WorldWideScience

Sample records for steam generator analysis

  1. Vibration Analysis for Steam Dryer of APR1400 Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sung-heum; Ko, Doyoung [KHNP CRI, Daejeon (Korea, Republic of); Cho, Minki [Doosan Heavy Industry, Changwon (Korea, Republic of)

    2016-10-15

    This paper is related to comprehensive vibration assessment program for APR1400 steam generator internals. According to U.S. Nuclear Regulatory Commission, Regulatory Guide 1.20 (Rev.3, March 2007), we conducted vibration analysis for a steam dryer as the second steam separator of steam generator internals. The vibration analysis was performed at the 100 % power operating condition as the normal operation condition. The random hydraulic loads were calculated by the computational fluid dynamics and the structural responses were predicted by power spectral density analysis for the probabilistic method. In order to meet the recently revised U.S. NRC RG 1.20 Rev.3, the CVAP against the potential adverse flow effects in APR1400 SG internals should be performed. This study conducted the vibration response analysis for the SG steam dryer as the second moisture separator at the 100% power condition, and evaluated the structural integrity. The predicted alternating stress intensities were evaluated to have more than 17.78 times fatigue margin compared to the endurance limit.

  2. Large-leak sodium-water reaction analysis for steam generators

    International Nuclear Information System (INIS)

    Sakano, K.; Shindo, Y.; Hori, M.

    1975-01-01

    The guillotine rupture of 4 tubes is assumed as a design basis regarding the large-leak sodium-water reaction in the system of the MONJU steam generator. Three kinds of analyses were performed with the view to showing the integrity of the steam generator system on the reaction. The first one is the analysis of the initial pressure spike, assuming the initial guillotine rupture of 1 tube. The analysis was performed by utilizing one-dimensional sphere-cylinder model code SWAC-7 and two-dimensional axisymmetric code PISCES 2DL. The second one is the analysis of the secondary peak pressure and its propagation in the system, assuming the instantaneous guillotine rupture of 4 tubes. The third one is the analysis of the dynamic deformation of the steam generator shell. The integrity of the steam generator system was shown by the analyses. (author)

  3. Large-leak sodium-water reaction analysis for steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakano, K; Shindo, Y; Hori, M

    1975-07-01

    The guillotine rupture of 4 tubes is assumed as a design basis regarding the large-leak sodium-water reaction in the system of the MONJU steam generator. Three kinds of analyses were performed with the view to showing the integrity of the steam generator system on the reaction. The first one is the analysis of the initial pressure spike, assuming the initial guillotine rupture of 1 tube. The analysis was performed by utilizing one-dimensional sphere-cylinder model code SWAC-7 and two-dimensional axisymmetric code PISCES 2DL. The second one is the analysis of the secondary peak pressure and its propagation in the system, assuming the instantaneous guillotine rupture of 4 tubes. The third one is the analysis of the dynamic deformation of the steam generator shell. The integrity of the steam generator system was shown by the analyses. (author)

  4. Dynamic analysis of CHASNUPP steam generator structure during shipping

    International Nuclear Information System (INIS)

    Han Liangbi; Xu Jinkang; Zhou Meiwu; He Yinbiao

    1998-07-01

    The dynamic analysis of CHASNUPP steam generator during shipping is described, including the simplified mathematical model, acceleration power spectrum of ocean wave induced random vibration, the dynamic analysis of steam generator structure under random loading, the applied computer code and calculated results

  5. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [Skoda Company, Prague (Switzerland); Doubek, M. [Czech Technical Univ., Prague (Switzerland)

    1995-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  6. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Ubra, O.; Doubek, M.

    1995-01-01

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.)

  7. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O [Skoda Company, Prague (Switzerland); Doubek, M [Czech Technical Univ., Prague (Switzerland)

    1996-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  8. Design of SMART steam generator cassette

    International Nuclear Information System (INIS)

    Kim, Y. W.; Kim, J. I.; Jang, M. H.

    2001-01-01

    Basic design development for the steam generator to be installed in the integral reactor SMART has been performed. Optimization of the steam generator shape, determination of the basic dimension and confirmation of the structural strength have been carried out. Individual steam generator cassette can be replaced in the optimized design concept of steam generator. Shape design of the steam generator cassette has been done on the computer based on 3-D CAE strategy. The structural integrity of the developed steam generator was investigated by performing the dynamic analysis for the steam generator cassette, flow induced vibration analysis for the tube bundle, and the thermo-mechanical analysis for the module header and tube. As for the manufacturing of steam generator, the numerical and the experimental simulation have been carried to control the amount of spring back and to eliminate residual stress. SMART steam generator cassette was developed by a sequential research of the aforementioned activities

  9. Integrity Analysis of Damaged Steam Generator Tubes

    International Nuclear Information System (INIS)

    Stanic, D.

    1998-01-01

    Variety of degradation mechanisms affecting steam generator tubes makes steam generators as one of the critical components in the nuclear power plants. Depending of their nature, degradation mechanisms cause different types of damages. It requires performance of extensive integrity analysis in order to access various conditions of crack behavior under operating and accidental conditions. Development and application of advanced eddy current techniques for steam generator examination provide good characterization of found damages. Damage characteristics (shape, orientation and dimensions) may be defined and used for further evaluation of damage influence on tube integrity. In comparison with experimental and analytical methods, numerical methods are also efficient tools for integrity assessment. Application of finite element methods provides relatively simple modeling of different type of damages and simulation of various operating conditions. The stress and strain analysis may be performed for elastic and elasto-plastic state with good ability for visual presentation of results. Furthermore, the fracture mechanics parameters may be calculated. Results obtained by numerical analysis supplemented with experimental results are the base for definition of alternative plugging criteria which may significantly reduce the number of plugged tubes. (author)

  10. CAREM-25 Steam Generator Stability Analysis

    International Nuclear Information System (INIS)

    Rabiti, A.; Delmastro, D.

    2003-01-01

    In this work the stability of a once-through CAREM-25 steam generator is analyzed.A fix nodes numerical model, that allows the modelling of the liquid, two-phase and superheated steam zones, is implemented.This model was checked against a mobile finite elements model under saturated steam conditions at the channel exit and a good agreement was obtained.Finally the stability of a CAREM steam generator is studied and the range of in let restrictions that a assure the system stability is analyzed

  11. Data analysis for steam generator tubing samples

    International Nuclear Information System (INIS)

    Dodd, C.V.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generators program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC's mobile NDE laboratory and staff. This report provides a description of the application of advanced eddy-current neural network analysis methods for the detection and evaluation of common steam generator tubing flaws including axial and circumferential outer-diameter stress-corrosion cracking and intergranular attack. The report describes the training of the neural networks on tubing samples with known defects and the subsequent evaluation results for unknown samples. Evaluations were done in the presence of artifacts. Computer programs are given in the appendix

  12. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  13. Transient analysis of a U-tube natural circulation steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, A J; Kumar, Rajesh; Bhadra, Anu; Chakraborty, G; Venkat Raj, V [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    A computer code has been developed, for transient thermal-hydraulic analysis of proposed 500 MWe PHWR steam generator. The transient behaviour of a nuclear power plant is very much dependent on the steam generator performance, as it provides a thermal linkage between the primary and secondary systems. Study of dynamics of steam generator is essential for over all power plant dynamics as well as design of control systems for steam generator. A mathematical model has been developed for the simulation of thermal-hydraulic phenomena in a U tube natural circulation steam generator. Fluid model is based on one dimensional, nonlinear, single fluid conservation equations of mass, momentum, energy and equation of state. This model includes coupled two phase flow heat transfer and natural circulation. The model accounts for both compressibility and thermal expansion effects. The process simulation and results obtained for transients such as step change in load and total loss of feed water are presented. (author). 5 refs., 7 figs.

  14. Steam-Generator Integrity Program/Steam-Generator Group Project

    International Nuclear Information System (INIS)

    1982-10-01

    The Steam Generator Integrity Program (SGIP) is a comprehensive effort addressing issues of nondestructive test (NDT) reliability, inservice inspection (ISI) requirements, and tube plugging criteria for PWR steam generators. In addition, the program has interactive research tasks relating primary side decontamination, secondary side cleaning, and proposed repair techniques to nondestructive inspectability and primary system integrity. The program has acquired a service degraded PWR steam generator for research purposes. This past year a research facility, the Steam Generator Examination Facility (SGEF), specifically designed for nondestructive and destructive examination tasks of the SGIP was completed. The Surry generator previously transported to the Hanford Reservation was then inserted into the SGEF. Nondestructive characterization of the generator from both primary and secondary sides has been initiated. Decontamination of the channelhead cold leg side was conducted. Radioactive field maps were established in the steam generator, at the generator surface and in the SGEF

  15. Horizontal steam generator thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  16. Steam 80 steam generator instrumentation

    International Nuclear Information System (INIS)

    Carson, W.H.; Harris, H.H.

    1980-01-01

    This paper describes two special instrumentation packages in an integral economizer (preheater) steam generator of one of the first System 80 plants scheduled to go into commercial operation. The purpose of the instrumentation is to obtain accurate operating information from regions of the secondary side of the steam generator inaccessible to normal plant instrumentation. In addition to verification of the System 80 steam generator design predictions, the data obtained will assist in verification of steam generator thermal/hydraulic computer codes developed for generic use in the industry

  17. Fluidelastic instability analysis of steam generator U-tubes at antivibration bar-inactive modes

    International Nuclear Information System (INIS)

    Lee, S.K.; Jo, J.C.

    1995-01-01

    This paper presents the results of thermal-hydraulic and fluidelastic U-tube instability analyses performed for the vertical type pressurized water reactor (PWR) steam generator model being employed at Kori units 2, 3 and 4, and Yonggwang units 1 and 2 in Korea. The thermal-hydraulic analysis for providing the detailed three-dimensional two-phase flow field in the secondary side of the steam generator was accomplished using the ATHOS3 steam generator thermal-hydraulic analysis code. The UTVA2 code designed for calculating both the free vibration responses and fluidelastic stability ratio of a specific U-tube under consideration was used to assess the potential for fluidelastic instability of the steam generator U-tubes at various conditions of antivibration bar (AVB)-inactive modes. The results of the fluidelastic instability analysis were discussed in comparison with those obtained for the steam generator U-tubes at AVB-active mode

  18. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  19. Improvements to the COBRA-TF (EPRI) computer code for steam generator analysis. Final report

    International Nuclear Information System (INIS)

    Stewart, C.W.; Barnhart, J.S.; Koontz, A.S.

    1980-09-01

    The COBRA-TF (EPRI) code has been improved and extended for pressurized water reactor steam generator analysis. New features and models have been added in the areas of subcooled boiling and heat transfer, turbulence, numerics, and global steam generator modeling. The code's new capabilities are qualified against selected experimental data and demonstrated for typical global and microscale steam generator analysis

  20. Analysis of tube vibrations in D-4 steam generator

    International Nuclear Information System (INIS)

    Mavko, B.; Peterlin, G.; Boltezar, M.

    1983-01-01

    Accelerometer data for the most exposed tube in steam generator D-4 were recorded on magnetic tape. Procedures for calculations of the most characteristic parameters were prepared for spectral analyzer on SD 360. Parameters which most satisfactorily describe the vibrations are power spectral densities peak to peak acceleration volume and root mean square displacement. Computer program was written to calculate the natural frequencies of a multispaned tube. Procedures and the computer program will be used for independent analysis of tube vibrations in Krsko D-4 type steam generator. (author)

  1. Analysis and design of flow limiter used in steam generator

    International Nuclear Information System (INIS)

    Liu Shixun; Gao Yongjun

    1995-10-01

    Flow limiter is an important safety component of PWR steam generator. It can limit the blowdown rate of steam generator inventory in case of the main steam pipeline breaks, so that the rate of the primary coolant temperature reduction can be slowed down in order to prevent fuel element from burn-out. The venturi type flow limiter is analysed, its flow characteristics are delineated, physical and mathematical models defined; the detail mathematical derivation provided. The research lays down a theoretic basis for flow limiter design. The governing equations and formulas given can be directly applied to computer analysis of the flow limiter. (3 refs., 3 figs.)

  2. HTGR steam generator development

    International Nuclear Information System (INIS)

    Schuetzenduebel, W.G.; Hunt, P.S.; Weber, M.

    1976-01-01

    More than 40 gas-cooled reactor plants have produced in excess of 400 reactor years of operating experience which have proved a reasonably high rate of gas-cooled reactor steam generator availability. The steam generators used in these reactors include single U-tube and straight-tube steam generators as well as meander type and helically wound or involute tube steam generators. It appears that modern reactors are being equipped with helically wound steam generators of the once-through type as the end product of steam generator evolution in gas-cooled reactor plants. This paper provides a general overview of gas-cooled reactor steam generator evolution and operating experience and shows how design criteria and constraints, research and development, and experience data are factored into the design/development of modern helically wound tube steam generators for the present generation of gas-cooled reactors

  3. Tests and analysis on steam generator tube failure propagation

    International Nuclear Information System (INIS)

    Tanabe, Hiromi

    1990-01-01

    The understanding of leak enlargement and failure propagation behavior is essential to select a design basis leak (DBL) of LMFBR steam generators. Therefore, various series of experiments, such as self-enlargement tests, target wastage tests, failure propagation tests were conducted in a wide range of leak using test facilities of SWAT at PNC/OEC. Especially, in the large leak tests, potential of overheating failure was investigated under a prototypical steam cooling condition inside target tubes. In the small leak, the difference of wastage resistivity was clarified among several tube materials such as 9-chrome steels. In regard to an analytical approach, a computer code LEAP (Leak Enlargement and Propagation) was developed on the basis of all of these experimental results. The code was used to validate the previously selected DBL of the prototype reactor, Monju, steam generator. This approach proved to be successful in spite of somewhat over-conservatism in the analysis. Moreover, LEAP clarified the effectiveness of a rapid steam dump and an enhanced leak detection system. The code improvement toward a realistic analysis is desired, however, to lessen the DBL for a future large plant and then the re-evaluation of the experimental data such as the size of secondary failure is under way. (author). 4 refs, 8 figs, 1 tab

  4. CATHENA analysis of CANDU 6 steam generators for steam main break at a remote location

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2009-07-01

    CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a nonequilibrium, two-phase, two fluid network analysis code that has been in use for over two decades by various groups in Canada and around the world. It is the primary Thermalhydraulics network analysis tool used by Atomic Energy Canada Ltd. (AECL) in the design, safety and licensing analysis of power and research reactors as well as test facilities. In the thermalhydraulic model, the liquid and vapor phases may have different pressures, velocities, and temperatures. The objective of the present paper is to present the detailed modeling of a CANDU 6 Steam Generator (SG) using the transient, thermalhydraulics network code CATHENA. The model represents the secondary side, primary side and the main steam system including the main steam line up to the assumed break location. The present model is designed such that the transient pressure drops across Tube Support Plates (TSP) could be extracted. The resistances of degraded/fouled TSPs were modeled by using the increased/reduced flow area of the TSPs. CATHENA then calculates the flow resistance in two-phase flow based on the area contraction/expansion at the TSPs. Three sets of simulations were performed; one with the degraded steam generator data provided by the utility users, and the other two with waterlanced (cleaned with high pressure water jet) TSPs. One run assumed the flow area increased by 25 percent, the other run assumed the flow area increased by 50 percent. on the hot side of the SG. No significant changes in the break discharge rates were observed between the runs. However, the steam generator downcomer flow for the waterlanced case did not reverse during the blowdown as was calculated for the degraded case. As expected, the pressure drop across the TSPs was decreased in the waterlanced cases comparing with degraded cases. The CATHENA simulation provides estimates of the velocity, density, and quality in the tube bundle as well as

  5. Fast reactor fuel failures and steam generator leaks: Transient and accident analysis approaches

    International Nuclear Information System (INIS)

    1996-10-01

    This report consists of a survey of activities on transient and accident analysis for the LMFR. It is focused on the following subjects: Fuel transient tests and analyses in hypothetical incident/accident situations; sodium-water interaction in steam generators, and sodium fires: test and analyses. There are also sections dealing with the experimental and analytical studies of: fuel subassembly failures; sodium boiling, molten fuel-coolant interaction; molten material movement and relocation in fuel bundles; heat removal after an accident or incident; sodium-water reaction in steam generator; steam generator protection systems; sodium-water contact in steam generator building; fire-fighting methods and systems to deal with sodium fires. Refs, figs, tabs

  6. Thermal-hydraulics in recirculating steam generators

    International Nuclear Information System (INIS)

    Carver, M.B.; Carlucci, L.N.; Inch, W.W.R.

    1981-04-01

    This manual describes the THIRST code and its use in computing three-dimensional two-phase flow and heat transfer in a steam generator under steady state operation. The manual is intended primarily to facilitate the application of the code to the analysis of steam generators typical of CANDU nuclear stations. Application to other steam generator designs is also discussed. Details of the assumptions used to formulate the model and to implement the numerical solution are also included

  7. Analysis of density wave instability in counter-flow steam generators using STEAMFREQ-X

    International Nuclear Information System (INIS)

    Chan, K.C.; Yadigaroglu, G.

    1986-01-01

    The STEAMFREQ-X computer model was developed to provide a more comprehensive modeling of the different phenomena that are important to stability analysis of counter-flow steam generators. It uses a frequency-domain analysis and considers heat-flux/flow coupling between the primary and secondary fluids in space and time. Predictions by STEAMFREQ-X were compared with data from both a multi-channel liquid-sodium heated steam generator and a set of single pipe test data. Predicted outlet steam qualities at instability thresholds were within 15% of experimental data for all test points. (orig.)

  8. Passive system with steam-water injector for emergency supply of NPP steam generators

    International Nuclear Information System (INIS)

    Il'chenko, A.G.; Strakhov, A.N.; Magnitskij, D.N.

    2009-01-01

    The calculation results of reliability indicators of emergency power supply system and emergency feed-water supply system of serial WWER-1000 unit are presented. To ensure safe water supply to steam generators during station blackout it was suggested using additional passive emergency feed-water system with a steam-water injector working on steam generators dump steam. Calculated analysis of steam-water injector operating capacity was conducted at variable parameters of steam at the entrance to injector, corresponding to various moments of time from the beginning of steam-and-water damping [ru

  9. Steam generator

    International Nuclear Information System (INIS)

    Fenet, J.-C.

    1980-01-01

    Steam generator particularly intended for use in the coolant system of a pressurized water reactor for vaporizing a secondary liquid, generally water, by the primary cooling liquid of the reactor and comprising special arrangements for drying the steam before it leaves the generator [fr

  10. Analysis methods for evaluating leak-before-break in U-tube steam generators

    International Nuclear Information System (INIS)

    Griesbach, T.; Cipolla, R.

    1985-01-01

    In recent years, there has been an increased incidence of cracking in steam generator tubes. As a result, there has been increased effort in assuring that cracks in steam generator tubes will leak well in advance of significant loss in structural integrity. Demonstrating a leak-before-break condition is an integrated analysis process that utilizes several engineering disciplines, specifically, materials engineering, fracture mechanics, stress analysis, and fluid mechanics. The output from a leak-before-break assessment is typically depicted in terms of available margins against failure and measurable or detectable leak rate. In this paper, the analysis methods for performing a leak-before-break analysis for the U-tubes of a recirculating steam generator are presented. The results from generic analysis for the first row U-tubes illustrates the analysis techniques. Because of realistic input values used herein, these results also suggest that large leak rates are possible from cracks in U-bend regions, yet these cracks are small relative to their critical size for failure. Hence, orderly shutdowns can be completed prior to the point when tube bursting is of concern

  11. Digital simulation for nuclear once-through steam generators

    International Nuclear Information System (INIS)

    Chen, A.T.

    1976-01-01

    Mathematical models for calculating the dynamic response of the Oconee type once through steam generator (OTSG) and the integral economizer once through steam generator (IEOTSG) was developed and presented in this dissertation. Linear and nonlinear models of both steam generator types were formulated using the state variable, lumped parameter approach. Transient and frequency responses of system parameters were calculated for various perturbations from both the primary coolant side and the secondary side. Transients of key parameters, including primary outlet temperature, superheated steam outlet temperature, boiling length/subcooled length and steam pressure, were generated, compared and discussed for both steam generator types. Frequency responses of delta P/sub s//deltaT/sub pin/ of the linear OTSG model were validated by using the dynamic testing results obtained at the Oconee I nuclear power station. A sensitivity analysis in both the time and the frequency domains was performed. It was concluded that the mathematical and computer models developed in this dissertation for both the OTSG and the IEOTSG are suitable for overall plant performance evaluation and steam generator related component/system design analysis for nuclear plants using either type of steam generator

  12. Class I review of LOFT steam generator stress and fatigue life analysis report

    International Nuclear Information System (INIS)

    Fors, R.M.; Silverman, S.

    1977-01-01

    Review of the LOFT steam generator stress and fatigue life analysis report is presented. Deficiencies were found which will require evaluation and in some areas reanalysis. The effects of these deficiencies upon the steam generator will include: to further reduce the allowable ΔP across the tubesheet for the abnormal design case of pressure on primary; and to reduce the allowable number of LOCE transients at some locations of the steam generator from the numbers listed in the stress report and to increase them at other locations

  13. Procedure for generating steam and steam generator for operating said procedure

    International Nuclear Information System (INIS)

    Chlique, Bernard.

    1975-01-01

    This invention concerns the generation of steam by bringing the water to be vaporised into indirect thermal exchange relation with the heating steam which condenses when passing in series, along alternate routes, through bundles of tubes immersed in a vaporising chamber. A number of steam generators working on this principle already exist. The purpose of the invention is to modify the operating method of these steam generators by means of a special disposition making it possible to build a compact unit including an additional bundle of tubes heated by the condensates collected at the outlet of each bundle through which the heating steam passes [fr

  14. Analysis of Precooling Injection Transient of Steam Generator for High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-01-01

    Full Text Available After a postulated design basis accident leads high temperature gas cooled reactor to emergency shutdown, steam generator still remains with high temperature level and needs to be cooled down by a precooling before reactor restarts with clearing of fault. For the large difference of coolant temperature between inlet and outlet of steam generator in normal operation, the temperature distribution on the components of steam generator is very complicated. Therefore, the temperature descending rate of the components in steam generator needs to be limited to avoid the potential damage during the precooling stage. In this paper, a pebble-bed high temperature gas cooled reactor is modeled by thermal-hydraulic system analysis code and several postulated precooling injection transients are simulated and compared to evaluate their effects, which will provide support for the precooling design. The analysis results show that enough precooling injection is necessary to satisfy the precooling requirements, and larger mass flow rate of precooling water injection will accelerate the precooling process. The temperature decrease of steam generator is related to the precooling injection scenarios, and the maximal mass flow rate of the precooling injection should be limited to avoid the excessively quick temperature change of the structures in steam generator.

  15. Analysis of reverse flow in inverted U-tubes of steam generator under natural circulation condition

    International Nuclear Information System (INIS)

    Yang Ruichang; Liu Ruolei; Liu Jinggong; Qin Shiwei

    2008-01-01

    In this paper, we report on the analysis of reverse flow in inverted U-tubes of a steam generator under natural circulation condition. The mechanism of reverse flow in inverted U-tubes of the steam generator with natural circulation is graphically analyzed by using the full-range characteristic curve of parallel U-tubes. The mathematical model and numerical calculation method for analyzing the reverse flow in inverted U-tubes of the steam generator with natural circulation have been developed. The reverse flow in an inverted U-tube steam generator of a simulated pressurized water reactor with natural circulation in analyzed. Through the calculation, the mass flow rates of normal and reverse flows in individual U-tubes are obtained. The predicted sharp drop of the fluid temperature in the inlet plenum of the steam generator due to reverse flow agrees very well with the experimental data. This indicates that the developed mathematical model and solution method can be used to correctly predict the reverse flow in the inverted U-tubes of the steam generator with natural circulation. The obtained results also show that in the analysis of natural circulation flow in the primary circuit, the reverse flow in the inverted U-tubes of the steam generator must be taken into account. (author)

  16. LMR steam generator blowdown with RETRAN

    International Nuclear Information System (INIS)

    Wei, T.Y.C.

    1985-01-01

    One of the transients being considered in the FSAR Chapter 15 analyses of anticipated LMR transients is the fast blowdown of a steam generator upon inadvertent actuation of the liquid metal/water reaction mitigation system. For the blowdown analysis, a stand-alone steam generator model for the IFR plant was constructed using RETRAN

  17. A study on improving the performance of steam generator using thermal analysis

    International Nuclear Information System (INIS)

    Li, Zhen Zhe; Heo, Kwang Su; Choi, Jun Hoo; Seol, Seoung Yun

    2008-01-01

    Steam generation mechanism is the key technology of domestic steam cleaner. Not only weight and price of steam cleaner but also the performance of steam generation mechanism must be considered to improve the competitive power of the products. In order to find out the mechanism which can be used to improve the performance of steam generator, the process of steam generation was studied at first. In the following step, possibility of control, safety of mechanism and etc were compared about the two candidated steam generation mechanism. Finally, the merit and drawback of each mechanism were summarized

  18. TRAC analysis of steam-generator overfill transients for TMI-1

    International Nuclear Information System (INIS)

    Bassett, B.

    1983-01-01

    A reactor safety issue concerning the overfilling of once-through steam generators leading to combined primary/secondary blowdown has been raised recently. A series of six calculations, performed with the LWR best-estimate code, TRAC-PD2, on a Babcock and Wilcox Plant (TMI-1), was performed to investigate this safety issue. The base calculation assumed runaway main feedwater to one steam generator causing it to overfill and to break the main steam line. Four additional calculations build onto the base case with combinations of a pump-seal failure, a steam-generator tube rupture, and the pilot-operated relief valve not reseating. A sixth calculation involved only the rupture of a single steam-generator tube. The results of these analyses indicate that for the transients investigated, the emergency cooling system provided an adequate make-up coolant flow to mitigate the accidents

  19. Steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermal hydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. This report shows how recent advances in cleaning technology are integrated into a life management strategy, discusses downcomer flow measurement as a means of monitoring steam generator condition, and describes recent advances in hideout return as a life management tool. The research and development program, as well as operating experience, has identified

  20. Steam generator secondary pH during a steam generator tube rupture

    International Nuclear Information System (INIS)

    Adams, J.P.; Peterson, E.S.

    1991-12-01

    The Nuclear Regulatory Commission requires utilizes to determine the response of a pressurized water reactor to a steam generator tube rupture (SGTR) as part of the safety analysis for the plant. The SGTR analysis includes assumptions regarding the partitioning of iodine between liquid and vapor in steam generator secondary. Experimental studies have determined that the partitioning of iodine in water is very sensitive to the pH. Based on this experimental evidence, the NRC requested the INEL to perform an analytical assessment of secondary coolant system (SCS) pH during an SGTR. Design basis thermal and hydraulic calculations were used together with industry standard chemistry guidelines to determine the SCS chemical concentrations during an SGTR. These were used as input to the Facility for Analysis of Chemical Thermodynamics computer system to calculate the equilibrium pH in the SCS at various discrete time during an SGTR. The results of this analysis indicate that the SCS pH decreases from the initial value of 8.8 to approximately 6.5 by the end of the transient, independent of PWR design

  1. Numerical analysis of APR1400 Steam Generator by CUPID/MARS heat structure coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ryong Lee; Lee, Seung Jun; Pakr, Ik Kyu; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    To design and analyze steam generators, many computer codes have been developed and used around the world. In this study, the coupled CUPID and MARS code was used for the simulation of boiler side of the PWR steam generator. This paper presents the description of the coupling method, validation for porous media approach against the rod bundle experiment and the preliminary simulation results of PWR steam generator using the coupled code. In the present study, the multi-scale thermal-hydraulic analysis method using the coupled CUPID/MARS code was applied for the simulation of the steam generator. The primary side of the steam generator and other RCS was simulated by MARS and the secondary side was calculated by CUPID with porous media approach. For coupled simulation, the porous medium was applied in order to take into account the effect of the U-tube bundle and other supporting structure which play a role to be a flow resistance. More realistic physical model such as moisture separator slug behavior should be developed for the near future. The application of the coupled simulation should be extended to the accident scenario.

  2. Steam generator deposit control program assessment at Comanche Peak

    International Nuclear Information System (INIS)

    Stevens, J.; Fellers, B.; Orbon, S.

    2002-01-01

    Comanche Peak has employed a variety of methods to assess the effectiveness of the deposit control program. These include typical methods such as an extensive visual inspection program and detailed corrosion product analysis and trending. In addition, a recently pioneered technique, low frequency eddy current profile analysis (LFEC) has been utilized. LFEC provides a visual mapping of the magnetite deposit profile of the steam generator. Analysis of the LFEC results not only provides general area deposition rates, but can also provide local deposition patterns, which is indicative of steam generator performance. Other techniques utilized include trending of steam pressure, steam generator hideout-return, and flow assisted corrosion (FAC) results. The sum of this information provides a comprehensive assessment of the deposit control program effectiveness and the condition of the steam generator. It also provides important diagnostic and predictive information relative to steam generator life management and mitigative strategies, such as special cleaning procedures. This paper discusses the techniques employed by Comanche Peak Chemistry to monitor the effectiveness of the deposit control program and describes how this information is used in strategic planning. (authors)

  3. Conceptual design of once-through helical steam generator for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Wan; Kim, J. I.; Kim, J. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    Conceptual design of once-through helical steam generator for the integral reactor SMART is developed. The once-through helical steam generator requires quite different design concepts from the steam generators used in loop type commercial reactors. In this study the design requirements satisfying the operating conditions of the steam generator are derived, and the arrangements and the dimensions of the major parts are determined. By describing the design procedure, the cost of redesign and the costs of developments of similar new steam generators are minimized. The three dimensional models developed make it possible to preview the interferences of the steam generator components and to minimize the possibility of significant design changes in the next design stage by the preliminary strength analysis of the major parts. A methodology for evaluation of flow induced vibration of steam generator tubes has been developed and a preliminary flow induced vibration analysis has been performed. 24 refs., 54 figs., 9 tabs. (Author)

  4. Analysis of steam generator tube sections removed from Gentilly-2 nuclear generating station

    International Nuclear Information System (INIS)

    Semmler, J.; Lockley, A.J.; Doyon, D.

    2010-01-01

    In order to meet the requirements of CSA Standards CAN/CSA N285.4-94, which states, 'A section of one tube in a deposit region shall be removed from one steam generator for metallurgical examination', Gentilly-2 has been removing steam generator tube sections on a regular basis for analysis at Chalk River Laboratories. In 2009 April, sections from the hot leg and the cold leg of a steam generator tube were removed for detailed metallographic examination and characterization. The hot leg tube section covered the area from within the tube sheet up to below the second support plate, and the cold leg tube section covered the area from within the tube sheet to below the third preheater support plate. After a general visual and photographic examination, the area above the tube sheet on the hot leg side where the sludge pile is highest was examined in detail. Visual and macro-photography of the two tube sections within the tube sheet were also examined. Additional metallographic and surface examinations of both tube inner diameter and tube outer diameter, and surface roughness measurements of tube inner diameter were also completed. The surface activities (μCi/cm 2 ) of cold leg and hot leg specimens were measured before and after electrolytic descaling, and major and minor radionuclides were identified; a comparison of the surface activities for hot leg with the values for the cold leg were made. The results from the initial γ-spectroscopy measurements, and the measurements after the descaling of the specimens were used to estimate decontamination factors for each specimen and for each radionuclide. The tube specimens had thin outer diameter oxides; all four steam generators were chemically cleaned in 2005. All specimens had inner diameter deposits; the inner diameter deposits on the cold leg were heavier than those on the hot leg as expected. Primary side oxide loadings of specimens were used to estimate the total oxide inventory in 2009. The oxide

  5. Steam generator operation and maintenance

    International Nuclear Information System (INIS)

    Lee, C.K.

    2004-01-01

    capacity due to excessive pressure drop across the tube support plates. OTSG owners group has developed both mechanical and chemical cleaning process and an upgraded secondary water chemistry in resolving these problems. The OTSG performance has been greatly improved since OTSG plants implemented chemical cleaning and morpholine water chemistry. The SGOG project officially ended December 31, 1986. A six-year Steam Generator Reliability Program (SGRP) under the EPRI base program began January 1, 1987. SGRP continued to address the generic steam generator problems facing nuclear utilities. In order to develop appropriate strategies to cope with the tube degradation problems, SGRP has performed the statistical evaluations to model the progression of damage mechanism aimed at accurate prediction of the defect growth rate of various mechanisms such that long term trends can be developed. Analysis of the behavior of group of plants indicate that insights on the potential behavior of a specific plant may be developed from the observed behavior at other plants. SGRP has provided utilities with tube inservice inspection guidelines (ISI Guideline) including ISI Performance Demonstration program to help utilities to improve tube inspection accuracy and sensitivity. SGRP has also updated the secondary Chemistry Guidelines and worked on the advanced amine application guidelines to better protect the steam generator tube corrosion

  6. Modelling of steam condensation in the primary flow channel of a gas-heated steam generator

    International Nuclear Information System (INIS)

    Kawamura, H.; Meister, G.

    1982-10-01

    A new simulation code has been developed for the analysis of steam ingress accidents in high temperatures reactors which evaluates the heat transfer in a steam generator headed by a mixture of helium and water steam. Special emphasis is laid on the analysis of steam condensation in the primary circuit of the steam generator. The code takes wall and bulk condensation into account. A new method is proposed to describe the entrainment of water droplets in the primary gas flow. Some typical results are given. Steam condensation in the primary channel may have a significant effect on temperature distributions. The effect on the heat transferred by the steam generator, however, is found to be not so prominent as might be expected. The reason is discussed. A simplified code will also be described, which gives results with reasonable accuracy within much shorter execution times. This code may be used as a program module in a program simulating the total primary circuit of a high temperature reactor. (orig.) [de

  7. Steam generators - problems and prognosis

    International Nuclear Information System (INIS)

    Tapping, R.L.

    1997-05-01

    Steam-generator problems, largely a consequence of corrosion and fouling, have resulted in increased inspection requirements and more regulatory attention to steam-generator integrity. In addition, utilities have had to develop steam-generator life-management strategies, including cleaning and replacement, to achieve design life. This paper summarizes the pertinent data to 1993/1994, and presents an overview of current steam-generator management practices. (author)

  8. EPRI steam generator programs

    International Nuclear Information System (INIS)

    Martel, L.J.; Passell, T.O.; Bryant, P.E.C.; Rentler, R.M.

    1977-01-01

    The paper describes the current overall EPRI steam generator program plan and some of the ongoing projects. Because of the recent occurrence of a corrosion phenomenon called ''denting,'' which has affected a number of operating utilities, an expanded program plan is being developed which addresses the broad and urgent needs required to achieve improved steam generator reliability. The goal of improved steam generator reliability will require advances in various technologies and also a management philosophy that encourages conscientious efforts to apply the improved technologies to the design, procurement, and operation of plant systems and components that affect the full life reliability of steam generators

  9. Three-dimensional modeling of nuclear steam generator

    International Nuclear Information System (INIS)

    Bogdan, Z.; Afgan, N.

    1985-01-01

    In this paper mathematical model for steady-state simulation of thermodynamic and hydraulic behaviour of U-tube nuclear steam generator is described. The model predicts three-dimensional distribution of temperatures, pressures, steam qualities and velocities in the steam generator secondary loop. In this analysis homogeneous two phase flow model is utilized. Foe purpose of the computer implementation of the mathematical model, a special flow distribution code NUGEN was developed. Calculations are performed with the input data and geometrical characteristics related to the D-4 (westinghouse) model of U-tube nuclear steam generator built in Krsko, operating under 100% load conditions. Results are shown in diagrams giving spatial distribution of pertinent variables in the secondary loop. (author)

  10. Stress analysis of HTR-10 steam generator heat exchanging tubes

    International Nuclear Information System (INIS)

    Dong Jianling; Zhang Xiaohang; Yin Dejian; Fu Jiyang

    2001-01-01

    Steam Generator (SG) heat exchanging tubes of 10 MW High Temperature Gas Cooled Reactor (HTR-10) are protective screens between the primary loop of helium with radioactivity and the secondary loop of feeding water and steam without radioactivity. Water and steam will enter into the primary loop when rupture of the heat exchanging tubes occurs, which lead to increase of the primary loop pressure and discharge of radioactive materials. Therefore it is important to guarantee the integrity of the tubes. The tube structure is spiral tube with small bending radius, which make it impossible to test with volumetric in-service detection. For such kind of spiral tube, using LBB concept to guarantee the integrity of the tubes is an important option. The author conducts stress analysis and calculation of HTR-10 SG heat exchanging tubes using the FEM code of piping stress analysis, PIPESTRESS. The maximum stress and the dangerous positions are obtained

  11. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  12. Thermodynamic analysis of heat recovery steam generator in combined cycle power plant

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Naradasu

    2007-01-01

    Full Text Available Combined cycle power plants play an important role in the present energy sector. The main challenge in designing a combined cycle power plant is proper utilization of gas turbine exhaust heat in the steam cycle in order to achieve optimum steam turbine output. Most of the combined cycle developers focused on the gas turbine output and neglected the role of the heat recovery steam generator which strongly affects the overall performance of the combined cycle power plant. The present paper is aimed at optimal utilization of the flue gas recovery heat with different heat recovery steam generator configurations of single pressure and dual pressure. The combined cycle efficiency with different heat recovery steam generator configurations have been analyzed parametrically by using first law and second law of thermodynamics. It is observed that in the dual cycle high pressure steam turbine pressure must be high and low pressure steam turbine pressure must be low for better heat recovery from heat recovery steam generator.

  13. Stress analysis and fatigue life prediction for a U-bend steam generator tube

    International Nuclear Information System (INIS)

    Cheng Weili; Finnie, I.

    1996-01-01

    An analysis is carried out to determine the stresses in a steam generator tube that failed by fatigue. Using data available for the failed tube and for failures in two similar steam generators, the magnitudes of the alternating and mean stresses produced during operation are estimated. The cause for the early fatigue failure is shown to be the high mean stress caused by denting of the tube in the location where it passed through the tube sheet. (orig.)

  14. Hybrid preheat/recirculating steam generator

    International Nuclear Information System (INIS)

    Lilly, G.P.

    1985-01-01

    The patent describes a hybrid preheat/recirculating steam generator for nuclear power plants. The steam generator utilizes recirculated liquid to preheat incoming liquid. In addition, the steam generator incorporates a divider so as to limit the amount of recirculating water mixed with the feedwater. (U.K.)

  15. Predicting steam generator crevice chemistry

    International Nuclear Information System (INIS)

    Burton, G.; Strati, G.

    2006-01-01

    'Full text:' Corrosion of steam cycle components produces insoluble material, mostly iron oxides, that are transported to the steam generator (SG) via the feedwater and deposited on internal surfaces such as the tubes, tube support plates and the tubesheet. The build up of these corrosion products over time can lead to regions of restricted flow with water chemistry that may be significantly different, and potentially more corrosive to SG tube material, than the bulk steam generator water chemistry. The aim of the present work is to predict SG crevice chemistry using experimentation and modelling as part of AECL's overall strategy for steam generator life management. Hideout-return experiments are performed under CANDU steam generator conditions to assess the accumulation of impurities in hideout, and return from, model crevices. The results are used to validate the ChemSolv model that predicts steam generator crevice impurity concentrations, and high temperature pH, based on process parameters (e.g., heat flux, primary side temperature) and blowdown water chemistry. The model has been incorporated into ChemAND, AECL's system health monitoring software for chemistry monitoring, analysis and diagnostics that has been installed at two domestic and one international CANDU station. ChemAND provides the station chemists with the only method to predict SG crevice chemistry. In one recent application, the software has been used to evaluate the crevice chemistry based on the elevated, but balanced, SG bulk water impurity concentrations present during reactor startup, in order to reduce hold times. The present paper will describe recent hideout-return experiments that are used for the validation of the ChemSolv model, station experience using the software, and improvements to predict the crevice electrochemical potential that will permit station staff to ensure that the SG tubes are in the 'safe operating zone' predicted by Lu (AECL). (author)

  16. CANDU steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermalhydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. The research and development program, as well as operating experience, has identified where improvements in operating practices and/or designs can be made in order to ensure steam generator design life at an acceptable capacity factory. (author)

  17. Mechanical design of a sodium heated steam generator

    International Nuclear Information System (INIS)

    Chetal, S.C.

    1975-01-01

    FBTR steam generator is a once through type unit consisting of four 12.5 MW thermal modules generating a total of 74 tons per hour of steam at 125 bar and 480 0 C. This paper outlines the mechanical design of such type of steam generator with emphasis on special design problems associated with this type of sodium to water steam heat exchanger, namely, thermal cycling of transition zone where nucleate boiling changes over to film boiling, application of pressure vessel design criteria for transient pressures, thermal stress evaluation resulting from differential expansion between shell and tube in this typical configuration, sodium headers support design, thermal sleeve, design, thermal shock analysis in thick tubes, thermal stress resulting from stratification and stability of expansion bends against vibration. Some of the possible design changes for the future large size steam generator are outlined. (author)

  18. CFD Analysis of Random Turbulent Flow Load in Steam Generator of APR1400 Under Normal Operation Condition

    International Nuclear Information System (INIS)

    Lim, Sang Gyu; You, Sung Chang; Kim, Han Gon

    2011-01-01

    Regulatory guide 1.20 revision 3 of the Nuclear Regulatory Committee (NRC) modifies guidance for vibration assessments of reactor internals and steam generator internals. The new guidance requires applicants to provide a preliminary analysis and evaluation of the design and performance of a facility, including the safety margins of during normal operation and transient conditions anticipated during the life of the facility. Especially, revision 3 require rigorous assessments of adverse flow effects in the steam dryer cased by flow-excited acoustic and structural resonances such as the abnormality from power-uprated BWR cases. For two nearly identical nuclear power plants, the steam system of one BWR plant experienced failure of steam dryers and the main steam system components when steam flow was increased by 16 percent for extended power uprate (EPU). The mechanisms of those failures have revealed that a small adverse flow changing from the prototype condition induced severe flow-excited acoustic and structural resonances, leading to structural failures. In accordance with the historical background, therefore, potential adverse flow effects should be evaluated rigorously for steam generator internals in both BWR and Pressurized Water Reactor (PWR). The Advanced Power Reactor 1400 (APR1400), an evolutionary light water reactor, increased the power by 7.7 percent from the design of the 'Valid Prototype', System80+. Thus, reliable evaluations of potential adverse flow effects on the steam generator of APR1400 are necessary according to the regulatory guide. This paper is part of the computational fluid dynamics (CFD) analysis results for evaluation of the adverse flow effect for the steam generator internals of APR1400, including a series of sensitivity analyses to enhance the reliability of CFD analysis and an estimation the effect of flow loads on the internals of the steam generator under normal operation conditions

  19. Steam generator water lancing

    International Nuclear Information System (INIS)

    Kamler, F.; Schneider, W.

    1992-01-01

    The tubesheet and tube support plate deposits in CANDU steam generators are notable for their hardness. Also notable is the wide variety of steam generator access situations. Because of the sludge hardness and the difficulty of the access, traditional water lancing processes which directed jets from the central tube free lane or from the periphery of the bundle have proven unsuitable. This has led to the need for some very unique inter tube water lancing devices which could direct powerful water jets directly onto the deposits. This type of process was applied to the upper broached plates of the Bruce A steam generators, which had become severely blocked. It has since been applied to various other steam generator situations. This paper describes the flexlance equipment development, qualification, and performance in the various CANDU applications. 4 refs., 2 tabs., 7 figs

  20. French steam generator design developments

    International Nuclear Information System (INIS)

    Ginier, R.; Campan, J.L.; Pontier, M.; Leridon, A.; Remond, A.; Castello, G.; Holcblat, A.; Paurobally, H.

    1986-01-01

    From the outset of the French nuclear power program, a significant R and D effort has been invested in improvement of the design and operation of Pressurized Water Reactors including a special committment to improving steam generators. The steam generator enhancement program has spawned a wide variety of specific R and D resources, e.g., low temperature hydraulic models for investigation of areas with single-phase flow, and freon-filled models for simulation of areas of steam generators experiencing two-phase flow (tube bundles and moisture separators). For the moisture separators, a large scale research program using freon-filled models and highly sophisticated instrumentation was used. Tests at reactor sites during startup of both 900 MWe and 1300 MWe have been used to validate the assumptions made on the basis of loop tests. These tests also demonstrated the validity of using freon to simulate two-phase flow conditions. The wealth of knowledge accumulated by the steam generator R and D program has been used to develop a new design of steam generators for the N4 plants. The current R and D effort is aimed at qualifying the N4 steam generator model and developing more comprehensive models. One prong of the R and D effort is the Megeve program. Megeve is a 25 MW steam generator which simulates operating conditions of the N4 model. The other prong is Clotaire, a freon-filled steam generator model which will be used to qualify thermal/hydraulic design codes used for multidimensional calculations for design of tube bundles

  1. Automated analysis technique developed for detection of ODSCC on the tubes of OPR1000 steam generator

    International Nuclear Information System (INIS)

    Kim, In Chul; Nam, Min Woo

    2013-01-01

    A steam generator (SG) tube is an important component of a nuclear power plant (NPP). It works as a pressure boundary between the primary and secondary systems. The integrity of a SG tube can be assessed by an eddy current test every outage. The eddy current technique(adopting a bobbin probe) is currently the main technique used to assess the integrity of the tubing of a steam generator. An eddy current signal analyst for steam generator tubes continuously analyzes data over a given period of time. However, there are possibilities that the analyst conducting the test may get tired and cause mistakes, such as: missing indications or not being able to separate a true defect signal from one that is more complicated. This error could lead to confusion and an improper interpretation of the signal analysis. In order to avoid these possibilities, many countries of opted for automated analyses. Axial ODSCC (outside diameter stress corrosion cracking) defects on the tubes of OPR1000 steam generators have been found on the tube that are in contract with tube support plates. In this study, automated analysis software called CDS (computer data screening) made by Zetec was used. This paper will discuss the results of introducing an automated analysis system for an axial ODSCC on the tubes of an OPR1000 steam generator.

  2. Steam generator tube rupture effects on a LOCA

    International Nuclear Information System (INIS)

    LaChance, J.L.

    1979-01-01

    A problem currently experienced in commercial operating pressurized water reactors (PWR) in the United States is the degradation of steam generator tubes. Safety questions have arisen concerning the effect of these degraded tubes rupturing during a postulated loss-of-coolant accident (LOCA). To determine the effect of a small number of tube ruptures on the behavior of a large PWR during a postulated LOCA, a series of computer simulations was performed. The primary concern of the study was to determine whether a small number (10 or less of steam generator tubes rupturing at the beginning surface temperatures. Additional reflood analyses were performed to determine the system behavior when from 10 to 60 tubes rupture at the beginning of core reflood. The FLOOD4 code was selected as being the most applicable code for use in this study after an extensive analysis of the capabilities of existing codes to perform simulations of a LOCA with concurrent steam generator tube ruptures. The results of the study indicate that the rupturing of 10 or less steam generator tubes in any of the steam generators during a 200% cold leg break will not result in a significant increase in the peak cladding temperature. However, because of the vaporization of the steam generator secondary water in the primary side of the steam generator, a significant increase in the core pressure occurs which retards the reflooding process

  3. Steam generator tube integrity program

    International Nuclear Information System (INIS)

    Dierks, D.R.; Shack, W.J.; Muscara, J.

    1996-01-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given

  4. Steam generator tube extraction

    International Nuclear Information System (INIS)

    Delorme, H.

    1985-05-01

    To enable tube examination on steam generators in service, Framatome has now developed a process for removing sections of steam generator tubes. Tube sections can be removed without being damaged for treating the tube section expanded in the tube sheet

  5. International examples of steam generator replacement

    International Nuclear Information System (INIS)

    Wiechmann, K.

    1993-01-01

    Since 1979-1980 a total of twelve nuclear power plants world-wide have had their steam generators replaced. The replacement of the Combustion steam generators in the Millstone-2 plant in the United States was completed very recently. Steam generator replacement activities are going on at present in four plants. In North Anna, the steam generators have been under replacement since January 1990. In Japan, preparations have been started for Genkai-1. Since January 1992, the two projects in Beznau-1, Switzerland, and Doel-3, Belgium, have bee planned and executed in parallel. Why steam generator replacement? There are a number of defect mechanisms which give rise to the need for early steam generator replacement. One of the main reasons is the use of Inconel-600 as material for the heating tubes. Steam generator heating tubes made of Inconel-600 have been known to exhibit their first defects due to stress corrosion cracking after less than one year of operation. (orig.) [de

  6. Cheaper power generation from surplus steam generating capacities

    International Nuclear Information System (INIS)

    Gupta, K.

    1996-01-01

    Prior to independence most industries had their own captive power generation. Steam was generated in own medium/low pressure boilers and passed through extraction condensing turbines for power generation. Extraction steam was used for process. With cheaper power made available in Nehru era by undertaking large hydro power schemes, captive power generation in industries was almost abandoned except in sugar and large paper factories, which were high consumers of steam. (author)

  7. A two-fluid two-phase model for thermal-hydraulic analysis of a U-tube steam generator

    International Nuclear Information System (INIS)

    Hung, Huanjen; Chieng, Chingchang; Pei, Baushei; Wang, Songfeng

    1993-01-01

    The Advanced Thermal-Hydraulic Analysis Code for Nuclear Steam Generators (ATHANS) was developed on the basis of the THERMIT-UTSG computer code for U-tube steam generators. The main features of the ATHANS model are as follows: (a) the equations are solved in cylindrical coordinates, (b) the number and the arrangement of the control volumes inside the steam generator can be chosen by the user, (c) the virtual mass effect is incorporated, and (d) the conjugate gradient squared method is employed to accelerate and improve the numerical convergence. The performance of the model is successfully validated by comparison with the test data from a Westinghouse model F steam generator at the Maanshan nuclear power plant. Better agreement with the test data can be obtained by a finer grid system using a cylindrical coordinate system and the virtual mass effect. With these advanced features, ATHANS provides the basic framework for further studies on the problems of steam generators, such as analyses of secondary-side corrosion and tube ruptures

  8. Analysis of induced steam generator tube rupture using MAAP 4.0

    International Nuclear Information System (INIS)

    Kenton, M.; Epstein, M.; Henry, R.E.; Paik, C.; Fuller, E.

    1996-01-01

    The nuclear industry has initiated a program of Steam Generator Degradation Specific Management (SGDSM) to cope with the various types of corrosion that have been observed in pressurized water reactor (PWR) steam generators. In parallel, the U.S. Nuclear Regulatory Commission is promulgating revised rules on steam generator tube integrity. To support these efforts, the Electric Power Research Institute has sponsored calculations with the MAAP 4 code. The principal objective of these calculations is to estimate the peak temperatures experienced by the steam generator tubes during high-pressure severe accidents. These results are used to evaluate the potential for degraded tubes to leak or rupture. Attention was focused on station blackout (SBO) accidents with loss of turbine-driven auxiliary feedwater because these generally result in the greatest threat to the tubes

  9. Steam generator life management

    International Nuclear Information System (INIS)

    King, P.; McGillivray, R.; Reinhardt, W.; Millman, J.; King, B.; Schneider, W.

    2003-01-01

    'Full-Text:' Steam Generator Life Management responsibility embodies doing whatever is necessary to maintain the steam generation equipment of a nuclear plant in effective, reliable service. All comes together in that most critical deliverable, namely the submission of the documentation which wins approval for return to service after an outage program. Life management must address all aspects of SG reliability over the life of the plant. Nevertheless, the life management activities leading up to return to service approval is where all of it converges. Steam Generator Life Management activities entail four types of work, all equally important in supporting the objective of successful operation. These activities are i) engineering functions; including identification of inspection and maintenance requirements, outage planning and scope definition plus engineering assessment, design and analysis as necessary to support equipment operation, ii) fitness of service work; including the expert evaluation of degradation mechanisms, disposition of defects for return to service or not, and the fitness for service analysis as required to justify ongoing operation with acceptable defects, iii) inspection work; including large scale eddy current inspection of tubing, the definition of defect size and character, code inspections of pressure vessel integrity and visual inspections for integrity and iv) maintenance work; including repairs, retrofits, cleaning and modifications, all as necessary to implement the measures defined during activities i) through iii). The paper discusses the approach and execution of the program for the achievement of the above objectives and particularly of items i) and ii). (author)

  10. Thermal-Hydraulic Analysis of a Once-Through Steam Generator Considering Performance Degradation

    International Nuclear Information System (INIS)

    Han, Hun Sik; Kang, Han Ok; Yoon, Ju Hyeon; Kim, Young In; Song, Jae Seung; Kim, Keung Koo

    2016-01-01

    Several countries have entered into a global race for the commercialization of SMRs, and considerable research and development have been implemented. Among the various reactor designs, many SMRs have adopted an integral type pressurized water reactor (PWR) to enhance the nuclear safety and system reliability. In the integral reactor design, a single reactor pressure vessel contains primary system components such as fuel and core, steam generators, pumps, and a pressurizer. For the component integration into a reactor vessel, it is important to design each component as small as possible. Thus, it is a common practice to employ a once-through steam generator in the integral reactor design due to its advantages in compactness. In general, gradual degradation in thermal-hydraulic performance of the steam generator occurs with time, and it changes slowly the operating point of the steam generator during plant lifetime. Numerical solutions are acquired to evaluate the thermal-hydraulic performance of the steam generator at various AUFs. The design results obtained show that the average tube length of the steam generator is augmented with the increase of design margin to compensate for the design uncertainties and heat transfer area reduction by plugging, fouling, etc. A helically coiled tube once-through steam generator with 30% design margin is considered for comparison of thermal-hydraulic performances according to the degradation rate

  11. Thermal-Hydraulic Analysis of a Once-Through Steam Generator Considering Performance Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hun Sik; Kang, Han Ok; Yoon, Ju Hyeon; Kim, Young In; Song, Jae Seung; Kim, Keung Koo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Several countries have entered into a global race for the commercialization of SMRs, and considerable research and development have been implemented. Among the various reactor designs, many SMRs have adopted an integral type pressurized water reactor (PWR) to enhance the nuclear safety and system reliability. In the integral reactor design, a single reactor pressure vessel contains primary system components such as fuel and core, steam generators, pumps, and a pressurizer. For the component integration into a reactor vessel, it is important to design each component as small as possible. Thus, it is a common practice to employ a once-through steam generator in the integral reactor design due to its advantages in compactness. In general, gradual degradation in thermal-hydraulic performance of the steam generator occurs with time, and it changes slowly the operating point of the steam generator during plant lifetime. Numerical solutions are acquired to evaluate the thermal-hydraulic performance of the steam generator at various AUFs. The design results obtained show that the average tube length of the steam generator is augmented with the increase of design margin to compensate for the design uncertainties and heat transfer area reduction by plugging, fouling, etc. A helically coiled tube once-through steam generator with 30% design margin is considered for comparison of thermal-hydraulic performances according to the degradation rate.

  12. Embalse steam generators - status in 2009

    International Nuclear Information System (INIS)

    Luna, P.; Yetisir, M.; Roy, S.; MacEacheron, R.

    2009-01-01

    The Embalse Nuclear Generating Station (ENGS) is a CANDU 6, a pressurized heavy water plant, with a net capacity of 648 MW. The primary heat transport system at Embalse includes four Steam Generators (SGs) manufactured by Babcock and Wilcox Canada (B and W). These steam generators are vertical recirculating heat exchangers with Incoloy 800 inverted U-tubes and an integral preheater. Embalse SGs performed very well until the late 1990s, when an increase in tube fretting was noticed in the U-bend region. In-service inspection in 2002 and 2004 confirmed that the cause of the tube fretting was flow accelerated corrosion (FAC) damage of scallop bar supports in the U-bend region. The straight leg tube support plates (TSPs) have also been degrading. Degradation was worst at the top support plates, and it was in the form of material loss on the cold leg. The hot leg TSPs were heavily fouled with deposits and flow areas were blocked. Visual inspections and subsequent studies showed that the cause of the TSP degradation was also FAC. The Embalse SGs have carbon steel supports that make them susceptible to FAC. To mitigate the effects of degraded tube support structures, three additional sets of anti-vibration bars were installed in the U-bend regions of all four steam generators in 2004. In 2007, an improved secondary-side chemistry specification was implemented to reduce the FAC rate and the hot leg TSPs was waterlanced. A root cause analysis and condition assessment was performed for the tube supports in 2007. Fitness for Service (FFS) evaluation was completed using the Canadian Industry Guidelines for steam generator tubes. The steam generators were returned to service and the plan has operated without another forced outage to date. The FAC degradation of the carbon steel U-bend tube support systems has had the most significant impact on the plant operation causing a number of forced outages. The discovery of the extent of TSP degradation and difficulties to repair TSPs

  13. Development of a 1D thermal-hydraulic analysis code for once-through steam generator in SMRs using straight tubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngjae; Kim, Iljin; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    Diverse integral/small-modular reactors (SMRs) have been developed. Once-through steam generator (OTSG) which generates superheated steam without steam separator and dryer was used in the SMRs to reduce volume of steam generator. It would be possible to design a new steam generator with best estimate thermal-hydraulic codes such as RELAP and MARS. However, it is not convenience to use the general purpose thermal-hydraulic analysis code to design a specific component of nuclear power plants. A widely used simulation tool for thermal-hydraulic analysis of drum-type steam generators is ATHOS, which allows 3D analysis. On the other hand, a simple 1D thermal-hydraulic analysis code might be accurate enough for the conceptual design of OTSG. In this study, thermal-hydraulic analysis code for conceptual design of OTSG was developed using 1D homogeneous equilibrium model (HEM). A benchmark calculation was also conducted to verify and validate the prediction accuracy of the developed code by comparing with the analysis results with MARS. Finally, conceptual design of OTSG was conducted by the developed code. A simple 1D thermal-hydraulic analysis code was developed for the purpose of conceptual design OTSG for SMRs. A set of benchmark calculations was conducted to verify and validate the analysis accuracy of the developed code by comparing results obtained with a best-estimated thermal-hydraulic analysis code, MARS. Finally, analysis of two different OTSG design concepts with superheating and recirculation was demonstrated using the developed code.

  14. Thermal-hydraulic characteristic of the PGV-1000 steam generator

    International Nuclear Information System (INIS)

    Ubra, O.; Doubek, M.

    1995-01-01

    Horizontal steam generators are typical parts of nuclear power plants with pressure water reactor type VVER. By means of this computer program, a detailed thermal-hydraulic study of the horizontal steam generator PGV-1000 has been carried out and a special attention has been paid to the thermal-hydraulics of the secondary side. A set of important steam generator characteristics has been obtained and analyzed. Some of the interesting results of the analysis are presented in the paper. (author)

  15. Diagnostic system of steam generator, especially molten metal heated steam generator

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1986-01-01

    A diagnostic system is described and graphically represented consisting of a leak detector, a medium analyzer and sensors placed on the piping connected to the indication sections of both tube plates. The advantage of the designed system consists in the possibility of detecting tube failure immediately on leak formation, especially in generators with duplex tubes. This shortens the period of steam generator shutdown for repair and reduces power losses. The design also allows to make periodical leak tests during planned steam generator shutdowns. (A.K.)

  16. Analysis of the VVER-440 reactor steam generator secondary side with the RELAP5/MOD3 code

    International Nuclear Information System (INIS)

    Tuunanen, J.

    1993-01-01

    Nuclear Engineering Laboratory of the Technical Research Centre of Finland has widely used RELAP5/MOD2 and -MOD3 codes to simulate horizontal steam generators. Several models have been developed and successfully used in the VVER-safety analysis. Nevertheless, the models developed have included only rather few nodes in the steam generator secondary side. The secondary side has normally been divided into about 10 to 15 nodes. Since the secondary side at the steam generators of VVER-440 type reactors consists of a rather large water pool, these models were only roughly capable to predict secondary side flows. The paper describes an attempt to use RELAP5/MOD3 code to predict secondary side flows in a steam generator of a VVER-440 reactor. A 2D/3D model has been developed using RELAP5/MOD3 codes cross-flow junctions. The model includes 90 volumes on the steam generator secondary side. The model has been used to calculate steady state flow conditions in the secondary side of a VVER-440 reactor steam generator. (orig.) (1 ref., 9 figs., 2 tabs.)

  17. Theoretic analysis for gravity separation of water droplets in PWR steam generator

    International Nuclear Information System (INIS)

    Liu Shixun

    1995-10-01

    Gravity separation space of water droplets in the PWR steam generator is one of three important separating mechanisms and provides a link between primary (vane) separator and chevron dryer. The design of steam generator should not only have highly efficient and compact separator and dryer, but also an adequate height of gravity separation space. Too short a gravity separation space will not sufficiently separate the moisture and adversely affect the performance of the dryer; too long a gravity separation space will add additional costs for steam generator and nuclear island installation. The droplet entrainment in the process of gravity separation space was theoretically studied and droplet trajectory was analytically modelled. A general expression for the height required by gravity separation, diameter and velocity of those droplets carried over was also obtained. In the analysis, the slip between two phases was considered and a combined term of diameter and viscosity was introduced. The modelling can provide a theoretical basis for determining the height of the gravity separation space. (2 refs., 2 figs.)

  18. Steam generator with perfected dryers

    International Nuclear Information System (INIS)

    Fenet, J.C.

    1987-01-01

    This steam generator has vertically superposed array of steam dryers. These dryers return the steam flow of 180 0 . The return of the water is made by draining channels to the steam production zone [fr

  19. Steam generator reliability improvement project

    International Nuclear Information System (INIS)

    Blomgren, J.C.; Green, S.J.

    1987-01-01

    Upon successful completion of its research and development technology transfer program, the Electric Power Research Institute's Steam Generator Owners Group (SGOG II) will disband in December 1986 and be replaced in January 1987 by a successor project, the Steam Generator Reliability Project (SGRP). The new project, funded in the EPRI base program, will continue the emphasis on reliability and life extension that was carried forward by SGOG II. The objectives of SGOG II have been met. Causes and remedies have been identified for tubing corrosion problems, such as stress corrosion cracking and pitting, and steam generator technology has been improved in areas such as tube wear prediction and nondestructive evaluation (NDE). These actions have led to improved reliability of steam generators. Now the owners want to continue with a centrally managed program that builds on what has been learned. The goal is to continue to improve steam generator reliability and solve small problems before they become large problems

  20. Steam generator reliability improvement project

    International Nuclear Information System (INIS)

    Blomgren, J.C.; Green, S.J.

    1987-01-01

    Upon successful completion of its research and development technology transfer program, the Electric Power Research Institute's (EPRI's) Steam Generator Owners Group (SGOG II) will disband in December 1986, and be replaced in January 1987, by a successor project, the Steam Generator Reliability Project (SGRP). The new project, funded in the EPRI base program, will continue to emphasize reliability and life extension, which were carried forward by SGOG II. The objectives of SGOG II have been met. Causes and remedies have been identified for tubing corrosion problems such as stress corrosion cracking and pitting, and steam generator technology has been improved in areas such as tube wear prediction and nondestructive evaluation. These actions have led to improved reliability of steam generators. Now the owners want to continue with a centrally managed program that builds on what has been learned. The goal is to continue to improve steam generator reliability and to solve small problems before they become large problems

  1. 49 CFR 229.105 - Steam generator number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam generator number. 229.105 Section 229.105..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.105 Steam generator number. An identification number shall be marked on the steam generator's...

  2. Strength analysis of PGV-1000M steam generator support

    International Nuclear Information System (INIS)

    Dubik, Ya.R.; Ageev, S.M.; Orynyak, I.V.; Vasilchenko, B.M.

    2017-01-01

    The paper presents the design of PGV-1000M steam generator support. It is shown that the load in the rolling support is distributed extremely unevenly, which is associated with the compliance of the support construction. It is demonstrated that under working loads only several rollers are used, the stresses in which exceed the yield strength. This can be an additional loading factor to be considered in the analysis of welding No. 111 failure.

  3. Modelling of a Coil Steam Generator for CSP applications

    DEFF Research Database (Denmark)

    Pelagotti, Leonardo; Sørensen, Kim; Condra, Thomas Joseph

    2014-01-01

    The project investigates a new design for a CSP plant steam generation system, the Coil Steam Generator (CSG). This system allows faster start-ups and therefore higher daily energy production from the Sun. An analytical thermodynamic simulation model of the evaporator and a mechanical analysis...

  4. LMFBR steam generator development: duplex bayonet tube steam generator. Volume II

    International Nuclear Information System (INIS)

    DeFur, D.D.

    1975-04-01

    This report represents the culmination of work performed in fulfillment of ERDA Contract AT(11-1)-2426, Task Agreement 2, in which alternate steam generator designs were developed and studied. The basic bayonet tube generator design previously developed by C-E under AEC Contract AT(11-1)-3031 was expanded by incorporating duplex heat transfer tubes to enhance the unit's overall safety and reliability. The effort consisted of providing and evaluating conceptual designs of the evaporator, superheater and reheater components for a large plant LMFBR steam generator (950 MWt per heat transport loop)

  5. Surry steam generator - examination and evaluation

    International Nuclear Information System (INIS)

    Clark, R.A.; Doctor, P.G.; Ferris, R.H.

    1985-10-01

    This report summarizes research conducted during the fourth year of the five year Steam Generator Group Project. During this period the project conducted numerous nondestructive examination (NDE) round robin inspections of the original Surry 2A steam generator. They included data acquisition/analysis and analysis-only round robins using multifrequency bobbin coil eddy current tests. In addition, the generator was nondestructively examined by alternate or advanced techniques including ultrasonics, optical fiber, profilometry and special eddy current instrumentation. The round robin interpretation data were compared. To validate the NDE results and for tube integrity testing, a selection of tubing samples, determined to be representative of the generator, was designated for removal. Initial sample removals from the generator included three sections of tube sheet, two sections of support plate and encompassed tubes, and a number of straight and U-bend tubing sections. Metallographic examination of these sections was initiated. Details of significant results are presented in the following paper. 13 figs

  6. Surry steam generator - examination and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R A; Doctor, P G; Ferris, R H

    1987-01-01

    This report summarizes research conducted during the fourth year of the five year Steam Generator Group Project. During this period the project conducted numerous nondestructive examination (NDE) round robin inspections of the original Surry 2A steam generator. They included data acquisition/analysis and analysis-only round robins using multifrequency bobbin coil eddy current tests. In addition, the generator was nondestructively examined by alternate or advanced techniques including ultrasonics, optical fiber, profilometry and special eddy current instrumentation. The round robin interpretation data were compared. To validate the NDE results and for tube integrity testing, a selection of tubing samples, determined to be representative of the generator, was designated for removal. Initial sample removals from the generator included three sections of tube sheet, two sections of support plate and encompassed tubes, and a number of straight and U-bend tubing sections. Metallographic examination of these sections was initiated. Details of significant results are presented in the following paper.

  7. Analysis of the steam generator for the GCR-module

    International Nuclear Information System (INIS)

    Podhorsky, M.

    1988-01-01

    The KWU/Interatom HTR-module consists of a reactor and a heat transfer unit. Depending on the possible application, the thermal output of the reactor amounting to between 170 to 200 MW is disconnected using steam generators, steam reformers or helium/helium intermediate heat exchangers. The steam generator is a vessel of a helical tube construction with ascending evaporation and a descending helium flow around the tubes. Coaxial helium backflow is used to cool the pressure vessel shell. The helical tube bundle of the plain tube type consists of tube cylinders which are coiled in opposite directions. The bundle load is supported in the lower cold section. The calculation for the static flow stability curve has shown the necessity for installing the orifice and thus for throttling. This is to prevent an instable flow in the tubes connected in parallel. The tube support system must support the weight of the tubes, dampen or prevent vibration stimulation of the tube and at the same time be constructed in such a way that no inadmissible stresses occur in the tube as a result of impeded thermal expansion. The admissible start-up and shut-down gradients depend on the thermal stresses in the thick-walled components. A parametric study was carried out based on the steam tubesheet geometry. Appropriate attention, commensurate with the importance of the many joints, must be paid to the tube/tubesheet joint. The tube will be secured in the tubesheet using two redundant processes. It is welded in and hydraulically expanded. The plastic analysis of the hydraulic joint shows the spread of the plastic zone in the ligament as the expansion pressure is continually increased. In this way the highest possible expansion pressure is determined and the deformation of the adjacent borehole is calculated. The expansion is carried out using the Balcke-Duerr AG HYTEX process. (author)

  8. Feasibility and application on steam injector for next-generation reactor

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Ishiyama, Takenori; Miyano, Hiroshi; Nei, Hiromichi; Shioiri, Akio

    1991-01-01

    A feasibility study has been conducted on steam injector for a next generation reactor. The steam injector is a simple, compact passive device for water injection, such as Passive Core Injection System (PCIS) of Passive Containment Cooling System (PCCS), because of easy start-up without an AC power. An analysis model for a steam injector characteristics has been developed, and investigated with a visualized fundamental test for a two-stage Steam Injector System (SIS) for PCIS and a one-stage low pressure SIS for PCCS. The test results showed good agreement with the analysis results. The analysis and the test results showed the SIS could work over a very wide range of the steam pressure, and is applicable for PCIS or PCCS in the next generation reactors. (author)

  9. Monitoring method for steam generator operation

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo

    1991-01-01

    In an LMFBR plant having an once-through steam generator, reduction of life of a heat transfer pipe caused by heat cycle fatigue is monitored by early finding for the occurrence of abnormality in the inside of the steam generator and by continuous monitoring for the position of departure from nucleate boiling (DNB), which are difficult with existent static characteristic analysis codes. That is, RMS values of fluctuations in temperature signals sent from thermocouples for measuring the fluid temperature in the vicinity of heat transfer pipe disposed along a primary channel of the once-through type steam generator. The abnormality in heat transfer performance is monitored by the distribution change of the RMS values. Subsequently, DNB point on the side of water and steam is determined by the distribution of the RMS value. Then, accumulated values of the product between the time in which the starting point stays in the DNB region and a life consumption amount per unit time given in accordance with the operation condition are monitored. Accordingly, thermal fatigue failure of the heat transfer pipe due to temperature fluctuation in the DNB region is monitored. (I.S.)

  10. Options for Steam Generator Decommissioning

    International Nuclear Information System (INIS)

    Krause, Gregor; Amcoff, Bjoern; Robinson, Joe

    2016-01-01

    Selecting the best option for decommissioning steam generators is a key consideration in preparing for decommissioning PWR nuclear power plants. Steam Generators represent a discrete waste stream of large, complex items that can lend themselves to a variety of options for handling, treatment, recycling and disposal. Studsvik has significant experience in processing full size Steam Generators at its metal recycling facility in Sweden, and this paper will introduce the Studsvik steam generator treatment concept and the results achieved to date across a number of projects. The paper will outline the important parameters needed at an early stage to assess options and to help consider the balance between off-site and on-site treatment solutions, and the role of prior decontamination techniques. The paper also outlines the use of feasibility studies and demonstration projects that have been used to help customers prepare for decommissioning. The paper discusses physical, radiological and operational history data, Pro and Contra factors for on- and off-site treatment, the role of chemical decontamination prior to treatment, planning for off-site shipments as well as Studsvik experience This paper has an original focus upon the coming challenges of steam generator decommissioning and potential external treatment capacity constraints in the medium term. It also focuses on the potential during operations or initial shut-down to develop robust plans for steam generator management. (authors)

  11. CASTOR - Advanced System for VVER Steam Generator Inspection

    International Nuclear Information System (INIS)

    Mateljak, Petar

    2014-01-01

    From the safety point of view, steam generator is a very important component of a nuclear power plant. Only a thin tube wall prevents leakage of radioactive material from the primary side into the environment. Therefore, it is very important to perform inspections in order to detect pipe damage and apply appropriate corrective actions during outage. Application of the nondestructive examination (NDE) technique, that can locate degradation and measure its size and orientation, is an integral part of nuclear power plant maintenance. The steam generator inspection system is consisted of remotely controlled manipulator, testing instrument and software for data acquisition and analysis. Recently, the inspection systems have evolved to a much higher level of automation, efficiency and reliability resulting in a lower cost and shorter outage time. Electronic components have become smaller and deal with more complex algorithms. These systems are very fast, precise, reliable and easy to handle. The whole inspection, from the planning, examination, data analysis and final report, is now a highly automated process, which makes inspection much easier and more reliable. This paper presents the new generation of INETEC's VVER steam generator inspection system as ultimate solution for steam generator inspection and repair. (author)

  12. Liquid metal steam generator

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1975-01-01

    A liquid metal heated steam generator is described which in the event of a tube failure quickly exhausts out of the steam generator the products of the reaction between the water and the liquid metal. The steam is generated in a plurality of bayonet tubes which are heated by liquid metal flowing over them between an inner cylinder and an outer cylinder. The inner cylinder extends above the level of liquid metal but below the main tube sheet. A central pipe extends down into the inner cylinder with a centrifugal separator between it and the inner cylinder at its lower end and an involute deflector plate above the separator so that the products of a reaction between the liquid metal and the water will be deflected downwardly by the deflector plate and through the separator so that the liquid metal will flow outwardly and away from the central pipe through which the steam and gaseous reaction products are exhausted. (U.S.)

  13. Circumferential cracking of steam generator tubes

    International Nuclear Information System (INIS)

    Karwoski, K.J.

    1997-04-01

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, open-quote Circumferential Cracking of Steam Generator Tubes.close-quote GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff's assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness

  14. Steam generator sludge removal apparatus

    International Nuclear Information System (INIS)

    Schafer, B.W.; Werner, C.E.; Klahn, F.C.

    1992-01-01

    The present invention relates to equipment for cleaning steam generators and in particular to a high pressure fluid lance for cleaning sludge off the steam generator tubes away from an open tube lane. 6 figs

  15. Seismic analysis of steam generator and parameter sensitivity studies

    International Nuclear Information System (INIS)

    Qian Hao; Xu Dinggen; Yang Ren'an; Liang Xingyun

    2013-01-01

    Background: The steam generator (SG) serves as the primary means for removing the heat generated within the reactor core and is part of the reactor coolant system (RCS) pressure boundary. Purpose: Seismic analysis in required for SG, whose seismic category is Cat. I. Methods: The analysis model of SG is created with moisture separator assembly and tube bundle assembly herein. The seismic analysis is performed with RCS pipe and Reactor Pressure Vessel (RPV). Results: The seismic stress results of SG are obtained. In addition, parameter sensitivities of seismic analysis results are studied, such as the effect of another SG, support, anti-vibration bars (AVBs), and so on. Our results show that seismic results are sensitive to support and AVBs setting. Conclusions: The guidance and comments on these parameters are summarized for equipment design and analysis, which should be focused on in future new type NPP SG's research and design. (authors)

  16. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  17. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1998-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  18. Fretting-wear characteristics of steam generator tubes contacting with foreign object

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2003-01-01

    Fretting-wear characteristics of steam generator tubes contacting with foreign object has been investigated in this study. The operating steam generator shell-side flow field conditions are obtained from three-dimensional steam generator flow calculation using a well-validated steam generator thermal-hydraulic analysis computer code. Modal analyses are performed for the finite element modelings of tubes to get the natural frequency, corresponding mode shape and participation factor. The wear rate of a steam generator tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted. In addition, the effects of internal pressure and flow velocity on the remaining life of the tube are discussed in this paper

  19. Solar-generated steam for oil recovery: Reservoir simulation, economic analysis, and life cycle assessment

    International Nuclear Information System (INIS)

    Sandler, Joel; Fowler, Garrett; Cheng, Kris; Kovscek, Anthony R.

    2014-01-01

    Highlights: • Integrated assessment of solar thermal enhanced oil recovery (TEOR). • Analyses of reservoir performance, economics, and life cycle factors. • High solar fraction scenarios show economic viability for TEOR. • Continuous variable-rate steam injection meets the benchmarks set by conventional steam flood. - Abstract: The viability of solar thermal steam generation for thermal enhanced oil recovery (TEOR) in heavy-oil sands was evaluated using San Joaquin Valley, CA data. The effectiveness of solar TEOR was quantified through reservoir simulation, economic analysis, and life-cycle assessment. Reservoir simulations with continuous but variable rate steam injection were compared with a base-case Tulare Sand steamflood project. For equivalent average injection rates, comparable breakthrough times and recovery factors of 65% of the original oil in place were predicted, in agreement with simulations in the literature. Daily cyclic fluctuations in steam injection rate do not greatly impact recovery. Oil production rates do, however, show seasonal variation. Economic viability was established using historical prices and injection/production volumes from the Kern River oil field. For comparison, this model assumes that present day steam generation technologies were implemented at TEOR startup in 1980. All natural gas cogeneration and 100% solar fraction scenarios had the largest and nearly equal net present values (NPV) of $12.54 B and $12.55 B, respectively. Solar fraction refers to the steam provided by solar steam generation. Given its large capital cost, the 100% solar case shows the greatest sensitivity to discount rate and no sensitivity to natural gas price. Because there are very little emissions associated with day-to-day operations from the solar thermal system, life-cycle emissions are significantly lower than conventional systems even when the embodied energy of the structure is considered. We estimate that less than 1 g of CO 2 /MJ of refined

  20. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  1. Thermal hydraulic studies in steam generator test facility

    International Nuclear Information System (INIS)

    Vinod, V.; Suresh Kumar, V.A.; Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G.

    2005-01-01

    Full text of publication follows: A 500 MWe fast breeder reactor is being constructed at Kalpakkam, India. This is a sodium cooled reactor with two primary and two secondary sodium loops with total 8 steam generators. The typical advantage of fast breeder plants is the high operating temperature of steam cycles and the high plant efficiency. To produce this high pressure and high temperature steam, once through straight tube vertical sodium heated steam generators are used. The steam is generated from the heat produced in the reactor core and being transported through primary and secondary sodium circuits. The steam generator is a 25 m high middle supported steam generator with expansion bend and 23 m heat transfer length. Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam aims at performing various tests on a 5.5 MWt steam generator. This vertically simulated test article is similar in all respects to the proposed 157 MWt steam generator module for the Prototype Fast Breeder Reactor (PFBR), with reduced number of tubes. Heat transfer performance tests are done with this 19 tube steam generator at various load conditions. Sodium circuit for the SGTF is equipped with oil fired heater as heat source and centrifugal sodium pump, to pump sodium at 105 m 3 /hr flow rate. Other typical components like sodium to air heat exchanger, sodium purification system and hydrogen leak detection system is also present in the sodium circuit. High pressure steam produced in the steam generator is dumped in a condenser and recycled. Important tests planned in SGTF are the heat transfer performance test, stability test, endurance test and performance test of steam generator under various transients. The controlled operation of steam generator will be studied with possible control schemes. A steady state simulation of the steam generator is done with a mathematical model. This paper gives the details of heat transfer

  2. Analysis of fast reactor steam generator performance

    International Nuclear Information System (INIS)

    Hulme, G.; Curzon, A.F.

    1992-01-01

    A computer model for the prediction of flow and temperature fields within a fast reactor steam generator unit is described. The model combines a commercially available computational fluid dynamics (CFD) solver (PHOENICS) with a steam-tube calculation and provides solutions for the fully coupled flow and temperature fields on both the shell side and the tube side. The model includes the inlet and outlet headers and the bottom end stagnant zone. It also accounts for the effects of support grids and edge-gaps. Two and three dimensional and transient calculations have been performed for both straight tube and J-tube units. Examples of the application of the model are presented. (7 figures) (Author)

  3. Acoustic leak detector in Monju steam generator

    International Nuclear Information System (INIS)

    Wachi, E.; Inoue, T.

    1990-01-01

    Acoustic leak detectors are equipped with the Monju steam generators for one of the R and D activities, which are the same type of the detectors developed in the PNC 50MW Steam Generator Test Facility. Although they are an additional leak detection system to the regular one in Monju SG, they would also detect the intermediate or large leaks of the SG tube failures. The extrapolation method of a background noise analysis is expected to be verified by Monju SG data. (author). 4 figs

  4. Stability study in one step steam generators

    International Nuclear Information System (INIS)

    Abbate, P.

    1990-01-01

    The TWO program is presented developed for the behaviour limit calculation stable in one step steam generators for the case of Density Waves phenomenom. The program is based on a nodal model which, using Laplace transformation equations, allows to study the system's transfer functions and foresee the beginning of the unstable behaviour. This program has been satisfactorily validated against channels data uniformly heated in the range from 4.0 to 6.0 Mpa. Results on the CAREM reactor's steam generator analysis are presented. (Author) [es

  5. Steam generator tube rupture (SGTR) scenarios

    International Nuclear Information System (INIS)

    Auvinen, A.; Jokiniemi, J.K.; Laehde, A.; Routamo, T.; Lundstroem, P.; Tuomisto, H.; Dienstbier, J.; Guentay, S.; Suckow, D.; Dehbi, A.; Slootman, M.; Herranz, L.; Peyres, V.; Polo, J.

    2005-01-01

    The steam generator tube rupture (SGTR) scenarios project was carried out in the EU 5th framework programme in the field of nuclear safety during years 2000-2002. The first objective of the project was to generate a comprehensive database on fission product retention in a steam generator. The second objective was to verify and develop predictive models to support accident management interventions in steam generator tube rupture sequences, which either directly lead to severe accident conditions or are induced by other sequences leading to severe accidents. The models developed for fission product retention were to be included in severe accident codes. In addition, it was shown that existing models for turbulent deposition, which is the dominating deposition mechanism in dry conditions and at high flow rates, contain large uncertainties. The results of the project are applicable to various pressurised water reactors, including vertical steam generators (western PWR) and horizontal steam generators (VVER)

  6. Minimize corrosion degradation of steam generator tube materials

    International Nuclear Information System (INIS)

    Lu, Y.

    2006-01-01

    As part of a coordinated program, AECL is developing a set of tools to aid with the prediction and management of steam generator performance. Although stress corrosion cracking (of Alloy 800) has not been detected in any operating steam generator, for life management it is necessary to develop mechanistic models to predict the conditions under which stress corrosion cracking is plausible. Experimental data suggest that all steam generator tube materials are susceptible to corrosion degradation under some specific off-specification conditions. The tolerance to the chemistry upset for each steam generator tube alloy is different. Electrochemical corrosion behaviors of major steam generator tube alloys were studied under the plausible aggressive crevice chemistry conditions. The potential hazardous conditions leading to steam generator tube degradation and the conditions, which can minimize steam generator tube degradation have been determined. Recommended electrochemical corrosion potential/pH zones were defined for all major steam generator tube materials, including Alloys 600, 800, 690 and 400, under CANDU steam generator operating and startup conditions. Stress corrosion cracking tests and accelerated corrosion tests were carried out to verify and revise the recommended electrochemical corrosion potential/pH zones. Based on this information, utilities can prevent steam generator material degradation surprises by appropriate steam generator water chemistry management and increase the reliability of nuclear power generating stations. (author)

  7. Flow-induced vibration in LMFBR steam generators: a state-of-the-art review

    International Nuclear Information System (INIS)

    Shin, Y.S.; Wambsganss, M.W.

    1975-05-01

    This state-of-the-art review identifies and discusses existing methods of flow-induced vibration analysis applicable to steam generators, their limitations, and base-technology needs. Also included are discussions of five different LMFBR steam-generator configurations and important design considerations, failure experiences, possible flow-induced excitation mechanisms, vibration testing, and available methods of vibration analysis. The objectives are to aid LMFBR steam-generator designers in making the best possible evaluation of potential vibration in steam-generator internals, and to provide the basis for development of design guidelines to avoid detrimental flow-induced vibration

  8. Cleanliness criteria to improve steam generator performance

    International Nuclear Information System (INIS)

    Schwarz, T.; Bouecke, R.; Odar, S.

    2005-01-01

    High steam generator performance is a prerequisite for high plant availability and possible life time extension. The major opponent to that is corrosion and fouling of the heating tubes. Such steam generator degradation problems arise from the continuous ingress of non-volatile contaminants, i.e. corrosion products and salt impurities may accumulate in the steam generators. These impurities have their origin in the secondary side systems. The corrosion products generally accumulate in the steam generators and form deposits not only in the flow restricted areas, such as on top of tube sheet and tube support structure, but also build scales on the steam generator heating tubes. In addition, the tube scales in general affect the steam generator thermal performance, which ultimately causes a reduction of power output. The most effective ways of counteracting all these degradation problems, and thus of improving the steam generator performance is to keep them in clean conditions or, if judged necessary, to plan cleaning measures such as mechanical tube sheet lancing or chemical cleaning. This paper presents a methodology how to assess the cleanliness condition of a steam generator by bringing together all available operational and inspection data such as thermal performance and water chemistry data. By means of this all-inclusive approach the cleanliness condition is quantified in terms of a fouling index. The fouling index allows to monitor the condition of a specific steam generator, compare it to other plants and, finally, to serve as criterion for cleaning measures such as chemical cleaning. The application of the cleanliness criteria and the achieved field results with respect to improvements of steam generator performance will be presented. (author)

  9. Regulation of ageing steam generators

    International Nuclear Information System (INIS)

    Jarman, B.L.; Grant, I.M.; Garg, R.

    1998-01-01

    Recent years have seen leaks and shutdowns of Canadian CANDU plants due to steam generator tube degradation by mechanisms including stress corrosion cracking, fretting and pitting. Failure of a single steam generator tube, or even a few tubes, would not be a serious safety related event in a CANDU reactor. The leakage from a ruptured tube is within the makeup capacity of the primary heat transport system, so that as long as the operator takes the correct actions, the off-site consequences will be negligible. However, assurance that no tubes deteriorate to the point where their integrity could be seriously breached as result of potential accidents, and that any leakage caused by such an accident will be small enough to be inconsequential, can only be obtained through detailed monitoring and management of steam generator condition. This paper presents the AECB's current approach and future regulatory directions regarding ageing steam generators. (author)

  10. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  11. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  12. Thermo hydrodynamical analyses of steam generator of nuclear power plant

    International Nuclear Information System (INIS)

    Petelin, S.; Gregoric, M.

    1984-01-01

    SMUP computer code for stationary model of a U-tube steam generator of a PWR nuclear power plant was developed. feed water flow can enter through main and auxiliary path. The computer code is based on the one dimensional mathematical model. Among the results that give an insight into physical processes along the tubes of steam generator are distribution of temperatures, water qualities, heat transfer rates. Parametric analysis permits conclusion on advantage of each design solution regarding heat transfer effects and safety of steam generator. (author)

  13. Testing installation for a steam generator

    International Nuclear Information System (INIS)

    Dubourg, M.

    1985-01-01

    The invention proposes a testing installation for a steam generator associated to a boiler, comprising a testing exchanger connected to a feeding circuit in secondary fluid and to a circuit to release the steam produced, and comprising a heating-tube bundle connected to a closed circuit of circulation of a primary coolant at the same temperature and at the pressure than the primary fluid. The heating-tube bundle of the testing exchanger has the same height than the primary bundle of the steam generator and the testing exchanger is at the same level and near the steam generator and is fed by the same secondary fluid such as it is subject to the same operation phases during a long period. The in - vention applies, more particularly, to the steam generators of pressurized water nuclear power plants [fr

  14. Optimum thermal sizing and operating conditions for once through steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Ju, Kyongin; Im, Inyoung; Kim, Eunkee [KEPCO Engineering and Construction Company., Inc., Daejeon (Korea, Republic of)

    2014-10-15

    The steam generator is designed to be optimized so as to remove heat and to produce steam vapor. Because of its importance, theoretical and experimental researches have been performed on forced convection boiling heat transfer. The purpose of this study is to predict the thermal behavior and to perform optimum thermal sizing of once through steam generator. To estimate the tube thermal sizing and operating conditions of the steam generator, the analytical modeling is employed on the basis of the empirical correlation equations and theory. The optimized algorithm model, Non-dominated Sorting Genetic Algorithm (NSGA)-II, uses for this analysis. This research is focused on the design of in-vessel steam generator. An one dimensional analysis code is developed to evaluate previous researches and to optimize steam generator design parameters. The results of one-dimensional analysis need to be verified with experimental data. Goals of multi-objective optimization are to minimize tube length, pressure drop and tube number. Feedwater flow rate up to 115.425kg/s is selected so as to have margin of feedwater temperature 20 ..deg. C. For the design of 200MWth once through steam generator, it is evaluated that the tube length shall be over 12.0m for the number of tubes, 2500ea, and the length of the tube shall be over 8.0m for the number of tubes, 4500ea. The parallel coordinates chart can be provided to determine the optimal combination of number of tube, pressure drop, tube diameter and length.

  15. Steam generator replacement: a story of continuous improvement

    International Nuclear Information System (INIS)

    Sills, M.S.; Wilkerson, R.

    2009-01-01

    This paper provides a review of the history of steam generator replacement in the US focusing on the last five years. From the early replacements in the 1980s, there have been major technology improvements resulting in dramatically shorter outages and reduced radiological exposure for workers. Even though the changes for the last five years have been less dramatic, the improvement trend continues. No two steam generator replacement (SGR) projects are the same and there are some major differences including; the access path for the components to containment (is a construction opening in containment required), type of containment, number of steam generators, one piece or two piece replacement, plant type (Westinghouse, CE or B and W) and plant layout. These differences along with other variables such as delays due to plant operations and other activities not related to the steam generator replacement make analysis of performance data difficult. However, trends in outage performance and owner expectations can be identified. How far this trend will go is also discussed. Along with the trend of improved performance, there is also a significant variation in performance. Some of the contributors to this variation are identified. This paper addresses what is required for a successful outage, meeting the increasing expectations and setting new records. The authors will discuss various factors that contribute to the success of a steam generator replacement. These factors include technical issues and, equally important, organizational interface and the role the customer plays. Recommendations are provided for planning a successful steam generator replacement outage. (author)

  16. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  17. EddyOne automated analysis of PWR/WWER steam generator tubes eddy current data

    International Nuclear Information System (INIS)

    Nadinic, B.; Vanjak, Z.

    2004-01-01

    INETEC Institute for Nuclear Technology developed software package called Eddy One which has option of automated analysis of bobbin coil eddy current data. During its development and on site use, many valuable lessons were learned which are described in this article. In accordance with previous, the following topics are covered: General requirements for automated analysis of bobbin coil eddy current data; Main approaches to automated analysis; Multi rule algorithms for data screening; Landmark detection algorithms as prerequisite for automated analysis (threshold algorithms and algorithms based on neural network principles); Field experience with Eddy One software; Development directions (use of artificial intelligence with self learning abilities for indication detection and sizing); Automated analysis software qualification; Conclusions. Special emphasis is given on results obtained on different types of steam generators, condensers and heat exchangers. Such results are then compared with results obtained by other automated software vendors giving clear advantage to INETEC approach. It has to be pointed out that INETEC field experience was collected also on WWER steam generators what is for now unique experience.(author)

  18. An expert system for steam generator maintenance

    International Nuclear Information System (INIS)

    Remond, A.

    1988-01-01

    The tube bundles in PWR steam generators are, by far, the major source of problems whether they are due to primary and secondary side corrosion mechanisms or to tube vibration-induced wear at tube support locations. Because of differences in SG operating, materials, and fabrication processes, the damage may differ from steam generator to steam generator. MPGV, an expert system for steam generator maintenance uses all steam generator data containing data on materials, fabrication processes, inservice inspection, and water chemistry. It has access to operational data for individual steam generators and contains models of possible degradation mechanisms. The objectives of the system are: · Diagnosing the most probable degradation mechanism or mechanisms by reviewing the entire steam generator history. · Identifying the tubes most exposed to future damage and evaluating the urgency of repair by simulating the probable development of the problem in time. · Establishing the appropriate preventive actions such as repair, inspection or other measures and establishing an action schedule. The system is intended for utilities either for individual plants before each inspection outage or any time an incident occurs or for a set of plants through a central MPGV center. (author)

  19. Steam generators: critical components in nuclear steam supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Guille, P D

    1974-02-28

    Steam generators are critical components in power reactors. Even small internal leaks result in costly shutdowns for repair. Surveys show that leaks have affected one half of all water-cooled reactors in the world with steam generators. CANDU reactors have demonstrated the highest reliability. However, AECL is actively evolving new technology in design, manufacture, inspection and operation to maintain reliability. (auth)

  20. Moisture separator for steam generator level measurement system

    International Nuclear Information System (INIS)

    Cantineau, B.J.

    1987-01-01

    A steam generator level measurement system having a reference leg which is kept full of water by a condensation pot, has a liquid/steam separator in the connecting line between the condensation pot and the steam phase in the steam generator to remove excess liquid from the steam externally of the steam generator. This ensures that the connecting line does not become blocked. The separator pot has an expansion chamber which slows down the velocity of the steam/liquid mixture to aid in separation, and a baffle, to avoid liquid flow into the line connected to the condensate pot. Liquid separated is returned to the steam generator below the water level through a drain line. (author)

  1. Corrosion problems of PWR steam generators

    International Nuclear Information System (INIS)

    Urbancik, L.; Kostal, M.

    Literature data are assessed on corrosion failures of steam generator tubes made of INCONEL 600 or INCOLOY 800. It was found that both alloys with high nickel content showed good stability in a corrosion environment while being sensitive to carbide formation on grain boundaries. The gradual depletion of chromium results from the material and corrosion resistance deteriorates. INCOLOY 800 whose chromium carbide precipitation on grain boundaries in pure water and steam is negligible up to 75O degC and which is not subject to corrosion attacks in the above media and in an oxidizing environment at a temperature to about 700 degC shows the best corrosion resistance. Its favourable properties were tested in long-term operation in the Peach Bottom 1 nuclear power plant where no failures due to corrosion of this material have been recorded since 1967. In view of oxygenic-acid surface corrosion, it is necessary to work in a neutral or slightly basic environment should any one of the two alloys be used for steam generator construction. The results are summed up of an analysis conducted for the Beznau I NOK reactor. Water treatment with ash-free amines can be used as prevention against chemical corrosion mechanisms, although the treatment itself does not ensure corrosion resistance of steam generator key components. (J.B.)

  2. Dynamic simulation of steam generator failures

    Energy Technology Data Exchange (ETDEWEB)

    Meister, G [Institut fuer Nukleare Sicherheitsforschung, Kernforschungsanlage Juelich GmbH, Juelich (Germany)

    1988-07-01

    A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)

  3. Dynamic simulation of steam generator failures

    International Nuclear Information System (INIS)

    Meister, G.

    1988-01-01

    A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)

  4. Primary separator replacement for Bruce Unit 8 steam generators

    International Nuclear Information System (INIS)

    Roy, S.B.; Mewdell, C.G.; Schneider, W.G.

    2000-01-01

    During a scheduled maintenance outage of Bruce Unit 8 in 1998, it was discovered that the majority of the original primary steam separators were damaged in two steam generators. The Bruce B steam generators are equipped with GXP type primary cyclone separators of B and W supply. There were localized perforations in the upper part of the separators and large areas of generalized wall thinning. The degradation was indicative of a flow related erosion corrosion mechanism. Although the unit- restart was justified, it was obvious that corrective actions would be necessary because of the number of separators affected and the extent of the degradation. Repair was not considered to be a practical option and it was decided to replace the separators, as required, in Unit 8 steam generators during an advanced scheduled outage. GXP separators were selected for replacement to minimize the impact on steam generator operating characteristics and analysis. The material of construction was upgraded from the original carbon steel to stainless steel to maximize the assurance of full life. The replacement of the separators was a first of a kind operation not only for Ontario Power Generation and B and W but also for all CANDU plants. The paper describes the degradations observed and the assessments, the operating experience, manufacture and installation of the replacement separators. During routine inspection in 1998, many of the primary steam separators in two of steam generators at Bruce Nuclear Division B Unit 8 were observed to have through wall perforations. This paper describes assessment of this condition. It also discusses the manufacture and testing of replacement primary steam separators and the development and execution of the replacement separator installation program. (author)

  5. Vibration Spectrum Analysis for Indicating Damage on Turbine and Steam Generator Amurang Unit 1

    Directory of Open Access Journals (Sweden)

    Beny Cahyono

    2017-12-01

    Full Text Available Maintenance on machines is a mandatory asset management activity to maintain asset reliability in order to reduce losses due to failure. 89% of defects have random failure mode, the proper maintenance method is predictive maintenance. Predictive maintenance object in this research is Steam Generator Amurang Unit 1, which is predictive maintenance is done through condition monitoring in the form of vibration analysis. The conducting vibration analysis on Amurang Unit 1 Steam Generator is because vibration analysis is very effective on rotating objects. Vibration analysis is predicting the damage based on the vibration spectrum, where the vibration spectrum is the result of separating time-based vibrations and simplifying them into vibrations based on their frequency domain. The transformation of time-domain-wave into frequency-domain-wave is using the application of FFT, namely AMS Machinery. The measurement of vibration value is done on turbine bearings and steam generator of Unit 1 Amurang using Turbine Supervisory Instrument and CSI 2600 instrument. The result of this research indicates that vibration spectrum from Unit 1 Amurang Power Plant indicating that there is rotating looseness, even though the vibration value does not require the Unit 1 Amurang Power Plant to stop operating (shut down. This rotating looseness, at some point, can produce some indications that similar with the unbalance. In order to avoid more severe vibrations, it is necessary to do inspection on the bearings in the Amurang Unit 1 Power Plant.

  6. Analysis of prestressed double-wall tubing for LMFBR steam generators

    International Nuclear Information System (INIS)

    Uber, C.F.; Langford, P.J.

    1981-01-01

    A radial interface pressure is provided between the inner and outer tubes of each double-wall tube in a steam generator design now being developed for commercial breeder reactor plants. This paper describes a finite element analysis of the manufacturing technique used to prestress the double-wall tube. The analytical predictions are compared with experimental measurements of the residual interface pressure. Resulting residual stress states are used as the starting point for operating condition analyses. 9 refs

  7. Steam generator tubing NDE performance

    International Nuclear Information System (INIS)

    Henry, G.; Welty, C.S. Jr.

    1997-01-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed

  8. Steam generator life cycle management: Ontario Power Generation (OPG) experience

    International Nuclear Information System (INIS)

    Maruska, C.C.

    2002-01-01

    A systematic managed process for steam generators has been implemented at Ontario Power Generation (OPG) nuclear stations for the past several years. One of the key requirements of this managed process is to have in place long range Steam Generator Life Cycle Management (SG LCM) plans for each unit. The primary goal of these plans is to maximize the value of the nuclear facility through safe and reliable steam generator operation over the expected life of the units. The SG LCM plans integrate and schedule all steam generator actions such as inspection, operation, maintenance, modifications, repairs, assessments, R and D, performance monitoring and feedback. This paper discusses OPG steam generator life cycle management experience to date, including successes, failures and how lessons learned have been re-applied. The discussion includes relevant examples from each of the operating stations: Pickering B and Darlington. It also includes some of the experience and lessons learned from the activities carried out to refurbish the steam generators at Pickering A after several years in long term lay-up. The paper is structured along the various degradation modes that have been observed to date at these sites, including monitoring and mitigating actions taken and future plans. (author)

  9. Non-polluting steam generators with fluidized-bed furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, H [Deutsche Babcock A.G., Oberhausen (Germany, F.R.)

    1979-07-01

    The author reports on a 35 MW steam generator with hard coal fluidized-bed furnace a planned 35 MW steam generator with flotation-dirt fluidized-bed furnace, and on planned steam generators for fluidized-bed firing of hard coal up to a steam power of about 200 MW.

  10. Steam generators

    International Nuclear Information System (INIS)

    Hayden, R.L.J.

    1979-01-01

    Steam generators for nuclear reactors are designed so that deposition of solids on the surface of the inlet side of the tubesheet or the inlet header with the consequent danger of corrosion and eventual tube failure is obviated or substantially reduced. (U.K.)

  11. Darlington steam generator life assurance program

    International Nuclear Information System (INIS)

    Jelinski, E.; Dymarski, M.; Maruska, C.; Cartar, E.

    1995-01-01

    The Darlington Nuclear Generating Station belonging to Ontario Hydro is one of the most modern and advanced nuclear generating stations in the world. Four reactor units each generate 881 net MW, enough to provide power to a major city, and representing approximately 20% of the Ontario grid. The nuclear generating capacity in Ontario represents approximately 60% of the grid. In order to look after this major asset, many proactive preventative and predictive maintenance programs are being put in place. The steam generators are a major component in any power plant. World wide experience shows that nuclear steam generators require specialized attention to ensure reliable operation over the station life. This paper describes the Darlington steam generator life assurance program in terms of degradation identification, monitoring and management. The requirements for chemistry control, surveillance of process parameters, surveillance of inspection parameters, and the integration of preventative and predictive maintenance programs such as water lancing, chemical cleaning, RIHT monitoring, and other diagnostics to enhance our understanding of life management issues are identified and discussed. We conclude that we have advanced proactive activities to avoid and to minimize many of the problems affecting other steam generators. An effective steam generator maintenance program must expand the knowledge horizon to understand life limiting processes and to analyze and synthesize observations with theory. (author)

  12. Materials choices for the advanced LWR steam generators

    International Nuclear Information System (INIS)

    Paine, J.P.N.; Shoemaker, C.E.; McIlree, A.R.

    1987-01-01

    Current light water reactor (LWR) steam generators have been affected by a variety of corrosion and mechanical damage degradation mechanisms. Included are wear caused by tube vibration, intergranular corrosion, pitting, and thinning or wastage of the steam generator tubing and accelerated corrosion of carbon steel supports (denting). The Electric Power Research Institute (EPRI) and the Steam Generator Owners Groups (I, II) have sponsored laboratory and field studies to provide ameliorative actions for the majority of the damage forms experienced to date. Some of the current corrosion mechanisms are aggravated or caused by unique materials choices or materials interactions. New materials have been proposed and at least partially qualified for use in replacement model steam generators, including an advanced LWR design. In so far as possible, the materials choices for the advanced LWR steam generator avoid the corrosion pitfalls seemingly inherent in the current designs. The EPRI Steam Generator Project staff has recommended materials and design choices for a new steam generator. Based on these recommendations we believe that the advanced LWR steam generators will be much less affected by corrosion and mechanical damage mechanisms than are now experienced

  13. Steam generator operating experience update, 1982-1983

    International Nuclear Information System (INIS)

    Frank, L.

    1984-06-01

    This report is a continuation of earlier reports by the staff addressing pressurized water reactor steam generator operating experience. NUREG-0886, Steam Generator Tube Experience, published in February 1982 summarized experience in domestic and foreign plants through December 1981. This report summarizes steam generator operating experience in domestic plants for the years 1982 and 1983. Included are new problems encountered with secondary-side loose parts, sulfur-induced stress-assisted corrosion cracking, and flow-induced vibrational wear in the new preheater design steam generators. The status of Unresolved Safety Issues A3, A4, and A5 is also discussed

  14. Strategic maintenance plan for Cernavoda steam generators

    International Nuclear Information System (INIS)

    Cicerone, T.; Dhar, D.; VandenBerg, J.P.

    2002-01-01

    Steam generators are among the most important pieces of equipment in a nuclear power plant. They are required full time during the plant operation and obviously no redundancy exists. Past experience has shown that those utilities which implemented comprehensive steam generator inspection and maintenance programs and strict water chemistry controls, have had good steam generator performance that supports good overall plant performance. The purpose of this paper is to discuss a strategic Life Management and Operational-monitoring program for the Cernavoda steam generators. The program is first of all to develop a base of expertise for the management of the steam generator condition; and that is to be supported by a program of actions to be accomplished over time to assess their condition, to take measures to avoid degradation and to provide for inspections, cleaning and modifications as necessary. (author)

  15. Vertical steam generator

    International Nuclear Information System (INIS)

    Cuda, F.; Kondr, M.; Kresta, M.; Kusak, V.; Manek, O.; Turon, S.

    1982-01-01

    A vertical steam generator for nuclear power plants and dual purpose power plants consists of a cylindrical vessel in which are placed heating tubes in the form upside-down U. The heating tubes lead to the jacket of the cylindrical collector placed in the lower part of the steam generator perpendicularly to its vertical axis. The cylindrical collector is divided by a longitudinal partition into the inlet and outlet primary water sections of the heating tubes. One ends of the heating tube leads to the jacket of the collector for primary water feeding and the second ends of the heating tubes into the jacket of the collector which feeds and offtakes primary water from the heating tubes. (B.S.)

  16. Steam Generator Tube Integrity Program: Surry Steam Generator Project, Hanford site, Richland, Benton County, Washington: Environmental assessment

    International Nuclear Information System (INIS)

    1980-03-01

    The US Nuclear Regulatory Commission (NRC) has placed a Nuclear Regulatory Research Order with the Richland Operations Office of the US Department of Energy (DOE) for expanded investigations at the DOE Pacific Northwest Laboratory (PNL) related to defective pressurized water reactor (PWR) steam generator tubing. This program, the Steam Generator Tube Integrity (SGTI) program, is sponsored by the Metallurgy and Materials Research Branch of the NRC Division of Reactor Safety Research. This research and testing program includes an additional task requiring extensive investigation of a degraded, out-of-service steam generator from a commercial nuclear power plant. This comprehensive testing program on an out-of-service generator will provide NRC with timely and valuable information related to pressurized water reactor primary system integrity and degradation with time. This report presents the environmental assessment of the removal, transport, and testing of the steam generator along with decontamination/decommissioning plans

  17. Application of perturbation methods for sensitivity analysis for nuclear power plant steam generators

    International Nuclear Information System (INIS)

    Gurjao, Emir Candeia

    1996-02-01

    The differential and GPT (Generalized Perturbation Theory) formalisms of the Perturbation Theory were applied in this work to a simplified U-tubes steam generator model to perform sensitivity analysis. The adjoint and importance equations, with the corresponding expressions for the sensitivity coefficients, were derived for this steam generator model. The system was numerically was numerically solved in a Fortran program, called GEVADJ, in order to calculate the sensitivity coefficients. A transient loss of forced primary coolant in the nuclear power plant Angra-1 was used as example case. The average and final values of functionals: secondary pressure and enthalpy were studied in relation to changes in the secondary feedwater flow, enthalpy and total volume in secondary circuit. Absolute variations in the above functionals were calculated using the perturbative methods, considering the variations in the feedwater flow and total secondary volume. Comparison with the same variations obtained via direct model showed in general good agreement, demonstrating the potentiality of perturbative methods for sensitivity analysis of nuclear systems. (author)

  18. The casebook of technical presentation on a steam generator

    International Nuclear Information System (INIS)

    1986-05-01

    This casebook consists of seven presentations, which are measures and experience of maintenance of water quality in PWR generator, corrosion in steam generator, safely evaluation by management and closing in steam generator, testing of eddy current in steam generator, unsettled problems of safety in steam generator and maintenance of water quality in PWR generator.

  19. Modelling and exergoeconomic-environmental analysis of combined cycle power generation system using flameless burner for steam generation

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Barzegaravval, Hasan; Ganjehkaviri, Abdolsaeid; Wahid, Mazlan Abdul; Mohd Jaafar, M.N.

    2017-01-01

    Highlights: • Using flameless burner as a supplementary firing system after gas turbine is modeled. • Thermodynamic, economic and environmental analyses of this model are performed. • Efficiency of the plant increases about 6% and CO_2 emission decreases up to 5.63% in this design. • Available exergy for work production in both gas cycle and steam cycle increases in this model. - Abstract: To have an optimum condition for the performance of a combined cycle power generation, using supplementary firing system after gas turbine was investigated by various researchers. Since the temperature of turbine exhaust is higher than auto-ignition temperature of the fuel in optimum condition, using flameless burner is modelled in this paper. Flameless burner is installed between gas turbine cycle and Rankine cycle of a combined cycle power plant which one end is connected to the outlet of gas turbine (as primary combustion oxidizer) and the other end opened to the heat recovery steam generator. Then, the exergoeconomic-environmental analysis of the proposed model is evaluated. Results demonstrate that efficiency of the combined cycle power plant increases about 6% and CO_2 emission reduces up to 5.63% in this proposed model. It is found that the variation in the cost is less than 1% due to the fact that a cost constraint is implemented to be equal or lower than the design point cost. Moreover, exergy of flow gases increases in all points except in heat recovery steam generator. Hence, available exergy for work production in both gas cycle and steam cycle will increase in new model.

  20. Structural analysis of steam generator internals following feed water main steam line break: DLF approach

    International Nuclear Information System (INIS)

    Bhasin, Vivek; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1993-01-01

    In order to evaluate the possible release of radioactivity in extreme events, some postulated accidents are analysed and studied during the design stage of Steam Generator (SG). Among the various accidents postulated, the most important are Feed Water Line Break (FWLB) and Main Steam Line Break (MSLB). This report concerns with dynamic structural analysis of SG internals following FWLB/MSLB. The pressure/drag-force time histories considered were corresponding to the conditions leading to the accident of maximum potential. The SG internals were analysed using two approaches of structural dynamics. In first approach simplified DLF method was adopted. This method yields an upper bound values of stresses and deflection. In the second approach time history analysis by Mode Superposition Technique was adopted. This approach gives more realistic results. The structure was qualified as per ASME B and PV Code SecIII NB. It was concluded that in all the components except perforated flow distribution plate, the stress values based on elastic analysis are within the limits specified by ASME Code. In case of perforated flow distribution plate during the MSLB transient the stress values based on elastic analysis are higher than the ASME Code limits. Therefore, its limit load analysis had to be done. Finally, the collapse pressure evaluated using limit load analysis was shown to be within the limits of ASME B and PV Code SecIII Nb. (author). 31 refs., 94 figs., 16 tabs

  1. Model of reverse steam generator

    International Nuclear Information System (INIS)

    Malasek, V.; Manek, O.; Masek, V.; Riman, J.

    1987-01-01

    The claim of Czechoslovak discovery no. 239272 is a model designed for the verification of the properties of a reverse steam generator during the penetration of water, steam-water mixture or steam into liquid metal flowing inside the heat exchange tubes. The design may primarily be used for steam generators with a built-in inter-tube structure. The model is provided with several injection devices configured in different heat exchange tubes, spaced at different distances along the model axis. The design consists in that between the pressure and the circumferential casings there are transverse partitions and that in one chamber consisting of the circumferential casings, pressure casing and two adjoining partitions there is only one passage of the injection device through the inter-tube space. (Z.M.). 1 fig

  2. Fracture toughness determination in steam generator tubes

    International Nuclear Information System (INIS)

    Bergant M; Yawny, A; Perez Ipina, J

    2012-01-01

    The assessment of the structural integrity of steam generator tubes in nuclear power plants deserved increasing attention in the last years due to the negative impact related to their failures. In this context, elastic plastic fracture mechanics (EPFM) methodology appears as a potential tool for the analysis. The application of EPFM requires, necessarily, knowledge of two aspects, i.e., the driving force estimation in terms of an elastic plastic toughness parameter (e.g., J) and the experimental measurement of the fracture toughness of the material (e.g., the material J-resistance curve). The present work describes the development of a non standardized experimental technique aimed to determine J-resistance curves for steam generator tubes with circumferential through wall cracks. The tubes were made of Incoloy 800 (Ni: 30.0-35.0; Cr: 19.0-23.0; Fe: 35.5 min, % in weight). Due to its austenitic microstructure, this alloy shows very high toughness and is widely used in applications where a good corrosion resistance in aqueous environment or an excellent oxidation resistance in high temperature environment is required. Finally, a procedure for the structural integrity analysis of steam generator tubes with crack-like defects, based on a FAD diagram (Failure Assessment Diagram), is briefly described (author)

  3. Development of a steam generator lancing system

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Kim, Seok-Tae; Hong, Sung-Yull

    2006-01-01

    It is recommended to clean steam generators of nuclear power plants during plant outages. Under normal operations, sludge is created and constantly accumulates in the steam generators. The constituents of this sludge are different depending on each power plant characteristics. The sludge of the Kori Unit 1 steam generator, for example, was found to be composed of 93% ferrous oxide, 3% carbon and 1% of silica oxide and nickel oxide each. The research to develop a lancing system that would remove sludge deposits from the tubesheet of a steam generator was started in 1998 by the Korea Electric Power Research Institute (KEPRI) of the Korea Electric Power Corporation (KEPCO). The first commercial domestic lancing system in Korea, and KALANS-I Lancing System, was completed in 2000 for Kori Unit 1 for cleaning the tubesheet of its Westinghouse Delta-60 steam generator. Thereafter, the success of the development and site implementation of the KALANS-I lancing system for YGN Units 1 and 2 and Ulchin Units 3 and 4 was also realized in 2004 for sludge removal at those sites. The upper bundle cleaning system for Westinghouse model F steam generators is now under development

  4. Method to detect steam generator tube leakage

    International Nuclear Information System (INIS)

    Watabe, Kiyomi

    1994-01-01

    It is important for plant operation to detect minor leakages from the steam generator tube at an early stage, thus, leakage detection has been performed using a condenser air ejector gas monitor and a steam generator blow down monitor, etc. In this study highly-sensitive main steam line monitors have been developed in order to identify leakages in the steam generator more quickly and accurately. The performance of the monitors was verified and the demonstration test at the actual plant was conducted for their intended application to the plants. (author)

  5. Future aspects for liquid metal heated steam generators

    International Nuclear Information System (INIS)

    Jansing, W.; Ratzel, W.; Vinzens, K.

    1975-01-01

    The present status of steam generators is shown. The experience gained until now is expressed in form of basic points. The most important design criteria for steam generator systems are outlined. On the basis of these design criteria, two possible steam generator concepts are shown. Costs in relationship to the repair concepts of two modular steam generators (thermal output 156 and 625 MW) and a pool design of 625 MW are compared. (author)

  6. Future aspects for liquid metal heated steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Jansing, W; Ratzel, W; Vinzens, K

    1975-07-01

    The present status of steam generators is shown. The experience gained until now is expressed in form of basic points. The most important design criteria for steam generator systems are outlined. On the basis of these design criteria, two possible steam generator concepts are shown. Costs in relationship to the repair concepts of two modular steam generators (thermal output 156 and 625 MW) and a pool design of 625 MW are compared. (author)

  7. Comments on US LMFBR steam generator base technology

    International Nuclear Information System (INIS)

    Simmons, W.R.

    1984-01-01

    The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects

  8. Steam Generator Inspection Planning Expert System

    International Nuclear Information System (INIS)

    Rzasa, P.

    1987-01-01

    Applying Artificial Intelligence technology to steam generator non-destructive examination (NDE) can help identify high risk locations in steam generators and can aid in preparing technical specification compliant eddy current test (ECT) programs. A steam Generator Inspection Planning Expert System has been developed which can assist NDE or utility personnel in planning ECT programs. This system represents and processes its information using an object oriented declarative knowledge base, heuristic rules, and symbolic information processing, three artificial intelligence based techniques incorporated in the design. The output of the system is an automated generation of ECT programs. Used in an outage inspection, this system significantly reduced planning time

  9. Economic analysis of process steam and electricity generation by a 200 MW NHR

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing

    2000-01-01

    New applications for low temperature nuclear heating reactors should be developed using economic analysis. This paper compares and analyzes the economics of the generation 1.5 MPa process steam and electricity by a 200 MW nuclear heating reactor (NHR-200) for industrial development. The project is very attractive economically with an internal rate of return of 19.61%, a net present worth (discount rate 10%) of 765 million yuan RMB and a capital recovery or payback period of about 5 years after construction is completed. Compared with only using the NHR-200 for in winter heating, the economic of process steam and electricity generation by NHR-200 are much better. In addition, the NHR-200 will significantly improve environmental pollution in cities and reduce the transport of coal from north to south in China

  10. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States)

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  11. Local chemical and thermal-hydraulic analysis of U-tube steam generators

    International Nuclear Information System (INIS)

    Lee, J.Y.; No, H.C.

    1990-01-01

    In order to know how pH distribution affects corrosion in a U-tube steam generator, a study of the combination of water chemistry and thermal-hydraulic conditions is suggested. A two-fluid (unequal velocity and unequal temperature) formulation is proposed to describe the convective transport of volatile species in each phase, and a spherical bubble model is developed on the basis of the penetration theory to describe the interfacial mass transfer. The thermal-hydraulic local conditions are obtained by the U-tube steam generator design analysis code FAUST which is based on the three-dimensional two-fluid model. The results of the present study are compared with dynamic equilibrium model calculations. This study shows that, in contrast with dynamic equilibrium calculations, the pH is lower in the cold-leg side than in the hot-leg side because of liquid recirculation. Just above the tube sheet, however, the lower void fraction in this region than that in the hot-leg region results in higher pH, which agrees with the prediction of the dynamic equilibrium model. (orig.)

  12. Identification of leaky steam generators by iodine mapping technique and development of tools for cutting of tubes of steam generators of Indian PHWRS

    International Nuclear Information System (INIS)

    Subba Rao, D.

    2006-01-01

    inspected in previous ISI and no reportable indications were observed. To investigate the cause of steam generator tubes leak two failed tubes were cut and removed for failure analysis. To perform this activity some special tools were designed and developed in house and whole job of two failed tubes cutting, removal and plugging with specially developed extended plugs for left out portion of the cut tubes support was executed with in four days. After removing failed tubes, one S.S metallic gasket strip (foreign material) was found stuck between two failed tubes and same was removed using special tools. Based on metallurgical and chemical analysis the root cause for tubes failure was due to fretting action by foreign material inclusion, i.e. a metallic strip. A video scope was taken to assess the structural integrity of internals of primary and secondary side of the steam generator and it was found okay. Both S.S gasket metallic strip and failed tubes were tested for metallurgical analysis for hardness and found that the gasket strip harder than SG tube material. Feed water control valves maintenance procedures were revised and all the maintenance personnel were trained and familiarized to prevent the broken gasket pieces entering in to Steam generators through feed water. Based on metallurgical and chemical analysis the Steam generator tubes are healthy. (author)

  13. Operating experiences with 1 MW steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Sano, A; Kanamori, A; Tsuchiya, T

    1975-07-01

    1 MW steam generator, which was planned as the first stage of steam generator development in Power Reactor and Nuclear Fuel Corp. (PNC) in Japan, is a single-unit, once-through, integrated shell and tube type with multi-helical coil tubes. It was completed in Oarai Engineering Center of PNC in March of 1971, and the various performance tests were carried out up to April, 1972. After the dismantle of the steam generator for structural inspection and material test, it was restored with some improvements. In this second 1 MW steam generator, small leak occurred twice during normal operation. After repairing the failure, the same kind of performance tests as the first steam generator were conducted in order to verify the thermal insulation effect of argon gas in downcomer zone from March to June, 1974. In this paper the above operating experiences were presented including the outline of some performance test results. (author)

  14. Maintenance and repair of LMFBR steam generators

    International Nuclear Information System (INIS)

    Verriere, P.; Alanche, J.; Minguet, J.L.

    1984-06-01

    After some general remarks on the French fast neutron system, this paper presents the state of the program for the construction of fast reactor in France. Then, the general design of Super Phenix 1 steam generator components is outlined and, the in-service monitoring systems and protective devices with which they are equiped are briefly described. The methods used, in the event of leakage, for leak location, steam generator inspection, steam generator repair and putting the affected loop back into service, are discussed. There are two main lines of research, relating respectively to the means of water leak detection in sodium and the inspection arrangements that will be used either periodically, or following a sodium-water reaction. Finally, after a brief description of the steam generator, this paper describes the four incidents (leaks) that occurred on the Phenix steam generator in the course of 1982 and 1983, and the subsequent repair operations

  15. Response of the steam generator VVER 1000 to a steam line break

    International Nuclear Information System (INIS)

    Novotny, J.; Novotny, J. Jr.

    2003-01-01

    Dynamic effects of a steam line break in the weld of the steam pipe and the steam collector on the steam generator system are analyzed. Modelling of a steam line break may concern two cases. The steam line without a restraint and the steam line protected by a whip restraint with viscous elements applied at the postulated break cross-section. The second case is considered. Programme SYSTUS offers a special element the stiffness and viscous damping coefficients of which may be defined as dependent on the relative displacement and velocity of its nodes respectively. A circumferential crack is simulated by a sudden decrease of longitudinal and lateral stiffness coefficients of these special SYSTUS elements to zero. The computation has shown that one can simulate the pipe to behave like completely broken during a time interval of 0,0001 s or less. These elements are used to model the whip restraint with viscous elements and viscous dampers of the GERB type as well. In the case of a whip restraint model the stiffness coefficient-displacement relation and damping coefficient - velocity relation are chosen to fit the given characteristics of the restraint. The special SYSTUS elements are used to constitute Maxwell elements modelling the elasto-plastic and viscous properties of the GERB dampers applied to the steam generator. It has been ascertained that a steam line break at the postulated weld crack between the steam pipe and the steam generator collector cannot endanger the integrity of the system even in a case of the absence of a whip restraint effect. (author)

  16. US PWR steam generator management: An overview

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.

    1997-01-01

    This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of open-quotes steam generator managementclose quotes; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, open-quotes Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosionclose quotes, and is provided as a supplement to that material

  17. Report on US-Japan 1983 meetings on steam generators

    International Nuclear Information System (INIS)

    1984-04-01

    This is a report on a trip to Japan by personnel of the US Nuclear Regulatory Commission in 1983 to exchange information on steam generators of nuclear power plants. Steam generators of Japanese pressurized water reactors have experienced nearly all of the forms of degradation that have been experienced in US recirculating-type steam generators, except for denting and pitting. More tubes have been plugged per year of reactor operation in Japanese than in US steam generators, but much of the Japanese tube plugging is preventative rather than the result of leaks experienced. The number of leaks per reactor year is much smaller for Japanese than for US steam generators. No steam generators have been replaced in Japan while several have been replaced in the US. The Japanese experience may be related to their very stringent inspection and maintenance programs for steam generators

  18. Tube sheet design for PFBR steam generator

    International Nuclear Information System (INIS)

    Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.

    1991-01-01

    Top and bottom tube sheets of PFBR Steam Generators have been analysed with 3D and axisymmetric models using CASTEM Programs. Analysis indicates that the effects of piping reactions at the inlet/outlet nozzles on the primary stresses in the tube sheets are negligible and the asymmetricity of the deformation pattern introduced in the tube sheet by the presence of inlet/outlet and manhole nozzles is insignificant. The minimum tube sheet thicknesses for evaporator and reheater are 135 mm and 75 mm respectively. Further analysis has indicated the minimum fillet radius at the junction of tube sheet and dished end should be 20 mm. Simplified methodology has been developed to arrive at the number of thermal baffles required to protect the tube sheet against fatigue damage due to thermal transient. This method has been applied to PFBR steam generators to determine the required number of thermal baffles. For protecting the bottom tube sheet of evaporator against the thermal shock due to feed water and secondary pump trip, one thermal shield is found to be sufficient. Further analysis is required to decide upon the actual number to take care of the severe thermal transient, following the event of sudden dumping of water/steam, immediately after the sodium-water reaction. (author)

  19. Draining down of a nuclear steam generating system

    International Nuclear Information System (INIS)

    Jawor, J.C.

    1987-01-01

    The method is described of draining down contained reactor-coolant water from the inverted vertical U-tubes of a vertical-type steam generator in which the upper, inverted U-shaped ends of the tubes are closed and the lower ends thereof are open. The steam generator is part of a nuclear powered steam generating system wherein the reactor coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator. The method comprises continuously introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tube sheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator, while permitting the water to flow out from the open ends of the U-tubes

  20. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    International Nuclear Information System (INIS)

    Mendler, O.J.; Takeuchi, K.; Young, M.Y.

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results

  1. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  2. Coupled RELAP5/PANTHER/COBRA steam line break accident analysis in support of licensing DOEL 2 power uprate and steam generator replacement

    International Nuclear Information System (INIS)

    Zhang, J.; Bosso, S.; Henno, X.; Ouliddren, K.; Schneidesch, C.R.; Hove, W. van

    2004-01-01

    The nuclear reactor accident analyses using best estimate codes provide a better understanding and more accurate modeling of the key physical phenomena, which allows a more realistic evaluation of the conservatism and margins in the final safety analysis report (FSAR) accident analysis. The use of the best estimate codes and methods is necessary to meet the increasing technical, licensing and regulatory requirements for major plant changes (e.g. steam generator replacement), power uprate, core design optimization (cycle extension), as well as Periodic Safety Review. Since 1992, Tractebel Engineering (TE) has developed and applied a deterministic bounding approach to FASR accident analysis using the best estimate system thermal hydraulic code RELAP5/MOD2.5 and the subchannel thermal hydraulic code COBRA-3C. This approach has been accepted by the Belgian Safety Authorities, and turned out to be cost effective for most of the non-LOCA transient analyses. Since this approach adapts a decoupled modeling of the core responses, the analysis results often involved too large un-quantified conservatisms, due to either simplistic approximations for asymmetric accidents with strong 3D core neutronics - plant thermal hydraulics interactions, or additional penalties introduced from 'incoherent' initial/boundary conditions for separate plant and core analyses. Therefore, an external dynamic coupling between the RELAP5/MOD2.5 code and the 3-D neutronic code PANTHER was implemented since 1997 via the transient analysis code linkage program TALINK. Furthermore, a static linkage between the PANTHER code and the COBRA-3C code was developed for on-line calculation of (Departure from Nucleate Boiling Ratio (DNBR). TE intends to use the coupled code package for licensing non-symmetric FSAR accident analysis. The TE coupled code package has been applied to develop a main steam line break (MSLB) accident analysis methodology [using the TE deterministic bounding approach. The methodology

  3. Conceptual design study of Cu bonded steam generator

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Konomura, Mamoru

    2004-05-01

    In phase II of feasibility study of commercialized fast reactor cycle systems of JNC, we make a concept of a sodium cooled reactor without secondary sodium circuits. And a sodium cooled reactor with Cu bonded steam generators is one of promising concept. As the result of FY 2001 study, the construction cost of reactor cooling system with rectangular tube Cu bonded steam generators is 0.71 to 1.23 times as much as that of an ordinary sodium cooled reactor with secondary sodium circuits. In the FY 2003 study, plastic and creep analysis to evaluate life distortion are carried out and inelastic strains and creep fatigue damage are checked for full code compliance. The NNC's crack growth experiments show that there are few possibility to penetrate a crack from the steam tube side to the sodium tube side at the operating temperature. But penetration is observed in a four point bend test at the room temperature, because the notch opens widely in the bend test. In the FY 2004 study, a gas pressurized crack growth experiment is planed to confirm that there is no crack penetration in the condition of operating steam generators. (author)

  4. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I. [Energoproekt, Sofia (Bulgaria)

    1995-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  5. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I [Energoproekt, Sofia (Bulgaria)

    1996-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  6. Steam generator arrangement

    International Nuclear Information System (INIS)

    Ssinegurski, E.

    1981-01-01

    A steam flow path arrangement for covering the walls of the rear gas pass of a steam generator is disclosed. The entire flow passes down the sidewalls with a minor portion then passing up through the rear wall to a superheater inlet header at an intermediate elevation. The major portion of the flow passes up the front wall and through hanger tubes to a roof header. From there the major portion passes across the roof and down the rear wall to the superheater inlet header at the intermediate elevation

  7. CRBRP steam-generator design evolution

    International Nuclear Information System (INIS)

    Geiger, W.R.; Gillett, J.E.; Lagally, H.O.

    1983-01-01

    The overall design of the CRBRP Steam Generator is briefly discussed. Two areas of particular concern are highlighted and considerations leading to the final design are detailed. Differential thermal expansion between the shell and the steam tubes is accommodated by the tubes flexing in the curved section of the shell. Support of the tubes by the internals structure is essential to permit free movement and minimize tube wear. Special spacer plate attachment and tube hole geometry promote unimpeded axial movement of the tubes by allowing individual tubes to rotate laterally and by providing lateral movement of the spacer plates relative to the adjacent support structure. The water/steam heads of the CRBRP Steam Generator are spherical heads welded to the lower and upper tubesheets. They were chosen principally because they provide a positively sealed system and result in more favorable stresses in the tubesheets when compared to mechanically attached steamheads

  8. NRC concerns about steam generator tube U-bend failures

    International Nuclear Information System (INIS)

    Dillon, R.L.

    1981-01-01

    This paper concerns itself with genralized NRC regulatory policy regarding SGT failures and staff reports and opinions which may tend to influence the developing policy specific to U-bend failures. The most significant analysis at hand in predicting NRC policy on SGT U-bend failures is Marsh's Evaluation of Steam Generator Tube Rupture Events. Marsh sets out to describe and analyze the five steam generator tube ruptures that are known to NRC. All have occurred in the period 1975 to 1980

  9. Wavelet network controller for nuclear steam generators

    International Nuclear Information System (INIS)

    Habibiyan, H; Sayadian, A; Ghafoori-Fard, H

    2005-01-01

    Poor control of steam generator water level is the main cause of unexpected shutdowns in nuclear power plants. Particularly at low powers, it is a difficult task due to shrink and swell phenomena and flow measurement errors. In addition, the steam generator is a highly complex, nonlinear and time-varying system and its parameters vary with operating conditions. Therefore, it seems that design of a suitable controller is a necessary step to enhance plant availability factor. The purpose of this paper is to design, analyze and evaluate a water level controller for U-tube steam generators using wavelet neural networks. Computer simulations show that the proposed controller improves transient response of steam generator water level and demonstrate its superiority to existing controllers

  10. IAEA activities on steam generator life management

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Lyssakov, V.; Trampus, P.

    2002-01-01

    The International Atomic Energy Agency (IAEA) carries out a set of activities in the field of Nuclear Power Plant (NPP) life management. Main activities within this area are implemented through the Technical Working Group on Life Management of NPPs, and mostly concentrated on studies of understanding mechanisms of degradation and their monitoring, optimisation of maintenance management, economic aspects, proven practices of and approaches to plant life management including decommissioning. The paper covers two ongoing activities related to steam generator life management: the International Database on NPP Steam Generators and the Co-ordinated Research Project on Verification of WWER Steam Generator Tube Integrity (WWER is the Russian designed PWR). The lifetime assessment of main components relies on an ability to assess their condition and predict future degradation trends, which to a large extent is dependent on the availability of relevant data. Effective management of ageing and degradation processes requires a large amount of data. Several years ago the IAEA started to work on the International Database on NPP Life Management. This is a multi-module database consisting of modules such as reactor pressure vessels materials, piping, steam generators, and concrete structures. At present the work on pressure vessel materials, on piping as well as on steam generator is completed. The paper will present the concept and structure of the steam generator module of the database. In countries operating WWER NPPs, there are big differences in the eddy current inspection strategy and practice as well as in the approach to steam generator heat exchanger tube structural integrity assessment. Responding to the need for a co-ordinated research to compare eddy current testing results with destructive testing using pulled out tubes from WWER steam generators, the IAEA launched this project. The main objectives of the project are to summarise the operating experiences of WWER

  11. Dynamic modelling of nuclear steam generators

    International Nuclear Information System (INIS)

    Kerlin, T.W.; Katz, E.M.; Freels, J.; Thakkar, J.

    1980-01-01

    Moving boundary, nodal models with dynamic energy balances, dynamic mass balances, quasi-static momentum balances, and an equivalent single channel approach have been developed for steam generators used in nuclear power plants. The model for the U-tube recirculation type steam generator is described and comparisons are made of responses from models of different complexity; non-linear versus linear, high-order versus low order, detailed modeling of the control system versus a simple control assumption. The results of dynamic tests on nuclear power systems show that when this steam generator model is included in a system simulation there is good agreement with actual plant performance. (author)

  12. Future development LMFBR-steam generators SNR2

    International Nuclear Information System (INIS)

    Essebaggers, J.; Pors, J.G.

    1975-01-01

    The development work for steam generators for large LMFBR plants by Neratoom will be reviewed consisting of: 1. Development engineering information. 2. Concept select studies followed by conceptual designs of selected models. 3. Development manufacturing techniques. 4. Detail design of a prototype unit. 5. Testing of sub-constructions for prototype steam generators. In this presentation item 1 and 2 above will be high lighted, identifying the development work for the SNR-2 steam generators on short term basis. (author)

  13. Handling steam generator problems: the strategy for Ringhals 3 and 4

    International Nuclear Information System (INIS)

    Larsen, G.

    1992-01-01

    An examination in Sweden of twelve Pressurized Water Reactor steam generator tubes (six from Ringhals 3 and six from Ringhals 4) revealed that several had cracks in the roll transition zone, all tubes had shallow intergranular attacks at support plate (TSP) intersections, and some from Ringhals 3 had cracks in the TSP position due to intergranular stress corrosion. It was concluded that this could drastically limit the possibility of successfully operating Ringhals 3 (which entered commercial operation in 1981) to 2010, the year when all nuclear power in Sweden will be phased out. Two possible ways to deal with the problem were investigated: replace the steam generators and uprate the plant; operate with the existing steam generators and reduce the rate of degradation by lowering the primary water temperature, with most failed tubes repaired by sleeving. The analysis showed that replacement of the Ringhals 3 steam generators would be a good investment. As there were no attacks in the TSP intersections at Ringhals 4, which started commercial operation in 1983, it was assumed possible to operate this unit until 2010 without any temperature reduction. The economic evaluation for Ringhals 4 nevertheless indicated that it would be cost effective to replace the steam generators and uprate Ringhals 4 to 112%. However, a new economic study showed that it will still be cost effective to replace the steam generators at Ringhals 3, but it is not clear that there is still a case for replacement at Ringhals 4. Ringhals 3 steam generators will be replaced in 1995, while Ringhals 4 will continue to operate with the existing steam generators. (Author)

  14. French steam generator

    International Nuclear Information System (INIS)

    Remond, A.

    1986-01-01

    After recalling the potential damage mode of tubes of steam generator, the author recalls the safety criteria used in France. The improvements and the process of damage prejudice and reparation for tubular bundle are presented [fr

  15. Model studies of the vertical steam generator thermal-hydraulic characteristics

    International Nuclear Information System (INIS)

    Desyatun, V.F.; Moskvichev, V.F.; Ulasov, V.M.; Morozov, V.G.; Burkov, V.K.; Grebennikov, V.N.

    1984-01-01

    Results of investigations conducted to clarify the calculation technique and to test the workability of the main elements and units of the PGV-250 vertical steam generator of saturated steam are considered. The steam generating capacity of the plant is 1486 t/h, thermal power is 792 MW. Steam generation follows a multiple circulation scheme. The heat surface comprises 330-shields. The investigations are carried out with a model which reproduces all the main elements of the steam generator xcluding the economizer section. The flow rates of feed water, generated steam and coolant of the first circuit as well as temperature, pressure and humidity of the generated steam past the separator are determined. The average heat transfer factors of the heat surface are calculated on the base of the data obtained and a conclusion is drawn on the correctness of the thermohydraulic calculation technique used in development of the PGV-250 steam generator design. Temperature pulsations and heat surface steaming are not observed. The steam humidity at the outlet and steam capture into sinking tubes are within permissible values

  16. Forced circulation type steam generator simulation code: HT4

    International Nuclear Information System (INIS)

    Okamoto, Masaharu; Tadokoro, Yoshihiro

    1982-08-01

    The purpose of this code is a understanding of dynamic characteristics of the steam generator, which is a component of High-temperature Heat Transfer Components Test Unit. This unit is a number 4th test section of Helium Engineering Demonstration Loop (HENDEL). Features of this report are as follows, modeling of the steam generator, a basic relationship for the continuity equation, numerical analysis techniques of a non-linear simultaneous equation and computer graphics output techniques. Forced circulation type steam generator with strait tubes and horizontal cut baffles, applied in this code, have be designed at the Over All System Design of the VHTRex. The code is for use with JAERI's digital computer FACOM M200. About 1.5 sec required for each time step reiteration, then about 40 sec cpu time required for a standard problem. (author)

  17. Analysis of the State of Steam Generator Tubes

    International Nuclear Information System (INIS)

    Bergunker, Olga

    2008-01-01

    The problem of safe operation of SG heat exchanging tubes, of both economical and effective control of their state is still important these days. Issues connected with peculiarities of methods of SG tubes inspection, automated analysis of the inspection results, tubes state analysis and development of algorithms of forecasting their state are considered in this report. The need for effective use of extensive data arrays on SG operation has led to the necessity of creating software tools for collection, storage and analysis of these data. The data-analytical system 'NPP Steam Generators' meant for data systematization and visualization as well as various types of analyses of data on eddy current inspection of WWER-440 and WWER-1000 SG tubes is presented in this report. The main possibilities of the data-analytical system (DAS), the code current state and prospects of its development are shown. The main fields of DAS application are considered and some results of its practical use are mentioned, namely, in the field of forecasting SG tubes state. (authors)

  18. Research program plan: steam generators

    International Nuclear Information System (INIS)

    Muscara, J.; Serpan, C.Z. Jr.

    1985-07-01

    This document presents a plan for research in Steam Generators to be performed by the Materials Engineering Branch, MEBR, Division of Engineering Technology, (EDET), Office of Nuclear Regulatory Research. It is one of four plans describing the ongoing research in the corresponding areas of MEBR activity. In order to answer the questions posed, the Steam Generator Program has been organized with the three elements of non-destructive examination; mechanical integrity testing; and corrosion, cleaning and decontamination

  19. Water box for steam generator

    International Nuclear Information System (INIS)

    Lecomte, Robert; Viaud, Michel.

    1975-01-01

    This invention relates to a water box for connecting an assembly composed of a vertical steam generator and a vertical pump to the vessel of the nuclear reactor, the assembly forming the primary cooling system of a pressurised water reactor. This invention makes it easy to dismantle the pump on the water box without significant loss of water in the primary cooling system of the reactor and particularly without it being necessary to drain the water contained in the steam generator beforehand. It makes it possible to shorten the time required for dismantling the primary pump in order to service or repair it and makes dismantling safer in that the dismantling does not involve draining the steam generator and therefore the critical storage of a large amount of cooling water that has been in contact with the fuel assemblies of the nuclear reactor core [fr

  20. Track 2- major components reliability and materials issues. Some performance indicators of PWR steam generators

    International Nuclear Information System (INIS)

    Milivojevic, S.; Spasojevic, D.; Riznic, J.

    2001-01-01

    The monitoring of operational performance is a crucial aspect of the management of equipment operation and maintenance in many industries, including nuclear and thermal power plants. Monitoring involves the collection and analysis of data on the operation. In these paper an analysis was made of steam generators in operation, i.e., their malfunctions during the plant life cycle with the aim of studying the characteristics of failure rate and repair rate. These values are necessary parameters if we are to determine the reliability and availability of the steam generator as a basis for the analysis of its effect on the safety and efficiency of the nuclear power plant. We analyzed IAEA available data for period from 1971 to 1998. Each steam generator was monitored individually during plants' lifetime. The data on steam generator failures were presented in uniform format, allowing the consistency in failure classification and data reporting. Operational presence of the analyzed steam generators is given for each calendar year and each lifetime year: the failure rate l and repair rate m with associated boundaries are calculated. The general trends in calendar years performance indicators (μ) of steam generators is investigated. The distributions of lifetime l and m are formed, as a complement to the analysis of calendar years performance indicators. With aspect of steam generators influence on reliability and availability of nuclear power plants, the empirical probability distribution for failure rates and repair rates are also constructed. (author)

  1. Flow-induced vibration analysis of heat exchanger and steam generator designs

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Sylvestre, Y.; Campagna, A.O.

    1977-08-01

    Tube and shell heat exchange components such as steam generators, heat exchangers and condensers are essential parts of CANDU nuclear power stations. Excessive flow-induced vibration may cause tube failures by fatigue or more likely by fretting-wear. Such failures may lead to station shutdowns that are very undesirable in terms of lost production. Hence good performance and reliability dictate a thorough flow-induced vibration analysis at the design stage. This paper presents our approach and techniques in this respect. (author)

  2. Steam generators clogging diagnosis through physical and statistical modelling

    International Nuclear Information System (INIS)

    Girard, S.

    2012-01-01

    Steam generators are massive heat exchangers feeding the turbines of pressurised water nuclear power plants. Internal parts of steam generators foul up with iron oxides which gradually close some holes aimed for the passing of the fluid. This phenomenon called clogging causes safety issues and means to assess it are needed to optimise the maintenance strategy. The approach investigated in this thesis is the analysis of steam generators dynamic behaviour during power transients with a mono dimensional physical model. Two improvements to the model have been implemented. One was taking into account flows orthogonal to the modelling axis, the other was introducing a slip between phases accounting for velocity difference between liquid water and steam. These two elements increased the model's degrees of freedom and improved the adequacy of the simulation to plant data. A new calibration and validation methodology has been proposed to assess the robustness of the model. The initial inverse problem was ill posed: different clogging spatial configurations can produce identical responses. The relative importance of clogging, depending on its localisation, has been estimated by sensitivity analysis with the Sobol' method. The dimension of the model functional output had been previously reduced by principal components analysis. Finally, the input dimension has been reduced by a technique called sliced inverse regression. Based on this new framework, a new diagnosis methodology, more robust and better understood than the existing one, has been proposed. (author)

  3. Mathematical modeling of control system for the experimental steam generator

    Science.gov (United States)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  4. Steam generator asset management: integrating technology and asset management

    International Nuclear Information System (INIS)

    Shoemaker, P.; Cislo, D.

    2006-01-01

    Asset Management is an established but often misunderstood discipline that is gaining momentum within the nuclear generation industry. The global impetus behind the movement toward asset management is sustainability. The discipline of asset management is based upon three fundamental aspects; key performance indicators (KPI), activity-based cost accounting, and cost benefits/risk analysis. The technology associated with these three aspects is fairly well-developed, in all but the most critical area; cost benefits/risk analysis. There are software programs that calculate, trend, and display key-performance indicators to ensure high-level visibility. Activity-based costing is a little more difficult; requiring a consensus on the definition of what comprises an activity and then adjusting cost accounting systems to track. In the United States, the Nuclear Energy Institute's Standard Nuclear Process Model (SNPM) serves as the basis for activity-based costing. As a result, the software industry has quickly adapted to develop tracking systems that include the SNPM structure. Both the KPI's and the activity-based cost accounting feed the cost benefits/risk analysis to allow for continuous improvement and task optimization; the goal of asset management. In the case where the benefits and risks are clearly understood and defined, there has been much progress in applying technology for continuous improvement. Within the nuclear generation industry, more specialized and unique software systems have been developed for active components, such as pumps and motors. Active components lend themselves well to the application of asset management techniques because failure rates can be established, which serves as the basis to quantify risk in the cost-benefits/risk analysis. A key issue with respect to asset management technologies is only now being understood and addressed, that is how to manage passive components. Passive components, such as nuclear steam generators, reactor vessels

  5. Numerical methods on flow instabilities in steam generator

    International Nuclear Information System (INIS)

    Yoshikawa, Ryuji; Hamada, Hirotsugu; Ohshima, Hiroyuki; Yanagisawa, Hideki

    2008-06-01

    The phenomenon of two-phase flow instability is important for the design and operation of many industrial systems and equipment, such as steam generators. The designer's job is to predict the threshold of flow instability in order to design around it or compensate for it. So it is essential to understand the physical phenomena governing such instability and to develop computational tools to model the dynamics of boiling systems. In Japan Atomic Energy Agency, investigations on heat transfer characteristics of steam generator are being performed for the development of Sodium-cooled Fast Breeder Reactor. As one part of the research work, the evaluations of two-phase flow instability in the steam generator are being carried out experimentally and numerically. In this report, the numerical methods were studied for two-phase flow instability analysis in steam generator. For numerical simulation purpose, the special algorithm to calculate inlet flow rate iteratively with inlet pressure and outlet pressure as boundary conditions for the density-wave instability analysis was established. There was no need to solve property derivatives and large matrices, so the spurious numerical instabilities caused by discontinuous property derivatives at boiling boundaries were avoided. Large time-step was possible. The flow instability in single heat transfer tube was successfully simulated with homogeneous equilibrium model by using the present algorithm. Then the drift-flux model including the effects of subcooled boiling and two phase slip was adopted to improve the accuracy. The computer code was developed after selecting the correlations of drift velocity and distribution parameter. The capability of drift flux model together with the present algorithm for simulating density-wave instability in single tube was confirmed. (author)

  6. Steam generator tube fitness-for-service guidelines

    International Nuclear Information System (INIS)

    Gorman, J.A.; Harris, J.E.; Lowenstein, D.B.

    1995-07-01

    The objectives of this project were to characterize defect mechanisms which could affect the integrity of steam generator tubes, to review and critique state-of-the-art Canadian and international steam generator tube fitness-for-service criteria and guidelines, and to obtain recommendations for criteria that could be used to assess fitness-for service guidelines for steam generator tubes containing defects in Canadian power plant service. Degradation mechanisms, that could affect CANDU steam generator tubes in Canada, have been characterized. The design standards and safety criteria that apply to steam generator tubing in nuclear power plant service in Canada and in Belgium, France, Japan, Spain, Sweden, and the USA have been reviewed and described. The fitness-for-service guidelines used for a variety of specific defect types in Canada and internationally have been evaluated and described in detail in order to highlight the considerations involved in developing such defect specific guidelines. Existing procedures for defect assessment and disposition have been identified, including inspection and examination practices. The approaches used in Canada and in Belgium, France, Japan, Spain, Sweden, and the USA for fitness-for-service guidelines were compared and contrasted for a variety of defect mechanisms. The strengths and weaknesses of the various approaches have been assessed. The report presents recommendations on approaches that may be adopted in the development of fitness-for-service guidelines for use in the dispositioning of steam generator tubing defects in Canada. (author). 175 refs., 2 tabs., 28 figs

  7. Sodium-Water Reaction approach and mastering for ASTRID Steam Generator design

    International Nuclear Information System (INIS)

    Saez, Manuel; Allou, Alexandre; Beauchamp, François; Bertrand, Carole; Rodriguez, Gilles; Menou, Sylvain; Prele, Gérard

    2013-01-01

    Conclusions: • Modular Steam Generator concept selected for ASTRID: → Brings flexibility for the expertise of failed modules after their removal; → Intrinsically limit the mechanical consequences of a postulated large Sodium-Water Reaction. • Sodium-Water-Air Reaction studies include both prevention and mitigation aspects, with dedicated tools to be developed through R&D. • Regarding Safety analysis, the possibility to move from the scenario of instantaneous failure of the whole Steam Generator tube bundle toward a scenario with sequenced failure needs to be investigated. • The Steam Generator is one of the key components in the Sodium-cooled Fast Reactor system for it provides an interface between sodium and water. The design objective for the Steam Generator is related to the improvement of mastering of Sodium-Water Reaction. • Potential Sodium-Water Reactions can be eliminated by adopting a Gas based Power Conversion System

  8. Stress analysis of steam generator row-1 tubes

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Lee, Ho Jin; Kim, Sung Chung

    2000-01-01

    Residual stresses induced in U-bending and tube-to-tubesheet joining processes of PWR's steam generator row-1 tube were measured by X-ray method and Hole-Drilling Method(HDM). The stresses resulting from the internal pressure and the temperature gradient in the steam generator were also estimated theoretically. In U-bent regions, the residual stresses at extrados were induced with compressive stress(-), and its maximum value reached -319 Mpa in axial direction at ψ=0 .deg. in position. Maximum tensile residual stress of 170 MPa was found to be at the flank side at position of ψ=90 deg., i.e., at apex region. In tube-to-tubesheet joining methods, the residual stresses induced by the explosive joint method were found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region, and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction. Hoop stress due to an internal pressure between primary and secondary side was analyzed to be 76 MPa and thermal stress was 45 MPa

  9. Modeling and Simulation of U-tube Steam Generator

    Science.gov (United States)

    Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei

    2018-03-01

    The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.

  10. Wastage of Steam Generator Tubes by Sodium-Water Reaction

    International Nuclear Information System (INIS)

    Jeong, Ji Young; Kim, Jong Man; Kim, Tae Joon; Choi, Jong Hyeun; Kim, Byung Ho; Lee, Yong Bum; Park, Nam Cook

    2010-01-01

    The Korea Advanced LIquid MEtal Reactor (KALIMER) steam generator is a helical coil, vertically oriented, shell-and-tube type heat exchanger with fixed tube-sheet. The conceptual design and outline drawing of the steam generator are shown in Figure 1. Flow is counter-current, with sodium on the shell side and water/steam on the tube side. Sodium flow enters the steam generator through the upper inlet nozzles and then flows down through the tube bundle. Feedwater enters the steam generator through the feedwater nozzles at the bottom of steam generator. Therefore, if there is a hole or a crack in a heat transfer tube, a leakage of water/steam into the sodium may occur, resulting in a sodium-water reaction. When such a leak occurs, so-called 'wastage' is the result which may cause damage to or a failure of the adjacent tubes. If a steam generator is operated for some time in this condition, it is possible that it might create an intermediate leak state which would then give rise to the problems of a multi-target wastage in a very short time. Therefore, it is very important to predict these phenomena quantitatively from the view of designing a steam generator and its leak detection systems. For this, multi-target wastage tests for modified 9Cr-1Mo steel tube bundle by intermediate leaks are being prepared

  11. Real-time dynamic analysis for complete loop of direct steam generation solar trough collector

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chu, Yinghao; Chen, Xingying; Shen, Bingbing; Xu, Chang; Zhou, Ling; Wang, Pei

    2016-01-01

    Highlights: • A nonlinear distribution parameter dynamic model has been developed. • Real-time local heat transfer coefficient and friction coefficient are adopted. • The dynamic behavior of the solar trough collector loop are simulated. • High-frequency chattering of outlet fluid flow are analyzed and modeled. • Irradiance disturbance at subcooled water region generates larger influence. - Abstract: Direct steam generation is a potential approach to further reduce the levelized electricity cost of solar trough. Dynamic modeling of the collector loop is essential for operation and control of direct steam generation solar trough. However, the dynamic behavior of fluid based on direct steam generation is complex because of the two-phase flow in the pipeline. In this work, a nonlinear distribution parameter model has been developed to model the dynamic behaviors of direct steam generation parabolic trough collector loops under either full or partial solar irradiance disturbance. Compared with available dynamic model, the proposed model possesses two advantages: (1) real-time local values of heat transfer coefficient and friction resistance coefficient, and (2) considering of the complete loop of collectors, including subcooled water region, two-phase flow region and superheated steam region. The proposed model has shown superior performance, particularly in case of sensitivity study of fluid parameters when the pipe is partially shaded. The proposed model has been validated using experimental data from Solar Thermal Energy Laboratory of University of New South Wales, with an outlet fluid temperature relative error of only 1.91%. The validation results show that: (1) The proposed model successfully outperforms two reference models in predicting the behavior of direct steam generation solar trough. (2) The model theoretically predicts that, during solar irradiance disturbance, the discontinuities of fluid physical property parameters and the moving back and

  12. Analysis on the Current Status of Chemical Decontamination Technology of Steam Generators in the Oversea Nuclear Power Plants (NPPs)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Taebin; Kim, Sukhoon; Kim, Juyoul; Kim, Juyub; Lee, Seunghee [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The steam generators in Hanbit Unit 3 and 4 are scheduled to be replaced in 2018 and 2019, respectively. Nevertheless, the wastes from the dismantled steam generators are currently just on-site stored in the NPP because there are no disposal measures for the waste and lack of the decontamination techniques for large-sized metallic equipment. In contrast, in the oversea NPPs, there are many practical cases of chemical decontamination not only for oversized components in the NPPs such as reactor pressure vessel and steam generator, but also for major pipes. Chemical decontamination technique is more effective in decontaminating the components with complicated shape compared with mechanical one. Moreover, a high decontamination factor can be obtained by using strong solvent, and thereby most of radionuclides can be removed. Due to these advantages, the chemical decontamination has been used most frequently for operation of decontaminating the large-sized equipment. In this study, an analysis on the current status of chemical decontamination technique used for the steam generators of the foreign commercial NPPs was performed. In this study, the three major chemical decontamination processes were reviewed, which are applied to the decommissioning process of the steam generators in the commercial NPPs of the United States, Germany, and Belgium. The three processes have the different features in aspect of solvent, while those are based in common on the oxidation and reduction between the target metal surface and solvents. In addition, they have the same goals for improving the decontamination efficiency and decreasing the amount of the secondary waste generation. Based on the analysis results on component sub-processes and major advantages and disadvantages of each process, Table 2 shows the key fundamental technologies for decontamination of the steam generator in Korea and the major considerations in the development process of each technology. It is necessary to prepare

  13. Steam generator leak detection using acoustic method

    International Nuclear Information System (INIS)

    Goluchko, V.V.; Sokolov, B.M.; Bulanov, A.N.

    1982-05-01

    The main requirements to meet by a device for leak detection in sodium - water steam generators are determined. The potentialities of instrumentation designed based on the developed requirements have been tested using a model of a 550 kw steam generator [fr

  14. Realistic analysis of steam generator tube rupture accident in Angra-1 reactor

    International Nuclear Information System (INIS)

    Fontes, S.W.F.

    1989-01-01

    This paper presents the analysis of different scenarios for a Steam Generator Tube Rupture accident (SGTR) in Angra-1 NPP. The results and conclusions will be used as support in the preparation of the emergency situation programs for the plant. For the analysis a SGTR simulation was performed with RETRAN-02 code. The results indicated that the core integrity and the plant itself will not affect by small ruptures in SG tubes. For large ruptures the analysis demonstrated that the accident may have harmful consequences if the operator do not actuate effectively since the initial moments of the accidents. (author) [pt

  15. Mathematical modeling of control system for the experimental steam generator

    Directory of Open Access Journals (Sweden)

    Podlasek Szymon

    2016-01-01

    Full Text Available A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units – quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  16. Design features of Advanced Power Reactor (APR) 1400 steam generator

    International Nuclear Information System (INIS)

    Park, Tae-Jung; Park, Jun-Soo; Kim, Moo-Yong

    2004-01-01

    Advanced Power Reactor 1400 (APR 1400) which is to achieve the improvement of the safety and economical efficiency has been developed by Korea Hydro and Nuclear Power Co., Ltd. (KHNP) with the support from industries and research institutes. The steam generator for APR 1400 is an evolutionary type from System 80 + , which is the recirculating U-tube heat exchanger with integral economizer. Compared to the System 80 + steam generator, it is focused on the improved design features, operating and design conditions of APR 1400 steam generator. Especially, from the operation experience of Korean Standard Nuclear Power Plant (KSNP) steam generator, the lessons-learned measures are incorporated to prevent the tube wear caused by flow-induced vibration (FIV). The concepts for the preventive design features against FIV are categorized to two fields; flow distribution and dynamic response characteristics. From the standpoint of flow distribution characteristics, the egg-crate flow distribution plate (EFDP) is installed to prevent the local excessive flow loaded on the most susceptible tube to wear. The parametric study is performed to select the optimum design with the efficient mitigation of local excessive flow. ATHOS3 Mod-01 is used and partly modified to analyze the flow field of the APR 1400 steam generator. In addition, the upper tube bundle support is designed to eliminate the presence of tube with a low natural frequency. Based on the improved upper tube bundle support, the modal analysis is performed and compared with that of System 80 + . Using the results of flow distribution and modal analysis, the two mechanisms of flow-induced vibration are investigated; fluid-elastic instability (FEI) and random turbulence excitation (RTE). (authors)

  17. Consolidated nuclear steam generator

    International Nuclear Information System (INIS)

    Jabsen, F.S.; Schluderberg, D.C.; Paulson, A.E.

    1978-01-01

    An improved system of providing power has a unique generating means for nuclear reactors with a number of steam generators in the form of replaceable modular units of the expendable type to attain the optimum in effective and efficient vaporization of fluid during the generating power. The system is most adaptable to undrground power plants and marine usage

  18. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2006-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Units 2 that will extend the in-service life of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from the bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  19. Prediction of localized flow velocities and turbulence in a PWR steam generator: Final report

    International Nuclear Information System (INIS)

    Stuhmiller, J.H.

    1988-05-01

    The Steam Generator Project Office (SGPO) of the Steam Generator Owners Group and Electric Power Research Institute has developed a methodology for prediction of steam generator tube buffeting and associated material wear. Turbulent buffeting of steam generator tubes causes low amplitude vibratory response which results in fretting wear at support locations. Concerns raised at the Zion Nuclear Power Plant regarding the useful life of their steam generators prompted this study, in which the SGPO methodology is applied to analysis of the Westinghouse Model 51 steam generator. The specific intent of this project was to calculate turbulent buffeting forces within the tube bank of an operating Model 51 steam generator as a first step in the overall SGPO tube vibration and wear prediction strategy. Attention is focused on flow in the vicinity of anti-vibration bars (U-bend region) and on the flow that leaves the downcomer to impact against peripheral tubes. Other projects utilized the buffeting forces calculated here to determine tube vibratory response, tube-support plate impact statistics, and material wear rates. Besides successfully calculating hydraulic buffeting loads within the tube bank, the present project has enhanced the SGPO methodology and has identified hitherto unnoticed flow phenomena that occur in the steam generator. Experiments have also been carried out to validate numerical computations of the steam generator flow field

  20. SGTR Project: Separate Effect Studies for Vertical Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Peyres, V.; Polo, J.; Herranz, L. E.

    2003-07-01

    The SGTR project has been carried out within the fifth EURATOM Framework Programme (Contract No FIKS-CT-1999-0007). Its main objective was to provide an experimental database and to develop and/or verify models to support definition of accident management measures in the hypothetical case of a Steam Generator tube Rupture (SGTR) sequence. The project addressed both vertical and horizontal steam generator designs. This report summarises the main results obtained in the intermediate scale experimentation that addressed Western type steam generators. The specific goal of this test programme was to investigate aerosol retention in the break stage of the secondary side of a water-empty steam generator. The test matrix consisted of 12 tests that explored the influence of variables such as break type and orientation and inlet gas flow rate. This work was performed in the PECA facility of the Laboratory for Analysis of Safety Systems (LASS). Aerosol retention at the break stage of a dry steam generator was observed to be low and non-uniform. Neither break type nor orientation affected results significantly whenever gas flowrates exceeded about 100 kg/h. However, deposition patterns guillotine breaks and fish mouth ones showed remarkable differences. For flowrates above 100 kg/hm the higher the gas flow velocity, the lower the total mass depleted on tube bundle surfaces; however, at lower flowrates this trend was not maintained. An attempt to measure gas injection velocity at the break exit by Particle Image Velocity (PIV) was done but data were highly uncertain. (Author) 2 refs.

  1. Steam generator tube integrity program. Phase I report

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Clark, R.A.; Morris, C.J.; Vagins, M.

    1979-09-01

    The results are presented of the pressure tests performed as part of Phase I of the Steam Generator Tube Integrity (SGTI) program at Battelle Pacific Northwest Laboratory. These tests were performed to establish margin-to-failure predictions for mechanically defected Pressurized Water Reactor (PWR) steam generator tubing under operating and accident conditions. Defect geometries tested were selected because they simulate known or expected defects in PWR steam generators. These defect geometries are Electric Discharge Machining (EDM) slots, elliptical wastage, elliptical wastage plus through-wall slot, uniform thinning, denting, denting plus uniform thinning, and denting plus elliptical wastage. All defects were placed in tubing representative of that currently used in PWR steam generators

  2. Auditable Safety Analysis and Final Hazard Classification for the 105-N Reactor Zone and 109-N Steam Generator Zone Facility

    International Nuclear Information System (INIS)

    Kloster, G.L.

    1998-07-01

    This document is a graded auditable safety analysis (ASA) and final hazard classification (FHC) for the Reactor/Steam Generator Zone Segment. The Reactor/Steam Generator Zone Segment, part of the N Reactor Complex, that is also known as the Reactor Building and Steam Generator Cells. The installation of the modifications described within to support surveillance and maintenance activities are to be completed by July 1, 1999. The surveillance and maintenance activities addressed within are assumed to continue for the next 15- 20 years, until the initiation of facility D ampersand D (i.e., Interim Safe Storage). The graded ASA in this document is in accordance with EDPI-4.30-01, Rev. 1, Safety Analysis Documentation, (BHI-DE-1) and is consistent with guidance provided by the U.S. Department of Energy. This ASA describes the hazards within the facility and evaluates the adequacy of the measures taken to reduce, control, or mitigate the identified hazards. This document also serves as the FHC for the Reactor/Steam Generator Zone Segment. This FHC is developed through the use of bounding accident analyses that envelope the potential exposures to personnel

  3. Perspective of the Westinghouse steam generator secondary side maintenance approach

    Energy Technology Data Exchange (ETDEWEB)

    Ramaley, D. [Westinghouse Electric Company LLC, Cranberry Township, Pennsylvania (United States)

    2012-07-01

    Historically, Westinghouse had developed a set of steam generator secondary maintenance guidelines focused around performing recurring activities each outage without direct regards to the age, deposit loading, operational status, or corrosion status of the steam generator. Through the evolution of steam generator design and steam generator condition data, Westinghouse now uses a proactive assessment and planning approach for utilities. Westinghouse works with utilities to develop steam generator secondary maintenance plans for long term steam generator viability. Westinghouse has developed a portfolio of products to allow utilities to optimize steam generator operability and develop programs aimed at maintaining the steam generator secondary side in a favorable condition for successful long term operation. Judicious use of the means available for program development should allow for corrosion free operation, long term full power operation at optimum thermal efficiency, and leveling of outage expenditures over a long period of time. This paper will review the following required elements for an effective steam generator secondary side strategy: • Assessment: In order to develop an appropriate maintenance strategy, actions must be taken to obtain an accurate picture of the SG secondary side condition. • Forecasting: Using available data predictions are developed for future steam generator conditions and required maintenance actions. • Action: Cost effective engineering and maintenance actions must be completed at the appropriate time as designated by the plan. • Evaluation of Results: Following execution of maintenance tactics, it is necessary to revise strategy and develop technology enhancements as appropriate. (author)

  4. Double wall steam generator tubing

    International Nuclear Information System (INIS)

    Padden, T.R.; Uber, C.F.

    1983-01-01

    Double-walled steam generator tubing for the steam generators of a liquid metal cooled fast breeder reactor prevents sliding between the surfaces due to a mechanical interlock. Forces resulting from differential thermal expansion between the outer tube and the inner tube are insufficient in magnitude to cause shearing of base metal. The interlock is formed by jointly drawing the tubing, with the inside wall of the outer tube being already formed with grooves. The drawing causes the outer wall of the inner tube to form corrugations locking with the grooves. (author)

  5. Determination of moisture content in steams and variation in moisture content with operating boiler level by analyzing sodium content in steam generator water and steam condensate of a nuclear power plant using ion chromatographic technique

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    Dry steam with moisture content less than <1% is the stringent requirements in a steam generator for good health of the turbine. In order to confirm the same, determination of sodium is done in steam generator water and steam condensate using Flame photometer in ppm level and ion chromatograph in ppb level. Depending on the carry over of sodium in steam along with the water droplet (moisture), the moisture content in steam was calculated and was found to be < 1% which is requirements of the system. The paper described the salient features of a PHWR, principle of Ion Chromatography, chemistry parameters of Steam Generators and calculation of moisture content in steam on the basis of sodium analysis. (author)

  6. Coal fired steam generation for heavy oil recovery

    International Nuclear Information System (INIS)

    Firmin, K.

    1992-01-01

    In Alberta, some 21,000 m 3 /d of heavy oil and bitumen are produced by in-situ recovery methods involving steam injection. The steam generation requirement is met by standardized natural-gas-fired steam generators. While gas is in plentiful supply in Alberta and therefore competitively priced, significant gas price increases could occur in the future. A 1985 study investigating the alternatives to natural gas as a fuel for steam generation concluded that coal was the most economic alternative, as reserves of subbituminous coal are not only abundant in Alberta but also located relatively close to heavy oil and bitumen production areas. The environmental performance of coal is critical to its acceptance as an alternate fuel to natural gas, and proposed steam generator designs which could burn Alberta coal and control emissions satisfactorily are assessed. Considerations for ash removal, sulfur dioxide sorption, nitrogen oxides control, and particulate emission capture are also presented. A multi-stage slagging type of coal-fired combustor has been developed which is suitable for application with oilfield steam generators and is being commissioned for a demonstration project at the Cold Lake deposit. An economic study showed that the use of coal for steam generation in heavy oil in-situ projects in the Peace River and Cold Lake areas would be economic, compared to natural gas, at fuel price projections and design/cost premises for a project timing in the mid-1990s. 7 figs., 3 tabs

  7. Forming a cohesive steam generator maintenance strategy

    International Nuclear Information System (INIS)

    Poudroux, G.

    1991-01-01

    In older nuclear plants, steam generator tube bundles are the most fragile part of the reactor coolant system. Steam generator tubes are subject to numerous types of loading, which can lead to severe degradation (corrosion and wear phenomena). Preventive actions, such as reactor coolant temperature reduction or increasing the plugging limit and their associated analyses, can increase steam generator service life. Beyond these preventive actions, the number of affected tubes and the different locations of the degradations that occur often make repair campaigns necessary. Framatome has developed and qualified a wide range of treatment and repair processes. They enable careful management of the repair campaigns, to avoid reaching the maximum steam generator tube plugging limit, while optimizing the costs. Most of the available repair techniques allow a large number of affected tubes to be treated. Here we look only at those techniques that should be taken into account when defining a maintenance strategy. (author)

  8. Condensate polisher application for PWR steam generator corrosion control

    International Nuclear Information System (INIS)

    Sawochka, S.G.; Leibovitz, J.; Siegwarth, D.P.; Pearl, W.L.

    1981-01-01

    The evolution of corrosion attack modes particularly in recirculating U-tube PWR steam generators has dictated a thorough review of the advantages and disadvantages of condensate polishing. Analytical modeling techniques to qualitatively predict crevice chemistry variations resulting from steam generator bulk water variations have allowed valuable insights to be developed. Modeling results complemented by steam generator and laboratory corrosion data will be employed to set condensate demineralizer effluent specifications consistent with control of steam generator corrosion. Laboratory and plant studies are being performed to demonstrate achievability of necessary effluent specifications. (author)

  9. Babcock and Wilcox Canada steam generators past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.C. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada)

    1998-07-01

    The steam generators in all of the domestic CANDU Plants, and most of the foreign CANDU plants, were supplied by Babcock and Wilcox Canada, either on their own or in co-operation with local manufacturers. More than 200 steam generators have been supplied. In addition, Babcock and Wilcox Canada has taken the technology which evolved out of the CANDU steam generators and has adapted the technology to supply of replacement steam generators for PWR's. There is enough history and operating experience, plus laboratory experience, to point to the future directions which will be taken in steam generator design. This paper documents the steam generators which have been supplied, the experience in operation and maintenance, what has worked and not worked, and how the design, materials, and operating and maintenance philosophy have evolved. The paper also looks at future requirements in the market, and the continuing research and product development going on at Babcock and Wilcox to address the future steam generator requirements. (author)

  10. Babcock and Wilcox Canada steam generators past, present and future

    International Nuclear Information System (INIS)

    Smith, J.C.

    1998-01-01

    The steam generators in all of the domestic CANDU Plants, and most of the foreign CANDU plants, were supplied by Babcock and Wilcox Canada, either on their own or in co-operation with local manufacturers. More than 200 steam generators have been supplied. In addition, Babcock and Wilcox Canada has taken the technology which evolved out of the CANDU steam generators and has adapted the technology to supply of replacement steam generators for PWR's. There is enough history and operating experience, plus laboratory experience, to point to the future directions which will be taken in steam generator design. This paper documents the steam generators which have been supplied, the experience in operation and maintenance, what has worked and not worked, and how the design, materials, and operating and maintenance philosophy have evolved. The paper also looks at future requirements in the market, and the continuing research and product development going on at Babcock and Wilcox to address the future steam generator requirements. (author)

  11. Dismantling of the 50 MW steam generator test facility

    International Nuclear Information System (INIS)

    Nakai, S.; Onojima, T.; Yamamoto, S.; Akai, M.; Isozaki, T.; Gunji, M.; Yatabe, T.

    1997-01-01

    We have been dismantling the 50MW Steam Generator Test Facility (50MWSGTF). The objectives of the dismantling are reuse of sodium components to a planned large scale thermal hydraulics sodium test facility and the material examination of component that have been operated for long time in sodium. The facility consisted of primary sodium loop with sodium heater by gas burner as heat source instead of reactor, secondary sodium loop with auxiliary cooling system (ACS) and water/steam system with steam temperature and pressure reducer instead of turbine. It simulated the 1 loop of the Monju cooling system. The rated power of the facility was 50MWt and it was about 1/5 of the Monju power plant. Several sodium removal methods are applied. As for the components to be dismantled such as piping, intermediate heat exchanger (IHX), air cooled heat exchangers (AC), sodium is removed by steam with nitrogen gas in the air or sodium is burned in the air. As for steam generators which material tests are planned, sodium is removed by steam injection with nitrogen gas to the steam generator. The steam generator vessel is filled with nitrogen and no air in the steam generator during sodium removal. As for sodium pumps, pump internal structure is pulled out from the casing and installed into the tank. After the installation, sodium is removed by the same method of steam generator. As for relatively small reuse components such as sodium valves, electromagnet flow meters (EMFs) etc., sodium is removed by alcohol process. (author)

  12. Chemical cleaning - essential for optimal steam generator asset management

    International Nuclear Information System (INIS)

    Ammann, Franz

    2009-01-01

    Accumulation of deposits in Steam Generator is intrinsic during the operation of Pressurized Water Reactors. Such depositions lead to reduction of thermal performance, loss of component integrity and, in some cases, to power restrictions. Accordingly, removal of such deposits is an essential part of the asset management program of Steam Generators. Every plant has specific conditions, history and constraints which must be considered when planning and performing a chemical cleaning. Typical points are: -Constitution of the deposits or sludge - Sludge load - Sludge distribution in the steam generator - Existing or expected corrosion problems - Amount and tendency of fouling for waste treatment The strategy for chemical cleaning is developed from these points. The range of chemical cleaning treatments starts with very soft cleanings which can remove approximately 100kg per steam generator and ends with full scale, i.e., hard, cleanings which can remove several thousand kilograms of deposits from a steam generator. Dependent upon the desired goal for the operating plant and the steam generator material condition, the correct cleaning method can be selected. This requires flexible cleaning methods that can be adapted to the individual needs of a plant. Such customizing of chemical cleaning methods is a crucial factor for an optimized asset management program of steam generators in a nuclear power plant

  13. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2007-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Unit 2 that will extend the in-service tile of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from he bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  14. Development and application of an efficient method for performing modal analysis of steam generator tubes in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Huinam [Dept of Mechanical and Aerospace Engineering, Sunchon National University, Sunchon, 540-742 (Korea, Republic of); Boo, Myung-Hwan [Korea Hydro and Nuclear Power Company, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Park, Chi-Yong [KEPCO Research Institute, Yuseong-Gu, Daejeon 305-380 (Korea, Republic of); Ryu, Ki-Wahn, E-mail: kwryu@chonbuk.ac.k [Department of Aerospace Engineering, Chonbuk National University, 664-14, Deogjin-Dong, Jeonju 561-756 (Korea, Republic of)

    2010-10-15

    A typical pressurized water reactor (PWR) steam generator has approximately 10,000 tubes. These tubes have different geometries, supporting conditions, and different material properties due to the non-uniform temperature distribution throughout the steam generator. Even though some tubes may have the same geometry and boundary conditions, the non-uniform distribution of coolant densities adjacent to the tubes causes them to have different added mass effects and dynamic characteristics. Therefore, for a reliable design of the steam generator, a separate modal analysis for each tube is necessary to perform the FIV (flow-induced vibration) analysis. However, the modal analysis of a tube including the finite element modeling is cumbersome and takes lots of time. And when a commercial finite element code is used, interfacing the modal analysis result, such as natural frequencies and mode shapes, with the FIV analysis procedure requires an additional significant amount of time and can possibly incur inadvertent error due to the complexity of data processing. It is therefore impossible to perform the complete FIV analysis for ten thousands of tubes when designing or maintaining a steam generator although it is necessary. Rather, to verify the safe design against the FIV, only a couple of tubes are chosen based on engineering judgment or past experience. In this paper, a computer program, PIAT-MODE, was developed which is able to perform modal analysis of all tubes of a PWR steam generator in a very efficient way. The geometries and boundary conditions of every tube were incorporated into PIAT-MODE using appropriate mathematical formulae. Material property data including the added mass effect was also included in the program. Once a specific tube is selected, the program automatically constructs the finite element model and generates the modal data very quickly. Therefore, modal analysis can be performed for every single tube in a straight way. When PIAT-MODE is coupled

  15. Optimum fuel allocation in parallel steam generator systems

    International Nuclear Information System (INIS)

    Bollettini, U.; Cangioli, E.; Cerri, G.; Rome Univ. 'La Sapienza'; Trento Univ.

    1991-01-01

    An optimization procedure was developed to allocate fuels into parallel steam generators. The procedure takes into account the level of performance deterioration connected with the loading history (fossil fuel allocation and maintenance) of each steam generator. The optimization objective function is the system hourly cost, overall steam demand being satisfied. Costs are due to fuel and electric power supply and to plant depreciation and maintenance as well. In order to easily updata the state of each steam generator, particular care was put in the general formulation of the steam production function by adopting a special efficiency-load curve description based on a deterioration scaling parameter. The influence of the characteristic time interval length on the optimum operation result is investigated. A special implementation of the method based on minimum cost paths is suggested

  16. The Creys Malville FBR Super Phenix steam generators

    International Nuclear Information System (INIS)

    Baque, P.; Zuber, T.; Saur, J.M.; Cambillard, E.

    1980-08-01

    After briefly recalling the French experience on sodium steam generators, the authors describe the design concepts of the Superphenix units and give their main characteristics. A short summary of the realized R and D program precedes the description of the four 750-MWt steam generators, the fabrication of which is in progress by Creusot-Loire at Chalon sur Saone (France). The studies started for the next French fast breeder reactors and their steam generators are mentioned

  17. Research perspectives on the evaluation of steam generator tube integrity

    International Nuclear Information System (INIS)

    Muscara, J.; Diercks, D. R.; Majumdar, S.; Kupperman, D. S.; Bakhtiari, S.; Shack, W. J.

    2001-01-01

    Industry effects have been largely successful in managing degradation of steam generator tubes due to wastage, pitting, and denting, but fretting, SCC and intergranular attack have proved more difficult to manage. Although steam generator replacements are proceeding there is substantial industry interest in operating with degraded steam generators, and significant numbers of plants will continue to do so. In most cases degradation of steam generator tubing by stress corrosion cracking is still managed by plug or repair on detection, because current NDE techniques for characterization of flaws are not accurate enough to permit continued operation. This paper reviews some of the historical background that underlies current steam generator degradation management strategies and outlines some of the additional research that must be done to provide more effective management of degradation in current generators and provide greater assurance of satisfactory performance in replacement steam generators

  18. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  19. Third international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    1995-01-01

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues

  20. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  1. Highly Flexible and Efficient Solar Steam Generation Device.

    Science.gov (United States)

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier

    International Nuclear Information System (INIS)

    Mrzljak, Vedran; Poljak, Igor; Mrakovčić, Tomislav

    2017-01-01

    Highlights: • Two low-power steam turbines in the LNG carrier propulsion plant were investigated. • Energy and exergy efficiencies of both steam turbines vary between 46% and 62%. • The ambient temperature has a low impact on exergy efficiency of analyzed turbines. • The maximum efficiencies area of both turbines was investigated. • A method for increasing the turbo-generator efficiencies by 1–3% is presented. - Abstract: Nowadays, marine propulsion systems are mainly based on internal combustion diesel engines. Despite this fact, a number of LNG carriers have steam propulsion plants. In such plants, steam turbines are used not only for ship propulsion, but also for electrical power generation and main feed water pump drive. Marine turbo-generators and steam turbine for the main feed water pump drive were investigated on the analyzed LNG carrier with steam propulsion plant. The measurements of various operating parameters were performed and obtained data were used for energy and exergy analysis. All the measurements and calculations were performed during the ship acceleration. The analysis shows that the energy and exergy efficiencies of both analyzed low-power turbines vary between 46% and 62% what is significantly lower in comparison with the high-power steam turbines. The ambient temperature has a low impact on exergy efficiency of analyzed turbines (change in ambient temperature for 10 °C causes less than 1% change in exergy efficiency). The highest exergy efficiencies were achieved at the lowest observed ambient temperature. Also, the highest efficiencies were achieved at 71.5% of maximum developed turbo-generator power while the highest efficiencies of steam turbine for the main feed water pump drive were achieved at maximum turbine developed power. Replacing the existing steam turbine for the main feed water pump drive with an electric motor would increase the turbo-generator energy and exergy efficiencies for at least 1–3% in all analyzed

  3. Steam generator thermal-hydraulics

    International Nuclear Information System (INIS)

    Inch, W.W.; Scott, D.A.; Carver, M.B.

    1980-01-01

    This paper discusses a code for detailed numerical modelling of steam generator thermal-hydraulics, and describes related experimental programs designed to promote in-depth understanding of three-dimensional two-phase flow. (auth)

  4. Development of steam generator manufacturing technology

    International Nuclear Information System (INIS)

    Grant, J.A.

    1979-01-01

    In 1968 Babcock and Wilcox (Operations) Ltd., received an order from the CEGB to design, manufacture, install and commission 16 Steam Generators for 2 x 660 Mw (e) Advanced Gas Cooled Reactor Power Station at Hartlepool. This order was followed in 1970 by a similar order for the Heysham Power Station. The design and manufacture of the Steam Generators represented a major advance in technology and the paper discusses the methods by which a manufacturing facility was developed, by the Production Division of Babcock, to produce components to a quality, complexity and accuracy unique in the U.K. commercial boilermaking industry. The discussion includes a brief design background, a description of the Steam Generators and a view of the Production Division background. This is followed by a description of the organisation of the technological development and a consideration of the results. (author)

  5. Ageing management database development for PWR NPP steam generator

    International Nuclear Information System (INIS)

    Liu Hongyun; Xu Liangjun; Xiong Changhuai; Wang Xianyuan

    2005-01-01

    Steam generator (SG) is one of the key safe important equipment of NPP, which is covered by NPP aging management program. Steam Generator Aging Management Dabatase (SGAMDB) is developed to provide necessary information for SG aging management. RINPO is developing SGAMDB for domestic NPP. This system contains information and data about SG design, manufacture, operation and maintenance. The information include NPP fundamental data, SG design data, SG aging mechanism, SG operation data, SG ISI data, SG maintenance data and SG evaluation interface. The system runs at the intranet of Qinshan-1 NPP with B/S mode. It can provide information inquire and fundamental analysis for NPP SG aging team and SG aging researcher's. In addition, it provides necessary information and data for SG aging analysis and evaluation, such as all pressure test process and flaws of tubes, and collects the analysis results. (authors)

  6. Application of numerical analysis techniques to eddy current testing for steam generator tubes

    International Nuclear Information System (INIS)

    Morimoto, Kazuo; Satake, Koji; Araki, Yasui; Morimura, Koichi; Tanaka, Michio; Shimizu, Naoya; Iwahashi, Yoichi

    1994-01-01

    This paper describes the application of numerical analysis to eddy current testing (ECT) for steam generator tubes. A symmetrical and three-dimensional sinusoidal steady state eddy current analysis code was developed. This code is formulated by future element method-boundary element method coupling techniques, in order not to regenerate the mesh data in the tube domain at every movement of the probe. The calculations were carried out under various conditions including those for various probe types, defect orientations and so on. Compared with the experimental data, it was shown that it is feasible to apply this code to actual use. Furthermore, we have developed a total eddy current analysis system which consists of an ECT calculation code, an automatic mesh generator for analysis, a database and display software for calculated results. ((orig.))

  7. The testing of a steam-water separating device used for vertical steam generators

    International Nuclear Information System (INIS)

    Ding Xunshen; Cui Baoyuan; Xue Yunkui; Liu Shixun

    1989-01-01

    The air-water screening tests of a steam-water separating device used for vertical steam generators at low pressure are introduced. The article puts emphasis on the qualification test of the steam-water separating device at hot conditions in a high temperature and pressure water test rig. The performance of the comprehensive test of the steam-water separating device indicates that the humidity of the steam at the drier exit is much less than the specified amount of 0.25%

  8. Acoustic leak detection of LMFBR steam generator

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Yoshida, Kazuo

    1993-01-01

    The development of a water leak detector with short response time for LMFBR steam generators is required to prevent the failure propagation caused by the sodium-water reaction and to maintain structural safety in steam generators. The development of an acoustic leak detector assuring short response time has attracted. The purpose of this paper is to confirm the basic detection feasibility of the active acoustic leak detector, and to investigate the leak detection method by erasing the background noise by spectrum analysis of the passive acoustic leak detector. From a comparison of the leak detection sensitivity of the active and the passive method, the active method is not influenced remarkably by the background noise, and it has possibility to detect microleakage with short response time. We anticipate a practical application of the active method in the future. (author)

  9. Steam generator in the SNR-project

    International Nuclear Information System (INIS)

    van Westenbrugge, J.K.

    1979-01-01

    The design philosophy of steam generators for 1300 MWe LMFBR's is presented. The basis for this philosophy is the present experience with the licensing of the SNR-300. This experience is reported. The approach for the steam generators for the 1300 MWe LMFBR is elaborated on, both for accident prevention and damage limitation, for the component itself as well as for the system design. Both Design Base Accident and Hypothetical Accidents are discussed. 8 refs

  10. Inverted Steam Generators for Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Matal, Oldřich; Šimo, Tomáš; Matal, Oldřich Jr.

    2013-01-01

    Conclusions: Two inverted steam generators of the Czech industry provenience have still been in successful operation with no water into sodium leaks at BOR 60 (RIAR Dimitrovgrad, Russian Federation). Micromodular inverted steam generator (MMISG) since 1981 and modular inverted steam generator (MISG) since 1991. In the framework of the CP ESFR project predesign studies of 100 MW (thermal) ISG modules were performed with the consideration of MMISG and MISG design, operational and safety benefits and experience. Development of material and technology for sodium heated steam generators components reflecting contemporary domestic industrial conditions in the Czech Republic was restarted in the years 2003 to 2004 and supported in the years 2008 to 2011 by the European CP ESFR project and by the Ministry of Industry and Trade of the Czech Republic

  11. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  12. Dynamic Characteristics of Steam Generator Tubes with Defect due to Wear

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangjin; Rhee, Huinam [Sunchon National Univ., Sunchon (Korea, Republic of); Yoon, Doo Byung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    These defects may affect the dynamic characteristics of tubes, and therefore, the vibrational behavior of the tube due to flow-induced loads can be varied. Change in the vibrational response of a tube may result in different wear characteristics from the design condition, which must be checked for both safety and economic point of view. This paper deals with the study on the effect of wears or cracks on the dynamic characteristics of steam generator tubes using finite element analysis. In this paper the effect of defects on the surface due to wear on the variation of dynamic characteristics of steam generator tubes was studied using the finite element analysis. The changes of natural frequencies and mode shapes can directly affect the flow-induced vibration response characteristics, therefore, they must be evaluated appropriately. The results in this study can be a good basis to estimate the FIV characteristics of the steam generator tubes having defects such as wear or crack.

  13. 1x2M steel performance in the BOR-60 steam generator

    International Nuclear Information System (INIS)

    Golovanov, V.N.; Shamardin, V.K.; Kondratiev, V.I.; Kryukov, F.N.; Chernobrovkin, Yu.V.; Bulanova, T.M.; Bai, V.F.

    The results from studies of 1x2M steel characteristics are presented. This steel was used as the material for the BOR-60 steam generator that had been in operation under the steam generating mode for 18,000 hs (35,000 hs in sodium). It was revealed that the pit corrosion depth on the water/steam side evaporative tube surfaces was about 0.25 μm and less and the total corrosion rate was less than 0.06 mm/y. The mechanical properties of the material were essentially similar both in the evaporator and superheater and met all the requirements imposed on. Based on the analysis of data on the decarbonizaton depth in sodium and on the corrosion damage in water and steam it was concluded that 1x2M steel can be successfully used as the steam generator material at the operating temperatures up to 470 deg. C and had sufficiently longer service-life as compared to 18,000 hs. (author)

  14. A Receding Horizon Controller for the Steam Generator Water Level

    International Nuclear Information System (INIS)

    Na, Man Gyun; Lee, Yoon Joon

    2003-01-01

    In this work, the receding horizon control method was used to control the water level of nuclear steam generators and applied to two linear models and also a nonlinear model of steam generators. A receding horizon control method is to solve an optimization problem for finite future steps at current time and to implement the first optimal control input as the current control input. The procedure is then repeated at each subsequent instant. The dynamics of steam generators is very different according to power levels. The receding horizon controller is designed by using a reduced linear steam generator model fixed over a certain power range and applied to a Westinghouse-type (U-tube recirculating type) nuclear steam generator. The proposed controller designed at a fixed power level shows good performance for any other power level within this power range. The steam generator shows actually nonlinear characteristics. Therefore, the proposed algorithm is implemented for a nonlinear model of the nuclear steam generator to verify its real performance and also shows good responses

  15. Proceedings of steam generator sludge deposition in recirculating and once through steam generator upper tube bundle and support plates

    International Nuclear Information System (INIS)

    Baker, R.L.; Harvego, E.A.

    1992-01-01

    The development of remedial measures of shot peening have given nuclear utilities viable measures to address primary water stress corrosion cracking to extend steam generator life. The nuclear utility industry is now faced with potential replacement of steam generators in nuclear power plants due to stress corrosion cracking and intergranular attach in crevice locations on the secondary side of steam generators at tube support plates and at the crevice at the top of the tube sheet. Significant work has been done on developing and understanding of the effects of sludge buildup on the corrosion process at these locations. This session was envisioned to provide a forum for the development of an understanding of the mechanisms which control the transport and deposition of sludge on the secondary side of steam generators. It is hoped that this information will aid utilities in monitoring the progression of fouling of these crevices by further knowledge in where to look for the onset of support plate crevice fouling. An understanding of the progression of fouling from upper tube support plates to those lower in the steam generator where higher temperatures cause the corrosion process to initiate first can aid the nuclear utility industry in developing remedial measures for this condition and in providing a forewarning of when to apply such remedial measures

  16. Material choices for the commercial fast reactor steam generators

    International Nuclear Information System (INIS)

    Willby, C.; Walters, J.

    1978-01-01

    Experience with fast reactor steam generators has shown them to be critical components in achieving a high availability. This paper presents the designers views on the use of ferritic materials for steam generators and describes the proposed design of the steam generators for the Commercial Fast Reactor (CFR), prototype of which are to be inserted in the Prototype Fast Reactor at Dounreay. (author)

  17. Leak on a steam generator tube: in-depth analysis

    International Nuclear Information System (INIS)

    Berger, J.; Deotto, G.; Mathon, C.; Madurel, A.; Pitner, P.; Gay, N.; Guivarch, M.

    2015-01-01

    A circumferential through crack was observed on a steam generator tube of the unit 2 of the Fessenheim plant. Destructive tests showed that the crack was due to cycle fatigue combined with the presence of inter-granular corrosion zones. An in-depth analysis based on simulations shows that the combination of 5 elements caused the crack. First, a specific position of the anti-vibration bar near this tube, secondly, a local presence of fouling, these 2 first elements led to an increase of the tube vibratory level. Thirdly, the 600 MA alloy used is known to be susceptible to corrosion. Fourthly, the trapping of chemical species on the secondary circuit side due to the presence of interstices on the crosspiece and fifthly, the presence of spots where inter-granular corrosion developed. (A.C.)

  18. Simulation of a main steam line break with steam generator tube rupture using trace

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022, Valencia (Spain)

    2012-07-01

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation of the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)

  19. Chemical control and design considerations for CANDU-PHW steam generators

    International Nuclear Information System (INIS)

    Frost, C.R.; Churchill, B.R.

    1978-01-01

    Ontario Hydro presently operates eight nuclear power units with a total capacitiy of about 4000 MW(e) net. Operating experience has been with Monel-400 and with Inconel-600 tubed steam generators using sodium phosphate or all volatile control of the boiler steam and water system. With a heavy water Heat Transport System, steam generator tube integrity is an essential ingredient of economical power production. Only three steam generator tube failures have occurred so far in about 40 unit-years operation. None was attributable to corrosion. Factors in the good reliability are, careful engineering design, good quality control at all stages of tubing and steam generator manufacture and close chemical control. The continuing evolution of our steam generator design means that future requirements will be more stringent. (author)

  20. The role of the safety analysis organization in steam generators replacement and reactor vessel head replacement evaluations

    International Nuclear Information System (INIS)

    Choe, Whee G.; Boatwright, W.J.

    2004-01-01

    When a major component in a nuclear power plant is replaced, especially the steam generators, the plant operator is presented a rare opportunity to learn from operating experience and significantly improve the performance, reliability and robustness of the plant. In addition to the use of improved materials, improved design margins can be built into the component specification that can later be used to provide meaningful operating margins. A Safety Analysis organization that is well-integrated with other plant organizations and possesses a detailed knowledge of the plant design and licensing bases can effectively balance the wants and needs of each organization to optimize the benefits realized by the plant as a whole. Knowledge of the assumptions, limitations, and available margins, both analytical and operating, can be used to specify a replacement steam generator design that optimizes costs and operating improvements. The work scope required to support the new design can be controlled through carefully selected and evaluated restrictions in operations, development of alternate operating strategies, and imposition of appropriate limitations. The important point is that the effective Safety Analysis organization must possess both the breadth and depth of knowledge of the plant design and operations and proactively use this information to support the replacement steam generator project. (author)

  1. Steam generator tubing development for commercial fast breeder reactors

    International Nuclear Information System (INIS)

    Sessions, C.E.; Uber, C.F.

    1981-01-01

    The development work to design, manufacture, and evaluate pre-stressed double-wall 2/one quarter/ Cr-1 Mo steel tubing for commercial fast breeder reactor steam generator application is discussed. The Westinghouse plan for qualifying tubing vendors to produce this tubing is described. The results achieved to date show that a long length pre-stressed double-wall tube is both feasible and commercially available. The evaluation included structural analysis and experimental measurement of the pre-stress within tubes, as well as dimensional, metallurgical, and interface wear tests of tube samples produced. This work is summarized and found to meet the steam generator design requirements. 10 refs

  2. Corrosion aspects in steam generators of nuclear power plants

    International Nuclear Information System (INIS)

    Visoni, E.; Santos Pinto, M. dos

    1988-01-01

    Steam generators of pressurized water reactors (PWR), transfer heat from a primary coolant system to a secondary coolant system. Primary coolant water is heated in the core and passes through the steam generator that transfer heat to the secondary coolant water. However, the steam generator is dead for ionic impurities, corrosion products and fabrication/maintenence residues. These impurities concentrate between crevice and cracks. Many types of degradation mechanisms affect the tubes. The tubes are dented, craked, ovalized, wasted, etc. This paper describes the main corrosion problems in steam generators and includes the corrective actions to considered to reduce or eliminate these corrosion problems. (author) [pt

  3. PMK-2. Experimental study on steam generator behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Ezsoel, G.; Szabados, L.; Trosztel, I. [KFKI Atomic Energy Research Inst., Budabest (Hungary)

    1995-12-31

    The PMK-2 is a full pressure scaled-down model of the Paks Nuclear Power Plant, with a 1:2070 scaling ratio for the volume and power. It has a steam generator model which is a vertical section of the horizontal steam generator. The model has hot and cold collectors similarly to the steam generators of the plant. The heat transfer tubes are horizontal tubes. There are 82 rows of tubes and the elevations, as well as the heat transfer surface distribution is the same as in the plant. The elevation of the feed water supply is similar to that of the plant. To study the temperature distribution in both the primary and the secondary side several thermocouples are built in, in addition to the overall instrumentation of the loop which has again a high number of measurement channels. Paper gives a description and results of SPE-4, with special respect to the steam generator behaviour in both steady state and transient conditions. Axial distribution of coolant and feedwater temperatures are given for the primary and the secondary side of hot and cold collectors and the temperature distribution in the centre of steam generator. (orig.).

  4. PMK-2. Experimental study on steam generator behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Ezsoel, G; Szabados, L; Trosztel, I [KFKI Atomic Energy Research Inst., Budabest (Hungary)

    1996-12-31

    The PMK-2 is a full pressure scaled-down model of the Paks Nuclear Power Plant, with a 1:2070 scaling ratio for the volume and power. It has a steam generator model which is a vertical section of the horizontal steam generator. The model has hot and cold collectors similarly to the steam generators of the plant. The heat transfer tubes are horizontal tubes. There are 82 rows of tubes and the elevations, as well as the heat transfer surface distribution is the same as in the plant. The elevation of the feed water supply is similar to that of the plant. To study the temperature distribution in both the primary and the secondary side several thermocouples are built in, in addition to the overall instrumentation of the loop which has again a high number of measurement channels. Paper gives a description and results of SPE-4, with special respect to the steam generator behaviour in both steady state and transient conditions. Axial distribution of coolant and feedwater temperatures are given for the primary and the secondary side of hot and cold collectors and the temperature distribution in the centre of steam generator. (orig.).

  5. Nuclear steam generator sludge lance method and apparatus

    International Nuclear Information System (INIS)

    Shirey, R.A.; Murray, D.E.

    1991-01-01

    This paper describes a sludge lancing system for removing sludge deposits from an interior region of a steam generator. It comprises: a peripheral fluid injection means for injecting a fluid at a high pressure about a periphery of the steam generator, the peripheral fluid injection means comprising at least one elongated fluid conduit, at least one injection nozzle and a joint positioned at a predetermined point along the elongated fluid conduit for permitting the peripheral fluid injection means to bend to a predetermined angle at the joint within the steam generator; a reciprocable fluid injection means for injecting a fluid at a high pressure toward the sludge deposits and dislodging the sludge deposits; and a supporting means positioned within the interior of the steam generator for supporting the reciprocable fluid injection means throughout the reciprocation of the reciprocable fluid injection means

  6. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  7. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-01-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO 2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  8. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  9. Glas generator for the steam gasification of coal with nuclear generated heat

    International Nuclear Information System (INIS)

    Buchner, G.

    1980-01-01

    The use of heat from a High Temperature Reactor (HTR) for the steam gasification of coal saves coal, which otherwise is burnt to generate the necessary reaction heat. The gas generator for this process, a horizontal pressure vessel, contains a fluidized bed of coal and steam. An ''immersion-heater'' type of heat exchanger introduces the nuclear generated heat to the process. Some special design problems of this gasifier are presented. Reference is made to the present state of development of the steam gasification process with heat from high temperature reactors. (author)

  10. Chemical cleaning an essential part of steam generator asset management

    International Nuclear Information System (INIS)

    Amman, Franz

    2008-01-01

    Chemical Cleaning an essential part of Steam Generator asset management accumulation of deposits is intrinsic for the operation of Steam Generators in PWRs. Such depositions often lead to reduction of thermal performance, loss of component integrity and, in some cases to power restrictions. Accordingly removal of such deposits is an essential part of the asset management of the Steam Generators in a Nuclear Power Plant. Every plant has its individual condition, history and constraints which need to be considered when planning and performing a chemical cleaning. Typical points are: - Sludge load amount and constitution of the deposits - Sludge distribution in the steam generator - Existing or expected corrosion problems - Amount and tendency of fouling for waste treatment Depending on this points the strategy for chemical cleaning shall be evolved. the range of treatment starts with very soft cleanings with a removal of approx 100 kg per steam generator and goes to a full scale cleaning which can remove up to several thousand kilograms of deposits from a steam generator. Depending on the goal to be achieved and the steam generator present an adequate cleaning method shall be selected. This requires flexible and 'customisable' cleaning methods that can be adapted to the individual needs of a plant. Such customizing of chemical cleaning methods is an essential factor for an optimized asset management of the steam generator in a nuclear power plant

  11. Steam generator materials

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Han, J. H.; Kim, H. P.; Lim, Y. S.; Lee, D. H.; Suh, J. H.; Hwang, S. S.; Hur, D. H.; Kim, D. J.; Kim, Y. H.

    2002-05-01

    In order to keep the nuclear power plant(NPP)s safe and increase their operating efficiency, axial stress corrosion cracking(SCC)(IGA/IGSCC, PWSCC, PbSCC) test techniques were developed and SCC property data of the archive steam generator tubing materials having been used in nuclear power plants operating in Korea were produced. The data obtained in this study were data-based, which will be used to clarify the damage mechanisms, to operate the plants safely, and to increase the lifetime of the tubing. In addition, the basic technologies for the improvement of the SCC property of the tubing materials, for new SCC inhibition, for damaged tube repair, and for manufacturing processes of the tubing were developed. In the 1 phase of this long term research, basic SCC test data obtained from the archive steam generator tubing materials used in NPPs operating in Korea were established. These basic technologies developed in the 1 phase will be used in developing process optimization during the 2 phase in order to develop application technologies to the field nuclear power plants

  12. Mechanical design of the hot steam headers of the THTR-300 steam generators

    International Nuclear Information System (INIS)

    Blumer, U.; Stumpf, M.

    1988-01-01

    The high pressure steam headers of the THTR steam generators have been subject to special attention during the design phase due to the following reasons: these components are the pressure retaining parts with the heaviest wall thickness in the region of the steam generators; they therefore are sensitive to thermal transient conditions; they are operated in the elevated temperature regime, where creep effects cannot be neglected; there is almost no service experience from fossil steam generators with this type of material (Alloy 800). Safety consideration therefore have been rather extensive and have focussed on two main areas which will be treated in this paper: 1. Analytical investigations on the cyclic material behaviour under all specified operating conditions, taking into account the non-elastic response of the material. 2. Limitation of the consequences of a header rupture by installation of heavy whip restraints. Elastic-plastic-creep analyses: The analyses were performed in different stages and are explained in the corresponding order: Evaluation of the critical location on the header and establishment of a simplified model of a nozzle region for further analysis. Preliminary thermal analyses of all specified transient conditions on simplified procedures, in order to establish a severity ranking of the conditions. Establishment of representative loading blocks. Evaluation of the material properties for thermal and structural, especially non-elastic behaviour. Detailed thermal analyses. Detailed structural analyses of the non-elastic cyclic response. Extrapolation for all cycles and assessment of the results by design codes. Discussion of the results. Header whip restraint design: In addition to the above analysis efforts, heavy whip restraints were provided to assure limitation of the effects of a header failure. This pager shows the measures that were taken to restrain the movement in case of longitudinal and transverse breaks: The anti-whip designs are

  13. Nuclear steam generator tubesheet shield

    International Nuclear Information System (INIS)

    Nickerson, J.H.D.; Ruhe, A.

    1982-01-01

    The invention involves improvements to a nuclear steam generator of the type in which a plurality of U-shaped tubes are connected at opposite ends to a tubesheet and extend between inlet and outlet chambers, with the steam generator including an integral preheater zone adjacent to the downflow legs of the U-shaped tubes. The improvement is a thermal shield disposed adjacent to an upper face of the tubesheet within the preheater zone, the shield including ductile cladding material applied directly to the upper face of the tubesheet, with the downflow legs of the U-shaped tubes extending through the cladding into the tubesheet

  14. Steam and sodium leak simulation in a fluidized-bed steam generator

    International Nuclear Information System (INIS)

    Vaux, W.G.; Keeton, A.R.; Keairns, D.L.

    1977-01-01

    A fluidized-bed steam generator for the liquid metal fast breeder reactor enhances plant availability and minimizes the probability of a water/sodium reaction. An experimental test program was conceived to assess design criteria and fluidized-bed operation under conditions of water, steam, and sodium leaks. Sodium, steam, and water were leaked into helium-fluidized beds of metal and ceramic particles at 900 F. Test results show the effects of leaks on the heat transfer coefficient, quality of fluidization, leak detection, and cleanup procedures

  15. Long-term damage management strategies for optimizing steam generator performance

    International Nuclear Information System (INIS)

    Egan, G.R.; Besuner, P.M.; Fox, J.H.; Merrick, E.A.

    1991-01-01

    Minimizing long-term impact of steam generator operating, maintenance, outage, and replacement costs is the goal of all pressurized water reactor utilities. Recent research results have led to deterministic controls that may be implemented to optimize steam generator performance and to minimize damage accumulation. The real dilemma that utilities encounter is the decision process that needs to be made in the face of uncertain data. Some of these decisions involve the frequency and extent of steam generator eddy current tube inspections; the definition of operating conditions to minimize the rate of corrosion reactions (T (hot) , T (cold) ; and the imposition of strict water quality management guidelines. With finite resources, how can a utility decide which damage management strategy provides the most return for its investment? Aptech Engineering Services, Inc. (APTECH) developed a damage management strategy that starts from a deterministic analysis of a current problem- primary water stress corrosion cracking (PWSCC). The strategy involves a probabilistic treatment that results in long-term performance optimization. By optimization, we refer to minimizing the total cost of operating the steam generator. This total includes the present value costs of operations, maintenance, outages, and replacements. An example of the application of this methodology is presented. (author)

  16. Steam generator replacement at Surry Power Station

    International Nuclear Information System (INIS)

    McKay, H.S.

    1982-01-01

    The purposes of the steam generator repair program at Surry Power Station were to repair the tube degradation caused by corrosion-related phenomena and to restore the integrity of the steam generators to a level equivalent to new equipment. The repair program consisted of (1) replacing the existing lower-shell assemblies with new ones and (2) adding new moisture separation equipment to the upper-shell assemblies. These tasks required that several pieces of reactor coolant piping, feedwater piping, main steam piping, and the steam generator be cut and refurbished for reinstallation after the new lower shell was in place. The safety implications and other potential effects of the repair program both during the repair work and after the unit was returned to power were part of the design basis of the repair program. The repair program has been completed on Unit 2 without any adverse effects on the health and safety of the general public or to the personnel engaged in the repair work. Before the Unit 1 repair program began, a review of work procedures and field changes for the Unit 2 repair was conducted. Several major changes were made to avoid recurrence of problems and to streamline procedures. Steam generator replacements was completed on June 1, 1981, and the unit is presently in the startup phase of the outrage

  17. Emergency makeup of nuclear steam generators in blackout conditions

    International Nuclear Information System (INIS)

    Korolev, A.V.; Derevyanko, O.V.

    2014-01-01

    The paper describes an original solution for using steam energy to organize makeup of NPP steam generators in blackout conditions. The proposed solution combines a disk friction turbine and an axial turbine in a single housing to provide a high overall technical effect enabling the replenishment of nuclear steam generators with steam using the pump turbine drive assembly. The application of the design is analyzed and its efficiency and feasibility are shown

  18. Ecotaxes and their impact in the cost of steam and electric energy generated by a steam turbine system

    International Nuclear Information System (INIS)

    Montero, Gisela

    2006-01-01

    Ecotaxes allow the internalization of costs that are considered externalities associated with polluting industrial process emissions to the atmosphere. In this paper, ecotaxes internalize polluting emissions negative impacts that are added to electricity and steam generated costs of a steam turbine and heat recovery systems from a utilities refinery plant. Steam costs were calculated by means of an exergy analysis tool and Aspen Plus simulation models. Ecotaxes were calculated for specific substances emitted in the refinery flue gases, based on a toxicity and pollution scale. Ecotaxes were generated from a model that includes damages produced to biotic and abiotic resources and considers the relative position of those substances in a toxicity and pollution scale. These ecotaxes were internalized by an exergoeconomic analysis resulting in an increase in the cost per kWh produced. This kind of ecotax is not applied in Mexico. The values of ecotaxes used in the cost determination are referred to the values currently applied by some European countries to nitrogen oxides emissions. (author)

  19. Fifth CNS international steam generator conference

    International Nuclear Information System (INIS)

    2006-01-01

    The Fifth CNS International Steam Generator Conference was held on November 26-29, 2006 in Toronto, Ontario, Canada. In contrast with other conferences which focus on specific aspects, this conference provided a wide ranging forum on nuclear steam generator technology from life-cycle management to inspection and maintenance, functional and structural performance characteristics to design architecture. The 5th conference has adopted the theme: 'Management of Real-Life Equipment Conditions and Solutions for the Future'. This theme is appropriate at a time of transition in the industry when plants are looking to optimize the performance of existing assets, prevent costly degradation and unavailability, while looking ahead for new steam generator investments in life-extension, replacements and new-build. More than 50 technical papers were presented in sessions that gave an insight to the scope: life management strategies; fouling, cleaning and chemistry; replacement strategies and new build design; materials degradation; condition assessment/fitness for service; inspection advancements and experience; and thermal hydraulic performance

  20. Fast reactor steam generators with sodium on the tube side. Design and operational parameters

    International Nuclear Information System (INIS)

    1994-01-01

    A comparison of design and operational characteristics as well as analysis of experience gained during the long terms operation of the Micro Module Inverse Steam Generator and Module Inverse Steam Generator at BOR 60 reactor are main aims of this technical report. 20 refs, 47 figs, 14 tabs

  1. Evaluation of Oconee steam-generator debris. Final report

    International Nuclear Information System (INIS)

    Rigdon, M.A.; Rubright, M.M.; Sarver, L.W.

    1981-10-01

    Pieces of debris were observed near damaged tubes at the 14th support plate elevation in the Oconee 1-B steam generator. A project was initiated to evaluate the physical and chemical nature of the debris, to identify its source, and to determine its role in tube damage at this elevation. Various laboratory techniques were used to characterize several debris and mill scale samples. Data from these samples were then compared with each other and with literature data. It was concluded that seven of eight debris samples were probably formed in the steam generator. Six of these samples were probably formed by high temperature aqueous corrosion early in the life of the steam generator. The seventh sample was probably formed by the deposition and spalling of magnetite on the Inconel steam generator tubes. None of the debris samples resembled any of the mill scale samples

  2. Steam generators under construction for the SNR-300 power plant

    Energy Technology Data Exchange (ETDEWEB)

    Essebaggers, J

    1975-07-01

    The prototype straight tube and the helical coil-steam generator has been designed and fabricated of which the straight tube steam generator has been successfully tested for over 3000 hours at prototypical conditions and is presently being dismantled for detailed examination of critical designed features. The prototype helical coil steam generator is presently under testing in the 50 MWt test facility at TNO-Hengelo with approximately 500 hours of operation at full load conditions. In an earlier presentation the design and fabrication of the prototype steam generators have been presented, while for this presentation the production units for SNR-300 will be discussed. Some preliminary information will be presented at this meeting of the dismantling operations of the prototype straight tube steam generator. (author)

  3. Steam generators under construction for the SNR-300 power plant

    International Nuclear Information System (INIS)

    Essebaggers, J.

    1975-01-01

    The prototype straight tube and the helical coil-steam generator has been designed and fabricated of which the straight tube steam generator has been successfully tested for over 3000 hours at prototypical conditions and is presently being dismantled for detailed examination of critical designed features. The prototype helical coil steam generator is presently under testing in the 50 MWt test facility at TNO-Hengelo with approximately 500 hours of operation at full load conditions. In an earlier presentation the design and fabrication of the prototype steam generators have been presented, while for this presentation the production units for SNR-300 will be discussed. Some preliminary information will be presented at this meeting of the dismantling operations of the prototype straight tube steam generator. (author)

  4. Control system for fluid heated steam generator

    Science.gov (United States)

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  5. Nuclear steam generator tube to tubesheet joint optimization

    International Nuclear Information System (INIS)

    McGregor, Rod

    1999-01-01

    Industry-wide problems with Stress Corrosion Cracking in the Nuclear Steam Generator tube-to-tubesheet joint have led to costly repairs, plugging, and replacement of entire vessels. To improve corrosion resistance, new and replacement Steam Generator developments typically employ the hydraulic tube expansion process (full depth) to minimize tensile residual stresses and cold work at the critical transition zone between the expanded and unexpanded tube. These variables have undergone detailed study using specialized X-ray diffraction and analytical techniques. Responding to increased demands from Nuclear Steam Generator operators and manufacturers to credit the leak-tightness and strength contributions of the hydraulic expansion, various experimental tasks with complimentary analytical modelling were applied to improve understanding and control of tube to hole contact pressure. With careful consideration to residual stress impact, design for strength/leak tightness optimization addresses: Experimentally determined minimum contact pressure levels necessary to preclude incipient leakage into the tube/hole interface. The degradation of contact pressure at surrounding expansions caused by the sequential expansion process. The transient and permanent contact pressure variation associated with tubesheet hole dilation during Steam Generator operation. An experimental/analytical simulation has been developed to reproduce cyclic Steam Generator operating strains on the tubesheet and expanded joint. Leak tightness and pullout tests were performed during and following simulated Steam Generator operating transients. The overall development has provided a comprehensive understanding of the fabrication and in-service mechanics of hydraulically expanded joints. Based on this, the hydraulic expansion process can be optimized with respect to critical residual stress/cold work and the strength/leakage barrier criteria. (author)

  6. Advanced life-cycle management for an increased steam generator performance

    International Nuclear Information System (INIS)

    Beck, J.; Schwarz, T.; Bouecke, R.; Schneider, V.

    2006-01-01

    High steam generators performance is a prerequisite for high plant availability and possible life time extension. During operation, the performance is reduced by fouling of the heating tubes and by corrosion, resulting on a reduction of the heat-exchange area. Such steam generator degradation problems arise from mechanical degradation and a continuous ingress of non-volatile contaminants, i.e. corrosion products and salt impurities accumulated in the steam generators. In addition, the tube scales in general affect the steam generator thermal performance, which ultimately cause a reduction of power output. AREVA applied an integrated service for utilities to evaluate all operational parameters influencing the steam generator performance. The evaluation is assisted by a systematic approach to evaluate the major steam generator operational data. The different data are structured and indexed in a Cleanling-Matrix. The result of this matrix is a quantified, dimensionless figure, given as the Fouling Index. The Fouling Index allows to monitor the condition of steam generators, compare it to other plants and, in combination with a life-time management applied at several German utilities, it allows verified statements on the past operation. Based on these data, an extrapolation of the potential additional life-time of the component is possible. As such, the Fouling Index is a valuable tool concerning life-time extension considerations. The application of the cleanliness criteria in combination with operational data with respect to life-time monitoring and improvements of steam generator performance are presented. (author)

  7. Steam Generator Group Project. Annual report, 1982

    International Nuclear Information System (INIS)

    Clark, R.A.; Lewis, M.

    1984-02-01

    The Steam Generator Group Project (SGGP) is an NRC program joined by additional sponsors. The SGGP utilizes a steam generator removed from service at a nuclear plant (Surry 2) as a vehicle for research on a variety of safety and reliability issues. This report is an annual summary of progress of the program for 1982. Information is presented on the Steam Generator Examination Facility (SGEF), especially designed and constructed for this research. Loading of the generator into the SGEF is then discussed. The report then presents radiological field mapping results and personnel exposure monitoring. This is followed by information on field reduction achieved by channel head decontaminations. The report then presents results of a secondary side examination through shell penetrations placed prior to transport, confirming no change in generator condition due to transport. Decontamination of the channel head is discussed followed by plans for eddy current testing and removal of the plugs placed during service. Results of a preliminary profilometry examination are then provided

  8. Functional performance of the helical coil steam generator, Consolidated Nuclear Steam Generator (CNSG) IV system. Executive summary report

    International Nuclear Information System (INIS)

    Watson, G.B.

    1975-10-01

    The objective of this project was to study the functional performance of the CNSG - IV helical steam generator to demonstrate that the generator meets steady-state and transient thermal-hydraulic performance specifications and that secondary flow instability will not be a problem. Economic success of the CNSG concepts depends to a great extent on minimizing the size of the steam generator and the reactor vessel for ship installation. Also, for marine application the system must meet stringent specifications for operating stability, transient response, and control. The full-size two-tube experimental unit differed from the CNSG only in the number of tubes and the mode of primary flow. In general, the functional performance test demonstrated that the helical steam generator concept will exceed the specified superheat of 35F at 100% load. The experimental measured superheat at comparable operating conditions was 95F. Testing also revealed that available computer codes accurately predict trends and overall performance characteristics

  9. Mushrooms as Efficient Solar Steam-Generation Devices.

    Science.gov (United States)

    Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia

    2017-07-01

    Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for solar steam generation, but also provide inspiration for the future development of high-performance solar thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Human reliability analysis for steam generator feed-and-bleed accident in Bushehr NPP-1

    International Nuclear Information System (INIS)

    Jafarian, Reza; Sepanloo, Kamran

    2006-01-01

    According to the incident/accident reports, unsuccessful implementation of steam generator feed-and-bleed procedure is one of the most important events in nuclear power plants operation which greatly contributes to the level of risk of the plants. Generally, the loss of all feed water pumps flow (as one of the precursors) results in failure to maintain adequate cooling of the reactor core unless the operating crew initiate and follow the feed-and-bleed procedure correctly and timely. In this paper, firstly, a Human Reliability Analysis (HRA) event tree is presented delineating the major human activities and errors in the implementation of the steam generator (SG) feed-and-bleed procedure following the loss of (both normal and emergency) water feed to four SGs of Bushehr Nuclear Power Plant Unit 1 (BNPP-1). Secondly, the graphical method of task analysis as a part of HRA is used as a means of delineating correct and incorrect human actions. To be used in the probabilistic risk assessment (PRA), the outputs of the HRA event trees are fed into the system event trees, functional event trees or system fault trees. As a part of a probabilistic risk assessment of BNPP-1 and to assess the reliability of control room operators, a human reliability analysis model is applied based on the THERP (Technique for Human Error Rate Prediction) technique. The THERP method is used in the form of event trees named as the probability tree diagrams. In this research the Human Reliability Analysis event tree is constructed based on the background information and assumptions made and on a similar NPP task analysis. It is done so because the BNPP-1 is not an operational nuclear power plant. Thirdly, based on NUREG/CR-1278 Handbook, a computer program has been developed in Visual Basic language and used to illustrate the major human activities and determination of error rates of operators in the course of the implementation of the steam generator feed-and-bleed procedure. Finally, total

  11. Human Reliability Analysis for steam generator feed-and-bleed accident in Bushehr NPP-1

    International Nuclear Information System (INIS)

    Jafarian, R.; Sepanloo, K.

    2005-01-01

    According to the incident/accident reports, unsuccessful implementation of steam generator feed-and-bleed procedure is one of the most important events in nuclear power plants operation which greatly contributes to the level of risk of the plants. Generally, the loss of all feed water pumps flow (as one of the precursors) results in failure to maintain adequate cooling of the reactor core unless the operating crew initiate and follow the feed-and-bleed procedure correctly and timely. In this paper, firstly, a Human Reliability Analysis (HRA) event tree is presented delineating the major human activities and errors in the implementation of the steam generator (SG) feed-and-bleed procedure following the loss of (both normal and emergency) water feed to four SGs of Bushehr Nuclear Power Plant unit1 (BNPP-1). Secondly, the graphical method of task analysis as a part of HRA is used as a means of delineating correct and incorrect human actions. To be used in the probabilistic risk assessment (PRA), the outputs of the HRA event trees are fed into the system event trees, functional event trees or system fault trees. As a part of a probabilistic risk assessment of BNPP-1 and to assess the reliability of control room operators, a human reliability analysis model is applied based on the THERP (Technique for Human Error Rate Prediction) technique. The THERP method is used in the form of event trees named as the probability tree diagrams. In this research the Human Reliability Analysis event tree is constructed based on the background information and assumptions made and on a similar NPP task analysis. It is done so because the BNPP-1 is not an operational nuclear power plant. Thirdly, based on NUREG/CR-1278 Handbook, a computer program has been developed in Visual Basic language and used to illustrate the major human activities and determination of error rates of operators in the course of the implementation of the steam generator feed-and-bleed procedure. Finally, total

  12. Fission product retention during faults involving steam generator tube rupture

    International Nuclear Information System (INIS)

    Rodliffe, R.S.

    1983-08-01

    In some PWR fault conditions, such as stuck open safety relief valve in the secondary circuit or main steam line break, the release of fission products to the atmosphere may be increased by the leakage of primary coolant into the secondary circuit following steam generator tube rupture. The release may be reduced by retention either within the primary circuit or within the affected steam generator unit (SGU). The mechanisms leading to retention are reviewed and quantified where possible. The parameters on which any analysis will be most critically dependent are identified. Fission product iodine and caesium may be retained in the secondary side of a SGU either by partition to retained water or by droplet deposition on surfaces and subsequent evaporation to dryness. Two extreme simplifications are considered: SGU 'dry', i.e. the secondary side is steam filled, and SGU 'wet', i.e. the tube bundle is covered with water. Consideration is given to: the distribution of fission products between gaseous and aerosol forms; mechanisms for droplet formation, deposition and resuspension; fission product retention during droplet or film evaporation primary coolant mixing and droplet scrubbing in a wet SGU; and the performance of moisture separators and steam driers. (author)

  13. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    International Nuclear Information System (INIS)

    Cepcek, S.

    1997-01-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented

  14. Steam generator assessment for sustainable power plant operation

    International Nuclear Information System (INIS)

    Drexler, Andreas; Fandrich, Joerg; Ramminger, Ute; Montaner-Garcia, Violeta

    2012-09-01

    Water and steam serve in the water-steam cycle as the energy transport and work media. These fluids shall not affect, through corrosion processes on the construction materials and their consequences, undisturbed plant operation. The main objectives of the steam water cycle chemistry consequently are: - The metal release rates of the structural materials shall be minimal - The probability of selective / localized forms of corrosion shall be minimal. - The deposition of corrosion products on heat transfer surfaces shall be minimized. - The formation of aggressive media, particularly local aggressive environments under deposits, shall be avoided. These objectives are especially important for the steam generators (SGs) because their condition is a key factor for plant performance, high plant availability, life time extension and is important to NPP safety. The major opponent to that is corrosion and fouling of the heating tubes. Effective ways of counteracting all degradation problems and thus of improving the SG performance are to keep SGs in clean conditions or if necessary to plan cleaning measures such as mechanical tube sheet lancing or chemical cleaning. Based on more than 40 years of experience in steam-water cycle water chemistry treatment AREVA developed an overall methodology assessing the steam generator cleanliness condition by evaluating all available operational and inspection data together. In order to gain a complete picture all relevant water chemistry data (e.g. corrosion product mass balances, impurity ingress), inspection data (e.g. visual inspections and tube sheet lancing results) and thermal performance data (e.g. heat transfer calculations) are evaluated, structured and indexed using the AREVA Fouling Index Tool Box. This Fouling Index Tool Box is more than a database or statistical approach for assessment of plant chemistry data. Furthermore the AREVA's approach combines manufacturer's experience with plant data and operates with an

  15. Steam generator materials performance in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Chafey, J.E.; Roberts, D.I.

    1980-11-01

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760 0 C and produce superheated steam at 538 0 C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10 6 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc

  16. GVTRAN-PC-a steam generator transient simulator

    International Nuclear Information System (INIS)

    Nakata, H.

    1991-02-01

    Since an accuracy and inexpensive analysis capability is one of the desirable requirement in the reactor licensing procedure and, also, in instances when a severe accident sequence and its degree of severity must be estimated, the present work tries partially to fulfill that present need by developing a fast and acceptably accurate simulator. The present report presents the methodology utilized to develop GVTRAN-PC program, the steam generator simulation program for the microcomputer environment, which possess a capability to reproduce the experimental data with accuracies comparable to those of the mainframe simulators. The methodology is based on the mass and energy conservation in the control volumes which represents both the primary and the secondary fluid in the U-tube steam generator. The quasi-static momentum conservation in the secondary fluid control volumes determines in a semi-iterative scheme the liquid level in the feedwater chamber. The implementation of the moving boundary technique has allowed the tracking of the boundary of bulk boiling region with the utilization of a reduced number of control volumes in the tube region. GVTRAN-PC program has been tested against typical PWR pump trip transient experimental data and the calculation results showed good agreement in most representative parameters, viz. the feedchamber water-level and the steam dome pressure. (author)

  17. New steam generators slated for nuclear units

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is a brief discussion of Duke Power's plans to replace steam generators at its McGuire and Catawba nuclear units. A letter of intent to purchase (from Babcock and Wilcox) the 12 Westinghouse steam generators has been signed, but no constructor has been selected at this time. This action is brought about by the failures of more than 3000 tubes in these units

  18. Steam generator replacement from ALARA aspects

    International Nuclear Information System (INIS)

    Terry, I.; Breznik, B.

    2003-01-01

    This paper is going to consider radiological related parameters important for steam generator replacement (SGR) implementation. These parameters are identified as ALARA related parameters, owner-contractor relationship, planning, health physics with logistic services, and time required for the replacement. ALARA related parameters such as source or initial dose rate and plant system configuration define the initial conditions for the planning. There is room to optimise work planning. managerial procedures and also the staff during the implementation phase. The overview of these general considerations is based on the following background: using internationally available data and the experience of one of the vendors, i.e. Siemens-Framatome, and management experience of SG replacement which took place at Krsko NPP in the spring of 2000. Generally plant decisions on maintenance or repair procedures under radiation conditions take into account ALARA considerations. But in the main it is difficult to adjudge the results of an ALARA study, usually in the form of a collective dose estimate, because a comparison standard is missing. That is, very often the planned work is of a one-off nature so comparisons are not possible or the scopes are not the same. In such a case the collective doses for other types of work are looked at and a qualitative evaluation is made. In the case of steam generator replacement this is not the case. Over years of steam generator replacements world-wide a standard has been developed gradually. The first part of the following displays an overview of SGR and sets the Krsko SGR in perspective by applying dose analysis. The second part concentrates on the Krsko SGR itself and its ALARA aspects. (authors)

  19. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  20. Consequences of a double-ended severance of a steam generator tube and accidental development scenario

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Titov, V.F.; Poplavskii, V.M.; Baklushin, R.P.

    1988-01-01

    The results of theoretical analysis for accidental sequences in a modular steam generator are presented. The most probable water leak development in sodium in case of steam generator emergency stop faults is examined. In all schemes the reactor safety is preserved [fr

  1. Chemical cleaning of nuclear (PWR) steam generators

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.; Mundis, J.A.

    1982-01-01

    This paper reports on a significant research program sponsored by a group of utilities (the Steam Generator Owners Group), which was undertaken to develop a process to chemically remove corrosion product deposits from the secondary side of pressurized water reactor (PWR) power plant steam generators. Results of this work have defined a process (solvent system and application methods) that is capable of removing sludge and tube-to-tube support plate crevice corrosion products generated during operation with all-volatile treatment (AVT) water chemistry. Considers a plant-specific test program that includes all materials in the steam generator to be cleaned and accounts for the physical locations (proximity and contact) of those materials. Points out that prior to applying the process in an operational unit, the utility, with the participation of the NSSR vendor, must define allowable total corrosion to the materials of construction of the unit

  2. Analysis of Decay Heat Removal by Natural Convection in LMR with a Combined Steam Generator

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Eoh, Jae Hyuk; Han, Ji Woong; Lee, Tae Ho

    2011-01-01

    Liquid metal reactors (LMRs) conventionally employ an intermediate heat transport system (IHTS) to protect the nuclear core during a sodium-water reaction (SWR) event. However these SWR-related components increase plant construction costs. In order to eliminate the need for an IHTS, a combined steam generator, which is an integrated heat exchanger of a steam generator and intermediate heat exchanger (IHX), was proposed by the Korea Atomic Energy Research Institute (KAERI). The objective of this work is to analyze the natural circulation heat removal capability of the rector system using a combined steam generator. As a means of decay heat removal, a normal heat transport path is composed of a primary sodium system, intermediate lead-bismuth circuit combined with SG and steam/water system. This paper presents the results of the possible temperature and natural circulation flows in all circuits during a steady state for a given reactor power level varied as a function of time

  3. Steam generator operating experience: Update for 1984-1986

    International Nuclear Information System (INIS)

    Frank, L.; Stokley, J.

    1988-06-01

    This report summarizes operational events and degradation mechanisms affecting pressurized water reactor steam generator integrity, provides updated inspection results reported in 1984, 1985, and 1986, and highlights both prevalent problem areas and advances in improved equipment test practices, preventive measures, repair techniques, and replacement procedures. It describes equipment design features of the three major suppliers and discusses 68 plants in detail. Steam generator degradation mechanisms include intergranular stress corrosion cracking, primary water stress corrosion cracking, pitting, intergranular attack, and vibration wear that effects tube integrity and causes leakage. Plugging, sleeving heat treatment, peening, chemical cleaning, and steam generator replacements are described and regulatory instruments and inspection guidelines for nondestructive evaluations and girth weld cracking are discusses. The report concludes that although degradation mechanisms are generally understood, the elimination of unscheduled plant shutdowns and costly repairs resulting from leaking tubes has not been achieved. Highlights of steam generator research and unresolved safety issues are discussed. 21 refs., 8 tabs

  4. Analysis of the Nonlinear Density Wave Two-Phase Instability in a Steam Generator of 600MWe Liquid Metal Reactor

    International Nuclear Information System (INIS)

    Choi, Seok Ki; Kim, Seong O

    2011-01-01

    A 600 MWe demonstration reactor being developed at KAERI employs a once-through helically coiled steam generator. The helically coiled steam generator is compact and is efficient for heat transfer, however, it may suffer from the two-phase instability. It is well known that the density wave instability is the main source of instability among various types of instabilities in a helically coiled S/G in a LMR. In the present study a simple method for analysis of the density wave two phase instability in a liquid metal reactor S/G is proposed and the method is applied to the analysis of density wave instability in a S/G of 600MWe liquid metal reactor

  5. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report

    International Nuclear Information System (INIS)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report

  6. Upgraded Steam Generator Lancing System for Uljin NPP no.2

    International Nuclear Information System (INIS)

    Kim, Seok Tae; Jeong, Woo Tae; Hong, Sung Yull

    2005-01-01

    KEPRI(Korea Electric Power Research Institute) has developed various types of steam generator lancing systems since 1998. In this paper, we introduce a new lancing system with new improvements from the previous steam generator lancing system for Uljin NPP #2(nuclear power plant) constructed by KEPRI. The previous lancing system is registered as KALANS R -II and was developed for System-80 type steam generators. The previous lancing system was applied to Uljin unit #3 and it lowered radiation exposure of operators in comparison to manually operated lancing systems. And it effectively removed sludge accumulated around kidney bean zone in the Uljin unit #3 steam generators. But the previous lancing system could only clean partially the steam generators of Uljin unit #4. This was because the rail of the previous lancing system interfered with a part of the steam generator. Therefore we developed a new lancing system that can solve the interference problem. This new lancing system was upgraded from the previous lancing system. Also, a new lancing system for System-80 S/G will be introduced in this paper

  7. Steam generator life-management, reliability, maintenance and refurbishment

    International Nuclear Information System (INIS)

    Spekkens, P.

    2012-01-01

    SGC 2012 is a different kind of a conference - it has its own focus, initiatives and objectives and differs from its predecessors. It originated as the Steam Generator and Heat Exchanger Conference in 1990 - a time when premature degradation of steam generators with Alloy 600 tubes was rampant world-wide, and some CANDU steam generators had started to experience significant fouling and corrosion issues. The six previous steam generator conferences were held on a regular cycle, in a very similar format and with a similar theme. We are now in a different era in steam generators. The Alloy 600 tubing has been largely replaced by more robust materials, and the CANDU steam generators have been brought under much more intense and effective life cycle management. Performance of steam generators has improved greatly, and they are no longer considered at risk of limiting the life of the units. Indeed, most Incoloy 800 steam generators in CANDU units are considered to be capable of operating reliably through the 'second life' of the units and are not being replaced during refurbishments. Given this changing environment, the scope of this conference has been expanded from one to three areas: steam generators and heat exchangers as before, but also; controls, valves and pumps, and; reactor components and systems, Programs A, B and C, respectively. The conference is targeting to address the needs and interests of the operating utilities, and to 'focus on what needs attention'. As a means of 'focusing on what needs attention' an 'Issue-Identification and Definition' program was initiated last winter. The Issue-Identification Team operating with COG President Bob Morrison as its Executive Lead, worked to identify issues requiring attention in the three areas of interest. Of the many issues identified by the Team and elaborated on by the Program Developers of this conference, four were recommended for special attention: A. 'Operate Clean - Build Clean - Plant Wide': Despite their

  8. The progress of test and study for steam dryer in vertical steam generator

    International Nuclear Information System (INIS)

    Ding Xunshen

    1993-01-01

    Constructions, tests and test results are reviewed for three types of steam generator dryer that are concentric vertical corrugated separator, centrifugal conic separator and chevron separator. The last type is considered as the best one in comparison, which has been applied to Qinshan 300 MW steam generator. A number of pertinent remarks to draining scheme, hydraulic loss reduction, and conduct of test are given based on experiences

  9. Sodium and steam leak simulation studies for fluidized bed steam generators

    International Nuclear Information System (INIS)

    Keeton, A.R.; Vaux, W.G.; Lee, P.K.; Witkowski, R.E.

    1976-01-01

    An experimental program is described which was conducted to study the effects of sodium or steam leaking into an operating fluidized bed of metal or ceramic particles at 680 to 800 0 K. This effort was part of the early development studies for a fluidized-bed steam generator concept using helium as the fluidizing gas. Test results indicated that steam and small sodium leaks had no effect on the quality of fluidization, heat transfer coefficient, temperature distribution, or fluidizing gas pressure drop across the bed. Large sodium leaks, however, immediately upset the operation of the fluidized bed. Both steam and sodium leaks were detected positively and rapidly at an early stage of a leak by instruments specifically selected to accomplish this

  10. Steam generator waterlancing at DNGS

    International Nuclear Information System (INIS)

    Seppala, D.; Malaugh, J.

    1995-01-01

    Darlington Nuclear Generating Station (DNGS) is a four 900 MW Unit nuclear station forming part of the Ontario Hydro East System. There are four identical steam generators(SGs) per reactor unit. The Darlington SGs are vertical heat exchangers with an inverted U-tube bundle in a cylindrical shell. The DNGS Nuclear Plant Life Assurance Group , a department of DNGS Engineering Services have taken a Proactive Approach to ensure long term SG integrity. Instead of waiting until the tubesheets are covered by a substantial and established hard deposit; DNGS plan to clean each steam generator's tubesheet, first half lattice tube support assembly and bottom of the thermal plate every four years. The ten year business plan provides for cleaning and inspection to be conducted on all four SGs in each unit during maintenance outages (currently scheduled for every four years)

  11. Clinch river breeder reactor plant steam generator water quality

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, D; Lowe, P A

    1975-07-01

    The recent problems experienced by some LWR Steam Generators have drawn attention to the importance of system water quality and water/ steam side corrosion. Several of these reactor plants have encountered steam generator failures due to accelerated tube corrosion caused, in part, by poor water quality and corrosion control. The CRBRP management is aware of these problems, and the implications that they have for the Clinch River Breeder Reactor Plant (CPBRP) Steam Generator System (SGS). Consequently, programs are being implemented which will: (1) investigate the corrosion mechanisms which may be present in the CRBRP SGS; (2) assure steam generator integrity under design and anticipated off-normal water quality conditions; and (3) assure that the design water quality levels are maintained at all times. However, in order to understand the approach being used to examine this potential problem, it is first necessary to look at the CRBRP SGS and the corrosion mechanisms which may be present.

  12. Clinch river breeder reactor plant steam generator water quality

    International Nuclear Information System (INIS)

    Van Hoesen, D.; Lowe, P.A.

    1975-01-01

    The recent problems experienced by some LWR Steam Generators have drawn attention to the importance of system water quality and water/ steam side corrosion. Several of these reactor plants have encountered steam generator failures due to accelerated tube corrosion caused, in part, by poor water quality and corrosion control. The CRBRP management is aware of these problems, and the implications that they have for the Clinch River Breeder Reactor Plant (CPBRP) Steam Generator System (SGS). Consequently, programs are being implemented which will: 1) investigate the corrosion mechanisms which may be present in the CRBRP SGS; 2) assure steam generator integrity under design and anticipated off-normal water quality conditions; and 3) assure that the design water quality levels are maintained at all times. However, in order to understand the approach being used to examine this potential problem, it is first necessary to look at the CRBRP SGS and the corrosion mechanisms which may be present

  13. Recent technology for nuclear steam turbine-generator units

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Kuwashima, Hidesumi; Ueno, Takeshi; Ooi, Masao

    1988-01-01

    As the next nuclear power plants subsequent to the present 1,100 MWe plants, the technical development of ABWRs was completed, and the plan for constructing the actual plants is advanced. As for the steam turbine and generator facilities of 1,350 MWe output applied to these plants, the TC6F-52 type steam turbines using 52 in long blades, moisture separation heaters, butterfly type intermediate valves, feed heater drain pumping-up system and other new technologies for increasing the capacity and improving the thermal efficiency were adopted. In this paper, the outline of the main technologies of those and the state of examination when those are applied to the actual plants are described. As to the technical fields of the steam turbine system for ABWRs, the improvement of the total technologies of the plants was promoted, aiming at the good economical efficiency, reliability and thermal efficiency of the whole facilities, not only the main turbines. The basic specification of the steam turbine facilities for 50 Hz ABWR plants and the main new technologies applied to the turbines are shown. The development of 52 in long last stage blades, the development of the analysis program for the coupled vibration of the large rotor system, the development of moisture separation heaters, the turbine control system, condensate and feed water system, and the generators are described. (Kako, I.)

  14. Steam generator replacement at the Obrigheim nuclear power station

    International Nuclear Information System (INIS)

    Pickel, E.; Schenk, H.; Huemmler, A.

    1984-01-01

    The Obrigheim Nuclear Power Station (KWO) is equipped with a dual-loop pressurized water reactor of 345 MW electric power; it was built by Siemens in the period 1965 to 1968. By the end of 1983, KWO had produced some 35 billion kWh in 109,000 hours of operation. Repeated leaks in the heater tubes of the two steam generators had occurred since 1971. Both steam generators were replaced in the course of the 1983 annual revision. Kraftwerk Union AG (KWU) was commissioned to plant and carry out the replacement work. Despite the leakages the steam generators had been run safely and reliably over a period of 14 years until their replacement. Replacing the steam generators was completed within twelve weeks. In addition to the KWO staff and the supervising crew of KWU, some 400 external fitters were employed on the job at peak work-load periods. For the revision of the whole plant, work on the emergency systems and replacement of the steam generators a maximum number of approx. 900 external fitters were employed in the plant in addition to some 250 members of the plant crew. The exposure dose of the personnel sustained in the course of the steam generator replacement was 690 man-rem, which was clearly below previous estimates. (orig.) [de

  15. Evaluation of hideout return data from U.S. PWR steam generators

    International Nuclear Information System (INIS)

    Connor, W.M.; Richards, J.E.

    1988-01-01

    Since the middle to late 1970's, dramatic reductions in the quantities of impurities in the bulkwater of PWR steam generators have been made by U.S. utilities. Today most utilities operate at full power with impurity concentrations in the steam generator blowdown in the low ppb range, well within existing industry guideline control limits. Despite these efforts, some of these same utilities have subsequently encountered secondary side stress corrosion cracking (SCC) and intergranular attack (IGA) of steam generator tubing within deep tubesheet crevices and more recently at tube support intersections. It must, therefore, be concluded that either continuous low level input of contaminants within existing guideline limits, or intermittent short duration input, undetected by either current sampling and analysis techniques or procedures, are permitting ingress of corrosive impurity species which subsequently concentrate in flow-occluded regions to produce localized tube corrosion. To better understand both the quantity and composition of accumulated impurity species, more and more utilities, even those who have not experienced any steam generator corrosion, have begun to perform rigorous sampling and analysis evaluations of returning chemical contaminants each time the units are brought off-line. This paper will show examples of how these data are being used by U.S. industry to gain valuable information about accumulated contaminant inventories, to make cycle-to-cycle and plant-to-plant comparisons, and to develop plant specific actions to promote maximum contaminant removal. (author)

  16. Experimental facility design for study of fretting in steam generator tubes

    International Nuclear Information System (INIS)

    Balbiani, J.P.; Bergant, M.; Yawny, A.

    2012-01-01

    The design of an experimental facility for fretting wear testing of steam generator tubes under pressurized water up to 340 o C, is presented. The main component of the device consists in an autoclave which permits to recreate steam generator operating conditions. CAD CATIA V5R18, CAE ABAQUS and ASME Sec. VII Div. 1 (Rules for Construction of Pressure Vessels) were used along the design process. The design of the autoclave included the pressure vessel itself and the necessary flanges and nozzles. In addition, an axial dynamic sealing system was designed to allow for actuation from outside the pressure boundary. Complementary, typical tube - support contact conditions were analyzed and the principal variables affecting their mutual interaction determined. In addition, a simple device which allows performing fretting wear testing on steam generator tubes in air at room temperature was fabricated and the feasibility of a quantitative assessment of different aspects related with the fretting induced damage was explored. Characterization techniques available at Centro Atomico Bariloche, like light microscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX) and surface damage analysis by optic profilometry were shown to be appropriate for this aim. The designed facility will allow evaluating fretting damage of tubes - support combinations that might be used on the steam generator of the prototype reactor CAREM-25. It is also expected it could be applied to characterize fretting severity in other applications (nuclear fuel elements) (author)

  17. Three Mile Island Nuclear Station steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Hansen, C.A.

    1992-01-01

    The Three Mile Island-1 steam generators were chemically cleaned in 1991 by the B and W Nuclear Service Co. (BWNS). This secondary side cleaning was accomplished through application of the EPRI/SGOG (Electric Power Research Institute - Steam Generator Owners Group) chemical cleaning iron removal process, followed by sludge lancing. BWNS also performed on-line corrosion monitoring. Corrosion of key steam generator materials was low, and well within established limits. Liquid waste, subsequently processed by BWNS was less than expected. 7 tabs

  18. Technical development and its application on steam generator replacement

    International Nuclear Information System (INIS)

    Morita, Sadahiko; Hanzawa, Katsumi; Sato, Hajime; Kannoto, Yasuo.

    1995-01-01

    Twenty-two PWR nuclear power plants are now under commercial operation in Japan. Eight of these plants are scheduled to have their steam generators replaced by up-graded units as a social responsibility for improved reliability, economy and easier maintenance. To carry out steam generator replacement, main coolant pipe cutting and restoration techniques, remote controlled welding machines and other remote controlled equipment, templating techniques with which the new steam generator primary nozzles will fit the existing primary pipes correctly were developed. An adequate training program was carried out to establish these techniques and they were then applied in replacement work on site. The steam generators of the three plants were replaced completely in 1994. These newly developed techniques are to be applied in upcoming plants and replaced plants will be much reliable. (author)

  19. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1982-04-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1980. Tube defects occurred at 38% of the 97 reactors surveyed. This is a marginal improvement over 1979 when defects occurred at 41% of the reactors. The number of failed tubes was also lower, 0.14% of the tubes in service in 1980 compared with 0.20% of those in service in 1979. Analysis of the causes of these failures indicates that stress corrosion cracking was the leading failure mechanism. Reactors that used all-volatile treatment of secondary water, with or without full-flow condensate demineralization since start-up showed the lowest incidence of corrosion-related defects

  20. Research perspectives on the evaluation of steam generator tube integrity

    International Nuclear Information System (INIS)

    Muscara, J.; Diercks, D.R.; Majumdar, S.; Kupperman, D.S.; Bakhtiari, S.; Shack, W.J.

    2002-01-01

    Industry efforts have been largely successful in managing degradation of steam generator tubes due to wastage, pitting, and denting, but fretting, stress corrosions cracking (SCC) and intergranular attack have proved more difficult to manage. Although steam generator replacements are proceeding, there is substantial industry interest in operating with degraded steam generators, and significant numbers of plants will continue to do so. In most cases degradation of steam generator tubing by stress corrosion cracking is still managed by 'plug or repair on detection' because current NDE techniques for characterization of flaws and the knowledge of SCC crack growth rates are not accurate enough to permit continued operation. Replacement generators with improved designs and materials have performed well to date, but previous experience with the appearance of some types of SCC in Alloy 600 after 10 years or more of operation and laboratory results suggest additional understanding of corrosion performance of these materials is needed. This paper reviews some of the historical background that underlies current steam generator degradation management strategies and outlines some of the additional research that must be done to provide more effective management of degradation in current generators and provide greater assurance of satisfactory performance in replacement steam generators. (author)

  1. Data analysis algorithms for flaw sizing based on eddy current rotating probe examination of steam generator tubes

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Elmer, T.W.

    2009-01-01

    Computer-aided data analysis tools can help improve the efficiency and reliability of flaw sizing based on nondestructive examination data. They can further help produce more consistent results, which is important for both in-service inspection applications and for engineering assessments associated with steam generator tube integrity. Results of recent investigations at Argonne on the development of various algorithms for sizing of flaws in steam generator tubes based on eddy current rotating probe data are presented. The research was carried out as part of the activities under the International Steam Generator Tube Integrity Program (ISG-TIP) sponsored by the U.S. Nuclear Regulatory Commission. A computer-aided data analysis tool has been developed for off-line processing of eddy current inspection data. The main objectives of the work have been to a) allow all data processing stages to be performed under the same user interface, b) simplify modification and testing of signal processing and data analysis scripts, and c) allow independent evaluation of viable flaw sizing algorithms. The focus of most recent studies at Argonne has been on the processing of data acquired with the +Point probe, which is one of the more widely used eddy current rotating probes for steam generator tube examinations in the U.S. The probe employs a directional surface riding differential coil, which helps reduce the influence of tubing artifacts and in turn helps improve the signal-to-noise ratio. Various algorithms developed under the MATLAB environment for the conversion, segmentation, calibration, and analysis of data have been consolidated within a single user interface. Data acquired with a number of standard eddy current test equipment are automatically recognized and converted to a standard format for further processing. Because of its modular structure, the graphical user interface allows user-developed routines to be easily incorporated, modified, and tested independent of the

  2. Steam generator development in France for the Super Phenix project

    International Nuclear Information System (INIS)

    Robin, M.G.

    1975-01-01

    'Steam Generator Development for Super Phenix Project'. The development program of steam generators studied by Fives-Cail Babcock and Stein Industrie Companies, jointly with CEA end EDF, for the Super Phenix 1200 MWe Fast Breeder Power Plant, is presented. The main characteristics of both sodium heated steam generators are emphasized and experimental studies related to their key features are reported. (author)

  3. Particle Swarm Optimization to the U-tube steam generator in the nuclear power plant

    International Nuclear Information System (INIS)

    Ibrahim, Wesam Zakaria

    2014-01-01

    Highlights: • We establish stability mathematical model of steam generator and reactor core. • We propose a new Particle Swarm Optimization algorithm. • The algorithm can overcome premature phenomenon and has a high search precision. • Optimal weight of steam generator is 15.1% less than the original. • Sensitivity analysis and optimal design provide reference for steam generator design. - Abstract: This paper, proposed an improved Particle Swarm Optimization approach for optimize a U-tube steam generator mathematical model. The UTSG is one of the most important component related to safety of most of the pressurized water reactor. The purpose of this article is to present an approach to optimization in which every target is considered as a separate objective to be optimized. Multi-objective optimization is a powerful tool for resolving conflicting objectives in engineering design and numerous other fields. One approach to solve multi-objective optimization problems is the non-dominated sorting Particle Swarm Optimization. PSO was applied in regarding the choice of the time intervals for the periodic testing of the model of the steam generator

  4. Particle Swarm Optimization to the U-tube steam generator in the nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Wesam Zakaria, E-mail: mimi9_m@yahoo.com

    2014-12-15

    Highlights: • We establish stability mathematical model of steam generator and reactor core. • We propose a new Particle Swarm Optimization algorithm. • The algorithm can overcome premature phenomenon and has a high search precision. • Optimal weight of steam generator is 15.1% less than the original. • Sensitivity analysis and optimal design provide reference for steam generator design. - Abstract: This paper, proposed an improved Particle Swarm Optimization approach for optimize a U-tube steam generator mathematical model. The UTSG is one of the most important component related to safety of most of the pressurized water reactor. The purpose of this article is to present an approach to optimization in which every target is considered as a separate objective to be optimized. Multi-objective optimization is a powerful tool for resolving conflicting objectives in engineering design and numerous other fields. One approach to solve multi-objective optimization problems is the non-dominated sorting Particle Swarm Optimization. PSO was applied in regarding the choice of the time intervals for the periodic testing of the model of the steam generator.

  5. Changing the simualtor's steam generator

    International Nuclear Information System (INIS)

    Ruiz Martin, J.A.; Ortega Pascual, F.

    2006-01-01

    Two Spanish nuclear power plants (two PWR units each one) have planned to change their Westinghouse D-3 steam generators (SGo henceforth) for a new model, 61W/D3 from Siemens/KWU (SGn henceforth), during 1995/1997. This is the reason why TECNATOM has developed during 1994's last term, a new software for the full scope simulator that incorporates the modifications related to the steam generator substiution programme. This allows an anticipated training on the procedures, not only for normal, but for emergency procedures. As it is a component which has not yet been included in these plants, there are not real references or operative experience data. Therefore, the design of the validation strategy was one of the key points in this work. (author)

  6. Computer codes for simulation of Angra 1 reactor steam generator

    International Nuclear Information System (INIS)

    Pinto, A.C.

    1978-01-01

    A digital computer code is developed for the simulation of the steady-state operation of a u-tube steam generator with natural recirculation used in Pressurized Water Reactors. The steam generator is simulated with two flow channel separated by a metallic wall, with a preheating section with counter flow and a vaporizing section with parallel flow. The program permits the changes in flow patterns and heat transfer correlations, in accordance with the local conditions along the vaporizing section. Various sub-routines are developed for the determination of steam and water properties and a mathematical model is established for the simulation of transients in the same steam generator. The steady state operating conditions in one of the steam generators of ANGRA 1 reactor are determined utilizing this programme. Global results obtained agree with published values [pt

  7. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    International Nuclear Information System (INIS)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung

    1998-06-01

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials

  8. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-06-15

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials.

  9. Flaw analysis in steam generator tube

    International Nuclear Information System (INIS)

    Hutin, J.P.; Billon, F.

    1985-08-01

    Operating more than 30 PWR units, Electricite de France has to face several steam generator tube problems. One of the most serious difficulties is the stress corrosion cracking due to primary fluid, just above the tube sheet, in the roll transition region. With regard to availability it is, of course, a major concern; with regard to safety, the point is that tube rupture should be preceded by a significant primary-to-secondary leak during normal operation so that the reactor should be shut down before failure occurs. The demonstration of this assessment asks for experimental and analytical evidences. In 1981, Elecricite de France started a comprehensive program on that subject. A general description of this program and the main results are to be presented during the SMIRT-8 Conference. The purpose of the present paper is to develop in greater detail the analytical part of the work

  10. Emergency systems and protection equipment of modular steam generators for fast reactors

    International Nuclear Information System (INIS)

    Matal, O.

    The requirements are discussed for accident protection of modular steam generators for fast reactors. Accident protection is assessed for a modular through-flow steam generator and for a natural circulation modular steam generator. Benefits and constraints are shown and possible improvements are outlined for accident protection of liquid sodium fired modular steam generators. (Kr)

  11. Steam generator replacement at Bruce A: approach, results, and lessons learned

    International Nuclear Information System (INIS)

    Tomkiewicz, W.; Savage, B.; Smith, J.

    2008-01-01

    Steam Generator Replacement is now complete in Bruce A Units 1 and 2. In each reactor, eight steam generators were replaced; these were the first CANDU steam generator replacements performed anywhere in the world. The plans for replacement were developed in 2004 and 2005, and were summarized in an earlier paper for the CNS Conference held in November, 2006. The present paper briefly summarizes the methodologies and special processes used such as metrology, cutting and welding and heavy lifting. The paper provides an update since the earlier report and focuses on the project achievements to date, such as: - A combination of engineered methodology, laser metrology and precise remote machining led to accurate first time fit-ups of each new replacement steam generator and steam drums - Lessons learned in the first unit led to schedule improvements in the second unit - Dose received was lowest recorded for any steam generator replacement project. The experience gained and lessons learned from Units 1 and 2 will be valuable in planning and executing future replacement steam generator projects. A video was presented

  12. Stress analysis of LOFT steam generator blowdown cross-over line

    International Nuclear Information System (INIS)

    Singh, J.N.

    1978-01-01

    The purpose of this report is to demonstrate compliance of the LOFT Steam Generator Blowdown Cross-Over Piping with the ASME Boiler and Pressure Vessel Code, Section III, Subsection NC. Deadweight, thermal expansion, seismic, LOCE, and LOCA loads have been considered. With the addition of two snubbers, as shown in this report, the system conforms to all requirements

  13. Analysis and qualification of steam generator relief valves (BRU-A)

    International Nuclear Information System (INIS)

    Lathuile, C.; Serre, J. L.

    1997-01-01

    This paper presents a general overview of improvements foreseen in the frame of Safety Measures S01 and S10 in order to prevent and mitigate consequences of a large primary to secondary leakage. Among these improvements, a more detailed description of methodology and results relative to Steam Generator Relief Valves (BRU-A) qualification tests is presented. (author)

  14. SWAAM code development, verification and application to steam generator design

    International Nuclear Information System (INIS)

    Shin, Y.W.; Valentin, R.A.

    1990-01-01

    This paper describes the family of SWAAM codes developed by Argonne National Laboratory to analyze the effects of sodium/water reactions on LMR steam generators. The SWAAM codes were developed as design tools for analyzing various phenomena related to steam generator leaks and to predict the resulting thermal and hydraulic effects on the steam generator and the intermediate heat transport system (IHTS). The theoretical foundations and numerical treatments on which the codes are based are discussed, followed by a description of code capabilities and limitations, verification of the codes by comparison with experiment, and applications to steam generator and IHTS design. (author). 25 refs, 14 figs

  15. Pulsed high-pressure (PHP) drain-down of steam generating system

    International Nuclear Information System (INIS)

    Petrusek, R.A.

    1991-01-01

    This patent describes an improved method of draining down contained reactor-coolant water from the inverted vertical U-tubes of at least one vertical-type steam generator in which the upper inverted U-shaped ends of the tubes are closed and the lower ends thereof are open, the steam generator having a channel head at its lower end including a vertical dividing wall defining a primary water inlet side and a primary water outlet side of the generator, the steam generator having chemical volume control system means and residual heat removal system means, and the steam generator being part of a nuclear-powered steam generating system wherein the reactor-coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator, and the reactor being in communication with pressurizer means and comprising the steps of introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tubesheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator while permitting the water to flow out from the open ends of the U-tubes, the improvement in combination therewith for substantially increasing the effectiveness and efficiency of such water removal from the tubes. It includes determining the parameters effecting a first average volumetric rate of removal for a predetermined period of time, infra, of the reactor-coolant water from the inverted vertical U-tubes, the specific unit for the first average volumetric rate expressing properties identical with the properties expressed in a second average volumetric rate maintained in a later mentioned step

  16. Steam generator for use in nuclear power plants

    International Nuclear Information System (INIS)

    Cella, A.

    1980-01-01

    An improved steam generator is described for use in a nuclear power plant of the pressurized water type in which a turbine generator is driven by the steam output of the steam generator to provide electrical power therefrom. The improvement comprises providing a vertically movable grid structure vertically extending within the interior of the lower housing portion of the steam generator through which individual tubes comprising a vertically extending tube bundle extend. The tube bundle has a tube sheet at one end thereof supporting the tube bundle for the tubes extending through the tube sheet in flow through communication with a heat exchange fluid inlet. The grid structure defines grid apertures therein through which the individual tubes extend with each of the grid apertures being in surrounding relationship with a portion of an associated one of the tubes. The grid structure is movable for a predetermined vertical extent, such as by hydraulic means, such as a piston, along the tubes for vertically displacing the means defining the grid apertures by a sufficient amount for removing the previously surrounded portion of each of the tubes from the associated grid apertures whereby an enhanced reading of the condition of the tubes at the previously surrounded portion is enabled. The steam generator may comprise vertically assemblable modules which are removably mounted together in sealing relationship, with the modules comprising a base module, a tube bundle module removably mountable on the base module in sealing relationship therewith and an uppermost drier module removably mountable on the tube bundle module in sealing relationship therewith whereby ready access to removal of the tube bundle module in situ from the nuclear power plant steam generator is facilitated

  17. Corrosion problems in PWR steam generators

    International Nuclear Information System (INIS)

    Weber, J.; Suery, P.

    1976-01-01

    Examinations on pulled steam generator tubes from the Swiss nuclear power plants Beznau I and II, together with some laboratory tests, may be summarized as follows: Corrosion problems in vertical U-tube steam generators with Alloy 600 as tube material are localized towards relatively narrow regions above the tube sheet where thermohydraulic conditions and, as a consequence thereof, chemical conditions are uncontrolled. Within these zones Alloy 600 is not sufficienthy resistent to caustic or phosphate attack (caustic stress corrosion cracking and general corrosion, resp.). The mechanisms of several corrosion phenomena are not fully understood. (orig.) [de

  18. Experience with modular steam generator production and application of new testing methods

    International Nuclear Information System (INIS)

    Olesovsky

    Experience is reviewed gained at the Trebic IBZKG plant with the production of modular steam generators. The plant started producing steam generators for the Jaslovske Bohunice nuclear power plant in 1965. In addition to the steam generator for the A-1, the plant also produced a loop for the Melekess power plant and a steam generator for the BOR-60 reactor. Operating experience gained so far allowed improving the quality of the BOR steam generator, especially in the tube-tube plate joint. A double tube plate was used and the welded joint shape was changed. As a result of high requirements on the quality of welded joints, the steam generator has successfully been in operation for more then 10,000 hours. The existing experience was utilized in designing a new steam generator named Nadya. Many design and technological requirements were presented concerning the Nadya generator and many new checking operations have been included in technology. (Kr)

  19. Evolution of management activities and performance of the Point Lepreau Steam Generators

    International Nuclear Information System (INIS)

    Slade, J.; Keating, J.; Gendron, T.

    2007-01-01

    The Point Lepreau steam generators have been in service since 1983 when the plant was commissioned. During the first thirteen years of operation, Point Lepreau steam generator maintenance issues led to 3-4% unplanned plant incapability Steam generator fouling, corrosion, and the introduction of foreign materials during maintenance led to six tube leaks, two unplanned outages, two lengthy extended outages, and degraded thermal performance during this period. In recognition of the link between steam generator maintenance activities and plant performance, improvements to steam generator management activities have been continuously implemented since 1987. This paper reviews the evolution of steam generator management activities at Point Lepreau and the resulting improved trends in performance. Plant incapability from unplanned steam generator maintenance has been close to zero since 1996. The positive trends have provided a strong basis for the management strategies developed for post-refurbishment operation. (author)

  20. Steam generator inspection activities at the EPRI NDE Center

    International Nuclear Information System (INIS)

    Krzywosz, K.

    1988-01-01

    Various types of corrosion and mechanical damage continue to affect the availability of both recirculating and once-through steam generators. Both the tube bundle and its supporting structure are affected. Intergranular attack and stress corrosion cracking (SCC) are the corrosion-assisted tube-wall damage mechanisms of most concern at this time. Fatigue cracking and fretting at antivibration bars are currently the mechanical damage forms causing most concern. Improved NDE equipment and techniques are providing better detection and characterization of adverse conditions within the steam generators and doing it at an earlier stage. This allows timely corrective action. To maintain the projected life expectancy of existing and new steam generators, remedial measures have been implemented. These measures include shot- or roto-peening, U-bend stress relief, chemical cleaning of secondary side, and sleeving of tubes. The improved NDE technology will also be instrumental in monitoring and assessing the effectiveness of the remedial measures. The revision of guidance documents for steam generator in-service inspection (ISI) is providing more relevant information to support this complex operation. A multitasked project is described that includes evaluation of steam generator tube NDE technology, transfer of this technology to utilities, and rapid response utility assistance

  1. IEDA [Intelligent Eddy Current Data Analysis] helps make sense of eddy current data [steam generators

    International Nuclear Information System (INIS)

    Clark, R.

    1989-01-01

    The increasing sophistication of eddy current signal interpretation in steam generator tubing has improved capabilities, but has also made the process of analysis more complex and time consuming. Westinghouse has developed an intelligent computerised tool - the IEDA (Intelligent Eddy Current Data Analysis) system, to lighten the load on analysts. Since 1985, 44 plants have been inspected with IEDA, representing over 400,000 tubes. The system has provided a repeatability and a consistency not achieved by human operators. (U.K.)

  2. Steam Generator control in Nuclear Power Plants by water mass inventory

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wei [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States); Doster, J. Michael [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)], E-mail: doster@eos.ncsu.edu; Mayo, Charles W. [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)

    2008-04-15

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators.

  3. Steam Generator control in Nuclear Power Plants by water mass inventory

    International Nuclear Information System (INIS)

    Dong Wei; Doster, J. Michael; Mayo, Charles W.

    2008-01-01

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators

  4. Pressurizer and steam-generator behavior under PWR transient conditions

    International Nuclear Information System (INIS)

    Wahba, A.B.; Berta, V.T.; Pointner, W.

    1983-01-01

    Experiments have been conducted in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR), at the Idaho National Engineering Laboratory, in which transient phenomena arising from accident events with and without reactor scram were studied. The main purpose of the LOFT facility is to provide data for the development of computer codes for PWR transient analyses. Significant thermal-hydraulic differences have been observed between the measured and calculated results for those transients in which the pressurizer and steam generator strongly influence the dominant transient phenomena. Pressurizer and steam generator phenomena that occurred during four specific PWR transients in the LOFT facility are discussed. Two transients were accompanied by pressurizer inflow and a reduction of the heat transfer in the steam generator to a very small value. The other two transients were accompanied by pressurizer outflow while the steam generator behavior was controlled

  5. Modular sludge collection system for a nuclear steam generator

    International Nuclear Information System (INIS)

    Appleman, R.H.; Bein, J.D.; Powasaki, F.S.

    1986-01-01

    A sludge collection system is described for a vertically oriented nuclear steam generator wherein vapors produced in the steam generator pass through means for separating entrained liquid from the vapor prior to the vapor being discharged from the steam generator. The sludge collection system comprises: an upwardly open chamber for collecting the separated liquid and feedwater entering the steam generator; upwardly open sludge collecting containers positioned within the chamber, wherein each of the containers includes a top rim encompassing an opening leading to the interior of each container; generally flat, perforated covers, each of the covers being positioned over one of the openings such that a gap is formed between the cover and the adjacent top rim; sludge agitating means on at least one of the containers; and sludge removal means on at least one of the containers

  6. thermal analysis of a small scale solid waste-fired steam boiler

    African Journals Online (AJOL)

    user

    Thermal analysis of a small scale solid waste-fired steam generator is presented in this paper. The analysis was based on the chosen design specifications which are operating steam ... include: wind, bio-energy, geothermal, solar thermal,.

  7. Design study on steam generator integration into the VVER reactor pressure vessel

    International Nuclear Information System (INIS)

    Hort, J.; Matal, O.

    2004-01-01

    The primary circuit of VVER (PWR) units is arranged into loops where the heat generated by the reactor is removed by means of main circulating pumps, loop pipelines and steam generators, all located outside the reactor pressure vessel. If the primary circuit and reactor core were integrated into one pressure vessel, as proposed, e.g., within the IRIS project (WEC), a LOCA situation would be limited by the reactor pressure vessel integrity only. The aim of this design study regarding the integration of the steam generator into the reactor pressure vessel was to identify the feasibility limits and some issues. Fuel elements and the reactor pressure vessel as used in the Temelin NPP were considered for the analysis. From among the variants analyzed, the variant with steam generators located above the core and vertically oriented circulating pumps at the RPV lower bottom seems to be very promising for future applications

  8. ANL/CANTIA code for steam generator tube integrity assessment

    International Nuclear Information System (INIS)

    Revankar, S.T.; Wolf, B.; Majumdar, S.; Riznic, J.R.

    2009-01-01

    Steam generator (SG) tubes have an important safety role in CANDU type reactors and Pressurized Water Reactors (PWR) because they constitute one of the primary barriers between the radioactive and non-radioactive sides of the nuclear plant. The SG tubes are susceptible to corrosion and damage. A failure of a single steam generator tube, or even a few tubes, would not be a serious safety-related event in a CANDU reactor. The leakage from a ruptured tube is within makeup capacity of the primary heat transport system, so that as long as the operator takes the correct actions, the off-site consequences will be negligible. A sufficient safety margin against tube rupture used to be the basis for a variety of maintenance strategies developed to maintain a suitable level of plant safety and reliability. Several through-wall flaws may remain in operation and potentially contribute to the total primary-to-secondary leak rate. Assessment of the conditional probabilities of tube failures, leak rates, and ultimately risk of exceeding licensing dose limits has been used for steam generator tube fitness-for-service assessment. The advantage of this type of analysis is that it avoids the excessive conservatism typically present in deterministic methodologies. However, it requires considerable effort and expense to develop all of the failure, leakage, probability of detection, and flaw growth distributions and models necessary to obtain meaningful results from a probabilistic model. The Canadian Nuclear Safety Commission (CNSC) recently developed the CANTIA methodology for probabilistic assessment of inspection strategies for steam generator tubes as a direct effect on the probability of tube failure and primary-to-secondary leak rate Recently Argonne National Laboratory has developed tube integrity and leak rate models under Integrated Steam Generator Tube Integrity Program (ISGTIP-2). These models have been incorporated in the ANL/CANTIA code. This paper presents the ANL

  9. Application of Integrated Neural Network Method to Fault Diagnosis of Nuclear Steam Generator

    International Nuclear Information System (INIS)

    Zhou Gang; Yang Li

    2009-01-01

    A new fault diagnosis method based on integrated neural networks for nuclear steam generator (SG) was proposed in view of the shortcoming of the conventional fault monitoring and diagnosis method. In the method, two neural networks (ANNs) were employed for the fault diagnosis of steam generator. A neural network, which was used for predicting the values of steam generator operation parameters, was taken as the dynamics model of steam generator. The principle of fault monitoring method using the neural network model is to detect the deviations between process signals measured from an operating steam generator and corresponding output signals from the neural network model of steam generator. When the deviation exceeds the limit set in advance, the abnormal event is thought to occur. The other neural network as a fault classifier conducts the fault classification of steam generator. So, the fault types of steam generator are given by the fault classifier. The clear information on steam generator faults was obtained by fusing the monitoring and diagnosis results of two neural networks. The simulation results indicate that employing integrated neural networks can improve the capacity of fault monitoring and diagnosis for the steam generator. (authors)

  10. Investigation of reliability of EC method for inspection of VVER steam generator tubes

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Complete and accurate non-destructive examinations (NDE) data provides the basis for performing mitigating actions and corrective repairs. It is important that detection and characterization of flaws are done properly at an early stage. EPRI Document PWR Steam Generator Examination Guidelines recommends an approach that is intended to provide the following: Ensure accurate assessment of steam generator tube integrity; Extend the reliable, cost effective, operating life of the steam generators, and Maximize the availability of the unit. Steam Generator Eddy Current Data Analysis Performance Demonstration represents the culmination of the intense two-year industry effort in the development of a performance demonstration program for eddy current testing (ECT) of steam generator tubing. It is referred to as the Industry Database (IDB) and provides a capability for individual organizations to implement SG ECT performance demonstration programs in accordance with the requirements specified in Appendices G and H of the ISI Guidelines. The Appendix G of EPRI Document PWR Steam Generator Examination Guidelines specifies personnel training and qualification requirements for NDE personnel who analyze NDE data for PWR steam generator tubing. Its purpose is to insure a continuing uniform knowledge base and skill level for data analysis. The European methodology document is intended to provide a general framework for development of qualifications for the inspection of specific components to ensure they are developed in a consistent way throughout Europe while still allowing qualification to be tailored in detail to meet different nation requirements. In the European methodology document one will not find a detailed description of how the inspection of a specific component should be qualified. A recommended practice is a document produced by ENIQ to support the production of detailed qualification procedures by individual countries. VVER SG tubes are inspected by EC method but a

  11. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    Science.gov (United States)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  12. Pressurized-water coolant nuclear reactor steam generator

    International Nuclear Information System (INIS)

    Mayer, H.; Schroder, H.J.

    1975-01-01

    A description is given of a pressurized-water coolant nuclear reactor steam generator having a vertical housing for the steam generating water and containing an upstanding heat exchanger to which the pressurized-water coolant passes and which is radially surrounded by a guide jacket supporting a water separator on its top. By thermosiphon action the steam generating water flows upward through and around the heat exchanger within the guide chamber to the latter's top from which it flows radially outwardly and downwardly through a down draft space formed between the outside of the jacket and the housing. The water separator discharges separated water downwardly. The housing has a feedwater inlet opening adjacent to the lower portion of the heat exchanger, providing preheating of the introduced feedwater. This preheated feedwater is conveyed by a duct upwardly to a location where it mixes with the water discharged from the water separator

  13. Steam generators and fuel engineering utilizing solid, liquid, gaseous and special fuels

    Energy Technology Data Exchange (ETDEWEB)

    Thor, G

    1983-01-01

    Provided were technological specifications and details in the design of brown coal fired steam generators, produced in the German Democratic Republic. These steam generators range in their capacity between 1.6 and more than 1,000 t/h. The appropriate coal feeding systems, water supply and cleaning equipment, coal pulverizers and ash removal units are also manufactured. Various schemes show the design of a 25 to 64 t/h, a 320 t/h and an 815 t/h brown coal steam generator. Specifications are given for series of fuel pulverizers available, for the water circulation system and steam evaporators. The VEB Dampferzeugerbau Berlin also offers steam generators for saliniferous brown coal with a steam capacity up to 125 t/h, steam generators for pulverized black coal with a capacity up to 350 t/h and oil and gas fired generators up to 250 t/h. The company has experience in combustion of biomass (sugar cane waste) with oil in steam generators of more than 100 t/h capacity, and in projecting firing systems for other biofuels including rice, peanut and coconut hulls, wood and bark. Multi-biofuel firing in combination with coal for steam generation is also regarded as possible. (In English)

  14. The ageing of CANDU steam generator due to localized corrosion

    International Nuclear Information System (INIS)

    Lucan, D.; Fulger, M.; Jinescu, Ghe.

    2001-01-01

    The principal types of corrosion are presented which can occur in CANDU steam generator. There are also presented the operation conditions, the specifications referring to the water chemistry and the construction materials of Steam Generator, the factors that have a great influence on the corrosion behaviour during the whole exploitation period of this equipment. The most important elements of CANDU Steam Generator ageing management program are also discussed. (R. P.)

  15. Human reliability analysis for steam generator feed-and-bleed accident in Bushehr NPP-1

    Energy Technology Data Exchange (ETDEWEB)

    Jafarian, Reza [Valiasr University of Rafsanjan, Rafsanjan, 28 (Iran, Islamic Republic of); Sepanloo, Kamran [Atomic Energy Organization of Iran (AEOI), external link End of North Karegar Av., Tehran 14155-1339 (Iran, Islamic Republic of)

    2006-07-01

    According to the incident/accident reports, unsuccessful implementation of steam generator feed-and-bleed procedure is one of the most important events in nuclear power plants operation which greatly contributes to the level of risk of the plants. Generally, the loss of all feed water pumps flow (as one of the precursors) results in failure to maintain adequate cooling of the reactor core unless the operating crew initiate and follow the feed-and-bleed procedure correctly and timely. In this paper, firstly, a Human Reliability Analysis (HRA) event tree is presented delineating the major human activities and errors in the implementation of the steam generator (SG) feed-and-bleed procedure following the loss of (both normal and emergency) water feed to four SGs of Bushehr Nuclear Power Plant Unit 1 (BNPP-1). Secondly, the graphical method of task analysis as a part of HRA is used as a means of delineating correct and incorrect human actions. To be used in the probabilistic risk assessment (PRA), the outputs of the HRA event trees are fed into the system event trees, functional event trees or system fault trees. As a part of a probabilistic risk assessment of BNPP-1 and to assess the reliability of control room operators, a human reliability analysis model is applied based on the THERP (Technique for Human Error Rate Prediction) technique. The THERP method is used in the form of event trees named as the probability tree diagrams. In this research the Human Reliability Analysis event tree is constructed based on the background information and assumptions made and on a similar NPP task analysis. It is done so because the BNPP-1 is not an operational nuclear power plant. Thirdly, based on NUREG/CR-1278 Handbook, a computer program has been developed in Visual Basic language and used to illustrate the major human activities and determination of error rates of operators in the course of the implementation of the steam generator feed-and-bleed procedure. Finally, total

  16. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    International Nuclear Information System (INIS)

    Meng, F.; Xu, X.; Liu, X.; Wang, J.

    2014-01-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  17. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    Energy Technology Data Exchange (ETDEWEB)

    Meng, F.; Xu, X.; Liu, X. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Wang, J. [Chinese Academy of Sciences, Institute of Metal Research, Shenyang (China)

    2014-07-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  18. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H. [ed.] [IVO Group, Vantaa (Finland); Purhonen, H. [ed.] [VTT, Espoo (Finland); Kouhia, V. [ed.] [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  19. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H [ed.; IVO Group, Vantaa (Finland); Purhonen, H [ed.; VTT, Espoo (Finland); Kouhia, V [ed.; Lappeenranta Univ. of Technology (Finland)

    1998-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  20. Fourth international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    Tuomisto, H.; Purhonen, H.; Kouhia, V.

    1997-01-01

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries

  1. Severe transient tests on operation steam generators: Analysis of the fluid structure dynamic thermal interaction

    International Nuclear Information System (INIS)

    Billon, F.; David, J.; Procaccia, H.

    1983-01-01

    The operating efficiency of steam generators (S.G.s) and their structural integrity depend on the design configurations of the feedwater spray within the S.G., and on the operating procedure. To check the merit of some design modifications, and to verify the fluid-structure interaction with a view to preserve the S.G.s integrity during severe operating transients, a special instrumentation that admits the determination of the instantaneous thermal hydraulic characteristics of the flow in the secondary water and the S.G. tube sheet, has been installed by EDF on one steam generator of Tricastin unit 1 power plant. In parallel, FRAMATOME has developped a computer code, TEMPTRON, that allows the calculations of the thermal loads and the consequent stresses in the most sollicited zones of the steam generator during transient operation of the plant. This code divides the S.G. into three parts: - the first concerns the S.G.s region above the downcomer, zone where the mixing between hot water and cold feedwater occurs, - the second is the downcomer itself which is divided into n segments, - the third concerns the tube sheet zone which is also divided into n segments. The most severe transient test performed is the auxiliary cold feedwater injection into the steam generator during a hot standby of the plant: two levels of flow rate have been realised: 55 and 110 m 3 /h of 42 0 C feedwater. The tests have shown that if the cold feedwater injection occurs when the steam generator water level is below feedwater ring, the lowest fluid temperature reached at tube sheet inlet is about 230 0 C. (orig.)

  2. Characteristics of U-tube assembly design for CANDU 6 type steam generators

    International Nuclear Information System (INIS)

    Park, Jun Su; Jeong, Seung Ha

    1996-06-01

    Since the first operation of nuclear steam generator early 1960s, its performance requirements have been met but the steam generator problems have been met but the steam generator problems have been major cause of reducing the operational reliability, plant safety and availability. U-tube assembly of steam generator forms the primary system pressure boundary of the plant and have experienced several types of tube degradation problems. Tube failure and leakage resulting from the degradation will cause radioactive contamination of secondary system by the primary coolant, and this may lead to unplanned plant outages and costly repair operations such as tube plugging or steam generator replacement. For the case of steam generators for heavy water reactors, e.g. Wolsong 2, 3, and 4 NPP, a high cost of heavy water will be imposed additionally. During the plant operation, steam generator tubes can potentially be subject to adverse environmental conditions which will cause damages to U-tube assembly. Types of the damage depend upon the combined effects of design factors, materials and chemical environment of steam generator, and they are the pure water stress corrosion cracking, intergranular attack, pitting, wastage, denting, fretting and fatigue, etc. In this report, a comprehensive review of major design factors of recirculating steam generators has been performed against the potential tube damages. Then the design characteristics of CANDU-type Wolsong steam generator were investigated in detail, including tube material, thermalhydraulic aspects, tube-to-tubesheet joint, tube supports, water chemistry and sludge management. 9 tabs., 18 figs., 38 refs. (Author) .new

  3. Overview of the United States steam generator development programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, P W; Lowe, P A

    1975-07-01

    The LMFBR steam generator development program of the USA was initiated to support the development of reliable designs and meaningful performance data for these critical components. Since the steam generators include the structural boundary between heated sodium and water, the consequences of small flaws in the materials that form the boundary are significant. Successful development and demonstration of commercial LMFBR power plants requires the consideration of many factors in addition to the design, construction and operation of a particular plant. Additional factors which must be assessed include: economics, reliability, safety, environment, operability, maintainability and conservation of the resources. In terms of the steam generator these items led to the selection of a single wall tube design using a forced recirculating system for the present Clinch River Breeder Reactor. There are strong economic incentives to use a once-through steam generating system in future designs.

  4. Decontamination of Steam Generator tube using Abrasive Blasting Technology

    International Nuclear Information System (INIS)

    Min, B. Y.; Kim, G. N.; Choi, W. K.; Lee, K. W.; Kim, D. H.; Kim, K. H.; Kim, B. T.

    2010-01-01

    As a part of a technology development of volume reduction and self disposal for large metal waste project, We at KAERI and our Sunkwang Atomic Energy Safety (KAES) subcontractor colleagues are demonstrating radioactively contaminated steam generator tube by abrasive blasting technology at Kori-1 NPP. A steam generator is a crucial component in a PWR (pressurized Water Reactor). It is the crossing between the primary, contaminated, circuit and the secondary waste-steam circuit. The heat from the primary reactor coolant loop is transferred to the secondary side in thousands of small tubes. Due to several problems in the material of those tube, like SCC (Stress Corrosion Cracking), insufficient control in water chemistry, which can be cause of tube leakage, more and more steam generators are replaced today. Only in Korea, already 2 of them are replaced and will be replaced in the near future. The retired 300 ton heavy Steam generator was stored at the storage waste building of Kori NPP site. The steam generator waste has a large volume, so that it is necessary to reduce its volume by decontamination. A waste reduction effect can be obtained through decontamination of the inner surface of a steam generator. Therefore, it is necessary to develop an optimum method for decontamination of the inner surface of bundle tubes. The dry abrasive blasting is a very interesting technology for the realization of three-dimensional microstructures in brittle materials like glass or silicon. Dry abrasive blasting is applicable to most surface materials except those that might be shattered by the abrasive. It is most effective on flat surface and because the abrasive is sprayed and can also applicable on 'hard to reach' areas such as inner tube ceilings or behind equipment. Abrasive decontamination techniques have been applied in several countries, including Belgium, the CIS, France, Germany, Japan, the UK and the USA

  5. Solar energy for steam generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, Jr, A V; Orlando, A DeF; Magnoli, D

    1979-05-01

    Steam generation is a solar energy application that has not been frequently studied in Brazil, even though for example, about 10% of the national primary energy demand is utilized for processing heat generation in the range of 100 to 125/sup 0/C. On the other hand, substitution of automotive gasoline by ethanol, for instance, has received much greater attention even though primary energy demand for process heat generation in the range of 100 to 125/sup 0/C is of the same order of magnitude than for total automotive gasoline production. Generation of low-temperature steam is analyzed in this article using distributed systems of solar collectors. Main results of daily performance simulation of single flat-plate collectors and concentrating collectors are presented for 20/sup 0/S latitude, equinox, in clear days. Flat plate collectors considered are of the aluminum roll-bond absorber type, selective surface single or double glazing. Considering feedwater at 20/sup 0/C, saturated steam at 120/sup 0/C and an annual solar utilization factor of 50%, a total collector area of about 3,000 m/sup 2/ is necessary for the 10 ton/day plant, without energy storage. A fuel-oil back-up system is employed to complement the solar steam production, when necessary. Preliminary economic evaluation indicates that, although the case-study shows today a long payback period relative to subsidized fuel oil in the domestic market (over 20 years in the city of Rio de Janeiro), solar steam systems may be feasible in the medium term due to projected increase of fuel oil price in Brazil.

  6. Study on steam separation in steam generators of a NPP with the WWER-440 reactors

    International Nuclear Information System (INIS)

    Dmitriev, A.I.; Kolzov, Yu.V.; Titov, V.F.; Dubrovin, A.V.; Ilyushin, V.F.; Volkov, A.P.

    1977-01-01

    The separation characteristics as well as the actual level position in steam generators with and without a submerged holy sheet have been determined at a WWER-440 reactor nuclear power plant. It has been shown, that without changing the design of steam generators their load at the WWER-440 reactor nuclear power plant can be increased by about 10%. In this case the vapour humidity does not exceed the permissible value equal to 0.25%. The submerged holy sheet considerably decreases load irregularity and swelling of the water-steam mixture layer

  7. On the evaluation of lifetime of evaporative tubes of once-through steam generators at steam-generating surface temperature oscillations in the burnout region

    International Nuclear Information System (INIS)

    Vorob'ev, V.A.; Loshchinin, V.M.; Remizov, O.V.

    1978-01-01

    Suggested is a method for evaluation of a stressed state of evaporation tubes of once-through steam generators at temperature oscillations in the burnout region. Calculated is the amplitude of steam-generating surface temperature oscillations in the burnout region depending on the frequency of a liquid-steam boundary transfer and on this basis determined are thermal stresses in a tube wall. Knowing a fatigue curve gives the possibility to evaluate a heat transfer tube lifetime

  8. Development and application of an entrainment model for the PWR U-tube steam generators for main steam line break analysis

    International Nuclear Information System (INIS)

    Song, Dong-Soo; Park, Young-Chan

    2004-01-01

    The purpose of this paper is to present the analyses that were performed to develop and use an entrainment model for pressurized water reactor U-tube steam generators (SG) for main steam line break (MSLB) analyses. The entrainment model was developed using the RETRAN-3D computer program, and the model was benchmarked against experimental data of moisture carryover during a simulated MSLB accident. The application methodology was also developed to incorporate into the MSLB mass and energy release calculations for Kori Unit 1. This methodology utilizes LOFTRAN and RETRAN-3D codes in an iterative sequence of cases in which the LOFTRAN nuclear steam supply system model provides boundary conditions for the RETRAN-3D broken loop steam generator model, and the RETRAN-3D model provides the entrainment data that is input back into the LOFTRAN model. FORTRAN programs were developed to facilitate the sequencing of these iterative calculations. As a result of applying the entrainment model to Kori Unit 1, the temperature calculated inside Containment during MSLB accident using the CONTEMP-LT computer program decreased by about 25degC. Consequently this entrainment model provides a significant benefit by decreasing the temperature envelop for environment qualification as well as decreasing the peak Containment pressure. (author)

  9. Design optimization on structure of blowdown in CPR1000 steam generator

    International Nuclear Information System (INIS)

    Wang Guoxian; Ren Hongbing; Zuo Chaoping; Zhu Yong; Mo Shaojia

    2014-01-01

    The structure of blowdown in CPR1000 steam generator has been optimized by eliminating the blowdown pipe and tube lane blocking, drilling holes in the peripheral tube lane, which can improve the accessibility of the central tube lane and facilitate inspecting and lancing. This paper detailed compares and analyzes the thermal hydraulic characteristic before and after optimization using GENEPI code which a special software for SG thermal hydraulic analysis. The results showed that the thermal hydraulic characteristic of steam generator meets the design requirements compared with the original design. Structure optimization can improve lancing effects, although the change of flow field distribution above the tubesheet leads to increase the number of tube subjected to sludge deposit. The analysis results proved the feasibility of the optimization. (authors)

  10. Steam generators and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Swoboda, E

    1978-04-01

    The documents published in 1977 in the field of steam generators for conventional thermal power plants are classified according to the following subjects: power industry and number of power plants, planning and operation, design and construction, furnaces, environmental effects, dirt accumulation and corrosion, conservation and scouring, control and automation, fundamental research, and materials.

  11. Strategy for assessment of WWER steam generator tube integrity. Report prepared within the framework of the coordinated research project on verification of WWER steam generator tube integrity

    International Nuclear Information System (INIS)

    2007-12-01

    Steam generator heat exchanger tube degradations happen in WWER Nuclear Power Plant (NPP). The situation varies from country to country and from NPP to NPP. More severe degradation is observed in WWER-1000 NPPs than in case of WWER-440s. The reasons for these differences could be, among others, differences in heat exchanger tube material (chemical composition, microstructure, residual stresses), in thermal and mechanical loadings, as well as differences in water chemistry. However, WWER steam generators had not been designed for eddy current testing which is the usual testing method in steam generators of western PWRs. Moreover, their supplier provided neither adequate methodology and criteria nor equipment for planning and implementing In-Service Inspection (ISI). Consequently, WWER steam generator ISI infrastructure was established with delay. Even today, there are still big differences in the eddy current inspection strategy and practice as well as in the approach to steam generator heat exchanger tube structural integrity assessment (plugging criteria for defective tubes vary from 40 to 90% wall thickness degradation). Recognizing this situation, the WWER operating countries expressed their need for a joint effort to develop methodology to establish reasonable commonly accepted integrity assessment criteria for the heat exchanger tubes. The IAEA's programme related to steam generator life management is embedded into the systematic activity of its Technical Working Group on Life Management of Nuclear Power Plants (TWG-LMNPP). Under the advice of the TWG-LMNPP, an IAEA coordinated research project (CRP) on Verification of WWER Steam Generator Tube Integrity was launched in 2001. It was completed in 2005. Thirteen organizations involved in in-service inspection of steam generators in WWER operating countries participated: Croatia, Czech Republic, Finland, France, Hungary, Russian Federation, Slovakia, Spain, Ukraine, and the USA. The overall objective was to

  12. PWR steam generator tubing sample library

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In order to compile the tubing sample library, two approaches were employed: (a) tubing sample replication by either chemical or mechanical means, based on field tube data and metallography reports for tubes already destructively examined; and (b) acquisition of field tubes removed from operating or retired steam generators. In addition, a unique mercury modeling concept is in use to guide the selection of replica samples. A compendium was compiled that summarizes field observations and morphologies of steam generator tube degradation types based on available NDE, destructive examinations, and field reports. This compendium was used in selecting candidate degradation types that were manufactured for inclusion in the tube library

  13. Small leak damage and protection systems in steam generators

    International Nuclear Information System (INIS)

    Greene, D.A.

    1976-01-01

    A small leak of water into sodium in a liquid metal heated steam generator can cause damage to adjacent tubes, a phenomenon termed wastage. Theories on this phenomenon range from corrosion from sodium water reaction products to erosion by supersonic particles. An alternative approach considers the water injection to form a simple combustion process. Using this approach many aspects of over 250 wastage experiments can be explained both analytically and physically. The U.S. has an extensive technology in the general area of acoustic surveillance. High temperature in-sodium microphones, in-vessel waveguides, and data analysis techniques have been successfully demonstrated in national development programs. This technology has been applied specifically to the development of an acoustic leak detection/location monitor for small leaks in an operating steam generator

  14. Modular steam generator for use in nuclear power plants

    International Nuclear Information System (INIS)

    Cella, A.

    1979-01-01

    An improved steam generator for a PWR is described. A turbine generator is driven by the steam output of the steam generator to provide electrical power. The improvement provides vertically assemblable modules which are removably mounted together in sealing relationship. The modules comprising a base module, a tube bundle module removably mountable on the base module in sealing relationship, and an uppermost dryer module removably mountable on the tube bundle module in sealing relationship. Ready access to and removal of the tube bundle module in situ from the nuclear power plant steam generator is facilitated. The dryer module contains moisture separator for drying the generated steam. The base module, upon which the associated weight of the vertically assembled dryer module and tube bundle module are supported, contains the inlet and outlet for the heat exchange fluid. The tube bundle module contains the tube bundle through which the heat exchange fluid flows as well as an inlet for feedwater. The tube sheet serves as a closure flange for the tube bundle module, with the associated weight of the vertically assembled dryer module and tube bundle module on the tube sheet closure flange effectuating the sealing relationship between the base module and the tube bundle module for facilitating closure

  15. Leak detection in Phenix and Super Phenix steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Cambillard, E [Centre d' Etudes Nucleaires de Saclay, Gif-sur-Yvette (France)

    1978-10-01

    Water leak detection Phenix and Super Phenix steam generators is based on measurement of the hydrogen produced by the reaction of sodium with water. The hydrogen evolves in the sodium in which the steam generator tubes are completely immersed. Depending on service conditions, however (sodium temperature and flow velocity), the hydrogen may appear in the argon existing above the free levels. This is why, although the Phenix steam generators do not feature free levels, measurement systems were added to measure the hydrogen concentration in the argon in the expansion tanks. Super Phenix steam generators are fitted at their outlet with systems for measuring hydrogen in the sodium, and above their free level with a system for measuring hydrogen in the argon. The measurement systems have nickel tube probes connected to circuits kept under vacuum by an ion pump. The hydrogen partial pressure is measured by a mass spectrometer. Super Phenix measurement systems differ from Phenix systems essentially in the temperature regulation of the sodium reaching the nickel tube probes, and in the centralization of the supply and measurement systems of the ion pumps and mass spectrometers. This paper deals with description, calibration and operating conditions of the hydrogen detection systems in sodium and argon in Phenix and Super Phenix steam generators. (author)

  16. Structural considerations in steam generator replacement

    International Nuclear Information System (INIS)

    Bertheau, S.R.; Gazda, P.A.

    1991-01-01

    Corrosion of the tubes and tube-support structures inside pressurized water reactor (PWR) steam generators has led many utilities to consider a replacement of the generators. Such a project is a major undertaking for a utility and must be well planned to ensure an efficient and cost-effective effort. This paper discusses various structural aspects of replacement options, such as total or partial generator replacement, along with their associated pipe cuts; major structural aspects associated with removal paths through the equipment hatch or through an opening in the containment wall, along with the related removal processes; onsite movement and storage of the generators; and the advantages and disadvantages of the removal alternatives. This paper addresses the major structural considerations associated with a steam generator replacement project. Other important considerations (e.g., licensing, radiological concerns, electrical requirements, facilities for management and onsite administrative activities, storage and fabrication activities, and offsite transportation) are not discussed in this paper, but should be carefully considered when undertaking a replacement project

  17. Modelling of WWER-1000 steam generators by REALP5/MOD3.2 code

    Energy Technology Data Exchange (ETDEWEB)

    D`Auria, F.; Galassi, G.M. [Univ. of Pisa (Italy); Frogheri, M. [Univ. of Genova (Italy)

    1997-12-31

    The presentation summarises the results of best estimate calculations carried out with reference to the WWER-1000 Nuclear Power Plant, utilizing a qualified nodalization set-up for the Relap5/Mod3.2 code. The nodalization development has been based on the data of the Kozloduy Bulgarian Plant. The geometry of the steam generator imposed drastic changes in noding philosophy with respect to what is suitable for the U-tubes steam generators. For the secondary side a symmetry axis was chosen to separate (in the nodalization) the hot and the cold sides of the tubes. In this way the secondary side of the steam generators was divided into three zones: (a) the hot zone including the hot collector and the hot l/2 parts of the tubes; (b) the cold zone including the cold collector and the cold 1/2 parts of the tubes; (c) the downcomer region, where down flow is assumed. As a consequence of above in the primary side more nodes are placed on the hot side of the tubes. Steady state and transient qualification has been achieved, considering the criteria proposed at the University of Pisa, utilizing plant transient data from the Kozloduy and the Ukrainian Zaporosche Plants. The results of the application of the qualified WWER-1000 Relap5/Mod3.2 nodalization to various transients including large break LOCA, small break LOCA and steam generator tube rupture, together with a sensitivity analysis on the steam generators, are reported in the presentation. Emphasis is given to the prediction of the steam generators performances. 23 refs.

  18. Modelling of WWER-1000 steam generators by REALP5/MOD3.2 code

    Energy Technology Data Exchange (ETDEWEB)

    D` Auria, F; Galassi, G M [Univ. of Pisa (Italy); Frogheri, M [Univ. of Genova (Italy)

    1998-12-31

    The presentation summarises the results of best estimate calculations carried out with reference to the WWER-1000 Nuclear Power Plant, utilizing a qualified nodalization set-up for the Relap5/Mod3.2 code. The nodalization development has been based on the data of the Kozloduy Bulgarian Plant. The geometry of the steam generator imposed drastic changes in noding philosophy with respect to what is suitable for the U-tubes steam generators. For the secondary side a symmetry axis was chosen to separate (in the nodalization) the hot and the cold sides of the tubes. In this way the secondary side of the steam generators was divided into three zones: (a) the hot zone including the hot collector and the hot l/2 parts of the tubes; (b) the cold zone including the cold collector and the cold 1/2 parts of the tubes; (c) the downcomer region, where down flow is assumed. As a consequence of above in the primary side more nodes are placed on the hot side of the tubes. Steady state and transient qualification has been achieved, considering the criteria proposed at the University of Pisa, utilizing plant transient data from the Kozloduy and the Ukrainian Zaporosche Plants. The results of the application of the qualified WWER-1000 Relap5/Mod3.2 nodalization to various transients including large break LOCA, small break LOCA and steam generator tube rupture, together with a sensitivity analysis on the steam generators, are reported in the presentation. Emphasis is given to the prediction of the steam generators performances. 23 refs.

  19. Reconstruction of steam generators super emergency feadwater supply system (SHNC) and steam dump stations to the atmosphere system PSA

    International Nuclear Information System (INIS)

    Kuzma, J.

    2001-01-01

    Steam Generators Super Emergency Feadwater Supply System (SHNC) and Steam Dump Stations to the Atmosphere System (PSA) are two systems which cooperate to remove residual heat from reactor core after seismic event. SHNC assure feeding of the secondary site of steam generator (Feed) where after heat removal.from primary loops, is relieved to the atmosphere by PSA (Bleed) in form of steam. (author)

  20. The impact of NPP Krsko steam generator tube plugging on minimum DNBR at nominal conditions

    International Nuclear Information System (INIS)

    Lajtman, S.

    1996-01-01

    Typically, steam generator tube plugging (SGTP) both decreases the reactor coolant system (RCS) flow rate and the heat transfer surface area of the steam generator. At a constant thermal power and vessel outlet temperature, as tube plugging increases, the vessel average temperature, vessel inlet temperature and steam generator secondary side steam pressure decrease. This paper presents the analysis of impact of SGTP on Minimum Departure from Nucleate Boiling Ratio (MDNBR) at NPP Krsko (NEK), using the Improved Thermal Design Procedure (ITDP), WRB-1 correlation, and COBRA-III-C computer code. No credit was given to high plugging percentage region power reduction resulting from turbine volumetric flow limitations. MDNBR is found to be decreasing with increasing plugging, but not under the limiting values. (author)

  1. Heat transfer characteristics of horizontal steam generators under natural circulation conditions

    International Nuclear Information System (INIS)

    Hyvaerinen, J.

    1996-01-01

    This paper deals with the heat transfer characteristics of horizontal steam generators, particularly under natural circulation (decay heat removal) conditions on the primary side. Special emphasis is on the inherent features of horizontal steam generator behaviour. A mathematical model of the horizontal steam generator primary side is developed and qualitative results are obtained analytically. A computer code, called HSG, is developed to solve the model numerically, and its predictions are compared with experimental data. The code is employed to obtain for VVER 440 steam generators quantitative results concerning the dependence of primary-to-secondary heat transfer efficiency on the primary side flow rate, temperature and secondary level. It turns out that the depletion of the secondary inventory leads to an inherent limitation of the decay energy removal in VVER steam generators. The limitation arises as a consequence of the steam generator tube bundle geometry. As an example, it is shown that the grace period associated with pressurizer safety valve opening during a station black-out is 2 1/2-3 hours instead of the 5-6 hours reported in several earlier studies. (However, the change in core heat-up timing is much less-about 1 h at most.) The heat transfer limitation explains the fact that, in the Greifswald VVER 440 station black-out accident in 1975, the steam generators never boiled dry. In addition, the stability of single-phase natural circulation is discussed and insights on the modelling of horizontal steam generators with general-purpose thermal-hydraulic system codes are also presented. (orig.)

  2. Leakage experiences with 1 MW steam generator

    International Nuclear Information System (INIS)

    Kanamori, A.; Kawara, M.; Sano, A.

    1975-01-01

    An 1 MW steam generator was tested from October, 1971 and completed with the first series of experiments by May, 1972 after 3600 hours of operation. During these tests, unextraordinary heat absorption was experienced in the downcomer region, which led to shortage of heat transfer area to attain the rated steam temperature and to one of the reasons of flow instabilities. The steam generator was disassembled to get test pieces for structure as well as material examinations and then it was reassembled to proceed the second series of tests. Before it was done, a modification was provided to insulate the downcomer region by putting a gas space around the downcomer tube. The gas space was provided by a dual tube and spacers were welded on the inner tube and an end plate was welded on upper parts between the two to seal the gap by means of fillet welding. After the modified steam generator was put into operation, water happened to leak into a sodium side two times through these additional welding spots for the gas insulation. This paper presents operating conditions and behaviors of monitors at the time of the leakages, identifications of leaked spots, an evaluation of causes and a treatment or a precaution for them

  3. Corrosion and Rupture of Steam Generator Tubings in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-15

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned.

  4. Corrosion and Rupture of Steam Generator Tubings in PWRs

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-01

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned

  5. Steam generator and condenser design of WWER-1000 type of nuclear power plant

    International Nuclear Information System (INIS)

    Zare Shahneh, Abolghasem.

    1995-03-01

    Design process of steam generator and condenser at Russian nuclear power plant type WWER-1000 is identified. The four chapter of the books are organized as nuclear power plant, types of steam generators specially horizontal steam generator, process of steam generator design and the description of condenser and its process design

  6. Steam generators regulatory practices and issues in Spain

    International Nuclear Information System (INIS)

    Mendoza, C.; Castelao, C.; Ruiz-Colino, J.; Figueras, J.M.

    1997-01-01

    This paper presents the actual status of Spanish Steam Generator tubes, actions developed by PWR plant owners and submitted to CSN, and regulatory activities related to tube degradation mechanisms analysis; NDT tube inspection techniques; tube, tubesheet and TSPs integrity studies; tube plugging/repair criteria; preventive and corrective measures including whole SGs replacement; tube leak measurement methods and other operational aspects

  7. Steam generators in indirect-cycle water-cooled reactors

    International Nuclear Information System (INIS)

    Fajeau, M.

    1976-01-01

    In the indirect cycle water-cooled nuclear reactors, the steam generators are placed between the primary circuit and the turbine. They act both as an energy transmitter and as a leaktigh barrier against fission or corrosion products. Their study is thus very important from a performance and reliability point of view. Two main types are presented here: the U-tube and the once-through steam generators [fr

  8. Integrated steam generation process and system for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Betzer-Zilevitch, M. [Ex-Tar Technologies Inc., Calgary, AB (Canada)

    2010-07-01

    A method of producing steam for the extraction of heavy bitumens was presented. The direct contact steam generation (DCSG) method is used for the direct heat transfer between combustion gas and contaminated liquid phase water to generate steam. This paper presented details of experimental and field studies conducted to demonstrate the DCSG. Results of the study demonstrated that pressure and temperature are positively correlated. As pressure increases, the flow rate of the discharged mass decreases and the steam ratio decreases. As pressure increases, the condensate and distillate flow rates increases while water vapor losses in the non-condensable gases decrease. The study indicated that for a 10 bar pressurized system producing 9.6 mt per hour of 10,000 kpa steam and 9.6 mt per hour of distillate BFW, 70 percent of the combustion energy should be recovered to generate 10,000 kpa pressure steam for EOR. Combustion energy requirements were found to decrease when pressure decreases. 11 refs., 5 tabs., 8 figs.

  9. SWAAM-code development and verification and application to steam generator designs

    International Nuclear Information System (INIS)

    Shin, Y.W.; Valentin, R.A.

    1990-01-01

    This paper describes the family of SWAAM codes which were developed by Argonne National Laboratory to analyze the effects of sodium-water reactions on LMR steam generators. The SWAAM codes were developed as design tools for analyzing various phenomena related to steam generator leaks and the resulting thermal and hydraulic effects on the steam generator and the intermediate heat transport system (IHTS). The paper discusses the theoretical foundations and numerical treatments on which the codes are based, followed by a description of code capabilities and limitations, verification of the codes and applications to steam generator and IHTS designs. 25 refs., 14 figs

  10. Calculation of reverse flow in inverted U-Tubes of steam generator during natural circulation

    International Nuclear Information System (INIS)

    Yang Ruichang; Liu Jinggong; Liu Ruolei; Qin Shiwei; Huang Yanping

    2010-01-01

    The mechanism of reverse flow in inverted U-tubes of steam generators of pressurized water reactors during natural circulation is analyzed by using the full range characteristic curve of parallel U-tubes. A lumped-distributed model to calculate the reverse flow occurred in inverted U-tubes of real steam generators with a large number of U-tubes during natural circulation is developed. The model has the advantages of quick calculation and high accuracy for the analysis of reverse flow in inverted U-tubes of real steam generators with natural circulation. This model has been used to calculate the normal and reverse flows occurred in inverted U-tubes of a steam generator with natural circulation. The comparison of calculated results indicates a well agreement with that predicted by the model in which normal or reverse flow in each individual U-tube is analyzed, which verifies the reliability of the model developed in this paper. (authors)

  11. Dependence of steam generator vibrations on feedwater pressure

    International Nuclear Information System (INIS)

    Sadilek, J.

    1989-01-01

    Vibration sensors are attached to the bottom of the steam generator jacket between the input and output primary circuit collectors. The effective vibration value is recorded daily. Several times higher vibrations were observed at irregular intervals; their causes were sought, and the relation between the steam generator vibrations measured at the bottom of its vessel and the feedwater pressure was established. The source of the vibrations was found to be in the feedwater tract of the steam generator. The feedwater tract is described and its hydraulic characteristics are given. Vibrations were measured on the S02 valve. It is concluded that vibrations can be eliminated by reducing the water pressure before the control valves and by replacing the control valves with ones with more suitable control characteristics. (E.J.). 3 figs., 1 tab., 3 refs

  12. Thermo-hydraulic stability study of a steam generator

    International Nuclear Information System (INIS)

    Magni, M C; Marcel, C P; Delmastro, D F

    2012-01-01

    In this work a mathematical model developed to investigate the thermalhydraulic stability of a helically coiled steam generator is presented. Such a steam generator is prone to experiment density wave oscillations. The model is therefore used to analyze the stability of the CAREM-25 reactor steam generators. The model is linear, numerically non-diffusive and nodal. In addition, it is able to represent non-uniform heat transfer fluxes between the primary and secondary coolant circuits. By using this model the marginal stability condition is found by varying the inlet friction coefficient for different conditions. The results are then compared with those obtained with a different model for which a simple uniform heat flux profiled is assumed. It is found that with such simplification the density waves instability mechanism is overestimated in a wide range of operating powers. For very low powers, in the contrary, the so-called uniform model underestimates the stabilizing inlet friction and therefore it gives non-conservative results. With the use of the more realistic non-uniform power profile model, it was possible to determine that, for a CAREM-25 steam generator, the most stable conditions is found at 60MW when the reactor operates at nominal pressure. Moreover, it is found that at high power levels the stability performance is dominated by the two-phase friction component while at low power levels the friction component originated in the over heated steam region prevail (author)

  13. Aerosol retention in the flooded steam generator bundle during SGTR

    International Nuclear Information System (INIS)

    Lind, Terttaliisa; Dehbi, Abdel; Guentay, Salih

    2011-01-01

    Research highlights: → High retention of aerosol particles in a steam generator bundle flooded with water. → Increasing particle inertia, i.e., particle size and velocity, increases retention. → Much higher retention of aerosol particles in the steam generator bundle flooded with water than in a dry bundle. → Much higher retention of aerosol particles in the steam generator bundle than in a bare pool. → Bare pool models have to be adapted to be applicable for flooded bundles. - Abstract: A steam generator tube rupture in a pressurized water reactor may cause accidental release of radioactive particles into the environment. Its specific significance is in its potential to bypass the containment thereby providing a direct pathway of the radioactivity from the primary circuit to the environment. Under certain severe accident scenarios, the steam generator bundle may be flooded with water. In addition, some severe accident management procedures are designed to minimize the release of radioactivity into the environment by flooding the defective steam generator secondary side with water when the steam generator has dried out. To extend our understanding of the particle retention phenomena in the flooded steam generator bundle, tests were conducted in the ARTIST and ARTIST II programs to determine the effect of different parameters on particle retention. The effects of particle type (spherical or agglomerate), particle size, gas mass flow rate, and the break submergence on particle retention were investigated. Results can be summarized as follows: increasing particle inertia was found to increase retention in the flooded bundle. Particle shape, i.e., agglomerate or spherical structure, did not affect retention significantly. Even with a very low submergence, 0.3 m above the tube break, significant aerosol retention took place underlining the importance of the jet-bundle interactions close to the tube break. Droplets were entrained from the water surface with

  14. Design and related R and D works of 'Monju' steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Y; Imanaka, N; Hoshi, Y; Tanaka, K; Hori, M; Yoshikawa, Y

    1975-07-01

    The steam generator is considered to be one of the key components in LMFBR plant. Helical coil type steam generator is selected as a reference for the first Japanese demonstration plant 'MONJU'. The paper gives the structural and functional features of 'MONJU' steam generator together with a brief description of secondary cooling system. The related R and D works are also illustrated. (author)

  15. Signal analysis of steam line acoustics

    International Nuclear Information System (INIS)

    Martin, C. Samuel

    2003-01-01

    The vibration of nuclear steam piping is usually associated with pressure fluctuations emanating from flow disturbances such as steam generator nozzles, bends, or other pipe fittings. Flow separation at pipe tees and within steam chest manifolds or headers generate pressure fluctuations that propagate both upstream to steam generators as well as downstream to the steam turbine. Steady-state acoustic oscillations at various frequencies occur within the piping, possibly exciting structural vibrations. This paper focuses on the assessment of the origin of the disturbances using signal analyses of two dynamic pressure recordings from pressure transducers located along straight runs in the steam piping. The technique involves performing the cross spectrum to two dynamic pressure signals in piping between (1) the steam generator and steam chest header, and (2) between the header and steam turbine outlet. If, at a specified frequency, no causality occurs between the two signals then the cross spectra magnitude will be negligible. Of interest here is the value of the phase between the two signals for frequencies for which the magnitude of the cross spectrum is not negligible. It is shown in the paper that the direction of the dominant waves at all frequencies can be related to the phase angle from the cross spectrum. It has to be realized that pressure waves emanating from one source such as a steam generator will propagate along uniform steam pipes with little transformation or attenuation, but will be reflected at fittings and at inlets and outlets. Hence, the eventual steady-state time record at a given location in the piping is a result of not only the disturbance, but also reflections of earlier pulsations. Cross-spectral analyses has been employed to determine the direction of the dominant acoustic waves in the piping for various frequencies for which there are signals. To prove the technique, synthetic spectra are generated comprised of harmonic waves moving both

  16. Secondary coolant circuit operation tests: steam generator feedwater supply

    International Nuclear Information System (INIS)

    Beroux, M.

    1985-01-01

    No one important accident occurred during the start-up tests of the 1300MWe P4 series, concerning the feedwater system of steam generators (SG). This communication comments on some incidents, that the tests allowed to detect very soon and which had no consequences on the operation of units: 1) Water hammer in feedwater tubes, and incidents met in the emergency steam generator water supply circuit. The technological differences between SG 900 and 1300 are pointed out, and the measures taken to prevent this problem are presented. 2) Incidents met on the emergency feedwater supply circuit of steam generators; mechanical or functional modifications involved by these incidents [fr

  17. SNR-steam generator design with respect to large sodium water reactions

    International Nuclear Information System (INIS)

    Jong, J.J. de; Kellner, A.; Florie, C.J.L.

    1984-01-01

    This paper deals with the experiences gained during the licensing procedure for the steam generators for the SNR 300 LMFBR regarding large sodium-water reactions. A description is given of the different calculations executed to investigate the effects of large leaks on the 85 MW helical coiled and straight tube steam generators. The investigations on the helical coiled steam generators are divided in the formulations of fluid behaviour, dynamic force calculations, dynamic response calculation and finally stress analyses. Several results are shown. The investigations on the straight tube steam generators are performed using models describing fluid-structure interaction, coupled with stress analyses. Several results are presented. A description is given of the problems and necessary construction changes during the licensing process. Advises are given for future analyses and design concepts for second generation commercial size LMFBR steam generators with respect to large leaks; based on the experience, gained with SNR 300, and using some new calculations for SNR 2. (author)

  18. Expandable antivibration bar for a steam generator

    International Nuclear Information System (INIS)

    Lagally, H.O.

    1986-01-01

    A steam generator tube support structure comprises expandable antivibration bars positioned between rows of tubes in the steam generator and attached to retaining rings surrounding the bundle of tubes. The antivibration bars have adjacent bar sections with mating surfaces formed as inclined planes which upon relative longitudinal motion between the upper and lower bars provides a means to increase the overall thickness across the structure to the required value. The bar section is retained against longitudinal movement in take-up assembly whereas the bar section is movable longitudinally by rotation of a nut. (author)

  19. North Anna Power Station - Unit 1: Overview of steam generator replacement project activities

    International Nuclear Information System (INIS)

    Gettler, M.W.; Bayer, R.K.; Lippard, D.W.

    1993-01-01

    The original steam generators at Virginia Electric and Power Company's (Virginia Power) North Anna Power Station (NAPS) Unit 1 have experienced corrosion-related degradation that require periodic inspection and plugging of steam generator tubes to ensure their continued safe and reliable operation. Despite improvements in secondary water chemistry, continued tube degradation in the steam generators necessitated the removal from service of approximately 20.3 percent of the tubes by plugging, (18.6, 17.3, and 25.1 for steam generators A, B, and C, respectively). Additionally, the unit power was limited to 95 % during, its last cycle of operation. Projections of industry and Virginia Power experience indicated the possibility of mid-cycle inspections and reductions in unit power. Therefore, economic considerations led to the decision to repair the steam generators (i.e., replace the steam generator lower assemblies). Three new Model 51F Steam Generator lower assembly units were ordered from Westinghouse. Virginia Power contracted Bechtel Power Corporation to provide the engineering and construction support to repair the Unit 1 steam generators. On January 4, 1993, after an extended coastdown period, North Anna Unit 1 was brought off-line and the 110 day (breaker-to-breaker) Steam Generator Replacement Project (SGRP) outage began. As of this paper, the outage is still in progress

  20. Wasteless combined aggregate-coal-fired steam-generator/melting-converter

    International Nuclear Information System (INIS)

    Pioro, L.S.; Pioro, I.L.

    2003-01-01

    A method of reprocessing coal sludge and ash into granulate for the building industry in a combined wasteless aggregate-steam-generator/melting-converter was developed and tested. The method involves melting sludge and ash from coal-fired steam-generators of power plants in a melting-converter installed under the steam-generator, with direct sludge drain from the steam generator combustion chamber. The direct drain of sludge into converter allows burnup of coal with high ash levels in the steam-generator without an additional source of ignition (natural gas, heating oil, etc.). Specific to the melting process is the use of a gas-air mixture with direct combustion inside a melt. This feature provides melt bubbling and helps to achieve maximum heat transfer from combustion products to the melt, to improve mixing, to increase rate of chemical reactions and to improve the conditions for burning the carbon residue from the sludge and ash. The 'gross' thermal efficiency of the combined aggregate is about 93% and the converter capacity is about 18 t of melt in 100 min. The experimental data for different aspects of the proposed method are presented. The effective ash/charging materials feeding system is also discussed. The reprocessed coal ash and sludge in the form of granules can be used as fillers for concretes and as additives in the production of cement, bricks and other building materials

  1. Flow-induced vibration analysis of a helical coil steam generator experiment using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haomin; Solberg, Jerome; Merzari, Elia; Kraus, Adam; Grindeanu, Iulian

    2017-10-01

    This paper describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLO for structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation

  2. Analysis of steam generator loss-of-feedwater experiments with APROS and RELAP5/MOD3.1 computer codes

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, E.; Haapalehto, T. [Lappeenranta Univ. of Technology, Lappeenranta (Finland); Kouhia, J. [VTT Energy, Nuclear Energy, Lappeenranta (Finland)

    1995-09-01

    Three experiments were conducted to study the behavior of the new horizontal steam generator construction of the PACTEL test facility. In the experiments the secondary side coolant level was reduced stepwise. The experiments were calculated with two computer codes RELAP5/MOD3.1 and APROS version 2.11. A similar nodalization scheme was used for both codes to that the results may be compared. Only the steam generator was modelled and the rest of the facility was given as a boundary condition. The results show that both codes calculate well the behaviour of the primary side of the steam generator. On the secondary side both codes calculate lower steam temperatures in the upper part of the heat exchange tube bundle than was measured in the experiments.

  3. Tube tightness survey during Phenix steam generator operation

    International Nuclear Information System (INIS)

    Cambillard, E.

    1976-01-01

    Phenix steam generators are once-through vessels with single-wall heat-exchange tubes. This design means that any leakage of water into the sodium must be detected as quickly as possible so that the installation can be shut down before extensive damage occurs. The detection of water leaks in Phenix steam generators is based on measurement of the concentration in the sodium, of hydrogen produced by the sodium-water reaction. Since the various modules--evaporators, superheaters, and reheaters--have no free sodium surfaces, detection of hydrogen in argon is not used in Phenix steam generators. The measurement systems employ a probe made of nickel tubes 0.3 mm thick. Hydrogen in the sodium diffuses into a chamber kept under vacuum by an ion pump. The hydrogen pressure in the chamber is measured by a quadrupole mass spectrometer. The nine measurement systems (three per steam generator) are calibrated by injecting hydrogen into the sodium of the secondary circuits. The data-processing computer calculates the hydrogen concentration in the sodium from the spectrometer signals and the probe temperatures, which are not regulated in Phenix; it generates instructions that enable the operator to act if a leak appears. So far, no leaks have been detected. These systems also make it possible to determine rates of hydrogen diffusion caused by corrosion of the steel walls on the water side

  4. Considerations in selecting tubing materials for CANDU steam generators

    International Nuclear Information System (INIS)

    Hemmings, R.L.

    1978-01-01

    Corrosion resistance is the major consideration in selecting tubing material for CANDU steam generators. Corrosion, and additional considerations, lead to the following steam generator tubing material recommendations: for CANDU-BPHWR's (boiling pressurized heavy water reactors) low-cobalt Incoloy-800; for CANDU-PHWR's (pressurized, non-boiling, heavy water reactors), low-cobalt Monel-400

  5. Failure analysis of steam generator tubes with dented and wastage configurations

    International Nuclear Information System (INIS)

    Reich, M.; Prachuktam, S.; Gardner, D.; Goradia, H.; Bezler, P.; Kao, K.

    1978-03-01

    The occurrence of PWR steam generator tube cracking, denting, and wastage has been reported in the recent literature. As indicated by its title, this paper concerns itself with the inelastic structural response of the tubes that result from various assumed monotonic as well as cyclic loading conditions, which ultimately could lead to the tube failure

  6. Detection of steam leaks into sodium in fast reactor steam generators by acoustic techniques - An overview of Indian programme

    International Nuclear Information System (INIS)

    Prabhakar, R.; Vyjayanthi, R.K.; Kale, R.D.

    1990-01-01

    Realising the potential of acoustic leak detection technique, an experimental programme was initiated a few years back at Indira Gandhi Centre for Atomic Research (IGCAR) to develop this technique. The first phase of this programme consists of experiments to measure background noise characteristics on the steam generator modules of the 40 MW (thermal) Fast Breeder Test Reactor (FBTR) at Kalpakkam and experiments to establish leak noise characteristics with the help of a leak simulation set up. By subjecting the measured data from these experiments to signal analysis techniques, a criterion for acoustic leak detection for FBTR steam generator will be evolved. Second phase of this programme will be devoted to developing an acoustic leak detection system suitable for installation in the 500 MWe Prototype Fast Breeder Reactor (PFBR). This paper discusses the first phase of the experimental programme, results obtained from measurements carried out on FBTR steam generators and results obtained from leak simulation experiments. Acoustic leak detection system being considered for PFBR is also briefly described. 4 refs, 8 figs, 1 tab

  7. Experimental fretting-wear studies of steam generator materials

    International Nuclear Information System (INIS)

    Fisher, N.J.; Chow, A.B.; Weckwerth, M.K.

    1994-01-01

    Flow-induced vibration of steam generator tubes results in fretting-wear damage due to impacting and rubbing of the tubes against their supports. This damage can be predicted by computing tube response to flow-induced excitation forces using analytical techniques, and then relating this response to resultant wear damage using experimentally-derived wear coefficients. Fretting-wear of steam generator materials has been studied experimentally at Chalk River Laboratories for two decades. Tests are conducted in machines that simulate steam generator environmental conditions and tube-to-support dynamic interactions. Different tube and support materials, tube-to-support clearances and tube support geometries have been studied. As well, the effect of environmental conditions, such as temperature, oxygen content, pH and chemistry control additive, have been investigated. Early studies showed that damage was related to contact force as long as other parameters, such as geometry and motion were held constant. Later studies have shown that damage is related to a parameter called work-rate, which combines both contact force and sliding distance. Results of short- and long-term fretting-wear tests for CANDU steam generator materials at realistic environmental conditions are presented. These results demonstrate that work-rate is appropriate correlating parameter for impact-sliding interaction

  8. Steam generator group project: Task 13 final report: Nondestructive examination validation

    International Nuclear Information System (INIS)

    Bradley, E.R.; Doctor, P.G.; Ferris, R.H.; Buchanan, J.A.

    1988-08-01

    The Steam Generator Group Project (SGGP) was a multi-task effort using the retired-from-service Surry 2A pressurized water reactor steam generator as a test bed to investigate the reliability and effectiveness of in-service nondestructive eddy current (EC) inspection equipment and procedures. The information developed provided the technical basis for recommendations for improved in- service inspection and tube plugging criteria of steam generators. This report describes the results and analysis from Task 13--NDE Validation. The primary objective of Task 13 was to validate the EC inspection to detect and size tube defects. Additional objectives were to assess the nature and severity of tube degradation from all regions of the generator and to measure the remaining integrity of degraded specimens by burst testing. More than 550 specimens were removed from the generator and included in the validation studies. The bases for selecting the specimens and the methods and procedures used for specimen removal from the generator are reported. Results from metallurgical examinations of these specimens are presented and discussed. These examinations include visual inspection of all specimens to locate and identify tube degradation, metallographic examination of selected specimens to establish defect severity and burst testing of selected specimens to establish the remaining integrity of service-degraded tubes. Statistical analysis of the combined metallurgical and EC data to determine the probability of detection (POD) and sizing accuracy are reported along with a discussion of the factors which influenced the EC results. Finally, listings of the metallurgical and corresponding EC data bases are given. 12 refs., 141 figs., 24 tabs

  9. Steam Generator Group Project. Progress report on data acquisition/statistical analysis

    International Nuclear Information System (INIS)

    Doctor, P.G.; Buchanan, J.A.; McIntyre, J.M.; Hof, P.J.; Ercanbrack, S.S.

    1984-01-01

    A major task of the Steam Generator Group Project (SGGP) is to establish the reliability of the eddy current inservice inspections of PWR steam generator tubing, by comparing the eddy current data to the actual physical condition of the tubes via destructive analyses. This report describes the plans for the computer systems needed to acquire, store and analyze the diverse data to be collected during the project. The real-time acquisition of the baseline eddy current inspection data will be handled using a specially designed data acquisition computer system based on a Digital Equipment Corporation (DEC) PDP-11/44. The data will be archived in digital form for use after the project is completed. Data base management and statistical analyses will be done on a DEC VAX-11/780. Color graphics will be heavily used to summarize the data and the results of the analyses. The report describes the data that will be taken during the project and the statistical methods that will be used to analyze the data. 7 figures, 2 tables

  10. Reverse primary-side flow in steam generators during natural circulation cooling

    International Nuclear Information System (INIS)

    Stumpf, H.; Motley, F.; Schultz, R.; Chapman, J.; Kukita, Y.

    1987-01-01

    A TRAC model of the Large Scale Test Facility with a 3-tube steam-generator model was used to analyze natural-circulation test ST-NC-02. For the steady state at 100% primary mass inventory, TRAC was in excellent agreement with the natural-circulation flow rate, the temperature distribution in the steam-generator tubes, and the temperature drop from the hot leg to the steam-generator inlet plenum. TRAC also predicted reverse flow in the long tubes. At reduced primary mass inventories, TRAC predicted the three natural-circulation flow regimes: single phase, two phase, and reflux condensation. TRAC did not predict the cyclic fill-and-dump phenomenon seen briefly in the test. TRAC overpredicted the two-phase natural-circulation flow rate. Since the core is well cooled at this time, the result is conservative. An important result of the analysis is that TRAC was able to predict the core dryout and heatup at approximately the same primary mass inventory as in the test. 4 refs., 8 figs., 2 tabs

  11. Dynamic and control of a once through steam generator

    International Nuclear Information System (INIS)

    Gomes, Arivaldo Vicente

    1979-01-01

    This paper presents a non linear distributed parameter model for the dynamics and feedback control of a large countercurrent heat exchanger used as a once through steam generator for a breeder reactor power plant. A convergent, implicit method has been developed to solve simultaneously the equations of conservation of mass, momentum and energy. The model, applicable to heat exchanger systems in general, has been used specifically to study the performance of a once-through steam generator with respect to its load following ability and stability of throttle steam temperature and pressure. (author)

  12. Evaluation of a dryer in a steam generator

    International Nuclear Information System (INIS)

    Xue Yunkui; Liu Shixun; Guandao, Xie; Chen Junliang

    1998-01-01

    The hooked-vane-type dryer is used in vertical, natural circulation steam generators used in PWR-type nuclear power stations. it separates the fine droplets of water carried by steam so that the steam generator outlet steam moisture is below 0.25%. Such low moisture is demanded to ensure a safe and economic operation of the unit. The dryer is composed of hooked vanes and a draining structure. A series of tests to screen different designs were performed using air-water mixture. The paper presents the results of the investigation of the effect of the number of drainage hooks , the bending angle , distance between two adjacent vanes, and other geometrical parameters on the performance of a hooked-vane-type steam dryer. It indicates that the dryer still works effectively when the moisture of the steam at the dryer inlet changes in a wide range, and that the performance of the dryer is closely related to the geometry of the draining structure . On the basis of the results of this program, a draining structure with an original design was selected and it is presented in the paper. The performance of the selected draining structure is better than that of similar structures in China and abroad. (author)

  13. Safety analysis program for steam generators replacement and power uprate at Tihange 2 nuclear power plant

    International Nuclear Information System (INIS)

    Delhaye, X.; Charlier, A.; Damas, Ph.; Druenne, H.; Mandy, C.; Parmentier, F.; Pirson, J.; Zhang, J.

    2002-01-01

    The Belgian Tihange 2 nuclear power plant went into commercial operation in 1983 producing a thermal power of 2785 MW. Since the commissioning of the plant the steam generators U-tubes have been affected by primary stress corrosion cracking. In order to avoid further degradation of the performance and an increase in repair costs, Electrabel, the owner of the plant, decided in 1997 to replace the 3 steam generators. This decision was supported by the feasibility study performed by Tractebel Energy Engineering which demonstrated that an increase of 10% of the initial power together with a fuel cycle length of 18 months was achieved. Tractebel Energy Engineering was entrusted by Electrabel as the owner's engineer to manage the project. This paper presents the role of Tractebel Energy Engineering in this project and the safety analysis program necessary to justify the new operation point and the fuel cycle extension to 18 months re-analysis of FSAR chapter 15 accidents and verification of the capacity of the safety and auxiliary systems. The FSAR chapter 15 accidents were reanalyzed jointly by Framatome and Tractebel Energy Engineering while the systems verifications were carried out by Tractebel Energy Engineering. (author)

  14. Automation of steam generator services at public service electric & gas

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshank, H.; Wray, J.; Scull, D. [Public Service Electric & Gas, Hancock`s Bridge, NJ (United States)

    1995-03-01

    Public Service Electric & Gas takes an aggressive approach to pursuing new exposure reduction techniques. Evaluation of historic outage exposure shows that over the last eight refueling outages, primary steam generator work has averaged sixty-six (66) person-rem, or, approximately tewenty-five percent (25%) of the general outage exposure at Salem Station. This maintenance evolution represents the largest percentage of exposure for any single activity. Because of this, primary steam generator work represents an excellent opportunity for the development of significant exposure reduction techniques. A study of primary steam generator maintenance activities demonstrated that seventy-five percent (75%) of radiation exposure was due to work activities of the primary steam generator platform, and that development of automated methods for performing these activities was worth pursuing. Existing robotics systems were examined and it was found that a new approach would have to be developed. This resulted in a joint research and development project between Westinghouse and Public Service Electric & Gas to develop an automated system of accomplishing the Health Physics functions on the primary steam generator platform. R.O.M.M.R.S. (Remotely Operated Managed Maintenance Robotics System) was the result of this venture.

  15. Modeling of an once through helical coil steam generator of a superheated cycle for sizing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Sik; Sim, Yoon Sub; Kim, Eui Kwang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A thermal sizing code, named as HSGSA (Helical coil Steam Generator Sizing Analyzer), for a sodium heated helical coil steam generator is developed for KALIMER (Korea Advanced LIquid MEtal Reactor) design. The theoretical modeling of the shell and tube sides is described and relevant correlations are presented. For assessment of HSGSA, a reference plant design case is compared to the calculational outputs from HSGSA simulation. 9 refs., 6 figs. (Author)

  16. Modeling of an once through helical coil steam generator of a superheated cycle for sizing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Sik; Sim, Yoon Sub; Kim, Eui Kwang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A thermal sizing code, named as HSGSA (Helical coil Steam Generator Sizing Analyzer), for a sodium heated helical coil steam generator is developed for KALIMER (Korea Advanced LIquid MEtal Reactor) design. The theoretical modeling of the shell and tube sides is described and relevant correlations are presented. For assessment of HSGSA, a reference plant design case is compared to the calculational outputs from HSGSA simulation. 9 refs., 6 figs. (Author)

  17. Operating experience of steam generator test facility

    International Nuclear Information System (INIS)

    Sureshkumar, V.A.; Madhusoodhanan, G.; Noushad, I.B.; Ellappan, T.R.; Nashine, B.K.; Sylvia, J.I.; Rajan, K.K.; Kalyanasundaram, P.; Vaidyanathan, G.

    2006-01-01

    Steam Generator (SG) is the vital component of a Fast Reactor. It houses both water at high pressure and sodium at low pressure separated by a tube wall. Any damage to this barrier initiates sodium water reaction that could badly affect the plant availability. Steam Generator Test Facility (SGTF) has been set up in Indira Gandhi Centre for Atomic Research (IGCAR) to test sodium heated once through steam generator of 19 tubes similar to the PFBR SG dimension and operating conditions. The facility is also planned as a test bed to assess improved designs of the auxiliary equipments used in Fast Breeder Reactors (FBR). The maximum power of the facility is 5.7 MWt. This rating is arrived at based on techno economic consideration. This paper covers the performance of various equipments in the system such as Electro magnetic pumps, Centrifugal sodium pump, in-sodium hydrogen meters, immersion heaters, and instrumentation and control systems. Experience in the system operation, minor modifications, overall safety performance, and highlights of the experiments carried out etc. are also brought out. (author)

  18. Guidelines for random excitation forces due to cross flow in steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Pettigrew, M.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1998-07-01

    Random excitation forces can cause low-amplitude tube motion that will result in long-term fretting-wear or fatigue. To prevent these tube failures in steam generators and other heat exchangers, designers and trouble-shooters must have guidelines that incorporate random or turbulent fluid forces. Experiments designed to measure fluid forces have been carried out at Chalk River Laboratories and at other labs around the world. The data from these experiments have been studied and collated to determine suitable guidelines for random excitation forces. In this paper, a guideline for random excitation forces in single-phase cross flow is presented in the form of normalised spectra that are applicable to a wide range of flow conditions and tube frequencies. In particular, the experimental results used in this study were carried out over the full range of flow conditions found in a nuclear steam generator. The proposed guidelines are applicable to steam generators, condensers, reheaters and other shell-and-tube heat exchangers. They may be used for flow-induced vibration analysis of new or existing components, as input to vibration analysis computer codes and as specifications in procurement documents. (author)

  19. Guidelines for random excitation forces due to cross flow in steam generators

    International Nuclear Information System (INIS)

    Taylor, C.E.; Pettigrew, M.J.

    1998-01-01

    Random excitation forces can cause low-amplitude tube motion that will result in long-term fretting-wear or fatigue. To prevent these tube failures in steam generators and other heat exchangers, designers and trouble-shooters must have guidelines that incorporate random or turbulent fluid forces. Experiments designed to measure fluid forces have been carried out at Chalk River Laboratories and at other labs around the world. The data from these experiments have been studied and collated to determine suitable guidelines for random excitation forces. In this paper, a guideline for random excitation forces in single-phase cross flow is presented in the form of normalised spectra that are applicable to a wide range of flow conditions and tube frequencies. In particular, the experimental results used in this study were carried out over the full range of flow conditions found in a nuclear steam generator. The proposed guidelines are applicable to steam generators, condensers, reheaters and other shell-and-tube heat exchangers. They may be used for flow-induced vibration analysis of new or existing components, as input to vibration analysis computer codes and as specifications in procurement documents. (author)

  20. The decommissioning of the BR3 steam generator

    International Nuclear Information System (INIS)

    Denissen, L.

    2006-01-01

    A steam generator is a crucial component in a PWR (Pressurized Water Reactor). It is the crossing between the primary, contaminated, circuit and the secondary water-steam circuit. The heat from the primary reactor coolant loop is transferred to the secondary side in thousands of small tubes. Due to several problems in the material of those tubes, like SCC (Stress Corrosion Cracking), insufficient control in water chemistry, which can be the cause of tube leakage, more and more steam generators are replaced today. Only in Belgium, already 17 of them are replaced. The old 300 ton heavy SGs are stored at the 2 nuclear power plants of Doel and Tihange . While it was foreseen in the BR3 strategy to dismantle the steam generator (only 30 ton), we took the opportunity to search for a complete package in the decommissioning of a steam generator. The complete management consists of a decontamination of the primary side followed by the complete dismantling. The first step, the decontamination with MEDOC (water box + tube bundle) has already been achieved in 2002. It has led to an important DF (Decontamination Factor) between 100 and 1000 and an important dose rate reduction. This hard chemical decontamination process has been described earlier in the scientific report 2002 (The BR3 steam generator decontamination with the MEDOC process - M. Ponnet). The second step, the complete dismantling of the SG has been executed in 2005. With the BR3 SG, the main goal was to dismantle it in a safe way and to free release a maximum of material. We've used two cutting tools to perform the job: A HPWJC (High Pressure Water Jet Cutting) tool in combination with a hydraulic robot and a water cooled diamond cable. The last technique was done in close collaboration with the external company Husqvarna. It was important to have an idea of the performance, the efficiency of the cable and the quantity and the type of secondary waste

  1. Steam generator for pressurized-water reactors

    International Nuclear Information System (INIS)

    Michel, E.

    1971-01-01

    In the steam generator for a PWR the central fall space of a U-tube bundel heat exchanger is used as a preliminary cyclon separator. The steam escaping upwards, which is largely free of water, can flow through the residual heating surface, i.e. the U-tube turns. In this way substantial drying and less superheating by the heat still added becomes possible. In its upper part the central fall space for the water separated in the preliminary separator, enclosed by a cylindrical guide wall and the U-tube bundle, is provided with tangential inlet slots. Through these, the water-steam mixture steams out of the section of the vertical legs of the U-tube bundle into the fall space. Above the inlet slots the rising space is closed by means of a turn-round plate. At the lower end of the guide wall outlet, slots are provided for the water flowing downwards and radially outwards into the unfilled space. (DG/PB) [de

  2. Leak detection of steam or water into sodium in steam generators of liquid-metal fast breeder reactors

    International Nuclear Information System (INIS)

    Hans, R.; Dumm, K.

    1977-01-01

    The leakage of water or steam into sodium in LMFBR steam generators, including a study of how leaks are detected and located as well as the potential damage that could be caused by such leaks, is surveyed. The most interesting steam generator designs evolving in those countries that develop and construct LMFBRs are presented. The relevant protection measures are described. Fault conditions are defined and descriptions given of possible sequences of events leading to abnormal conditions in a steam generator. Taking into account theory, the potential of the hydrogen and oxygen detection systems is discussed. Different hydrogen and oxygen detection systems are fully described. In so far as interesting technical solutions are concerned, previously developed devices have also been taken into account. The way oxygen detection supplements hydrogen detection is described by listing the available oxygen measuring devices and the relevant theory. Only a few sonic and accelerometer measurements have been made on complete steam generator units so there is little system data available. Descriptions, however, have been included to give the state of the art achieved for the sensors and the achieved sensitivities or band widths. The potential of this monitoring method is made evident by adding the technical data of the sensors. Furthermore, the available systems for monitoring medium and large leakages are described. Finally, recommendations are made concerning steam generator development and the application of hydrogen and oxygen detection systems, as well as acoustic measuring methods for small-leakage detection

  3. Two-phase flow field simulation of horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Rabiee, Ataollah; Kamalinia, Amir Hossein; Hadad, Kamal [School of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2017-02-15

    The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

  4. A reflux capsule steam generator for sodium cooled reactors

    International Nuclear Information System (INIS)

    Lantz, E.

    Pressurized water reactor plants at numerous sites have sustained significant leakage through their steam generators. The consequent shutdowns for repairs and replacements have damaged their economics. This experience suggests that if steam generators for liquid metal fast breeder reactors (LMFBR's) continue to be built as presently designed some of them will have similar problems. Because of their larger capital investment, the consequent damage to the economics of LMFBR's could be more serious. Reflux capsules provide a way to separate sodium from water and to reduce thermal stresses in steam generators for sodium cooled reactors. Their use would also eliminate the need for a primary heat exchanger and a secondary sodium loop pump. (author)

  5. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-generating pressure vessels (modifies U-1(g)). 54... ENGINEERING PRESSURE VESSELS General Requirements § 54.01-10 Steam-generating pressure vessels (modifies U-1(g)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as...

  6. Calculation of relative tube/tube support plate displacements in steam generators under accident condition loads using non-linear dynamic analysis methodologies

    International Nuclear Information System (INIS)

    Smith, R.E.; Waisman, R.; Hu, M.H.; Frick, T.M.

    1995-01-01

    A non-linear analysis has been performed to determine relative motions between tubes and tube support plates (TSP) during a steam line break (SLB) event for steam generators. The SLB event results in blowdown of steam and water out of the steam generator. The fluid blowdown generates pressure drops across the TSPS, resulting in out-of-plane motion. The SLB induced pressure loads are calculated with a computer program that uses a drift-flux modeling of the two-phase flow. In order to determine the relative tube/TSP motions, a nonlinear dynamic time-history analysis is performed using a structural model that considers all of the significant component members relative to the tube support system. The dynamic response of the structure to the pressure loads is calculated using a special purpose computer program. This program links the various substructures at common degrees of freedom into a combined mass and stiffness matrix. The program accounts for structural non-linearities, including potential tube and TSP interaction at any given tube position. The program also accounts for structural damping as part of the dynamic response. Incorporating all of the above effects, the equations of motion are solved to give TSP displacements at the reduced set of DOF. Using the displacement results from the dynamic analysis, plate stresses are then calculated using the detailed component models. Displacements form the dynamic analysis are imposed as boundary conditions at the DOF locations, and the finite element program then solves for the overall distorted geometry. Calculations are also performed to assure that assumptions regarding elastic response of the various structural members and support points are valid

  7. Acoustic Leak Detection under Micro and Small Water Steam Leaks into Sodium for a Protection of the SFR Steam Generator

    International Nuclear Information System (INIS)

    Kim, Tae-Joon; Jeong, Ji-Young; Kim, Jong-Man; Kim, Byung-Ho; Hahn, Do-Hee; Yugay, Valeriy S.

    2008-01-01

    The results of an experimental study of water in a sodium leak noise spectrum formation related with a leak noise attenuation and absorption, and at various rates of water into a sodium leak, smaller than 1.0 g/s, are presented. We focused on studying the micro leak dynamics with an increasing rate of water into sodium owing to a self-development from 0.005 till 0.27 g/s. Conditions and ranges for the existence of bubbling and jetting modes in a water steam outflow into circulating sodium through an injector device, for simulating a defect in a wall of a heat-transmitting tube of a sodium water steam generator were determined. On the basis of the experimental leak noise data the simple dependency of an acoustic signal level from the rate of a micro and small leak at different frequency bands is presented to understand the principal analysis for the development of an acoustic leak detection methodology used in a K- 600 steam generator, with the operational experiences for the noise analysis and measurements in BN-600

  8. Dynamic model of YGN 3 and 4 steam generators for natural circulation mode

    International Nuclear Information System (INIS)

    Sohn, Jong Joo

    1995-02-01

    A dynamic model for the secondary side of Yonggwang nuclear power plant units 3 and 4 (YGN 3 and 4) steam generator model is developed to improve the accuracy of the present performance analysis code. The new model is based on the one-dimensional three region model to predict the local quality and void fraction distribution along the U-tube length. The local quality concept is used instead of the Wilson bubble rise correlation to simulate the steam generators in the natural circulation mode. The new model can be applicable to the plants in the power operation modes such as load maneuvering transients in which the steam generator internal flow is maintained in the natural circulation mode. To validate the new model, the code predictions are compared with the actual plant data measured for the selected load maneuvering tests performed during the YGN units 3 power ascension test period. The results from the improved model show better agreement with the plant data than those from the present code. Especially, the new model's capability of accurately simulating the steam generator water level behavior during the fast transients such as a large load rejection event is demonstrated

  9. Slurry steam generator program and baseline eddy current examination

    International Nuclear Information System (INIS)

    Clark, R.A.; Doctor, P.G.

    1985-01-01

    The Steam Generator Group Project was initiated in January 1982 with formation of consortium including NRC, EPRI, Japanese, French, and Italian participants. The project utilizes a retired-from-service nuclear steam generator established in a specially designed facility which houses the unit in its normal vertical operating position. The most important objectives deal with validation of nondestructive examination (NDE) techniques used to characterize steam generators during service. This research generator offers the first opportunity to characterize a statistically significant number of service-induced defects nondestructively followed by destructive metallographic confirmation. The project seeks to establish the reliability of defect detection and the accuracy of sizing defects via current state-of-the-art NDE. Other service degraded tubes will be burst tested to establish remaining service integrity. The integrity information and NDE reliability results will serve as inputs to establish a model for steam generator in-service inspections, and provide a data base for evaluation of tube plugging criteria. In addition to NDE validation goals, the project will use the service degraded generator as a specimen for demonstration/proof testing of repair and maintenance techniques, including chemical cleaning/decontamination technologies. In addition to the efforts associated with NDE, a multitude of other project tasks have continued through 1984, and results are presented

  10. Surry steam generator program and baseline eddy current examination

    International Nuclear Information System (INIS)

    Clark, R.A.; Doctor, P.G.

    1985-01-01

    The Steam Generator Group Project was initiated in January 1982 with formation of consortium including NRC, EPRI, Japanese, French, and Italian participants. The project utilizes a retired-from-service nuclear steam generator established in a specially designed facility which houses the unit in its normal vertical operating position. The most important objectives deal with validation of nondestructive examination (NDE) techniques used to characterize steam generators during service. This research generator offers the first opportunity to characterize a statistically significant number of service-induced defects nondestructively followed by destructive metallographic confirmation. The project seeks to establish the reliability of defect detection and the accuracy of sizing defects via current state-of-the-art NDE. Other service degraded tubes will be burst tested to establish remaining service integrity. The integrity information and NDE reliability results will serve as inputs to establish a model for steam generator in-service inspections, and provide a data base for evaluation of tube plugging criteria. In addition to NDE validation goals, the project will use the service degraded generator as a specimen for demonstration/proof testing of repair and maintenance techniques, including chemical cleaning/decontamination technologies. In addition to the efforts associated with NDE, a multitude of other project tasks have continued through 1984, and results are presented

  11. Characteristics of fluctuating pressure generated in BWR main steam lines

    International Nuclear Information System (INIS)

    Takahashi, Shiro; Okuyama, Keita; Tamura, Akinori

    2009-01-01

    The BWR-3 steam dryer in the Quad Cities Unit 2 Nuclear Power Plant was damaged by high cycle fatigue due to acoustic-induced vibration. The dryer failure was as attributed to flow-induced acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSLs). The acoustic resonance was considered to be generated by interaction between the sound field and an unstable shear layer across the closed side branches with SRV stub pipes. We have started a research program on BWR dryers to develop their loading evaluation methods. Moreover, it has been necessary to evaluate the dryer integrity of BWR-5 plants which are the main type of BWR in Japan. In the present study, we used 1/10-scale BWR tests and analyses to investigate the flow-induced acoustic resonance and acoustic characteristics in MSLs. The test apparatus consisted of a steam dryer, a steam dome and 4 MSLs with 20 SRV stub pipes. A finite element method (FEM) was applied for the calculation of three-dimensional wave equations in acoustic analysis. We demonstrated that remarkable fluctuating pressures occurred in high and low frequency regions. High frequency fluctuating pressures was generated by the flow-induced acoustic resonance in the SRV stub pipes. Low frequency fluctuating pressure was generated in an MSL with the dead leg. The frequency of the latter almost coincided with the natural frequency of the MSL with the dead leg. The amplitude of the fluctuating pressures in the multiple stub pipes became more intense because of interaction between them compared with that in the single stub pipe. Acoustic analysis results showed that the multiple stub pipes caused several natural frequencies in the vicinity of the natural frequency of the single stub pipe and several modes of the standing wave in the MSLs. (author)

  12. Modeling of soluble impurities distribution in the steam generator secondary water

    International Nuclear Information System (INIS)

    Matal, O.; Simo, T.; Kucak, L.; Urban, F.

    1997-01-01

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.)

  13. Analysis of steam generator loss-of-feedwater experiments with APROS and RELAP5/MOD3.1 computer codes

    International Nuclear Information System (INIS)

    Virtanen, E.; Haapalehto, T.; Kouhia, J.

    1997-01-01

    Three experiments were conducted to study the behaviour of the new horizontal steam generator construction of the PACTEL test facility. In the experiments the secondary side coolant level was reduced stepwise. The experiments were calculated with two computer codes RELAP5/MOD3.1 and APROS version 2.11. A similar nodalization scheme was used for both codes so that the results may be compared. Only the steam generator was modeled and the rest of the facility was given as a boundary condition. The results show that both codes calculate well the behaviour of the primary side of the steam generator. On the secondary side both codes calculate lower steam temperatures in the upper part of the heat exchange tube bundle than was measured in the experiments. (orig.)

  14. Correlation of Steam Generator Mixing Parameters for Severe Accident Hot-Leg Natural Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yehong; Guentay, Salih [Paul Scherrer Institut, Villigen PSI, CH-5232 (Switzerland)

    2008-07-01

    Steam generator inlet plenum mixing phenomenon with hot-leg counter-current natural circulation during a PWR station blackout severe accident is one of the important processes governing which component will fail first as a result of thermal challenge from the circulating gas with high temperature and pressure. Since steam generator tube failure represents bypass release of fission product from the reactor to environment, study of inlet plenum mixing parameters is important to risk analysis. Probability distribution functions of individual mixing parameter should be obtained from experiments or calculated by analysis. In order to perform sensitivity studies of the synergetic effects of all mixing parameters on the severe accident-induced steam generator tube failure, the distribution and correlation of these mixing parameters must be known to remove undue conservatism in thermal-hydraulic calculations. This paper discusses physical laws governing three mixing parameters in a steady state and setups the correlation among these mixing parameters. The correlation is then applied to obtain the distribution of one of the mixing parameters that has not been given in the previous CFD analysis. Using the distributions and considering the inter-dependence of the three mixing parameters, three sensitivity cases enveloping the mixing parameter uncertainties are recommended for the plant analysis. (authors)

  15. Steam generator tubesheet waterlancing at Bruce B

    Energy Technology Data Exchange (ETDEWEB)

    Persad, R. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada); Eybergen, D. [Bruce Power, Tiverton, Ontario (Canada)

    2006-07-01

    High pressure water cleaning of steam generator secondary side tubesheet surfaces is an important and effective strategy for reducing or eliminating under-deposit chemical attack of the tubing. At the Bruce B station, reaching the interior of the tube bundle with a high-pressure water lance is particularly challenging due to the requirement to setup on-boiler equipment within the containment bellows. This paper presents how these and other design constraints were solved with new equipment. Also discussed is the application of new high-resolution inter-tube video probe capability to the Bruce B steam generator tubesheets. (author)

  16. Steam generator tube rupture risk impact on design and operation of French PWR plants

    International Nuclear Information System (INIS)

    Depond, G.; Sureau, H.

    1984-01-01

    The experience of steam generator tube leaks incidents in PWR plants has resulted in an increase of EDF analysis leading to improvements in design and post-accidental operation for new projects and operating plants. The accident consequences are minimized for each of the NSSS three barriers: first barrier: safeguard systems design and operating procedures relying upon core safety allow to maintain a low level of primary radioactivity, second barrier: steam generator design and periodic inspection allow to reduce tube ruptures risks and third barrier: atmospheric releases are reduced as a result of optimal recovery procedures, detection improvements and atmospheric steam valves design improvements. (orig.)

  17. Molten salt steam generator subsystem research experiment. Volume I. Phase 1 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-10-01

    A study was conducted for Phase 1 of a two-phase project whose objectives were to develop a reliable, cost-effective molten salt steam generating subsystem for solar thermal plants, minimize uncertainty in capital, operating, and maintenance costs, and demonstrate the ability of molten salt to generate high-pressure, high-temperature steam. The Phase 1 study involved the conceptual design of molten salt steam generating subsystems for a nominal 100-MWe net stand-alone solar central receiver electric generating plant, and a nominal 100-MWe net hybrid fossil-fueled electric power generating plant that is 50% repowered by a solar central receiver system. As part of Phase 1, a proposal was prepared for Phase 2, which involves the design, construction, testing and evaluation of a Subsystem Research Experiment of sufficient size to ensure successful operation of the full-size subsystem designed in Phase 1. Evaluation of several concepts resulted in the selection of a four-component (preheater, evaporator, superheater, reheater), natural circulation, vertically oriented, shell and tube (straight) heat exchanger arrangement. Thermal hydraulic analysis of the system included full and part load performance, circulation requirements, stability, and critical heat flux analysis. Flow-induced tube vibration, tube buckling, fatigue evaluation of tubesheet junctions, steady-state tubesheet analysis, and a simplified transient analysis were included in the structural analysis of the system. Operating modes and system dynamic response to load changes were identified. Auxiliary equipment, fabrication, erection, and maintenance requirements were also defined. Installed capital costs and a project schedule were prepared for each design.

  18. Hideout in steam generator tube deposits

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; Franklin, K.J.; Turner, C.W.

    1998-05-01

    Hideout in deposits on steam generator tubes was studied using tubes coated with magnetite. Hideout from sodium chloride solutions at 279 degrees C was followed using an on-line high-temperature conductivity probe, as well as by chemical analysis of solution samples from the autoclave in which the studies were done. Significant hideout was observed only at a heat flux greater than 200 kW/m 2 , corresponding to a temperature drop greater than 2 degrees C across the deposits. The concentration factor resulting from the hideout increased highly non-linearly with the heat flux (varying as high as the fourth power of the heat flux). The decrease in the apparent concentration factor with increasing deposit thickness suggested that the pores in the deposit were occupied by a mixture of steam and water, which is consistent with the conclusion from the thermal conductivity measurements on deposits in a separate study. Analyses of the deposits after the hideout tests showed no evidence of any hidden-out solute species, probably due to the concentrations being very near the detection limits and to their escape from the deposit as the tests were being ended. This study showed that hideout in deposits may concentrate solutes in the steam generator bulk water by a factor as high as 2 x 10 3 . Corrosion was evident under the deposit in some tests, with some chromium enrichment on the surface of the tube. Chromium enrichment usually indicates an acidic environment, but the mobility required of chromium to become incorporated into the thick magnetite deposit may indicate corrosion under an alkaline environment. An alkaline environment could result from preferential accumulation of sodium in the solution in the deposit during the hideout process. (author)

  19. Specialists' meeting on maintenance and repair of LMFBR steam generators. Summary report

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of the meeting was to review and discuss the experience accumulated in various countries on the general design philosophy of LMFBR steam generators from the view point of maintenance and repair, in-service inspection of steam generator tube bundles, identification and inspection of failed tubes and the cleaning and repairing of failed steam generators. The following main topic areas were discussed by participants: National review presentations on maintenance and repair of LMFBR steam generators - design philosophy for maintenance and repair; Research and Development work on maintenance and repair; Experience on steam generator maintenance and repair. During the meeting papers were presented by the participants on behalf of their countries and organizations. A final discussion session was held and summaries, general conclusions and recommendations were approved by consensus

  20. Evaluation of steam generator U-tube integrity during PWR station blackout with secondary system depressurization

    International Nuclear Information System (INIS)

    Hidaka, Akihide; Asaka, Hideaki; Sugimoto, Jun; Ueno, Shingo; Yoshino, Takehito

    1999-12-01

    In PWR severe accidents such as station blackout, the integrity of steam generator U-tube would be threatened early at the transient among the pipes of primary system. This is due to the hot leg countercurrent natural circulation (CCNC) flow which delivers the decay heat of the core to the structures of primary system if the core temperature increases after the secondary system depressurization. From a view point of accident mitigation, this steam generator tube rupture (SGTR) is not preferable because it results in the direct release of primary coolant including fission products (FP) to the environment. Recent SCDAP/RELAP5 analyses by USNRC showed that the creep failure of pressurizer surge line which results in release of the coolant into containment would occur earlier than SGTR during the secondary system depressurization. However, the analyses did not consider the decay heat from deposited FP on the steam generator U-tube surface. In order to investigate the effect of decay heat on the steam generator U-tube integrity, the hot leg CCNC flow model used in the USNRC's calculation was, at first, validated through the analysis for JAERI's LSTF experiment. The CCNC model reproduced well the thermohydraulics observed in the LSTF experiment and thus the model is mostly reliable. An analytical study was then performed with SCDAP/RELAP5 for TMLB' sequence of Surry plant with and without secondary system depressurization. The decay heat from deposited FP was calculated by JAERI's FP aerosol behavior analysis code, ART. The ART analysis showed that relatively large amount of FPs may deposit on steam generator U-tube inlet mainly by thermophoresis. The SCDAP/RELAP5 analyses considering the FP decay heat predicted small safety margin for steam generator U-tube integrity during secondary system depressurization. Considering associated uncertainties in the analyses, the potential for SGTR cannot be ignored. Accordingly, this should be considered in the evaluation of merits

  1. High temperature technological heat exchangers and steam generators with helical coil assembly tube bundle

    International Nuclear Information System (INIS)

    Korotaev, O.J.; Mizonov, N.V.; Nikolaevsky, V.B.; Nazarov, E.K.

    1990-01-01

    Analysis of thermal hydraulics characteristics of nuclear steam generators with different tube bundle arrangements and waste heat boilers for ammonia production units was performed on the basis of operating experience results and research and development data. The present report involves the obtained information. The estimations of steam generator performances and repair-ability are given. The significant temperature profile of the primary and secondary coolant flows are attributed to all steam generator designs. The intermediate mixing is found to be an effective means of temperature profile overcoming. At present the only means to provide an effective mixing in heat exchangers of the following types: straight tubes, field tubes, platen tubes and multibank helical coil tubes (with complicated bend distribution along their length) are section arrangements in series in conjunction with forced and natural mixing in connecting lines. Development of the unificated system from mini helical coil assemblies allows to design and manufacture heat exchangers and steam generators within the wide range of operating conditions without additional expenses on the research and development work

  2. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    International Nuclear Information System (INIS)

    Pappx, L.

    1994-01-01

    After modification of Dukovany NPP steam generator feedwater system, the increased concentration of minerals was measured in the cold leg of modified steam generator. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators, has focused this attention on the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of flow distribution in the secondary side of SG was developed. (Author)

  3. Chemical cleaning as an essential part of steam generator asset management

    International Nuclear Information System (INIS)

    Stiepani, C.; Ammann, F.; Jones, D.; Evans, S.; Harper, K.

    2010-01-01

    Accumulation of deposits is intrinsic for the operation of Steam Generators in PWRs. Such depositions often lead to reduction of thermal performance, loss of component integrity and, in some cases to power restrictions. Accordingly removal of such deposits is an essential part of the asset management of the Steam Generators in a Nuclear Power Plant. Every plant has its individual condition, history and constraints which need to be considered when planning and performing a chemical cleaning. Typical points are: Sludge load amount and constitution of the deposits; Sludge distribution in the steam generator; Existing or expected corrosion problems; Amount and treatment possibilities for the waste generated. Depending on these points the strategy for chemical cleaning shall be evolved. The range of treatment starts with very soft cleanings with a removal of approx 100 kg per steam generator and goes to a full scale cleaning which can remove up to several thousand kilograms of deposits from a steam generator. Depending on the goal to be achieved and the steam generator present an adequate cleaning method shall be selected. Flexible and 'customizable' cleaning methods that can be adapted to the individual needs of a plant are therefore a must. Particular for the application of preventive cleanings where repeated or even regular application are intended, special focus has to be put on low corrosion and easy waste handling. Therefore AREVA has developed the 'C3' concept, Customized Chemical Cleaning concept. This concept covers the entire range of steam generator cleaning. Particular for the preventive maintenance cleanings processes with extreme low corrosion rates and easy waste handling are provided which make repeated applications safe and cost efficient. (author)

  4. Modeling of soluble impurities distribution in the steam generator secondary water

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Simo, T. [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L.; Urban, F. [Slovak Technical Univ., Bratislava (Slovakia)

    1997-12-31

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  5. Modeling of soluble impurities distribution in the steam generator secondary water

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Simo, T [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L; Urban, F [Slovak Technical Univ., Bratislava (Slovakia)

    1998-12-31

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  6. Steam Generator Group Project: Task 10, Secondary side examination

    International Nuclear Information System (INIS)

    Schwenk, E.B.

    1987-06-01

    This report concludes an effort to examine and assess from the secondary side, the condition of the retired-from-service Surry 2A steam generator. It is includes photographs of degradation of various components or regions in a generic recirculating type steam generator. The photographic detail given in the text (and the previous report NUREG/CR-3843, PNL-5033) have not been readily available to many investigators outside the Nuclear Steam Supply Vendors and Users. The photographs include views of Inconel 600 heat exchanger tubes (0.875 diameter [nominal] x 0.050 inch wall) showing deformed and intergranularly stress-corrosion cracked U-bends, tube denting in the support plate, intergranular attack and thinning (both in the tube sheet region), support plat deformation and cracking at flow slots and in ligaments between flow holes and tube holes. In addition, photographs of tube pitting, anti-vibration bar fretting, and the sludge pile are presented. An experimental stress analysis was conducted on a distorted Row 1 tube in the region of a compressed flow slot between the 6th and 7th (top) support plates. During removal of the tube, relaxation strains were measured and residual stresses calculated. Finally a cursory metallurgical failure analysis was conducted on a broken U-bend (R1C91) to determine its mode of failure. A rotabroach boring technique was used to make multiple penetrations with minimal damage to the secondary side, at various locations on the shell

  7. Influence of recycling ratio on steam generator thermal recycling

    International Nuclear Information System (INIS)

    Bassel, W.S.; Rodrigues, V.G.

    1989-01-01

    A mathematical model was developed to simulate thermal performance of steam generator. The simulation was done with 3 control volumes. The coupled non-linear algebric equations, where the heat transfer was calculated with logarithmic meam temperature difference, was solved by iterative method. The developed model is suitable for calculation the parameters which effect the performance of steam generator. (author) [pt

  8. MHTGR steam generator on-line heat balance, instrumentation and function

    International Nuclear Information System (INIS)

    Klapka, R.E.; Howard, W.W.; Etzel, K.T.; Basol, M.; Karim, N.U.

    1991-09-01

    Instrumentation is used to measure the Modular High Temperature Gas-Cooled Reactor (MHTGR) steam generator dissimilar metal weld temperature during start-up testing. Additional instrumentation is used to determine an on-line heat balance which is maintained during the 40 year module life. In the process of calibrating the on-line heat balance, the helium flow is adjusted to yield the optimum boiling level in the steam generator relative to the dissimilar metal weld. After calibration is complete the weld temperature measurement is non longer required. The reduced boiling level range results in less restrictive steam generator design constraints

  9. PWR steam generator chemical cleaning. Phase I: solvent and process development. Volume II

    International Nuclear Information System (INIS)

    Larrick, A.P.; Paasch, R.A.; Hall, T.M.; Schneidmiller, D.

    1979-01-01

    A program to demonstrate chemical cleaning methods for removing magnetite corrosion products from the annuli between steam generator tubes and the tube support plates in vertical U-tube steam generators is described. These corrosion products have caused steam generator tube ''denting'' and in some cases have caused tube failures and support plate cracking in several PWR generating plants. Laboratory studies were performed to develop a chemical cleaning solvent and application process for demonstration cleaning of the Indian Point Unit 2 steam generators. The chemical cleaning solvent and application process were successfully pilot-tested by cleaning the secondary side of one of the Indian Point Unit 1 steam generators. Although the Indian Point Unit 1 steam generators do not have a tube denting problem, the pilot test provided for testing of the solvent and process using much of the same equipment and facilities that would be used for the Indian Point Unit 2 demonstration cleaning. The chemical solvent selected for the pilot test was an inhibited 3% citric acid-3% ascorbic acid solution. The application process, injection into the steam generator through the boiler blowdown system and agitation by nitrogen sparging, was tested in a nuclear environment and with corrosion products formed during years of steam generator operation at power. The test demonstrated that the magnetite corrosion products in simulated tube-to-tube support plate annuli can be removed by chemical cleaning; that corrosion resulting from the cleaning is not excessive; and that steam generator cleaning can be accomplished with acceptable levels of radiation exposure to personnel

  10. A single-stage high pressure steam injector for next generation reactors: test results and analysis

    International Nuclear Information System (INIS)

    Cattadori, G.; Galbiati, L.; Mazzocchi, L.; Vanini, P.

    1995-01-01

    Steam injectors can be used in advanced light water reactors (ALWRs) for high pressure makeup water supply; this solution seems to be very attractive because of the ''passive'' features of steam injectors, that would take advantage of the available energy from primary steam without the introduction of any rotating machinery. The reference application considered in this work is a high pressure safety injection system for a BWR; a water flow rate of about 60 kg/s to be delivered against primary pressures covering a quite wide range up to 9 MPa is required. Nevertheless, steam driven water injectors with similar characteristics could be used to satisfy the high pressure core coolant makeup requirements of next generation PWRs. With regard to BWR application, an instrumented steam injector prototype with a flow rate scaling factor of about 1:6 has been built and tested. The tested steam injector operates at a constant inlet water pressure (about 0.2 MPa) and inlet water temperature ranging from 15 to 37 o C, with steam pressure ranging from 2.5 to 8.7 MPa, always fulfilling the discharge pressure target (10% higher than steam pressure). To achieve these results an original double-overflow flow rate-control/startup system has been developed. (Author)

  11. The steam generator repair project of the Donald C. Cook Nuclear Plant, Unit 2

    International Nuclear Information System (INIS)

    White, J.D.

    1993-01-01

    Donald C. Cook Nuclear Plant Unit 2 is part of a two unit nuclear complex located in southwestern Michigan and owned and operated by the Indiana Michigan Power Company. The Cook Nuclear Plant is a pressurized water reactor (PWR) plant with four Westinghouse Series 51 steam generators housed in an ice condenser containment. This paper describes the program undertaken by Indiana Michigan Power and the American Electric Power Service Corporation (AEPSC) to repair the Unit 2 steam generators. (Both Indiana Michigan Power and AEPSC arc subsidiaries of American Electric Power Company, Incorporated (AEP). AEPSC provides management and technical support services to Indiana Michigan Power and the other AEP operating companies.) Eddy current examinations, in a series of refueling and forced outages between November 1983 and July 1986 resulted in 763 (5.6%) plugged tubes. In order to maintain adequate reactor core cooling, a limit of 10% is placed on the allowable percentage of steam generator tubes that can be removed from service by plugging. Additionally, sections of tubes were removed for metallurgical analysis and confirmed that the degradation was due to intergranular stress corrosion cracking. In developing the decision on how to repair the steam generators, four alternative actions were considered for addressing these problems: retubing in place, sleeving, operating at 80% reactor power to lower temperature and thus reduce the rate of corrosion, replacing steam generator lower assemblies

  12. Wear behavior of steam generator tubes in nuclear power plant operating condition

    International Nuclear Information System (INIS)

    Kim, In-Sup; Hong, Jin-Ki; Kim, Hyung-Nam; Jang, Ki-Sang

    2003-01-01

    Reciprocating sliding wear tests were performed on steam generator tubes materials at steam generator operating temperature. The material surfaces react with oxygen to form oxides. The oxide properties such as formation rate and mechanical properties are varied with the test temperature and alloy composition. So, it is important to investigate the wear properties of each steam generator tube materials in steam generator operating condition. The tests results indicated that the wear coefficient in work rate model of alloy 690 was faster than that of alloy 800. From the scanning electron microscopy observation, the wear scars were similar each other and worn surfaces were covered with oxide layers. It seemed that the oxide layers were formed by wear debris sintering or cold welding and these layer properties affected the wear rate of steam generator tube materials. (author)

  13. Numerical modeling of secondary side thermohydraulics of horizontal steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Melikhov, V.I.; Melikhov, O.I.; Nigmatulin, B.I. [Research and Engineering Centre of LWR Nuclear Plants Safety, Moscow (Russian Federation)

    1995-12-31

    A mathematical model for the transient three-dimensional secondary side thermal hydraulics of the horizontal steam generator has been developed. The calculations of the steam generator PGV-1000 and PGV-4 nominal regimes and comparison of numerical and experimental results have been carried out. 7 refs.

  14. Numerical modeling of secondary side thermohydraulics of horizontal steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Melikhov, V I; Melikhov, O I; Nigmatulin, B I [Research and Engineering Centre of LWR Nuclear Plants Safety, Moscow (Russian Federation)

    1996-12-31

    A mathematical model for the transient three-dimensional secondary side thermal hydraulics of the horizontal steam generator has been developed. The calculations of the steam generator PGV-1000 and PGV-4 nominal regimes and comparison of numerical and experimental results have been carried out. 7 refs.

  15. Steam Generator Group Project. Task 6. Channel head decontamination

    International Nuclear Information System (INIS)

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described

  16. Steam generators for nuclear power plants

    International Nuclear Information System (INIS)

    Tillequin, Jean

    1975-01-01

    The role and the general characteristics of steam generators in nuclear power plants are indicated, and particular types are described according to the coolant nature (carbon dioxide, helium, light water, heavy water, sodium) [fr

  17. 76 FR 74834 - Interim Staff Guidance on Aging Management Program for Steam Generators

    Science.gov (United States)

    2011-12-01

    ... for Steam Generators AGENCY: Nuclear Regulatory Commission. ACTION: Interim staff guidance; issuance... (LR-ISG), LR-ISG-2011-02, ``Aging Management Program for Steam Generators.'' This LR-ISG provides the...) document, NEI 97-06, ``Steam Generator Program Guidelines,'' (NRC's Agencywide Documents Access and...

  18. Experience of steam generator tube examination in the hot laboratory of EDF: analysis of recent events concerning the secondary side

    International Nuclear Information System (INIS)

    Thebault, Y.; Bouvier, O. de; Boccanfuso, M.; Coquio, N.; Barbe, V.; Molinie, E.

    2011-01-01

    Until 2010, more than 60 steam generator (SG) tubes have been removed and analysed in the EDF hot laboratory of CEIDRE/Chinon. This article is particularly related to three recent events that lead to the extraction of several tubes dedicated to laboratory destructive examinations. The first event that constitutes a first occurrence on the EDF Park, concerns the detection of a circumferential crack on the external surface of a tube located at tube support plate elevation. After this observation, several tubes have been extracted from Bugey 3 and Fessenheim 2 nuclear power plants with steam generators equipped with 600 MA bundle. The other two events concern the consequences of chemical cleaning of the tube bundle steam generators. The examples chosen are from Cruas 4 et Chinon B2 units whose tubes were extracted following non destructive testing performed immediately after or at the completion of cycle following the chemical cleaning. In the case of Cruas 4, Eddy Current Testing (ET) were performed for requalification of steam Generators after chemical cleaning. They allowed the detection of an indication located at the bottom of tube for a large number of tubes; the ET signal was similar to that corresponding to 'deposit' corrosion. Moreover, inspections of Chinon-B2 SGs at the end of the operation cycle following the chemical cleaning, showed the presence of conductor deposits at the bottom of some tubes. The first part of this document presents the major results of laboratory examinations of the pulled tubes of Bugey 3 and Fessenheim 2 and their analysis. Hypothesis concerning damage mechanisms of the tubes are also proposed. The second part of the paper relates the results of the laboratory examinations of the pulled tubes of Cruas 4 and Chinon B 2 after chemical cleaning and their analysis. (authors)

  19. Steam-generator replacement sets new marks

    International Nuclear Information System (INIS)

    Beck, R.L.

    1995-01-01

    This article describes how, in one of the most successful steam-generator replacement experiences at PWRs worldwide, the V C Summer retrofit exceeded plant goals for critical-path duration, radiation, exposure, and radwaste generation. Intensive planning and teamwork, combined with the firm support of station management and the use of mockups to prepare the work crews for activity in a radiological environment, were key factors in the record performance achieved by South Carolina Electric and Gas Co (SCE and G) in replacing three steam generators at V C Summer nuclear station. The 97-day, two-hour breaker-to-breaker replacement outage -- including an eight-day delay for repair of leak in a small-bore seal-injection line of a reactor coolant pump (unrelated to the replacement activities) -- surpassed the project goal by over one day. Moreover, the outage was only 13 hours shy of the world record held by Virginia Power Co's North Anna Unit 1

  20. Steam generation at Rihand STPP Stage 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    The steam generation plant at Rihand in India has two 500 MW boilers. The boilers are of the balanced draught, single cell, radiant furnace type, and are controlled automatically. Cochran Thermax shell type auxillary steam boilers are used for preheating air to the main boilers and for heating fuel oil during storage and pumping. Electrostatic precipitators and ash handling plants are provided to keep dust and ash within limits. 2 figs.

  1. Acoustic noises of the BOR-60 reactor steam generators when simulating leaks with argon and steam

    International Nuclear Information System (INIS)

    Sokolov, V.M.; Golushko, V.V.; Afanas'ev, V.A.; Grebenkin, Yu.P.; Muralev, A.B.

    1985-01-01

    Background acoustic noises of stea generators in different operational regimes and noises of argon and steam small leads (about 0.1 g/s) are studied to determine the possibility of designing the acoustic system for leak detection in sodium-water steamgenerators. Investigations are carried out at the 30 MW micromodule steam generator being in operation at the BOR-60 reactor as well as at the 20 MW tank type steam generator. Immersed ransduceres made of lithium niobate 6 mm in-diameter and waveguide transducers made of a stainless steel in the form of rods 10 mm in-diameter and 500 mm long are used as acoustic monitors. It is shown that the leak noise is more wide-band than the background noise of the steam generator and both high and low frequencies appear in the spectrum. The use of monitors of different types results in similar conslusions inrelation to the character of background noises and leak signals (spectral density, signal to-noise ratio) in the ase of similar bandroidths of the transduceres. A conclusion is made that the change of operational regimes leads to changes of background noise level, which can be close to the reaction of

  2. Free vibration analysis of a steam generator tube bundle with and without lateral support

    International Nuclear Information System (INIS)

    King, D.M.

    1979-04-01

    The vibrational modes and frequency characteristics of a pressurized water reactor (PWR) steam generator tube bundle assembly with and without lateral support in a fluid environment are analyzed. The idealized half-model was constructed using the SAP-IV finite element code. Free vibration analyses were performed for an in-air case and a submerged in-water case, each with different constraint conditions at steam generator tube bundle assembly support plates 10 and 11. These constraint conditions included having both support plates free, having both support plates fixed, and having support plate 11 free while support plate 10 was fixed. It was found that as the support plate constraints were removed, the frequency range for each case increased significantly

  3. Electric power generating plant having direct-coupled steam and compressed-air cycles

    Science.gov (United States)

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  4. Electric power generating plant having direct coupled steam and compressed air cycles

    Science.gov (United States)

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  5. Development of steam generators for combustion of biofuels up to 10 t/h

    Energy Technology Data Exchange (ETDEWEB)

    Bentzin, H

    1985-01-01

    Combustion parameters are compared for raw brown coal, rice hulls and coconut shells as fuel in small steam generators. Combustion of native biofuel is seen as a power generation alternative in developing countries. Experiments were conducted on a 6.5 t/h moving grate steam generator with a firing grate surface of 7.2 m/sup 2/. Combustion results are shown in a table. Technological modifications carried out in adapting brown coal-fired steam generators to biofuels are also listed. A series of small steam generators for combustion of brown coal, biofuels including wood chips, as well as heating oil as back-up has been developed by the Karl-Marx-Stadt Dampfkesselbau Plant, GDR, with steam capacities ranging from 3.2 to 10 t/h. Technical specifications and diagrams of this series design (DGK-3, DGK-45, DWK 2S) are given. A larger steam generator with 20 t/h steam capacity for combustion of raw brown coal, bagasse, wood chips with heating oil and for rice hulls as support fuels is being developed by the Berlin Dampferzeugerbau Plant, GDR. 5 references.

  6. Steam generator tube integrity program: Phase II, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, R.J.; Bickford, R.L.; Clark, R.A.; Morris, C.J.; Simonen, F.A.; Wheeler, K.R.

    1988-08-01

    The Steam Generator Tube Integrity Program (SGTIP) was a three phase program conducted for the US Nuclear Regulatory Commission (NRC) by Pacific Northwest Laboratory (PNL). The first phase involved burst and collapse testing of typical steam generator tubing with machined defects. The second phase of the SGTIP continued the integrity testing work of Phase I, but tube specimens were degraded by chemical means rather than machining methods. The third phase of the program used a removed-from-service steam generator as a test bed for investigating the reliability and effectiveness of in-service nondestructive eddy-current inspection methods and as a source of service degraded tubes for validating the Phase I and Phase II data on tube integrity. This report describes the results of Phase II of the SGTIP. The object of this effort included burst and collapse testing of chemically defected pressurized water reactor (PWR) steam generator tubing to validate empirical equations of remaining tube integrity developed during Phase I. Three types of defect geometries were investigated: stress corrosion cracking (SCC), uniform thinning and elliptical wastage. In addition, a review of the publicly available leak rate data for steam generator tubes with axial and circumferential SCC and a comparison with an analytical leak rate model is presented. Lastly, nondestructive eddy-current (EC) measurements to determine accuracy of defect depth sizing using conventional and alternate standards is described. To supplement the laboratory EC data and obtain an estimate of EC capability to detect and size SCC, a mini-round robin test utilizing several firms that routinely perform in-service inspections was conducted.

  7. Steam generator tube integrity program: Phase II, Final report

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Bickford, R.L.; Clark, R.A.; Morris, C.J.; Simonen, F.A.; Wheeler, K.R.

    1988-08-01

    The Steam Generator Tube Integrity Program (SGTIP) was a three phase program conducted for the US Nuclear Regulatory Commission (NRC) by Pacific Northwest Laboratory (PNL). The first phase involved burst and collapse testing of typical steam generator tubing with machined defects. The second phase of the SGTIP continued the integrity testing work of Phase I, but tube specimens were degraded by chemical means rather than machining methods. The third phase of the program used a removed-from-service steam generator as a test bed for investigating the reliability and effectiveness of in-service nondestructive eddy-current inspection methods and as a source of service degraded tubes for validating the Phase I and Phase II data on tube integrity. This report describes the results of Phase II of the SGTIP. The object of this effort included burst and collapse testing of chemically defected pressurized water reactor (PWR) steam generator tubing to validate empirical equations of remaining tube integrity developed during Phase I. Three types of defect geometries were investigated: stress corrosion cracking (SCC), uniform thinning and elliptical wastage. In addition, a review of the publicly available leak rate data for steam generator tubes with axial and circumferential SCC and a comparison with an analytical leak rate model is presented. Lastly, nondestructive eddy-current (EC) measurements to determine accuracy of defect depth sizing using conventional and alternate standards is described. To supplement the laboratory EC data and obtain an estimate of EC capability to detect and size SCC, a mini-round robin test utilizing several firms that routinely perform in-service inspections was conducted

  8. Maintenance and plugging technology for CANDU steam generator tubing

    International Nuclear Information System (INIS)

    Prince, J.; Nicholson, A.; Hare, J.; McGoey, L.; Stafford, T.; Gowthorpe, P.

    2006-01-01

    In order to keep aging steam generators in service and to successfully manage the life of these critical components, the capability must exist to perform tube plugging and other complex maintenance activities in-situ. In the early days of CANDU steam generator operation, the only option was to perform these activities manually, which had inherent safety and quality risks. The challenge was to be able to perform these activities remotely thus eliminating some of the confined space and radiological exposure risks. The additional challenge was to develop equipment and techniques which would result in significantly improved quality, particularly for the completed plug welds which would be returned to service. Over the past fifteen years, this technology has matured and has produced remarkable results in field application. Some 14000 tube plugs have been successfully installed to date using automated plugging techniques. This paper presents an overview of the development of techniques available to utilities for steam generator tube plugging as well as some highlights of other steam generator tube maintenance activities such as primary side tube removal and tube end damage repair. Aspects covered in the paper include plug and procedure development, automated equipment and manipulators for tool deployment, process controls and personnel requirements. Recently, the steam generator tube plugging performed by OPG has been incorporated into a formal quality program under the requirements of ASME NCA 4000. An overview of the quality program will be presented and details of some of the important aspects of the quality program will be discussed. (author)

  9. Development of data management system for steam generator inspection

    International Nuclear Information System (INIS)

    Jung, Yong Moo; Im, Chang Jae; Lee, Yoon Sang; Kang, Soon Joo; An, Jong Kwan

    1994-06-01

    The data communications environment for transferring Nuclear Power Plant Steam Generator Eddy Current testing data was investigated and after connecting LAN to Hinet-F network, the remote data transfer with the speed of 56 kbps was tested successfully. Data management system for Steam Generator Eddy current testing was also developed by using HP-UX, RMB (Rock Mountain Basic) 21 figs, 13 tabs, 5 refs. (Author)

  10. Development of data management system for steam generator inspection

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Moo; Im, Chang Jae; Lee, Yoon Sang; Kang, Soon Joo; An, Jong Kwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    The data communications environment for transferring Nuclear Power Plant Steam Generator Eddy Current testing data was investigated and after connecting LAN to Hinet-F network, the remote data transfer with the speed of 56 kbps was tested successfully. Data management system for Steam Generator Eddy current testing was also developed by using HP-UX, RMB (Rock Mountain Basic) 21 figs, 13 tabs, 5 refs. (Author).

  11. Future steam generator designs. Single wall designs

    International Nuclear Information System (INIS)

    Hayden, O.

    1978-01-01

    The easily removable 'U' tube design style adopted in the UK for the existing PFR Steam Generators, the Replacement Units now in production and for the future CDFR, gives the operator an extremely valuable option in the event of a water/steam leak occurring inside the Steam Generator. He can choose to shut-down, attempt to find the leak, assess damage, repair, revalidate and return to service in situ, or he can elect to remove the defect unit and replace with a 'proven' spare before returning the circuit to power. With the latter approach the resultant outage time is a known entity of about two weeks. If a repair is attempted in situ, predictions of outage time can become a matter of guesswork since one has no 'guaranteed' method of leak location and the assessment of secondary damage may be very time consuming, depending on the size and type of the original leak together with the particular design style of the Steam Generator. A further significant advantage of the removable 'U' tube design concept is that periodic interchanging of bundles with a spare enables routine chemical cleaning and thorough scheduled tube inspections, with specimen tube sample removal if required for monitoring purposes. If necessary, bundle decontamination can be undertaken to assess engineering deterioration to various degrees of thoroughness ranging from 100% equivalent factory final assembly inspection, to partial decontamination operating via a glovebox type of maintenance bag arrangement, examining local points of both shell and tube areas of the bundle. Many lessons from the last five years' experience of PFR will be incorporated into the design of the CDFR and PFR Steam Generators have two very good examples of how the designer can ease or severely handicap the operator in coping with sodium/water leakages. Good, quick access to tube ends is achieved in the existing PFR Evaporator by simply unbolting the steam/water closure head, but on the superheater and reheater hand-caps have

  12. Future steam generator designs. Single wall designs

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, O [Nuclear Power Company Ltd, Warrington, Cheshire (United Kingdom)

    1978-10-01

    The easily removable 'U' tube design style adopted in the UK for the existing PFR Steam Generators, the Replacement Units now in production and for the future CDFR, gives the operator an extremely valuable option in the event of a water/steam leak occurring inside the Steam Generator. He can choose to shut-down, attempt to find the leak, assess damage, repair, revalidate and return to service in situ, or he can elect to remove the defect unit and replace with a 'proven' spare before returning the circuit to power. With the latter approach the resultant outage time is a known entity of about two weeks. If a repair is attempted in situ, predictions of outage time can become a matter of guesswork since one has no 'guaranteed' method of leak location and the assessment of secondary damage may be very time consuming, depending on the size and type of the original leak together with the particular design style of the Steam Generator. A further significant advantage of the removable 'U' tube design concept is that periodic interchanging of bundles with a spare enables routine chemical cleaning and thorough scheduled tube inspections, with specimen tube sample removal if required for monitoring purposes. If necessary, bundle decontamination can be undertaken to assess engineering deterioration to various degrees of thoroughness ranging from 100% equivalent factory final assembly inspection, to partial decontamination operating via a glovebox type of maintenance bag arrangement, examining local points of both shell and tube areas of the bundle. Many lessons from the last five years' experience of PFR will be incorporated into the design of the CDFR and PFR Steam Generators have two very good examples of how the designer can ease or severely handicap the operator in coping with sodium/water leakages. Good, quick access to tube ends is achieved in the existing PFR Evaporator by simply unbolting the steam/water closure head, but on the superheater and reheater hand-caps have

  13. Composite electric generator equipped with steam generator for heating reactor coolant

    International Nuclear Information System (INIS)

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato.

    1997-01-01

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  14. PACTEL: Experiments on the behaviour of the new horizontal steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Kouhia, J.; Riikonen, V.; Purhonen, H. [VTT Energy, Lappeenranta (Finland)

    1995-12-31

    Experiments were performed to study the behaviour of the PACTEL facility, a medium scale integral test loop simulating VVER 440 pressurized water reactors. The study focused on the operation of the new horizontal steam generator model installed in PACTEL. Three experiments were conducted: a small-break test to observe the steam generator behaviour over a range of primary coolant inventories, a hot leg loop seal experiment to study the cyclic behaviour of a loop seal and a loss of secondary side feedwater test to examine the effect of uncovered tubes in the steam generator. A reverse flow was observed in the lower part of the U-tube bundle of the steam generator during natural circulation. The flow reversal point dropped when the tubes uncovered, during secondary inventory reduction. (orig.). 5 refs.

  15. PACTEL: Experiments on the behaviour of the new horizontal steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Kouhia, J; Riikonen, V; Purhonen, H [VTT Energy, Lappeenranta (Finland)

    1996-12-31

    Experiments were performed to study the behaviour of the PACTEL facility, a medium scale integral test loop simulating VVER 440 pressurized water reactors. The study focused on the operation of the new horizontal steam generator model installed in PACTEL. Three experiments were conducted: a small-break test to observe the steam generator behaviour over a range of primary coolant inventories, a hot leg loop seal experiment to study the cyclic behaviour of a loop seal and a loss of secondary side feedwater test to examine the effect of uncovered tubes in the steam generator. A reverse flow was observed in the lower part of the U-tube bundle of the steam generator during natural circulation. The flow reversal point dropped when the tubes uncovered, during secondary inventory reduction. (orig.). 5 refs.

  16. Reducing scram frequency by modifying/eliminating steam generator low-low level reactor trip setpoint for Maanshan nuclear power plant

    International Nuclear Information System (INIS)

    Yuann, R.Y.; Chiang, S.C.; Hsiue, J.K.; Chen, P.C.

    1987-01-01

    The feasibility of modification/elimination of steam generator low-low level reactor trip setpoint is evaluated by using RETRAN-02 code for the purpose of reducing scram frequency in Maanshan 3-loop pressurized water reactor. The ANS Condition II event loss of normal feedwater and condition IV event feedwater system line break are the basis for steam generator low-low level reactor trip setpoint sensitivity analysis, including various initial reactor power levels, reactivity feedback coefficients, and system functions assumptions etc., have been performed for the two basis events with steam generator low-low level reactor trip setpoint at 0% narrow range and without this trip respectively. The feasibility of modifying/eliminating current steam generator low-low level reactor trip setpoint is then determined based on whether the analysis results meet with the ANS Condition II and IV acceptance criteria or not

  17. The THIRST chemistry module as a tool to determine optimal steam generator corrosion control strategies

    International Nuclear Information System (INIS)

    Heppner, K.; Laroche, S.; Pietralik, J.

    2006-01-01

    As part of a coordinated program, AECL is developing a set of tools to aid with the prediction and management of steam generator performance. Although stress corrosion cracking (of Alloy 800) has not been detected in any operating steam generator, for life management it is necessary to develop mechanistic models to predict the conditions under which stress corrosion cracking is plausible. Therefore, constant extension rate tests were carried out for Alloy 800 under various steam generator crevice chemistry conditions at applied potentials. These tests were designed to evaluate the stress corrosion cracking susceptibility of Alloy 800 under CANDU( steam generator operating conditions. Based on the experimental results, the recommended electrochemical corrosion potential/pH zone for Alloy 800 determined by electrochemical polarization measurements was verified with the respect of stress corrosion cracking susceptibility. The effects of lead contamination on the stress corrosion cracking susceptibility of Alloy 800 tubing were also evaluated. The experimental results from constant extension rate tests obtained under applied potentials suggest that Alloy 800 has good performance inside much of a previously recommended electrochemical corrosion potential/pH zone determined by electrochemical analysis. Alloy 800 is not susceptible to stress corrosion cracking under normal CANDU steam generator operating conditions. However, Alloy 800 may be susceptible to stress corrosion cracking under near-neutral crevice chemistry conditions in the presence of oxidants. In addition, stress corrosion cracking susceptibility is increased by lead contamination. This observation suggests that the previously defined electrochemical corrosion potential limit under near-neutral crevice conditions could be modified to minimize stress corrosion cracking of Alloy 800. The test results from this work also suggest that the pH dependency of the stress corrosion cracking susceptibility of Alloy 800

  18. Reliability of eddy current examination of steam generator tubes

    International Nuclear Information System (INIS)

    Birks, A.S.; Ferris, R.H.; Doctor, P.G.; Clark, R.A.; Spanner, G.E.

    1985-04-01

    A unique study of nondestructive examination reliability is underway at the Pacific Northwest Laboratory under US Nuclear Regulatory Commission sponsorship. Project participants include the Electric Power Research Institute and consortiums from France, Italy, and Japan. This study group has conducted a series of NDE examinations of tubes from a retired-from-service steam generator, using commercially available multifrequency eddy current equipment and ASME procedures. The examination results have been analyzed to identify factors contributing to variations in NDE inspection findings. The reliability of these examinations will then be validated by destructive analyses of the steam generator tubes. The program is expected to contribute to development of a model for steam generator inservice inspection sampling plans and inspection periods, as well as to improved regulatory guidelines for tube plugging

  19. Impact of steam generator start-up limitations on the performance of a parabolic trough solar power plant

    DEFF Research Database (Denmark)

    Ferruzza, Davide; Topel, Monika; Laumert, Björn

    2018-01-01

    typically start-up and shut down every day, so in order to maximize their profitability, it is necessary to increase their flexibility in transient operation and to initiate power generation as rapidly as possible. Two of the key components are the steam generator and steam turbine and the rates at which...... they can reach operational speed are limited by thermo-mechanical constraints. This paper presents an analysis of the effects of the thermal stress limitations of the steam generator and steam turbine on the power plant start-up, and quantifies their impact on the economy of the system. A dynamic model......-driven and peak-load. The results indicate that for steam generator hot start-ups, a 1.5% increase in peak-load electricity production would be achieved by doubling the maximum allowable heating rate of the evaporator. No useful increase would be achieved by increasing the rates beyond a limit of 7–8 K...

  20. Estimating probable flaw distributions in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Gorman, J.A.; Turner, A.P.L.

    1997-01-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses

  1. Probabilistic methodology for assessing steam generator tube inspection - Phase II: CANTIA - a probabilistic method for assessing steam generator tube inspections

    International Nuclear Information System (INIS)

    Harris, J.E.; Gorman, J.A.; Turner, A.P.L.

    1997-03-01

    The objectives of this project were to develop a computer-based method for probabilistic assessment of inspection strategies for steam generator tubes, and to document the source code and to provide a user's manual for it. The program CANTIA was created to fulfill this objective, and the documentation and verification of the code is provided in this volume. The user's manual for CANTIA is provided as a separate report. CANTIA uses Monte Carlo techniques to determine approximate probabilities of steam generator tube failures under accident conditions and primary-to-secondary leak rates under normal and accident conditions at future points in time. The program also determines approximate future flaw distributions and non-destructive examination results from the input data. The probabilities of failure and leak rates and the future flaw distributions can be influenced by performing inspections of the steam generator tubes at some future points in time, and removing defective tubes from the population. The effect of different inspection and maintenance strategies can therefore be determined as a direct effect on the probability of tube failure and primary-to-secondary leak rate

  2. Energy and exergy analysis of the Kalina cycle for use in concentrated solar power plants with direct steam generation

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Clausen, Lasse Røngaard; Haglind, Fredrik

    2014-01-01

    In concentrated solar power plants using direct steam generation, the usage of a thermal storage unit based only on sensible heat may lead to large exergetic losses during charging and discharging, due to a poor matching of the temperature profiles. By the use of the Kalina cycle, in which...... evaporation and condensation takes place over a temperature range, the efficiency of the heat exchange processes can be improved, possibly resulting also in improved overall performance of the system. This paper is aimed at evaluating the prospect of using the Kalina cycle for concentrated solar power plants...... with direct steam generation. The following two scenarios were addressed using energy and exergy analysis: generating power using heat from only the receiver and using only stored heat. For each of these scenarios comparisons were made for mixture concentrations ranging from 0.1 mole fraction of ammonia to 0...

  3. The residual stress evaluation for expansion process of steam generator tubes

    International Nuclear Information System (INIS)

    King, C.-S.; Lee, S.-C.; Shim, D.-N.

    2004-01-01

    The reliability of a nuclear power plant is affected by the reliability of steam generator tube and the reliability of steam generator tube is affected by stress corrosion cracking(SCC). Many steam generator tubes were experiencing stress corrosion cracking and stress corrosion cracking is affected material characteristics, corrosive environments and added stresses. The added stresses have the manufacturing stresses and operating stresses, the manufacturing stresses include the residual stresses generating in the tube manufacture and tube expanding procedure. We will investigate for influence which affected to residual stresses with tube plastic deformation method and measurement region. (author)

  4. Results of the secondary side chemical cleaning of the steam generators

    International Nuclear Information System (INIS)

    Doma, A.; Patek, G.

    2001-01-01

    A significant amount of deposit has developed on the secondary side of the heat transfer tubes of the steam generators (SG) of the Paks Nuclear Power Plant units in course of the years. More than 99.5% of the deposit is made up of magnetite (Fe 3 O 4 ) generated in the secondary circuit of the power plant. Those deposits lead to the decrease of the heat transfer. Even more important is its role from the point of view of operational reliability of the steam generators, leak tightness between the primary and secondary sides. The first series of cleaning took place following 8-9 years of operation of the units. Following the first cleaning cycle the transport of the corrosion products into the steam generators did not change, and thus obviously new cleaning was required. Periodical cleaning of the steam generators shall be assured. (R.P.)

  5. Design and Activation of a LOX/GH Chemical Steam Generator

    Science.gov (United States)

    Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).

  6. Planning of the steam generators for nuclear applications using optimization techniques

    International Nuclear Information System (INIS)

    Sakai, M.; Silvares, O.M.

    1978-01-01

    Procedure for the maximization of the net power of a nuclear power plant through the application of the optimal control theory of dynamic systems is presented. The problem is formulated in the steam generator which links the primary and the secondary cycle. The solution of the steam generator, optimization problem is obtained simultaneously with the heat balance in both primary and secondary cycle, through an iterative process. By this way the optimal parameters are obtained for the steam generator, the vapor and the cooling gas cycle [pt

  7. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H. [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH{sub T} was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle.

  8. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    International Nuclear Information System (INIS)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H.

    2016-01-01

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH_T was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle

  9. Evaluation of sampling plans for in-service inspection of steam generator tubes

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Heasler, P.G.; Baird, D.B.

    1994-02-01

    This report summarizes the results of three previous studies to evaluate and compare the effectiveness of sampling plans for steam generator tube inspections. An analytical evaluation and Monte Carlo simulation techniques were the methods used to evaluate sampling plan performance. To test the performance of candidate sampling plans under a variety of conditions, ranges of inspection system reliability were considered along with different distributions of tube degradation. Results from the eddy current reliability studies performed with the retired-from-service Surry 2A steam generator were utilized to guide the selection of appropriate probability of detection and flaw sizing models for use in the analysis. Different distributions of tube degradation were selected to span the range of conditions that might exist in operating steam generators. The principal means of evaluating sampling performance was to determine the effectiveness of the sampling plan for detecting and plugging defective tubes. A summary of key results from the eddy current reliability studies is presented. The analytical and Monte Carlo simulation analyses are discussed along with a synopsis of key results and conclusions

  10. A model predictive controller for the water level of nuclear steam generators

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    In this work, the model predictive control method was applied to a linear model and a nonlinear model of steam generators. The parameters of a linear model for steam generators are very different according to the power levels. The model predictive controller was designed for the linear steam generator model at a fixed power level. The proposed controller designed at the fixed power level showed good performance for any other power levels by changing only the input-weighting factor. As the input-weighting factor usually increases, its relative stability does so. The stem generator has some nonlinear characteristics. Therefore, the proposed algorithm has been implemented for a nonlinear model of the nuclear steam generator to verify its real performance and also, showed good performance. (author)

  11. CITADEL: a computer code for the analysis of iodine behavior in steam generator tube rupture accidents

    International Nuclear Information System (INIS)

    1982-04-01

    The computer code CITADEL was written to analyze iodine behavior during steam generator tube rupture accidents. The code models the transport and deposition of iodine from its point of escape at the steam generator primary break until its release to the environment. This report provides a brief description of the code including its input requirements and the nature and form of its output. A user's guide describing the manner in which the input data are required to be set up to run the code is also provided

  12. Acoustic detection for water/steam leak from a tube of LMFBR steam generator

    International Nuclear Information System (INIS)

    Sonoda, Masataka; Shindo, Yoshihisa

    1989-01-01

    Acoustic leak detector is useful for detecting more quickly intermediate leak than the existing hydrogen detector and is available for identification of leak location on the accident of water/steam leak from a tube of LMFBR steam generator. This paper presents the overview of HALD (High frequency Acoustics Leak Detection) system, which is more sensitive for leak detection and lower cost of equipment for identification of leak location than a low frequency type detector. (author)

  13. A fault detection and diagnosis in a PWR steam generator

    International Nuclear Information System (INIS)

    Park, Seung Yub

    1991-01-01

    The purpose of this study is to develop a fault detection and diagnosis scheme that can monitor process fault and instrument fault of a steam generator. The suggested scheme consists of a Kalman filter and two bias estimators. Method of detecting process and instrument fault in a steam generator uses the mean test on the residual sequence of Kalman filter, designed for the unfailed system, to make a fault decision. Once a fault is detected, two bias estimators are driven to estimate the fault and to discriminate process fault and instrument fault. In case of process fault, the fault diagnosis of outlet temperature, feed-water heater and main steam control valve is considered. In instrument fault, the fault diagnosis of steam generator's three instruments is considered. Computer simulation tests show that on-line prompt fault detection and diagnosis can be performed very successfully.(Author)

  14. Steam generator design for solar towers using solar salt as heat transfer fluid

    Science.gov (United States)

    González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo

    2017-06-01

    Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.

  15. PWR steam generator chemical cleaning. Phase I: Final report, Volume I

    International Nuclear Information System (INIS)

    1978-07-01

    Two chemical cleaning solvent systems and two application methods were developed to remove the sludge in nuclear steam generators and to remove the corrosion products in the annuli between the steam generator tubes and the support plates. Laboratory testing plus subsequent pilot testing has demonstrated that, in a reasonable length of time, both solvents are capable of dissolving significant amounts of sludge, and of dissolving tightly packed magnetite in tube/support plate crevices. Further, tests have demonstrated that surface losses of the materials of construction in steam generators can be controlled to acceptable limits for the duration of the required cleaning period. Areas requiring further study and test have been identified, and a preliminary procedure for chemical cleaning nuclear steam generators has been chosen subject to quantification based on additional tests prior to actual in-plant demonstration

  16. AGE RELATED DEGRADATION OF STEAM GENERATOR INTERNALS BASED ON INDUSTRY RESPONSES TO GENERIC LETTER 97-06

    International Nuclear Information System (INIS)

    SUBUDHI, M.; SULLIVAN, JR. E.J.

    2002-01-01

    THIS PAPER PRESENTS THE RESULTS OF AN AGING ASSESSMENT OF THE NUCLEAR POWER INDUSTRY RESPONSES TO NRC GENERIC LETTER 97-06 ON THE DEGRADATION OF STEAM GENERATOR INTERNALS EXPERIENCED AT ELECTRICITE DE FRANCE (EDF) PLANTS IN FRANCE AND AT A UNITED STATES PRESSURIZED WATER REACTOR (PWR). WESTINGHOUSE (W), COMBUSTION ENGINEERING (CE), AND BABCOCK AND WILCOX (BW) STEAM GENERATOR MODELS, CURRENTLY IN SERVICE AT U.S. NUCLEAR POWER PLANTS, POTENTIALLY COULD EXPERIENCE DEGRADATION SIMILAR TO THATFOUND AT EDF PLANTS AND THE U.S. PLANT. THE STEAM GENERATORS IN MANY OF THE U.S. PWRS HAVE BEEN REPLACED WITH STEAM GENERATORS WITH STEAM GENERATORS WITH IMPROVED DESIGNS AND MATERIALS. THESE REPLACEMENT STEAM GENERATORS HAVE BEEN MANUFACTURED IN THE U.S. AND ABROAD. DURING THIS ASSESSMENT, EACH OF THE THREE OWNERS GROUPS (W,CE, AND BW) IDENTIFIED FOR ITS STEAM GENERATOR, MODELS ALL THE POTENTIAL INTERNAL COMPONENTS THAT ARE VULNERABLE TO DEGRADATION WHILE IN SERVICE. EACH OWNERS GROUPDEVELOPED INSPEC TION AND MONITORING GUIDANCE AND RECOMMENDATIONS FOR ITS PARTICULAR STEAM GENERATOR MODELS. THE NUCLEAR ENERGY INSTITUTE INCORPORATED IN NEI 97-06 STEAM GENERATOR PROGRAM GUIDELINES, A REQUIREMENT TO MONITOR SECONDARY SIDE STEAM GENERATOR COMPONENTS IF THEIR FAILURE COULD PREVENT THE STEAM GENERATOR FROM FULFILLING ITS INTENDED SAFETY-RELATED FUNCTION. LICENSEES INDICATED THAT THEY IMPLEMENTED OR PLANNED TO IMPLEMENT, AS APPROPRIATE FOR THEIR STEAM GENERATORS, THEIR OWNERS GROUPRECOMMENDATIONS TO ADDRESS THE LONG-TERM EFFECTS OF THE POTENTIAL DEGRADATION MECHANISMS ASSOCIATED WITH THE STEAM GENERATOR INTERNALS

  17. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    Science.gov (United States)

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.

  18. Electrosleeve process for in-situ nuclear steam generator repair

    International Nuclear Information System (INIS)

    Renaud, E.; Brennenstuhl, A.M.; Stewart, D.R.; Gonzalez, F.

    2000-01-01

    Degradation of steam generator tubing by localized corrosion is a widespread problem in the nuclear industry that can lead to costly forced outages, unit derating, steam generator replacement or even the permanent shutdown of a reactor. In response to the onset of steam generator degradation at Ontario Power Generation's Pickering Nuclear Generating Station (PNGS) Unit 5, and the determined unsuitability of conventional repair methods (mechanically expanded or welded sleeves) for Alloy 400, an alternative repair technology was developed. Electrosleeve is a non-intrusive, low-temperature process that involves the electrodeposition of a nanocrystalline nickel microalloy forming a continuously bonded, structural layer over the internal diameter of the degraded region. This technology is designed to provide a long-term pressure boundary repair, fully restoring the structural integrity of the damaged region to its original state. This paper describes the Electrosleeve process for steam generator tubing repair and the unique properties of the advanced sleeve material. The successful installation of fourteen Electrosleeves that have been in service for more than six years in Alloy 400 tubing at the Pickering-S CANDU unit, and the more recent (Nov. 99) extension of the technology to Alloy 600 by the installation of 57 sleeves in a U.S. pressurized water reactor (PWR) at Callaway, is presented. The Electrosleeve process has been granted a conditional license by the U.S. Nuclear Regulatory Commission (NRC). In Canada, the process of licensing Electrosleeve with the CNSC / TSSA has begun. (author)

  19. Fatigue analysis of a PWR steam generator tube sheet

    International Nuclear Information System (INIS)

    Billon, F.; Buchalet, C.; Poudroux, G.

    1985-01-01

    The fatigue analysis of a PWR steam generator (S.G) tube sheet is threefold. First, the flow, pressure and temperature variations during the design transients are defined for both the primary fluid and the normal and auxiliary feedwater. Second, the flow, velocities, pressure and temperature variations of the secondary fluid at the bottom of the downcomer and above the tube sheet are determined for the transients considered. Finally, the corresponding temperatures and stresses in the tube sheet are calculated and the usage factors determined at various locations in the tube sheet. The currently available standard design transients for the primary fluid and the feedwater are too conservative to be utilized as such in the fatigue analysis of the S.G. tube sheets. Thus, a detailed examination and reappraisal of each operating transient was performed. The revised design conditions are used as inputs to the calculation model TEMPTRON. TEMPTRON determines the mixing conditions between the feedwater and the recirculation fluid from the S.G. feedwater nozzles to the center of the tube sheet via the downcomer. The fluid parameters, flow rate and velocity, temperature and pressure variations, as a function of the time during the transients are obtained. Finally, the usage factors at various locations on the tube sheet are derived using the standard ASME section III method

  20. Heat exchanging tube behaviour in steam generators of pressurized water reactors

    International Nuclear Information System (INIS)

    Pastor, D.; Oertel, K.

    1979-01-01

    Based on a comprehensive failure statistics, materials corrosion chemistry and thermohydraulics problems of the tubings of steam generators are considered. A historical review of failures in the tubings of steam generators in pressurized water reactors reflects the often successless measures by designers, manufacturers and operating organizations for preventing failures, especially with regard to materials selection and water regime. It is stated that laboratory tests could not give sufficient information about safe and stable operation of nuclear steam generators unless real constructive, hydrodynamic, thermodynamical and chemical conditions of operation had been taken into account. (author)

  1. Proceedings of the NEA/CSNI-UNIPEDE Specialist Meeting on Operating Experience with Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The long history of operating experience with pressurized water reactors has indicated that the steam generators are of primary importance in nuclear power plant design and operation; this is furthermore confirmed by analyzing the data of the Incident Reporting System (IRS). It is for this reason that the OECD/NEA Committee on the Safety of Nuclear Installations organizes, in cooperation with UNIPEDE, a Specialist Meeting on 'Operating Experience with Steam Generators'. This Specialist Meeting, held in Brussels, Belgium, in September 1991, is hosted by the Belgian Government and AIB-Vincotte Nuclear. In addition to being a follow-up to the October 1984 meeting (organized by the CSNI and UNIPEDE in Stockholm, Sweden), this Meeting reviews the current state-of-the-art of steam generator technology thus providing a forum for the exchange of related experience in operation, inspection, maintenance, repair, modifications, replacement, and licensing requirements pertaining to steam generators. Forty-seven papers are presented in eight sessions entitled: Operating Experience (two sessions), Structural Integrity and Licensing Issues, Analysis and Prediction of Degradation Mechanisms, Inservice Inspection Methods, Preventive and Corrective Actions (two sessions) and Replacement of Steam Generators. There are furthermore two panel sessions entitled 'Observed Degradation Mechanisms and Licensing Positions', and 'Inspection, Repair and Replacement Strategies'. These proceedings consist of a compilation of the papers presented at the Meeting, which is attended by more than one hundred and fifty participants from fifteen countries and several international organisations.

  2. Leak suppression at steam generator man-, hand-, and eyeholes

    International Nuclear Information System (INIS)

    Sylvain, C.; Sutz, P.; Gemma, A.

    1988-01-01

    Plant unavailability associated with primary and secondary holes is approximately the same as that caused by steam generator tube defects, i.e., 0.5%. Problems encountered with steam generator man-, hand-, and eyeholes during plant operation have led Electricite de France (EdF) and Framatome to improve hole seal design and to develop robots for closing and cleaning them. The data base available in France in this field on some 150 steam generators in 900- and 1300-MW(electric) pressurized water reactors (the equivalent of 300 reactor-yr of operation) has been the base of the developments described in this paper. Incidents occurring in operation primarily concern had-and inspection holes located on the steam generator's secondary side. They include four kinds: (1) leakage detected in operation, requiring forced outages, (2) leakage detected during plant restart after a scheduled shutdown and resulting in a restart delay, (3) pitting of seal mating surfaces, not inducing any leakage but jeopardizing subsequent compliance and requiring difficult and costly repairs, and (4) seizing of screws or bolts. New primary and secondary hole stud tightening and maintenance machines help to improve the efficiency of the in-service closing operations. They provide savings of up to 80% on labor, duration of operations, and exposure

  3. Design of jet manipulator for sludge lancing for steam generators

    International Nuclear Information System (INIS)

    Kumar, Kundan; Nathani, D.K.; Kayal, J.N.; Rupani, B.B.

    2006-01-01

    The sludge accumulation in secondary side of mushroom type steam generators of Indian Pressurised Heavy Water Reactors (PHWRs) may lead to loss of thermal efficiency and corrosion. Sludge removal is required to minimise such effects for safe and enhanced operating life of the steam generators. A sludge lancing system has been developed for sludge removal from the secondary side of the steam generators. Jet Manipulator is one of the various modules of the sludge lancing system. The JM consists of three modules namely walker, elevator and nozzle heads. Each module is designed to pass through hand hole, having 180 mm diameter and 100 mm wide gap between steam generator shell and shroud. These three modules are connected to each other by quick connecting type joints and are having their specific functions. The walker crawls by step of single pitch of the tube along the central no-tube lane of the steam generator by taking lateral supports on the nearest tubes. The elevator is capable of lifting the nozzle head to a suitable height required for lancing operation of entire tube sheet of the steam generator. The nozzle head directs the multiple jets along the narrow inter tube lanes having 3 mm width, on both sides of the central no-tube lane. The nozzle can be set to move at different elevations such that the multiple jets will graze along the narrow tube lane to create the sludge lancing action. The provision exists for movement of JM in both directions, i.e. forward and reverse. This paper highlights the objective, design and development, selection of nozzles, qualification and performance evaluation of JM. The manipulator is remotely operable by compressed air in the forward and reverse direction in the central no-tube lane to position the nozzle head in the horizontal direction. (author)

  4. Pressure drop-flow rate curves for single-phase steam in Combustion Engineering type steam generator U-tubes during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fynan, Douglas A.; Ahn, Kwang-Il, E-mail: kiahn@kaeri.re.kr

    2016-12-15

    Highlights: • Pressure drop-flow rate curves for superheated steam in U-tubes were generated. • Forward flow of hot steam is favored in the longer and taller U-tubes. • Reverse flow of cold steam is favored in short U-tubes. • Steam generator U-tube bundle geometry and tube diameter are important. • Need for correlation development for natural convention heat transfer coefficient. - Abstract: Characteristic pressure drop-flow rate curves are generated for all row numbers of the OPR1000 steam generators (SGs), representative of Combustion Engineering (CE) type SGs featuring square bend U-tubes. The pressure drop-flow rate curves are applicable to severe accident natural circulations of single-phase superheated steam during high pressure station blackout sequences with failed auxiliary feedwater and dry secondary side which are closely related to the thermally induced steam generator tube rupture event. The pressure drop-flow rate curves which determine the recirculation rate through the SG tubes are dependent on the tube bundle geometry and hydraulic diameter of the tubes. The larger CE type SGs have greater variation of tube length and height as a function of row number with forward flow of steam favored in the longer and taller high row number tubes and reverse flow favored in the short low row number tubes. Friction loss, natural convection heat transfer coefficients, and temperature differentials from the primary to secondary side are dominant parameters affecting the recirculation rate. The need for correlation development for natural convection heat transfer coefficients for external flow over tube bundles currently not modeled in system codes is discussed.

  5. Steam generator tube integrity requirements and operating experience in the United States

    International Nuclear Information System (INIS)

    Karwoski, K.J.

    2009-01-01

    Steam generator tube integrity is important to the safe operation of pressurized-water reactors. For ensuring tube integrity, the U.S. Nuclear Regulatory Commission uses a regulatory framework that is largely performance based. This performance-based framework is supplemented with some prescriptive requirements. The framework recognizes that there are three combinations of tube materials and heat treatments currently used in the United States and that the operating experience depends, in part, on the type of material used. This paper summarizes the regulatory framework for ensuring steam generator tube integrity, it highlights the current status of steam generators, and it highlights some of the steam generator issues and challenges that exist in the United States. (author)

  6. Replacement of steam generators at arkansas nuclear one, unit-2 (ano-2)

    International Nuclear Information System (INIS)

    Wilson, R.M.; Buford, A.

    2001-01-01

    The Arkansas Nuclear One, Unit-2 steam generators, originally supplied by Combustion Engineering, began commercial operation in 1980 producing a gross electrical output of 958 MW. After several years of successful operation, the owner decided that the tube degradation rates of the original steam generators were too high for the plant to meet the performance requirements for the full 40-year license period. The contract to supply replacement steam generators (RSGs) was awarded to Westinghouse Electric Company in 1996. Installation of these RSGs took place in the last months of 2000. This paper compares the design features of the original and re-placement steam generators with emphasis on design and reliability enhancements achieved. (author)

  7. Design and operating experiences with 50MW steam generator

    International Nuclear Information System (INIS)

    Kawara, M.; Yamaki, H.; Kanamori, A.; Tanaka, K.; Takahashi, T.

    1975-01-01

    The main purpose of the 50 MW steam generator is to have experiences of manufacturing and operation with large scale steam generator including necessary research and development works which can be reflected on the design and fabrication of 'Monju' (Japan 300 MWe prototype LMFBR). The detailed design of the 50 MW steam, generator was begun on March, 1972 and succeeded in the demonstration of 72 hours continuous operation with full power on June, 1974. It has been successfully operated since then, the performances of which have been evaluated through various kinds of tests. In this paper, the following items are mainly discussed system design, thermal and hydraulic design, structure and fabrication and some experiences on testing operation including cleaning and sodium flushing of equipment, sodium level control system, the behavior of hydrogen detection system and general outlook of the performance. (author)

  8. Design and operating experiences with 50MW steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Kawara, M; Yamaki, H; Kanamori, A; Tanaka, K; Takahashi, T

    1975-07-01

    The main purpose of the 50 MW steam generator is to have experiences of manufacturing and operation with large scale steam generator including necessary research and development works which can be reflected on the design and fabrication of 'Monju' (Japan 300 MWe prototype LMFBR). The detailed design of the 50 MW steam, generator was begun on March, 1972 and succeeded in the demonstration of 72 hours continuous operation with full power on June, 1974. It has been successfully operated since then, the performances of which have been evaluated through various kinds of tests. In this paper, the following items are mainly discussed system design, thermal and hydraulic design, structure and fabrication and some experiences on testing operation including cleaning and sodium flushing of equipment, sodium level control system, the behavior of hydrogen detection system and general outlook of the performance. (author)

  9. Depth-Sizing Technique for Crack Indications in Steam Generator Tubing

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Lee, Hee Jeong; Kim, Hong Deok

    2009-01-01

    The nuclear power plants have been safely operated by plugging the steam generator tubes which have the crack indications. Tube rupture events can occur if analysts fail to detect crack indications during in-service inspection. There are various types of crack indication in steam generator tubes and they have been detected by the eddy current test. The integrity assessment should be performed using the crack-sizing results from eddy current data when the crack indication is detected. However, it is not easy to evaluate the crack-depth precisely and consistently due to the complexity of the methods. The current crack-sizing methods were reviewed in this paper and the suitable ones were selected through the laboratory tests. The retired steam generators of Kori Unit 1 were used for this study. The round robin tests by the domestic qualified analysts were carried out and the statistical models were introduced to establish the appropriate depth-sizing techniques. It is expected that the proposed techniques in this study can be utilized in the Steam Generator Management Program

  10. Effect of heat transfer tube leak on dynamic characteristic of steam generator

    International Nuclear Information System (INIS)

    Sun Baozhi; Shi Jianxin; Li Na; Zheng Lusong; Liu Shanghua; Lei Yu

    2015-01-01

    Taking the steam generator of Daya Bay Nuclear Power Station as the research object, one-dimensional dynamic model of the steam generator based on drift flux theory and leak model of heat transfer tube were established. Steady simulation of steam generator under different conditions was carried out. Based on verifying the drift flux model and leak model of heat transfer tube, the effect of leak location and flow rate under different conditions on steam generator's key parameters was studied. The results show that the drift flux model and leak model can reflect the law of key parameter change accurately such as vapor mass fraction and steam pressure under different leak cases. The variation of the parameters is most apparent when the leak is at the entrance of boiling section and vapor mass fraction varies from 0.261 to 0.163 when leakage accounts for 5% of coolant flow rate. The successful prediction of the effect of heat transfer tube leak on dynamic characteristics of the steam generator based on drift flux theory supplies some references for monitoring and taking precautionary measures to prevent heat transfer tube leak accident. (authors)

  11. Condition monitoring of steam generator by estimating the overall heat transfer coefficient

    International Nuclear Information System (INIS)

    Furusawa, Hiroaki; Gofuku, Akio

    2013-01-01

    This study develops a technique for monitoring in on-line the state of the steam generator of the fast-breeder reactor (FBR) “Monju”. Because the FBR uses liquid sodium as coolant, it is necessary to handle liquid sodium with caution due to its chemical characteristics. The steam generator generates steam by the heat of secondary sodium coolant. The sodium-water reaction may happen if a pinhole or crack occurs at the thin metal tube wall that separates the secondary sodium coolant and water/steam. Therefore, it is very important to detect an anomaly of the wall of heat transfer tubes at an early stage. This study aims at developing an on-line condition monitoring technique of the steam generator by estimating overall heat transfer coefficient from process signals. This paper describes simplified mathematical models of superheater and evaporator to estimate the overall heat transfer coefficient and a technique to diagnose the state of the steam generator. The applicability of the technique is confirmed by several estimations using simulated process signals with artificial noises. The results of the estimations show that the developed technique can detect the occurrence of an anomaly. (author)

  12. The fabrication of steam generators. Situation and predictions 2017 and 2018 - Sectoral and competitive analysis

    International Nuclear Information System (INIS)

    2017-01-01

    This report proposes a situational analysis and a discussion of trends for the sector of fabrication of steam generators. It also proposes predictions for 2017 and 2018, and all important figures useful to analyse the sector and its market. It discusses positions of the different actors, and the competitive game between them. Key events in firms life are indicated, and key development axes are identified. The report also proposes a ranking, a presentation of financial performance, and synthetic sheets for 55 leader firms of the sector

  13. Steam generator of FBR type reactor

    International Nuclear Information System (INIS)

    Hashiguchi, Ko.

    1992-01-01

    Liquid metal (for example, mercury) which is scarcely reactive with metal sodium is contained and cover gases which are scarcely reactive with the liquid metal are filled in a steam generator of an FBR type reactor and it is closed. The heat of primary sodium is transferred to the liquid metal, which is not reactive with sodium, in a primary thermal conduction portion. Since the temperature of the primary thermal conduction portion is high, the density is extremely low. On the other hand, since a second thermal conduction portion is kept at a single phase and the temperature is lower compared with that of the first thermal conduction portion, the density is kept high. since the density difference and gas jetting speed generate a great circulating force to liquid metal passing the opening of a partition plate, heat can be conducted on the side of water without disposing pumps. The steam concentration in the liquid metal is low being in a single phase of steams, corrosion caused from the outside of pipes of the primary thermal conduction pipe is scarcely promoted. Even if sodium leaks should be caused, since the sodium concentration in the liquid metal is extremely low and the reactivity is low, the temperature of the liquid metal is not elevated. (N.H.)

  14. Steam generators in PWR's

    International Nuclear Information System (INIS)

    Michel, R.

    1974-01-01

    The steam generator of the PWR operates according to the principle of natural circulation. It consists of a U-shaped tube bundle whose free ends are welded to a bottom plate. The tube bundle is surrounded by a cylinder jacket which has slots closely above the bottom or tube plate. The feed water mixed with boiling water enters the tube bundle through these slots. Because of its buoyancy, the steam-water mixture flows upwards. Below the tube plate there are chambers for distributing and collecting pressurized water separated by means of a partition wall. By omitting some tubes, a free alloy is created so that the tubes in the center get sufficient water, too. By asymmetrical arrangement of the partition wall it is further possible to limit the tube alloy only to the inlet side for pressurized water. The flow over the tube plate is thus improved on the inlet side. (DG) [de

  15. Primary manway shielding and exhaust covers for a steam generator

    International Nuclear Information System (INIS)

    Wallace, W.R.; Immel, A.K.; Boro, I.; Lester, W.E. II.

    1990-01-01

    This paper discusses a radiation emission shielding cover in combination with a steam generator of a nuclear reactor for covering at least a portion of a manway of the steam generator for protecting an operator from radiation emission. It comprises a plate; a mounting assembly including a mounting flange for securing the mounting assembly adjacent the manway of the steam generator and a mounting bracket; a slide means mounted on the mounting bracket adjacent the manway; and guide means mounted on the plate for receiving the slide means such that the plate can be moved from an open position adjacent the manway to a closed position over at least a portion of the manway

  16. Steam Generator Owners Group PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.; Green, S.J.

    1985-01-01

    In 1981 the Steam Generator Owners Group (SGOG), a group of domestic and foreign pressurized water reactor (PWR) owners, developed and issued the PWR secondary water chemistry guidelines. The guidelines were prepared in response to the growing recognition that a majority of the problems causing reduced steam generator reliability (e.g., denting, wasteage, pitting, etc.) were related to secondary (steam) side water purity. The guidelines were subsequently issued as an Electric Power Research Institute (EPRI) report. In 1984 they were revised to reflect industry experience in adopting the original issuance and to incorporate new information on causes of corrosion damage. The guidelines have been endorsed and their adoption recommended by the SGOG

  17. Dryout in sodium-heated helically-coiled steam generator tubes

    International Nuclear Information System (INIS)

    Tomita, Y.; Kosugi, T.; Kubota, J.; Nakajima, K.; Tsuchiya, T.

    1984-01-01

    Experimental research on the dryout phenomenon in sodium heated, helically coiled steam generator tubes was carried out. The fluctuation of the tube wall temperature caused by dryout was measured with thermocouples installed in the center of the tube wall. Empirical correlations of dryout quality were developed as functions of critical heat flux, water mass velocity and saturation pressure. These correlations confirmed that the design criterion of the MONJU steam generator was reasonable. (author)

  18. Design and construction of a steam generator with feedback

    International Nuclear Information System (INIS)

    Camargo, Camila C.; Placco, Guilherme M.; Guimaraes, Lamartine N.F.

    2013-01-01

    The EARTH project aims to develop technologies to design and build systems that generate electricity in space, using microreactors. One of the activities within the TERRA project aims to build a closed thermal cycle Rankine type in order to test a Tesla turbine type. The objective of this work is to design and build a steam generator with feedback, which should ensure a satisfactory range of steam supply, security system, feedback system and heating system

  19. Dynamic instability forecasting for through-out sodium steam generators

    International Nuclear Information System (INIS)

    Aleksandrov, V.V.; Rassokhin, N.G.

    1985-01-01

    Simplified technique for determining boundaries of dynamic instability of through-out sodium steam generators is presented. The technique is based on the application of autoresonance concept to autooscillating model of dynamic instability of a steam-generating channel. Estimated model parameters and basic investigational results for different conditions are given. Assessment is performed according to the instability degree. Use of the technique is effective for multiversion studying of SG design at early designing stages

  20. Preliminary analysis for u tube degradation in CANDU steam generator using CATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Shin, So Eun; Lee, Jeong Hun; Park, Tong Kyu; Hwang, Su Hyun [FNC Technology Co., Seoul (Korea, Republic of); Jung, Jong Yeo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The interest in plant safety and integrity has been increasing due to long term operation of nuclear power plants (NPPs) and lots of efforts have been devoted to developing the degradation evaluation model for all the Structure, System, and Components (SSCs) of NPPs in these days. The efforts, however, were mainly concentrated on pressurized light water reactors (PWRs) in domestic. In contrast, the study for the aging degradation of counterparts of CANDU (CANada Deuterium Uranium) reactors has been rarely performed, even though Wolsong unit 1 (WS1), that is a CANDU 6 NPP in Korea, has been operating for almost 30 years. Therefore, the assessment of the aging degradation is required and the proper and exact evaluation model for the aging degradation of SCCs of CANDU, especially WS1, is urgently needed. In this study, the aging degradation of steam generators (SGs) in WS1 was mainly discussed. Based on cases of the aging degradation of SGs in overseas CANDU reactors, the major potential aging mechanisms of SGs were estimated since there has been no case of accident due to degradation in CANDU NPPs in Korea . Some core parameters which are indicators of the degree of degradation were calculated by CATHENA (Canadian algorithm for thermal hydraulic network analysis). In the result of comparing two calculation cases; core parameters for only aged SGs in fresh plant and those for all the aged component, it can be concluded that aging of SGs is a main component in the degradation assessment of CANDU NPPs, and keeping the integrity of steam generator (SG) tubes is important to guarantee the safety of the NPPs.