aim of this work was to determine the main parameters of the process of hot extrusion and to understand the link between the fabrication process, the microstructure and the mechanical properties. The material microstructure was characterized at each step of the process and bars were extruded with varying hot extrusion parameters so as to identify the impact of these parameters. Temperature then appeared to be the main parameter having a great impact on microstructure and mechanical properties of the extruded material. We then proposed a cartography giving the microstructure versus the process parameters. Based on these results, it is possible to control very accurately the obtained material microstructure and mechanical properties setting the extrusion parameters. (author) [fr

  9. Structure Analysis and Properties of Unleaded Brasses

    Directory of Open Access Journals (Sweden)

    Rzadkosz S.

    2015-04-01

    Full Text Available The analysis of brasses regarding their microstructure, mechanical properties and ecological characteristics has been presented. The influence of characteristic alloying elements contained in the brasses and the possibilities of replacing them with other elements have been assessed. The paper contains the results of studies on the influence of chosen additional elements shaping the structure and properties of unleaded alloys based on Cu-Zn system as the matrix. The research aimed at determining the mechanism and the intensity of influence of such additives as tellurium and bismuth. The microstructures were investigated with the help of light microscopy and scanning electron microscopy with X-ray microanalysis (SEM-EDS for determining significant changes of the properties.

  10. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jilili, Jiwuer

    2016-07-13

    Perovskite oxides have the general chemical formula ABO3, where A is a rare-earth or alkali-metal cation and B is a transition metal cation. Perovskite oxides can be formed with a variety of constituent elements and exhibit a wide range of properties ranging from insulators, metals to even superconductors. With the development of growth and characterization techniques, more information on their physical and chemical properties has been revealed, which diversified their technological applications. Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors and spintronics. There is not only the technological importance but also the need to understand the fundamental mechanisms of the unusual magnetic and transport properties that drive enormous attention. Manganites combined with other perovskite oxides are gaining interest due to novel properties especially at the interface, such as interfacial ferromagnetism, exchange bias, interfacial conductivity. Doped manganites exhibit diverse electrical properties as compared to the parent compounds. For instance, hole doped La0.7Sr0.3MnO3 is a ferromagnetic metal, whereas LaMnO3 is an antiferromagnetic insulator. Since manganites are strongly correlated systems, heterojunctions composed of manganites and other perovskite oxides are sunject to complex coupling of the spin, orbit, charge, and lattice degrees of freedom and exhibit unique electronic, magnetic, and transport properties. Electronic reconstructions, O defects, doping, intersite disorder, magnetic proximity, magnetic exchange, and polar catastrophe are some effects to explain these interfacial phenomena. In our work we use first-principles calculations to study the structural, electronic, and magnetic properties of manganite based superlattices. Firstly, we investigate the electronic

  11. First-principles calculation of the structural, electronic, elastic, and optical properties of sulfur-doping ε -GaSe crystal

    International Nuclear Information System (INIS)

    Huang Chang-Bao; Wu Hai-Xin; Ni You-Bao; Wang Zhen-You; Qi Ming; Zhang Chun-Li

    2016-01-01

    The structural, electronic, mechanical properties, and frequency-dependent refractive indexes of GaSe 1–x S x (x = 0, 0.25, and 1) are studied by using the first-principles pseudopotential method within density functional theory. The calculated results demonstrate the relationships between intralayer structure and elastic modulus in GaSe 1–x S x (x = 0, 0.25, and 1). Doping of ε -GaSe with S strengthens the Ga– X bonds and increases its elastic moduli of C 11 and C 66 . Born effective charge analysis provides an explanation for the modification of cleavage properties about the doping of ε -GaSe with S. The calculated results of band gaps suggest that the distance between intralayer atom and substitution of S Se , rather than interlayer force, is a key factor influencing the electronic exciton energy of the layer semiconductor. The calculated refractive indexes indicate that the doping of ε -GaSe with S reduces its refractive index and increases its birefringence. (paper)

  12. Synthesis and structure-activity relationship exploration of some potent anti-cancer phenyl amidrazone derivatives.

    Science.gov (United States)

    Habashneh, Almeqdad Y; El-Abadelah, Mustafa M; Bardaweel, Sanaa K; Taha, Mutasem O

    2017-12-04

    Amidrazones have been reported to have significant anti-tumor properties against several cancer cell lines. The current project aims to profile the structure-anticancer activity relationship of phenyl-amidrazons. Fifteen phenyl-amidrazone-piperazine derivatives were prepared and tested against four cancer cell lines (leukemia, prostate, breast and colon cancers). Six compounds illustrated low micromolar anticancer IC50 values, while the remaining compounds were either inactive or of moderate potencies. All compounds were virtually nontoxic against normal fibroblast cells. Docking into the oncogenic kinase bcr/abl illustrated the critical importance of (i) p-halogen substituent on the ligand's phenyl ring and (ii) the presence of positive ionizable moiety at the ligand's piperazine fragment for anticancer activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  14. Cucurbitane Glycosides Derived from Mogroside IIE: Structure-Taste Relationships, Antioxidant Activity, and Acute Toxicity

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-08-01

    Full Text Available Mogroside IIE is a bitter triterpenoid saponin which is the main component of unripe Luo Han Guo fruit and a precursor of the commercially available sweetener mogroside V. In this study, we developed an enzymatic glycosyl transfer method, by which bitter mogroside IIE could be converted into a sweet triterpenoid saponin mixture. The reactant concentration, temperature, pH and buffer system were studied. New saponins with the α-glucose group were isolated from the resulting mixtures, and the structures of three components of the extract were determined. The structure-taste relationships of these derivatives were also studied together with those of the natural mogrosides. The number and stereoconfiguration of glucose groups present in the mogroside molecules were found to be the main factor to determine the sweet or bitter taste of a compound. The antioxidant and food safety properties were initially evaluated by their radical scavenging ability and via 7 day mice survival tests, respectively. The results showed that the sweet triterpenoid saponin mixture has the same favorable physiological and safety characteristics as the natural mogrosides.

  15. Structure-Function Relationships of Ferroelectric Polymers.

    Science.gov (United States)

    Pavlopoulou, Eleni; Maiz, Jon; Spampinato, Nicoletta; Maglione, Mario; Hadziioannou, Georges

    Poly(vinylidene fluoride), PVDF, and its copolymers with trifluoroethylene, P(VDF-co-TrFE) have been long appreciated for their excellent ferroelectric properties. Although they have been mainly studied in the 80s and 90s, understanding their performance is still lacking. Yet the increasing use of P(VDF-co-TrFE) thin films in organic electronic devices during the last ten years revives the need for apprehending the function of these materials. In this work we investigate the structure of P(VDF-co-TrFE) films and correlate it to their ferroelectric properties. Our results show that ferroelectric performance is solely driven by the fraction of polymer that has been crystallized in the ferroelectric phases of PVDF. The relations between remnant polarization, coercive field and dipole switching rate of P(VDF-co-TrFE) with the ferroelectric crystallinity are demonstrated. The French Research Agency (ANR), the Aquitaine Region, Arkema and STMicroelectronics are kindly acknowledged for financial support.

  16. Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Wen-Li Yuan

    2018-03-01

    Full Text Available The instructive structure-property relationships of ionic liquids (ILs can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN2], [C4m2im][N(CN2], N4442[N(CN2], and N8444[N(CN2] including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs, which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip, the diffusion coefficients (Do, the charge transfer rate constants (ks of Eu(III in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.

  17. Familial identification: population structure and relationship distinguishability.

    Science.gov (United States)

    Rohlfs, Rori V; Fullerton, Stephanie Malia; Weir, Bruce S

    2012-02-01

    With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States.

  18. Familial identification: population structure and relationship distinguishability.

    Directory of Open Access Journals (Sweden)

    Rori V Rohlfs

    2012-02-01

    Full Text Available With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States.

  19. A validation of the Experiences in Close Relationships-Relationship Structures scale (ECR-RS) in adolescents

    DEFF Research Database (Denmark)

    Donbaek, Dagmar Feddern; Elklit, Ask

    2014-01-01

    structures in adults and, hence, moves beyond the traditional focus on romantic relationships. The present article explored the psychometric abilities of the ECR-RS across parental and best friend domains in a sample of 15 to 18-year-olds (n = 1999). Two oblique factors were revealed across domains...

  20. The Structure-Property Relationship of Poly(amide-imide)/Organoclay Nanocomposites

    Science.gov (United States)

    Faghihi, Khalil; Soleimani, Masoumeh; Shabanian, Meisam; Abootalebi, Ashraf Sadateh

    2011-06-01

    Surface treated montmorillonite (MMT) was used to prepare nanocomposites with poly(amide-imide) (PAI) 5 by solution intercalation technique with various percent of organoclay (5-15 mass %). Surface modification of the MMT was performed with Cloisite 20A for ample compatibilization with the PAI matrix. The PAI 5 chains were produced through polycondensation of 4,4-diamino diphenyl sulfone 4 with N-trimellitylimido-L-alanine 3 in a medium consisting of triphenyl phosphite, N-methyl-2-pyrolidone (NMP), pyridine and calcium chloride. The PAI-Nanocomposites morphology and clay dispersion were investigated by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and PAI chains on the properties of PAI-Nanocomposites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements. Thermal stability of nanocomposites increased relative to the neat polyamide with increasing organoclay content but water uptake of these materials decreased as compared to the neat polyamide indicating reduced permeability.

  1. Structural relationships and vasorelaxant activity of monoterpenes

    Directory of Open Access Journals (Sweden)

    Cardoso Lima Tamires

    2012-09-01

    Full Text Available Abstract Background and purpose of the study The hypotensive activity of the essential oil of Mentha x villosa and its main constituent, the monoterpene rotundifolone, have been reported. Therefore, our objective was to evaluate the vasorelaxant effect of monoterpenes found in medicinal plants and establish the structure-activity relationship of rotundifolone and its structural analogues on the rat superior mesenteric artery. Methods Contractions of the vessels were induced with 10 μM of phenylephine (Phe in rings with endothelium. During the tonic phase of the contraction, the monoterpenes (10-8 - 10-3, cumulatively were added to the organ bath. The extent of relaxation was expressed as the percentage of Phe-induced contraction. Results The results from the present study showed that both oxygenated terpenes (rotundifolone, (+-limonene epoxide, pulegone epoxide, carvone epoxide, and (+-pulegone and non-oxygenated terpene ((+-limonene exhibit relaxation activity. The absence of an oxygenated molecular structure was not a critical requirement for the molecule to be bioactive. Also it was found that the position of ketone and epoxide groups in the monoterpene structures influence the vasorelaxant potency and efficacy. Major conclusion The results suggest that the presence of functional groups in the chemical structure of rotundifolone is not essential for its vasorelaxant activity.

  2. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue

    International Nuclear Information System (INIS)

    Delport, Anzelle; Harvey, Brian H.; Petzer, Anél; Petzer, Jacobus P.

    2017-01-01

    The thionine dye, methylene blue (MB), is a potent inhibitor of monoamine oxidase (MAO) A, a property that may, at least in part, mediate its antidepressant effects in humans and animals. The central inhibition of MAO-A by MB has also been linked to serotonin toxicity (ST) which may arise when MB is used in combination with serotonergic drugs. Structural analogues and the principal metabolite of MB, azure B, have also been reported to inhibit the MAO enzymes, with all compounds exhibiting specificity for the MAO-A isoform. To expand on the structure-activity relationships (SARs) of MAO inhibition by MB analogues, the present study investigates the human MAO inhibition properties of five MB analogues: neutral red, Nile blue, new methylene blue, cresyl violet and 1,9-dimethyl methylene blue. Similar to MB, these analogues also are specific MAO-A inhibitors with cresyl violet (IC 50 = 0.0037 μM), Nile blue (IC 50 = 0.0077 μM) and 1,9-dimethyl methylene blue (IC 50 = 0.018 μM) exhibiting higher potency inhibition compared to MB (IC 50 = 0.07 μM). Nile blue also represents a potent MAO-B inhibitor with an IC 50 value of 0.012 μM. From the results it may be concluded that non-thionine MB analogues (e.g. cresyl violet and Nile blue) also may exhibit potent MAO inhibition, a property which should be considered when using these compounds in pharmacological studies. Benzophenoxazines such as cresyl violet and Nile blue are, similar to phenothiazines (e.g. MB), representative of high potency MAO-A inhibitors with a potential risk of ST. - Highlights: • MB analogues, cresyl violet and Nile blue, are high potency MAO-A inhibitors. • Nile blue also represents a potent MAO-B inhibitor. • Potent MAO-A inhibition should alert to potential serotonin toxicity.

  3. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Delport, Anzelle [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Harvey, Brian H. [Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Petzer, Anél [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Petzer, Jacobus P., E-mail: jacques.petzer@nwu.ac.za [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa)

    2017-06-15

    The thionine dye, methylene blue (MB), is a potent inhibitor of monoamine oxidase (MAO) A, a property that may, at least in part, mediate its antidepressant effects in humans and animals. The central inhibition of MAO-A by MB has also been linked to serotonin toxicity (ST) which may arise when MB is used in combination with serotonergic drugs. Structural analogues and the principal metabolite of MB, azure B, have also been reported to inhibit the MAO enzymes, with all compounds exhibiting specificity for the MAO-A isoform. To expand on the structure-activity relationships (SARs) of MAO inhibition by MB analogues, the present study investigates the human MAO inhibition properties of five MB analogues: neutral red, Nile blue, new methylene blue, cresyl violet and 1,9-dimethyl methylene blue. Similar to MB, these analogues also are specific MAO-A inhibitors with cresyl violet (IC{sub 50} = 0.0037 μM), Nile blue (IC{sub 50} = 0.0077 μM) and 1,9-dimethyl methylene blue (IC{sub 50} = 0.018 μM) exhibiting higher potency inhibition compared to MB (IC{sub 50} = 0.07 μM). Nile blue also represents a potent MAO-B inhibitor with an IC{sub 50} value of 0.012 μM. From the results it may be concluded that non-thionine MB analogues (e.g. cresyl violet and Nile blue) also may exhibit potent MAO inhibition, a property which should be considered when using these compounds in pharmacological studies. Benzophenoxazines such as cresyl violet and Nile blue are, similar to phenothiazines (e.g. MB), representative of high potency MAO-A inhibitors with a potential risk of ST. - Highlights: • MB analogues, cresyl violet and Nile blue, are high potency MAO-A inhibitors. • Nile blue also represents a potent MAO-B inhibitor. • Potent MAO-A inhibition should alert to potential serotonin toxicity.

  4. Structure and Electromagnetic Properties of Cellular Glassy Carbon Monoliths with Controlled Cell Size

    Directory of Open Access Journals (Sweden)

    Andrzej Szczurek

    2018-05-01

    Full Text Available Electromagnetic shielding is a topic of high importance for which lightweight materials are highly sought. Porous carbon materials can meet this goal, but their structure needs to be controlled as much as possible. In this work, cellular carbon monoliths of well-defined porosity and cell size were prepared by a template method, using sacrificial paraffin spheres as the porogen and resorcinol-formaldehyde (RF resin as the carbon precursor. Physicochemical studies were carried out for investigating the conversion of RF resin into carbon, and the final cellular monoliths were investigated in terms of elemental composition, total porosity, surface area, micropore volumes, and micro/macropore size distributions. Electrical and electromagnetic (EM properties were investigated in the static regime and in the Ka-band, respectively. Due to the phenolic nature of the resin, the resultant carbon was glasslike, and the special preparation protocol that was used led to cellular materials whose cell size increased with density. The materials were shown to be relevant for EM shielding, and the relationships between those properties and the density/cell size of those cellular monoliths were elucidated.

  5. Structural Characteristics & Dielectric Properties of Tantalum Oxide Doped Barium Titanate Based Materials

    Directory of Open Access Journals (Sweden)

    Rubayyat Mahbub

    2012-11-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mol% Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90% was achieved for 0.5 and 1.0 mol% Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0·5 mol% Ta2O5. Although fine grain size down to 200-300nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000-14000 was found in the temperature range of  55 to 80°C, for 1.0 mol% Ta2O5 doped samples with corresponding shift of Curie point to ~82°C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  6. A Quantitative Property-Property Relationship for the Internal Diffusion Coefficients of Organic Compounds in Solid Materials

    DEFF Research Database (Denmark)

    Huang, Lei; Fantke, Peter; Jolliet, Olivier

    2017-01-01

    of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32......Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number...... consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R2 of 0.93). The internal validations showed...

  7. Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crusts.

    Directory of Open Access Journals (Sweden)

    Guang-Lei Gao

    Full Text Available BACKGROUND: Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. METHODOLOGY/PRINCIPAL FINDINGS: To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust, as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05; and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R(2 = 0.494∼0.955, P<0.01. CONCLUSIONS/SIGNIFICANCE: Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions.

  8. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    Science.gov (United States)

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    2017-07-01

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural diverse polymers which are capable to estimate green algae growth inhibition (EC50). The model (N = 43, R 2  = 0.73, RMSE = 0.28) is a regression-based decision tree using one structural descriptor for each of three polymer classes separated based on charge. The QSAR is applicable to linear homo polymers as well as copolymers and does not require information on the size of the polymer particle or underlying core material. Highly branched polymers, non-nitrogen cationic polymers and polymeric surfactants are not included in the model and thus cannot be evaluated. The model works best for cationic and non-ionic polymers for which cellular adsorption, disruption of the cell wall and photosynthesis inhibition were the mechanisms of action. For anionic polymers, specific properties of the polymer and test characteristics need to be known for detailed assessment. The data and QSAR results for anionic polymers, when combined with molecular dynamics simulations indicated that nutrient depletion is likely the dominant mode of toxicity. Nutrient depletion in turn, is determined by the non-linear interplay between polymer charge density and backbone flexibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The contribution of the strength and structure of extratropical cyclones to observed cloud-aerosol relationships

    OpenAIRE

    Grandey, B. S.; Stier, P.; Grainger, R. G.; Wagner, T. M.

    2013-01-01

    Meteorological conditions may drive relationships between aerosol and cloud-related properties. It is important to account for the meteorological contribution to observed cloud–aerosol relationships in order to improve understanding of aerosol–cloud–climate interactions. A new method of investigating the contribution of meteorological covariation to observed cloud–aerosol relationships is introduced. Other studies have investigated the contribution of local meteorology to cl...

  10. Effect of geometry structure on critical properties

    Science.gov (United States)

    Jiang, Qing; Jiang, Xue-fan

    1997-02-01

    The effective-field renormalization group (EFRG) scheme is utilized to compute critical properties of the transverse Ising model (TIM) in a quantum-spin system. We distinguish differences between lattices of the same coordination number but of different structures and take effects of the first fluctuation correction into account. The improved results for the critical transverse field are obtained for several lattice structures even by considering the smallest possible cluster, which is in good agreement with series results.

  11. Mechanical properties of structural amorphous steels: Intrinsic correlations, conflicts, and optimizing strategies

    International Nuclear Information System (INIS)

    Liu, Z. Q.; Zhang, Z. F.

    2013-01-01

    Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels

  12. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar

    2011-06-01

    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  13. Structural Fluctuations and Thermophysical Properties of Molten II-VI Compounds

    Science.gov (United States)

    Su, Ching-Hua; Zhu, Shen; Li, Chao; Scripa, R.; Lehoczky, Sandra L.; Kim, Y. W.; Baird, J. K.; Lin, B.; Ban, Heng; Benmore, Chris

    2003-01-01

    The objectives of the project are to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs as well as to study the fundamental heterophase fluctuation phenomena in these melts by: 1) conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts (such as viscosity, electrical conductivity, thermal diffusivity and density) as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. It has long been recognized that liquid Te presents a unique case having properties between those of metals and semiconductors. The electrical conductivity for Te melt increases rapidly at melting point, indicating a semiconductor-metal transition. Te melts comprise two features, which are usually considered to be incompatible with each other: covalently bound atoms and metallic-like behavior. Why do Te liquids show metallic behavior? is one of the long-standing issues in liquid metal physics. Since thermophysical properties are very sensitive to the structural variations of a melt, we have conducted extensive thermophysical measurements on Te melt.

  14. Electronic Structure and Optical Properties Of EuIn2P2

    KAUST Repository

    Singh, Nirpendra

    2011-10-25

    The electronic structures and, optical and magneto‐optical properties of a newly found Zintl compound EuIn2P2 have been investigated within the density‐functional theory using the highly precise full‐potential linear‐augmented‐plane‐wave method. Results of detailed investigation of the electronic structure and related properties are reported.

  15. Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory

    Directory of Open Access Journals (Sweden)

    T. K. Das

    2014-01-01

    Full Text Available With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model or global dynamics (e.g., the Ising model have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions.

  16. Relationships for electron-vibrational coupling in conjugated π organic systems

    Science.gov (United States)

    O'Neill, L.; Lynch, P.; McNamara, M.; Byrne, H. J.

    2005-06-01

    A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such structure property relationships in terms of materials design are discussed.

  17. Personality Inventory for DSM-5-Short Form (PID-5-SF): Reliability, Factorial Structure, and Relationship With Functional Impairment in Dual Diagnosis Patients.

    Science.gov (United States)

    Díaz-Batanero, Carmen; Ramírez-López, Juan; Domínguez-Salas, Sara; Fernández-Calderón, Fermín; Lozano, Óscar M

    2017-11-01

    Section III of the Diagnostic and Statistical Manual of Mental Disorders-Fifth edition ( DSM-5) has generated a personality paradigm consisting of 25 personality facets identified in five domains. The developed assessment instrument Personality Inventory for DSM-5 (PID-5) has showed good psychometric properties, but the potential for certain improvements still remain. In this article, a sample of 282 dual diagnosis patients is used to provide evidence of the psychometric properties of the PID-5-Short Form. The mean value of Cronbach's alpha coefficients reached .73 on the facets and .84 for domains and test-retest values ranged between .57 to .83 for facets and .70 to .87 for the domains. Confirmatory factor analyses conducted showed good fit on both models tested: the five correlated factor structure and hierarchical structure of personality traits. The WHODAS 2.0 domains of understanding and communicating, and participating in society, appear to show the strongest relationship with personality facets. In general, the PID-5-Short Form shows adequate psychometric properties for use in dual diagnosis patients.

  18. Computational study of the structure-free radical scavenging relationship of procyanidins.

    Science.gov (United States)

    Mendoza-Wilson, Ana María; Castro-Arredondo, Sergio Ivan; Balandrán-Quintana, René Renato

    2014-10-15

    Procyanidins (PCs) are effective free radical scavengers, however, their antioxidant ability is variable because they have different degrees of polymerisation, are composed by distinct types of subunits and are very susceptible to changes in conformation. In this work the structure-free radical scavenging relationship of monomers, dimers and trimers of PCs was studied through the hydrogen atom transfer (HAT), sequential proton-loss electron-transfer (SPLET) and single electron transfer followed by proton transfer (SET-PT) mechanisms in aqueous phase, employing the Density Functional Theory (DFT) computational method. The structure-free radical scavenging relationship of PCs showed a very similar behaviour in HAT and SET-PT mechanisms, but very different in the SPLET mechanism. The structural factor that showed more effects on the ability of PCs to scavenge free radicals in aqueous phase was the conformation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Molecular characterization of the receptor binding structure-activity relationships of influenza B virus hemagglutinin.

    Science.gov (United States)

    Carbone, V; Kim, H; Huang, J X; Baker, M A; Ong, C; Cooper, M A; Li, J; Rockman, S; Velkov, T

    2013-01-01

    Selectivity of α2,6-linked human-like receptors by B hemagglutinin (HA) is yet to be fully understood. This study integrates binding data with structure-recognition models to examine the impact of regional-specific sequence variations within the receptor-binding pocket on selectivity and structure activity relationships (SAR). The receptor-binding selectivity of influenza B HAs corresponding to either B/Victoria/2/1987 or the B/Yamagata/16/88 lineages was examined using surface plasmon resonance, solid-phase ELISA and gel-capture assays. Our SAR data showed that the presence of asialyl sugar units is the main determinant of receptor preference of α2,6 versus α2,3 receptor binding. Changes to the type of sialyl-glycan linkage present on receptors exhibit only a minor effect upon binding affinity. Homology-based structural models revealed that structural properties within the HA pocket, such as a glyco-conjugate at Asn194 on the 190-helix, sterically interfere with binding to avian receptor analogs by blocking the exit path of the asialyl sugars. Similarly, naturally occurring substitutions in the C-terminal region of the 190-helix and near the N-terminal end of the 140-loop narrows the horizontal borders of the binding pocket, which restricts access of the avian receptor analog LSTa. This study helps bridge the gap between ligand structure and receptor recognition for influenza B HA; and provides a consensus SAR model for the binding of human and avian receptor analogs to influenza B HA.

  20. Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: Syntheses, structures and chain length dependent physical properties

    KAUST Repository

    Shi, Xueliang

    2014-01-01

    Recent studies demonstrated that aromaticity and biradical character play important roles in determining the ground-state structures and physical properties of quinoidal polycyclic hydrocarbons and oligothiophenes, a kind of molecular materials showing promising applications for organic electronics, photonics and spintronics. In this work, we designed and synthesized a new type of hybrid system, the so-called bisindeno-[n]thienoacenes (n = 1-4), by annulation of quinoidal fused α-oligothiophenes with two indene units. The obtained molecules can be regarded as antiaromatic systems containing 4n π electrons with small singlet biradical character (y0). Their ground-state geometry and electronic structures were studied by X-ray crystallographic analysis, NMR, ESR and Raman spectroscopy, assisted by density functional theory calculations. With extension of the chain length, the molecules showed a gradual increase of the singlet biradical character accompanied by decreased antiaromaticity, finally leading to a highly reactive bisindeno[4]thienoacene (S4-TIPS) which has a singlet biradical ground state (y0= 0.202). Their optical and electronic properties in the neutral and charged states were systematically investigated by one-photon absorption, two-photon absorption, transient absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry, which could be correlated to the chain length dependent antiaromaticity and biradical character. Our detailed studies revealed a clear structure-aromaticity-biradical character-physical properties-reactivity relationship, which is of importance for tailored material design in the future. This journal is

  1. Constitutional Isomers of Dendrimer-like Star Polymers: Design, Synthesis and Conformational and Structural Properties; TOPICAL

    International Nuclear Information System (INIS)

    Pople, John A.

    2001-01-01

    The design, synthesis and solution properties of six constitutional isomers of dendrimer-like star polymers is described. Each of the polymers have comparable molecular weights ((approx) 80,000 g/mol), narrow polydispersities ( and lt; 1.19) and an identical number of branching junctures (45) and surface hydroxyl functionalities (48). The only difference in the six isomers is the placement of the branching junctures. The polymers are constructed from high molecular weight poly(e-caprolactone) with branching junctures derived from 2,2'-bis(hydroxylmethyl) propionic acid (bis-MPA) emanating from a central core. The use of various generations of dendritic initiators and dendrons coupled with the ring opening polymerization of e-caprolactones allowed a modular approach to the dendrimer-like star polymer isomers. The most pronounced effects on the physical properties/morphology and hydrodynamic volume was for those polymers in which the branching was distributed throughout the sample in a dendrimer-like fashion. The versatility of this approach has provided the possibility of understanding the relationship between architecture and physical properties. Dynamic light scattering and small angle X-ray scattering techniques were used to determine the hydrodynamic radius Rh and radius of gyration Rg respectively. The relationship between Rg and molecular weight was indicative of a compact star-like structure, and did not show advanced bias towards either the dense core or dense shell models. The radial density distribution of the isomers was therefore modeled according to a many arm star polymer, and good agreement was found with experimental measures of Rh/Rg

  2. Major dimensions in food-web structure properties

    NARCIS (Netherlands)

    Vermaat, J.E.; Dunne, J. A.; Gilbert, A.J.

    2009-01-01

    The covariance among a range of 20 network structural properties of food webs plus net primary productivity was assessed for 14 published food webs using principal components analysis. Three primary components explained 84% of the variability in the data sets, suggesting substantial covariance among

  3. Structural properties of the Chinese air transportation multilayer network

    International Nuclear Information System (INIS)

    Hong, Chen; Zhang, Jun; Cao, Xian-Bin; Du, Wen-Bo

    2016-01-01

    Highlights: • We investigate the structural properties of the Chinese air transportation multilayer network (ATMN). • We compare two main types of layers corresponding to major and low-cost airlines. • It is found that small-world property and rich-club effect of the Chinese ATMN are mainly caused by major airlines. - Abstract: Recently multilayer networks are attracting great attention because the properties of many real-world systems cannot be well understood without considering their different layers. In this paper, we investigate the structural properties of the Chinese air transportation multilayer network (ATMN) by progressively merging layers together, where each commercial airline (company) defines a layer. The results show that the high clustering coefficient, short characteristic path length and large collection of reachable destinations of the Chinese ATMN can only emerge when several layers are merged together. Moreover, we compare two main types of layers corresponding to major and low-cost airlines. It is found that the small-world property and the rich-club effect of the Chinese ATMN are mainly caused by those layers corresponding to major airlines. Our work will highlight a better understanding of the Chinese air transportation network.

  4. Unveiling DNA structural properties of promoter regions of ...

    Indian Academy of Sciences (India)

    Aditya Kumar

    Unveiling DNA structural properties of promoter regions of prokaryotic transcriptome and their role in gene expression. Aditya Kumar. Assistant Professor. Molecular Biology & Biotechnology. Tezpur University. Tezpur – 784028, Assam ...

  5. Definition and properties of ideal amorphous structures

    International Nuclear Information System (INIS)

    Stachurski, Z.H.

    2002-01-01

    Full text: Amorphous structure is usually defined by what it is not (ie, no crystalline peaks in XRS, no bond correlation in NMR), rather than by what it is. The interest in defining the structure of non-crystalline materials is long standing; packing geometry of spheres, molecular structure of glassy SiO 2 , or the structure of atactic polymers are prime examples. The earliest definitions of amorphous structure were in terms of a microcrystallite model of Valenkov, or continuous random network by Zachariasen. The random close packing of spheres of equal size, and an amorphous structure, composed of freely jointed linear chains of hard spheres, has been described mathematically in terms of a linear homogeneous Poisson process. This paper aims to describe some geometrical, kinematic, and topological properties of these two ideal amorphous structures, which belong to the same amorphous class. The geometry of packing is elucidated, and the use of Voronoi tessellation method for measuring the structures is described. The ideal amorphous solid has no symmetry elements; its volume can not be divided into identical unit cells. However, there is a volume element small enough to allow the distinction of its nanoscopic inhomogeneities, and sufficiently large enough to represent, accurately the overall behaviour. We define this volume element, the representative volume element. Suitable boundary conditions must be prescribed for a choice of RVE, and satisfy certain requirements. Topologically, a catchment region on the Born-Oppenheimer potential energy surface over nuclear configuration space, is defined by Mezey and Bader as an energetically stable geometry of the open region of R 3 traversed by all the trajectories which terminate at a local maximum. Two topological properties will be described: (i) the boundaries of the catchment region as a direct geometrical correspondence to the Voronoi polyhedron for a given atom in a given structure, and (ii) the constriction points

  6. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers

    KAUST Repository

    Botiz, Ioan; Stingelin, Natalie

    2014-01-01

    It is increasingly obvious that the molecular conformations and the long-range arrangement that conjugated polymers can adopt under various experimental conditions in bulk, solutions or thin films, significantly impact their resulting optoelectronic properties. As a consequence, the functionalities and efficiencies of resulting organic devices, such as field-effect transistors, light-emitting diodes, or photovoltaic cells, also dramatically change due to the close structure/property relationship. A range of structure/optoelectronic properties relationships have been investigated over the last few years using various experimental and theoretical methods, and, further, interesting correlations are continuously revealed by the scientific community. In this review, we discuss the latest findings related to the structure/optoelectronic properties interrelationships that exist in organic devices fabricated with conjugated polymers in terms of charge mobility, absorption, photoluminescence, as well as photovoltaic properties. © 2014 by the authors.

  7. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers

    Directory of Open Access Journals (Sweden)

    Ioan Botiz

    2014-03-01

    Full Text Available It is increasingly obvious that the molecular conformations and the long-range arrangement that conjugated polymers can adopt under various experimental conditions in bulk, solutions or thin films, significantly impact their resulting optoelectronic properties. As a consequence, the functionalities and efficiencies of resulting organic devices, such as field-effect transistors, light-emitting diodes, or photovoltaic cells, also dramatically change due to the close structure/property relationship. A range of structure/optoelectronic properties relationships have been investigated over the last few years using various experimental and theoretical methods, and, further, interesting correlations are continuously revealed by the scientific community. In this review, we discuss the latest findings related to the structure/optoelectronic properties interrelationships that exist in organic devices fabricated with conjugated polymers in terms of charge mobility, absorption, photoluminescence, as well as photovoltaic properties.

  8. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers

    KAUST Repository

    Botiz, Ioan

    2014-03-19

    It is increasingly obvious that the molecular conformations and the long-range arrangement that conjugated polymers can adopt under various experimental conditions in bulk, solutions or thin films, significantly impact their resulting optoelectronic properties. As a consequence, the functionalities and efficiencies of resulting organic devices, such as field-effect transistors, light-emitting diodes, or photovoltaic cells, also dramatically change due to the close structure/property relationship. A range of structure/optoelectronic properties relationships have been investigated over the last few years using various experimental and theoretical methods, and, further, interesting correlations are continuously revealed by the scientific community. In this review, we discuss the latest findings related to the structure/optoelectronic properties interrelationships that exist in organic devices fabricated with conjugated polymers in terms of charge mobility, absorption, photoluminescence, as well as photovoltaic properties. © 2014 by the authors.

  9. Comparative study of the physiochemical and structural properties of ...

    African Journals Online (AJOL)

    A comparative analysis of some physiochemical and structural parameters of brown (mature) and green (immature) coconut fibre as adsorbents was studied. The physiochemical and structural properties evaluated were surface area, moisture content, pH, bulk density, pore volume, porosity, ash content, tortuocity and metal ...

  10. Impact velocity vs. target hardness relationships for equivalent response of cask structures

    International Nuclear Information System (INIS)

    Chen, T.F.; Chen, J.C.; Witte, M.C.; Fischer, L.E.

    1993-01-01

    In this paper, impact velocity vs. target hardness relationships for cask structures are reviewed. The relationships are based on equivalent cask responses in terms of equal deceleration or similar cask damages. By examining several past cask or container tests as well as some analytical results, some conclusions can be drawn about the relationship between target hardness and equivalent impact velocities. This relationship clearly shows that the cask response to impact is cask-dependent and that the rigid sphere impact model results in an unconservative estimate of equivalent velocity

  11. On some fundamental properties of structural topology optimization problems

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2010-01-01

    We study some fundamental mathematical properties of discretized structural topology optimization problems. Either compliance is minimized with an upper bound on the volume of the structure, or volume is minimized with an upper bound on the compliance. The design variables are either continuous o....... The presented examples can be used as teaching material in graduate and undergraduate courses on structural topology optimization....

  12. Structure-function relationship of tear film lipid layer: A contemporary perspective.

    Science.gov (United States)

    Georgiev, Georgi As; Eftimov, Petar; Yokoi, Norihiko

    2017-10-01

    Tear film lipid layer (TFLL) stabilizes the air/tear surface of the human eye. Meibomian gland dysfunction (MGD) resulting in quantitative and qualitative modifications of TFLL major (>93%) component, the oily secretion of meibomian lipids (MGS), is the world leading cause of dry eye syndrome (DES) with up to 86% of all DES patients showing signs of MGD. Caused by intrinsic factors (aging, ocular and general diseases) and by extrinsic everyday influences like contact lens wear and extended periods in front of a computer screen, DES (resulting in TF instability, visual disturbances and chronic ocular discomfort) is the major ophthalmic public health disease of the present time affecting the quality of life of 10-30% of the human population worldwide. Therefore there is a pressing need to summarize the present knowledge, contradictions and open questions to be resolved in the field of TFLL composition/structure/functions relationship. The following major aspects are covered by the review: (i) Do we have a reliable mimic for TFLL: MGS vs contact lens lipid extracts (CLLE) vs lipid extracts from whole tears. Does TFLL truly consist of lipids only or it is important to keep in mind the TF proteins as well?; (ii) Structural properties of TFLL and of its mimics in health and disease in vitro and in vivo. How the TFLL uniformity and thickness ensures the functionality of the lipid layer (barrier to evaporation, surface properties, TF stability etc.); (iii) What are the main functions of the TFLL? In this aspect an effort is done to emphasize that there is no single main function of TFLL but instead it simultaneously fulfills plethora of functions: suppresses the evaporation (alone or probably in cooperation with other TF constituents) of the aqueous tears; stabilizes (due to its surface properties) the air/tear surface at eye opening and during the interblink interval; and even acts as a first line of defense against bacterial invasion due to its detergency action on the

  13. Mechanical properties along interfaces of bonded structures in fusion reactors

    International Nuclear Information System (INIS)

    Hassan, M.H.; Kulcinski, G.L.

    1993-01-01

    Proper assessment of the mechanical properties along interfaces of bonded structures currently used in many fusion reactor designs is essential to compare the different fabrication techniques. A Mechanical Properties Microprobe (MPM) was used to measure hardness and Young's modules along the interfaces of Be/Cu bonded structure. The MPM was able to distinguish different fabrication techniques by a direct measurement of the hardness, Young's modules, and H/E 2 which reflects the ability of deformation of the interfacial region

  14. Exploring high-pressure FeB{sub 2}: Structural and electronic properties predictions

    Energy Technology Data Exchange (ETDEWEB)

    Harran, Ismail [School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, 610031 (China); Al Fashir University (Sudan); Wang, Hongyan [School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, 610031 (China); Chen, Yuanzheng, E-mail: cyz@calypso.org.cn [School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, 610031 (China); Jia, Mingzhen [School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, 610031 (China); Wu, Nannan [School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, 014010 (China)

    2016-09-05

    The high pressure (HP) structural phase of FeB{sub 2} compound is investigated by using first-principles crystal structure prediction based on the CALYPSO technique. A thermodynamically stable phase of FeB{sub 2} with space group Imma is predicted at pressure above 225 GPa, which is characterized by a layered orthorhombic structure containing puckered graphite-like boron layers. Its electronic and mechanical properties are identified and analyzed. The feature of band structures favors the occurrence of superconductivity, whereas, the calculated Pugh's ratio reveals that the HP Imma structure exhibits ductile mechanical property. - Highlights: • The high pressure structural phase of FeB{sub 2} compound is firstly investigated by the CALYPSO technique. • A thermodynamically stable Imma phase of FeB{sub 2} is predicted at pressure above 225 GPa. • The Imma structure is characterized by a 2D boron network containing puckered graphite-like boron layers. • The band feature of Imma structure favors the occurrence of superconductivity. • The calculated Pugh's ratio suggests that the Imma structure exhibits ductile mechanical property.

  15. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality.

    Science.gov (United States)

    de la Horra, Ana E; Steffolani, María Eugenia; Barrera, Gabriela N; Ribotta, Pablo D; León, Alberto E

    2015-12-01

    The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.

  16. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality

    Directory of Open Access Journals (Sweden)

    Alberto E. León

    2015-01-01

    Full Text Available The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.

  17. First-principles study of structural & electronic properties of pyramidal silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Jariwala, Pinank; Thakor, P. B. [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Singh, Deobrat; Sonvane, Y. A., E-mail: yasonvane@gmail.com [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Gupta, Sanjeev K. [Department of Physics, St. Xavier’s College, Ahmedabad 38 0009 (India)

    2016-05-23

    We have investigated the stable structural and electronic properties of Silicon (Si) nanowires having different cross-sections with 5-7 Si atoms per unit cell. These properties of the studied Si nanowires were significantly changed from those of diamond bulk Si structure. The binding energy increases as increasing atoms number per unit cell in different SiNWs structures. All the nanowires structures are behave like metallic rather than semiconductor in bulk systems. In general, the number of conduction channels increases when the nanowire becomes thicker. The density of charge revealed delocalized metallic bonding for all studied Si nanowires.

  18. Structural and tunneling properties of Si nanowires

    KAUST Repository

    Montes Muñoz, Enrique

    2013-12-06

    We investigate the electronic structure and electron transport properties of Si nanowires attached to Au electrodes from first principles using density functional theory and the nonequilibrium Green\\'s function method. We systematically study the dependence of the transport properties on the diameter of the nanowires, on the growth direction, and on the length. At the equilibrium Au-nanowire distance we find strong electronic coupling between the electrodes and nanowires, which results in a low contact resistance. With increasing nanowire length we study the transition from metallic to tunneling conductance for small applied bias. For the tunneling regime we investigate the decay of the conductance with the nanowire length and rationalize the results using the complex band structure of the pristine nanowires. The conductance is found to depend strongly on the growth direction, with nanowires grown along the ⟨110⟩ direction showing the smallest decay with length and the largest conductance and current.

  19. Structural and tunneling properties of Si nanowires

    KAUST Repository

    Montes Muñ oz, Enrique; Gkionis, Konstantinos; Rungger, Ivan; Sanvito, Stefano; Schwingenschlö gl, Udo

    2013-01-01

    We investigate the electronic structure and electron transport properties of Si nanowires attached to Au electrodes from first principles using density functional theory and the nonequilibrium Green's function method. We systematically study the dependence of the transport properties on the diameter of the nanowires, on the growth direction, and on the length. At the equilibrium Au-nanowire distance we find strong electronic coupling between the electrodes and nanowires, which results in a low contact resistance. With increasing nanowire length we study the transition from metallic to tunneling conductance for small applied bias. For the tunneling regime we investigate the decay of the conductance with the nanowire length and rationalize the results using the complex band structure of the pristine nanowires. The conductance is found to depend strongly on the growth direction, with nanowires grown along the ⟨110⟩ direction showing the smallest decay with length and the largest conductance and current.

  20. Composition-Based Prediction of Temperature-Dependent Thermophysical Food Properties: Reevaluating Component Groups and Prediction Models.

    Science.gov (United States)

    Phinney, David Martin; Frelka, John C; Heldman, Dennis Ray

    2017-01-01

    Prediction of temperature-dependent thermophysical properties (thermal conductivity, density, specific heat, and thermal diffusivity) is an important component of process design for food manufacturing. Current models for prediction of thermophysical properties of foods are based on the composition, specifically, fat, carbohydrate, protein, fiber, water, and ash contents, all of which change with temperature. The objectives of this investigation were to reevaluate and improve the prediction expressions for thermophysical properties. Previously published data were analyzed over the temperature range from 10 to 150 °C. These data were analyzed to create a series of relationships between the thermophysical properties and temperature for each food component, as well as to identify the dependence of the thermophysical properties on more specific structural properties of the fats, carbohydrates, and proteins. Results from this investigation revealed that the relationships between the thermophysical properties of the major constituents of foods and temperature can be statistically described by linear expressions, in contrast to the current polynomial models. Links between variability in thermophysical properties and structural properties were observed. Relationships for several thermophysical properties based on more specific constituents have been identified. Distinctions between simple sugars (fructose, glucose, and lactose) and complex carbohydrates (starch, pectin, and cellulose) have been proposed. The relationships between the thermophysical properties and proteins revealed a potential correlation with the molecular weight of the protein. The significance of relating variability in constituent thermophysical properties with structural properties--such as molecular mass--could significantly improve composition-based prediction models and, consequently, the effectiveness of process design. © 2016 Institute of Food Technologists®.

  1. Item response theory and structural equation modelling for ordinal data: Describing the relationship between KIDSCREEN and Life-H.

    Science.gov (United States)

    Titman, Andrew C; Lancaster, Gillian A; Colver, Allan F

    2016-10-01

    Both item response theory and structural equation models are useful in the analysis of ordered categorical responses from health assessment questionnaires. We highlight the advantages and disadvantages of the item response theory and structural equation modelling approaches to modelling ordinal data, from within a community health setting. Using data from the SPARCLE project focussing on children with cerebral palsy, this paper investigates the relationship between two ordinal rating scales, the KIDSCREEN, which measures quality-of-life, and Life-H, which measures participation. Practical issues relating to fitting models, such as non-positive definite observed or fitted correlation matrices, and approaches to assessing model fit are discussed. item response theory models allow properties such as the conditional independence of particular domains of a measurement instrument to be assessed. When, as with the SPARCLE data, the latent traits are multidimensional, structural equation models generally provide a much more convenient modelling framework. © The Author(s) 2013.

  2. Structure and magnetic properties of Ni-poly(p-xylylene) nanocomposites synthesized by vapor deposition polymerization

    Science.gov (United States)

    Ozerin, Sergei A.; Vdovichenko, Artem Yu.; Streltsov, Dmitry R.; Davydov, Alexander B.; Orekhov, Anton S.; Vasiliev, Alexander L.; Zubavichus, Yan V.; Grigoriev, Evgenii I.; Zavyalov, Sergei A.; Oveshnikov, Leonid N.; Aronzon, Boris A.; Chvalun, Sergei N.

    2017-12-01

    The relationship between structure, electrical and magnetic properties of thin poly(p-xylylene) - nickel nanocomposite films with Ni concentrations from 5 to 30 vol% was studied. It was found that metal concentration strongly affects size and oxidation state of the nanoparticles and composites morphology. At nickel concentration below 5 vol% the nanoparticles are oxidized to NiO and homogeneously distributed within fine-grained polymer matrix. An increase of Ni concentration up to 10 vol% results in the development of coarse-grained morphology with preferable localization of the nanoparticles at the boundaries of polymeric grains. And finally, in the composite films with nickel concentration above 20 vol%, the fine-grained morphology is observed again, but the nanoparticles are mainly metallic. Effect of the filler content on electrical and magnetic properties of the nanocomposites was elucidated showing that they are determined by percolation phenomenon with the threshold value of about 10 vol%. The well-pronounced magnetic hysteresis as well as ferromagnetic ordering were observed at Ni content above the percolation threshold. The diagrams of magnetic properties of these composites as a function of composition and temperature were elaborated. It was demonstrated that film annealing can be used to control magnetic properties of the composites and strongly enhance magnetoresistance.

  3. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level

    Science.gov (United States)

    Usov, Ivan; Nyström, Gustav; Adamcik, Jozef; Handschin, Stephan; Schütz, Christina; Fall, Andreas; Bergström, Lennart; Mezzenga, Raffaele

    2015-01-01

    Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement. PMID:26108282

  4. Rare Earth Borohydrides—Crystal Structures and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Christoph Frommen

    2017-12-01

    Full Text Available Rare earth (RE borohydrides have received considerable attention during the past ten years as possible hydrogen storage materials due to their relatively high gravimetric hydrogen density. This review illustrates the rich chemistry, structural diversity and thermal properties of borohydrides containing RE elements. In addition, it highlights the decomposition and rehydrogenation properties of composites containing RE-borohydrides, light-weight metal borohydrides such as LiBH4 and additives such as LiH.

  5. The Humor Styles Questionnaire in Italy: Psychometric Properties and Relationships With Psychological Well-Being

    Directory of Open Access Journals (Sweden)

    Saulo Sirigatti

    2014-08-01

    Full Text Available This study investigated the psychometric properties of the Humor Styles Questionnaire (HSQ and the relation between humor and psychological well-being within the context of Italy. A total of 293 (178 females, 115 males Italian high school and undergraduate university students – whose ages ranged from 14 to 25 years – completed the Italian versions of the HSQ and the Ryff’s Psychological Well-Being scales (RPWB. The HSQ scale reliabilities were generally acceptable, and intercorrelations among the scales were rather low; the confirmatory factor analysis supported the four-factor structure. Males reported significantly more use of Aggressive humor than did females; no differences were found between adolescents and young adults in the use of humor styles. Affiliative and Self-enhancing humor styles were positively associated with the six dimensions of the RPWB, whereas Self-defeating humor was negatively correlated with the RPWB scales. SEM analysis showed a significant and positive relationship between humor as measured by the HSQ and psychological well-being as assessed by the RPWB. Overall, the findings supported the theoretical structure and usefulness of the HSQ in an Italian context and the differential role of humor components in the various dimensions of psychological well-being.

  6. 3-alkyl fentanyl analogues: Structure-activity-relationship study

    OpenAIRE

    Vučković, Sonja; Savić-Vujović, Katarina; Srebro, Dragana; Ivanović, Milovan; Došen-Mićović, Ljiljana; Stojanović, Radan; Prostran, Milica

    2012-01-01

    Introduction. Fentanyl belongs to 4-anilidopiperidine class of synthetic opioid analgesics. It is characterized by high potency, rapid onset and short duration of action. A large number of fentanyl analogues have been synthesized so far, both to establish the structure-activity-relationship (SAR) and to find novel, clinically useful analgesic drugs. Objective. In this study, newly synthesized 3-alkyl fentanyl analogues were examined for analgesic activity and compared with fentanyl. Methods. ...

  7. A materials perspective of Martyniaceae fruits: Exploring structural and micromechanical properties.

    Science.gov (United States)

    Horbens, Melanie; Eder, Michaela; Neinhuis, Christoph

    2015-12-01

    Several species of the plant family Martyniaceae are characterised by unique lignified capsules with hook-shaped extensions that interlock with hooves and ankles of large mammals to disperse the seeds. The arrangement of fruit endocarp fibre tissues is exceptional and intriguing among plants. Structure-function-relationships of these slender, curved, but mechanically highly stressed fruit extensions are of particular interest that may inspire advanced biomimetic composite materials. In the present study, we analyse mechanical properties and fracture behaviour of the hook-shaped fruit extensions under different load conditions. The results are correlated with calculated stress distributions, the specific cell wall structure, and chemical composition, providing a detailed interpretation of the complex fruit tissue microstructure. At the cell wall level, both a large microfibril angle and greater strain rates resulted in Young's moduli of 4-9 GPa, leading to structural plasticity. Longitudinally arranged fibre bundles contribute to a great tensile strength. At the tissue level, transversely oriented fibres absorb radial stresses upon bending, whereas cells encompass and pervade longitudinal fibre bundles, thus, stabilise them against buckling. During bending and torsion, microcracks between axial fibre bundles are probably spanned analogous to a circular anchor. Our study fathoms a highly specialized plant structure, substantiating former assumptions about epizoochory as dispersal mode. While the increased flexibility allows for proper attachment of fruits during dynamical locomotion, the high strength and stability prevent a premature failure due to heavy loads exerted by the animal. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Structural stability, electronic structure and mechanical properties of actinide carbides AnC (An = U, Np)

    International Nuclear Information System (INIS)

    Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.

  9. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jiwuer, Jilili

    2016-01-01

    Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors

  10. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  11. Structure-property relationships in NOx sensor materials composed of arrays of vanadium oxide nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Putrevu, Naga Ravikanth; Darling, Seth B.; Segre, Carlo U.; Ganegoda, Hasitha; Khan, M. Ishaque

    2017-10-04

    The mixed-valent vanadium oxide based three-dimensional framework structure species [Cd3(H2O)12V16IVV2VO36(OH)6(AO4)]∙24H2O, (A=V,S) (Cd3(VO)o) represents a rare example of an interesting sensor material which exhibits NOx {NO+NO2} semiconducting gas sensor properties under ambient conditions. The electrical resistance of the sensor material Cd3(VO)o decreases in air. Combined characterization studies revealed that the building block, {V18O42(AO4)} cluster, of 3-D framework undergoes oxidation and remains intact for at least 2 months. The decrease in resistance is attributable to the reactivity of molecular oxygen towards vanadium which results in an increase in the oxidation state as well as the coordination number of vanadium center and decrease in band gap of Cd3(VO)o. Based on these results we propose that the changes in semiconducting properties of Cd3(VO)o under ambient conditions are due to the greater overlap between the O 2p and V 3d orbitals occurring during the oxidation.

  12. Examining Relationships among Enabling School Structures, Academic Optimism and Organizational Citizenship Behaviors

    Science.gov (United States)

    Messick, Penelope Pope

    2012-01-01

    This study examined the relationships among enabling school structures, academic optimism, and organizational citizenship behaviors. Additionally, it sought to determine if academic optimism served as a mediator between enabling school structures and organizational citizenship behaviors. Three existing survey instruments, previously tested for…

  13. How Are Property Investment Returns Determined? : Estimating the Micro-Structure of Asset Prices, Property Income, and Discount Rates

    OpenAIRE

    Shimizu, Chihiro

    2014-01-01

    How exactly should one estimate property investment returns? Investors in property aim to maximize capital gains from price increases and income generated by the property. How are the returns on investment in property determined based on its characteristics, and what kind of market characteristics does it have? Focusing on the Tokyo commercial property market and residential property market, the purpose of this paper was to break down and measure the micro-structure of property investment ret...

  14. Quasicrystals Structure and Physical Properties

    CERN Document Server

    Trebin, Hans-Rainer

    2003-01-01

    A comprehensive and up-to-date review, covering the broad range of this outstanding class of materials among intermetallic alloys. Starting with metallurgy and characterization, the authors continue on to structure and mathematical modeling. They use this basis to move on to dealing with electronic, magnetic, thermal, dynamic and mechanical properties, before finally providing an insight into surfaces and thin films. The authors belong to a research program on quasicrystals, sponsored by the German Research Society and managed by Hans-Rainer Trebin, such that most of the latest results are pre

  15. Structure, health benefits, antioxidant property and processing and ...

    African Journals Online (AJOL)

    Structure, health benefits, antioxidant property and processing and storage of carotenoids. ... It is sensitive to heat, light and oxygen. Enzymatic ... Thermal treatment and freezing increases the extractability of b-carotene from the food matrices.

  16. Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution

    Energy Technology Data Exchange (ETDEWEB)

    Gadaud, Pascal; Caccuri, Vincenzo; Bertheau, Denis [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France); Carr, James [HMXIF, Materials Science Centre, The University of Manchester, M13 9PL (United Kingdom); Milhet, Xavier, E-mail: xavier.milhet@ensma.fr [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France)

    2016-07-04

    Silver pastes sintering is a potential candidate for die bonding in power electronic modules. The joints, obtained by sintering, exhibit a significant pore fraction thus reducing the density of the material compared to bulk silver. This was shown to alter drastically the mechanical properties (Young's modulus, yield strength and ultimate tensile stress) at room temperature. While careful analysis of the microstructure has been reported for the as-sintered material, little is known about its quantitative evolution (pores and grains) during thermal ageing. To address this issue, sintered bulk specimens and sintered joints were aged either under isothermal conditions (125 °C up to 1500 h) or under thermal cycling (between −40 °C/+125 °C with 30 min dwell time at each temperature for 2400 cycles). Under these conditions, it is shown that the density of the material does not change but the sub-micron porosity evolves towards a broader size distribution, consistent with Oswald ripening. It is also shown that only the step at 125 °C during the non-isothermal ageing is responsible for the microstructure evolution: isothermal ageing at high temperature can be regarded as a useful tool to perform accelerated ageing tests. Tensile properties are investigated as both a function of ageing time and a function of density. It is shown that the elastic properties do not evolve with the ageing time unlike the plastic properties. This is discussed as a function of the material microstructure evolution.

  17. Stochasticity in materials structure, properties, and processing—A review

    Science.gov (United States)

    Hull, Robert; Keblinski, Pawel; Lewis, Dan; Maniatty, Antoinette; Meunier, Vincent; Oberai, Assad A.; Picu, Catalin R.; Samuel, Johnson; Shephard, Mark S.; Tomozawa, Minoru; Vashishth, Deepak; Zhang, Shengbai

    2018-03-01

    We review the concept of stochasticity—i.e., unpredictable or uncontrolled fluctuations in structure, chemistry, or kinetic processes—in materials. We first define six broad classes of stochasticity: equilibrium (thermodynamic) fluctuations; structural/compositional fluctuations; kinetic fluctuations; frustration and degeneracy; imprecision in measurements; and stochasticity in modeling and simulation. In this review, we focus on the first four classes that are inherent to materials phenomena. We next develop a mathematical framework for describing materials stochasticity and then show how it can be broadly applied to these four materials-related stochastic classes. In subsequent sections, we describe structural and compositional fluctuations at small length scales that modify material properties and behavior at larger length scales; systems with engineered fluctuations, concentrating primarily on composite materials; systems in which stochasticity is developed through nucleation and kinetic phenomena; and configurations in which constraints in a given system prevent it from attaining its ground state and cause it to attain several, equally likely (degenerate) states. We next describe how stochasticity in these processes results in variations in physical properties and how these variations are then accentuated by—or amplify—stochasticity in processing and manufacturing procedures. In summary, the origins of materials stochasticity, the degree to which it can be predicted and/or controlled, and the possibility of using stochastic descriptions of materials structure, properties, and processing as a new degree of freedom in materials design are described.

  18. Hydrogen storage in metal-organic frameworks: An investigation of structure-property relationships

    Science.gov (United States)

    Rowsell, Jesse

    Metal-organic frameworks (MOFs) have been identified as candidate hydrogen storage materials due to their ability to physisorb large quantities of small molecules. Thirteen compounds (IRMOF-1, -2, -3, -6, -8, -9, -11, -13, -18, -20, MOF-74, MOF-177 and HKUST-1) have been prepared and fully characterized for the evaluation of their dihydrogen (H2) adsorption properties. All compounds display approximately type I isotherms with no hysteresis at 77 K up to 1 atm. The amount adsorbed ranges from 0.89 to 2.54 wt%; however, saturation is not achieved under these conditions. The influences of link functionalization, catenation and topology are examined for the eleven MOFs composed of Zn4O(O2C-)6 clusters. Enhanced H2 uptake by catenated compounds is rationalized by increased overlap of the surface potentials within their narrower pores. This is corroborated by the larger isosteric heat of adsorption of IRMOF-11 compared to IRMOF-1. Inelastic neutron scattering spectroscopic analysis of four Zn4O-based materials (IRMOF-1, -8, -11, and MOF-74) under a range of H2 loading suggests the presence of multiple localized adsorption sites on both the inorganic and organic moieties. To determine the structural details of the adsorption sites, variable temperature single crystal X-ray diffraction was used to analyze adsorbed argon and dinitrogen molecules in IRMOF-1. The principle binding site was found to be the same for both adsorbates and is located on faces of the octahedral Zn4O(O2C-)6 clusters with close contacts to three carboxylate groups. A total of eight symmetry-independent adsorption sites were identified for argon at 30 K. Similar sites were observed for dinitrogen, suggesting that they are good model adsorbates for the behaviour of dihydrogen. Two additional materials composed of inorganic clusters with coordinatively unsaturated metal sites (MOF-74, HKUST-1) were examined and their increased capacities and isosteric heats of adsorption provide further evidence that the

  19. Structural and optical properties of Na-doped ZnO films

    Science.gov (United States)

    Akcan, D.; Gungor, A.; Arda, L.

    2018-06-01

    Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.

  20. Relationship between Structural Characteristics of Activated Carbons and Their Concentrating Efficiency with Respect to Nitroorganics.

    Science.gov (United States)

    Leboda, R.; Gun'ko, V. M.; Tomaszewski, W.; Trznadel, B. J.

    2001-07-15

    The relationships between structural properties of activated microporous, micro-mesoporous, mesoporous, and graphitized carbons determined on the basis of nitrogen adsorption at 77.4 K and the efficiency of concentrating (solid-phase extraction (SPE) technique) several nitroorganic compounds from polar solvents were investigated. Microporosity, mesoporosity, fractality, and other characteristics of adsorbents were analyzed to evaluate the dependence of the effectiveness of the SPE technique with respect to nitrate esters, cyclic nitroamines, and nitroaromatics on the origin and texture of carbons. The values of the free energy of solvation and dipole moment of nitroorganic compounds in polar liquids computed with the SM5.42/PM3 method with consideration of geometry relaxation in solution were utilized to elucidate features of their concentration of carbon adsorbents. Copyright 2001 Academic Press.

  1. New Insights into the Relationship Between Network Structure and Strain Induced Crystallization in Unvolcanized Natural Rubber by Synchrotron X-ray Diffraction

    International Nuclear Information System (INIS)

    Toki, S.; Hsiao, B.; Amnuaypornsri, S.; Sakdapipanich, J.

    2009-01-01

    The relationship between the network structure and strain-induced crystallization in un-vulcanized as well as vulcanized natural rubbers (NR) and synthetic poly-isoprene rubbers (IR) was investigated via synchrotron wide-angle X-ray diffraction (WAXD) technique. It was found that the presence of a naturally occurring network structure formed by natural components in un-vulcanized NR significantly facilitates strain-induced crystallization and enhances modulus and tensile strength. The stress-strain relation in vulcanized NR is due to the combined effect of chemical and naturally occurring networks. The weakness of naturally occurring network against stress and temperature suggests that vulcanized NR has additional relaxation mechanism due to naturally occurring network. The superior mechanical properties in NR compared with IR are mainly due to the existence of naturally occurring network structure.

  2. Structural and functional properties of alkali-treated high-amylose rice starch.

    Science.gov (United States)

    Cai, Jinwen; Yang, Yang; Man, Jianmin; Huang, Jun; Wang, Zhifeng; Zhang, Changquan; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2014-02-15

    Native starches were isolated from mature grains of high-amylose transgenic rice TRS and its wild-type rice TQ and treated with 0.1% and 0.4% NaOH for 7 and 14 days at 35 °C. Alkali-treated starches were characterised for structural and functional properties using various physical methods. The 0.1% NaOH treatment had no significant effect on structural and functional properties of starches except that it markedly increased the hydrolysis of starch by amylolytic enzymes. The 0.4% NaOH treatment resulted in some changes in structural and functional properties of starches. The alkali treatment affected granule morphology and decreased the electron density between crystalline and amorphous lamellae of starch. The effect of alkali on the crystalline structure including long- and short-range ordered structure was not pronounced. Compared with control starch, alkali-treated TRS starches had lower amylose content, higher onset and peak gelatinisation temperatures, and faster hydrolysis of starch by HCl and amylolytic enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Structural properties of MBE AlInN and AlGaInN barrier layers for GaN-HEMT structures

    International Nuclear Information System (INIS)

    Kirste, Lutz; Lim, Taek; Aidam, Rolf; Mueller, Stefan; Waltereit, Patrick; Ambacher, Oliver

    2010-01-01

    A high-resolution X-ray diffraction and X-ray reflectivity study of the structural properties of AlInN/GaN and AlGaInN/GaN high electron mobility transistor structures deposited by molecular beam epitaxy on metal organic chemical vapor deposition GaN/Al 2 O 3 and GaN/SiC templates is presented. A new AlN/GaN/AlN triple-interlayer is implemented to improve the interface properties between barrier layer and GaN buffer for a higher mobility of the polarization induced two-dimensional electron gas. Layer properties and structural parameters like concentration, interface quality, layer thickness, strain and crystalline perfection are analyzed. Best structural properties are achieved for an AlGaInN layer with AlN/GaN/AlN interlayer deposited on a GaN/4H-SiC (00.1) template. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Low Velocity Impact Properties of Aluminum Foam Sandwich Structural Composite

    Directory of Open Access Journals (Sweden)

    ZHAO Jin-hua

    2018-01-01

    Full Text Available Sandwich structural composites were prepared by aluminum foam as core materials with basalt fiber(BF and ultra-high molecular weight polyethylene(UHMWPE fiber composite as faceplate. The effect of factors of different fiber type faceplates, fabric layer design and the thickness of the corematerials on the impact properties and damage mode of aluminum foam sandwich structure was studied. The impact properties were also analyzed to compare with aluminum honeycomb sandwich structure. The results show that BF/aluminum foam sandwich structural composites has bigger impact damage load than UHMWPE/aluminum foam sandwich structure, but less impact displacement and energy absorption. The inter-layer hybrid fabric design of BF and UHMWPE has higher impact load and energy absorption than the overlay hybrid fabric design faceplate sandwich structure. With the increase of the thickness of aluminum foam,the impact load of the sandwich structure decreases, but the energy absorption increases. Aluminum foam sandwich structure has higher impact load than the aluminum honeycomb sandwich structure, but smaller damage energy absorption; the damage mode of aluminum foam core material is mainly the fracture at the impact area, while aluminum honeycomb core has obvious overall compression failure.

  5. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    NARCIS (Netherlands)

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural

  6. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Science.gov (United States)

    Yilmaz, Hayriye; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2015-01-01

    The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR) approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs) in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807), with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size) most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs. PMID:28347035

  7. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Directory of Open Access Journals (Sweden)

    Hayriye Yilmaz

    2015-05-01

    Full Text Available The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807, with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs.

  8. Structure-reactivity relationships in the interactions between humic substances, pollutants from the nuclear cycle, and mineral surfaces

    International Nuclear Information System (INIS)

    Reiller, Pascal

    2015-01-01

    This document proposes an analysis of the structure-reactivity relationships in the interaction between humic substances, metallic pollutants from the nuclear cycle, and mineral surfaces. It composes the scientific document, which allowed the author to defend a Habilitation degree. It is mainly focused on the research works into which the author have been involved in on this particular thematic. Humic substances are issued from the degradation of the living. They have an important influence onto migration of metals in the environment. They are showing particular intrinsic physic and chemical, metal complexation, and adsorption onto mineral surfaces properties, which render the global comprehension of the different mechanisms somehow difficult. These three aspects are covered in this document. The first part is dedicated to the studies on composition, structure, and organization of humic substances, which cannot be considered as a well-defined type of chemical. They are a heterogeneous degradation product with a supramolecular organization, which is showing fractal properties from fractions up to several nanometers. Second part is on the complexation reactions. The different modelling strategies come from the difficulties on apprehending composition, structure, and organization of humic substances. The different models used are showing more or less strongly empiric characteristics. They can be derived from the mass action law, or explicitly account for heterogeneity, acid-basic, or ionic strength related parameters. The third and latter part covers the adsorption studies. The main property is adsorptive fractionation, which induces modification of chemical composition of humic substances between the surface and the solution. It also induces modification of complexation properties between the adsorbed and non-adsorbed fractions. Because of adsorptive fractionation, and the particular influence of ionic strength on humic substances, and of complexed metals, adsorption

  9. Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Ikeda, Shigetoshi; Katoh, Etsuko; Tabata, Yoneho

    2001-01-01

    The chemical structure and physical properties of polytetrafluoroethylene (PTFE) that has been crosslinked by radiation have been studied by various methods. It has been found that a Y-type crosslinking structure and a Y-type structure incorporating a double bond (modified Y-type) is formed in PTFE by radiation-crosslinking in the molten state. In addition, various types of double bond structures, excluding the crosslinking site, have been identified. The crosslinked PTFE has a good light transparency due to the loss of crystallites, whilst it retains the excellent properties of electrical insulation and heat resistance. The coefficient of abrasion and the permanent creep are also greatly improved by crosslinking

  10. RELATIONSHIP BETWEEN CRYSTALLINE STRUCTURE AND OPTICAL PROPERTIES OF WHEAT (Triticum aestevum L. STRAW SODA-OXYGEN PULP

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2003-04-01

    Full Text Available In this study; pulp was produced with soda-oxygen process by using wheat (Triticum aestevum L. straw as raw material and this pulp bleached with hypocholoride (H and peroxyde (P stages. It was found that crystalline properties of unbleached and bleached pulp samples increased by removing amorphous components. In addition, paper sheets made from unbleached and bleached soda-oxygen pulp and determined their optical properties. Consequently; while crystalline properties of pulp samples was rising with HP bleaching, it was determined that optical properties of paper sheets improved with bleaching.

  11. Conference Proceedings: Structuring oil and gas property transactions

    International Nuclear Information System (INIS)

    1999-01-01

    The 12 presentations at this conference dealt with issues concerning the legal aspects of oil and gas property transaction agreements. Several issues regarding sales and purchase negotiations of oil and gas property are reviewed and some of the basic principles of contract law are explained. Advantages, disadvantages and opportunities of structuring oil and gas property acquisitions, as well as their tax consequences are also identified. The issue of risk assessment regarding environmental consequences and how public concerns regarding the state of the environment has had an impact on oil and gas transactions, is addressed. Interest in this topic stems from the fact that improved enforcement of existing laws regarding the environment can potentially make purchasers liable for significant costs associated with remediation or clean-up of contaminated properties. refs., tabs., figs

  12. Ensemble averaged structure–function relationship for nanocrystals: effective superparamagnetic Fe clusters with catalytically active Pt skin [Ensemble averaged structure-function relationship for composite nanocrystals: magnetic bcc Fe clusters with catalytically active fcc Pt skin

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, Valeri [Central Michigan University, Mt. Pleasant, MI (United States); Prasai, Binay [Central Michigan University, Mt. Pleasant, MI (United States); Shastri, Sarvjit [Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division; Park, Hyun-Uk [Sungkyunkwan University, Suwon (Korea). Department of Chemistry; Kwon, Young-Uk [Sungkyunkwan University, Suwon (Korea). Department of Chemistry; Skumryev, Vassil [Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain); Universitat Autònoma de Barcelona (Spain). Department of Physics

    2017-09-12

    Practical applications require the production and usage of metallic nanocrystals (NCs) in large ensembles. Besides, due to their cluster-bulk solid duality, metallic NCs exhibit a large degree of structural diversity. This poses the question as to what atomic-scale basis is to be used when the structure–function relationship for metallic NCs is to be quantified precisely. In this paper, we address the question by studying bi-functional Fe core-Pt skin type NCs optimized for practical applications. In particular, the cluster-like Fe core and skin-like Pt surface of the NCs exhibit superparamagnetic properties and a superb catalytic activity for the oxygen reduction reaction, respectively. We determine the atomic-scale structure of the NCs by non-traditional resonant high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Using the experimental structure data we explain the observed magnetic and catalytic behavior of the NCs in a quantitative manner. Lastly, we demonstrate that NC ensemble-averaged 3D positions of atoms obtained by advanced X-ray scattering techniques are a very proper basis for not only establishing but also quantifying the structure–function relationship for the increasingly complex metallic NCs explored for practical applications.

  13. Machine learning for the structure-energy-property landscapes of molecular crystals.

    Science.gov (United States)

    Musil, Félix; De, Sandip; Yang, Jack; Campbell, Joshua E; Day, Graeme M; Ceriotti, Michele

    2018-02-07

    Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable polymorphs and to predict their properties, as well as to propose heuristic rules to rationalize the correlations between crystal structure and materials properties. Here we show how a recently-developed machine-learning (ML) framework can be used to achieve inexpensive and accurate predictions of the stability and properties of polymorphs, and a data-driven classification that is less biased and more flexible than typical heuristic rules. We discuss, as examples, the lattice energy and property landscapes of pentacene and two azapentacene isomers that are of interest as organic semiconductor materials. We show that we can estimate force field or DFT lattice energies with sub-kJ mol -1 accuracy, using only a few hundred reference configurations, and reduce by a factor of ten the computational effort needed to predict charge mobility in the crystal structures. The automatic structural classification of the polymorphs reveals a more detailed picture of molecular packing than that provided by conventional heuristics, and helps disentangle the role of hydrogen bonded and π-stacking interactions in determining molecular self-assembly. This observation demonstrates that ML is not just a black-box scheme to interpolate between reference calculations, but can also be used as a tool to gain intuitive insights into structure-property relations in molecular crystal engineering.

  14. Structure-property relations in amorphous carbon for photovoltaics

    International Nuclear Information System (INIS)

    Risplendi, Francesca; Cicero, Giancarlo; Bernardi, Marco; Grossman, Jeffrey C.

    2014-01-01

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  15. Structure-property relations in amorphous carbon for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Risplendi, Francesca; Cicero, Giancarlo [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Bernardi, Marco [Department of Physics, University of California, Berkeley, California 94720 (United States); Grossman, Jeffrey C., E-mail: jcg@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-07-28

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  16. The relationship between corneal biomechanical properties and confocal microscopy findings in normal and keratoconic eyes.

    Science.gov (United States)

    Hurmeric, Volkan; Sahin, Afsun; Ozge, Gokhan; Bayer, Atilla

    2010-06-01

    To investigate the relationship between corneal biomechanical properties and confocal microscopy (CM) findings in normal and keratoconic eyes. The study consisted of 28 eyes of 28 healthy volunteers and 23 eyes of 15 patients with keratoconus. The diagnosis of keratoconus was made with corneal topography and clinical findings. The corneal hysteresis (CH) and corneal resistance factor (CRF) were measured by the ocular response analyzer. In vivo CM was performed with NIDEK Confoscan 3. CH and CRF were compared with corneal morphological findings (detailed cell counts of endothelial, stromal, and epithelial cells) in vivo. CH was 10.1 +/- 1.3 mm Hg in normal eyes and 7.4 +/- 1.5 mm Hg in keratoconic eyes (P < 0.0001). CRF was 10.1 +/- 1.8 mm Hg in normal eyes and 6.2 +/- 1.4 mm Hg in keratoconic eyes (P < 0.0001). CH and CRF were negatively correlated with full-thickness stromal keratocyte density (P < 0.01; r = -0.52 and P < 0.001; r = -0.67, respectively) in healthy eyes. Keratocyte density of the posterior half of the stroma was found to be significantly related with CRF in healthy eyes (beta = -0.404; P = 0.01). There was no significant relationship among CH, CRF, and CM findings in eyes with keratoconus. There is a significant relationship between CRF and keratocyte density of the posterior half of the stroma in healthy eyes. Our results suggest that corneal elasticity is related to not only stromal matrix but also cellular structure of the cornea.

  17. Elastic properties

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  18. Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling.

    Science.gov (United States)

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence-structure relationships in loops. Loops differing by structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.

  19. DFT study on structure, electronic properties, and reactivity of cis ...

    Indian Academy of Sciences (India)

    bases (HSAB) principle. HSAB principle states that,. 'hard acids prefer to coordinate with hard bases and soft acids prefer to coordinate with soft bases for both their thermodynamic and kinetic properties'.24,25. The relationship between OC–Fe–CO bond angles and backbonding to CO for the isomers discussed above.

  20. Processing information about support exchanges in close relationships: The role of a knowledge structure

    Directory of Open Access Journals (Sweden)

    Bulent eTuran

    2016-02-01

    Full Text Available People develop knowledge of interpersonal interaction patterns (e.g., prototypes and schemas, which shape how they process incoming information. One such knowledge structure based on attachment theory was examined: the secure base script (the prototypic sequence of events when an attachment figure comforts a close relationship partner in distress. In two studies (N = 53 and N = 119, participants were shown animated film clips in which geometric figures depicted the secure base script and asked to describe the animations. Both studies found that many people readily recognize the secure-base script from these minimal cues quite well, suggesting that this script is not only available in the context of specific relationships (i.e., a relationship-specific knowledge: The generalized (abstract structure of the script is also readily accessible, which would make it possible to apply it to any relationship (including new relationships. Regression analyses suggested that participants who recognized the script were more likely to (a include more animation elements when describing the animations, (b see a common theme in different animations, (c create better organized stories, and (d later recall more details of the animations. These findings suggest that access to this knowledge structure helps a person organize and remember relevant incoming information. Furthermore, in both Study 1 and Study 2, individual differences in the ready recognition of the script were associated with individual differences in having access to another related knowledge: indicators suggesting that a potential relationship partner can be trusted to be supportive and responsive at times of stress. Results of Study 2 also suggest that recognizing the script is associated with those items of an attachment measure that concern giving and receiving support. Thus, these knowledge structures may shape how people process support-relevant information in their everyday lives, potentially