WorldWideScience
 
 
1

Building a mass storage system for physics applications  

International Nuclear Information System (INIS)

The IEEE Mass Storage Reference Model and forthcoming standards based on it provide a standardized architecture to facilitate designing and building mass storage systems, and standard interfaces so that hardware and software from different vendors can interoperate in providing mass storage capabilities. A key concept of this architecture is the separation of control and data flows. This separation allows a smaller machine to provide control functions, while the data can flow directly between high-performance channels. Another key concept is the layering of the file system and the storage functions. This layering allows the designers of the mass storage system to focus on storage functions, which can support a variety of file systems, such as the Network File System, the Andrew File System, and others. The mass storage system provides location-independent file naming, essential if files are to be migrated to different storage devices without requiring changes in application programs. Physics data analysis applications are particularly challenging for mass storage systems because they stream vast amounts of data through analysis applications. Special mechanisms are required, to handle the high data rates and to avoid upsetting the caching mechanisms commonly used for smaller, repetitive-use files. High data rates are facilitated by direct channel connections, where, for example, a dual-ported drive will be positioned by the mass storage controller on one channel, then the data will flow on a second channel directly into the user machine, or directly to a high capacity network, greatly reducing the I/O capacity required in the mass storage control computer. Intelligent storage allocation can be used to bypass the cache devices entirely when large files are being moved

2

Integrated Building Energy Systems Design Considering Storage Technologies  

International Nuclear Information System (INIS)

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site

3

Trade-off between collector area, storage volume, and building conservation in annual-storage solar-heating systems  

Energy Technology Data Exchange (ETDEWEB)

Annual storage is used with active solar heating systems to permit storage of summertime solar heat for winter use. The results of a comprehensive computer simulation study of the performance of active solar heating systems with long-term hot water storage are presented. A unique feature of this study is the investigation of systems used to supply backup heat to passive solar and energy-conserving buildings, as well as to meet standard heating and hot water loads. Findings show that system output increases linearly as storage volume increases, up to the point where the storage tank is large enough to store all heat collected in summer. This point, the point of unconstrained operation, is the likely economic optimum. Unlike diurnal storage systems, annual storage systems show only slightly diminished efficiency as system size increases. Annual storage systems providing nearly 100% solar space heat may cost the same or less per unit heat delivered as a 50% diurnal solar system. Also in contrast to diurnal systems, annual storage systems perform efficiently in meeting the load of a passive or energy-efficient building.

Sillman, S.

1981-04-01

4

Optimal controls of building storage systems using both ice storage and thermal mass – Part II: Parametric analysis  

International Nuclear Information System (INIS)

Highlights: ? A detailed analysis is presented to assess the performance of thermal energy storage (TES) systems. ? Utility rates have been found to be significant in assessing the operation of TES systems. ? Optimal control strategies for TES systems can save up to 40% of total energy cost of office buildings. - Abstract: This paper presents the results of a series of parametric analysis to investigate the factors that affect the effectiveness of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs (including energy and demand costs) while maintaining adequate occupant comfort conditions in buildings. The analysis is based on a validated model-based simulation environment and includes several parameters including the optimization cost function, base chiller size, and ice storage tank capacity, and weather conditions. It found that the combined use of building thermal mass and active thermal energy storage system can save up to 40% of the total energy costs when integrated optimal control are considered to operate commercial buildings.

5

Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks  

DEFF Research Database (Denmark)

Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments.

Hedegaard, Karsten; Balyk, Olexandr

2013-01-01

6

Heat of fusion storage systems for combined solar systems in low energy buildings  

DEFF Research Database (Denmark)

Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature (and the the return temperature) would only be a few degrees above room temperature due to the very low heating demand and the large heat transfer surface area. One of the objectives in a newly started IEA Task 32 project is to investigate and develop improved thermal storages for combined solar systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility of a stable super cooling, i.e. the material is able to cool down below its freezing point (Tfusion) and still be liquid, the possibility exist for a storage with a very low heat loss. When energy is needed from the storage the solidification is activated and the temperature rises almost instantly to the melting point. The work within the IEA Task 32 project focuses on the phase change material Sodium Acetate with xanthan rubber. This material melts at 58 °C, which means that low temperature heating systems could make full use of such a storage system. Energy to a large extent can be withdrawn even when the storage is in its super cooled phase without activation of the phase change. This paper presents an initial simulation model of a PCM storage for implementation in TRNSYS 15 [1] as well as the first test results achieved with the model.

Schultz, JØrgen Munthe; Furbo, Simon

2004-01-01

7

Energy managemant through PCM based thermal storage system for building air-conditioning: Tidel Park, Chennai  

International Nuclear Information System (INIS)

Many modern building are designed for air-conditioning and the amount of electrical energy required for providing air-conditioning can be very significant especially in the tropics. Conservation of energy is major concern to improve the overall efficiency of the system. Integration is energy storage with the conventional system gives a lot of potential for energy saving and long-term economics. Thermal energy storage systems can improve energy management and help in matching supply and demand patterns. In the present work, a detailed study has been done on the existing thermal energy storage system used in the air-conditioning system in Tidel Park, Chennai. The present study focuses on the cool energy storage system. The modes of operation and advantages of such a system for energy management are highlighted. The reason for the adoption of combined storage system and the size of the storage medium in the air-conditioning plant are analyzed. The possibility of using this concept in other cooling and heating applications, such as storage type solar water heating system, has been explored

8

Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1) reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2) using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS softwar...

Alexandre Hugo; Radu Zmeureanu

2012-01-01

9

Experimental and theoretical comparison of a water storage system and of a phase-change material storage system on the experimental solar building of Bourgoin-Jallieu (Isere)  

Energy Technology Data Exchange (ETDEWEB)

The aim of this study is to compare on a actual solar building and with a same equipment, the qualities of a water storage system and a phase-change storage system. First, the design of the experiment is present: choice of the material for heat storage, design of the exchanger, realization of the exchanger-storage tank unit and acquisition of the measuring equipment, and operation. Then a computerized simulation of the heat transfers is presented, and the model is adjusted in relation to the actual phenomena. Finally, the experiment results are given, and the influence of some parameters on the system efficiency is studied.

Aubert-Dasse, C

1981-06-01

10

Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings  

International Nuclear Information System (INIS)

The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

11

System Configuration Management Implementation Procedure for the Canister Storage Building (CSB)  

Energy Technology Data Exchange (ETDEWEB)

This document provides configuration management for the Distributed Control System (DCS), the Gaseous Effluent Monitoring System (GEMS-100) System, the Heating Ventilation and Air Conditioning (HVAC) Programmable Logic Controller (PLC), the Canister Receiving Crane (CRC) CRN-001 PLC, and both North and South vestibule door interlock system PLCs at the Canister Storage Building (CSB). This procedure identifies and defines software configuration items in the CSB control and monitoring systems, and defines configuration control throughout the system life cycle. Components of this control include: configuration status accounting; physical protection and control; and verification of the completeness and correctness of these items.

GARRISON, R.C.

2000-11-28

12

The integration of water loop heat pump and building structural thermal storage systems  

Energy Technology Data Exchange (ETDEWEB)

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

Marseille, T.J.; Schliesing, J.S.

1991-10-01

13

Thermoeconomic analysis of a building energy system integrated with energy storage options  

International Nuclear Information System (INIS)

Highlights: • Combined sensible, latent and thermochemical thermal energy storage systems. • Thermoeconomic analysis of TES system. • Dead state temperature effects on thermoeconomics. - Abstract: This study deals with exergetic and thermoeconomic analyses of thermal energy storage (TES) systems, such as latent, sensible and thermochemical options coupled with different units for building heating applications under varying reference (dead-state) temperatures of 8 °C, 9 °C and 10 °C, respectively. It is found that the variation reference temperature affects the thermoeconomic parameters. The exergetic cost of the system becomes higher at the higher reference conditions, as directly proportional to the varying dead state conditions. It also becomes minimum at 8 °C reference temperature as 196.96 $/h while it is maximum at 10 °C dead-state temperature with 357.60 $/h. Furthermore, the maximum capital cost of the equipment is determined for the thermochemical TES as 4.612 $/h. So, the better optimization of this equipment may be considered

14

Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings  

International Nuclear Information System (INIS)

Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint

15

Advanced storage concepts for solar thermal systems in low energy buildings. Final report  

Energy Technology Data Exchange (ETDEWEB)

The aim of Task 32 is to develop new and advanced heat storage systems which are economic and technical suitable as long-term heat storage systems for solar heating plants with a high degree of coverage. The project is international and Denmark's participation has focused on Subtask A, C, and D. In Subtask A Denmark has contributed to a status report about heat storage systems. In Subtask C Denmark has focused on liquid thermal storage tanks based on NaCH{sub 3}COO?3H{sub 2}O with a melting point of 58 deg. C. Theoretical and experimental tests have been conducted in order to establish optimum conditions for storage design. In Subtask D theoretical and experimental tests of optimum designs for advanced water tanks for solar heating plants for combined space heating and domestic hot water have been conducted. (BA)

Furbo, S.; Andersen, Elsa; Schultz, Joergen M.

2006-04-07

16

Modelling of solar thermo-chemical system for energy storage in buildings  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The goal of this paper is the demonstration of the methodological design principles within theoretical modelling of thermal heat storage apparatus and simulation of inter-seasonal heat storage system. The designing procedure starts from the modelling of thermal plant behaviour, based on the simplifications in the basic hypothesis. Afterwards, a more detailed modelling, involving dynamic aspects and additional features of plant components, is prese...

Skrylnyk, Alexandre; Courbon, Emilie; Fre?re, Marc; Hennaut, Samuel; Andre, Philippe; Sun, Philippe; Descy, Gilbert

2012-01-01

17

Initial findings: The integration of water loop heat pump and building structural thermal storage systems  

Energy Technology Data Exchange (ETDEWEB)

This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

1989-01-01

18

Economics of dry storage systems  

International Nuclear Information System (INIS)

This paper postulates a dry storage application suitable as a regional away-from-reactor storage (AFR), develops an economical system design concept and estimates system costs. The system discussed uses the experience gained in the dry storage research activities and attempts to present a best foot forward system concept. The major element of the system is the Receiving and Packaging Building. In this building fuel assemblies are removed from transportation casks and encapsulated for storage. This facility could be equally applicable to silo, vault, or caisson storage. However the caisson storage concept has been chosen for discussion purposes

19

High performance concrete applied to storage system buildings at low temperatures  

Directory of Open Access Journals (Sweden)

Full Text Available According to some estimates, world's population growth is expected about 50% over the next 50 years. Thus, one of the greatest challenges faced by Engineering is to find effective options to food storage and conservation. Some researchers have investigated how to design durable buildings for storing and conserving food. Nowadays, developing concrete with mechanical resistance for room temperatures is a parameter that can be achieved easily. On the other hand, associating it to low temperature of approximately 35 °C negative requires less empiricism, being necessary a suitable dosage method and a careful selection of the material constituents. This ongoing study involves these parameters. The presented concrete was analyzed through non-destructive tests that examines the material properties periodically and verifies its physical integrity. Concrete with and without incorporated air were studied. The results demonstrated that both are resistant to freezing.

Sandra Maria de Lima

2008-06-01

20

Dynamic Heat Storage and Cooling Capacity of a Concrete Deck with PCM and Thermally Activated Building System  

DEFF Research Database (Denmark)

This paper presents a heat storage and cooling concept that utilizes a phase change material (PCM) and a thermally activated building system (TABS) implemented in a hollow core concrete deck. Numerical calculations of the dynamic heat storage capacity of the hollow core concrete deck element with and without microencapsulated PCM are presented. The new concrete deck with microencapsulated PCM is the standard deck on which an additional layer of the PCM concrete was added and, at the same time, the latent heat storage was introduced to the construction. The challenge of numerically simulating the performance of the new deck with PCM concrete is the thermal properties of such a new material, as the PCM concrete is yet to be well defined. The results presented in the paper include models in which the PCM concrete material properties, such as thermal conductivity, and specific heat capacity were first calculated theoretically and subsequently the models were updated with the experimentally determined thermal properties of the PCM concrete. Then, the heat storage of the decks with theoretically and experimentally determined thermal properties were compared with each other. Finally, the results presented in the article highlight the potential of using TABS and PCM in a prefabricated concrete deck element.

Pomianowski, Michal Zbigniew; Heiselberg, Per

2012-01-01

 
 
 
 
21

Canister storage building natural phenomena design loads  

International Nuclear Information System (INIS)

This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site

22

Canister Storage Building (CSB) Hazard Analysis Report  

Energy Technology Data Exchange (ETDEWEB)

This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.

POWERS, T.B.

2000-03-16

23

Grand Challenges facing Storage Systems  

CERN Document Server

In this talk, we will discuss the future of storage systems. In particular, we will focus on several big challenges which we are facing in storage, such as being able to build, manage and backup really massive storage systems, being able to find information of interest, being able to do long-term archival of data, and so on. We also present ideas and research being done to address these challenges, and provide a perspective on how we expect these challenges to be resolved as we go forward.

CERN. Geneva

2004-01-01

24

Mass storage management system  

International Nuclear Information System (INIS)

The author describes the application that the author developed during the time the author worked for Thomas Jefferson National Accelerator Facility, which creates an integrated storage environment. The application is built as a layer on top of the current storage manager (OSM), hiding details from the end user and manages access to all storage elements. A simple set of commands allows users to manipulate and move data between all storage elements of the system as well as to storage devices on remote machines

25

Spent nuclear fuel Canister Storage Building CDR Review Committee report  

International Nuclear Information System (INIS)

The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

26

Fuel storage systems  

Energy Technology Data Exchange (ETDEWEB)

Storage technologies are characterized for solid, liquid, and gaseous fuels. Emphasis is placed on storage methods applicable to Integrated Community Energy Systems based on coal. Items discussed here include standard practice, materials and energy losses, environmental effects, operating requirements, maintenance and reliability, and cost considerations. All storage systems were found to be well-developed and to represent mature technologies; an exception may exist for low-Btu gas storage, which could have materials incompatability.

Donakowski, T.D.; Tison, R.R.

1979-08-01

27

Canister storage building trade study. Final report  

Energy Technology Data Exchange (ETDEWEB)

This study was performed to evaluate the impact of several technical issues related to the usage of the Canister Storage Building (CSB) to safely stage and store N-Reactor spent fuel currently located at K-Basin 100KW and 100KE. Each technical issue formed the basis for an individual trade study used to develop the ROM cost and schedule estimates. The study used concept 2D from the Fluor prepared ``Staging and Storage Facility (SSF) Feasibility Report`` as the basis for development of the individual trade studies.

Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

1995-05-01

28

Canister storage building trade study. Final report  

International Nuclear Information System (INIS)

This study was performed to evaluate the impact of several technical issues related to the usage of the Canister Storage Building (CSB) to safely stage and store N-Reactor spent fuel currently located at K-Basin 100KW and 100KE. Each technical issue formed the basis for an individual trade study used to develop the ROM cost and schedule estimates. The study used concept 2D from the Fluor prepared ''Staging and Storage Facility (SSF) Feasibility Report'' as the basis for development of the individual trade studies

29

Building with integral solar-heat storage--Starkville, Mississippi  

Science.gov (United States)

Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.

1981-01-01

30

Canister storage building hazard analysis report  

International Nuclear Information System (INIS)

This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

31

Solar Thermal Storage System  

Directory of Open Access Journals (Sweden)

Full Text Available Increasing energy consumption, shrinking resources and rising energy costs will have significant impact on our standard of living for future generations. In this situation, the development of alternative, cost effective sources of energy has to be a priority. This project presents the advanced technology and some of the unique features of a novel solar system that utilizes solar energy for space heating and water heating purpose in residential housing and commercial buildings. The improvements in solar technology offers a significant cost reduction, to a level where the solar system can compete with the energy costs from existing sources. The main goal of the project is to investigate new or advanced solutions for storing heat in systems providing heating. which can be achieved using phase change material(PCM.A phase change material with a melting/solidification temperature of 50ºC to 60ºC is used for solar heat storage. When the PCM undergoes the phase change, it can absorb or release a large amount of energy as latent heat. This heat can be used for further applications like water heating and space heating purposes. Thus solar thermal energy is widely use

Arjun A. Abhyankar

2012-06-01

32

Canister storage building hazard analysis report  

Energy Technology Data Exchange (ETDEWEB)

This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''.

POWERS, T.B.

1999-05-11

33

Building a Parallel Cloud Storage System using OpenStack’s Swift Object Store and Transformative Parallel I/O  

Energy Technology Data Exchange (ETDEWEB)

Our project consists of bleeding-edge research into replacing the traditional storage archives with a parallel, cloud-based storage solution. It used OpenStack's Swift Object Store cloud software. It's Benchmarked Swift for write speed and scalability. Our project is unique because Swift is typically used for reads and we are mostly concerned with write speeds. Cloud Storage is a viable archive solution because: (1) Container management for larger parallel archives might ease the migration workload; (2) Many tools that are written for cloud storage could be utilized for local archive; and (3) Current large cloud storage practices in industry could be utilized to manage a scalable archive solution.

Burns, Andrew J. [Los Alamos National Laboratory; Lora, Kaleb D. [Los Alamos National Laboratory; Martinez, Esteban [Los Alamos National Laboratory; Shorter, Martel L. [Los Alamos National Laboratory

2012-07-30

34

Thermal energy storage for cooling of commercial buildings  

Energy Technology Data Exchange (ETDEWEB)

The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

1988-07-01

35

Matching analysis for on-site building energy systems involving energy conversion, storage and hybrid grid connections  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Under the background that all new buildings in EU should be nearly zero-energy buildings (nZEB) from the year of 2021, the energy and building industries are progressing towards the direction of decreased local building energy demand and enhanced on-site renewable energy production. This, on one hand, leads to the continuously decreased annual primary energy consumption/equivalent CO2 emission, whereas on the other hand it brings in the matching problem between the on-site generation and loca...

Cao, Sunliang

2014-01-01

36

Canister Storage Building (CSB) Design Basis Accident Analysis Documentation  

International Nuclear Information System (INIS)

This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

37

Canister Storage Building (CSB) Design Basis Accident Analysis Documentation  

International Nuclear Information System (INIS)

This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

38

Canister storage building design basis accident analysis documentation  

International Nuclear Information System (INIS)

This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

39

Canister storage building design basis accident analysis documentation  

Energy Technology Data Exchange (ETDEWEB)

This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

KOPELIC, S.D.

1999-02-25

40

Canister Storage Building (CSB) Design Basis Accident Analysis Documentation  

Energy Technology Data Exchange (ETDEWEB)

This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

CROWE, R.D.; PIEPHO, M.G.

2000-03-23

 
 
 
 
41

Energy Storage System  

Science.gov (United States)

SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

1996-01-01

42

ENERGY STORAGE SYSTEMS  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this paper you will find an overview of systems and energy storage techniques and a comparison of the important characteristics of them. Delocalized electricity production and the introduction of variable, fluctuating sources (renewable energy: solar, wind turbines, etc.) increase the difficulty of stabilizing the power network, mainly due to a supply-demand imbalance. It is therefore convenient to generate the energy, transmit it, convert it, and then store it if need be. More than ever t...

ELENA RADUCAN; LUMINITA MORARU

2011-01-01

43

Spent nuclear fuel canister storage building conceptual design report  

International Nuclear Information System (INIS)

This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ''Technical Baseline and Updated Cost Estimate for the Canister Storage Building'', dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995

44

Spent nuclear fuel canister storage building conceptual design report  

Energy Technology Data Exchange (ETDEWEB)

This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

1996-01-01

45

Canister Storage Building (CSB) Design Basis Accident Analysis Documentation  

Energy Technology Data Exchange (ETDEWEB)

This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

CROWE, R.D.

1999-09-09

46

WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT  

International Nuclear Information System (INIS)

The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System

47

WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT  

Energy Technology Data Exchange (ETDEWEB)

The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.

F. Habashi

2000-06-22

48

Solar Thermal Storage System  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Increasing energy consumption, shrinking resources and rising energy costs will have significant impact on our standard of living for future generations. In this situation, the development of alternative, cost effective sources of energy has to be a priority. This project presents the advanced technology and some of the unique features of a novel solar system that utilizes solar energy for space heating and water heating purpose in residential housing and commercial buildings. The improvement...

Abhyankar, Arjun A.; Watkar, Kishor R.; Rinait, Rameshwar O.

2012-01-01

49

RCRA closure of the Building 3001 Storage Canal  

International Nuclear Information System (INIS)

The 3001 Storage Canal is located under portions of Buildings 3001 and 3019 at Oak Ridge National Laboratory (ORNL) and has a capacity of approximately 62,000 gallons of water. The term canal has historically been used to identify this structure, however, the canal is an in-ground reinforced concrete structure satisfying the regulatory definition of a tank. From 1943 through 1963, the canal in Building 3001 was designed to be an integral part of the system for handling irradiated fuel from the Oak Ridge Graphite Reactor. Because one of the main initial purposes of the reactor was to produce plutonium for the chemical processing pilot plant in Building 3019, the canal was designed to be the connecting link between the reactor and the pilot plant. During the war years, natural uranium slugs were irradiated in the reactor and then pushed out of the graphite matrix into the system of diversion plates and chutes which directed the fuel into the deep pit of the canal. After shutdown of the reactor, the canal was no longer needed for its designed purpose. Since 1964, the canal has only been used to store radioisotopes and irradiated samples under a water pool for radiation protection. This report describes closure alternatives

50

Passive hygrothermal control of a museum storage building  

DEFF Research Database (Denmark)

For optimal conservation of the stored objects, museum storage buildings require a very stable interior climate, with only minimal and slow variations in temperature and relative humidity. Often extensive HVAC is installed to provide such stable indoor conditions, which results in a great amout of C02 emission. The purpose for this paper is to show that it is possible to reach the goal of using renewable energy for museum storage buildings by rethinking the strategy for the dehumidification design and in this way contribute to a C02 neutral environment. The solution is to construct a very airtight building and use concentrated dehumidification.

Christensen, JØrgen Erik; Janssen, Hans

2011-01-01

51

TEXT Energy Storage System  

International Nuclear Information System (INIS)

The Texas Experimental Tokamak (TEXT) Enery Storage System, designed by the Center for Electromechanics (CEM), consists of four 50 MJ, 125 V homopolar generators and their auxiliaries and is designed to power the toroidal and poloidal field coils of TEXT on a two-minute duty cycle. The four 50 MJ generators connected in series were chosen because they represent the minimum cost configuration and also represent a minimal scale up from the successful 5.0 MJ homopolar generator designed, built, and operated by the CEM

52

Economic feasibility of thermal energy storage systems  

Energy Technology Data Exchange (ETDEWEB)

This paper investigates the economic feasibility of both building an ice thermal storage and structure a time of rate tariff for the unique air conditioning (A/C) plant of the Grand Holy Mosque of Makkah, Saudi Arabia. The features of the building are unique where the air-conditioned 39,300 m{sup 2} zone is open to the atmosphere and the worshippers fully occupy the building five times a day, in addition hundreds of thousands of worshippers attend the blessed weekend's prayer at noontime, which escalates the peak electricity load. For economic analysis, the objective function is the daily electricity bill that includes the operation cost and the capital investment of the ice storage system. The operation cost is function of the energy imported for operating the plant in which the tariff structure, number of operating hours and the ambient temperature are parameters. The capital recovery factor is calculated for 10% interest rate and payback period of 10 years. Full and partial load storage scenarios are considered. The results showed that with the current fixed electricity rate (0.07 $/kWh), there is no gain in introducing ice storage systems for both storage schemes. Combining energy storage and an incentive time structured rate showed reasonable daily bill savings. For base tariff of 0.07 $/kWh during daytime operation and 0.016 $/kWh for off-peak period, savings were achieved for full load storage scenario. Different tariff structure is discussed and the break-even nighttime rate was determined (varies between 0.008 and 0.03 $/kWh). Partial load storage scenario showed to be unattractive where the savings for the base structured tariff was insignificant. (author)

Habeebullah, B.A. [Faculty of Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

2007-07-01

53

Terrestrial Energy Storage SPS Systems  

Science.gov (United States)

Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

Brandhorst, Henry W., Jr.

1998-01-01

54

Wind turbine storage systems  

International Nuclear Information System (INIS)

Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled stornergy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

55

Symmetry in Distributed Storage Systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The max-flow outer bound is achievable by regenerating codes for functional repair distributed storage system. However, the capacity of exact repair distributed storage system is an open problem. In this paper, the linear programming bound for exact repair distributed storage systems is formulated. A notion of symmetrical sets for a set of random variables is given and equalities of joint entropies for certain subsets of random variables in a symmetrical set is established. ...

Thakor, Satyajit; Chan, Terence; Shum, Kenneth W.

2013-01-01

56

Building Web Reputation Systems  

CERN Document Server

What do Amazon's product reviews, eBay's feedback score system, Slashdot's Karma System, and Xbox Live's Achievements have in common? They're all examples of successful reputation systems that enable consumer websites to manage and present user contributions most effectively. This book shows you how to design and develop reputation systems for your own sites or web applications, written by experts who have designed web communities for Yahoo! and other prominent sites. Building Web Reputation Systems helps you ask the hard questions about these underlying mechanisms, and why they're critical

Farmer, Randy

2010-01-01

57

Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory  

Energy Technology Data Exchange (ETDEWEB)

Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigates the merits of harnessing both storage media concurrently in the context of predictive optimal control. This topical report describes the demonstration of the model-based predictive optimal control for active and passive building thermal storage inventory in a test facility in real-time using time-of-use differentiated electricity prices without demand charges. The laboratory testing findings presented in this topical report cover the second of three project phases. The novel supervisory controller successfully executed a three-step procedure consisting of (1) short-term weather prediction, (2) optimization of control strategy over the next planning horizon using a calibrated building model, and (3) post-processing of the optimal strategy to yield a control command for the current time step that can be executed in the test facility. The primary and secondary building mechanical systems were effectively orchestrated by the model-based predictive optimal controller in real-time while observing comfort and operational constraints. The findings reveal that when the optimal controller is given imperfect weather fore-casts and when the building model used for planning control strategies does not match the actual building perfectly, measured utility costs savings relative to conventional building operation can be substantial. This requires that the facility under control lends itself to passive storage utilization and the building model includes a realistic plant model. The savings associated with passive building thermal storage inventory proved to be small be-cause the test facility is not an ideal candidate for the investigated control technology. Moreover, the facility's central plant revealed the idiosyncratic behavior that the chiller operation in the ice-making mode was more energy efficient than in the chilled-water mode. Field experimentation (Phase III) is now required in a suitable commercial building with sufficient thermal mass, an active TES system, and a climate conducive to passive storage utilization over a longer testing period to support the laboratory findings presented in this topical report.

Gregor P. Henze; Moncef Krarti

2003-12-17

58

Robust holographic storage system design.  

Science.gov (United States)

Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. PMID:22109441

Watanabe, Takahiro; Watanabe, Minoru

2011-11-21

59

Review of thermal energy storage technologies based on PCM application in buildings  

DEFF Research Database (Denmark)

Thermal energy storage systems (TES), using phase change material (PCM) in buildings, are widely investigated technologies and a fast developing research area. Therefore, there is a need for regular and consistent reviews of the published studies. This review is focused on PCM technologies developed to serve the building industry. Various PCM technologies tailored for building applications are studied with respect to technological potential to improve indoor environment, increase thermal inertia and decrease energy use for building operation. What is more, in this review special attention is paid to discussion and identification of proper methods to correctly determine the thermal properties of PCM materials and their composites and as well procedures to determine their energy storage and saving potential. The purpose of the paper is to highlight promising technologies for PCM application in buildings with focus on room application and to indicate in which applications the potential is less significant.

Pomianowski, Michal Zbigniew; Heiselberg, Per

2013-01-01

60

Air quality in low-ventilated museum storage buildings  

DEFF Research Database (Denmark)

Modern low-energy museum storage buildings are often designed for a low air exchange rate, on the order of less than 1 exchange per day. We investigated how this affected the indoor air quality in six Danish museum storage buildings. The infiltration of ambient pollutants, and the level to which internally-generated pollutants accumulate, were measured by passive sampling of ozone, nitrogen dioxide, and organic acids. The air exchange rates and the interchange of air between storage rooms were measured by the per-fluorocarbon tracer gas method. Ambient pollutants were reduced in concentration to a few ppb indoors. The presence of internally-generated pollutants depended on the amount of off-gassing materials inside the store, but more importantly, on the temperature. Enclosing objects in corrugated cardboard boxes did not cause any significant accumulation of pollutants. However, the box-board did provide a certain degree of protection against ambient pollutants, especially ozone.

Ryhl-Svendsen, Morten; Aasbjerg Jensen, Lars

 
 
 
 
61

Model Predictive Control for the Operation of Building Cooling Systems  

Energy Technology Data Exchange (ETDEWEB)

A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

2010-06-29

62

D5.4 – Energy management system : Coordinating and dispatching of generation, consumption, and storage devices connected to the local microgrid or to the building network.  

DEFF Research Database (Denmark)

This report will focus on strategies for energy management as well at the building level and at the microgrid level. The designed energy management controller will manage energy flow such that generated power in the microgrid is mainly consumed by local consumers and the power trade between the microgrid and the grid is shrunk to minimum. Buildings’ role is to provide flexibility to the energy management controller so that this controller can use this flexibility to enhance the local use of the local produced energy and by that mean lower the energy bill for each house in the microgrid. The Optimization of building loads are based on electricity price signal and shedding, shifting or rescheduling the power consumption pattern. The main shiftable loads are the HVAC systems. This system will be the primary controllable load for the energy management controller but also curtailable load and non-controllable loads will be taken into account when designing the controller. The flexibility, with respect to the HVAC system, is based on the heat capacity of the house and a thermal tolerance that users give permission for. The wider the thermal tolerance is, the more flexibility will be provided to the energy management controller. Load management strategies will be devised such that thermal comfort and other user-predefined preferences will be satisfied.

Madsen, Per Printz; Andersen, Palle

2014-01-01

63

Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory  

Energy Technology Data Exchange (ETDEWEB)

Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulation research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very simple short-term prediction models to realize almost all of the theoretical potential of this control strategy. Further work evaluated the impact of modeling accuracy on the model-based closed-loop predictive optimal controller to minimize utility cost. The following guidelines have been derived: For an internal heat gain dominated commercial building, reasonable geometry simplifications are acceptable without a loss of cost savings potential. In fact, zoning simplification may improve optimizer performance and save computation time. The mass of the internal structure did not show a strong effect on the optimization. Building construction characteristics were found to impact building passive thermal storage capacity. It is thus advisable to make sure the construction material is well modeled. Zone temperature setpoint profiles and TES performance are strongly affected by mismatches in internal heat gains, especially when they are underestimated. Since they are a key factor in determining the building cooling load, efforts should be made to keep the internal gain mismatch as small as possible. Efficiencies of the building energy systems affect both zone temperature setpoints and active TES operation because of the coupling of the base chiller for building precooling and the icemaking TES chiller. Relative efficiencies of the base and TES chillers will determine the balance of operation of the two chillers. The impact of mismatch in this category may be significant. Next, a parametric analysis was conducted to assess the effects of building mass, utility rate, building location and season, thermal comfort, central plant capacities, and an economizer on the cost saving performance of optimal control for active and passive building thermal storage inventory. The key findings are: (1) Heavy-mass buildings, strong-incentive time-of-use electrical utility rates, and large on-peak cooling loads will likely lead to attractive savings resulting from optimal combined thermal storage control. (2) By using economizer to take advantage of the cool fresh air during the night, t

Gregor P. Henze; Moncef Krarti

2005-09-30

64

Passive hygrothermal control of a museum storage building in Vejle  

DEFF Research Database (Denmark)

For optimal conservation of the stored objects, museum storage buildings require a very stable interior climate, with only minimal and slow variations in temperature and relative humidity. Often extensive HVAC is installed to provide such stable indoor conditions. The resultantly significant energy and maintenance costs are currently motivating a paradigm change toward passive control. Passive control, via the thermal and hygric inertia of the building, is gaining a foothold in the museum conservation and building physical community. In this report we document the hygrothermal performance optimisation of a museum storage building, related to an existing storage centre in Vejle (Denmark). The current building design already incorporates passive control concepts: thermal inertia is provided by the thick walls, the ground floor and its underlying soil volume, while hygric inertia is provided by the thick walls of light-weight concrete. The design promise stated that a few years of dehumidification would bring down the moisture contained in the fresh constructions to a level corresponding with the desired interior climate. After this initial stage, the passive control would eliminate all further need for dehumidification. Four years after completing the construction however, continuous dehumidification remains necessary to maintain acceptable humidity levels. Analysis of the current situation: A thorough investigation of the current building design and management shows that the original design promise of ‘a fully passively conditioned storage building’ is an illusion. With the yearly average exterior temperature and vapour pressure in Denmark at 7.8 °C and 930 Pa, a fully passively conditioned building would reach a yearly average temperature and vapour pressure of 10.2 °C and 930 Pa. The interior temperature is somewhat higher than the exterior, due to interior heat sources (lights and humans); since no significant interior moisture sources are present, the interior vapour pressure is similar to the average exteriorvapour pressure. Such interior conditions translate to a yearly average relative humidity of 75 %, which is far above the desired levels. It should be finally stated that similar conclusions would be reached for many other European climates. Conservation heating or dehumidification are hence required, to maintain acceptable relative humidities in the storage. Conservation heating raises the temperature and lowers the relative humidity; dehumidification decreases the vapour pressure and thus the relative humidity. For the low air change rates of storage buildings, dehumidification is the most economical option. Moreover, it allows for lower temperature levels, beneficial to the conservation purposes. Reduction of dehumidification load: In an effort to reduce the necessary dehumidification, a number of thermal measures are investigated first. This primarily focuses on the influences of additional insulation in walls, roof and floor. Overall, the effects of extra insulation on the average temperature level arevery limited. The effects on the temperature variation differ for the floor and for the walls & roof: • walls & roof: more insulation gives less heat exchange with the exterior, and thus a lower interior temperature variation; • floor: more insulation in the floor breaks the connection with the thermal inertia of the ground and thus a higher temperature variation; For those reasons, more heavily insulated walls and roofs could be considered. Their effects on the interior climate and dehumidification load are however not that large. For the floor, no insulation should be added, and it could be considered to replace the leca layer with standard gravel. This will visibly reduce the temperature variations over the year. All in all however, none of these thermal measures have a great impact on the dehumidification load. To reduce the dehumidification load, only one strong solution exists: a more airtight building. The focus in the new design should therefore go to a construction method allowing for a very

Christensen, JØrgen Erik; Janssen, Hans

2010-01-01

65

Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review  

International Nuclear Information System (INIS)

Highlights: • Little study reviews the load shifting control using different facilities. • This study reviews load shifting control using building thermal mass. • This study reviews load shifting control using thermal energy storage systems. • This study reviews load shifting control using phase change material. • Efforts for developing more applicable load shifting control are addressed. - Abstract: For decades, load shifting control, one of most effective peak demand management methods, has attracted increasing attentions from both researchers and engineers. Different load shifting control strategies have been developed when diverse cold thermal energy storage facilities are used in commercial buildings. The facilities include building thermal mass (BTM), thermal energy storage system (TES) and phase change material (PCM). Little study has systematically reviewed these load shifting control strategies and therefore this study presents a comprehensive review of peak load shifting control strategies using these thermal energy storage facilities in commercial buildings. The research and applications of the load shifting control strategies are presented and discussed. The further efforts needed for developing more applicable load shifting control strategies using the facilities are also addressed

66

Electrochemical hydrogen Storage Systems  

International Nuclear Information System (INIS)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

67

The vibration measurements at the photon factory storage ring building  

International Nuclear Information System (INIS)

The Photon Factory is a 2.5 GeV electron storage ring and has been operating since 1982 as a dedicated SR source. At the Photon Factory, we have been pursuing the various sources of the beam instabilities which deteriorated the SR beam quality in the wide frequency range. Some of the sources were the vibrations of magnets and floor of the ring tunnel, temperature change of the cooling water and the elongation of the storage ring building roof due to sunshine that induced the diurnal motion of the SR beam axis. This article presents the results of the vibration measurements that have been performed at the Photon Factory storage ring building. (1) The vibrations of the ring tunnel floor and the experimental hall floor, comparing with the vibration of the ground surrounding the storage ring building, are same order in the 1 ? 5 Hz range, and 1/3 ? 1/5 in the 5 ? 100 Hz range, in the vertical and the horizontal direction. (2) The effects of the vibration arising from the operating eight air-conditioners can be seen in the Fourier spectrum of the vibration of the ring tunnel floor, experimental floor, Q-magnets and BPM vacuum duct. (3) The vibrations of the Q-magnet and girder at frequencies near their fundamental resonant frequencies have been amplified 100 limes in the lateral direction comparing to the floor vibration. (4) Correlation between the vibration of the BPM vacuum duct and the vibration of the electron beam motion is unknown for the lack of the precise data. (authors)

68

Analysis of ice cool thermal storage for a clinic building in Kuwait  

International Nuclear Information System (INIS)

In Kuwait, air conditioning (AC) systems consume 61% and 40% of the peak electrical load and total electrical energy, respectively. This is due to a very high ambient temperature for the long summer period extended from April to October and the low energy cost. This paper gives an overview of the electrical peak and energy consumption in Kuwait, and it has been found that the average increase in the annual peak electrical demand and energy consumption for the year 1998-2002 was 6.2% and 6.4%, respectively. One method of reducing the peak electrical demand of AC systems during the day period is by incorporating an ice cool thermal storage (ICTS) with the AC system. A clinic building has been selected to study the effects of using an ICTS with different operation strategies such as partial (load levelling), partial (demand limiting) and full storage operations on chiller and storage sizes, reduction of peak electrical demand and energy consumption of the chiller for selected charging and discharging hours. It has been found that the full storage operation has the largest chiller and storage capacities, energy consumption and peak electrical reduction. However, partial storage (load levelling) has the smallest chiller and storage capacities and peak electrical reduction. This paper also provides a detailed comparison of using ICTS operating strategies with AC and AC systems without ICTS

69

Monitored Retrievable Storage conceptual system study: transportable storage casks  

International Nuclear Information System (INIS)

Conceptual designs of three Monitored Retrievable Storage (MRS) cask storage facilities have been prepared along with an estimate of life cycle costs for each. The designs are for two all spent fuel storage facilities and one high-level waste and transuranic waste facility with capacities of 15,000 equivalent metric tons of uranium (MTU) and 72,000 equivalent MTU. These designs were developed using criteria and assumptions provided by PNL. Each storage facility consists of a generic Receiving and Handling Facility (designed by Kaiser Engineers) with modifications for storage cask handling (and unloading damaged casks), on-site handling and transportation equipment (low-bed trailer and tractor, and mobile crane), a storage facility consisting of an array of concrete storage pads, and the support facilities and equipment (security, utilities, etc.) needed to maintain facility operations. The high-level waste and transuranic waste storage facility includes a prefabricated concrete storage building for the contact-handled transuranic waste received. Detailed cost estimates have been developed for these facilities which include costs for construction, operation and decommissioning for the 15,000 MTU capacity facility. Total costs and present worth costs in mid-1983 dollars for these facilities have been estimated. In addition, costs have been developed for the incremental expansion of these facilities to a 72,000 MTU storage capacity. 3 references, 17 figures, 4 tablesty. 3 references, 17 figures, 4 tables

70

Final Safety Analysis Document for Building 693 Chemical Waste Storage Building at Lawrence Livermore National Laboratory  

International Nuclear Information System (INIS)

This Safety Analysis Document (SAD) for the Lawrence Livermore National Laboratory (LLNL) Building 693, Chemical Waste Storage Building (desipated as Building 693 Container Storage Unit in the Laboratory's RCRA Part B permit application), provides the necessary information and analyses to conclude that Building 693 can be operated at low risk without unduly endangering the safety of the building operating personnel or adversely affecting the public or the environment. This Building 693 SAD consists of eight sections and supporting appendices. Section 1 presents a summary of the facility designs and operations and Section 2 summarizes the safety analysis method and results. Section 3 describes the site, the facility desip, operations and management structure. Sections 4 and 5 present the safety analysis and operational safety requirements (OSRs). Section 6 reviews Hazardous Waste Management's (HWM) Quality Assurance (QA) program. Section 7 lists the references and background material used in the preparation of this report Section 8 lists acronyms, abbreviations and symbols. Appendices contain supporting analyses, definitions, and descriptions that are referenced in the body of this report

71

PC-Cluster based Storage System Architecture for Cloud Storage  

CERN Document Server

Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low cost PC cluster based storage server is configured to be activated for large amount of data to provide cloud users. Moreover, one of the contributions of this system is proposed an analytical model using M/M/1 queuing network model, which is modeled on intended architecture to provide better response time, utilization of storage as well as pending time when the system is running. According to the analytical result on experimental testing, the storage can be utilized more than 90% of storage space. In this paper, two parts...

Yee, Tin Tin

2011-01-01

72

Building an organic block storage service at CERN with Ceph  

Science.gov (United States)

Emerging storage requirements, such as the need for block storage for both OpenStack VMs and file services like AFS and NFS, have motivated the development of a generic backend storage service for CERN IT. The goals for such a service include (a) vendor neutrality, (b) horizontal scalability with commodity hardware, (c) fault tolerance at the disk, host, and network levels, and (d) support for geo-replication. Ceph is an attractive option due to its native block device layer RBD which is built upon its scalable, reliable, and performant object storage system, RADOS. It can be considered an "organic" storage solution because of its ability to balance and heal itself while living on an ever-changing set of heterogeneous disk servers. This work will present the outcome of a petabyte-scale test deployment of Ceph by CERN IT. We will first present the architecture and configuration of our cluster, including a summary of best practices learned from the community and discovered internally. Next the results of various functionality and performance tests will be shown: the cluster has been used as a backend block storage system for AFS and NFS servers as well as a large OpenStack cluster at CERN. Finally, we will discuss the next steps and future possibilities for Ceph at CERN.

van der Ster, Daniel; Wiebalck, Arne

2014-06-01

73

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

Energy Technology Data Exchange (ETDEWEB)

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15

74

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

International Nuclear Information System (INIS)

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies

75

Collinear holographic data storage system  

Science.gov (United States)

Holographic data storage system is a promising candidate of the next-generation of storage equipment. However, conventional technologies (called 2-axis holography) still have essential issues for commercialization of products. In this paper, we introduce the collinear holography that can produce a small, practical data storage system more easily than conventional 2-axis holography. In this technology the information and reference beams are displayed co-axially by the same SLM. With this unique configuration the optical pickup can be placed on one side of the recording media. The special media structure uses a pre-formatted reflective layer for the focus/tracking servo and for reading address information. It also uses a dichroic mirror interlayer for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density.

Tan, Xiaodi; Lin, Xiao; Wu, Anan

2013-08-01

76

Safety evaluation of the Mixed Waste Storage Building (Building 643-43E)  

International Nuclear Information System (INIS)

A safety evaluation has been conducted for the Mixed Waste Storage Building (MWSB) at the Savannah River Site. The results of this evaluation are compared with those contained in the Burial Ground Safety Analysis Report (SAR). The MWSB will function as an interim storage facility for Resource Conservation and Recovery Act (RCRA) regulated mixed waste. It will meet all applicable standards set forth by the Environmental Protection Agency (EPA), the South Carolina Department of Health and Environment Control (SCDHEC), and Department of Energy (DOE) Orders

77

Hydrogen storage and generation system  

Science.gov (United States)

A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

2010-08-24

78

Simulation of thermocline thermal energy storage system using C  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Solar thermal power generation is a modern technology, which has already shown feasible results in the production of electricity. Thermal energy storage (TES) is a crucial element in solar energy applications, which includes the increase of building thermal capacity, solar water heating systems for domestic use, and Concentrated Solar Thermal power plants for electricity generation. Economic, efficient and reliable thermal energy storage systems are a key need of solar thermal power plants, i...

Meseret Tesfay; Meyyappan Venkatesan

2013-01-01

79

Integrated Building Management System (IBMS)  

Energy Technology Data Exchange (ETDEWEB)

This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

Anita Lewis

2012-07-01

80

Large energy storage systems handbook  

CERN Document Server

In the current push to convert to renewable sources of energy, many issues raised years ago on the economics and the difficulties of siting energy storage are once again being raised today. When large amounts of wind, solar, and other renewable energy sources are added to existing electrical grids, efficient and manageable energy storage becomes a crucial component to allowing a range of eco-friendly resources to play a significant role in our energy system. In order to fulfill our intended goal of diminishing dependence on non-renewable sources of energy and reducing our carbon footprint, we

Barnes, Frank S

2011-01-01

 
 
 
 
81

Power systems energy storage  

International Nuclear Information System (INIS)

The capacitor bank for Nova was completed during the past year. At the beginning of 1984, the Nova capacitor bank was capable of supporting 8 of Nova's 10 arms. During the year, the Novette capacitor bank was moved to the Nova laser facility. In addition, the capacitor bank was expanded to accommodate the additional 31.5- and 46.0-cm amplifiers. The Nova power conditioning control system is divided into three major areas: pulsed-power, system-timing, and facility controls. The majority of all pulsed-power and system-timing controls were completed during the year and installed on Nova. Much of the facility monitoring hardware has been installed, and the software development has begun. The Nova oscillator controls front-end processor (FEP) was moved from the Nova MOR to the system interconnect room with other power conditioning FEPs. This allowed us to easily implement communications to the Nova VAXs through the multiport memory. This is a change from the planned Novanet connection. The decided to connect to the multiport to minimize software development and to meet time constraints

82

Storage monitoring system - 1997  

International Nuclear Information System (INIS)

Sandia National Laboratories has several ongoing projects in the area of nuclear materials management. These projects establish a core capability in monitoring stored nuclear materials. The overarching goal of these projects is to get the right sensor information to the right user to enhance the safety, security and to verify the legitimacy of use of stored nuclear materials. An effort has been initiated to merge these projects into a common system. This paper provides an overview of several of these projects and the integration activities between them

83

INTEGRATED HYDROGEN STORAGE SYSTEM MODEL  

Energy Technology Data Exchange (ETDEWEB)

Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride makes it difficult to remove the heat of reaction, especially in the relatively short target refueling times, see Attachment 3. This document describes a detailed numerical model for general metal hydride beds that couples reaction kinetics with heat and mass transfer, for both hydriding and dehydriding of the bed. The detailed model is part of a comprehensive methodology for the design, evaluation and modification of hydrogen storage systems. In Hardy [2007], scoping models for reaction kinetics, bed geometry and heat removal parameters are discussed. The scoping models are used to perform a quick assessment of storage systems and identify those which have the potential to meet DOE performance targets. The operational characteristics of successful candidate systems are then evaluated with the more detailed models discussed in this document. The detailed analysis for hydrogen storage systems is modeled in either 2 or 3-dimensions, via the general purpose finite element solver COMSOL Multiphysics{reg_sign}. The two-dimensional model serves to provide rapid evaluation of bed configurations and physical processes, while the three-dimensional model, which requires a much longer run time, is used to investigate detailed effects that do not readily lend themselves to two-dimensional representations. The model is general and can be adapted to any geometry or storage media. In this document, the model is applied to a modified cylindrical shell and tube geometry with radial fins perpendicular to the axis, see Figures 4.1-1 and 4.1-2. Sodium alanate, NaAlH{sub 4}, is used as the hydrogen storage medium. The model can be run on any DOS, LINUX or Unix based system.

Hardy, B

2007-11-16

84

Techno-economic and social analysis of energy storage for commercial buildings  

International Nuclear Information System (INIS)

Highlights: • Techno-economical and social analysis of energy storage is conducted for commercial buildings. • Methodologies for demand analysis, technical, economical and social evaluations are developed. • An illustrative example is analyzed for three kinds of energy storage systems. - Abstract: Techno-economical and social evaluation methodologies for energy storage systems applied for commercial buildings are presented in this paper. The demand analysis methodology is used to determine power rating and capacity. The technical and economical evaluations are described to analyze the techno-economic feasibility by the financial indices: net present value, internal rate of return, and initial investment payback period. Other benefits, including improved power quality/reliability, improved utilization of grid assets, and reduced greenhouse gas and air pollutant emissions, are estimated in a social evaluation. Finally, an illustrative example combining the measured load data and the current economic parameters is analyzed for three scenarios: 6.5 kW/12.7 kW h lead–acid battery, 5.4 kW/12.4kW h sodium–sulfur battery and 5.15 kW/10.4kW h lithium ion battery for the same peak shaving demand 4.9 kW and a two-hour discharge. The results and discussion of the abovementioned examples show that all three typical battery energy storage technologies are technically feasible, however, investment in sodium–sulfur and lithium ion battery for commercial buildings energy storage should be done with caution, as lead–acid battery systems are the more economic choice at this time. However, systems with lithium ion batteries provide the maximum social benefits due to their high cycle efficiency. Lastly, the standard discount rate with the largest absolute value of sensitivity coefficient has the biggest influence on the net present value through the sensitivity analysis

85

Weather-predicted control of building free cooling system  

International Nuclear Information System (INIS)

In this paper, the optimization of a weather-predicted free cooling system combined with heat storage is shown. The method of incorporating weather forecasts into the control system is presented. The regime of operation was selected and optimized based on free cooling energy and the required temperature parameters of a building's indoor environment, using variable flow rate control through the heat storage. The savings achieved by optimal operation compared to steady state operation were analyzed. The parametric analysis of optimal system operation was done for different outdoor and indoor environment parameters and for different heat storage construction parameters. The results showed a significant influence of system operation control on system performance.

86

Multi personal computer storage system. The solution of PACS storage  

International Nuclear Information System (INIS)

Objective: According to the characteristics of digital medicine and demand of digitized management in hospital, the authors establish a storage system which is cheap, highly expansible, and reliable. Methods: The multi personal computer storage system (MPCSS) was constructed by assembling the hardware and software. The image data were archived from major server to storage PC by using NEUSOFT-PACS archiving manage system and backup on storage PC. The authors simulated the situation that the data on storage PC was lost and restored the data. The authors also expanded the storage system to enlarge its capacity. Results: Average transfer rate from MPCSS was 27.7 Mbit/s(1 byte = 8 bit); average cost for this system was 74 RMB/G; six cases in the 187 repeated reading of 100 patients failed. MPCSS can store backup and restore the image data, and can expand the storage size. Conclusion: MPCSS is very cheap compared with other high capacity systems or devices. It is feasible and suitable for digital image storage

87

NASA Langley Research Center's distributed mass storage system  

Science.gov (United States)

There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.

Pao, Juliet Z.; Humes, D. Creig

1993-01-01

88

Parametric Study on the Dynamic Heat Storage Capacity of Building Elements  

DEFF Research Database (Denmark)

In modern, extensively glazed office buildings, due to high solar and internal loads and increased comfort expectations, air conditioning systems are often used even in moderate and cold climates. Particularly in this case, passive cooling by night-time ventilation seems to offer considerable potential. However, because heat gains and night ventilation periods do not coincide in time, a sufficient amount of thermal mass is needed in the building to store the heat. Assuming a 24 h-period harmonic oscillation of the indoor air temperature within a range of thermal comfort, the analytical solution of onedimensional heat conduction in a slab with convective boundary condition was applied to quantify the dynamic heat storage capacity of a particular building element. The impact of different parameters, such as slab thickness, material properties and the heat transfer coefficient was investigated, as well as their interrelation. The potential of increasing thermal mass by using phase change materials (PCM) was estimated assuming increased thermal capacity. The results show a significant impact of the heat transfer coefficient on heat storage capacity, especially for thick, thermally heavy elements. The storage capacity of a 100 mm thick concrete slab was found to increase with increasing heat transfer coefficients as high as 30 W/m2K. In contrast the heat storage capacity of a thin gypsum plaster board was found to be constant when the heat transfer coefficient exceeded 3 W/m2K. Additionally, the optimal thickness of an element depended greatly on the heat transfer coefficient. For thin, light elements a significant increase in heat capacity due to the use of PCMs was found to be possible. The present study shows the impact and interrelation of geometrical and physical parameters which appreciably influence the heat storage capacity of building elements.

Artmann, Nikolai; Manz, H.

2007-01-01

89

Analysis and sizing of thermal energy storage in combined heating, cooling and power plants for buildings  

International Nuclear Information System (INIS)

Highlights: ? Novel method to estimate the contribution of thermal energy storage in CHCP plants. ? Simple and accurate analysis of contributions of thermal storage. ? Application to the assessment and optimal sizing of thermal storage in CHCP plants. ? Thermal storage increases efficiency, coverage and economic benefit. ? Thermal storage allows increasing efficient operation of the plant. - Abstract: Thermal energy storage (TES) can lead to significant energy savings and economic benefits in combined heating, cooling and power plants (CHCPs) for buildings in the tertiary sector. However, their complex interactions with the rest of the CHCP system make their adequate sizing difficult without using extensive and detailed simulations. The authors have developed a new method to evaluate the thermal contribution of TES based on simple procedures. Comparisons with detailed simulations for a range of situations confirm the ability of this method to predict the effect of TES on CHCP systems with good approximation, as well as to find the optimal size in a relatively simple manner and with few required data. The case studies show a strong dependence of the TES contribution on the demands profile and the operation strategy. However, adequately sized TES are proven to bring relevant energy savings as well as economic profit to CHCP plants. In this paper, sizing procedures are provided to find the optimal volume both in terms of thermodynamic efficiency and of economic

90

APS storage ring vacuum system  

International Nuclear Information System (INIS)

The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs

91

Grid Converters for Stationary Battery Energy Storage Systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The integration of renewable energy sources in the power system, with high percentage, is a well known challenge nowadays. Power sources like wind and solar are highly volatile, with uctuations on various time scales. One long term solution is to build a continentwide or worldwide supergrid. Another solution is to use distributed energy storage units, and create virtual power plants. Stationary energy storage is a complementary solution, which can postpone the network expansion and can be opt...

Trintis, Ionut

2011-01-01

92

Grid Converters for Stationary Battery Energy Storage Systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The integration of renewable energy sources in the power system, with high percentage, is a well known challenge nowadays. Power sources like wind and solar are highly volatile, with uctuations on various time scales. One long term solution is to build a continentwide or worldwide supergrid. Another solution is to use distributed energy storage units, and create virtual power plants. Stationary energy storage is a complementary solution, which can postpone the network expansion and can be opt...

Trintis, Ionut

2012-01-01

93

SIMWEST - A simulation model for wind energy storage systems  

Science.gov (United States)

This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.

Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.

1978-01-01

94

State of the art thermal energy storage solutions for high performance buildings  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this thesis, the general thermal energy storage solutions for high performance buildings have been comprehensively reviewed. Based on the properties of storage material, the thermal storage solutions can be classified into sensible, latent and thermochemical heat storages. Their categories, characteristics and certain applications have been systematically introduced. Special emphases are put on the latent thermal storage technologies. Different classifications of phase change materials (PC...

Cao, Sunliang

2010-01-01

95

Advanced storage concepts for solar and low energy buildings, IEA-SHC Task 32. Slutrapport  

Energy Technology Data Exchange (ETDEWEB)

This report reports on the results of the activities carried through in connection with the Danish part of the IEA SHC Task 32 project: Advanced Storage Concepts for Solar and Low Energy Buildings. The Danish involvement has focused on Subtask C: Storage Concepts Based on Phase Change Materials and Subtask D: Storage Concepts Based on Advanced Water Tanks and Special Devices. The report describes activities concerning heat-of-fusion storage and advanced water storage. (BA)

Schultz, J.M.; Andersen, Elsa; Furbo, S.

2008-01-15

96

ATLAS Nightly Build System Upgrade  

CERN Document Server

The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nigh...

Dimitrov, G; The ATLAS collaboration; Simmons, B; Undrus, A

2013-01-01

97

An energy self-sufficient public building using integrated renewable sources and hydrogen storage  

International Nuclear Information System (INIS)

The control of the use of fossil fuels, major cause of greenhouse gas emissions and climate changes, in present days represents one of Governments' main challenges; particularly, a significant energy consumption is observed in buildings and might be significantly reduced through sustainable design, increased energy efficiency and use of renewable sources. At the moment, the widespread use of renewable energy in buildings is limited by its intrinsic discontinuity: consequently integration of plants with energy storage systems could represent an efficient solution to the problem. Within this frame, hydrogen has shown to be particularly fit in order to be used as an energetic carrier. In this aim, in the paper an energetic, economic and environmental analysis of two different configurations of a self-sufficient system for energy production from renewable sources in buildings is presented. In particular, in the first configuration energy production is carried out by means of photovoltaic systems, whereas in the second one a combination of photovoltaic panels and wind generators is used. In both configurations, hydrogen is used as an energy carrier, in order to store energy, and fuel cells guarantee its energetic reconversion. The analysis carried out shows that, although dimensioned as a stand-alone configuration, the system can today be realized only taking advantage from the incentivizing fares applied to grid-connected systems, that are likely to be suspended in the next future. In such case, it represents an interesting investment, with capital returns in about 15 years. As concerns economic sustainability, in fact, the analysis shows that the cost of the energy unit stored in hydrogen volumes, due to the not very high efficiency of the process, presently results greater than that of directly used one. Moreover, also the starting fund of the system proves to be very high, showing an additional cost with respect to systems lacking of energy storage equal to about 50%. From the above, it can be deduced that, in the aim to obtain a quick, effective penetration of hydrogen into the market, it is at the moment indispensable to enact incentivizing policies, attributing to hydrogen production fares able to cover the additional costs due to its production, storage and reconversion. - Highlights: ? We present a self-sufficient system for renewable energy production in buildings. ? PV and eolic plants are integrated with electrolyzer, storage system and fuel cells. ? We analyze two configurations of the system: only PV panels or with wind generators. ? We compare wind generators with PV panels in relation to Italian Government fares. ? We carry out the energetic, economic and environmental analysis of the systems

98

Fiberglass underground petroleum storage systems  

International Nuclear Information System (INIS)

Fiberglass Reinforced Plastic (FRP) products have been in use for many years in a wide variety of products and markets. The automotive, marine, military, chemical, and petroleum markets have made extensive use of FRP. Today, over 300,000 FRP tanks and over 40,000,000 feet of FRP pipe are in service in petroleum marketing as well as industrial and commercial storage applications. In the early 1960's the American Petroleum Institute invited the FRP industry to design FRP underground tanks to solve their corrosion caused underground leaker problems. The challenge was accepted and in 1965 FRP tanks were introduced to the petroleum storage marketplace. FRP pipe, specifically designed for underground petroleum use, was Underwriter's Laboratories tested and listed and introduced in 1968. These fiberglass tanks and pipe have a 25 year perfect record against both internal and external corrosion. The FRP tank and pipe performance record has been outstanding. Less than 1/2 of 1% have ever been involved in an in-ground failure. When first introduced, FRP tanks carried an initial cost premium of 50 to 100% over unprotected steel. Since all Underground Storage Tank (UST) systems must be corrosion protected, initial FRP costs are now competitive with corrosion protected steel

99

Characterization of the 309 building fuel transfer pit and storage basin  

International Nuclear Information System (INIS)

This document identifies radiological, chemical and physical conditions inside the Fuel Transfer Pit and Fuel Storage Basins. These spaces are located inside the Plutonium Recycle Test Reactor structure (309 Building.) The fuel handling and storage feature of the PRTR were primarily located in these spaces. The conditions were assessed as part of overall 309 Building transition

100

Technical and economic assessment of storage systems for spent fuel from commercial LWRs  

International Nuclear Information System (INIS)

The objective of the study was to examine the technical and economic aspects of the cask storage system for storing spent fuel in transport/storage casks in Japan, and to compare them with those of the pool storage system. The scenarios for the transport and storage of spent fuel, and the main characteristics of spent fuel, were established as the basic conditions for the present study. On the basis of these conditions, conceptual designs, safety analyses and cost estimations of the spent fuel transport/storage casks and the storage facilities were carried out. Data were prepared for the pool storage system based on the same conditions. The cask storage system was then examined from the technical and economic viewpoint and a comparison made with the pool storage system. It was assumed that the transport/storage casks which had been developed and licensed in Europe and the United States of America would be applicable to Japan. In the present study, conceptual designs of the transport/storage casks were made on the basis of the capacity of the existing cranes at the reactor building. With regard to the safety (in particular, shielding) and economic aspects, conceptual designs of a trench system using truck cranes and an individual shielding type storage system were made for AR storage. For AFR storage, a conceptual design of a simple concrete building was made. The major results of a shielding analysis and seismic safety analyses are given. An economic assessment of thes are given. An economic assessment of the spent fuel management costs for the cask storage system and the pool storage system for AR storage of 500 t U and AFR storage of 3000 t U revealed that the costs for the cask storage system were lower than those for the pool storage system. (author). 3 figs, 3 tabs

 
 
 
 
101

Annual Collection and Storage of Solar Energy for the Heating of Buildings, Report No. 3. Semi-Annual Progress Report, August 1977 - January 1978.  

Science.gov (United States)

This report is part of a series from the Department of Energy on the use of solar energy in heating buildings. Described here is a new system for year around collection and storage of solar energy. This system has been operated at the University of Virginia for over a year. Composed of an underground hot water storage system and solar collection,…

Beard, J. Taylor; And Others

102

Energy Production System Management - Renewable energy power supply integration with Building Automation System  

Energy Technology Data Exchange (ETDEWEB)

Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the ''heart and soul'' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems. (author)

Figueiredo, Joao [Centre of Mechatronics Engineering - CEM/Institut of Mechanical Engineering - IDMEC, University of Evora, R. Romao Ramalho, 59, 7000-671 Evora (Portugal); Martins, Joao [Centre of Technology and Systems/Faculdade de Ciencias e Tecnologia, Universidade Nova Lisboa, 1049-001 Lisboa (Portugal)

2010-06-15

103

Electricity storage in island systems  

International Nuclear Information System (INIS)

France's 'electric islands' are the overseas departments and Corsica that have small, isolated grids in zones which are not connected with the continental grid (ZNI). Renewable, intermittent forms of energy (especially photovoltaic) have grown exponentially on these islands since 2008, thanks to the backing of public policies for setting objectives, tax exemptions, and the rates for purchasing the electricity thus generated. However, the rapid and massive deployment of wind and solar energy may endanger the stability of the electric system: these productions are subject to rapid variations that are difficult to predict and that other local energy source are not able to compensate properly. As a consequence, a regulatory technical acceptability limit for intermittent energy has been defined to 30% above which it becomes difficult to balance the system. With controlled energy storage, it will be possible to maintain the stability and security of the electricity system. Owing to several experiments of storage of electricity, the ZNIs have become laboratories for anticipating the future difficulties that interconnected electricity grids will have to handle once the share of renewable, intermittent electricity will have risen significantly in the energy mix. (author)

104

Proton Storage Ring control system  

International Nuclear Information System (INIS)

When designing a control system for a new facility, one is faced with a bewildering array of electronic devices to use in the solution. There is, of course, no single correct solution because the constraints are Laboratory- and project-dependent. The major constraint applicable to the hardware choice for the Proton Storage Ring (PSR) control system was the limited manpower available for the design, development, and documentation of custom hardware. As a result, wherever possible, commercial components have been used that are based on recognized standards. The array of choice on the hardware side contrasts markedly with the absence of suitable commercial software products, and it is unfortunate that here there seems to be little prospect of change. The analysis of the overall system that follows will lead to a suitable hardware choice and a description of the software's structure. This paper is an overview, but more information is available

105

Proton Storage Ring control system  

Energy Technology Data Exchange (ETDEWEB)

When designing a control system for a new facility, one is faced with a bewildering array of electronic devices to use in the solution. There is, of course, no single correct solution because the constraints are Laboratory- and project-dependent. The major constraint applicable to the hardware choice for the Proton Storage Ring (PSR) control system was the limited manpower available for the design, development, and documentation of custom hardware. As a result, wherever possible, commercial components have been used that are based on recognized standards. The array of choice on the hardware side contrasts markedly with the absence of suitable commercial software products, and it is unfortunate that here there seems to be little prospect of change. The analysis of the overall system that follows will lead to a suitable hardware choice and a description of the software's structure. This paper is an overview, but more information is available.

Clout, P.; Bair, S.; Conley, A.; Ford, R.; Fuka, M.; Greene, N.

1983-01-01

106

Criticality safety studies of Building 3019 Cell 4 and in-line storage wells  

International Nuclear Information System (INIS)

New fissile material load limits for storage facilities located in Building 3019 are derived in a manner consistent with currently applicable Martin Marietta Energy Systems requirements. The limits for 233U loading are 2.00, 1.80, 1.45, and 0.19 kg/ft for hydrogen-to-233U atoms ratios of 3, 5, 10, and unrestricted, respectively. Limits were also found for 235U and 239Pu systems. The KENO-Va Monte Carlo Program and Hansen-Roach cross sections were used to derive these limits

107

Building Better Buildings: Sustainable Building Activities in California Higher Education Systems.  

Science.gov (United States)

This article outlines the activities and recommendations of California's sustainable building task force, discusses sustainable building activities in California's higher education systems, and highlights key issues that California is grappling with in its implementation of sustainable building practices. (EV)

Sowell, Arnold; Eichel, Amanda; Alevantis, Leon; Lovegreen, Maureen

2003-01-01

108

Didactic model of the high storage system  

Directory of Open Access Journals (Sweden)

Full Text Available Purpose: The continuous progress in Computer Integrated Manufacturing (CIM field with automatic storing systems is broadening the range of education process for engineers in future. This document describes the newest didactic station integrated witch a Modular Production System (MPS model [1, 2, 3]. It is a module of high storage. This arrangement is the perfect didactic item for students.Design/methodology/approach: The main reason, why the laboratory position, we have mentioned, has been created is brodening the students knowlegde’s range. To achive this task the warehouse has been made from really industrial elements. All manipulator s axis were building from different types of transmissions. Findings: During the work with warehouse there has been prepared the new algorithm which controlls the linear drive. Besides that there has been created brand new standards in engineers education, which are based on the described warehouse. Research limitations/implications: The main target of the didactic activity of Institute of Engineering Processes Automation and Integrated Manufacturing Systems is broden the loboratory base. That’s the reason why now there already has been building another laboratory position, which is based on Fanuc manipulator.Practical implications: The algorithm of Pneu-Stat steering hasn’t been finished yet, but when it has been done it can be used in industrial aplicationsOriginality/value: This paper describes the new didactic station with innovational steering algorithm [4, 5].

J. ?wider

2006-04-01

109

Management of Data Replication for PC Cluster-based Cloud Storage System  

CERN Document Server

Storage systems are essential building blocks for cloud computing infrastructures. Although high performance storage servers are the ultimate solution for cloud storage, the implementation of inexpensive storage system remains an open issue. To address this problem, the efficient cloud storage system is implemented with inexpensive and commodity computer nodes that are organized into PC cluster based datacenter. Hadoop Distributed File System (HDFS) is an open source cloud based storage platform and designed to be deployed in low-cost hardware. PC Cluster based Cloud Storage System is implemented with HDFS by enhancing replication management scheme. Data objects are distributed and replicated in a cluster of commodity nodes located in the cloud. This system provides optimum replica number as well as weighting and balancing among the storage server nodes. The experimental results show that storage can be balanced depending on the available disk space, expected availability and failure probability of each node ...

Myint, Julia

2011-01-01

110

Systems analysis of thermal storage  

Science.gov (United States)

Analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. Thermal storage concepts were evaluated for a liquid metal receiver. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts studied, include ground-mounted thermal storage for parabolic dishes with Stirling engines.

Copeland, R. J.

1981-08-01

111

Advances in information storage systems, v.8  

CERN Document Server

This volume covers friction-induced vibration, the influence of actuator-bearing grease composition, wear measurements for proximity recording heads, characteristics of a suspension assembly, design and analysis of the HDD Servo System, reluctance torque reduction, etc. It is organized into three parts: Mechanics and Tribology for Data Storage Systems; Dynamics and Controls for Data Storage Systems; and Electric Motors for Data Storage Systems.

Bhushan, Bharat

1998-01-01

112

Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)  

International Nuclear Information System (INIS)

The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure

113

Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)  

Energy Technology Data Exchange (ETDEWEB)

The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

PICKETT, W.W.

2000-09-22

114

Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building  

International Nuclear Information System (INIS)

The Spent Nuclear Fuel (SNF) Canister Storage Building (CSB) is the interim storage facility for the K-Basin SNF at the US. Department of Energy (DOE) Hanford Site. The SNF is packaged in multi-canister overpacks (MCOs). The MCOs are placed inside transport casks, then delivered to the service station inside the CSB. At the service station, the MCO handling machine (MHM) moves the MCO from the cask to a storage tube or one of two sample/weld stations. There are 220 standard storage tubes and six overpack storage tubes in a below grade reinforced concrete vault. Each storage tube can hold two MCOs

115

Autonomic Management in a Distributed Storage System  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This thesis investigates the application of autonomic management to a distributed storage system. Effects on performance and resource consumption were measured in experiments, which were carried out in a local area test-bed. The experiments were conducted with components of one specific distributed storage system, but seek to be applicable to a wide range of such systems, in particular those exposed to varying conditions. The perceived characteristics of distributed storage ...

Tauber, Markus

2010-01-01

116

Hybrid Energy Storage System With A Special Battery Charger For Wind Power System  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Generation systems including wind turbine generators, photovoltaic panels and storage batteries are used to build hybrid stand-alone generation systems that are reliable, economic and efficient. Battery energy storage is the current and typical means of smoothing wind or solar power generation fluctuations and improving the power quality. A new battery charger which is a buck-type power converter specially for the wind power system is developed. The converter provides pulsating charging curre...

Dipu Varghese; George, Stany E.

2014-01-01

117

Energy storage and wind energy conversion systems  

International Nuclear Information System (INIS)

The demand imposed by the variability of wind power input have pushed the technical performance and cost requirements for energy storage to the forefront. In principle, wind turbine generators can be integrated with almost any kind of energy storage technology. However, the most appropriate energy storage system depends on the system size and the type of energy being delivered. Because most commercial wind turbines are designed to deliver electrical power, the vast majority of systems that do incorporate energy storage use batteries. Large systems using batteries have not been shown to be viable. Up to now, most efforts and success in reliably and economically integrating storage with wind turbine generators have been concerned with relatively small power plants, less than about 1 kW. Very small wind/storage systems, where the wind turbine is dedicated to charging conventional lead-acid batteries, currently dominate the market for wind power/energy storage hybrid power systems. These systems are well developed and proven. So-called 'village scale' hybrid power generating systems using energy storage (about 5 kW to 100 kW capacity) are now the subject of considerable product development and commercialization. The key technical problem for off-grid or stand-alone wind power systems of this size that must deliver well-regulated (i.e. high quality) AC power may well be to implement the most reliable and cost effective short term and highly responsive energy storage systemnd highly responsive energy storage systems (on the scale of 1 second to 10 minutes). Such storage schemes must respond effectively to the wind power fluctuations and the load demand fluctuations to maintain network stability. Pumped hydro and underground compressed air storage will probably find some applications in larger scale wind power plants where they can work with the wind power plant to deliver baseload power to the grid, however the number of applications for these systems is limited. (author) 3 figs., 1 tab., 45 refs

118

Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford  

International Nuclear Information System (INIS)

This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS)

119

Operating Experiences with an Advanced Fabric Energy Storage System  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Despite their proven track record in the cold climate countries of northern Europe, there are no reports in the research literature of experiences using advanced fabric energy storage (FES) systems in countries where cooling rather than heating is the main priority. This paper reports some of the experiences with the first known advanced FES system in Australia made over the first full calendar year of operation. It is located in a three-storey building on a university campus in Victoria a...

Fuller, R. J.

2012-01-01

120

Canister storage building (CSB) safety analysis report phase 3:safety analysis documentation supporting CSB construction  

International Nuclear Information System (INIS)

The purpose of this report is to provide an evaluation of the Canister Storage Building (CSB) design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB

 
 
 
 
121

Hydrogen storage and delivery system development  

Energy Technology Data Exchange (ETDEWEB)

Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. The purpose of this project is to develop a platform for the engineering evaluation of hydrogen storage and delivery systems with an added focus on lightweight hydride utilization. Hybrid vehicles represent the primary application area of interest, with secondary interests including such items as existing vehicles and stationary uses. The near term goal is the demonstration of an internal combustion engine/storage/delivery subsystem. The long term goal is optimization of storage technologies for both vehicular and industrial stationary uses. In this project an integrated approach is being used to couple system operating characteristics to hardware development. A model has been developed which integrates engine and storage material characteristics into the design of hydride storage and delivery systems. By specifying engine operating parameters, as well as a variety of storage/delivery design features, hydride bed sizing calculations are completed. The model allows engineering trade-off studies to be completed on various hydride material/delivery system configurations. A more generalized model is also being developed to allow the performance characteristics of various hydrogen storage and delivery systems to be compared (liquid, activated carbon, etc.). Many of the features of the hydride storage model are applicable to the development of this more generalized model.

Handrock, J.L.; Wally, K.; Raber, T.N. [Sandia National Labs., Livermore, CA (United States)

1995-09-01

122

Seasonal energy storage - PV-hydrogen systems  

Energy Technology Data Exchange (ETDEWEB)

PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

Leppaenen, J. [Neste Oy/NAPS (Finland)

1998-10-01

123

Building systems with integrity constraints  

Energy Technology Data Exchange (ETDEWEB)

Context monitoring is an approach that provides the developer with tools to manage, and communicate across personnel, application domain knowledge about properties on and relationships between objects being modeled by the software system. The approach consists of the following: elicitation (and specification) of constraints from domain experts, customers, analysts, designers and programmers using established methods; a constraint reasoning mechanism that can analyze the constraints; and, a constraint satisfiability mechanism that uses the constraints to verify their enforcement during program execution. The paper discusses the role context monitoring can play in building large systems and the work being done toward developing tools that are essential approach.

Gates, A.Q.; Fernandez, F.G.; Romo, L. [Univ. of Texas, El Paso, TX (United States)

1996-12-31

124

Effects of adding heat storage capacity in geothermal systems; Impact de reservoirs de stockage thermique sur les systemes geothermiques  

Energy Technology Data Exchange (ETDEWEB)

The use of geothermal energy to heat and air condition buildings is becoming more and more widespread throughout the world. However, the costs the drilling operations and heat pumps associated with geothermal systems are high. The aim of this study is to evaluate the impact of using thermal storage reservoirs in geothermal systems. The case of a 6000 m2 building in Montreal was studied using a basic system, without storage, and another system which had 2 buffer storage reservoirs; the system was modelled using TRNSYS. Results showed that adding two 120m3 storage reservoirs allowed the length of the wells and the capacity of the heat pumps to be reduced but did not achieve any reduction in energy consumption. The study demonstrated that the use of storage systems can lower the cost of geothermal installations; the possibility of using phase change materials for storage will be investigated in the future.

Langlois, Antoine; Bernier, Michel; Kummert, Michael [Departement de genie mecanique, Ecole Polytechnique de Montreal, Montreal, Quebec (Canada); Lagace, Jacques [Bouthillette Parizeau et associes inc., Montreal, Quebec (Canada)

2010-07-01

125

Search content via Cloud Storage System  

Digital Repository Infrastructure Vision for European Research (DRIVER)

With cloud computing growing in IT Enterprise. the importance of storing and searching files on the cloud increase. cloud storage is defined as a set of scalable data servers or chunk servers that provide computing and storage services to clients. Our research concern with searching in the file content throw cloud storage system Our research using ontology approach that can be store and retrieve files in the cloud based on its content to resolves the weaknesses that existed in Google File Sys...

Haytham Al-Feel; Mohamed Khafagy

2011-01-01

126

Building’s Refurbishment Computer Learning System with Augmented Reality  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Since 1999 Vilnius Gediminas Technical University has already introduced three e-learning Master’s degree programmes. This paper proposes a way to integrate augmented reality and computer learning systems. In order to demonstrate the integration of the above systems in building refurbishment projects, the Building Refurbishment Computer Learning System with Augmented Reality (BR-CLS-AR) has been developed. The authors of this paper participated in the project “Learning Augmented Reality G...

Kaklauskas, A.; Kutinis, M.; Kovachev, L.; Petkov, P.; Jackute, I.; Bartkiene, L.

2013-01-01

127

Compressed air energy storage system  

Science.gov (United States)

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01

128

Search content via Cloud Storage System  

Directory of Open Access Journals (Sweden)

Full Text Available With cloud computing growing in IT Enterprise. the importance of storing and searching files on the cloud increase. cloud storage is defined as a set of scalable data servers or chunk servers that provide computing and storage services to clients. Our research concern with searching in the file content throw cloud storage system Our research using ontology approach that can be store and retrieve files in the cloud based on its content to resolves the weaknesses that existed in Google File System that depends on metadata and searching only using file name Our new architecture was tested on Cloud Storage Simulator and the result shows that the new architecture has better scalability, fault tolerance and performance for searching for file content in cloud storage system.

Haytham Al-Feel

2011-11-01

129

Dry storage systems with free convection air cooling  

International Nuclear Information System (INIS)

Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

130

The CASCAD system: An SGN spent fuel dry storage facility  

International Nuclear Information System (INIS)

This paper will present SGN's dry vault spent storage system. This concept is based on the CASCAD facility, designed and built by SGN for the French Atomic Energy Commission (CEA) at Cadarache, France. Cascade has been in operation since 1990 since which time SGN has customized its storage system. Because of its extensive experience in both spent fuel assembly and dry storage of high level waste, SGN is able to design solutions fully customized to fit customers' storage requirements using proven technology. Its modular approach allows for staggered investment over a period of several years for maximum flexibility. The Cascad system meets site-specific constraints and safety requirements and is able to receive a wide range of fuels and shipping casks. Since spent fuel assemblies are stored in passive cooled pits, the system is entirely passive and therefore inherently safe. Moreover, the Cascad system allows total retrievability of spent fuel after a 50-year storage period even if the reactor building no longer exists

131

Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)  

International Nuclear Information System (INIS)

The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted in section 3.1.5 and will be tracked as part of the CSB Facility action tracking system

132

Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)  

Energy Technology Data Exchange (ETDEWEB)

The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted in section 3.1.5 and will be tracked as part of the CSB Facility action tracking system.

BAZINET, G.D.

2000-11-03

133

Advanced compressed hydrogen fuel storage systems  

International Nuclear Information System (INIS)

Dynetek was established in 1991 by a group of private investors, and since that time efforts have been focused on designing, improving, manufacturing and marketing advanced compressed fuel storage systems. The primary market for Dynetek fuel systems has been Natural Gas, however as the automotive industry investigates the possibility of using hydrogen as the fuel source solution in Alternative Energy Vehicles, there is a growing demand for hydrogen storage on -board. Dynetek is striving to meet the needs of the industry, by working towards developing a fuel storage system that will be efficient, economical, lightweight and eventually capable of storing enough hydrogen to match the driving range of the current gasoline fueled vehicles

134

Thermo Active Building Systems Using Building Mass To Heat and Cool  

DEFF Research Database (Denmark)

Using the thermal storage capacity of the concrete slabs between each floor in multistory buildings to heat or cool is a trend that began in the early 1990s in Switzerland.1,2 Pipes carrying water for heating and cooling are embedded in the center of the concrete slab. In central Europe (Germany, Austria, Netherlands, etc.), this type of system has been installed in a significant number of new office buildings since the late 1990s. The trend is spreading to other parts of the world (the rest of Europe, North America and Asia).

Olesen, Bjarne W.

2012-01-01

135

Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building  

Energy Technology Data Exchange (ETDEWEB)

This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

Lata

1996-09-26

136

Spent Nuclear Fuel project stage and store K basin SNF in canister storage building functions and requirements. Revision 1  

Energy Technology Data Exchange (ETDEWEB)

This document establishes the functions and requirements baseline for the implementation of the Canister Storage Building Subproject. The mission allocated to the Canister Storage Building Subproject is to provide safe, environmentally sound staging and storage of K Basin SNF until a decision on the final disposition is reached and implemented

Womack, J.C.

1995-10-24

137

Spent Nuclear Fuel project stage and store K basin SNF in canister storage building functions and requirements. Revision 1  

International Nuclear Information System (INIS)

This document establishes the functions and requirements baseline for the implementation of the Canister Storage Building Subproject. The mission allocated to the Canister Storage Building Subproject is to provide safe, environmentally sound staging and storage of K Basin SNF until a decision on the final disposition is reached and implemented

138

Thermal energy storage for building heating and cooling applications. Quarterly progress report, April--June 1976  

Energy Technology Data Exchange (ETDEWEB)

This is the first in a series of quarterly progress reports covering activities at ORNL to develop thermal energy storage (TES) technology applicable to building heating and cooling. Studies to be carried out will emphasize latent heat storage in that sensible heat storage is held to be an essentially existing technology. Development of a time-dependent analytical model of a TES system charged with a phase-change material was started. A report on TES subsystems for application to solar energy sources is nearing completion. Studies into the physical chemistry of TES materials were initiated. Preliminary data were obtained on the melt-freeze cycle behavior and viscosities of sodium thiosulfate pentahydrate and a mixture of Glauber's salt and Borax; limited melt-freeze data were obtained on two paraffin waxes. A subcontract was signed with Monsanto Research Corporation for studies on form-stable crystalline polymer pellets for TES; subcontracts are being negotiated with four other organizations (Clemson University, Dow Chemical Company, Franklin Institute, and Suntek Research Associates). Review of 10 of 13 unsolicited proposals received was completed by the end of June 1976.

Hoffman, H.W.; Kedl, R.J.

1976-11-01

139

Sacramento Municipal Utility district's interim onsite storage building for low level radioactive waste  

International Nuclear Information System (INIS)

In order to meet current and anticipated needs for the low level radwaste management program at the Rancho Seco Nuclear Generating Station, the Sacramento Municipal Utility District has a design and construction program underway which will provide an onsite interim storage facility that can be expanded in two and one-half year increments. The design approach utilized allows capital investment to be minimized and still provides radwaste management flexibility in anticipation of delays in resolution of the nationwide long term radwaste disposal situation. The facility provides storage and material accountability for all low level radwastes generated by the plant. Wastes are segregated by radioactivity level and are stored in two separate storage areas located within one facility. Lower activity wastes are stored in a lightly shielded structure and handled by lift trucks, while the higher activity wastes are stored in a highly shielded structure and handled remotely by manual bridge crane. The layout of the structure provides for economy of operation and minimizes personnel radiation exposure. Design philosophy and criteria, building layout and systems, estimated costs and construction schedule are discussed

140

Horizontal modular dry irradiated fuel storage system  

Science.gov (United States)

A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

1988-01-01

 
 
 
 
141

Energy storage for power systems  

CERN Document Server

The supply of energy from primary sources is not constant and rarely matches the pattern of demand from consumers. Electricity is also difficult to store in significant quantities. Therefore, secondary storage of energy is essential to increase generation capacity efficiency and to allow more substantial use of renewable energy sources that only provide energy intermittently. Lack of effective storage has often been cited as a major hurdle to substantial introduction of renewable energy sources into the electricity supply network.This 2nd edition, without changing the existing structure of the

Ter-Gazarian, Andrei

2011-01-01

142

Hydrogen storage and delivery system development: Fabrication  

Energy Technology Data Exchange (ETDEWEB)

Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a newly developed fuel cell vehicle hydride storage system model will also be discussed. As an example of model use power distribution and control for a simulated driving cycle is presented. An experimental test facility, the Hydride Bed Testing Laboratory (HBTL) has been designed and fabricated. The development of this facility and its use in storage system development will be reviewed. These two capabilities (analytical and experimental) form the basis of an integrated approach to storage system design and development. The initial focus of these activities has been on hydride utilization for vehicular applications.

Handrock, J.L.; Malinowski, M.E.; Wally, K. [Sandia National Lab., Livermore, CA (United States)

1996-10-01

143

Picking a storage tank system  

International Nuclear Information System (INIS)

Across the country, aboveground storage tanks (ASTs) are replacing underground storage tanks (USTs) at many facilities. A significant percentage of managers of onsite fueling operations are opting to replace existing USTs with new aboveground storage tanks. But there are a number of major issues to consider when choosing either petroleum storage tank option, such as costs, regulations and liability. Budgetary costs associated with the installation of ASTs and USTs in the 1000- to 15,000-gallon size range are outlined. There are little or no long-term compliance costs associated with ASTs when compared to the monthly and quarterly UST costs. ASTs tend to be more cost effective for smaller tanks in the 1000- and 6000-gallon range. This is not true for 15,000-gallon steel ASTs encased in concrete, which are not readily available. USTs are more cost competitive as the tank size increases, especially when compared to field-fabricated ASTs. USTs require significant investment in compliance equipment, especially for single-walled steel tanks due to release detection and cathodic protection requirements. The main regulatory-based expenditure for many ASTs is the development and maintenance of a Spill Prevention, Control and Countermeasures (SPCC) plan

144

Biodigester as an energy storage system  

Energy Technology Data Exchange (ETDEWEB)

Electricity supply for rural and remote areas is becoming an increasing priority to developing countries. The high initial cost of renewable energy based unities usually needs an energy storage system; due its operational and even replacement cost contributes to a higher final cost. The choice of energy storage systems depends on the sort and size of adopted power supply. This paper has a main goal to introduce a renewable energy based storage system weakly explored in Brazil: biogas from anaerobic digestion. It also brings a review of the main energy storage systems applied to electrical energy generation. As reference an experiment with an adapted Indian digester of 5 m{sup 3} that produced nearly 2m{sup 3} of biogas daily. The obtained biogas met the consumption of at least 4 typical Brazilian low income households with installed load of 500 W each and was enough to replace the use of 420 Ah lead-acid batteries. (author)

Borges Neto, M.R.; Lopes, L.C.N. [Federal Institute of Education, Science and Technology of Sertao Pernambucano (IFSertao-PE), Petrolina, PE (Brazil)], Emails: rangel@cefetpet.br; Pinheiro Neto, J.S.; Carvalho, P.C.M. [Federal University of Ceara (UFC), Fortaleza, CE (Brazil). Dept. of Electrical Engineering], Emails: neto@tbmtextil.com.br, carvalho@dee.ufc.br; Silveira, G.C.; Moreira, A.P.; Borges, T.S.H. [Federal Institute of Education, Science and Technology of Ceara (IFCE), Fortaleza, CE (Brazil)], Emails: gcsilveira@cefet-ce.br, apmoreira@ifce.edu.br, thatyanys@yahoo.com.br

2009-07-01

145

Water-storage-tube systems. Final report  

Energy Technology Data Exchange (ETDEWEB)

Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

Hemker, P.

1981-12-24

146

Status of electrical energy storage systems  

Energy Technology Data Exchange (ETDEWEB)

This report presents an overview of the status of electrical storage systems in the light of the growing use of renewable energy sources and distributed generation (DG) in meeting emission targets and in the interest of the UK electricity supply industry. Examples of storage technologies, their applications and current status are examined along with technical issues and possible activities by UK industries. Details are given of development opportunities in the fields of flow cells, advanced batteries - lithium batteries, high temperature batteries, flywheels, and capacitors. Power conversion systems and system integration, the all-electric ship project, and compressed air energy storage are discussed. Opportunities for development and deployment, small scale systems, demonstration programmes, and research and development issues are considered. An outline of the US Department of Energy Storage programme is given in the Annex to the report.

NONE

2004-07-01

147

40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.  

Science.gov (United States)

...2010-07-01 2010-07-01 false Operating an underground storage tank or underground storage tank system. 280.230 Section...ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Lender Liability...

2010-07-01

148

Model-based control of renewable energy systems in buildings  

Energy Technology Data Exchange (ETDEWEB)

Issues concerning the control of renewable systems in buildings were discussed. A research project addressing the problem of supervisory control of systems with a range of heat sources combined with active and passive thermal storage at the Brocks Hill Environment Centre was described. The deployment of energy directly into the building was discussed, as well as decision processes concerning storage of energy or its rejection into the environment. The existing building, plant and control system were modeled using a commercial simulation environment and calibrated against measured data from the building. And examination of the operation of the existing control scheme revealed that significant improvements were possible. Dynamic optimization methods were used to update the supervisory control decisions at 15 minute intervals during the day. Two aspects of the system were studied: dynamic interaction of renewable energy systems with the building in order to understand the behaviour of the complete system, and an effective methodology for implementing dynamic optimized control. A simplified zone thermal model was used, with 2 dynamic temperature nodes representing air and a lumped structure node. Two dynamic heat equations were used, and all parameters and constraints were described. Models for individual components in the centre's system were developed, and a control module emulated the functions of the control system. A description of the control strategies was presented, and an optimal control strategy was developed. It was concluded that the combination of on-line modeling of the performance of the building and its systems, together with an optimization algorithm capable of devising optimal or near optimal supervisory control trajectories, is particularly effective in an application where a historical legacy of engineering experience cannot be drawn upon. The work demonstrated that improvements to a best practice control scheme can readily be achieved through the use of a detailed system model. 6 refs., 3 tabs., 12 figs.

Zhang, Y.; Hanby, V.I. [De Montfort Univ., Leicester (United Kingdom). Inst. of Energy and Sustainable Development

2005-07-01

149

Advances in information storage systems, v.6  

CERN Document Server

The series Advances in Information Storage Systems covers a wide range of interdisciplinary technical areas, related to magnetic or optical storage systems. The following nonexhaustive list is indicative of the scope of the topics: Friction, Adhesion, Wear and Lubrications, Coatings, Solid Mechanics, Air Flow, Contamination, Instrumentation, Dynamics, Shock and Vibration, Controls, Head and Suspension Design, Actuators, Spindle and Actuator Motors and Bearings, Structure of Thin Films, Corrosion, Long-Term Reliability, Materials and Processing, Manufacturing and Automation, Economics.This volu

Bhushan, Bharat

1995-01-01

150

Simulation of thermocline thermal energy storage system using C  

Directory of Open Access Journals (Sweden)

Full Text Available Solar thermal power generation is a modern technology, which has already shown feasible results in the production of electricity. Thermal energy storage (TES is a crucial element in solar energy applications, which includes the increase of building thermal capacity, solar water heating systems for domestic use, and Concentrated Solar Thermal power plants for electricity generation. Economic, efficient and reliable thermal energy storage systems are a key need of solar thermal power plants, in order to smooth out the insolation changes during intermittent cloudy weather condition or during night period, to allow the operation. To address this goal, based on the parabolic trough power plants, sensible heat storage system with operation temperature between 300°C – 390°C can be used. The goal of this research is to design TES which can produce 1MWe. In this work simulation is performed to analyze the Liquid medium STES using C. In this case different liquid medium TESs is investigated and out of all mixed-media single-tank thermocline TES is selected and designed based on the Schumann equation. In particular, this equation is numerically solved, in order to determine energy storage, at different locations and time inside the storage tank. Finally, due to their feasibility, low cost of manufacturing and maintenance are designed and sized to the minimum possible volume.

Meseret Tesfay

2013-06-01

151

ALARA Analysis for Shippingport Pressurized Water Reactor Core 2 Fuel Storage in the Canister Storage Building (CSB)  

International Nuclear Information System (INIS)

The addition of Shippingport Pressurized Water Reactor (PWR) Core 2 Blanket Fuel Assembly storage in the Canister Storage Building (CSB) will increase the total cumulative CSB personnel exposure from receipt and handling activities. The loaded Shippingport Spent Fuel Canisters (SSFCs) used for the Shippingport fuel have a higher external dose rate. Assuming an MCO handling rate of 170 per year (K East and K West concurrent operation), 24-hr CSB operation, and nominal SSFC loading, all work crew personnel will have a cumulative annual exposure of less than the 1,000 mrem limit

152

ALARA Analysis for Shippingport Pressurized Water Reactor Core 2 Fuel Storage in the Canister Storage Building (CSB)  

CERN Document Server

The addition of Shippingport Pressurized Water Reactor (PWR) Core 2 Blanket Fuel Assembly storage in the Canister Storage Building (CSB) will increase the total cumulative CSB personnel exposure from receipt and handling activities. The loaded Shippingport Spent Fuel Canisters (SSFCs) used for the Shippingport fuel have a higher external dose rate. Assuming an MCO handling rate of 170 per year (K East and K West concurrent operation), 24-hr CSB operation, and nominal SSFC loading, all work crew personnel will have a cumulative annual exposure of less than the 1,000 mrem limit.

Lewis, M E

2000-01-01

153

40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.  

Science.gov (United States)

...storage tank or underground storage tank system. (a) Operating an UST or UST system prior to foreclosure. A holder, prior to...for the daily operation of the UST or UST system. (b) Operating an UST or UST system after...

2010-07-01

154

Building for flexibility and safety in spent fuel storage  

International Nuclear Information System (INIS)

A description is given of work to be carried out at Sellafield as part of the $2000 million investment programme of British Nuclear Fuels for the 1980s. 'Project B' involves Pound360 million of work on two main facilities. Pond 5 consists of receipt, storage, decanning, remote maintenance and decontamination facilities for Magnox and CAGR spent fuel. Sixep, the site ion exchange effluent plant, will treat the effluent from Sellafield works and be used for storage of solids and fission products from pond water. (U.K.)

155

Monitored Retrievable Storage System Requirements Document  

International Nuclear Information System (INIS)

This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design

156

Preoperational test report, vent building ventilation system  

International Nuclear Information System (INIS)

This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

157

Dynamic-Type Ice Thermal Storage Systems  

Science.gov (United States)

This paper deals with reviews for research and development of a dynamic-type ice thermal storage system. This system has three main features. First, the ice thermal storage tank and the ice generator are separate. Second, ice is transported to the tank from the ice generator by water or air. Third, the ice making and melting processes are operated at the same time. Outlet water temperature from the dynamic-type ice thermal storage tank remains low for a longer time. In this paper, dynamic-Type ice thermal storage systems are divided into three parts: the ice making part, the ice transport part, and the cold energy release part. Each part is reviewed separately.

Ohira, Akiyoshi

158

Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid  

Science.gov (United States)

As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

Zheng, Menglian; Meinrenken, Christoph

2013-04-01

159

Test report : Princeton power systems prototype energy storage system.  

Energy Technology Data Exchange (ETDEWEB)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01

160

Combined solar collector and storage systems  

International Nuclear Information System (INIS)

The article discusses reasons why fossil-fuelled water heating systems are included in new houses but solar systems are not. The technology and market potential for evacuated tube systems and integral collector storage systems (ICSS) are explained. The challenge for the designers of ICSSWH has been how to reduce heat loss without compromising solar energy collection. A new concept for enhanced energy storage is described in detail and input/output data are given for two versions of ICSSWH units. A table compares the costs of ICSSWH in houses compared with other (i.e. fossil fuel) water heating systems

 
 
 
 
161

SYSTEM ORGANIZATION OF MATERIAL PROVIDING OF BUILDING  

Directory of Open Access Journals (Sweden)

Full Text Available Purpose. Development of scientific-methodical bases to the design of rational management of material streams in the field of building providing taking into account intersystem connections with the enterprises of building industry. Methodology. The analysis of last few years of functioning of building industry in Ukraine allows distinguishing a number of problems that negatively influence the steady development of building, as the component of the state economics system. Therefore the research of existent organization methods of the system of building objects providing with material resources is extremely necessary. In connection with this the article justifies the use of method of hierarchies analysis (Saati method for finding the optimal task solution of fixing the enterprises of building industry after building objects. Findings. Results give an opportunity to guidance of building organization to estimate and choose advantageous suppliers - enterprises of building industry, to conduct their rating, estimation taking into account basic descriptions, such as: quality, price, reliability of deliveries, specialization, financial status etc. Originality. On the basis of Saati method the methodologies of organization are improved, planning and managements of the reliable system of providing of building necessary material resources that meet the technological requirements of implementation of building and installation works. Practical value. Contribution to the decisions of many intricate organizational problems that are accompanied by the problems of development of building, provided due to organization of the reliable system of purchase of material resources.

A. V. R?dk?vich

2014-04-01

162

Toward Web Enhanced Building Automation Systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The emerging concept of Smart Building relies on an intensive use of sensors and actuators and therefore appears, at first glance, to be a domain of predilection for the IoT. However, technology providers of building automation systems have been functioning, for a long time, with dedicated networks, communication protocols and APIs. Eventually, a mix of different technologies can even be present in a given building. IoT principles are now appearing in buildings as a way to simplify and standa...

Bovet, Ge?ro?me; Ridi, Antonio; Hennebert, Jean

2014-01-01

163

SYSTEM ORGANIZATION OF MATERIAL PROVIDING OF BUILDING  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Purpose. Development of scientific-methodical bases to the design of rational management of material streams in the field of building providing taking into account intersystem connections with the enterprises of building industry. Methodology. The analysis of last few years of functioning of building industry in Ukraine allows distinguishing a number of problems that negatively influence the steady development of building, as the component of the state economics system. Therefore the research...

R?dk?vich, A. V.; Arutyunyan, I. A.

2014-01-01

164

Latent heat thermal energy storage tanks for space heating of buildings: Comparison between calculations and experiments  

International Nuclear Information System (INIS)

Latent heat thermal energy storage tanks, where carbon fiber brushes are inserted to improve the heat transfer rates in the phase change materials, are installed in an air conditioning system of a building as a space heating resource. The measured outlet fluid temperatures are compared with the numerical ones predicted by a previously developed three dimensional heat transfer model. The preliminary numerical results had unallowable prediction errors, which probably resulted from poor contact between the brushes and the heat transfer tubes due to an installation problem of the brushes. However, the numerical results predicted by a corrected model agree well with the experimental ones under various operating conditions. The effect of the brushes on the thermal outputs of the tanks is then investigated using the corrected model. The result shows that the brushes contribute to saving space and reducing the cost of the tanks

165

Review of Magnetic Flywheel Energy Storage Systems  

Directory of Open Access Journals (Sweden)

Full Text Available This study studies an overview of magnetic flywheel energy storage system. Energy storage is an integral part of any critical power system, as this stored energy is used to offset interruptions in the power delivered system from either a utility or an on-site generator. Magnetic flywheel as mechanical batteries using composite rotor, magnetic support bearings as well as power electronics to store electrical energy to replace stone wheel and chemical batteries has resulted in high power and energy densities. Traditionally, capacitors are used for short term storage (µs-ms and filtering, chemical batteries are used for intermediate storage (min-h and diesel fuel is used for long-term storage (h-days. Electricity generated from renewable sources, which has shown remarkable growth worldwide, can rarely provide immediate response to demand as these sources do not deliver regular supply easily adjustable to consumption needs. Thus, the growth of this decentralization production means greater network load stability problems and requires energy storage, generally using lead acid batteries as a potential solution. Finally the integration of all subsystems optimally of the magnetic flywheel system has resulted in a mechanical battery which can supply more efficient, reliable and uninterrupted power to meet the ever increasing demand of industrial machinery and automobiles.

Prince Owusu-Ansah

2014-08-01

166

RTDS modelling of battery energy storage system  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This thesis describes the development of a simplified model of a battery energy storage. The battery energy storage is part of the ABB energy storage system DynaPeaQ®. The model has been built to be run in RTDS, a real time digital simulator. Batteries can be represented by equivalent electric circuits, built up of e.g voltage sources and resistances. The magnitude of the components in an equivalent circuit varies with a number of parameters, e.g. state of charge of the battery and current f...

Rydberg, Lova

2011-01-01

167

Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.  

Energy Technology Data Exchange (ETDEWEB)

This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

2011-04-01

168

Force balanced magnetic energy storage system  

International Nuclear Information System (INIS)

A novel scheme of constructing coils suited for inductive storage system is described. By means of a force-compensating method, the reinforcement structure can be made considerably smaller than that needed for conventional coils. The economics of this system is shown to be capable of achieving savings of upwards of 40% when compared to a conventional system

169

Injection Control System of HLS Storage Ring  

CERN Document Server

The injection control system of Hefei Light Source (HLS) storage ring is a subsystem of the upgraded HLS control system, which is based upon EPICS. Three programmable logic controllers (PLCs) are used as device controllers, which control one septum modulator and four kicker modulators of HLS storage ring. An Industrial PC is used as Input/Output Controller (IOC) and it connects the PLCs with serial communication (RS232 mode) over fibre. A PC with Linux is used as operator interface (OPI), operator application are running on it. The control system was completed in July 2000. The commissioning shows that the control system is reliable and easy operational.

Liu, G; Li, W; Li Chuan; Li, K; Shang, L; Liu, Gongfa; Li, Jingyi; Li, Weimin; Li, Chuan; Li, Kaihong; Shang, Lei

2001-01-01

170

Security for cloud storage systems  

CERN Document Server

Cloud storage is an important service of cloud computing, which offers service for data owners to host their data in the cloud. This new paradigm of data hosting and data access services introduces two major security concerns. The first is the protection of data integrity. Data owners may not fully trust the cloud server and worry that data stored in the cloud could be corrupted or even removed. The second is data access control. Data owners may worry that some dishonest servers provide data access to users that are not permitted for profit gain and thus they can no longer rely on the servers

Yang, Kan

2014-01-01

171

OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS  

DEFF Research Database (Denmark)

Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral. The other model is especially designed for low flow SDHW systems based on a mantle tank.The tank design’s influence on the thermal performance of the SDHW systems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct analysis of the tank design’s influence on the thermal performance of the systems is possible. By means of the calculations design rules for the two heat storage types are proposed.

Shah, Louise Jivan; Furbo, Simon

1997-01-01

172

STORAGE OPTIMIZATION OF EDUCATIONAL SYSTEM DATA  

Directory of Open Access Journals (Sweden)

Full Text Available There are described methods used to minimize data files dimension. There aredefined indicators for measuring size of files and databases. The storage optimization processis based on selecting from a multitude of data storage models the one that satisfies thepropose problem objective, maximization or minimization of the optimum criterion that ismapped on the size of used disk memory. The paper describes different solutions that areimplemented to minimize input/output file size for a software application that manageseducational system data.

Catalin BOJA

2006-01-01

173

Thermo Active Building Systems – Using Building Mass To Heat and Cool  

DEFF Research Database (Denmark)

Using the thermal storage capacity of the concrete slabs between each floor in multistory buildings to heat or cool is a trend that began in the early 1990s in Switzerland.1,2 Pipes carrying water for heating and cooling are embedded in the center of the concrete slab. In central Europe (Germany, Austria, Netherlands, etc.), this type of system has been installed in a significant number of new office buildings since the late 1990s. The trend is spreading to other parts of the world (the rest of Europe, North America and Asia). Thermo active building systems (TABS) are primarily used for cooling multistory buildings. By activating the building mass, there is a direct heating-cooling effect. Also, because of the thermal mass, the peak load will be reduced and some of the cooling load will be transferred beyond the time of occupancy. Because these systems for cooling operate at water temperatures close to room temperature, they increase the efficiency of heat pumps, ground heat exchangers and other systems using renewable energy sources.

Olesen, Bjarne W.

2014-01-01

174

Fire hazard analysis for the fuel supply shutdown storage buildings  

International Nuclear Information System (INIS)

The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility

175

Fire hazard analysis for the fuel supply shutdown storage buildings  

Energy Technology Data Exchange (ETDEWEB)

The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

REMAIZE, J.A.

2000-09-27

176

New kinds of energy-storing building composite PCMs for thermal energy storage  

International Nuclear Information System (INIS)

Graphical abstract: In this work, 10 new kinds of BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters into gypsum, cement, diatomite, perlite and vermiculite. DSC results showed that the melting temperatures and energy storage capacities of the prepared BCPCMs are in range of about 40–55 °C and 31–126 J/g, respectively. TG investigations and thermal cycling test showed that the BCPCMs had good thermal endurance and thermal reliability. It can be also concluded that among the prepared 10 kinds materials, especially the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage applications in buildings due to the fact that they have relatively high heat storage ability. Highlights: ? New kinds BCPCMs were prepared by blending of liquid XPL and XPM esters with some building materials. ? The BCPCMs had suitable melting temperatures and energy storage capacities. ? Especially, the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage. - Abstract: Energy storing-composite phase change materials (PCMs) are significant means of thermal energy storage in buildings. Although several building composite PCMs (BCPCMs) have been developed in recent years, the additional investigations are still required to enrich the diversity of BCPCMs for solar heating and energy conservation applications in buildings. For this purpose, the present work is focused the preparation, characterization and determination of 10 new kinds of BCPCMs. The BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters with gypsum, cement, diatomite, perlite and vermiculite as supporting matrices. The scanning electron microscopy (SEM) and Fourier Transform Infrared (FT-IR) analysis showed that the ester compounds were adsorbed uniformly into the building materials due to capillary forces. The highest adsorption ratio of XPL ester into gypsum, cement, perlite, diatomite, and vermiculite were found to be 20, 19, 71, 52 and 40 wt.%, respectively while it was found to be 22, 25, 66, 50 and 41 wt.% for XPM ester, respectively. Differential scanning calorimetry (DSC) results indicated that the melting temperatures and latent heat energy storage capacities of the prepared BCPCMs are in range of about 40–55 °C and 31–126 J/g, respectively. Thermogravimetric (TG) investigations showed that the BCPCMs had good thermal endurance even above their phase change temperatures. The BCPCMs exhibited almost same chemical and phase change characteristics after 1000 thermal cycling test. It can be also concluded that especially the BCPCMs perlite, vermiculite, diatomite content were found to better candidates for thermal energy storage applications in buildings due to the fact that they have relatively higher heat storage capacity

177

Conceptual Design of Fuel Storage and Handling System for Integral Reactor  

International Nuclear Information System (INIS)

Fuel storage and handling system means the integral system including relevant equipment, tools and corresponding processes from reception of fresh fuel channels to shipping out of spent fuel channels within spent fuel shipping cask from the plant. Fuel storage and handling system consists of fresh fuel storage and handling system, spent fuel storage and handling system, reactor refueling system, and fuel transfer mechanism. In commercial nuclear power plant with loop type reactor, spent fuel channels are extracted from the reactor core in the refueling pool and delivered to the spent fuel storage rack through fuel transfer mechanism in the water. Fresh fuel channels are transferred from the composite building to the reactor for refueling via fuel transfer mechanism. All the processes are accomplished in the water pools and water canals. Fresh fuel channels are stored and inspected in the air before refueling. To handle the fuel channels in the water, there are refueling pool in the reactor building, fuel transfer mechanism between the reactor building and the compound building, and refueling canals and storage pool in the compound building. Recently small-to-medium size multi-purpose advanced reactor draws major attention because of its space advantages, adaptive nature, diversity of application, simplicity of reactor system, and passive safety approach. The fuel storage and handling system for this integral reactor also needs to be developed to enlarge its merits and to be developed to enlarge its merits and to increase nuclear safety. The design concepts of fuel storage and handling system for the integral reactor are presented in this paper

178

The ALICE online data storage system  

CERN Document Server

The ALICE (A Large Ion Collider Experiment) Data Acquisition (DAQ) system has the unprecedented requirement to ensure a very high volume, sustained data stream between the ALICE Detector and the Permanent Data Storage (PDS) system which is used as main data repository for Event processing and Offline Computing. The key component to accomplish this task is the Transient Data Storage System (TDS), a set of data storage elements with its associated hardware and software components, which supports raw data collection, its conversion into a format suitable for subsequent high-level analysis, the storage of the result using highly parallelized architectures, its access via a cluster file system capable of creating high-speed partitions via its affinity feature, and its transfer to the final destination via dedicated data links. We describe the methods and the components used to validate, test, implement, operate, and monitor the ALICE Online Data Storage system and the way it has been used in the early days of comm...

Divia, R; Makhlyueva, I; Vande Vyvre, P; Altini, V; Carena, F; Carena, W; Chapeland, S; Chibante Barroso, V; Costa, F; Roukoutakis, F; Schossmaier, K; Soos, S; von Haller, B; 10.1088/1742-6596/219/5/052002

2010-01-01

179

Moisture transport and storage coefficients of porous mineral building materials: Theoretical principles and new test methods  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Basis of reliable moisture behaviour calculations for building components is - beside the right choice of driving potentials and the implementation of the algorithms - the use of physically correct materials properties. For the determination of these hygric material properties measurement equipments, most of them used for the first time in building research, have been built up. Now the continuos moisture storage function covering the entire range from dry state to capillary saturation can be ...

Krus, M.

1996-01-01

180

Assessment of the technoeconomic feasibility or seasonal thermal energy storage systems (STES)  

Energy Technology Data Exchange (ETDEWEB)

The feasibility of the use of Seasonal Thermal Energy Storage (STES) systems employing large volumes of water is examined on the bases of technology and economics. Three building types are considered: single-family houses, low-rise multi-family apartment buildings, and small commercial buildings. Construction costs are based on prevailing conditions in the suburban Chicago area marketplace. Various types of vessels above and below ground are considered along with possible vessel materials. (MHR)

1978-12-01

 
 
 
 
181

Modelling the Size of Seasonal Thermal Storage in the Solar District Heating System  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The integration of a thermal storage system into the solar heating system enables to increase the use of solar thermal energy in buildings and allows avoiding the mismatch between consumers’ demand and heat production in time. The paper presents modelling a seasonal thermal storage tank various sizes of which have been analyzed in the district solar heating system that could cover a part of heat demand for the district of individual houses in Vilnius. A biomass boiler house, as an additi...

Giedr? Streckien?; Salom?ja Bagdonait?

2012-01-01

182

Design and operational experience of dry cask storage systems  

International Nuclear Information System (INIS)

This paper (Power Point presentation) describes cask storage design features and available dry cask storage technology, cask types used for dry storage, design characteristics of CASTOR casks, the German licensing basis for cask storage systems, shielding requirements, thermal layout, mechanical design, criticality safety and containment, licensing procedure, operational experience of dry cask storage in Germany and worldwide

183

Designing Microporus Carbons for Hydrogen Storage Systems  

Energy Technology Data Exchange (ETDEWEB)

An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

Alan C. Cooper

2012-05-02

184

Energy storage systems for MPD thrusters  

Science.gov (United States)

Because of its high thrust density, the magnetoplasmadynamic (MPD) thruster is a promising candidate for many advanced space missions. Its high power requirements lead to operation in a pulsed mode using an intermediate energy storage device. The characteristics of a system consisting of a solar array, energy storage capacitor, and MPD thruster are studied for array powers in the range 25-375 kw. Assuming simple analytic models for the circuit components, the circuit charge and discharge equations are solved numerically, resulting in the system efficiency and capacitance. The system efficiency is inversely proportional to array power and decreases with circuit resistance. Alternative methods of energy storage such as a pulse forming network and a homopolar generator, are presented, and an overall comparison between all of the methods is given.

Gabriel, S. B.

1981-01-01

185

Building Systems: Passing Fad or Basic Tool?  

Science.gov (United States)

Building systems can be traced back to a 1516 A.D. project by Leonardo da Vinci and to a variety of prefabrication projects in every succeeding century. When integrated into large and repetitive spatial units through careful design, building systems can produce an architecture of the first order, as evidenced in the award winning design of…

Rezab, Donald

186

Solar hydrogen hybrid system with carbon storage  

International Nuclear Information System (INIS)

A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacitiesric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

187

Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface  

Energy Technology Data Exchange (ETDEWEB)

GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today’s best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations—generally less than a few minutes. ABB’s system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

None

2010-10-01

188

Energy Storage System for a Pulsed DEMO  

International Nuclear Information System (INIS)

Several designs have been proposed for DEMO, some of which will operate in pulsed mode. Since a fusion power plant will be required to deliver continuous output, this challenge must be solved. For the reference DEMO, energy storage is required at a level of 250 MWhe with a capability of delivering a power of 1 GWe. Although DEMO is scheduled to be built in about 30 years, the design of the energy storage system must be based on current technology, focusing on commercially available products and on their expected future trends. From a thorough review of the different technologies available, thermal energy storage, compressed air energy storage, water pumping, fuel cells, batteries, flywheels and ultracapacitors are the most promising solutions to energy storage for a pulsed DEMO. An outline of each of these technologies is described in the paper, showing its basis, features, advantages and disadvantages for this application. Following this review, the most suitable methods capable of storing the required energy are examined. Fuel cells are not suitable due to the power requirement. Compressed air energy storage has a lower efficiency than the required one. Thermal energy storage, based on molten salts, so more energy can be stored with a better efficiency, and water pumping are shown as the main solutions, based on existing technology. However, those are not the only solutions capable of solving our challenge. Hydrogen production, using water electrolysis, hydrogen storage and combustion in a combined cycle can achieve our energy and power requirements with an acceptable efficiency. All these solutions are studied in detail and described, evaluating their current cost and efficiency in order to compare them all. (author)

189

Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations  

International Nuclear Information System (INIS)

The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869

190

Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations  

Energy Technology Data Exchange (ETDEWEB)

The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

KLEM, M.J.

2000-05-11

191

Fire Design Study Case of a High-Rise Steel Storage Building  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This paper presents a fire design study case for a high-rise storage rach supporting building. Standardised ISO and natural fire models were considered for the fire action. The structural analysis was carried out by means of the advanced numerical program SAFIR, an FEM software specialised for the thermal and mechanical analysis of structures submitted to the fire.

Franssen, Jean-marc; Zaharia, Raoul

2002-01-01

192

Changing Dashboard build system to Bamboo  

CERN Document Server

The aim of this project is to change Cosmic custom build system to an Automated build system used Bamboo CI System services. The goal is when a developer performs some changes on the source code, the system builds installation packages for different architectures and runs tests automatically on the software modules as soon as possible. The Bamboo build system polls the git repository which is a commonly used source code repository by the developers of the IT department. Bamboo CI System is a widely used system by the department. Thus the project uses widely accepted tools by the department which makes the Cosmic project even more standardized. Project also aims to create packages for every versions of Cosmic modules for different architectures (SLC5/SLC6) which can be accessed by different package repositories on AFS file system. The created package repositories can be used for automated deploy environment such as puppet.

Varga, Robert

2013-01-01

193

Building management systems. Special issue; Gebouwbeheersystemen. Themanummer  

Energy Technology Data Exchange (ETDEWEB)

In seven articles several aspects of building management systems are discussed: networks in businesses, wireless communication, renovation of installations in the buildings of a Dutch ministry by means of 1 intelligent system, the building of a new office building and the use of the newest technologies and a smart combined control system for the indoor climate and lighting, the use of a Building Automation Network (BACnet), remote control and maintenance of building installations, and finally a brief overview of the Congress Smart Buildings 2006 with respect to intelligent systems. [Dutch] In 7 artikelen worden verschillende aspecten van gebouwbeheersystemen behandeld: bedrijfsnetwerken, draadloze communicatie, renovatie van elektrotechnische en werktuigbouwkundige installaties in gebouwen van het Ministerie van Landbouw, Natuurbeheer en Voedselkwaliteit (LNV) door middel van 1 intelligent systeem, de bouw van een kantoorpand met toepassing van de nieuwste technologieen en een slimme gecombineerde regeling voor het binnenklimaat en verlichting, toepassing van Building Automation Control netwerk (BACnet), besturing en onderhoud van gebouwsystemen op afstand via alarmmodem, en tenslotte een kort overzicht van het Congres Smart Buildings 2006 m.b.t. intelligente systemen.

Rigter, L. [Siemens Nederland, Building Technologies, Den Haag (Netherlands); Peterse, A. [Regel Partners, Hoevelaken (Netherlands); Van Oosten, G. [Priva Computer Systems, Delft (Netherlands); Jansen, J. [Barcol-Air, Purmerend (Netherlands); Greitzke, S. [Wilo, Dortmund (Germany); Hoeffnagel, R.

2007-01-15

194

Generalized storage-reliability-yield relationships for rainwater harvesting systems  

Science.gov (United States)

Sizing storage for rainwater harvesting (RWH) systems is often a difficult design consideration, as the system must be designed specifically for the local rainfall pattern. We introduce a generally applicable method for estimating the required storage by using regional regression equations to account for climatic differences in the behavior of RWH systems across the entire continental United States. A series of simulations for 231 locations with continuous daily precipitation records enable the development of storage-reliability-yield (SRY) relations at four useful reliabilities, 0.8, 0.9, 0.95, and 0.98. Multivariate, log-linear regression results in storage equations that include demand, collection area and local precipitation statistics. The continental regression equations demonstrated excellent goodness-of-fit (R2 0.96-0.99) using only two precipitation parameters, and fits improved when three geographic regions with more homogeneous rainfall characteristics were considered. The SRY models can be used to obtain a preliminary estimate of how large to build a storage tank almost anywhere in the United States based on desired yield and reliability, collection area, and local rainfall statistics. Our methodology could be extended to other regions of world, and the equations presented herein could be used to investigate how RWH systems would respond to changes in climatic variability. The resulting model may also prove useful in regional planning studies to evaluate the net benefits which result from the broad use of RWH to meet water supply requirements. We outline numerous other possible extensions to our work, which when taken together, illustrate the value of our initial generalized SRY model for RWH systems.

Hanson, L. S.; Vogel, R. M.

2014-07-01

195

Review of flywheel energy storage system  

Energy Technology Data Exchange (ETDEWEB)

As a clean energy storage method with high energy density, flywheel energy storage (FES) rekindles wide range interests among researchers. Since the rapid development of material science and power electronics, great progress has been made in FES technology. Material used to fabricate the flywheel rotor has switched from stone, stainless-steel to the latest composite material. With the introduction of magnetic bearing and high-efficient motor/generator, FES becomes a powerful competitor to chemical battery and develops wider application fields. This paper describes the latest developments and design considerations of FES technology. Rotor, bearing suspension system, motor/generator are the key parts of a FES system. And main factors like total energy losses, safety, cost control are discussed. Finally, application area of FES technology is presented including energy storage and attitude control in satellite, high-power uninterrupted power supply (UPS), electric vehicle (EV), power quality problem. (orig.)

Zhou Long; Qi Zhiping [Inst. of Electrical Engineering, CAS, Qian yan Dept., BJ (China)

2008-07-01

196

Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings  

DEFF Research Database (Denmark)

This paper presents the theoretical investigation on a concept for a seasonal thermal storage based on the phase change material sodium acetate trihydrate with active use of supercooling as a measure to achieve a partly heat loss free thermal storage. The effect of supercooling allows a melted part of the storage to cool down below the melting point without solidification preserving the heat of fusion energy. If the supercooled storage reaches the surrounding temperature no heat loss will take place until the supercooled salt is activated. The investigation shows that this concept makes it possible to achieve 100% coverage of space heating and domestic hot water in a low energy house in a Danish climate with a solar heating system with 36 m² flat plate solar collector and approximately 10 m³ storage with sodium acetate. A traditional water storage solution aiming at 100% coverage will require a storage volume several times larger.

Schultz, JØrgen Munthe; Furbo, Simon

2006-01-01

197

Electricity Storage Systems and the Grid  

Science.gov (United States)

Demand for electricity varies seasonally, daily, and on much shorter time scales. Renewable energy sources such as solar or wind power are naturally intermittent. Nuclear power plants can respond to a narrow range of fluctuating demand quickly and to larger fluctuations in hours. However, they are most efficient when operated at a constant power output. Thus implementing either nuclear power as baseline power or power from renewables requires either a system for storage of electrical energy that can respond quickly to demand or a back-up power source, usually a gas turbine plant that has a quick response time. We have studied six technologies for storing electrical energy from the grid: pumped hydropower, compressed air storage, batteries, flywheels, superconducting magnetic energy storage, and electrochemical capacitors. In addition, the power conversion systems (PCS) that connect storage to the grid are both expensive and critical to the success of a storage technology. Each of these six technologies offers different benefits, is at a different stage of readiness for commercial use, and offers opportunities for research. Advantages and disadvantages for each of the technologies and PCS will be discussed.

Howes, Ruth

2007-04-01

198

Flywheel Energy Storage Systems for Rail  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In current non-electrified rail systems there is a significant loss of energy during vehicle braking. The aim of this research has been to investigate the potential benefits of introducing onboard regenerative braking systems to rail vehicles. An overview of energy saving measures proposed within the rail industry is presented along with a review of different energy storage devices and systems developed for both rail and automotive applications. Advanced flywheels have been identified as a...

Read, Matthew

2011-01-01

199

The industrialisation of building: building systems and social housing in postwar Britain 1942 to 1975  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study describes the development of system building in postwar social housing. System building required major transformations in the nature of the building producer and client. The transformation in the producer consisted of a change from the conventional pattern of selling the capacity to build individual buildings to selling a specific product, the building system, a general feature of which was its use of new building technologies and requirement for considerabl...

Finnimore, B.

1986-01-01

200

Solar hydrogen hybrid system with carbon storage  

Energy Technology Data Exchange (ETDEWEB)

A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P. [Dept. of Mechanical and Civil Engineering, Univ. of Modena and Reggio Emilia, Modena (Italy)], E-mail: gabriele.zini@unimore.it, paolo.tartarini@unimore.it

2009-07-01

 
 
 
 
201

Energy Efficiency through Thermal Energy Storage - Evaluation of the Possibilities for the Swedish Building Stock, Phase 1  

Digital Repository Infrastructure Vision for European Research (DRIVER)

As a first step in assessing the potential of thermal energy storage in Swedish buildings, the current situation of the Swedish building stock and different storage methods are discussed in this paper. Overall, many buildings are from the 1960’s or earlier having a relatively high energy demand, creating opportunities for large energy savings. The major means of heating are electricity for detached houses and district heating for multi dwelling houses and premises. Cooling needs are relativ...

Heier, Johan; Bales, Chris; Martin, Viktoria

2010-01-01

202

WASTE TREATMENT BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

Energy Technology Data Exchange (ETDEWEB)

The Waste Treatment Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Treatment Building (WTB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for personnel comfort and equipment operation, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WTB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement area ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination with the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WTB. The Waste Treatment Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits, The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Treatment Building Ventilation System interfaces with the Waste Treatment Building System by being located in the WTB, and by maintaining specific pressure, temperature, and humidity environments within the building. The system also depends on the WTB for normal electric power supply and the required supply of water for heating, cooling, and humidification. Interface with the Waste Treatment Building System includes the WTB fire protection subsystem for detection of fire and smoke. The Waste Treatment Building Ventilation System interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air and key areas within the WTB, the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of system operations, and the Site Generated Radiological Waste Handling System and Site Generated Hazardous, Non-Hazardous & Sanitary Waste Disposal System for routing of pretreated toxic, corrosive, and radiologically contaminated effluent from process equipment to the HEPA filter exhaust ductwork and air-cleaning unit.

P.A. Kumar

2000-06-22

203

Storage monitoring systems for the year 2000  

International Nuclear Information System (INIS)

In September 1993, President Clinton stated the US would ensure that its fissile material meet the highest standards of safety, security, and international accountability. Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. To prepare for this future, Sandia National Laboratories has developed several monitoring systems, including the Modular Integrated Monitoring System (MIMS) and Project Straight-Line. The purpose of this paper is to describe a Sandia effort that merges remote monitoring technologies into a comprehensive storage monitoring system that will meet the near-term as well as the long-term requirements for these types of systems. Topics discussed include: motivations for storage monitoring systems to include remote monitoring; an overview of the needs and challenges of providing a storage monitoring system for the year 2000; an overview of how the MIMS and Straight-Line can be enhanced so that together they create an integrated and synergistic information system by the end of 1997; and suggested milestones for 1998 and 1999 to assure steady progress in preparing for the needs of 2000

204

Monitoring a petabyte scale storage system  

Energy Technology Data Exchange (ETDEWEB)

Fermilab operates a petabyte scale storage system, Enstore, which is the primary data store for experiments' large data sets. The Enstore system regularly transfers greater than 15 Terabytes of data each day. It is designed using a client-server architecture providing sufficient modularity to allow easy addition and replacement of hardware and software components. Monitoring of this system is essential to insure the integrity of the data that is stored in it and to maintain the high volume access that this system supports. The monitoring of this distributed system is accomplished using a variety of tools and techniques that present information for use by a variety of roles (operator, storage system administrator, storage software developer, user). Essential elements of the system are monitored: performance, hardware, firmware, software, network, data integrity. We will present details of the deployed monitoring tools with an emphasis on the different techniques that have proved useful to each role. Experience with the monitoring tools and techniques, what worked and what did not will be presented.

Bakken, Jon; Berman, Eileen; Huang, Chih-Hao; Moibenko, Alexander; Petravick, Don; Zalokar, Michael; /Fermilab

2004-12-01

205

APS storage ring vacuum system development  

International Nuclear Information System (INIS)

The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's materials research program. The Storage Ring's 1104 m circumference is divided into 40 sectors which contain vacuum, beam transport, control, rf and insertion device systems. The vacuum system will operate at a pressure of 1 nTorr and is fabricated from aluminum. The system includes distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. An overview of the vacuum system design and details of selected development program results are presented. 5 refs

206

Building’s Refurbishment Computer Learning System with Augmented Reality  

Directory of Open Access Journals (Sweden)

Full Text Available Since 1999 Vilnius Gediminas Technical University has already introduced three e-learning Master’s degree programmes. This paper proposes a way to integrate augmented reality and computer learning systems. In order to demonstrate the integration of the above systems in building refurbishment projects, the Building Refurbishment Computer Learning System with Augmented Reality (BR-CLS-AR has been developed. The authors of this paper participated in the project “Learning Augmented Reality Global Environment” (LARGE, part of the Lifelong Learning Programme. One of LARGE’s goals (on the part of Lithuania was to integrate augmented reality and computer learning systems (i.e. to develop the BR-CLS-AR. To check the accuracy of the system, its entire solution process was reproduced manually. The results of the manual calculations matched those produced by the computer. Moreover, each individual phase in the system and its subsystems was checked with experts in this field, i.e. the underlying calculations were found to be in conformity with the experts’ logical reasoning. Owing to the suggestions from these experts, some useful changes have been introduced in the system. The BR-CLS-AR consists of a computer learning subsystem and an augmented reality subsystem.

A. Kaklauskas

2013-10-01

207

Didactic model of the high storage system  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Purpose: The continuous progress in Computer Integrated Manufacturing (CIM) field with automatic storing systems is broadening the range of education process for engineers in future. This document describes the newest didactic station integrated witch a Modular Production System (MPS) model [1, 2, 3]. It is a module of high storage. This arrangement is the perfect didactic item for students.Design/methodology/approach: The main reason, why the laboratory position, we have mentioned, has been ...

S?wider, J.; Wszo?ek, G.; Recik, D.

2006-01-01

208

CNAAA spent fuel complementary storage building (UFC) construction and licensing: an overview of current status  

Energy Technology Data Exchange (ETDEWEB)

The reprocessing of nuclear fuel assemblies could be a valuable solution in order to make available additional energy resources and also to decrease the volume of discarded materials. After the burning of nuclear fuel assemblies to produce electrical energy, these components have to be stored in the spent fuel pools of each unit, for at least 10 years, in order to decrease their residual heat. Even after this initial 10 year-period, these spent fuel assemblies still have a great amount of energy, which can be reused. Nowadays, the spent fuel materials can be reprocessed in order to produce electrical energy, or be stored to provide, in the future, an opportunity to decide how these materials will be treated. At the present moment, Brazil does not plan to reprocess these spent fuels assemblies, as performed by some other countries. Thus, Brazil intends to build a spent fuel long term intermediate storage facility to allow the chance to make a decision in the future, taking into account the available technology at that time. Considering the three CNAAA units (Angra 1, 2 and 3 of Central Nuclear Almirante Alvaro Alberto, the Brazilian nuclear power plant, located at Angra dos Reis county, Rio de Janeiro state) have a life time estimated in 60 years, and the intrinsical spent fuel pools storage capacity of these units, a Spent Fuel Complementary Storage Building - UFC has to be foreseen in order to increase the storage capacity of CNAAA. Therefore, the Spent Fuel Complementary Storage Building shall be in operation in 2018, capable to receive the first spent fuel assemblies from Angra 2 and, in the next year, from Angra 1. The same procedure will be applied for the spent fuel assemblies of Angra 3, currently in construction. The Spent Fuel Complementary Storage Building will be constructed and operated by Eletrobras Eletronuclear - the CNAAA owner - and will be located at the same site of the plant. Conceptually, the UFC will be built as a wet storage modality, representing a similar solution used in all the three CNAAA units to store the spent fuel assemblies. Taking into account the above described aspects, this paper aims to compare the licensing requirements included in the safety analysis report prepared for external spent fuel wet storage facilities in USA (NRC Regulatory Guide) and Switzerland (ENSI - Swiss Federal Nuclear Safety Inspectorate), considering that the standard formats applied by CNEN - the Brazilian Nuclear Regulatory Authority - are based on USNRC recommendations and Eletrobras Eletronuclear plans, as a preliminary idea, to take the Goesgen NPP - KKG (Switzerland) spent fuel facility as a reference one for of the UFC. (author)

Lima Neto, Bertino do Carmo; Pacifi, Cicero Durval, E-mail: bertino@eletronuclear.gov.br, E-mail: cicero@eletronuclear.gov.br [Eletrobras Eletronuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)

2013-07-01

209

CNAAA spent fuel complementary storage building (UFC) construction and licensing: an overview of current status  

International Nuclear Information System (INIS)

The reprocessing of nuclear fuel assemblies could be a valuable solution in order to make available additional energy resources and also to decrease the volume of discarded materials. After the burning of nuclear fuel assemblies to produce electrical energy, these components have to be stored in the spent fuel pools of each unit, for at least 10 years, in order to decrease their residual heat. Even after this initial 10 year-period, these spent fuel assemblies still have a great amount of energy, which can be reused. Nowadays, the spent fuel materials can be reprocessed in order to produce electrical energy, or be stored to provide, in the future, an opportunity to decide how these materials will be treated. At the present moment, Brazil does not plan to reprocess these spent fuels assemblies, as performed by some other countries. Thus, Brazil intends to build a spent fuel long term intermediate storage facility to allow the chance to make a decision in the future, taking into account the available technology at that time. Considering the three CNAAA units (Angra 1, 2 and 3 of Central Nuclear Almirante Alvaro Alberto, the Brazilian nuclear power plant, located at Angra dos Reis county, Rio de Janeiro state) have a life time estimated in 60 years, and the intrinsical spent fuel pools storage capacity of these units, a Spent Fuel Complementary Storage Building - UFC has to be foreseen in order to increase the storage capacity of CNAAA. Therefore, the Spent Fuel Complementary Storage Building shall be in operation in 2018, capable to receive the first spent fuel assemblies from Angra 2 and, in the next year, from Angra 1. The same procedure will be applied for the spent fuel assemblies of Angra 3, currently in construction. The Spent Fuel Complementary Storage Building will be constructed and operated by Eletrobras Eletronuclear - the CNAAA owner - and will be located at the same site of the plant. Conceptually, the UFC will be built as a wet storage modality, representing a similar solution used in all the three CNAAA units to store the spent fuel assemblies. Taking into account the above described aspects, this paper aims to compare the licensing requirements included in the safety analysis report prepared for external spent fuel wet storage facilities in USA (NRC Regulatory Guide) and Switzerland (ENSI - Swiss Federal Nuclear Safety Inspectorate), considering that the standard formats applied by CNEN - the Brazilian Nuclear Regulatory Authority - are based on USNRC recommendations and Eletrobras Eletronuclear plans, as a preliminary idea, to take the Goesgen NPP - KKG (Switzerland) spent fuel facility as a reference one for of the UFC. (author)

210

ATES/heat pump systems for commercial office buildings  

Energy Technology Data Exchange (ETDEWEB)

An aquifer thermal energy storage (ATES) system can be coupled with ground water heat pumps to recover thermal energy that is wasted in conventional ground water heat pump systems. The cost, performance, and overall system economics of three ground water heat pump systems (two conventional systems and one ATES-augmented system) were evaluated for two commercial office building sizes in two cities. Aquifer simulation predicted that relatively warm and cool wells were created by alternating the supply and rejection of water from one well to the other when switching from heating to cooling modes. However, the insensitivity of conventional water source heat pump coefficienct-of-performance to water source temperature resulted in a performance improvement of 3% or less compared to the conventional systems. Overall, the improvement in performance and resulting reduction in annual electrical costs was not enough to pay for the additional costs of the ATES system. 5 refs., 6 figs.

Brown, D.R.; Spanner, G.E.

1989-03-01

211

Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)  

Energy Technology Data Exchange (ETDEWEB)

The Spent Nuclear Fuel (SNF) Canister Storage Building (CSB) is the interim storage facility for the K-Basin SNF at the US. Department of Energy (DOE) Hanford Site. The SNF is packaged in multi-canister overpacks (MCOs). The MCOs are placed inside transport casks, then delivered to the service station inside the CSB. At the service station, the MCO handling machine (MHM) moves the MCO from the cask to a storage tube or one of two sample/weld stations. There are 220 standard storage tubes and six overpack storage tubes in a below grade reinforced concrete vault. Each storage tube can hold two MCOs.

HOLLENBECK, R.G.

2000-05-08

212

Comparison of cask and dry well storage concepts for a stand-alone monitored retrievable storage/interim storage system  

International Nuclear Information System (INIS)

Metal storage casks are compared with surface dry wells for storage of spent fuel or solidified high-level wastes. Conceptual designs of monitored retrievable storage/interim storage (MRS/IS) facilities are described and evaluated for both storage concepts. The MRS/IS facilities include systems and storage facilities for transuranic (TRU) waste. The impact of TRU waste on the MRS/IS facility is evaluated. Comparisons of the storage concepts were made for three cases for which different reprocessing and disposal schedules were assumed, thus affecting the size and handling rate of the MRS/IS facility. In all cases, dry wells were more economical than metal storage casks. 6 references, 51 figures, 51 tables

213

Balancing Hydronic Systems in Multifamily Buildings  

Energy Technology Data Exchange (ETDEWEB)

In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

Ruch, R.; Ludwig, P.; Maurer, T.

2014-07-01

214

Hydrogen storage systems from waste Mg alloys  

Science.gov (United States)

The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

Pistidda, C.; Bergemann, N.; Wurr, J.; Rzeszutek, A.; Møller, K. T.; Hansen, B. R. S.; Garroni, S.; Horstmann, C.; Milanese, C.; Girella, A.; Metz, O.; Taube, K.; Jensen, T. R.; Thomas, D.; Liermann, H. P.; Klassen, T.; Dornheim, M.

2014-12-01

215

Laser surveillance systems for fuel storage pools  

International Nuclear Information System (INIS)

A Laser Surveillance System (LASSY) as a new safeguards device has been developed under the IAEA research contract No. 3458/RB at the Atominstitut Wien using earlier results by S. Fiarman. This system is designed to act as a sheet of light covering spent fuel assemblies in spent fuel storage pools. When movement of assemblies takes place, LASSY detects and locates the position of the movement in the pool and when interrogated, presents a list of pool positions and times of movement to the safeguards inspector. A complete prototype system was developed and built. Full scale tests showed the principal working capabilities of a LASSY underwater

216

Resonance parameter storage and retrieval system REPSTOR  

Energy Technology Data Exchange (ETDEWEB)

The resolved resonance parameter storage and retrieval system, REPSTOR, was developed to assist nuclear data evaluators in doing evaluation work of resonance parameters. By using REPSTOR, one can do compilation and comparison of experimental and/or evaluated data of resolved resonance parameters, making a data file in the ENDF format, and so on. REPSTOR was written in FORTRAN for main frame computers at the Japan Atomic Energy Research Institute. This report provides a users` manual of REPSTOR. (author)

Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

1997-05-01

217

Ultra Capacitor: Alternative Energy Storage Systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Today, ultracapacitors are a viable component for production aim designs in the power electronics world. The need for highly reliable back-up and emergency power are creating significant markets for energy storage and power delivery. Electrical wind turbine pitch systems, uninterruptible power supplies and electronic products such as wireless communication devices and digital cameras are some of the many applications where ultracapacitors have been designed in....

Ashish Kumar, Kriti Singh

2013-01-01

218

Benchmarking Eventually Consistent Distributed Storage Systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Cloud storage services and NoSQL systems typically offer only "Eventual Consistency", a rather weak guarantee covering a broad range of potential data consistency behavior. The degree of actual (in-)consistency, however, is unknown. This work presents novel solutions for determining the degree of (in-)consistency via simulation and benchmarking, as well as the necessary means to resolve inconsistencies leveraging this information.

Bermbach, David

2014-01-01

219

Improving Throughput in Cloud Storage System  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Because the cloud serves many workloads concurrently, its disk access pattern is highly random and heterogeneous. In addition, because various virtual machines access to files respectively, meta data utilization and small write requests are increased. In order to build a system for these patters, we should analyze the modern techniques used at cloud system. First, we show that a SATA controller hasenough processing capability to serve six disks without performance degradation. Motivated by th...

Chanho Choi; Shin-gyu Kim; Hyeonsang Eom; Yeom, Heon Y.

2012-01-01

220

Failure Analysis of Storage Data Magnetic Systems  

Directory of Open Access Journals (Sweden)

Full Text Available This paper shows the conclusions about the corrosion mechanics in storage data magnetic systems (hard disk. It was done from the inspection of 198 units that were in service in nine different climatic regions characteristic for Mexico. The results allow to define trends about the failure forms and the factors that affect them. In turn, this study has analyzed the causes that led to mechanical failure and those due to deterioration by atmospheric corrosion. On the basis of the results obtained from the field sampling, demonstrates that the hard disk failure is fundamentally by mechanical effects. The deterioration by environmental effects were found in read-write heads, integrated circuits, printed circuit boards and in some of the electronic components of the controller card of the device, but not in magnetic storage surfaces. There fore, you can discard corrosion on the surface of the disk as the main kind of failure due to environmental deterioration. To avoid any inconvenience in the magnetic data storage system it is necessary to ensure sealing of the system.

Ortiz–Prado A.

2010-10-01

 
 
 
 
221

Ferroelectric barium titanate nanocubes as capacitive building blocks for energy storage applications.  

Science.gov (United States)

Highly uniform polymer-ceramic nanocomposite films with high energy density values were fabricated by exploiting the unique ability of monodomain, nonaggregated BaTiO3 colloidal nanocrystals to function as capacitive building blocks when dispersed into a weakly interacting dielectric matrix. Monodisperse, surface-functionalized ferroelectric 15 nm BaTiO3 nanoparticles have been selectively incorporated with a high packing density into poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-HFP)) leading to the formation of biphasic BaTiO3-P(VDF-HFP) nanocomposite films. A systematic investigation of the electrical properties of the nanocomposites by electrostatic force microscopy and conventional dielectric measurements reveals that polymer-ceramic film capacitor structures exhibit a ferroelectric relaxor-type behavior with an increased intrinsic energy density. The composite containing 7% BaTiO3 nanocrystals displays a high permittivity (? = 21) and a relatively high energy density (E = 4.66 J/cm(3)) at 150 MV/m, which is 166% higher than that of the neat polymer and exceeds the values reported in the literature for polymer-ceramic nanocomposites containing a similar amount of nanoparticle fillers. The easy processing and electrical properties of the polymer-ceramic nanocomposites make them suitable for implementation in pulse power capacitors, high power systems and other energy storage applications. PMID:25255863

Parizi, Saman Salemizadeh; Mellinger, Axel; Caruntu, Gabriel

2014-10-22

222

A hybrid energy efficient building ventilation system  

International Nuclear Information System (INIS)

The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

223

Spent Nuclear Fuel [SNF] Project Canister Storage Building [CSB] Final Safety Analysis Report [FSAR] Volume 1 [Section 1-3  

Energy Technology Data Exchange (ETDEWEB)

The U.S. Department of Energy (DOE) established the Spent Nuclear Fuel (SNF) Project to address safety and environmental concerns associated with deteriorating SNF presently stored under water in the Hanford Site K Basins, which are located in the 100 K Area near the Columbia River. Recommendations for a series of projects to construct and operate systems and facilities to manage the safe removal and storage of K Basins fuel were made in WHC-EP-0830, Hanford Spent Nuclear Fuel Recommended Path Forward, and its subsequent update, WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel. The integrated process strategy recommendations include the following steps: (1) Fuel preparation activities at the K Basins, including removing the fuel elements from their K Basins canisters; separating fuel particulate from fuel elements and fuel fragments greater than 0.25 in. in any dimension; removing excess sludge from the fuel fragments by means of flushing, as necessary; and packaging the fuel into multi-canister overpacks (MCOs); (2) Transportation of MCOs loaded with SNF from K Basins to the Cold Vacuum Drying Facility (CVDF); (3) Removal of free water by draining and vacuum drying at the CVDF in the 100 K Area; (4) Dry shipment of fuel from the CVDF to the Canister Storage Building (CSB), a new facility in the 200 East Area; and (5) Interim storage of the MCOs in the CSB until a suitable long-term repository is established. In addition, the CSB can also store Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies in a modified MCO container called the Shippingport spent fuel canister. The Interim Storage Area has been established adjacent to the CSB for storage of other non-defense SNF in above-ground dry cask storage containers.

HARTLIEB, W.G.

2002-12-10

224

Spent Nuclear Fuel [SNF] Project Canister Storage Building [CSB] Final Safety Analysis Report [FSAR] Volume 1 [Section 1-3  

International Nuclear Information System (INIS)

The U.S. Department of Energy (DOE) established the Spent Nuclear Fuel (SNF) Project to address safety and environmental concerns associated with deteriorating SNF presently stored under water in the Hanford Site K Basins, which are located in the 100 K Area near the Columbia River. Recommendations for a series of projects to construct and operate systems and facilities to manage the safe removal and storage of K Basins fuel were made in WHC-EP-0830, Hanford Spent Nuclear Fuel Recommended Path Forward, and its subsequent update, WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel. The integrated process strategy recommendations include the following steps: (1) Fuel preparation activities at the K Basins, including removing the fuel elements from their K Basins canisters; separating fuel particulate from fuel elements and fuel fragments greater than 0.25 in. in any dimension; removing excess sludge from the fuel fragments by means of flushing, as necessary; and packaging the fuel into multi-canister overpacks (MCOs); (2) Transportation of MCOs loaded with SNF from K Basins to the Cold Vacuum Drying Facility (CVDF); (3) Removal of free water by draining and vacuum drying at the CVDF in the 100 K Area; (4) Dry shipment of fuel from the CVDF to the Canister Storage Building (CSB), a new facility in the 200 East Area; and (5) Interim storage of the MCOs in the CSB until a suitable long-term repository is established. In addition, the CSB can alsoestablished. In addition, the CSB can also store Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies in a modified MCO container called the Shippingport spent fuel canister. The Interim Storage Area has been established adjacent to the CSB for storage of other non-defense SNF in above-ground dry cask storage containers

225

Novel evaporative cooling systems for building applications  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The technology and applications of evaporative cooling to provide human comfort in buildings is not new and has been used in different places based on different methods and materials. Conventional air conditioning systems overshadowed the application of evaporative cooling for buildings despite their ozone layer depletion. Evaporative cooling using porous ceramic evaporators were experimentally investigated. Encouraging results in terms of temperature reduction and cooling effectiveness were ...

Musa, Mu Azu

2009-01-01

226

Regenerative flywheel storage system, volume 2  

Science.gov (United States)

A vehicle propulsion system was simulated on a digital computer in order to determine the optimum system operating strategies and to establish a calculated range improvement over a nonregenerative, all electric vehicle. Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control are described. Test results of the system operating over the SAE J227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load commutated inverter. The motor/alternator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy.

1980-06-01

227

Implementation of Remote Acquisition and Storage System  

Science.gov (United States)

The existing system for gathering and processing acoustical test data had several shortcomings and limitations in the areas of microphone array size, sampling rate, and background noise. A new Remote Acquisition and Storage System (RASS) is being designed for applications not suited for the existing acquisition system. One of the first tasks in the design of the RASS was to redesign the microprocessor card of the existing system to include RS-232 serial ports to accept communications through the radio modem used in the RF link. Cost and parts availability comparisons were made between the newly designed board and commercially available models, and a commercially made model was selected. This model was tested for basic I/0 operations. The prototype of the RF telemetry system was set up and tested. Plans are now being developed for integrating the RF telemetry system with the other RASS subsystems.

Hess, Jason R.

1995-01-01

228

Development of Automotive Liquid Hydrogen Storage Systems  

Science.gov (United States)

Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

2004-06-01

229

10 CFR 434.404 - Building service systems and equipment.  

Science.gov (United States)

...RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric... § 434.404 Building service systems...a combination (integrated) system...Energy factor Thermal efficiency Et...site-recovered or site-solar energy...

2010-01-01

230

General considerations on thermal energy storage with closed adsorption systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Heat supply for buildings accounts for about 40% of primary energy consumption in Europe. The main obstacle to a sustainable energy supply for buildings is the time gap between energy availability (solar heat in summer) and heating demand in winter. Storage of thermal energy may allow to bridge this gap and to reach high solar coverage rates for the heating supply of buildings. Within a study of a reference house in three climatic regions, with three insulation standards, two collector types,...

Fu?ldner, G.; Henning, H. -m; Schossig, P.; Schmidt, F. P.

2011-01-01

231

Diagnosis System for Building Management Network  

Directory of Open Access Journals (Sweden)

Full Text Available In this study the author used multi-criteria decision-making design to provide optimal structure of the developed and modified modern Building Management Systems (BMS. While modern BMS is used to provide effective and securable activity of enterprises solving complex tasks of their operability. However a lot of problems such as system structure flexibility in an ever changing market of the BMS and industrial network hardware can be solved by means of the hardware structure development automation. Problems of optimal hardware structure composition solving all the necessary building management task support providing reliable and effective system operation have to be solved.

Zafer Al-Makhadmee

2013-12-01

232

Investigation of heat of fusion storage for solar low energy buildings  

DEFF Research Database (Denmark)

This paper describes a theoretical investigation by means of TRNSYS simulations of a partly heat loss free phase change material (PCM) storage solution for solar heating systems. The partly heat loss free storage is obtained by controlled used of super cooling in a mixture of sodium acetate and xanthane rubber. The storage can cool down to surrounding temperature preserving the latent heat in form of the heat of fusion energy. The basis for the calculations is a super low energy house with a space heating demand of 2010 kWh/year and a domestic hot water demand of 2530 kWh/year. For storage volumes in the range of 500 – 3000 litres the heat loss free state is seldom reached and the effect of super cooling is limited. For larger volumes the heat loss free state may be reached. The benefit of using a PCM storage compared to a traditional water storage is limited with respect to energy savings for storage sizes up to 1 m3, but if the same amount of net utilised solar energy should be reached it would require a water storage that is 2 – 3 times larger.

Schultz, JØrgen Munthe; Furbo, Simon

2005-01-01

233

Nuclear power reactors and hydrogen storage systems  

International Nuclear Information System (INIS)

Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

234

Pulsed rf systems for large storage rings  

International Nuclear Information System (INIS)

In this note we consider the possibility that by using a pulsed rf system, perhaps a system which operates at a somewhat higher frequency, a substantial reduction can be made in the rf power requirement for the next generation of large storage rings. A large effort over a period of many years has been expended in the attempt to increase the shunt impedance of rf structures for cw systems. Without turning to superconductivity only modest gains in the shunt impedance remain to be made by further detailed adjustments in cell shape. On the other hand, very little effort has as yet gone into the optimization of structures for pulsed systems. The structure parameters to be quoted in this report do not therefore necessarily represent values close to those for an optimum design. It is expected that the system designs set out here can be improved upon with further experimental and theoretical work. 11 refs., 3 figs

235

Information storage capacity of discrete spin systems  

Energy Technology Data Exchange (ETDEWEB)

Understanding the limits imposed on information storage capacity of physical systems is a problem of fundamental and practical importance which bridges physics and information science. There is a well-known upper bound on the amount of information that can be stored reliably in a given volume of discrete spin systems which are supported by gapped local Hamiltonians. However, all the previously known systems were far below this theoretical bound, and it remained open whether there exists a gapped spin system that saturates this bound. Here, we present a construction of spin systems which saturate this theoretical limit asymptotically by borrowing an idea from fractal properties arising in the Sierpinski triangle. Our construction provides not only the best classical error-correcting code which is physically realizable as the energy ground space of gapped frustration-free Hamiltonians, but also a new research avenue for correlated spin phases with fractal spin configurations. -- Highlights: •We propose a spin model with fractal ground states and study its coding properties. •We show that the model asymptotically saturates a theoretical limit on information storage capacity. •We discuss its relations to various theoretical physics problems.

Yoshida, Beni, E-mail: rouge@caltech.edu

2013-11-15

236

On Building Secure Communication Systems  

DEFF Research Database (Denmark)

This thesis presents the Guided System Development (GSD) framework, which aims at supporting the development of secure communication systems. A communication system is specified in a language similar to the Alice and Bob notation, a simple and intuitive language used to describe the global perspective of the communications between different principals. The notation used in the GSD framework extends that notation with constructs that allow the security requirements of the messages to be described. From that specification, the developer is guided through a semi-automatic translation that enables the verification and implementation of the system. The translation is semi-automatic because the developer has the option of choosing which implementation to use in order to achieve the specified security requirements. The implementation options are given by plugins defined in the framework. The framework’s flexibility allows for the addition of constructs that model new security properties as well as new plugins that implement the security properties. In order to provide higher security assurances, the system specification can be verified by formal methods tools such as the Beliefs and Knowledge (BAK) tool — developed specifically for the GSD framework —, LySatool and OFMC. The framework’s flexibility and the existence of the system model in different perspectives — an overall global perspective and an endpoint perspective —allow the connection to new formal methods tools. The modeled system is also translated into code that implements the communication skeleton of the system and can then be used by the system designer. New output languages can also easily be added to the GSD framework. Additionally, a prototype of the GSD framework was implemented and an ex-ample of using the GSD framework in a real world system is presented.

Carvalho Quaresma, Jose Nuno

2013-01-01

237

High-performance commercial building systems  

Energy Technology Data Exchange (ETDEWEB)

This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC

Selkowitz, Stephen

2003-10-01

238

Prototype thermochemical heat storage with open reactor system  

Energy Technology Data Exchange (ETDEWEB)

Thermochemical (TC) heat storage is an interesting technology for future seasonal storage of solar heat in the built environment. This technology enables high thermal energy storage densities and low energy storage losses. A small-scale laboratory prototype TC storage system has been realized at ECN, applying an open sorption system concept. The packed bed contains 17 dm{sup 3} of sorption material and is capable of generating 150 W of thermal power. An effective energy storage density of approximately 0.5 GJ/m{sup 3} was obtained.

Zondag, H. [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands); Kikkert, B.; Smeding, S.; De Boer, R.; Bakker, M. [Energy research Centre of the Netherlands ECN, P.O. Box 1, 1755ZG Petten (Netherlands)

2013-09-15

239

Vaccum system for storage ring in Taiwan  

International Nuclear Information System (INIS)

The construction of an electron storage ring with an energy accumulation capacity of 1.3GeV has been under way at the Synchrotron Radiation Research Center; SRRC) in Taiwan. The facility comprises a linear accelerator of 50MeV and a synchrotron of 1.3GeV. The storage ring, 120m in length, comprises TBA-type lattices and 18 deflecting magnets to deflect the beam by 20deg. The vacuum system for the 1.3GeV electron storage ring at SRRC was designed on the basis of calculations of the pressure distribution. An aluminum alloy was adopted as material for the vacuum chambers, allowing its design and production to be performed by a simple process. The chamber at the linear portion was produced by a special extrusion process while the chamber for the deflector was produced by EL processing and TIG welding. The surface properties were analyzed and the gas release rate was measured. Results have shown that the chambers can have fairly good vacuum characteristics. Pumping tests were also carried out using an ion pump and a getter pump. A vacuum of 10-10-10-11 Torr was achieved rapidly in each of the chamber. Shields are provided to minimize the RF inpedance at various parts of the ring. (N.K.)

240

Grid Converters for Stationary Battery Energy Storage Systems  

DEFF Research Database (Denmark)

The integration of renewable energy sources in the power system, with high percentage, is a well known challenge nowadays. Power sources like wind and solar are highly volatile, with uctuations on various time scales. One long term solution is to build a continentwide or worldwide supergrid. Another solution is to use distributed energy storage units, and create virtual power plants. Stationary energy storage is a complementary solution, which can postpone the network expansion and can be optimized for dierent kind of grid services. As an energy storage solution with timing for few seconds to hours, rated at MW and MWh, battery energy storage systems are suitable and ecient solutions. Grid connection of the storage system can be done at dierent voltage levels, depending on the location and application scenario. For high power and energy ratings, increase in the battery and converter voltage ratings can enhance the overall system eciency. This work is divided in two parts, "Control of DC-AC Grid Converters" and "Medium Voltage Grid Converters for Energy Storage". The rst part starts with a brief review of control strategies applied to grid connected DC-AC converters. A control implementation was realized for a 100 kW active rectier to be used in a 6 kV battery energy storage test bench. In the second part, dierent solutions for power converters to interface energy storage units to medium voltage grid are given. A new modular multilevel converter concept is introduced, where the energy storage units are integrated in each converter cell. The control of DC-AC grid converters has been a research subject for more than a century, and there is still place for improvements. A review of the main control principles is given in the rst part. The stationary frame control was implemented for a low-voltage 100 kW bidirectional grid converter, to be used in a high voltage battery energy storage test bench. The control structure proved to be stable without damping. The converter was tested in the test bench and the experimental results are presented. Multilevel converters are replacing the classical two-level converters more and more, on a large variety of applications. For medium voltage applications, multilevel converters are a necessity. The second part presents a review of hard-switched and soft-switched multilevel converter topologies for medium voltage. Four converter topologies were chosen as potential solutions for direct connection of battery energy storage systems to the grid. An evaluation is done, in terms of semiconductors requirements and losses, output voltage quality and common mode voltage. The main advantage of batteries direct connection to the grid is the high efficiency potential. However, this solution is suitable only for battery technologies with low voltage variation. It is also necessary to build a battery system with high amount of serial connected cells, and the knowledge in this eld is still limited nowadays. Therefore, twostage converters solutions were introduced to overcome these disadvantages. Modular multilevel converters can make use of battery voltage technologies where the maturity and reliability is well proven in industry. Cascaded H-bridge topology with bidirectional boost converters is proposed to interface low voltage batteries to the medium voltage grid. A control structure based on single phase control is proposed. It balances the capacitor voltages and the state of charge of batteries from dierent cells. A semiconductor loss analysis is performed and it shows the loss distribution in the converter cell and the eciency over a wide battery voltage variation. A new modular multilevel converter structure with integrated energy storage is introduced. This converter structure is suitable to interface low and medium voltage energy storage units to medium and high voltage grids. It can also interconnect a DC and AC grid with bidirectional power ow, were both can be backed-up for the distributed energy storage units installed in each converter cell. The converter operation and control methods are pres

Trintis, Ionut

2011-01-01

 
 
 
 
241

Evolution of the ATLAS Nightly Build System  

CERN Document Server

The ATLAS Nightly Build System is a major component in the ATLAS collaborative software organization, validation, and code approval scheme. For over 10 years of development it has evolved into a factory for automatic release production and grid distribution. The 50 multi-platform branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains 2200 packages with 4 million C++ and 1.4 million python scripting lines written by about 1000 developers. Recent development was focused on the integration of ATLAS Nightly Builds and Installation systems. The nightly releases are distributed and validated and some are transformed into stable releases used for data processing worldwide. The ATLAS Nightly System is managed by the NICOS control tool on a computing farm with 50 powerful multiprocessor nodes. NICOS provides the fully automated framework for the release builds, test...

Undrus, A

2012-01-01

242

APS Storage Ring Vacuum System Performance  

Science.gov (United States)

The Advanced Photon Source (APS) storage ring was designed to operate with 7-GeV, 100-mA beam with lifetimes > 20 hours. Currently, the beam lifetime for 100-mA beams is ~ 16 hours after > 110 A-hrs of beam. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented. For example, the vacuum chambers are aluminum with aluminum Conflat flanges mated with stainless steel flanges. Special assembly and bake-out procedures had to be developed to produce UHV base pressures. In addition, absorbers had to be designed to withstand over 12 kilowatts of x-ray beam power. This talk will describe the design criteria, present aspects of the fabrication process that have importance for oth! er aluminum systems, compare actual performance to design specifications, and discuss incremental improvements made in the vacuum system to improve the beam lifetime due to residual gas scattering.

Noonan, John

1997-05-01

243

ASRS Handling System for Radioactive Waste Storage Purposes  

International Nuclear Information System (INIS)

Automated Storage Retrieval System (ASRS) is a computing controlled method for automatically depositing and retrieving waste from defined locations. The system is used to replace the existing process of storage and retrieval of radioactive waste at storage facility at block 33. The main objective of this project is to reduced the radiation exposure to the worker and potential forklift accident occur during storage and retrieval of the radioactive waste. By using the ASRS system, WasTeC/ Nuclear Malaysia can provide a safe storage of radioactive waste and the use of this system can eliminate the repeat handling and can improve productivity. (author)

244

Building a Cooperative Communications System  

CERN Document Server

In this paper, we present the results from over-the-air experiments of a complete implementation of an amplify and forward cooperative communications system. Our custom OFDM-based physical layer uses a distributed version of the Alamouti block code, where the relay sends one branch of Alamouti encoded symbols. First we show analytically and experimentally that amplify and forward protocols are unaffected by carrier frequency offsets at the relay. This result allows us to use a conventional Alamouti receiver without change for the distributed relay system. Our full system implementation shows gains up to 5.5dB in peak power constrained networks. Thus, we can conclusively state that even the simplest form of relaying can lead to significant gains in practical implementations.

Murphy, Patrick; Aazhang, Behnaam

2007-01-01

245

Real-time supervision of building HVAC system performance  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This thesis presents techniques for improving building HVAC system performance in existing buildings generated using simulation-based tools and real data. Therefore, one of the aims has been to research the needs and possibilities to assess and improve building HVAC system performance. In addition, this thesis aims at an advanced utilization of building energy management system (BEMS) and the provision of useful information to building operators using simulation tools. Buildings are becoming ...

Djuric, Natasa

2008-01-01

246

Interim report on hydrogen storage system  

International Nuclear Information System (INIS)

Hydrogen can be stored in the form of a metal hydride. The formation of the hydride is highly exothermic. Hence the rate at which hydrogen can be added to or removed from the storage system is limited by the rate of heat transfer. Heat transfer is facilitated by displaying the hydride on a metal support that conducts heat. The task was to find a binder to make hydride stay put on a metal support through at least 2500 cycles of hydriding-dehydriding and to measure the rate of hydrogen uptake. 1 tab

247

Advances in information storage systems, v.7  

CERN Document Server

Advances in Information Storage Systems (AISS) series was initiated by ASME Press. New York with a first issue published in April 1991. ASME Press published a total of five volumes in 1991-93. In 1994, World Scientific Publishing Co. Private Limited took over the highly respected series and published volume number 6 in 1995. This volume number 7 is the second volume published by the World Scientific Publishing. The aim of the series remains to report the latest results from around the world in all the electromechanical, materials science, design, and manufacturing problems of information stora

Bhushan, Bharat

1996-01-01

248

Simulation of Flywheel Energy Storage System Controls  

Science.gov (United States)

This paper presents the progress made in the controller design and operation of a flywheel energy storage system. The switching logic for the converter bridge circuit has been redefined to reduce line current harmonics, even at the highest operating speed of the permanent magnet motor-generator. An electromechanical machine model is utilized to simulate charge and discharge operation of the inertial energy in the flywheel. Controlling the magnitude of phase currents regulates the rate of charge and discharge. The resulting improvements are demonstrated by simulation.

Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan

2001-01-01

249

Exergy analysis of building energy systems  

Energy Technology Data Exchange (ETDEWEB)

In Germany, energy consumption for space heating represents about 25% of the total final energy consumption of the entire country. The concept of LowEx buildings, which have a low exergy demand, has been introduced; however, the associated pump devices have a high electrical energy consumption. The aim of this paper is to provide a novel approach for comparing the exergy efficiency of different buildings. A system was modeled and simulated using Modelica, and the exergy losses in heat generation, distribution and delivery were calculated for both a geothermal heat pump and a boiler system. Results showed that the heat pump system led to lower exergy losses for heat generation but higher exergy losses for heat distribution than the boiler system. This study provided a useful comparison of exergy performance of geothermal heat pump and boiler systems however the simulation model should be improved to fully describe both systems' behavior.

Badakhshani, Azadeh; Hoh, Alexander; Muller, Dirk [RWTH Aachen University, E.ON Energy Research Center (Germany)], email: abadakhshani@eonerc.rwth-aachen.de

2011-07-01

250

Final Hazard Classification and Auditable Safety Analysis for the 105-F Building Interim Safe Storage Project  

International Nuclear Information System (INIS)

The auditable safety analysis (ASA) documents the authorization basis for the partial decommissioning and facility modifications to place the 105-F Building into interim safe storage (ISS). Placement into the ISS is consistent with the preferred alternative identified in the Record of Decision (58 FR). Modifications will reduce the potential for release and worker exposure to hazardous and radioactive materials, as well as lower surveillance and maintenance (S ampersand M) costs. This analysis includes the following: A description of the activities to be performed in the course of the 105-F Building ISS Project. An assessment of the inventory of radioactive and other hazardous materials within the 105-F Building. Identification of the hazards associated with the activities of the 105-F Building ISS Project. Identification of internally and externally initiated accident scenarios with the potential to produce significant local or offsite consequences during the 105-F Building ISS Project. Bounding evaluation of the consequences of the potentially significant accident scenarios. Hazard classification based on the bounding consequence evaluation. Associated safety function and controls, including commitments. Radiological and other employee safety and health considerations

251

Approaching Sentient Building Performance Simulation Systems  

DEFF Research Database (Denmark)

Sentient BPS systems can combine one or more high precision BPS and provide near instantaneous performance feedback directly in the design tool, thus providing speed and precision of building performance in the early design stages. Sentient BPS systems are essentially combining: 1) design tools, 2) parametric tools, 3) BPS tools, 4) dynamic databases 5) interpolation techniques and 6) prediction techniques as a fast and valid simulation system, in the early design stage.

Negendahl, Kristoffer; Perkov, Thomas

2014-01-01

252

Green Roofs and Green Building Rating Systems  

Directory of Open Access Journals (Sweden)

Full Text Available The environmental benefits for green building from the Leadership in Energy and Environment Design (LEED and Ecology, Energy, Waste, and Health (EEWH rating systems have been extensively investigated; however, the effect of green roofs on the credit-earning mechanisms is relatively unexplored. This study is concerned with the environmental benefits of green roofs with respect to sustainability, stormwater control, energy savings, and water resources. We focused on the relationship between green coverage and the credits of the rating systems, evaluated the credits efficiency, and performed cost analysis. As an example, we used a university building in Keelung, Northern Taiwan. The findings suggest that with EEWH, the proposed green coverage is 50–75%, whereas with LEED, the proposed green coverage is 100%. These findings have implications for the application of green roofs in green building.

Liaw

2015-01-01

253

Electric utility applications of hydrogen energy storage systems  

Energy Technology Data Exchange (ETDEWEB)

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15

254

Generating system adequacy evaluation considering wind and storage operating strategies  

Energy Technology Data Exchange (ETDEWEB)

The power fluctuations that occur which the integration of large scale wind power into an electric grid can be reduced by storing energy and using it during periods of low wind. New battery technologies, such as the Vanadium Redox Battery (VRB) are being tested for large scale on-grid applications of wind energy. It is important to determine the potential impacts of energy storage on the reliability of relatively large systems that include significant amounts of wind power capacity. The benefits of energy storage depend on the operating strategies associated with wind and storage in a power system. In this study, the following 4 different operating strategies were compared: (1) the system operator maintains the storage facility and uses the stored energy to avoid load curtailment, (2) the stored energy is used to supply the system load when the sum of the wind power and the conventional power is not enough to supply the system load, (3) the wind farm owner operates the wind and storage combination to meet part of the system load, and (4) the wind farm owner operates the wind and storage combination and the stored energy is used support the conventional units to avoid load curtailment while meeting the stability criterion. This study considered a minimum energy storage capacity of 20 per cent of its maximum capacity. The four operating strategies for the wind farm and energy storage were compared in terms of the effects of wind penetration level, energy storage operating constraints, energy storage capacity, and wind energy dispatch restrictions on the reliability benefit from energy storage. The study showed that energy storage in strategies 1 and 2 can greatly improved the system reliability, whereas the energy storage in strategies 3 and 4 improved the system reliability only slightly. It was concluded that these results may provide useful information to wind farm and system operators planning to operate storage facilities in power systems with large wind penetration. 9 refs., 6 figs.

Hu, P.; Karki, R.; Billinton, R. [Saskatchewan Univ., Saskatoon, SK (Canada). Power Systems Research Group

2008-07-01

255

10 CFR 434.404 - Building service systems and equipment.  

Science.gov (United States)

...HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric...Equipment § 434.404 Building service systems and equipment...gal Test Method a Energy factor Thermal efficiency...electric 12 kW all c DOE Test...

2010-01-01

256

Economic analysis of using above ground gas storage devices for compressed air energy storage system  

Science.gov (United States)

Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

2014-12-01

257

Biomass fuelled trigeneration system in selected buildings  

Energy Technology Data Exchange (ETDEWEB)

Highlights: {yields} We model a commercial building scale biomass fuelled trigeneration plant. {yields} It is economically feasible to use willow chips, miscanthus and rice husk as the fuel to operate the trigeneration system. {yields} The efficiency of TG is much higher than that of PO, but is lower than that of the combined heat and power (CHP) configuration. {yields} The breakeven electricity selling price (BESP) of the TG system is better than that of the PO option with the CHP option producing the cheapest electricity. -- Abstract: Many buildings require simultaneous electricity, heating and cooling. Biomass is one of the renewable energy sources which is not intermittent, location-dependent or very difficult to store. If grown sustainably, biomass can be considered to be CO{sub 2} neutral. A trigeneration system consisting of an internal combustion (IC) engine integrated with biomass gasification may offer a combination for delivering heat, electricity and cooling cleanly and economically. The producer gas generated by the gasifier is used to provide electricity for building use via the IC engine. The waste heat is recovered from the engine cooling system and exhaust gases to supply hot water to space heating, excess heat is also used to drive an absorption cooling system. The proposed system is designed to meet the energy requirements for selected commercial buildings and district heating/cooling applications. This work focuses on the modeling and simulation of a commercial building scale trigeneration plant fuelled by a biomass downdraft gasifier. In order to use both energy and financial resources most efficiently, technical and economic analyses were carried out, using the ECLIPSE process simulation package. The study also looks at the impact of different biomass feedstock (willow, rice husk and miscanthus) on the performance of a trigeneration plant.

Huang, Y., E-mail: y.huang@ulster.ac.u [Centre for Sustainable Technologies, School of Built Environment, University of Ulster, Newtownabbey, BT37 0QB (United Kingdom); Wang, Y.D. [The Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle Upon Tyne, NE1 7RU (United Kingdom); Rezvani, S.; McIlveen-Wright, D.R.; Anderson, M.; Hewitt, N.J. [Centre for Sustainable Technologies, School of Built Environment, University of Ulster, Newtownabbey, BT37 0QB (United Kingdom)

2011-06-15

258

Biomass fuelled trigeneration system in selected buildings  

International Nuclear Information System (INIS)

Highlights: ? We model a commercial building scale biomass fuelled trigeneration plant. ? It is economically feasible to use willow chips, miscanthus and rice husk as the fuel to operate the trigeneration system. ? The efficiency of TG is much higher than that of PO, but is lower than that of the combined heat and power (CHP) configuration. ? The breakeven electricity selling price (BESP) of the TG system is better than that of the PO option with the CHP option producing the cheapest electricity. -- Abstract: Many buildings require simultaneous electricity, heating and cooling. Biomass is one of the renewable energy sources which is not intermittent, location-dependent or very difficult to store. If grown sustainably, biomass can be considered to be CO2 neutral. A trigeneration system consisting of an internal combustion (IC) engine integrated with biomass gasification may offer a combination for delivering heat, electricity and cooling cleanly and economically. The producer gas generated by the gasifier is used to provide electricity for building use via the IC engine. The waste heat is recovered from the engine cooling system and exhaust gases to supply hot water to space heating, excess heat is also used to drive an absorption cooling system. The proposed system is designed to meet the energy requirements for selected commercial buildings and district heating/cooling applications. This work focuses on the modeling and simulation of a commercial bg and simulation of a commercial building scale trigeneration plant fuelled by a biomass downdraft gasifier. In order to use both energy and financial resources most efficiently, technical and economic analyses were carried out, using the ECLIPSE process simulation package. The study also looks at the impact of different biomass feedstock (willow, rice husk and miscanthus) on the performance of a trigeneration plant.

259

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

Energy Technology Data Exchange (ETDEWEB)

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05

260

Hybrid Energy Storage System With A Special Battery Charger For Wind Power System  

Directory of Open Access Journals (Sweden)

Full Text Available Generation systems including wind turbine generators, photovoltaic panels and storage batteries are used to build hybrid stand-alone generation systems that are reliable, economic and efficient. Battery energy storage is the current and typical means of smoothing wind or solar power generation fluctuations and improving the power quality. A new battery charger which is a buck-type power converter specially for the wind power system is developed. The converter provides pulsating charging current and extracts maximum power. The maximum power point tracking function is obtained by the wind turbine characteristics and the proper circuit parameter design of the power converter. Over speed protection of the wind turbine can be naturally achieved.

Dipu Varghese

2014-09-01

 
 
 
 
261

Building multivariate systems biology models.  

Science.gov (United States)

Systems biology methods using large-scale "omics" data sets face unique challenges: integrating and analyzing near limitless data space, while recognizing and removing systematic variation or noise. Herein we propose a complementary multivariate analysis workflow to both integrate "omics" data from disparate sources and analyze the results for specific and unique sample correlations. This workflow combines principal component analysis (PCA), orthogonal projections to latent structures discriminate analysis (OPLS-DA), orthogonal 2 projections to latent structures (O2PLS), and shared and unique structures (SUS) plots. The workflow is demonstrated using data from a study in which ApoE3Leiden mice were fed an atherogenic diet consisting of increasing cholesterol levels followed by therapeutic intervention (fenofibrate, rosuvastatin, and LXR activator T-0901317). The levels of structural lipids (lipidomics) and free fatty acids in liver were quantified via liquid chromatography-mass spectrometry (LC-MS). The complementary workflow identified diglycerides as key hepatic metabolites affected by dietary cholesterol and drug intervention. Modeling of the three therapeutics for mice fed a high-cholesterol diet further highlighted diglycerides as metabolites of interest in atherogenesis, suggesting a role in eliciting chronic liver inflammation. In particular, O2PLS-based SUS2 plots showed that treatment with T-0901317 or rosuvastatin returned the diglyceride profile in high-cholesterol-fed mice to that of control animals. PMID:22856472

Kirwan, Gemma M; Johansson, Erik; Kleemann, Robert; Verheij, Elwin R; Wheelock, Åsa M; Goto, Susumu; Trygg, Johan; Wheelock, Craig E

2012-08-21

262

Value and cost analyses for solar thermal-storage systems  

Energy Technology Data Exchange (ETDEWEB)

Value and cost data for thermal energy storage are presented for solar thermal central receiver systems for which thermal energy storage appears to be attractive. Both solar thermal electric power and industrial process heat applications are evaluated. The value of storage is based on the cost for fossil fuel and solar thermal collector systems in 1990. The costing uses a standard lifetime methodology with the storage capacity as a parameter. Both value and costs are functions of storage capacity. However, the value function depends on the application. Value/cost analyses for first-generation storage concepts for five central receiver systems (molten salt, water/steam, organic fluid, air, and liquid metal) established the reference against which new systems were compared. Some promising second-generation energy storage concepts have been identified, and some more advanced concepts have also been evaluated.

Luft, W.; Copeland, R.J.

1983-04-01

263

Spent fuel storage system for LMFBR fuel experiments  

International Nuclear Information System (INIS)

Fuel that had been irradiated in the Argonne National Laboratory Experimental Breeder Reactor II (EBR-II) at Idaho Falls, Idaho, and examined at the Hanford Engineering Development Laboratory at Richland, Washington, was placed in long term retrievable storage utilizing a system designed at Hanford. The Spent Fuel Storage Cask system was designed for transport and storage of a large quantity of spent fuel at the Hanford 200 Area transuranic (TRU) asphalt storage pad. The entire system is designed for long term retrievable storage to allow future reprocessing of the fuel. The system was designed to meet the criticality, shielding, and thermal requirements for a maximum fuel load of four kilograms fissile. The Spent Fuel Storage Cask was built to transport and store the fuel from EBR-II on the TRU asphalt storage pad

264

A model and framework for reliable build systems  

CERN Document Server

Reliable and fast builds are essential for rapid turnaround during development and testing. Popular existing build systems rely on correct manual specification of build dependencies, which can lead to invalid build outputs and nondeterminism. We outline the challenges of developing reliable build systems and explore the design space for their implementation, with a focus on non-distributed, incremental, parallel build systems. We define a general model for resources accessed by build tasks and show its correspondence to the implementation technique of minimum information libraries, APIs that return no information that the application doesn't plan to use. We also summarize preliminary experimental results from several prototype build managers.

Coetzee, Derrick; Necula, George

2012-01-01

265

Criticality safety analysis of the fissile material storage arrays in the east end of building 6592  

International Nuclear Information System (INIS)

A criticality safety analysis of nine concrete storage holes that have been formed in the floor of the Materials Balance Area (MBA) in Building 6592 is reported. Unit cell dimensions and unit mass limits are defined for the most likely plutonium and uranium fuel types that will be stored there. Two tables of mass limits are derived. The first table is to be used for short units that can be stacked with fixed separation in the same hole. The second table will permit units greater than one foot in length providing that the appropriate linear mass density limit (in kg/ft) is not exceeded

266

Design and building of a new experimental setup for testing hydrogen storage materials  

Energy Technology Data Exchange (ETDEWEB)

For hydrogen to become the future energy carrier a suitable way of storing hydrogen is needed, especially if hydrogen is to be used in mobile applications such as cars. To test potential hydrogen storage materials with respect to capacity, kinetics and thermodynamics the Materials Research Department has a high pressure balance. However, the drawback of this equipment is, that in order to load samples, exposure towards air is inevitable. This has prompted the design and building of a new experimental setup with a detachable reactor allowing samples to be loaded under protective atmosphere. The purpose of this report is to serve as documentation of the new setup. (au)

Andreasen, Anders

2005-09-01

267

Canister storage building (CSB) safety analysis report phase 3: Safety analysis documentation supporting CSB construction  

International Nuclear Information System (INIS)

The Canister Storage Building (CSB) will be constructed in the 200 East Area of the U.S. Department of Energy (DOE) Hanford Site. The CSB will be used to stage and store spent nuclear fuel (SNF) removed from the Hanford Site K Basins. The objective of this chapter is to describe the characteristics of the site on which the CSB will be located. This description will support the hazard analysis and accident analyses in Chapter 3.0. The purpose of this report is to provide an evaluation of the CSB design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB

268

As-Built Verification Plan Spent Nuclear Fuel Canister Storage Building MCO Handling Machine  

International Nuclear Information System (INIS)

This as-built verification plan outlines the methodology and responsibilities that will be implemented during the as-built field verification activity for the Canister Storage Building (CSB) MCO HANDLING MACHINE (MHM). This as-built verification plan covers THE ELECTRICAL PORTION of the CONSTRUCTION PERFORMED BY POWER CITY UNDER CONTRACT TO MOWAT. The as-built verifications will be performed in accordance Administrative Procedure AP 6-012-00, Spent Nuclear Fuel Project As-Built Verification Plan Development Process, revision I. The results of the verification walkdown will be documented in a verification walkdown completion package, approved by the Design Authority (DA), and maintained in the CSB project files

269

Potential energy cost savings by use of building roofs as thermal storage of a multi-storied building  

Science.gov (United States)

The thermal mass of a building has been used for more than two decades to shift the peak cooling load occurring during the day time to evening or night time. This is typically accomplished by use of concrete slabs embedded with pipes carrying hot or chilled water to meet the heating or cooling load, respectively. The water temperature drops across the coils and the frequency and intensity of room air circulation can be varied, along with controlling the gains through the windows, to shift the peak load hours to the nighttime when energy costs are cheaper and electric demands are lower. This thesis deals with the transient finite element heat transfer analysis of a concrete slab embedded with pipes circulating heated or chilled water of a multi-storied office building. A hypothetical office building in Chattanooga, Tennessee, USA is analyzed with weather data of that locale. The electrical power consumption of such a system operating at milder conditions or evening or night hours is estimated by use of hourly weather data. The estimated electric power consumption is then compared to the traditional method of operations. The influence of the wall envelope, including the size and orientation of windows, is considered in reducing the energy gain or loss from the space. The results presented in this thesis identify the potential energy cost savings of such a system as well as challenges involved compared to traditional buildings in commercial applications.

Shelbaya, Ahmad Adam

270

Specification requirements for inter-seasonal heat storage systems in a low energy residential house  

International Nuclear Information System (INIS)

Highlights: • Quick evaluation of heating needs and maximal power of a low-energy residential house. • Detailed tools are provided for the design of a thermal energy storage system. • Heating needs are calculated for full seasonal storage or for shorter autonomies. • Design power is estimated as a function of the desired time coverage of the system. • Heating needs and deliverable power may be linked together for system optimization. - Abstract: This paper aims at providing sizing information concerning a thermal storage system in the case of a low energy consumption building (2 y). Numerical simulations for a reference individual building were run for 23 different cities in Europe. Results show a clear correlation between annual heat demand Qy and annual heating degree-day (HDD): Qy = f1(HDD). There is also a good correlation between power demand and HDD. But as heat coverage of the entire heating period may be too ambitious, the analysis goes further. It presents a correlation between heating demand Q and HDD as a function of the storage system autonomy t of the form Q=(1-exp((-t)/(?) ))×Qy with ? = f2(HDD). It also gives the absolute distribution of sorted power demand values as a function of HDD in the form of a power sizing chart. The purpose of this chart is to provide specifications for the sizing of a thermal storage system intended to partially cover energy needs and power demand of a low energy residential house

271

Experimental analysis of simulated reinforcement learning control for active and passive building thermal storage inventory  

Energy Technology Data Exchange (ETDEWEB)

This paper is the first part of a two-part investigation of a novel approach to optimally control commercial building passive and active thermal storage inventory. The proposed building control approach is based on simulated reinforcement learning, which is a hybrid control scheme that combines features of model-based optimal control and model-free learning control. An experimental study was carried out to analyze the performance of a hybrid controller installed in a full-scale laboratory facility. The first part presents an overview of the project with an emphasis on the theoretical foundation. The motivation of the research will be introduced first, followed by a review of past work. A brief introduction of the theory is provided including classic reinforcement learning and its variation, so-called simulated reinforcement learning, which constitutes the basic architecture of the hybrid learning controller. A detailed discussion of the experimental results will be presented in the companion paper. (author)

Liu, S. [Architectural Engineering, University of Nebraska-Lincoln, PKI 243, Omaha, NE (United States); Henze, G. P. [Architectural Engineering, University of Nebraska-Lincoln, PKI 203D, Omaha, NE (United States)

2006-07-01

272

Horizontal movement of the storage ring floor at the light source building  

International Nuclear Information System (INIS)

At the Light Source Building, the storage ring with an elliptic shape varies its size due to heat launched from many accelerator components and beamline instruments as well as due to heat by solar irradiation and atmospheric temperature. To be clear for holizontal movement, major axis length of the ring has been measured with a laser interferometer continuously. At the same time, it also has been measured temperature at the building roof, floor of the ring tunnel and experimental hall. It was found that there was strong relation between major axis length of the ring and these temperature. We tried to reproduce variation of major axis length by using thermal weighting factor that is calculated by computer simulation. (author)

273

The electricity system, energy storage and hydropower: an overview  

International Nuclear Information System (INIS)

This paper discusses the electricity system, energy storage and hydropower. Typically, electricity is consumed as it is needed and generated to match consumption. Interest and development work in energy storage are increasingly driven by its contributions in several areas of concern: reliability and the rise of renewables. A full range of energy storage technologies is needed and with its many advantages hydropower will continue to fill a need for large scale bulk storage

274

An Overview on Energy Storage Options for Renewable Energy Systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can manage the amount of power required to supply customers at times when need is greatest, which is during peak load. This paper focuses on four storage technologies that can be used as storage for wind energy conversion system. For each storage te...

Mr. Ajay Sharma

2014-01-01

275

Impact of energy storage in buildings on electricity demand side management  

International Nuclear Information System (INIS)

Research highlights: ? Phase change material (PCM) application for space heating has been implemented and assessed for built environment. ? Real-Time Pricing (RTP) is assessed as tool to implement Demand Side Management programs effectively. ? Two buildings, with and without PCM, have been compared for space heating using RTP in functional electricity market. ? PCM found to offer peak load shifting, energy conservation, and reduction in price of electricity. -- Abstract: This paper assesses impact of using phase change materials (PCM) in buildings to leverage its thermal energy storage capability. The emphasis is from an electricity demand side perspective with case studies that incorporates wholesale electricity market data of New Zealand. The results presented in this paper show that for space heating application significant advantages could be obtained using PCM built structures. These positive impacts include peak load shifting, energy conservation and reduction in peak demand for network line companies and potential reduction in electricity consumption and savings for residential customers. This paper uses a testing facility that consists of two identically designed and shaped offices built at Tamaki Campus location of the University of Auckland, New Zealand. The walls and ceilings of one office are finished with ordinary gypsum boards while the interior of the other office is finished with PCM impregnated gypsum boards. Controlled heating facility is proControlled heating facility is provided in both the offices for maintaining temperature within the range of human comfort. This facility is equipped with advanced data acquisition equipment for data monitoring and archiving both locally within the offices and also remotely. Through actual observations and analysis this paper demonstrates two major impacts of DSM. First, the application of phase change material (PCM) in building environment enabling efficient thermal storage to achieve some reduction in the overall electrical energy consumption. Second, assessment of peak load shifting achieved for space heating in a PCM building during a typical winter period in New Zealand.

276

Diagnosis System for Building Management Network  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this study the author used multi-criteria decision-making design to provide optimal structure of the developed and modified modern Building Management Systems (BMS). While modern BMS is used to provide effective and securable activity of enterprises solving complex tasks of their operability. However a lot of problems such as system structure flexibility in an ever changing market of the BMS and industrial network hardware can be solved by means of the hardware structure development automa...

Zafer Al-Makhadmee

2013-01-01

277

Scenario building to understand complex systems  

Science.gov (United States)

"A scenario is a plausible, simplified, synthetic description of how the future of a system might develop, based on a coherent and internally consistent set of assumptions about key driving forces and relationships among key variables" (Millennium Ecosystem Assessment, 2005). Building scenarios that envision a (or a set of) possible future, promotes learning about what drivers are most important in driving change in a system.

Orr, Cailn H.

278

Buildings Definition as Product-Service Systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Product-Service System is one way toward sustainable system development. One issue of PSS concerns the function allocation between the product part and the service part. In Architecture-Engineering-Construction,function assignment to either the building or the service offered is also a strong issue. The contracting owner (i.e. paying client) has to deal with this issue during the requirements definition. This paper proposes to tackle it through an adaptation and application of Gero's Function...

Mauger, Cyril; Dantan, Jean-yves

2013-01-01

279

Whole-building systems integration laboratory survey  

Energy Technology Data Exchange (ETDEWEB)

This report was prepared for the Pacific Northwest Laboratory as a subcontracted activity by the Research Management Foundation of the American Consulting Engineers Council. The objective of the survey reported herein was to independently assess the need for a Building System Integration Laboratory from the viewpoint of academicians in the field of building science. The subcontractor-developed questionnaire was sent to 200 professors of architecture and engineering at US universities. In view of this diverse population, the 10% rate of return on the questionnaire was considered acceptable. Although the responses probably do not reflect an unbiased summary of the collective perceptions of the original population surveyed, they do provide a valid insight into the interests and concerns of the academic community with respect to building sciences issues.

Crawley, D.B. (American Consulting Engineers Council, Washington, DC (USA). Research and Management Foundation)

1989-09-01

280

A BES cluster storage system based on Lustre  

International Nuclear Information System (INIS)

The huge storage requirement of BES computing calls for advanced storage architecture and reasonable configuration. It describes a BES storage system based on Lustre. The components of Lustre and its advantages as a PetaScale storage architecture are introduced. The implementation of target system and the characteristic of workload are described. It analysis performance factors on hardware level, operation system level and file system level, provides test results for different performance parameters, and at last put forward solutions to optimize I/O performance on the target system. (authors)

 
 
 
 
281

Electric system impacts of storage heating and storage water heating. Part I  

Energy Technology Data Exchange (ETDEWEB)

Customer energy storage offers a utility company a means to change electric energy use patterns, however, the costs and benefits to the utility and consumer are uncertain. As part of a national demonstration Public Service Electric and Gas Company (PSEandG) installed storage heating and storage water heating appliances in residential homes. These homes were monitored and compared to a group of similar homes using conventional appliances. The purpose of this two-part paper is to explore the possible design impacts on primary and secondary electrical distribution systems for two types of central ceramic residential storage heating systems. To explain the costs and benefits of storage heating and storage water heating, background information and a description of the demonstration are discussed in this part of the paper.

Gellings, C.W.; Reddoch, T.W.; Redmon, J.R.; Stovall, J.P.

1982-07-01

282

Energy Storage System Scheduling in Wind-Diesel Microgrids  

Science.gov (United States)

This thesis proposes a knowledge based expert system tool that can be used as an online controller for the charging/discharging of an energy storage system in a wind-diesel microgrid. The wind-diesel microgrid is modelled, and a typical energy storage system is implemented to test the functionality of the controller using hourly-discrete power values. The results are compared against an offline optimization that was provided 24-hour lookahead wind values, as well as a controller that was implemented using artificial neural networks. The knowledge based expert system is then used to analyze the cost of energy, by means of a parametric analysis, consisting of varying the wind penetration, energy storage system power rating and energy rating to determine for which wind penetration values a storage system implementation would be technically and economically viable. Different storage technologies are tested in a one-year time frame to determine which would be best suited for this particular application. The energy storage systems are implemented as single-layer and dual-layer, in which the knowledge based expert system is modified for the latter analysis, in order to determine whether or not there are advantages to having a dual-layer storage system. Throughout these analyses, the flexibility of the knowledge based expert system controller to various energy storage systems and microgrid models is verified. It also demonstrates that, in a context of high base generation costs, energy storage can be a viable solution to managing wind power variations.

Ross, Michael

283

Experimental analysis of simulated reinforcement learning control for active and passive building thermal storage inventory  

Energy Technology Data Exchange (ETDEWEB)

This paper is the second part of a two-part investigation of a novel approach to optimally control commercial building passive and active thermal storage inventory. The proposed building control approach is based on simulated reinforcement learning, which is a hybrid control scheme that combines features of model-based optimal control and model-free learning control. An experimental study was carried out to analyze the performance of a hybrid controller installed in a full-scale laboratory facility. The first paper introduced the theoretical foundation of this investigation including the fundamental theory of reinforcement learning control. This companion paper presents a discussion and analysis of the experimental results. The results confirm the feasibility of the proposed control approach. Operating cost savings were attained with the proposed control approach compared with conventional building control; however, the savings are lower than for the case of model-based predictive optimal control. As for the case of model-based predictive control, the performance of the hybrid controller is largely affected by the quality of the training model, and extensive real-time learning is required for the learning controller to eliminate any false cues it receives during the initial training period. Nevertheless, compared with standard reinforcement learning, the proposed hybrid controller is much more readily implemented in a commercial building. (author)

Liu, S. [Architectural Engineering, University of Nebraska-Lincoln, PKI 243, Omaha, NE (United States); Henze, G. P. [Architectural Engineering, University of Nebraska-Lincoln, PKI 203D, Omaha, NE (United States)

2006-07-01

284

Method for simulating predictive control of building systems operation in the early stages of building design  

International Nuclear Information System (INIS)

Highlights: ? Simulating predictive control of building systems operation in the early stages of building design. ? The configuration of buildings systems operation is facilitated and automated. ? Building energy consumption is reduced compared to more conventional control systems. ? Thermal comfort for building occupants is improved. -- Abstract: A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual reconfiguration when making parametric analysis. A test case featuring an office located in Copenhagen, Denmark, indicates that the method has a potential to save energy and improve thermal comfort compared to more conventional systems control. Further investigations of this potential and the general performance of the method are, however, needed before implementing it in a real building design.

285

Cost Analysis of Redundancy Schemes for Distributed Storage Systems  

CERN Document Server

Distributed storage infrastructures are a key component of nowadays distributed systems. Due to its distributed nature, these storage systems require the use of data redundancy to achieve high data reliability. Unfortunately, the use of redundancy introduces storage and communication overheads, which can either reduce the overall capacity of the system, or increase its costs. To mitigate these storage and communication overheads, different redundancy schemes have been proposed. However, due to the great variety of underlaying storage infrastructures and different application needs, optimizing these redundancy schemes for each different infrastructure is highly cumbersome. The lack of rules to determine the optimal redundancy configuration for each storage infrastructure leads developers in the industry to choice simpler redundancy schemes, which are not usually the optimal ones. In this paper we analyze the costs of different redundancy schemes under different storage infrastructures. Through our cost analysi...

Pamies-Juarez, Lluis

2011-01-01

286

Parametric Study on the Dynamic Heat Storage Capacity of Building Elements  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In modern, extensively glazed office buildings, due to high solar and internal loads and increased comfort expectations, air conditioning systems are often used even in moderate and cold climates. Particularly in this case, passive cooling by night-time ventilation seems to offer considerable potential. However, because heat gains and night ventilation periods do not coincide in time, a sufficient amount of thermal mass is needed in the building to store the heat. Assuming a 24 h-period harmo...

Artmann, Nikolai; Manz, H.; Heiselberg, Per

2007-01-01

287

NASA Redox Storage System Development Project  

Science.gov (United States)

The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.

Hagedorn, N. H.

1984-01-01

288

A strategy for load balancing in distributed storage systems  

CERN Document Server

Distributed storage systems are critical to the operation of the WLCG. These systems are not limited to fulfilling the long term storage requirements. They also serve data for computational analysis and other computational jobs. Distributed storage systems provide the ability to aggregate the storage and IO capacity of disks and tapes, but at the end of the day IO rate is still bound by the capabilities of the hardware, in particular the hard drives. Throughput of hard drives has increased dramatically over the decades, however for computational analysis IOPS is typically the limiting factor. To maximize return of investment, balancing IO load over available hardware is crucial. The task is made complicated by the common use of heterogeneous hardware and software environments that results from combining new and old hardware into a single storage system. This paper describes recent advances made in load balancing in the dCache distributed storage system. We describe a set of common requirements for load balan...

CERN. Geneva

2012-01-01

289

Test report : Raytheon / KTech RK30 energy storage system.  

Energy Technology Data Exchange (ETDEWEB)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-10-01

290

Real-time supervision of building HVAC system performance  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This thesis presents techniques for improving building HVAC system performance in existing buildings generated using simulation-based tools and real data. Therefore, one of the aims has been to research the needs and possibilities to assess and improve building HVAC system performance. In addition, this thesis aims at an advanced utilization of building energy management system (BEMS) and the provision of useful information to building operators using simulation tools.

&am...

Djuric, Natasa

2008-01-01

291

Pulsed rf systems for large storage rings  

International Nuclear Information System (INIS)

The possibility is considered that by using a pulsed rf system a substantial reduction can be made in the rf power requirement for the next generation of large storage rings. For a ring with a sufficiently large circumference, the time between bunch passages, T/sub b/, can exceed the cavity filling time, T/sub f/. As the ratio T/sub b//T/sub f/ increases, it is clear that at some point the average power requirement can be reduced by pulsing the rf to the cavities. In this mode of operation, the rf power is turned on a filling time or so before the arrival of a bunch and is switched off again at the time of bunch passage. There is no rf energy in the accelerating structure, and hence no power dissipation, for most of the period between bunches

292

The relation of collector and storage tank size in solar heating systems  

International Nuclear Information System (INIS)

Highlights: ? A storage tank is used in many solar water heating systems for the storage of hot water. ? Using larger storage tanks decrease the efficiency and increases the cost of the system. ? The optimum tank size for the collector area is very important for economic solar heating systems. ? The optimum sizes of the collectors and the storage tank are determined. - Abstract: The most popular method to benefit from the solar energy is to use solar water heating systems since it is one of the cheapest way to benefit from the solar energy. The investment cost of a solar water heating system is very low, and the maintenance costs are nearly zero. Using the solar energy for solar water heating (SWH) technology has been greatly improved during the past century. A storage tank is used in many solar water heating systems for the conservation of heat energy or hot water for use when some need it. In addition, domestic hot water consumption is strongly variable in many buildings. It depends on the geographical situation, also on the country customs, and of course on the type of building usage. Above all, it depends on the inhabitants’ specific lifestyle. For that reason, to provide the hot water for consumption at the desirable temperature whenever inhabitants require it, there must be a good relevance between the collectors and storage tank. In this paper, the optimum sizes of the collectors and the storage tank are determined to design more economic and efficienesign more economic and efficient solar water heating systems. A program has been developed and validated with the experimental study and environmental data. The environmental data were obtained through a whole year of operation for Erzurum, Turkey.

293

SERI solar energy storage program  

Science.gov (United States)

Thermal energy storage technologies are identified for specific solar thermal applications. The capabilities and limitations of direct-contact thermal storage and thermochemical energy storage and transport are examined. Storage of energy from active solar thermal systems for industrial process heat and the heating of buildings is analyzed and seasonal energy storage is covered. The coordination of numerous thermal energy storage research and development activities is described.

Baylin, F.; Copeland, R. J.; Kotch, A.; Kriz, T.; Luft, W.; Nix, R. G.; Wright, J. O.

1982-05-01

294

Battery energy storage technology for power systems - An overview  

International Nuclear Information System (INIS)

The penetration of renewable sources (particularly wind power) in to the power system network has been increasing in the recent years. As a result of this, there have been serious concerns over reliable and satisfactory operation of the power systems. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage devices into the power system network. Further, in the present deregulated markets these storage devices could also be used to increase the profit margins of wind farm owners and even provide arbitrage. This paper discusses the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications. (author)

295

Battery Energy Storage Technology for power systems-An overview  

DEFF Research Database (Denmark)

The penetration of renewable sources (particularly wind power) in to the power system network has been increasing in the recent years. As a result of this, there have been serious concerns over reliable and satisfactory operation of the power systems. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage devices into the power system network. Further, in the present deregulated markets these storage devices could also be used to increase the profit margins of wind farm owners and even provide arbitrage. This paper discusses the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications.

Chandrashekhara, Divya K; Østergaard, Jacob

2009-01-01

296

Two well storage systems for combined heating and airconditioning by groundwater heatpumps in shallow aquifers  

Energy Technology Data Exchange (ETDEWEB)

The use of soil and ground water as an energy source and heat storage systems for heat pumps in order to conserve energy in heating and air conditioning buildings is discussed. Information is included on heat pump operation and performance, aquifer characteristics, soil and ground water temperatures, and cooling and heating demands. Mathematical models are used to calculate flow and temperature fields in the aquifer. It is concluded that two well storage systems with ground water heat pumps are desirable, particularly in northern climates. (LCL)

Pelka, W.

1980-07-01

297

Commercial Expert-System-Building Software Tools  

Science.gov (United States)

Report evaluates commercially-available expert-system-building tools in terms of structures, representations of knowledge, inference mechanisms, interfaces with developers and end users, and capabilities of performing such functions as diagnosis and design. Software tools commercialized derivatives of artificial-intelligence systems developed by researchers at universities and research organizations. Reducing time to develop expert system by order of magnitude compared to that required with such traditional artificial development languages as LISP. Table lists 20 such tools, rating attributes as strong, fair, programmable by user, or having no capability in various criteria.

Gevarter, William B.

1989-01-01

298

Life cycle optimization of building energy systems  

Science.gov (United States)

A life cycle optimization model intended to potentially reduce the environmental impacts of energy use in commercial buildings is presented. A combination of energy simulation, life cycle assessment, and operations research techniques are used to develop the model. In addition to conventional energy systems, such as the electric grid and a gas boiler, cogeneration systems which concurrently generate power and heat are investigated as an alternative source of energy. Cogeneration systems appeared to be an attractive alternative to conventional systems when considering life cycle environmental criteria. Internal combustion engine and microturbine (MT) cogeneration systems resulted in a reduction of up to 38% in global warming potential compared with conventional systems, while solid oxide fuel cell and MT cogeneration systems resulted in a reduction of up to 94% in tropospheric ozone precursor potential (TOPP). Results include a Pareto-optimal frontier between reducing costs and reducing the selected environmental indicators.

Osman, Ayat; Norman, Bryan; Ries, Robert

2008-02-01

299

Nuclear Hybrid Energy Systems: Molten Salt Energy Storage  

Energy Technology Data Exchange (ETDEWEB)

With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

2014-07-01

300

Novel heat recovery systems for building applications  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The work presented in this thesis will explore the development of novel heat recovery systems coupled with low carbon technologies, and its integration to become one device with multifunction (building integrated heat recovery/cooling/air dehumidifier. In the first part of this thesis, an experimental performance of an individual heat recovery unit using Micro Heat and Mass Cycle Core (MHM3C) made of fibre papers with cross flow arrangement has been carried out. The unit was tested in an env...

Ahmad, Mardiana Idayu

2011-01-01

 
 
 
 
301

Industrialised Building System in Malaysia: A Review  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The construction industry in Malaysia is experiencing a migration from conventional methods to a more systematic and mechanised method known as the Industrialised Building System (IBS). Each state in Malaysia is currently examining the developments of the IBS and its potential to overcome the shortages of housing accommodations in this country. The Malaysian government, involved through its agency, the Construction Industry Development Board (CIDB) has been persistently pushing the constructi...

Othuman Mydin M.A.; Md, Sani N.; Taib M.

2014-01-01

302

Numerical analysis of a medium scale latent energy storage unit for districtheating systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The present paper describes the application of computational fluid-dynamics (CFD) to the design and characterization of a medium scale energy storage unit for district heating systems. The shell-and-tube LHTES unit contains a technical grade paraffin (RT100) as phase change material (PCM) and uses water as heat transfer fluid (HTF). The system has been designed to transfer heat from the district to the building heating networks. After an initial description of the LHTES unit and a wide litera...

Colella, Francesco; Sciacovelli, Adriano; Verda, Vittorio

2012-01-01

303

The Role of Thermal Storage and Natural Gas in a Smart Energy System  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Smart grids are considered important building blocks of a future energy system that facilitates integration of massive distributed energy resources like gas-fired cogeneration (CHP). The latter produces thermal and electric power together and as such reinforces the interaction between the gas and electricity-distribution systems. Thermal storage makes up the key-source of flexibility that allows decoupling the electricity production from the heat demand. However, smart grids focus on electric...

Vandewalle, Jeroen; Keyaerts, Nico; D Haeseleer, William

2012-01-01

304

Toxicity of systems for energy generation and storage  

International Nuclear Information System (INIS)

This section contains summaries of research on assessment of health and environmental effects of electric storage systems, and the metabolism and toxicity of metal compounds associated with energy production and storage. The first project relates to the production and use of electric storage battery systems. The second project deals with the effects of pregnancy and lactation on the gastrointestinal absorption, tissue distribution, and toxic effects of metals (Cd). Also included in this study is work on the absorption of actinides (239Pu)

305

Dynamic Load Balancing Strategies in Networked Multimedia Storage System  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A Large-Scale Multimedia Storage System (LMSS), which consists of a single server or multiple servers, manages the storage and retrieval of multimedia data from disk media. As a networked multimedia service is expected to serve a large pool of clients, it is impossible for a single server to meet all multimedia requirements such as continuous-time presentation, network bandwidth, etc. In a large-scale multimedia storage system where client requests for different multimedia obj...

Arulselvi, R.

2014-01-01

306

A Prototype Steam Storage System for Power Production  

Digital Repository Infrastructure Vision for European Research (DRIVER)

— Use of solar energy on a large scale is mainly limited to the sun duration hours, weather conditions and adequate solar thermal storage technology. A means of addressing this problem using local materials is provided. A prototype pressure storage system was designed using auto cad 2010 and fabricated using locally available materials. The steam storage system was tested using ASME 2000b guidelines for boiler and pressure vessels at a small scale. The maximu...

Kawira M, Kinyua R.

2014-01-01

307

Content Sharing Graphs for Deduplication-Enabled Storage Systems  

Directory of Open Access Journals (Sweden)

Full Text Available Deduplication in storage systems has gained momentum recently for its capability in reducing data footprint. However, deduplication introduces challenges to storage management as storage objects (e.g., files are no longer independent from each other due to content sharing between these storage objects. In this paper, we present a graph-based framework to address the challenges of storage management due to deduplication. Specifically, we model content sharing among storage objects by content sharing graphs (CSG, and apply graph-based algorithms to two real-world storage management use cases for deduplication-enabled storage systems. First, a quasi-linear algorithm was developed to partition deduplication domains with a minimal amount of deduplication loss (i.e., data replicated across partitioned domains in commercial deduplication-enabled storage systems, whereas in general the partitioning problem is NP-complete. For a real-world trace of 3 TB data with 978 GB of removable duplicates, the proposed algorithm can partition the data into 15 balanced partitions with only 54 GB of deduplication loss, that is, a 5% deduplication loss. Second, a quick and accurate method to query the deduplicated size for a subset of objects in deduplicated storage systems was developed. For the same trace of 3 TB data, the optimized graph-based algorithm can complete the query in 2.6 s, which is less than 1% of that of the traditional algorithm based on the deduplication metadata.

Prasenjit Sarkar

2012-04-01

308

Decommissioning of final product storage buildings at the former Eurochemic reprocessing plant  

International Nuclear Information System (INIS)

The paper discusses the final results of a pilot decommissioning project, carried out at the former Eurochemic reprocessing plant in Dessel, Belgium. The pilot project consisted of the dismantling of two, rather small, storage buildings for final products form the reprocessing process. The aims of the project were: the verification of the assumptions made in a previous paper study on decommissioning, the demonstration and development of dismantling techniques and the training of personnel. Both buildings have been emptied and decontaminated to background levels. Monitoring for de-restriction has been carried out by the Belgoprocess Health Physics Department and has been confirmed by an independent control organization for radiation protection. Consequently, the buildings have been withdrawn from the controlled are and were demolished. Concrete debris from demolition has been removed to an industrial dumping around for inert wastes and green field conditions restored. The report deals with techniques used in the decommissioning operations, with radioactive decommissioning waste and secondary waste generation, required manpower resources and total costs of the dismantling project. (author). 10 refs, 1 tab

309

A Cloud Storage System with Information Confidentiality and Forwarding  

Directory of Open Access Journals (Sweden)

Full Text Available Cloud storage suggests that the storage of information on-line within the cloud,wherein a company's knowledge is keep in and accessible from multiple distributed and connected resources that comprise a cloud.Cloud storage will offer the advantages of larger accessibility and reliability; speedy deployment; robust protection for knowledge backup,archival and disaster recovery purposes; and lower overall storage prices as a results of not having to buy, manage and maintain overpriced hardware. However, cloud storage will have the potential for security and compliance issues.Third party’s cloud system doesn't offer knowledge confidentiality. Constructing centralized storage system for the cloud system makes hackers scarf knowledge simply. General cryptography schemes shield knowledge confidentiality. within the projected system a secure distributed storage system is developed by desegregation a threshold proxy re-encryption theme with a suburbanised erasure code. The distributed storage system not solely supports secure and strong knowledge storage and retrieval, however conjointly lets a user forward knowledge from one user to a different while not retrieving the info back. the most technical involvement is that the proxy re-encryption theme supports coding operations over encrypted messages still as forwarding operations over encoded and encrypted messages. the strategy totally integrates encrypting, encoding, and forwarding.

Dr. M.V.Siva Prasad

2014-06-01

310

Problem analysis functioning of technical systems "intelligent buildings"  

Directory of Open Access Journals (Sweden)

Full Text Available  Tasks of the analysis of functioning of technical systems of an “intelligent building”. The basic tasks of the analysis of functioning of technical systems of an “intelligent building” and the concrete examples were considered.

?.?. ??????????

2006-02-01

311

Scalable constructions of fractional repetition codes in distributed storage systems  

CERN Document Server

In distributed storage systems built using commodity hardware, it is necessary to store multiple replicas of every data chunk in order to ensure system reliability. In such systems, it is also often desirable for storage nodes that fail to be repaired quickly. We consider a scheme--introduced by El Rouayheb and Ramchandran--which uses combinatorial block design in order to design storage systems that enable efficient (and exact) node repair. In this work, we investigate systems where node sizes may be much larger than replication degrees, and explicitly provide algorithms for constructing these storage designs. Our designs, which are related to projective geometries, are based on the construction of bipartite cage graphs (with girth 6) and the concept of mutually-orthogonal Latin squares. We guarantee that the resulting designs require the fewest number of storage nodes for the given parameters, and further show that these systems can be easily expanded without need for frequent reconfiguration.

Koo, Joseph C

2011-01-01

312

Reliability-oriented energy storage sizing in wind power systems  

DEFF Research Database (Denmark)

Energy storage can be used to suppress the power fluctuations in wind power systems, and thereby reduce the thermal excursion and improve the reliability. Since the cost of the energy storage in large power application is high, it is crucial to have a better understanding of the relationship between the size of the energy storage and the reliability benefit it can generate. Therefore, a reliability-oriented energy storage sizing approach is proposed for the wind power systems, where the power, energy, cost and the control strategy of the energy storage are all taken into account. With the proposed approach, the computational effort is reduced and the impact of the energy storage system on the reliability of the wind power converter can be quantified.

Qin, Zian; Liserre, Marco

2014-01-01

313

An Overview of Video Allocation Algorithms for Flash-based SSD Storage Systems  

CERN Document Server

Despite the fact that Solid State Disk (SSD) data storage media had offered a revolutionary property storages community, but the unavailability of a comprehensive allocation strategy in SSDs storage media, leads to consuming the available space, random writing processes, time-consuming reading processes, and system resources consumption. In order to overcome these challenges, an efficient allocation algorithm is a desirable option. In this paper, we had executed an intensive investigation on the SSD-based allocation algorithms that had been proposed by the knowledge community. An explanatory comparison had been made between these algorithms. We reviewed these algorithms in order to building advanced knowledge armature that would help in inventing new allocation algorithms for this type of storage media.

Al-Sabateen, Jaafer; Sumari, Putra

2012-01-01

314

Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)  

Energy Technology Data Exchange (ETDEWEB)

Multi-Canister Overpacks (MCOs) containing spent nuclear fuel (SNF) will be routinely handled at the Canister Storage Building (CSB) during fuel movement operations in the SNF Project. This analysis was performed to investigate the potential for damage from an eccentric accidental drop onto the standard storage tube, overpack tube, service station, or sample/weld station. Appendix D was added to the FDNW document to include the peer Review Comment Record & transmittal record.

TU, K.C.

1999-10-08

315

Utility Battery Storage Systems Program report for FY93  

Energy Technology Data Exchange (ETDEWEB)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

Butler, P.C.

1994-02-01

316

Superconducting magnetic energy storage for asynchronous electrical systems  

Science.gov (United States)

It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

Boenig, H.J.

1984-05-16

317

System Specification for Immobilized High-Level Waste Interim Storage  

International Nuclear Information System (INIS)

This specification establishes the system-level functional, performance, design, interface, and test requirements for Phase 1 of the IHLW Interim Storage System, located at the Hanford Site in Washington State. The IHLW canisters will be produced at the Hanford Site by a Selected DOE contractor. Subsequent to storage the canisters will be shipped to a federal geologic repository

318

Building Management System Using Windows Communication Foundation And XAML  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Building Automation System (BAS) will be extended for including different kinds of information, working towards to goal of Intelligent Building Management System. The next generation ofInternet technology uses Windows Communication Foundation as middleware technology for integration of different building automation systems (BAS) since Web Services will support only http protocol which is stateless. The applications used for controlling building management system (BMS) components like sensors,...

Swarnalatha P,; M.Rajasekhara Babu,; Surendhar Thallapelly

2011-01-01

319

Southern company energy storage study : a study for the DOE energy storage systems program.  

Energy Technology Data Exchange (ETDEWEB)

This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

2013-03-01

320

Dry storage systems using casks for long term storage in an AFR and repository  

International Nuclear Information System (INIS)

In conclusion it can be stated that two basic routes with respect to spent fuel storage casks are feasible. One is the Multiple Transport Cask, which with certain modifications can be upgraded to meet the criteria for intermediate storage. Its status is characterized by the licensing of several types of Castor Casks for an intermediate storage period of 30 years in the AFR Storage Facility of DWK at Gorleben in the FRG. The other one is the Final Disposal (Repository) Cask, which can be made suitable for long term storage before a final decision with respect to a repository application is taken. The licensing procedure for a Pilot Conditioning Facility with the Pollux Cask System as reference case will be initiated by DWK in the near future. Under the assumption that in addition to the present Multiple Transport/Storage Casks a license for a Final disposal Cask with respect to long term storage is available, the relative merits of different cask storage systems would have to be evaluated

 
 
 
 
321

System Redesign for System Capacity Building  

Science.gov (United States)

Purpose: A recent development in England is the emergence, under various names, of groups of schools working together in a variety of collaborative ways. Such diversification enjoys broad political support. In this paper, the author aims to argue that the trend is potentially a radical transformation of the school system as a whole. The concepts…

Hargreaves, David H.

2011-01-01

322

Evolution of the ATLAS Nightly Build System  

Science.gov (United States)

The ATLAS Nightly Build System is a major component in the ATLAS collaborative software organization, validation, and code approval scheme. For over 10 years of development it has evolved into a factory for automatic release production and grid distribution. The 50 multi-platform branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains 2200 packages with 4 million C++ and 1.4 million python scripting lines written by about 1000 developers. Recent development was focused on the integration of ATLAS Nightly Build and Installation systems. The nightly releases are distributed and validated and some are transformed into stable releases used for data processing worldwide. The ATLAS Nightly System is managed by the NICOS control tool on a computing farm with 50 powerful multiprocessor nodes. NICOS provides the fully automated framework for the release builds, testing, and creation of distribution kits. The ATN testing framework of the Nightly System runs unit and integration tests in parallel suites, fully utilizing the resources of multi-core machines, and provides the first results even before compilations complete. The NICOS error detection system is based on several techniques and classifies the compilation and test errors according to their severity. It is periodically tuned to place greater emphasis on certain software defects by highlighting the problems on NICOS web pages and sending automatic e-mail notifications to responsible developers. These and other recent developments will be presented and future plans will be described.

Undrus, A.

2012-12-01

323

Evolution of the ATLAS Nightly Build System  

International Nuclear Information System (INIS)

The ATLAS Nightly Build System is a major component in the ATLAS collaborative software organization, validation, and code approval scheme. For over 10 years of development it has evolved into a factory for automatic release production and grid distribution. The 50 multi-platform branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains 2200 packages with 4 million C++ and 1.4 million python scripting lines written by about 1000 developers. Recent development was focused on the integration of ATLAS Nightly Build and Installation systems. The nightly releases are distributed and validated and some are transformed into stable releases used for data processing worldwide. The ATLAS Nightly System is managed by the NICOS control tool on a computing farm with 50 powerful multiprocessor nodes. NICOS provides the fully automated framework for the release builds, testing, and creation of distribution kits. The ATN testing framework of the Nightly System runs unit and integration tests in parallel suites, fully utilizing the resources of multi-core machines, and provides the first results even before compilations complete. The NICOS error detection system is based on several techniques and classifies the compilation and test errors according to their severity. It is periodically tuned to place greater emphasis on certain softwar place greater emphasis on certain software defects by highlighting the problems on NICOS web pages and sending automatic e-mail notifications to responsible developers. These and other recent developments will be presented and future plans will be described.

324

Competitive solar heating systems for residential buildings  

DEFF Research Database (Denmark)

The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both from an economical and architectural point of view. The project includes education, research, development and demonstration. The project started in 2003 and will be finished by the end of 2006. The participants of the project, which is financed by Nordic Energy Research and the participants themselves, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph.D. studies in Denmark, Sweden and Latvia, and a post-doc. study in Norway. Close cooperation between the researchers and the industry partners ensures that the results of the project can be utilized. By the end of the project the industry partners will be able to bring the developed systems onto the market. In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade of the building.

Furbo, Simon; Thür, Alexander

2005-01-01

325

Heat transfer study on dry vault storage system  

International Nuclear Information System (INIS)

In Japan, spent fuel from commercial light water reactors is stored in storage pools or storage facilities. A high level vitrified waste storage facility was constructed. It is a dry vault type with natural convection air cooling system. This is one of the interim dry storage facilities which is expected in the future because natural convection air cooling needs no active system and generates very little radioactive waste. Experimental and analytical studies were carried out using the test canister and the computational finite element code. Comparison of the temperature distribution values obtained by experiment and calculations showed good agreement

326

Storage and capsulation system of spent fuel in the Egyptian research reactor  

International Nuclear Information System (INIS)

Full text: In Egypt, the first research reactor (ET-RR-1) has been used for a long time in conducting research work in the fields of reactor physics, heat transfer and thermohydraulics. Also, it is used in the production of radioisotopes for medical purposes and chemical researches. Due to the operation of the reactor for about 40 years, the need for larger and modern spent fuel storage arises. The defects appearing in the fuel elements imply an investigation of the reactor fuel and the design of a new system of capsulation of the defective fuel elements for long-term storage. The new spent fuel storage facility is a structure containing the storage and a so-called receiving and fuel handling area arranged in a separate building. The fuel storage is a stainless steel tank filled with water and located in a concrete pit under the ground level. The tank is covered by slabs made of steel and concrete. Aluminium storage tubes are fixed in the tank for vertical storage of the fuel assemblies in a rectangular matrix arrangement. The capacity of the storage tank is up to 176 fuel assemblies. In the design of the storage, both of the thermal and physical aspects are taken into consideration. The temperature, conductivity and the pH value of the water are measured. The water supply and air-ventilation of the reactor are used also for the storage. The storage ventilation depression as well as the water level is always maintained at the design values for the safety of the persondesign values for the safety of the personnel and the facility. Also, the water is filtered regularly using two mechanical filters, one of them is operating and the other is spare. The capsulation system is so designed to prevent the leakage of fission fragments from the defective assemblies to the water of the storage. The defective fuel assembly is capsulated in a tightly closed aluminium tube filled with nitrogen containing 5% of helium as an innert gas to prevent the corrosion of fuel rods. The capsulation tube is provided with a non-return valve to avoid escape of nitrogen. The capsulation system includes two casks, one for the fuel transport and the other for capsulation process. The system contains a drying unit, nitrogen charging unit and a welding mechanism to weld a special cap containing the non-return valve. The leakage of nitrogen gas is tested by an apparatus, which is very sensitive to the helium gas molecules. The capsulated assembly is located again in the storage for long time storage. (author)

327

WEB-GIS Decision Support System for CO2 storage  

Science.gov (United States)

Environmental decision support systems (DSS) paradigm evolves and changes as more knowledge and technology become available to the environmental community. Geographic Information Systems (GIS) can be used to extract, assess and disseminate some types of information, which are otherwise difficult to access by traditional methods. In the same time, with the help of the Internet and accompanying tools, creating and publishing online interactive maps has become easier and rich with options. The Decision Support System (MDSS) developed for the MUSTANG (A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe) project is a user friendly web based application that uses the GIS capabilities. MDSS can be exploited by the experts for CO2 injection and storage in deep saline aquifers. The main objective of the MDSS is to help the experts to take decisions based large structured types of data and information. In order to achieve this objective the MDSS has a geospatial objected-orientated database structure for a wide variety of data and information. The entire application is based on several principles leading to a series of capabilities and specific characteristics: (i) Open-Source - the entire platform (MDSS) is based on open-source technologies - (1) database engine, (2) application server, (3) geospatial server, (4) user interfaces, (5) add-ons, etc. (ii) Multiple database connections - MDSS is capable to connect to different databases that are located on different server machines. (iii)Desktop user experience - MDSS architecture and design follows the structure of a desktop software. (iv)Communication - the server side and the desktop are bound together by series functions that allows the user to upload, use, modify and download data within the application. The architecture of the system involves one database and a modular application composed by: (1) a visualization module, (2) an analysis module, (3) a guidelines module, and (4) a risk assessment module. The Database component is build by using the PostgreSQL and PostGIS open source technology. The visualization module allows the user to view data of CO2 injection sites in different ways: (1) geospatial visualization, (2) table view, (3) 3D visualization. The analysis module will allow the user to perform certain analysis like Injectivity, Containment and Capacity analysis. The Risk Assessment module focus on the site risk matrix approach. The Guidelines module contains the methodologies of CO2 injection and storage into deep saline aquifers guidelines.

Gaitanaru, Dragos; Leonard, Anghel; Radu Gogu, Constantin; Le Guen, Yvi; Scradeanu, Daniel; Pagnejer, Mihaela

2013-04-01

328

Carbon footprint reductions via grid energy storage systems  

Energy Technology Data Exchange (ETDEWEB)

This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES) systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be total carbon footprint negative. The significant contribution herein is a necessary and sufficient condition for achieving carbon footprint reductions via grid energy storage systems.

Hale, Trevor S. [Naval Facilities Engineering Service Center, 1100 23rd Avenue, Port Huenem, CA 93043 (United States); Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas (United States); Weeks, Kelly [Department of Maritime Administration, Texas A and M University at Galveston, Galveston, TX 77553 (United States); Tucker, Coleman [Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas 77002 (United States)

2011-07-01

329

Carbon footprint reductions via grid energy storage systems  

Directory of Open Access Journals (Sweden)

Full Text Available This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be total carbon footprint negative. The significant contribution herein is a necessary and sufficient condition for achieving carbon footprint reductions via grid energy storage systems.

Trevor S. Hale, Kelly Weeks, Coleman Tucker

2011-07-01

330

Canister storage building (CSB) safety analysis report phase 3: Safety analysis documentation supporting CSB construction  

Energy Technology Data Exchange (ETDEWEB)

The Canister Storage Building (CSB) will be constructed in the 200 East Area of the U.S. Department of Energy (DOE) Hanford Site. The CSB will be used to stage and store spent nuclear fuel (SNF) removed from the Hanford Site K Basins. The objective of this chapter is to describe the characteristics of the site on which the CSB will be located. This description will support the hazard analysis and accident analyses in Chapter 3.0. The purpose of this report is to provide an evaluation of the CSB design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB.

Garvin, L.J.

1997-04-28

331

Modular vault dry storage system for interim storage of irradiated fuel  

International Nuclear Information System (INIS)

The Foster Wheeler Energy Application (FWEA) Modular Vault Dry Store (MVDS) is a dry storage concept for the storage of all types of irradiated reactor fuel. For applications in the US, FWEA submitted an MVDS Topical Report to the US NRC during 1986. Following NRC approval of the MVDS Topical Report concept for unconsolidated LWR fuel, US utilities have available a new, compact, economic and flexible system for the storage of irradiated fuel at the reactor site for time periods of at least 20 years (the period of the first license). The MVDS concept jointly developed by FWEA and GEC in the U.K., has other applications for large central away from reactor storage facilities such as a Monitorable Retrievable Storage (MRS) installation. This paper describes the licensed MVDS design, aspects of performance are discussed and capital costs compared with alternative concepts. Alternative configurations of MVDS are outlined

332

Modular vault dry storage systems for interim storage of irradiated fuel  

International Nuclear Information System (INIS)

The Foster Wheeler Energy Application (FWEA) Modular Vault Dry Store (MVDS) is a dry storage concept for the storage of all types of irradiated reactor fuel. For applications in the US, FWEA submitted an MVDS Topical Report to the US NRC during 1986. Following NRC approval of the MVDS Topical Report concept for unconsolidated LWR fuel, US utilities have available a new, compact, economic and flexible system for the storage of irradiated fuel at the reactor site for time periods of at least 20 years (the period of the first license). The MVDS concept jointly developed by FWEA and GEC in the U.K., has other applications for large central away from reactor storage facilities such as a Monitorable Retrievable Storage installation. The licensed MVDS design is described, aspects of performance are discussed and capital costs compared with alternative concepts. Alternative configurations of MVDS are outlined. (author). 16 figs., 6 tabs., 3 refs

333

Macstor dry spent fuel storage system  

International Nuclear Information System (INIS)

AECL, a Canadian Grown Corporation established since 1952, is unique among the world's nuclear organizations. It is both supplier of research reactors and heavy water moderated CANDU power reactors as well as operator of extensive nuclear research facilities. As part of its mandate, AECL has developed products and conceptual designs for the short, intermediate and long term storage and disposal of spent nuclear fuel. AECL has also assumed leadership in the area of dry storage of spent fuel. This Canadian Crown Corporation first started to look into dry storage for the management of its spent nuclear fuel in the early 1970's. After developing silo-like structures called concrete canisters for the storage of its research reactor enriched uranium fuel, AECL went on to perfect that technology for spent CANDU natural uranium fuel. In 1989 AECL teamed up with Trans nuclear, Inc.,(TN), a US based member of the international Trans nuclear Group, to extend its dry storage technology to LWR spent fuel. This association combines AECL's expertise and many years experience in the design of spent fuel storage facilities with TN's proven capabilities of processing, transportation, storage and handling of LWR spent fuel. From the early AECL-designed unventilated concrete canisters to the advanced MACSTOR concept - Modular Air-Cooled Canister Storage - now available also for LWR fuel - dry storage is proving to be safe, economical, practical and, most of all, well accepted by the genend, most of all, well accepted by the general public. AECL's experience with different fuels and circumstances has been conclusive

334

Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)  

Energy Technology Data Exchange (ETDEWEB)

Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

Neubauer, J.; Simpson, M.

2013-10-01

335

The CMS event builder and storage system  

International Nuclear Information System (INIS)

The CMS event builder assembles events accepted by the first level trigger and makes them available to the high-level trigger. The event builder needs to handle a maximum input rate of 100 kHz and an aggregated throughput of 100 GB/s originating from approximately 500 sources. This paper presents the chosen hardware and software architecture. The system consists of 2 stages: an initial pre-assembly reducing the number of fragments by one order of magnitude and a final assembly by several independent readout builder (RU-builder) slices. The RU-builder is based on 3 separate services: the buffering of event fragments during the assembly, the event assembly, and the data flow manager. A further component is responsible for handling events accepted by the high-level trigger: the storage manager (SM) temporarily stores the events on disk at a peak rate of 2 GB/s until they are permanently archived offline. In addition, events and data-quality histograms are served by the SM to online monitoring clients. We discuss the operational experience from the first months of reading out cosmic ray data with the complete CMS detector.

336

Nonlinear equalization for holographic data storage systems.  

Science.gov (United States)

Despite the fact that the channel in a holographic data-storage system is nonlinear, most of the existing approaches use linear equalization for data recovery. We present a novel and simple to implement nonlinear equalization approach based on a minimum mean-square-error criterion. We use a quadratic equalizer whose complexity is comparable to that of a linear equalizer. We also explore the effectiveness of a nonlinear equalization target as compared with the conventional linear target. Bit-error-rate (BER) performance is studied for channels having electronics noise, optical noise, and a different span of intersymbol interference. With a linear target, whereas the linear equalizer exhibits an error floor in the BER performance, the quadratic equalizer significantly improves the performance with no sign of error floor even up to 10(-7). With a nonlinear target, whereas the quadratic equalizer provides an additional performance gain of 1-2 dB, the error-floor problem of the linear equalizer has been considerably alleviated, thereby significantly improving the latter's performance. A theoretical performance analysis of the nonlinear receiver with non-Gaussian noise is also presented. A simplified approach is developed to compute the underlying probability density functions, optimum detector threshold, and BER using the theoretical analysis. Numerical results show that the theoretical predictions agree well with simulations. PMID:16633423

He, An; Mathew, George

2006-04-20

337

Space Station Freedom electric power system evolutionary energy storage  

Science.gov (United States)

Viewgraphs on Space Station Freedom electric power system evolutionary energy storage are presented. Topics covered include: system requirements evolution; Space Station Freedom timeline; development of technologies selection criteria; and candidate technologies.

Domeniconi, Mike

1990-01-01

338

Scheduling of Pumped Storage Hydrothermal System with Evolutionary Programming  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This paper presents the ever proved evolutionary programming techniques for solving the generation/ pumping scheduling problem of hydro thermal system with pumped storage plants. Pumped storage hydro plant is used to save fuel cost by serving the peak load with hydro energy and then pumping the water back up into the reservoir at light load periods. Therefore, a pumped storage unit can be operated any one mode out of three states such as generation, pumping and idle states. It can smooth peak...

Khandualo, S. K.; Barisal, A. K.; Hota, P. K.

2013-01-01

339

Superconducting magnetic energy storage for electric utilities and fusion systems  

International Nuclear Information System (INIS)

Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

340

Fatty acid esters-based composite phase change materials for thermal energy storage in buildings  

International Nuclear Information System (INIS)

In this study, fatty acid esters-based composite phase change materials (PCMs) for thermal energy storage were prepared by blending erythritol tetrapalmitate (ETP) and erythritol tetrastearate (ETS) with diatomite and expanded perlite (EP). The maximum incorporation percentage for ETP and ETS into diatomite and EP was found to be 57 wt% and 62 wt%, respectively without melted PCM seepage from the composites. The morphologies and compatibilities of the composite PCMs were structurally characterized using scanning electron microscope (SEM) and Fourier transformation infrared (FT–IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by differential scanning calorimetry (DSC) analysis. The DSC analyses results indicated that the composite PCMs were good candidates for building applications in terms of their large latent heat values and suitable phase change temperatures. The thermal cycling test including 1000 melting and freezing cycling showed that composite PCMs had good thermal reliability and chemical stability. TG analysis revealed that the composite PCMs had good thermal durability above their working temperature ranges. Moreover, in order to improve the thermal conductivity of the composite PCMs, the expanded graphite (EG) was added to them at different mass fractions (2%, 5%, and 10%). The best results were obtained for the composite PCMs including 5wt% EG content in terms of the increase in thermal conductivity values increase in thermal conductivity values and the decrease amount in latent heat capacity. The improvement in thermal conductivity values of ETP/Diatomite, ETS/Diatomite, ETP/EP and ETS/EP were found to be about 68%, 57%, 73% and 75%, respectively. Highlights: ? Fatty acid esters-based composite PCMs were prepared by blending ETP and ETS with diatomite and expanded perlite. ? The composite PCMs were characterized by using SEM, FT–IR, DSC and TG analysis methods. ? The DSC results indicated that the composites PCMs had good thermal energy storage properties. ? TG analysis revealed that they had good thermal durability above their working temperature ranges.

 
 
 
 
341

Battery Energy Storage Technology for power systems-An overview  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The penetration of renewable sources (particularly wind power) in to the power system network has been increasing in the recent years. As a result of this, there have been serious concerns over reliable and satisfactory operation of the power systems. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage devices into the power system network. Further, in the present deregulated markets these storage devices could also be...

Chandrashekhara, Divya K.; Østergaard, Jacob

2008-01-01

342

Carbon footprint reductions via grid energy storage systems  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES) systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be tota...

Trevor S Hale, Kelly Weeks

2011-01-01

343

Prototype thermochemical heat storage with open reactor system  

International Nuclear Information System (INIS)

Highlights: ? A selection study on salt hydrates for thermochemical heat storage is carried out. ? A lab scale open sorption thermochemical heat storage system is built. ? The lab prototype thermochemical storage is tested with 17 l of MgCl2·6H2O. ? The lab prototype was able to provide 50 W heating power at 60 °C, with an instantaneous COP of 12. ? Improvement of heat recovery and pressure drop will increase the performance. - Abstract: Thermochemical (TC) heat storage is an interesting technology for future seasonal storage of solar heat in the built environment. This technology enables high thermal energy storage densities and low energy storage losses. A small-scale laboratory prototype TC storage system has been realized at ECN, applying an open sorption system concept. The packed bed contains 17 dm3 of sorption material and is capable of generating 150 W of thermal power. An effective energy storage density of approximately 0.5 GJ/m3 was obtained

344

Energy Management System Audit and Implementation in Educational Buildings  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Concerning the high energy consumption of educational buildings in available study; it is conducted to estimate the energy consumption at the Faculty of Humanities (Building No. 2), Science and Research Campus (SRC) of the Islamic Azad University (IAU), Tehran, Iran. Auditing and implementing the energy management system in the implied building, efforts are finally made to propose managerial solutions towards reducing energy consumption in this building. After gathering data of the building, ...

Nouri, J.; Karbasi, A. R.; Borgheipour, R.; Taheri, A.

2006-01-01

345

Numerical modelling and experimental studies of thermal behaviour of building integrated thermal energy storage unit in a form of a ceiling panel  

International Nuclear Information System (INIS)

Highlights: • A new concept of heat storage in ventilation ducts is described. • Ceiling panel as a part of ventilation system is made of a composite with PCM. • A set-up for experimental investigation of heat storage unit was built. • Numerical model of heat transfer in the storage unit was developed. • Numerical code was validated on the base of experimental measurements. - Abstract: Objective: The paper presents a new concept of building integrated thermal energy storage unit and novel mathematical and numerical models of its operation. This building element is made of gypsum based composite with microencapsulated PCM. The proposed heat storage unit has a form of a ceiling panel with internal channels and is, by assumption, incorporated in a ventilation system. Its task is to reduce daily variations of ambient air temperature through the absorption (and subsequent release) of heat in PCM, without additional consumption of energy. Methods: The operation of the ceiling panel was investigated experimentally on a special set-up equipped with temperature sensors, air flow meter and air temperature control system. Mathematical and numerical models of heat transfer and fluid flow in the panel account for air flow in the panel as well as real thermal properties of the PCM composite, i.e.: thermal conductivity variation with temperature and hysteresis of enthalpy vs. temperature curves for heating and cooling. Proposed novel numerical simulator consists of two strongly coupled sub models: the first one – 1D – which deals with air flowing through the U-shaped channel and the second one – 3D – which deals with heat transfer in the body of the panel. Results: Spatial and temporal air temperature variations, measured on the experimental set-up, were used to validate numerical model as well as to get knowledge of thermal performance of the panel operating in different conditions. Conclusion: Preliminary results of experimental tests confirmed the ability of the proposed heat storage unit to effectively control the air temperature inside the building. However, detailed measurement of the temperature of PCM composite have shown some disadvantages of the panel used in the study, e.g. thickness of the walls and distribution of PCM should be optimized. This can be achieved with the aid of the numerical simulator developed in this research. Practical implications: The proposed ceiling panel, optimised from the point of view of thermal performance in a given environmental conditions, can be used as a part of ventilation systems in residential and office buildings

346

Modeling leaks from liquid hydrogen storage systems.  

Energy Technology Data Exchange (ETDEWEB)

This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

Winters, William Stanley, Jr.

2009-01-01

347

Building machine learning systems with Python  

CERN Document Server

This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro

Richert, Willi

2013-01-01

348

DNA and microfluidics: Building molecular electronics systems  

International Nuclear Information System (INIS)

The development of molecular electronics using DNA molecules as the building blocks and using microfluidics to build nanowire arrays is reviewed. Applications of DNA conductivity to build sensors and nanowire arrays, and DNA conjugation with other nanostructures, offers an exciting opportunity to build extremely small analytical devices that are suitable for single-molecule detection and also target screening

349

Control system design for robotic underground storage tank inspection systems  

International Nuclear Information System (INIS)

Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

350

Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage  

International Nuclear Information System (INIS)

Graphical abstract: DSC curves of microPCMs/gypsum composite samples before and after a thermal cycling treatment. Highlights: ? Microcapsules containing paraffin was fabricated by in-situ polymerization. ? Methanol-modified melamine–formaldehyde (MMF) was used as shell material. ? MicroPCMs/gypsum-matrix building materials were applied for solar energy storage. ? The structure and thermal conductivity of composites had been investigated. - Abstract: Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The aim of this work was to prepare and investigate the properties of microPCMs/gypsum-matrix building materials for thermal energy storage. MicroPCMs contain paraffin was fabricated by in situ polymerization using methanol-modified melamine–formaldehyde (MMF) as shell material. A series of microPCMs samples were prepared under emulsion stirring rates in range of 1000–3000 r min?1 with core/shell weight ratios of 3/1, 2/1, 1/1, 1/2 and 1/3, respectively. The shell of microPCMs was smooth and compact with global shape, its thickness was not greatly affected by the core/shell ratio and emulsion stirring rate. DSC tests showed that the shell of microPCMs did not influence the phase change behavior of pure paraffin. It was found from TGA analysis that microPCMs samples containing paraffin lost their weight at the temperature of nearly 250 temperature of nearly 250 °C, which indicated that the PCM had been protected by shell. More shell material in microPCMs could enhance the thermal stability and provide higher compact condition for core material. After a 100-times thermal cycling treatment, the microPCMs contain paraffin also nearly did not change the phase change behaviors of PCM. With the increasing of weight contents of microPCMs in gypsum board, the thermal conductivity (?) values of composites had decreased. The simulation of temperature tests proved that the microPCMs/gypsum composite could store the time-dependent and intermittent solar energy, which did not necessarily meet the energy needs for space heating at all times.

351

An Overview on Energy Storage Options for Renewable Energy Systems  

Directory of Open Access Journals (Sweden)

Full Text Available Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can manage the amount of power required to supply customers at times when need is greatest, which is during peak load. This paper focuses on four storage technologies that can be used as storage for wind energy conversion system. For each storage technology, the advantages and disadvantages, costs involved, the efficiency, the energy density and some major break-through in technology are discussed.

Ajay Sharma1

2014-08-01

352

Unconventional systems for lunar base power generation and storage  

International Nuclear Information System (INIS)

Recent advances in thin film solar photovoltaic converters (PV's) can furnish multimegawatt power levels during lunar daylight periods with only modest mass requirements. The extended duration of lunar night (ca. 354 hr) and the high specific mass of earth-imported energy storage systems (regenerative fuel cells, batteries, etc.) render PV plus import storage power systems non-competitive with nuclear power plants for lunar bases. However, power storage or generation methods which can be constructed using primarily lunar materials, used either alone or with lightweight PV's, can be attractive alternatives to nuclear power. Three separate generic systems which can provide favorable low import mass goals have been identified and studied. These are: gravitational energy generation using lunar soil, thermal energy storage using basalt rock or glass, and electrochemical storage using lunar derived electrodes or fuels. Design, structural and operational features of these methods are described

353

Novel approach for decentralized energy supply and energy storage of tall buildings in Latin America based on renewable energy sources: Case study – Informal vertical community Torre David, Caracas – Venezuela  

International Nuclear Information System (INIS)

This paper analyzes the concept of a decentralized power system based on wind energy and a pumped hydro storage system in a tall building. The system reacts to the current paradigm of power outage in Latin American countries caused by infrastructure limitations and climate change, while it fosters the penetration of renewable energy sources (RES) for a more diversified and secure electricity supply. An explicit methodology describes the assessment of technical, operational and economic potentials in a specific urban setting in Caracas/Venezuela. The suitability, applicability and the impacts generated by such power system are furthermore discussed at economic, social and technical level. - Highlights: ? We have modeled an innovative pico pumped hydro-storage system and wind power system for tall buildings. ? We conducted technical, economic and social analysis on these energy supply and storage alternatives. ? The energy storage system can achieve efficiencies within 30% and 35%. ? The energy storage is realistic and economic sensible in comparison to other solutions. ? The impacts of such a system in the current living conditions and safety issues of the building are minimum

354

Assessing health impacts of CO2 leakage from a geological storage site into buildings: Role of attenuation in the unsaturated zone and building foundation  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Geological storage of the greenhouse gas CO2 has the potential to be a widespread and effective option to mitigate climate change. As any industrial activity, CO2 storage may lead to adverse impact on human health and the environment in the case of unexpected leakage from the reservoir. These potential impacts should be considered in a risk assessment process. We present an approach to assess the impacts on human health in case of CO2 leakage emerging in the unsaturated zone under a building....

Lary, Louis; Loschetter, Annick; Bouc, Olivier; Rohmer, Je?re?my; Oldenburg, Curtis

2012-01-01

355

Wind Energy to Thermal and Cold Storage – A Systems Approach  

DEFF Research Database (Denmark)

In this paper wind energy to thermal and cold storage scenarios were examined to enable high wind integration through converting renewable electricity excess into thermal or cooling energy, saving part of the energy used in an area and eliminating the need to possibly build a new coal fired plant. Case studies in Crete Island (not interconnected to the power grid of Greek mainland) with onshore wind power installed were investigated. The aim of this work was to review the options for greater integration of renewables into the grid and the main idea was to analyze the wind to thermal and to cold storage according to the needs of two small municipalities.

Xydis, George

2013-01-01

356

WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT  

Energy Technology Data Exchange (ETDEWEB)

The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

J. D. Bigbee

2000-06-21

357

Enabling data-intensive science with Tactical Storage Systems  

CERN Document Server

Large scale scientific computing requires the ability to share and consume data and storage in complex ways across multiple systems. However, conventional systems constrain users to the fixed abstractions selected by the local system administrator. The result is that users must either move data manually over the wide area or simply be satisfied with the resources of a single cluster. To remedy this situation, we introduce the concept of a tactical storage system (TSS) that allows users to create, reconfigure, and destroy distributed storage systems without special privileges or complex configuration. We have deployed a prototype TSS of 200 disks and 8 TB of storage at the University of Notre Dame and applied it to several problems in astrophysics, high energy physics, and bioinformatics. This talk will focus on novel system structures that support data-intensive science. About the speaker: Douglas Thain is an Assistant Professor of Computer Science and Engineering at the University of Notre Dame. He received ...

CERN. Geneva; Marquina, Miguel Angel

2006-01-01

358

Building Energy Information Systems: User Case Studies  

Energy Technology Data Exchange (ETDEWEB)

Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

2010-03-22

359

Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows  

Science.gov (United States)

This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of other planar supercapacitors in literature by more than one order of magnitude. All-solution fabrication processes were developed for both generations to achieve economical and scalable production. In addition to carbon nanotubes, nickel/nickel oxide core-shell nanowires were also studied as electrode materials for supercapacitors, for which high specific capacitance but low working voltage were obtained. Semi-transparent solar cells with carbon nanotube counter electrodes are developed to power the active noise cancellation system. They can be directly mounted on the glass panes and become part of the home window. The 2.67% efficiency achieved is higher than the 1.8% efficiency required for harvesting adequate energy to cancel noise of 70dB Day-Night-Level, which impacts on a north-facing window. In summary, this project develops several fundamental technologies that together can contribute to a solar-powered active noise cancellation system for a building window. At the same time, since the component technologies being developed are fundamental, it is also likely that they will have wider applications in other domains beyond building windows.

Hu, Shan

360

Criticality safety studies for the storage of waste from nuclear fuel service in Intercell Storage Wells 2 and 3 of Building 3019  

Energy Technology Data Exchange (ETDEWEB)

This report provides computational evaluation results demonstrating that mixed oxide waste can be safely stored in Intercell Storage Wells 2 and 3 of Building 3019 at the Oak Ridge National Laboratory. Existing, verified computational techniques are validated with applicable critical experiments and tolerance limits for safety analyses are derived. Multiplication factors for normal and credible abnormal configurations are calculated and found to be far subcritical when compared to derived safety limits.

Primm, R.T. III; Hopper, C.M.; Smolen, G.R.

1992-11-01

 
 
 
 
361

Criticality safety studies for the storage of waste from nuclear fuel service in Intercell Storage Wells 2 and 3 of Building 3019  

International Nuclear Information System (INIS)

This report provides computational evaluation results demonstrating that mixed oxide waste can be safely stored in Intercell Storage Wells 2 and 3 of Building 3019 at the Oak Ridge National Laboratory. Existing, verified computational techniques are validated with applicable critical experiments and tolerance limits for safety analyses are derived. Multiplication factors for normal and credible abnormal configurations are calculated and found to be far subcritical when compared to derived safety limits

362

Utility battery storage systems program report for FY 94  

Energy Technology Data Exchange (ETDEWEB)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

Butler, P.C.

1995-03-01

363

Specific systems studies of battery energy storage for electric utilities  

Energy Technology Data Exchange (ETDEWEB)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

1993-08-01

364

Future proof construction-Future building and systems design for energy and fuel flexibility  

International Nuclear Information System (INIS)

Buildings of the future must be designed and constructed to reduce energy demand. From a thermal point of view, technologies to minimise heating needs already exist. But in order to reduce future cooling requirements, more positive action will be required. This applies both in commercial buildings, where cooling demand is already significant, and in the domestic sector, where air conditioning is gaining a foothold. A further problem in the housing sector is the rising electrical demand from appliances, which has increased significantly in recent years. In addition to changes in construction practice, such as using means to mitigate the effects of warming climates, better, more sophisticated control systems must be more fully utilised, such as the automatic switching off of appliances, and advanced controls and metering. A range of alternative energy sources should be integrated in and around single buildings and groups of buildings. Group scale allows more flexibility and will provide higher efficiencies and better control, and is thus the favoured option. Most renewable energy technologies are already understood and the majority are technically proven, though costs are still high in some cases. A combination of renewable energy and storage mechanisms will be needed to decouple energy supply from energy demand. Buildings must be constructed in flexible ways so that they can adapt to allow new technologies to be used. A crucial issue is space for energy storage mechani issue is space for energy storage mechanisms and for alternative fuels

365

Energy Storage Systems Program Report for FY99  

Energy Technology Data Exchange (ETDEWEB)

Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

BOYES,JOHN D.

2000-06-01

366

The liquid helium storage system for the Large Hadron Collider.  

CERN Document Server

The cryogenic system of the Large Hadron Collider (LHC) under operation at CERN has a total helium inventory of 140 t. Up to 50 t can be stored in gas storage tanks. The remaining inventory will be stored in a liquid helium storage system consisting of six 15-t liquid helium tanks in 4 locations. The two liquid helium tanks of specific low heat inleak design and the required infrastructure of the first location were recently commissioned. Four additional tanks shall be operational end 2010. The paper describes the features and characteristics of the liquid helium storage system and presents the measurement of the thermal performance of the two first tanks.

Benda, V; Fathallah, M; Goiffon, T; Parente, C; Perez-Duenas, E; Perret, Ph; Pirotte, O; Serio, L; Vullierme, B

2011-01-01

367

A vacuum data retrieval system for SSRF storage ting  

International Nuclear Information System (INIS)

In this paper, we report the design and implementation of a Web-based database system for the SSRF storage ring vacuum status. A vacuum data acquisition system based on EPICS was developed for implementation of the system. By storing the vacuum gauge readings, the average pressure,beam lifetime and beam current to the historical database using Channel Archiver, the data can be retrieved from any online computers. A proper and effective platform for sharing the SSRF storage ring vacuum data has been built. It offers usable and reliable vacuum data of the storage ring for operators and the users. (authors)

368

Energy Storage Systems Program Report for FY98  

Energy Technology Data Exchange (ETDEWEB)

Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

Butler, P.C.

1999-04-01

369

30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.  

Science.gov (United States)

...suppression systems for permanent underground diesel fuel storage facilities...suppression systems for permanent underground diesel fuel storage facilities...suppression system shall deenergize...power to the diesel fuel storage...

2010-07-01

370

HVAC system optimization - in-building section  

Energy Technology Data Exchange (ETDEWEB)

This paper presents a practical method to optimize in-building section of centralized Heating, Ventilation and Air-conditioning (HVAC) systems which consist of indoor air loops and chilled water loops. First, through component characteristic analysis, mathematical models associated with cooling loads and energy consumption for heat exchangers and energy consuming devices are established. By considering variation of cooling load of each end user, adaptive neuro-fuzzy inference system (ANFIS) is employed to model duct and pipe networks and obtain optimal differential pressure (DP) set points based on limited sensor information. A mix-integer nonlinear constraint optimization of system energy is formulated and solved by a modified genetic algorithm. The main feature of our paper is a systematic approach in optimizing the overall system energy consumption rather than that of individual component. A simulation study for a typical centralized HVAC system is provided to compare the proposed optimization method with traditional ones. The results show that the proposed method indeed improves the system performance significantly. (author)

Lu Lu; Wenjian Cai; Lihua Xie; Shujiang Li; Yeng Chai Soh [Nanyang Technological Univ., Singapore (Singapore). School of Electrical and Electronic Engineering

2005-01-01

371

HVAC system optimisation-in-building section  

Energy Technology Data Exchange (ETDEWEB)

This paper presents a practical method to optimise in-building section of centralised Heating, Ventilation and Air-Conditioning (HVAC) systems which consist of indoor air loops and chilled water loops. First, through component characteristic analysis, mathematical models associated with cooling loads and energy consumption for heat exchangers and energy consuming devices are established. By considering variation of cooling load of each end user, adaptive neuro-fuzzy inference system (ANFIS) is employed to model duct and pipe networks and obtain optimal differential pressure (DP) set points based on limited sensor information. A mix-integer nonlinear constraint optimization of system energy is formulated and solved by a modified genetic algorithm. The main feature of our paper is a systematic approach in optimizing the overall system energy consumption rather than that of individual component. A simulation study for a typical centralized HVAC system is provided to compare the proposed optimisation method with traditional ones. The results show that the proposed method indeed improves the system performance significantly. (author)

Lu, L.; Cai, W.; Xie, L.; Li, S.; Soh, Y.C. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore (Singapore)

2004-07-01

372

A View on Future Building System Modeling and Simulation  

Energy Technology Data Exchange (ETDEWEB)

This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

Wetter, Michael

2011-04-01

373

Adapting the NUHOMS Interim Storage System for international spent fuel storage needs  

International Nuclear Information System (INIS)

NUHOMS systems are well established in USA and Europe as a reliable, safe and well proven option for dry storage of spent fuel. These systems can be used for either on-site storage or away from reactor storage because the canisters cab be transported in a B9U0 packaging. The proven NUHOMS flexibility can readily be adapted to meet new consumer needs in terms of handling limitations (size and weight), fuel characteristics, local regulation ect. As a licensee for the NUHOMS technology, Framatome - ANP has supplied a NUHOMS systems for storing WWER fuel assemblies at Metzamor in Armenia and also for storing RBMK fuel at Chernobyl in Ukraine. Discussion with potential clients are in progress and new design concepts are in preparation, including a vertical version of the NUHOMS system. (authors)

374

Embedded system of image storage based on fiber channel  

Science.gov (United States)

In domains of aerospace, aviation, aiming, and optic measure etc., the embedded system of imaging, processing and recording is absolutely necessary, which has small volume, high processing speed and high resolution. But the embedded storage technology becomes system bottleneck because of developing slowly. It is used to use RAID to promote storage speed, but it is unsuitable for the embedded system because of its big volume. Fiber channel (FC) technology offers a new method to develop the high-speed, portable storage system. In order to make storage subsystem meet the needs of high storage rate, make use of powerful Virtex-4 FPGA and high speed fiber channel, advance a project of embedded system of digital image storage based on Xilinx Fiber Channel Arbitrated Loop LogiCORE. This project utilizes Virtex- 4 RocketIO MGT transceivers to transmit the data serially, and connects many Fiber Channel hard drivers by using of Arbitrated Loop optionally. It can achieve 400MBps storage rate, breaks through the bottleneck of PCI interface, and has excellences of high-speed, real-time, portable and massive capacity.

Chen, Xiaodong; Su, Wanxin; Xing, Zhongbao; Wang, Hualong

2008-03-01

375

Electric system impacts of storage heating and storage water heating. Part II  

Energy Technology Data Exchange (ETDEWEB)

This is the second part of a two-part paper dealing with an evaluation of primary and secondary electric distribution impacts of thermal storage heating and water heating systems. Part I contained background information on the use of customer energy storage systems for load management, a description of the systems and the U.S. DOE/ORNL demonstration program as well as a summary of load research data used in the analysis. Part II examines the distribution impacts based on the load characteristics observed.

Gellings, C.W.; Reddoch, T.W.; Redmon, J.R.; Stovall, J.P.

1982-07-01

376

Prediction of Ice Storage Process in Dynamic-type Ice Storage System  

Science.gov (United States)

The distribution of ice-rich layer in an ice storage tank is an important factor to estimate the thermal performance of a dynamic-type ice storage system. The ice-rich layer distribution and the water permeability were tested by using cylindrical tanks. The accumulation of ice-rich layer was predicted by a model analysis in which Darcy's law was applied. From the results of both experiments and analyses, the effect of water flow rate on the time history of the ice-rich layer formation were revealed. An average downward superficial velocity in the ice-rich layer is a dominant factor in the component design for an efficient use of an ice storage tank. This calculation model for the distribution of ice-rich layer can be considered to be applicable to realize the high thermal performance for large-scaled ice storage tanks.

Tanino, Masayuki; Kozawa, Yoshiyuki; Hijikata, Kunio; Nakabeppu, Osamu

377

Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.  

Energy Technology Data Exchange (ETDEWEB)

This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Corey, Garth P.; Iannucci, Joseph J., Jr. (Distributed Utility Associates, Livermore, CA)

2004-12-01

378

<90 day storage training plan for the 103-B, 1701-BA, AND 1714-C buildings  

International Nuclear Information System (INIS)

The 103-B, 1701-BA, and 1714C < 90 Day Storage Area stores characteristic wastes generated in the demolition of the 103-B, 1701-BA, and 1714-C Complex. Wastes (lead-based painted components) are packaged and stored in vendor shipment containers. This is the Environmental Restoration Contractor team training plan for the 103-B, 1701-BA, and 1714-C subgrade demolition < 90 Day Storage of Hazardous Waste. This document is intended to meet the requirements of Washington Administrative Code 173-303-330 and the Hanford Dangerous Waste Permit. Training unrelated to compliance with WAC 173-303-330 is not addressed in this training plan. WAC 173-303-330(1)(d)(2, 5, 6) requires that personnel be familiarized, where applicable, with waste feed cut-off systems, response to ground-water contamination incidents, and shutdown of operations. These are not applicable to 103-B, 1701-BA, and 1714-C Subgrade Demolition < 90 Day Storage, and therefore are not covered in this training plan

379

Energy storage systems: a strategic road-book  

International Nuclear Information System (INIS)

Dealing with the development and deployment of thermal and electric energy storage systems, this report first identifies four main challenges: to take environmental challenges into account during all the storage system life (design, production, use, end of life), to integrate the issue of economic valorization of the device into its design phase, to promote the development of standards, to make an institutional and legal framework emerge. It defines the geographical scope and the time horizon for the development of these systems. It evokes research and development programs in the United States, Japan, China, Germany and the European Union. These programs concern: mobile electric storage systems, electric storage systems in support of energy networks and renewable energies, heat storage systems. The authors outline that business models are now favourable to the deployment of storage systems. They discuss some key technological and economical parameters. They propose some prospective visions by 2050 with different possible orientations for this sector. They also identify and discuss the possible technological and socio-economical obstacles, research priorities, and stress the importance of implementing experimental platforms and research demonstrators

380

Scheduling of Pumped Storage Hydrothermal System with Evolutionary Programming  

Directory of Open Access Journals (Sweden)

Full Text Available This paper presents the ever proved evolutionary programming techniques for solving the generation/ pumping scheduling problem of hydro thermal system with pumped storage plants. Pumped storage hydro plant is used to save fuel cost by serving the peak load with hydro energy and then pumping the water back up into the reservoir at light load periods. Therefore, a pumped storage unit can be operated any one mode out of three states such as generation, pumping and idle states. It can smooth peak loads and provide reserves and plays a vital role in reducing the total generation cost in a hybrid power system.

S. K. Khandualo

2013-10-01

 
 
 
 
381

Underground thermal energy storage using horizontal heat exchanger for cooling of residential buildings in the Middle East  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Norconsult AB has developed a solarhousing concept, a house designed for the warm climate in the Middle East andwith large quantities of solar panels installed. The cooling system for the house was designed in an earlier report, the purpose of this thesis is to investigate the possibility of short and long term storage of thermal energy via an underground energy storage volume. Two different designs of the storage and three different filling materials have been integrated into a model to simu...

Taberman, Axel

2013-01-01

382

Securing Dynamic Distributed Storage Systems against Eavesdropping and Adversarial Attacks  

CERN Document Server

We address the problem of securing distributed storage systems against eavesdropping and adversarial attacks. An important aspect of these systems is node failures over time, necessitating, thus, a repair mechanism in order to maintain a desired high system reliability. In such dynamic settings, an important security problem is to safeguard the system from an intruder who may come at different time instances during the lifetime of the storage system to observe, and possibly alter, the data stored on some nodes. In this scenario, we give upper bounds on the maximum amount of information that can be stored safely on the system. For an important operating regime of the distributed storage system, which we call the `bandwidth-limited regime', we show that our upper bounds are tight and provide explicit code constructions. Moreover, we provide a way to shortlist the malicious nodes and expurgate the system.

Pawar, Sameer; Ramchandran, Kannan

2010-01-01

383

A new compressed air energy storage refrigeration system  

International Nuclear Information System (INIS)

In this study, a new compressed air energy storage (CAES) refrigeration system is proposed for electrical power load shifting application. It is a combination of a gas refrigeration cycle and a vapor compression refrigeration cycle. Thermodynamic calculations are conducted to investigate the performance of this system. Economic analysis is performed to study the operating cost of the system, and comparison is made with a vapor compression refrigeration system and an ice storage refrigeration system. The results indicate that the CAES refrigeration system has the advantages of simple structure, high efficiency and low operating cost

384

Closure system for a spent fuel storage cask  

International Nuclear Information System (INIS)

The patent concerns a closure system for storage casks, used for long-term storage of spent fuel from a nuclear reactor. The closure system comprises a primary cover for closing the cask mouth, a primary seal, and an arrangement for testing the primary seal for leaks. A pressure transducer may also be incorporated for monitoring the pressure under the cask, and sounding an alarm if the pressure falls below a threshold value. (UK)

385

Comparison of cask and drywell storage concepts for a monitored retrievable storage/interim storage system  

Energy Technology Data Exchange (ETDEWEB)

The Department of Energy, through its Richland Operations Office is evaluating the feasibility, timing, and cost of providing a federal capability for storing the spent fuel, high-level wastes, and transuranic wastes that DOE may be obligated by law to manage until permanent waste disposal facilities are available. Three concepts utilizing a monitored retrievable storage/interim storage (MRS/IS) facility have been developed and analyzed. The first concept, co-location with a reprocessing plant, has been developed by staff of Allied General Nuclear Services. the second concept, a stand-alone facility, has been developed by staff of the General Atomic Company. The third concept, co-location with a deep geologic repository, has been developed by the Pacific Northwest Laboratory with the assistance of the Westinghouse Hanford Company and Kaiser Engineers. The objectives of this study are: to develop preconceptual designs for MRS/IS facilities: to examine various issues such as transportation of wastes, licensing of the facilities, and environmental concerns associated with operation of such facilities; and to estimate the life-cycle costs of the facilities when operated in response to a set of scenarios that define the quantities and types of waste requiring storage in specific time periods, generally spanning the years 1989 to 2037. Three scenarios are examined to develop estimates of life-cycle costs for the MRS/IS facilities. In the first scenario, the reprocessing plant is placed in service in 1989 and HLW canisters are stored until a repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at intervals as needed to meet the demand. In the second scenario, the reprocessing plants are delayed in starting operations by 10 years, but the repositories open on schedule. In the third scenario, the repositories are delayed 10 years, but the reprocessing plants open on schedule.

Rasmussen, D.E.

1982-12-01

386

Comparison of cask and drywell storage concepts for a monitored retrievable storage/interim storage system  

International Nuclear Information System (INIS)

The Department of Energy, through its Richland Operations Office is evaluating the feasibility, timing, and cost of providing a federal capability for storing the spent fuel, high-level wastes, and transuranic wastes that DOE may be obligated by law to manage until permanent waste disposal facilities are available. Three concepts utilizing a monitored retrievable storage/interim storage (MRS/IS) facility have been developed and analyzed. The first concept, co-location with a reprocessing plant, has been developed by staff of Allied General Nuclear Services. the second concept, a stand-alone facility, has been developed by staff of the General Atomic Company. The third concept, co-location with a deep geologic repository, has been developed by the Pacific Northwest Laboratory with the assistance of the Westinghouse Hanford Company and Kaiser Engineers. The objectives of this study are: to develop preconceptual designs for MRS/IS facilities: to examine various issues such as transportation of wastes, licensing of the facilities, and environmental concerns associated with operation of such facilities; and to estimate the life-cycle costs of the facilities when operated in response to a set of scenarios that define the quantities and types of waste requiring storage in specific time periods, generally spanning the years 1989 to 2037. Three scenarios are examined to develop estimates of life-cycle costs for the MRS/IS facilities. In the first scenario, the reprocessing plant is placed in service in 1989 and HLW canisters are stored until a repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at intervals as needed to meet the demand. In the second scenario, the reprocessing plants are delayed in starting operations by 10 years, but the repositories open on schedule. In the third scenario, the repositories are delayed 10 years, but the reprocessing plants open on schedule

387

Underground gas storage Uelsen: Findings from planning, building and commissioning. Part 1: Deposit; Untertagegasspeicher Uelsen: Erkenntnisse aus Planung, Bau und Inbetriebnahme. Teil 1: Lagerstaette  

Energy Technology Data Exchange (ETDEWEB)

The underground gas storage at Uelsen which was built as a H-gas storage in a former variegated sandstone gasfield in Western Lower Saxony close to the town of Nordhorn has added to the gas supply system of the BEB Erdgas and Erdoel GmbH. The underground storage is connected to the Bunde-Rheine transport pipeline BEB-grid gas system by a 27 km pipeline and is a consequent expansion of BEB`s underground storage/transport system. Planning, building and commissioning were handled by BEB. Findings to date are described. [Deutsch] Der Untertagegasspeicher (UGS) Uelsen, der in einem ehemaligen Buntsandstein Gasfeld im westlichen Niedersachsen in der Naehe der Stadt Nordhorn als H-Gasspeicher eingerichtet wurde, hat die BEB Erdgas und Erdoel GmbH eine weitere Staerkung ihres Gasversorgungssystems erreicht. Der UGS Uelsen ist ueber eine 27 km lange Anbindungsleitung mit der zum BEB - Ferngasleitungssystems gehoerenden Bunde-Rheine Transportleitung verbunden und stellt eine konsequente Erweiterung des BEB Untertagegasspeicher-/Transportsystems dar. Planung, Bau und Inbetriebnahme erfolgten durch BEB im Rahmen einer integrierten bereichsuebergreifenden Projektbearbeitung. Die hierbei gewonnenen Erkenntnisse werden im Folgenden fuer den Untertagebereich dargestellt. (orig.)

Wallbrecht, J.; Beckmann, H.; Reiser, H.; Wilhelm, R. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

1998-12-31

388

Thermochemical Energy Storage Systems: Modelling, Analysis and Design  

Science.gov (United States)

Thermal energy storage (TES) is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. Thermochemical TES is an emerging method with the potential for high energy density storage. Where space is limited, therefore, thermochemical TES has the highest potential to achieve the required compact TES. Principles of thermochemical TES are presented and thermochemical TES is critically assessed and compared with other TES types. The integration of TES systems with heating, ventilating and air conditioning (HVAC) applications is examined and reviewed accounting for various factors, and recent advances are discussed. Thermodynamics assessments are presented for general closed and open thermochemical TES systems. Exergy and energy analyses are applied to assess and compare the efficiencies of the overall thermochemical TES cycle and its charging, storing and discharging processes. Examples using experimental data are presented to illustrate the analyses. Some important factors related to design concepts of thermochemical TES systems are considered and preliminary design conditions for them are investigated. Parametric studies are carried out for the thermochemical storage systems to investigate the effects of selected parameters on the efficiency and behavior of thermochemical storage systems. Keywords: Thermal Energy Storage; Thermochemical Energy Storage; Energy Efficiency; Exergy Efficiency, First Law Efficiency; Second Law Efficiency; Exergy

Haji Abedin, Ali

389

CFD Simulation of Spent Fuel in a Dry Storage System  

International Nuclear Information System (INIS)

The spent fuel pool is expected to be full in few years. It is a serious problem one should not ignore. The dry storage type is considered as the interim storage system in Korea. The system stores spent fuel in a storage canister filled with an inert gas and the canister is cooled by a natural convection system using air or helium, radiation, and conduction. The spent fuel is heated by decay heat. The spent fuel is allowed to cool under a limiting temperature to avoid a fuel failure. Recently, the thermal hydraulic characteristics for a single bundle of the spent fuel were investigated through a CFD simulation. It would be of great interest to investigate the maximum fuel temperature in a dry storage system. The present paper deals with the thermal hydraulic characteristics of spent fuel for a dry storage system using the CFD method. A 3-D thermal flow simulation was carried out to predict the temperature of spent fuel. A dry storage system composed of 32 fuel bundles was modeled. The inlet temperature of the outer bundle is higher and that of inner bundle, however, is higher at the outlet. In a single fuel assembly, a center temperature of the fuel assembly was higher than elsewhere

390

CFD Simulation of Spent Fuel in a Dry Storage System  

Energy Technology Data Exchange (ETDEWEB)

The spent fuel pool is expected to be full in few years. It is a serious problem one should not ignore. The dry storage type is considered as the interim storage system in Korea. The system stores spent fuel in a storage canister filled with an inert gas and the canister is cooled by a natural convection system using air or helium, radiation, and conduction. The spent fuel is heated by decay heat. The spent fuel is allowed to cool under a limiting temperature to avoid a fuel failure. Recently, the thermal hydraulic characteristics for a single bundle of the spent fuel were investigated through a CFD simulation. It would be of great interest to investigate the maximum fuel temperature in a dry storage system. The present paper deals with the thermal hydraulic characteristics of spent fuel for a dry storage system using the CFD method. A 3-D thermal flow simulation was carried out to predict the temperature of spent fuel. A dry storage system composed of 32 fuel bundles was modeled. The inlet temperature of the outer bundle is higher and that of inner bundle, however, is higher at the outlet. In a single fuel assembly, a center temperature of the fuel assembly was higher than elsewhere.

Kwack, Young Kyun; In, Wang Kee; Shin, Chang Hwan; Chun, Tae Hyun; Kook, Dong Hak [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

2013-10-15

391

High-performance mass storage system for workstations  

Science.gov (United States)

Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive media, and the tapes are used as backup media. The storage system is managed by the IEEE mass storage reference model-based UniTree software package. UniTree software will keep track of all files in the system, will automatically migrate the lesser used files to archive media, and will stage the files when needed by the system. The user can access the files without knowledge of their physical location. The high-performance mass storage system developed by Loral AeroSys will significantly boost the system I/O performance and reduce the overall data storage cost. This storage system provides a highly flexible and cost-effective architecture for a variety of applications (e.g., realtime data acquisition with a signal and image processing requirement, long-term data archiving and distribution, and image analysis and enhancement).

Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.

1993-01-01

392

Use of compressed-air storage systems; Einsatz von Druckluftspeichersystemen  

Energy Technology Data Exchange (ETDEWEB)

This final report issued by the Swiss Federal Office of Energy (SFOE) looks at the use of compressed air as a means of storing energy. Historical aspects are listed and compressed-air storage as an alternative to current ideas that use electrolysis and hydrogen storage is discussed. The storage efficiency advantages of compressed-air storage is stressed and the possibilities it offers for compensating the stochastic nature of electricity production from renewable energy sources are discussed. The so-called BOP (Battery with Oil-hydraulics and Pneumatics) principle for the storage of electricity is discussed and its function is described. The advantages offered by such a system are listed and the development focus necessary is discussed.

Cyphely, I.; Rufer, A.; Brueckmann, Ph.; Menhardt, W.; Reller, A.

2004-07-01

393

Entropy, pricing and macroeconomics of pumped-storage systems  

Science.gov (United States)

We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

2014-05-01

394

NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.  

Energy Technology Data Exchange (ETDEWEB)

This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

2013-06-01

395

Modelling the Size of Seasonal Thermal Storage in the Solar District Heating System  

Directory of Open Access Journals (Sweden)

Full Text Available The integration of a thermal storage system into the solar heating system enables to increase the use of solar thermal energy in buildings and allows avoiding the mismatch between consumers’ demand and heat production in time. The paper presents modelling a seasonal thermal storage tank various sizes of which have been analyzed in the district solar heating system that could cover a part of heat demand for the district of individual houses in Vilnius. A biomass boiler house, as an additional heat source, should allow covering the remaining heat demand. energyPRO software is used for system modelling. The paper evaluates heat demand, climate conditions and technical characteristics.Article in Lithuanian

Giedr? Streckien?

2012-12-01

396

Integrating Building Automation Systems based on Web Services  

Digital Repository Infrastructure Vision for European Research (DRIVER)

It is of great advantage to integrate building automation systems (BAS) in intelligent buildings using networks (LAN or WAN).This paper addresses three technical issues in the integration of BASs. One is the integration between BASs and existing enterprise applications. The second is the integration of BASs which adopt different international standardized protocols. The third is the integration of building automation subsystems. The “intelligence” of intelligent buildings is still...

Jianbo Bai; Yuzhe Hao; Guochang Miao

2011-01-01

397

Hydrogen based energy storage for solar energy systems  

Energy Technology Data Exchange (ETDEWEB)

The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

1998-10-01

398

Method for simulating predictive control of building systems operation in the early stages of building design  

DEFF Research Database (Denmark)

A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual reconfiguration when making parametric analysis. A test case featuring an office located in Copenhagen, Denmark, indicates that the method has a potential to save energy and improve thermal comfort compared to more conventional systems control. Further investigations of this potential and the general performance of the method are, however, needed before implementing it in a real building design.

Petersen, Steffen; Svendsen, Svend

2011-01-01

399

Flexibility of the BNFL dry storage systems  

International Nuclear Information System (INIS)

To widen its range of spent fuel management services, BNFL entered the fuel storage market in 1995; entry was by acquisition rather than internal product development. The need for a transportable product was identified very early, but represents only the first phase of a philosophy of continuous improvement. Strong synergy exists between the new business area and existing fuel handling and transportation expertise, which has been of considerable assistance to the new business. (author)