WorldWideScience

Sample records for spent lignocellulose hydrolysates

  1. Hydrolysates of lignocellulosic materials for biohydrogen production

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2013-05-01

    Full Text Available Lignocellulosic materials are commonly used in bio-H2 productionfor the sustainable energy resource development asthey are abundant, cheap, renewable and highly biodegradable.In the process of the bio-H2 production, the pretreated lignocellulosicmaterials are firstly converted to monosaccharidesby enzymolysis and then to H2 by fermentation. Since thestructures of lignocellulosic materials are rather complex, thehydrolysates vary with the used materials. Even using the samelignocellulosic materials, the hydrolysates also change withdifferent pretreatment methods. It has been shown that the appropriatehydrolysate compositions can dramatically improvethe biological activities and bio-H2 production performances.Over the past decades, hydrolysis with respect to differentlignocellulosic materials and pretreatments has been widelyinvestigated. Besides, effects of the hydrolysates on the biohydrogenyields have also been examined. In this review, recentstudies on hydrolysis as well as their effects on the biohydrogenproduction performance are summarized. [BMBReports 2013; 46(5: 244-251

  2. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  3. Detoxification of lignocellulosic hydrolysates using sodium borohydride.

    Science.gov (United States)

    Cavka, Adnan; Jönsson, Leif J

    2013-05-01

    Addition of sodium borohydride to a lignocellulose hydrolysate of Norway spruce affected the fermentability when cellulosic ethanol was produced using Saccharomyces cerevisiae. Treatment of the hydrolysate with borohydride improved the ethanol yield on consumed sugar from 0.09 to 0.31 g/g, the balanced ethanol yield from 0.02 to 0.30 g/g, and the ethanol productivity from 0.05 to 0.57 g/(L×h). Treatment of a sugarcane bagasse hydrolysate gave similar results, and the experiments indicate that sodium borohydride is suitable for chemical in situ detoxification. The model inhibitors coniferyl aldehyde, p-benzoquinone, 2,6-dimethoxybenzoquinone, and furfural were efficiently reduced by treatment with sodium borohydride, even under mild reaction conditions (20 °C and pH 6.0). While addition of sodium dithionite to pretreatment liquid from spruce improved enzymatic hydrolysis of cellulose, addition of sodium borohydride did not. This result indicates that the strong hydrophilicity resulting from sulfonation of inhibitors by dithionite treatment was particularly important for alleviating enzyme inhibition. PMID:23567704

  4. ISOLATION OF MICROORGANISMS FOR BIOLOGICAL DETOXIFICATION OF LIGNOCELLULOSIC HYDROLYSATES

    Science.gov (United States)

    In this study, we isolated new microorganisms for depletion of inhibitors in lignocellulosic acid hydrolysates. A sequential enrichment strategy was used to isolate microorganisms from soil. Selection was carried out in a defined mineral medium containing a mixture of ferulic acid (5 mM), 5-hydrox...

  5. Production of Succinic Acid for Lignocellulosic Hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Davison, B.H.; Nghiem, J.

    2002-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  6. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation.

    Science.gov (United States)

    Lee, Kyung Min; Min, Kyoungseon; Choi, Okkyoung; Kim, Ki-Yeon; Woo, Han Min; Kim, Yunje; Han, Sung Ok; Um, Youngsoon

    2015-07-01

    Lignocellulosic biomass is being preferred as a feedstock in the biorefinery, but lignocellulosic hydrolysate usually contains inhibitors against microbial fermentation. Among these inhibitors, phenolics are highly toxic to butyric acid-producing and butanol-producing Clostridium even at a low concentration. Herein, we developed an electrochemical polymerization method to detoxify phenolic compounds in lignocellulosic hydrolysate for efficient Clostridium fermentation. After the electrochemical detoxification for 10h, 78%, 77%, 82%, and 94% of p-coumaric acid, ferulic acid, vanillin, and syringaldehyde were removed, respectively. Furthermore, 71% of total phenolics in rice straw hydrolysate were removed without any sugar-loss. Whereas the cell growth and metabolite production of Clostridium tyrobutyricum and Clostridium beijerinckii were completely inhibited in un-detoxified hydrolysate, those in detoxifying rice straw hydrolysate were recovered to 70-100% of the control cultures. The electrochemical detoxification method described herein provides an efficient strategy for producing butanol and butyric acid through Clostridium fermentation with lignocellulosic hydrolysate. PMID:25863199

  7. Fractionation and characterization of brewers' spent grain protein hydrolysates.

    Science.gov (United States)

    Celus, Inge; Brijs, Kristof; Delcour, Jan A

    2009-06-24

    Protein hydrolysates with a low and high degree of hydrolysis were enzymatically produced from brewers' spent grain (BSG), the insoluble residue of barley malt resulting from the manufacture of wort in the production of beer. To that end, BSG protein concentrate (BPC), prepared by alkaline extraction of BSG and subsequent acid precipitation, was enzymatically hydrolyzed with Alcalase during both 1.7 and 120 min. Because these hydrolysates contained many different peptides, fractionation of the hydrolysates with graded ammonium sulfate or ethanol precipitation was performed to obtain fractions homogeneous in terms of molecular weight (MW) and hydrophobicity. The emulsifying and foaming capacities of the resultant fractions were determined. MW distributions and surface hydrophobicities of fractions with protein contents exceeding 75% were investigated to determine relationships between technofunctional and physicochemical properties. It was found that the emulsifying and foaming properties are determined by different physicochemical properties of the proteins or peptides. Neither MW nor hydrophobicity alone determines the emulsifying and foaming properties of protein hydrolysates. BSG protein hydrolysates with good emulsifying properties contained less than 40% of fragments with MW exceeding 14 500. Moreover, these hydrolysates had a high surface hydrophobicity. BSG protein hydrolysates with good foaming properties contained less than 10% of material with MW lower than 1700. Hydrolysates with good foaming properties showed low surface hydrophobicities, except for protein hydrolysates with higher levels of protein fragments with MW exceeding 14 500 than of such fragments with MW in a 1700-14 500 range. PMID:19456139

  8. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain

    OpenAIRE

    Heer, Dominik; Sauer, Uwe

    2008-01-01

    The production of fuel ethanol from low?cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre?treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real?world lignocellulosic hydrolysates and determined their t...

  9. Conditioning of SO2-ethanol-water (SEW) spent liquor from lignocellulosics for ABE fermentation to biofuels and chemicals

    OpenAIRE

    Sklavounos, Evangelos

    2014-01-01

    This thesis introduces a biorefinery process to fractionate lignocellulosics followed by treatment of the produced hydrolysate for microbial fermentation to acetone, butanol and ethanol (ABE). The process utilizes SO2-Ethanol-Water (SEW) fractionation technology and a ‘conditioning’ protocol to treat SEW spent liquor for ABE fermentation by Clostridia bacteria. It is found that SEW fractionation of spruce chips, mixed softwood biomass and Oil Palm Empty Fruit Bunch (OPEFB) at conditions of...

  10. Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF

    Directory of Open Access Journals (Sweden)

    Röder Anja

    2008-06-01

    Full Text Available Abstract Background Pichia stipitis xylose reductase (Ps-XR has been used to design Saccharomyces cerevisiae strains that are able to ferment xylose. One example is the industrial S. cerevisiae xylose-consuming strain TMB3400, which was constructed by expression of P. stipitis xylose reductase and xylitol dehydrogenase and overexpression of endogenous xylulose kinase in the industrial S. cerevisiae strain USM21. Results In this study, we demonstrate that strain TMB3400 not only converts xylose, but also displays higher tolerance to lignocellulosic hydrolysate during anaerobic batch fermentation as well as 3 times higher in vitro HMF and furfural reduction activity than the control strain USM21. Using laboratory strains producing various levels of Ps-XR, we confirm that Ps-XR is able to reduce HMF both in vitro and in vivo. Ps-XR overexpression increases the in vivo HMF conversion rate by approximately 20%, thereby improving yeast tolerance towards HMF. Further purification of Ps-XR shows that HMF is a substrate inhibitor of the enzyme. Conclusion We demonstrate for the first time that xylose reductase is also able to reduce the furaldehyde compounds that are present in undetoxified lignocellulosic hydrolysates. Possible implications of this newly characterized activity of Ps-XR on lignocellulosic hydrolysate fermentation are discussed.

  11. Pyrochars from bioenergy residue as novel bio-adsorbents for lignocellulosic hydrolysate detoxification.

    Science.gov (United States)

    Monlau, F; Sambusiti, C; Antoniou, N; Zabaniotou, A; Solhy, A; Barakat, A

    2015-07-01

    The robust supramolecular structure of biomass often requires severe pretreatments conditions to produce soluble sugars. Nonetheless, these processes generate some inhibitory compounds (i.e. furans compounds and aliphatic acids) deriving mainly from sugars degradation. To avoid the inhibition of the biological process and to obtain satisfactory sugars conversion level into biofuels, a detoxification step is required. This study investigates the use of two pyrochars derived from solid anaerobic digestates for the detoxification of lignocellulosic hydrolysates. At a pyrochar concentration of 40gL(-1), more than 94% of 5-HMF and 99% of furfural were removed in the synthetic medium after 24h of contact time, whereas sugars concentration remained unchanged. Furfural was adsorbed faster than 5-HMF by both pyrochars and totally removed after 3h of contact. Finally, the two pyrochars were found efficient in the detoxification of corn stalks and Douglas fir wood chips hydrolysates without affecting the soluble sugars concentrations. PMID:25863902

  12. Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates.

    Science.gov (United States)

    Wang, Jianqing; Zhang, Yan; Chen, Yilu; Lin, Min; Lin, Zhanglin

    2012-12-01

    Lignocellulosic biomass is regarded as the most viable source of feedstock for industrial biorefinery, but the harmful inhibitors generated from the indispensable pretreatments prior to fermentation remain a daunting technical hurdle. Using an exogenous regulator, irrE, from the radiation-resistant Deinococcus radiodurans, we previously showed that a novel global regulator engineering (GRE) approach significantly enhanced tolerances of Escherichia coli to alcohol and acetate stresses. In this work, an irrE library was subjected to selection under various stresses of furfural, a typical hydrolysate inhibitor. Three furfural tolerant irrE mutants including F1-37 and F2-1 were successfully obtained. The cells containing these mutants reached OD(600) levels of 4- to 16-fold of that for the pMD18T cells in growth assay under 0.2% (v/v) furfural stress. The cells containing irrE F1-37 and F2-1 also showed considerably reduced intracellular oxygen species (ROS) levels under furfural stress. Moreover, these two irrE mutants were subsequently found to confer significant cross tolerances to two other most common inhibitors, 5-hydroxymethyl-2-furaldehyde (HMF), vanillin, as well as real lignocellulosic hydrolysates. When evaluated in Luria-Bertani (LB) medium supplemented with corn stover cellulosic hydrolysate (prepared with a solid loading of 30%), the cells containing the mutants exhibited lag phases markedly shortened by 24-44 h in comparison with the control cells. This work thus presents a promising step forward to resolve the inhibitor problem for E. coli. From the view of synthetic biology, irrE can be considered as an evolvable "part" for various stresses. Furthermore, this GRE approach can be extended to exploit other exogenous global regulators from extremophiles, and the native counterparts in E. coli, for eliciting industrially useful phenotypes. PMID:22684885

  13. Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production.

    Science.gov (United States)

    Barakat, Abdellatif; Monlau, Florian; Steyer, Jean-Philippe; Carrere, Hélène

    2012-01-01

    Hydrolysates resulting from the lignocellulosic biomass pretreatment in bioethanol production may be used to produce biogas. Such hydrolysates are rich in xylose but also contain lignin polymers or oligomers as well as phenolic and furan compounds, such as syringaldehyde, vanillin, HMF, furfural. The aim of this study was to investigate the impact of these byproducts on biomethane production from xylose. The anaerobic digestion of the byproducts alone was also investigated. No inhibition of the anaerobic digestion of xylose was observed and methane was obtained from furans: 430 mL CH(4)/g of furfural and 450 mL CH(4)/g of HMF; from phenolic compounds: 453 mL CH(4)/g of syringaldehyde and 105 mL CH(4)/g of vanillin; and, to a lesser extent, from lignin polymers: from 14 to 46 mL CH(4)/g MV. The use of different natural polymers (lignosulfonates, organosolv and kraft lignins) and synthetic dehydrogenative polymers showed that higher S/G ratios and lower molecular weights in lignin polymers led to greater methane production. PMID:22100239

  14. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors

    OpenAIRE

    Cunha, J. T.; Aguiar, Tatiana Quinta; Romaní, Aloia; Oliveira, Carla Cristina Marques de; Domingues, Lucília

    2015-01-01

    PRS3, RPB4 and ZWF1 were previously identified as key genes for yeast tolerance to lignocellulose-derived inhibitors. To better understand their contribution to yeast resistance to the multiple stresses occurring during lignocellulosic hydrolysate fermentations, we overexpressed these genes in two industrial Saccharomyces cerevisiae strains, CCUG53310 and PE-2, and evaluated their impact on the fermentation of Eucalyptus globulus wood and corn cob hydrolysates. PRS3 overexpression improved...

  15. Kinetic behavior of Candida guilliermondii yeast during xylitol production from Brewer's spent grain hemicellulosic hydrolysate.

    Science.gov (United States)

    Mussatto, Solange I; Dragone, Giuliano; Roberto, Inês C

    2005-01-01

    Brewer's spent grain, the main byproduct of breweries, was hydrolyzed with dilute sulfuric acid to produce a hemicellulosic hydrolysate (containing xylose as the main sugar). The obtained hydrolysate was used as cultivation medium by Candidaguilliermondii yeast in the raw form (containing 20 g/L xylose) and after concentration (85 g/L xylose), and the kinetic behavior of the yeast during xylitol production was evaluated in both media. Assays in semisynthetic media were also performed to compare the yeast performance in media without toxic compounds. According to the results, the kinetic behavior of the yeast cultivated in raw hydrolysate was as effective as in semisynthetic medium containing 20 g/L xylose. However, in concentrated hydrolysate medium, the xylitol production efficiency was 30.6% and 42.6% lower than in raw hydrolysate and semisynthetic medium containing 85 g/L xylose, respectively. In other words, the xylose-to-xylitol bioconversion from hydrolysate medium was strongly affected when the initial xylose concentration was increased; however, similar behavior did not occur from semisynthetic media. The lowest efficiency of xylitol production from concentrated hydrolysate can be attributed to the high concentration of toxic compounds present in this medium, resulting from the hydrolysate concentration process. PMID:16080723

  16. Xylitol production by Debaryomyces hansenii in brewery spent grain dilute-acid hydrolysate: effect of supplementation.

    Science.gov (United States)

    Carvalheiro, Florbela; Duarte, Luís C; Medeiros, Raquel; Gírio, Francisco M

    2007-12-01

    A brewery spent-grain hemicellulosic hydrolysate was used for xylitol production by Debaryomyces hansenii. Addition of 6 g yeast extract/l increased the xylitol yield to 0.57 g/g, and productivity to 0.51 g/l h that were, respectively, 1.4 -and 1.8-times higher than the values obtained with non-supplemented hydrolysate. When corn steep liquor was combined with 3 g yeast extract/l, the highest xylitol yield, 0.58 g/g, was obtained with a similar productivity. PMID:17636384

  17. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates

    Science.gov (United States)

    Pretreatment of lignocellulose biomass for biofuels production generates inhibitory compounds that interfere with microbial growth and subsequent fermentation. Remediation of the inhibitors by current physical, chemical, and biological abatement means is economically impractical and overcoming the i...

  18. Enzymatic hydrolysis of brewers' spent grain proteins and technofunctional properties of the resulting hydrolysates.

    Science.gov (United States)

    Celus, Inge; Brijs, Kristof; Delcour, Jan A

    2007-10-17

    Brewers' spent grain (BSG) is the insoluble residue of barley malt resulting from the manufacture of wort. Although it is the main byproduct of the brewing industry, it has received little attention as a marketable commodity and is mainly used as animal feed. Our work focuses on one of the main constituents of BSG, i.e., the proteins. The lack of solubility of BSG proteins is one of the limitations for their more extensive use in food processing. We therefore aimed to generate BSG protein hydrolysates with improved technofunctional properties. BSG protein concentrate (BPC) was prepared by alkaline extraction of BSG and subsequent acid precipitation. BPC was enzymatically hydrolyzed in a pH-stat setup by several commercially available proteases (Alcalase, Flavourzyme, and Pepsin) for different times and/or with different enzyme concentrations in order to obtain hydrolysates with different degrees of hydrolysis (DH). Physicochemical properties, such as molecular weight (MW) distribution and hydrophobicity, as well as technofunctional properties, such as solubility, color, and emulsifying and foaming properties, were determined. Enzymatic hydrolysis of BPC improved emulsion and/or foam-forming properties. However, for the hydrolysates prepared with Alcalase and Pepsin, an increasing DH generally decreased emulsifying and foam-forming capacities. Moreover, the type of enzyme impacted the resulting technofunctional properties. Hydrolysates prepared with Flavourzyme showed good technofunctional properties, independent of the DH. Physicochemical characterization of the hydrolysates indicated the importance of protein fragments with relatively high MW (exceeding 14.5 k) and high surface hydrophobicity for favorable technofunctional properties. PMID:17896813

  19. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors.

    Science.gov (United States)

    Cunha, Joana T; Aguiar, Tatiana Q; Romaní, Aloia; Oliveira, Carla; Domingues, Lucília

    2015-09-01

    PRS3, RPB4 and ZWF1 were previously identified as key genes for yeast tolerance to lignocellulose-derived inhibitors. To better understand their contribution to yeast resistance to the multiple stresses occurring during lignocellulosic hydrolysate fermentations, we overexpressed these genes in two industrial Saccharomyces cerevisiae strains, CCUG53310 and PE-2, and evaluated their impact on the fermentation of Eucalyptus globulus wood and corn cob hydrolysates. PRS3 overexpression improved the fermentation rate (up to 32%) and productivity (up to 48%) in different hydrolysates. ZWF1 and RPB4 overexpression did not improve the fermentation performance, but their increased expression in the presence of acetic acid, furfural and hydroxymethylfurfural was found to contribute to yeast adaptation to these inhibitors. This study expands our understanding about the molecular mechanisms involved in industrial yeast tolerance to the stresses occurring during lignocellulosic bioethanol production and highlights the importance of selecting appropriate strain backgrounds/hydrolysates combinations when addressing further improvement of these processes. PMID:25974617

  20. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars

    OpenAIRE

    Verma, Dheeraj; Kanagaraj, Anderson; Jin, Shuangxia; Singh, Nameirakpam D; Kolattukudy, Pappachan E.; Daniell, Henry

    2010-01-01

    It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in E. coli or tobacco chloroplasts. A PCR based method was used to clone genes without intro...

  1. Supplementation requirements of brewery's spent grain hydrolysate for biomass and xylitol production by Debaryomyces hansenii CCMI 941.

    Science.gov (United States)

    Carvalheiro, F; Duarte, L C; Lopes, S; Parajó, J C; Pereira, H; Gírio, F M

    2006-08-01

    The effect of nutrient supplementation of brewery's spent grain (BSG) hydrolysates was evaluated with respect to biomass and xylitol production by Debaryomyces hansenii. For optimal biomass production, supplementation of full-strength BSG hydrolysates required only phosphate (0.5 g l(-1) KH(2)PO(4)), leading to a biomass yield and productivity of 0.60 g g(-1) monosaccharides and 0.55 g l(-1 )h(-1), respectively. Under the conditions studied, no metabolic products other than CO(2) and biomass were identified. For xylitol production, fourfold and sixfold concentrated hydrolysate-based media were used to assess the supplementation effects. The type of nutrient supplementation modulated the ratio of total polyols/total extracellular metabolites as well as the xylitol/arabitol ratio. While the former varied from 0.8 to 1, the xylitol/arabitol ratio reached a maximum value of 2.6 for yeast extract (YE)-supplemented hydrolysates. The increase in xylitol productivity and yield was related to the increase of the percentage of consumed xylose induced by supplementation. The best xylitol yield and productivity were found for YE supplementation corresponding to 0.55 g g(-1) and 0.36 g l(-1 )h(-1), respectively. In sixfold concentrated hydrolysates, providing that the hydrolysate was supplemented, the levels of xylitol produced were similar or higher than those for arabitol. Xylitol yield exhibited a further increase in the sixfold hydrolysate supplemented with trace elements, vitamins and minerals to 0.65 g g(-1), albeit the xylitol productivity was somewhat lower. The effect of using activated charcoal detoxification in non-supplemented versus supplemented sixfold hydrolysates was also studied. Detoxification did not improve polyols formation, suggesting that the hemicellulose-derived inhibitor levels present in concentrated BSG hydrolysates are well tolerated by D. hansenii. PMID:16520980

  2. Production of optically pure l-lactic acid from lignocellulosic hydrolysate by using a newly isolated and d-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain.

    Science.gov (United States)

    Kuo, Yang-Cheng; Yuan, Shuo-Fu; Wang, Chun-An; Huang, Yin-Jung; Guo, Gia-Luen; Hwang, Wen-Song

    2015-12-01

    The use of lignocellulosic feedstock for lactic acid production with a difficulty is that the release of inhibitory compounds during the pretreatment process which inhibit the growth of microorganism. Thus we report a novel lactic acid bacterium, Lactobacillus paracasei 7BL, that has a high tolerance to inhibitors and produced optically pure l-lactic acid after the interruption of ldhD gene. The strain 7BL fermented glucose efficiently and showed high titer of l-lactic acid (215g/l) by fed-batch strategy. In addition, 99g/l of l-lactic acid with high yield (0.96g/g) and productivity (2.25-3.23g/l/h) was obtained by using non-detoxified wood hydrolysate. Rice straw hydrolysate without detoxification was also tested and yielded a productivity rate as high as 5.27g/l/h. Therefore, L. paracasei 7BL represents a potential method of l-lactic acid production from lignocellulosic biomass and has attractive application for industries. PMID:26433790

  3. Immunomodulatory potential of a brewers' spent grain protein hydrolysate incorporated into low-fat milk following in vitro gastrointestinal digestion.

    Science.gov (United States)

    Crowley, Damian; O'Callaghan, Yvonne; McCarthy, Aoife; Connolly, Alan; Piggott, Charles O; FitzGerald, Richard J; O'Brien, Nora M

    2015-01-01

    Brewers' spent grain (BSG) protein rich fraction was previously hydrolysed using Alcalase (U) and three additional fractions were prepared by membrane fractionation; a 5-kDa retentate (U?>?5), a 5-kDa permeate (U?hydrolysate and its associated ultrafiltered fractions can confer anti-inflammatory effects in Jurkat T cells. PMID:26307493

  4. Brewers' spent grain (BSG) protein hydrolysates decrease hydrogen peroxide (H2O2)-induced oxidative stress and concanavalin-A (con-A) stimulated IFN-? production in cell culture.

    Science.gov (United States)

    McCarthy, Aoife L; O'Callaghan, Yvonne C; Connolly, Alan; Piggott, Charles O; FitzGerald, Richard J; O'Brien, Nora M

    2013-11-01

    The present study investigated the bioactivity of protein hydrolysates and fractionated hydrolysates prepared from brewers' spent grain (BSG) using proteases, including Alcalase 2.4L, Flavourzyme and Corolase PP. Hydrolysates were designated K-Y, including fractionated hydrolysates with molecular weight (m.w.) 5 kDa. Where computable, IC50 values were lower in U937 (1.38-9.78%) than Jurkat T cells (1.15-13.82%). Hydrolysates L, Q and R and fractionated hydrolysates of U and W (5 kDa) significantly (P 5 kDa, V, V > 5 kDa, W, W > 5 kDa significantly (P 5 kDa) possess anti-inflammatory effects. PMID:24113874

  5. Sophorolipid production from biomass hydrolysates.

    Science.gov (United States)

    Samad, Abdul; Zhang, Ji; Chen, Da; Liang, Yanna

    2015-02-01

    Although extensive research has been conducted on producing sophorolipids using Candida (Starmerella) bombicola from pure sugars and various oil sources, production of this biosurfactant has not been evaluated when cells are cultivated in lignocellulosic hydrolysates. Here, we report for the first time that C. bombicola is capable of producing sophorolipids on hydrolysates derived from sweet sorghum bagasse and corn fiber. Without oil supplementation, a sophorolipid concentration of 3.6 and 1.0 g/L was detected from cultures with bagasse and corn fiber hydrolysates, respectively. With the addition of soybean oil at 100 g/L, the yield of sophorolipids from these two hydrolysates in the same order was 84.6 and 15.6 g/L. Surprisingly, C. bombicola consumed all monomeric sugars and nonsugar compounds in the hydrolysates, and cultures with bagasse hydrolysates had higher yield of sophorolipids than those from a standard medium which contained pure glucose at the same concentration. PMID:25475889

  6. Second Generation Ethanol Production from Brewers’ Spent Grain

    Directory of Open Access Journals (Sweden)

    Rossana Liguori

    2015-03-01

    Full Text Available Ethanol production from lignocellulosic biomasses raises a global interest because it represents a good alternative to petroleum-derived energies and reduces the food versus fuel conflict generated by first generation ethanol. In this study, alkaline-acid pretreated brewers’ spent grain (BSG was evaluated for ethanol production after enzymatic hydrolysis with commercial enzymes. The obtained hydrolysate containing a glucose concentration of 75 g/L was adopted, after dilution up to 50 g/L, for fermentation by the strain Saccharomyces cerevisiae NRRL YB 2293 selected as the best producer among five ethanologenic microorganims. When the hydrolysate was supplemented with yeast extract, 12.79 g/L of ethanol, corresponding to 0.28 g of ethanol per grams of glucose consumed (55% efficiency, was obtained within 24 h, while in the non-supplemented hydrolysate, a similar concentration was reached within 48 h. The volumetric productivity increased from 0.25 g/L·h in the un-supplemented hydrolysate to 0.53 g/L h in the yeast extract supplemented hydrolysate. In conclusion, the strain S. cerevisiae NRRL YB 2293 was shown able to produce ethanol from BSG. Although an equal amount of ethanol was reached in both BSG hydrolysate media, the nitrogen source supplementation reduced the ethanol fermentation time and promoted glucose uptake and cell growth.

  7. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2014-07-01

    Full Text Available Microalgae contain valuable compounds that can be harnessed for industrial applications. Lignocellulose biomass is a plant material containing in abundance organic substances such as carbohydrates, phenolics, organic acids and other secondary compounds. As growth of microalgae on organic substances was confirmed during heterotrophic and mixotrophic cultivation, lignocellulose derived compounds can become a feedstock to cultivate microalgae and produce target compounds. In this review, different treatment methods to hydrolyse lignocellulose into organic substrates are presented first. Secondly, the effect of lignocellulosic hydrolysates, organic substances typically present in lignocellulosic hydrolysates, as well as minor co-products, on growth and accumulation of target compounds in microalgae cultures is described. Finally, the possibilities of using lignocellulose hydrolysates as a common feedstock for microalgae cultures are evaluated.

  8. Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production

    OpenAIRE

    Guo, Xiang; Cavka, Adnan; Jönsson, Leif J; Hong, Feng

    2013-01-01

    BACKGROUND: Bacterial cellulose (BC) is a nanostructured material with unique properties and wide applicability. In order to decrease the production cost of bacterial cellulose, lignocellulose-based media have considerable potential as alternative cost-effective feedstocks. However, pretreatment and enzymatic hydrolysis of lignocellulose to sugars also generate fermentation inhibitors. Detoxification of lignocellulosic hydrolysates is needed to achieve efficient production of BC. In this inve...

  9. Thermophilic lactic acid production on hemicellulose hydrolysate.

    Science.gov (United States)

    Thomasser, C; Danner, H; Neureiter, M; Saidi, B; Braun, R

    2001-01-01

    Lactic acid has many applications. It can be utilised as road-deicing agent, in the food industry or--after polymerisation--as a biodegradable plastic. The use of lignocellulose biomass will significantly increase the competitiveness of lactic acid-based polymers compared to conventional petroleum based plastics. The Institute for Agrobiotechnology in Tulln (IFA-Tulln) developed a process to apply renewable resources as cheap feedstock for production of lactic acid. The utilisation of thermophiles combined with a suitable pretreatment method enables a fermentation under non sterile conditions with detoxified hemicellulosic hydrolysates. This paper presents growth toxicity tests and batch experiments with bagasse hydrolysate, which were conducted to determine the fermentability of thermophilic wild type strains. PMID:15954612

  10. Fermentative hydrogen production from agroindustrial lignocellulosic substrates

    Science.gov (United States)

    Reginatto, Valeria; Antônio, Regina Vasconcellos

    2015-01-01

    To achieve economically competitive biological hydrogen production, it is crucial to consider inexpensive materials such as lignocellulosic substrate residues derived from agroindustrial activities. It is possible to use (1) lignocellulosic materials without any type of pretreatment, (2) lignocellulosic materials after a pretreatment step, and (3) lignocellulosic materials hydrolysates originating from a pretreatment step followed by enzymatic hydrolysis. According to the current literature data on fermentative H2 production presented in this review, thermophilic conditions produce H2 in yields approximately 75% higher than those obtained in mesophilic conditions using untreated lignocellulosic substrates. The average H2 production from pretreated material is 3.17 ± 1.79 mmol of H2/g of substrate, which is approximately 50% higher compared with the average yield achieved using untreated materials (2.17 ± 1.84 mmol of H2/g of substrate). Biological pretreatment affords the highest average yield 4.54 ± 1.78 mmol of H2/g of substrate compared with the acid and basic pretreatment - average yields of 2.94 ± 1.85 and 2.41 ± 1.52 mmol of H2/g of substrate, respectively. The average H2 yield from hydrolysates, obtained from a pretreatment step and enzymatic hydrolysis (3.78 ± 1.92 mmol of H2/g), was lower compared with the yield of substrates pretreated by biological methods only, demonstrating that it is important to avoid the formation of inhibitors generated by chemical pretreatments. Based on this review, exploring other microorganisms and optimizing the pretreatment and hydrolysis conditions can make the use of lignocellulosic substrates a sustainable way to produce H2. PMID:26273246

  11. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    International Nuclear Information System (INIS)

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation and substrate utilization from the hydrolysate was compared with the ones obtained by defined synthetic substrates. The power density increased from 47 mW m?2 to 148 mW m?2 with the hydrolysate:wastewater ratio (RHW in m3 m?3) increasing from 0 to 0.06 (corresponding to 0–0.7 g dm?3 of carbohydrates). The power density with the hydrolysate was higher than the one with only xylan (120 mW m?2) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells. -- Highlights: ? Electricity production in microbial fuel cells. ? Hydrolysate from hydrothermal treated wheat straw as fuel. ? Larger electricity production than with simple compounds as fuel. ? No need for detoxification and nutrients to the hydrolysate. ? Effective (95%) microbial utilization of the polymeric carbohydrates.

  12. Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi--assessment of their effect on the final product and spent substrate properties.

    Science.gov (United States)

    Koutrotsios, Georgios; Mountzouris, Konstantinos C; Chatzipavlidis, Iordanis; Zervakis, Georgios I

    2014-10-15

    Nine agro-industrial and forestry by-products were subjected to solid-state fermentation by Agrocybe cylindracea and Pleurotus ostreatus, and the process and end-products were comparatively evaluated. Grape marc waste plus cotton gin trash was the best performing medium for both fungi, while substrate composition had a marked effect on most cultivation parameters. Biological efficiency was positively correlated with nitrogen, lignin and ash, and negatively with hemicelluloses and carbohydrate content of substrates. Spent substrates demonstrated high reductions in hemicelluloses and cellulose in contrast to lignin; fibre fractions were correlated with nitrogen, fat and ash content of initial materials, while residual mycelial biomass was affected by mushroom productivity. Mushroom proximate analysis revealed significant variations of constituents depending on the substrate. Crude protein and fat were correlated with substrates nitrogen for both species. Alternative cultivation substrates of high potential are proposed, while spent material could be exploited as animal feed due to its upgraded properties. PMID:24837930

  13. Fermentative hydrogen production from agroindustrial lignocellulosic substrates

    Scientific Electronic Library Online (English)

    Valeria, Reginatto; Regina Vasconcellos, Antônio.

    2015-06-01

    Full Text Available To achieve economically competitive biological hydrogen production, it is crucial to consider inexpensive materials such as lignocellulosic substrate residues derived from agroindustrial activities. It is possible to use (1) lignocellulosic materials without any type of pretreatment, (2) lignocellul [...] osic materials after a pretreatment step, and (3) lignocellulosic materials hydrolysates originating from a pretreatment step followed by enzymatic hydrolysis. According to the current literature data on fermentative H2 production presented in this review, thermophilic conditions produce H2 in yields approximately 75% higher than those obtained in mesophilic conditions using untreated lignocellulosic substrates. The average H2 production from pretreated material is 3.17 ± 1.79 mmol of H2/g of substrate, which is approximately 50% higher compared with the average yield achieved using untreated materials (2.17 ± 1.84 mmol of H2/g of substrate). Biological pretreatment affords the highest average yield 4.54 ± 1.78 mmol of H2/g of substrate compared with the acid and basic pretreatment - average yields of 2.94 ± 1.85 and 2.41 ± 1.52 mmol of H2/g of substrate, respectively. The average H2 yield from hydrolysates, obtained from a pretreatment step and enzymatic hydrolysis (3.78 ± 1.92 mmol of H2/g), was lower compared with the yield of substrates pretreated by biological methods only, demonstrating that it is important to avoid the formation of inhibitors generated by chemical pretreatments. Based on this review, exploring other microorganisms and optimizing the pretreatment and hydrolysis conditions can make the use of lignocellulosic substrates a sustainable way to produce H2.

  14. Grass Lignocellulose

    Science.gov (United States)

    Akin, Danny E.

    Grass lignocelluloses are limited in bioconversion by aromatic constituents, which include both lignins and phenolic acids esters. Histochemistry, ultraviolet absorption microspectrophotometry, and response to microorganisms and specific enzymes have been used to determine the significance of aromatics toward recalcitrance. Coniferyl lignin appears to be the most effective limitation to biodegradation, existing in xylem cells of vascular tissues; cell walls with syringyl lignin, for example, leaf sclerenchyma, are less recalcitrant. Esterified phenolic acids, i.e., ferulic and p-coumaric acids, often constitute a major chemical limitation in nonlignified cell walls to biodegradation in grasses, especially warm-season species. Methods to improve biodegradability through modification of aromatics include: plant breeding, use of lignin-degrading white-rot fungi, and addition of esterases. Plant breeding for new cultivars has been especially effective for nutritionally improved forages, for example, bermudagrasses. In laboratory studies, selective white-rot fungi that lack cellulases delignified the lignocellulosic materials and improved fermentation of residual carbohydrates. Phenolic acid esterases released p-coumaric and ferulic acids for potential coproducts, improved the available sugars for fermentation, and improved biodegradation. The separation and removal of the aromatic components for coproducts, while enhancing the availability of sugars for bioconversion, could improve the economics of bioconversion.

  15. A comparative study of the hydrolysis of gamma irradiated lignocelluloses

    Directory of Open Access Journals (Sweden)

    E. Betiku

    2009-06-01

    Full Text Available The effect of high-dose irradiation as a pretreatment method on two common lignocellulosic materials; hardwood (Khaya senegalensis and softwood (Triplochiton scleroxylon were investigated by assessing the potential of cellulase enzyme derived from Aspergillus flavus Linn isolate NSPR 101 to hydrolyse the materials. The irradiation strongly affected the materials, causing the enzymatic hydrolysis to increase by more than 3 fold. Maximum digestibility occurred in softwood at 40kGy dosage of irradiation, while in hardwood it was at 90kGy dosage. The results also showed that, at the same dosage levels (p < 0.05, hardwood was hydrolysed significantly better compared to the softwood.

  16. Cofactor Dependence in Furan Reduction by Saccharomyces cerevisiae in Fermentation of Acid-Hydrolyzed Lignocellulose

    OpenAIRE

    Nilsson, Anneli; Gorwa-Grauslund, Marie F.; Hahn-Hägerdal, Bärbel; Lidén, Gunnar

    2005-01-01

    A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the...

  17. Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass

    OpenAIRE

    Panagiotopoulos, I.; Bakker, R.; Vrije, G.J., de; Van Niel, E. W. J.; Koukios, E.; Claassen, P.A.M.

    2011-01-01

    Four dilute-acid pretreated and hydrolysed lignocellulosic raw materials were evaluated as substrates for fermentative hydrogen production by Caldicellulosiruptor saccharolyticus. Their fermentability was ranked in the order: barley straw > wheat straw > corn stalk > corn cob. The content of 5-hydroxymethylfurfural (HMF) in medium with hydrolysates prepared from corn cob (1.0 g/L) and corn stalk (0.8 g/L), respectively reached levels likely to be toxic for growth of C. saccharolyticus. HMF wa...

  18. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    DEFF Research Database (Denmark)

    Thygesen, Anders; Poulsen, Finn Willy

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation and substrate utilization from the hydrolysate was compared with the ones obtained by defined synthetic substrates. The power density increased from 47 mW m?2 to 148 mW m?2 with the hydrolysate:wastewater ratio (RHW in m3 m?3) increasing from 0 to 0.06 (corresponding to 0–0.7 g dm?3 of carbohydrates). The power density with the hydrolysate was higher than the one with only xylan (120 mW m?2) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells.

  19. Prehydrolysis of lignocellulose

    Science.gov (United States)

    Torget, Robert W. (Littleton, CO); Kadam, Kiran L. (Golden, CO); Hsu, Teh-An (Golden, CO); Philippidis, George P. (Highlands Ranch, CO); Wyman, Charles E. (Lakewood, CO)

    1998-01-01

    The invention relates to the prehydrolysis of lignocellulose by passing an acidic or alkaline solution through solid lignocellulosic particles with removal of soluble components as they are formed. The technique permits a less severe combination of pH, temperature and time than conventional prehydrolysis. Furthermore, greater extraction of both hemicellulose and lignin occurs simultaneously in the same reactor and under the same conditions.

  20. Protein hydrolysates in sports nutrition

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2009-09-01

    Full Text Available Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle glycogen resynthesis are discussed.

  1. Protein hydrolysates in sports nutrition

    OpenAIRE

    Manninen Anssi H

    2009-01-01

    Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole) proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle...

  2. Biotechnological valorization potential indicator for lignocellulosic materials.

    Science.gov (United States)

    Duarte, Luís C; Esteves, Maria P; Carvalheiro, Florbela; Gírio, Francisco M

    2007-12-01

    This report introduces the biotechnological valorization potential indicator (BVPI) concept, a metric to measure the degree of suitability of lignocellulosic materials to be used as feedstock in a biorefinery framework. This indicator groups the impact of the main factors influencing upgrade-ability, both the biological/chemical nature of the materials, and the economical, technological and geographical factors. The BVPI was applied to the identification of the most relevant opportunities and constraints pertaining to the lignocellulosic by-products from the Portuguese agro-industrial cluster. Several by-products were identified with a high valorization potential, e.g., rice husks, brewery's spent grain, tomato pomace, carob pulp, de-alcoholized grape bagasse, and extracted olive bagasse, that would greatly benefit from the further development of specific biotechnology processes, specifically concerning the upgrade of their hemicellulosic fraction. PMID:18061896

  3. Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guang-Li; Ren, Nan-Qi; Wang, Ai-Jie; Guo, Wan-Qian; Xu, Ji-Fei; Liu, Bing-Feng [State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    In the process of producing H{sub 2} from lignocellulosic materials, inhibitory compounds could be potentially formed during pre-treatment. This work experimentally investigated the effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Representative compounds presented in corn stover acid hydrolysate were added in various concentrations, individually or in various combinations and subsequently inhibitions on growth and H{sub 2} production were quantified. Acetate sodium was not inhibitory to T. thermosaccharolyticum W16, rather than it was stimulatory to the growth and H{sub 2} production. Alternatively, furfural, hydroxymethylfurfural (HMF), vanillin and syringaldehyde were potent inhibitors of growth and hydrogen production even though these compounds showed inhibitory effect depending on their concentrations. Synergistic inhibitory effects were exhibited in the introduction of combinations of inhibitors to the medium and in hydrolysate with concentrated inhibitors. Fermentation results from hydrolysates revealed that to increase the efficiency of this bioprocess from corn stover hydrolysate, the inhibitory compounds concentration must be reduced to the levels present in the raw hydrolysate. (author)

  4. Method for pretreating lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  5. Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited.

    Science.gov (United States)

    Travaini, Rodolfo; Martín-Juárez, Judit; Lorenzo-Hernando, Ana; Bolado-Rodríguez, Silvia

    2016-01-01

    Ozonolysis, as a lignocellulosic biomass pretreatment, goes back to 80s; however, in the last years it is becoming widespread again owing to its efficiency and mild operation conditions. Ozone reacts preferably with lignin than carbohydrates, promoting biomass destructuration and delignification, and so the sugar release by enzymatic hydrolysis. The hydrolysate from pretreated biomass has being used as sugars source for second-generation fuels production, mainly ethanol, methane and hydrogen. Short-chain carboxylic acids are the main inhibitory compounds generated, being properly removed by water washing. The most common inhibitory compounds reported for other pretreatments, furfural and HMF (5-hydroxymethylfurfural), are not found in ozone-pretreated hydrolysates. Composition of pretreated biomass and ozone consumption depends on several process parameters: reactor design, moisture content, particle size, pH, reaction time, ozone/air flow and ozone concentration. Additional studies are necessary to clarify process parameters effect and to optimize the process to achieve high yields with economic feasibility. PMID:26409859

  6. Sugar production from lignocellulosic materials by gamma photolysis

    International Nuclear Information System (INIS)

    Lignocellulosic plant materials were treated with swelling agent and exposed to gamma radiation from Cobalt 60 or Cesium 137. The swelling agents include NaOH, KOH, NH4OH, Benzyle trimethyl ammonium hydroxide, ZnCl2, CaCO3, H3PO4, and H2SO4. At 50 Mrads or above the lignocellulosic materials were extensively solubilized and formed a thick paste or liquid, depending upon the amount of liquid used. The brownish dark hydrolysate had a sweet molasses like odor. Complete solubilization has been acheived for samples such as sugarcane bagasse, newspaper, cotton linter, cotton clothes, saw dust, and alpha cellulose powder. About 40% total sugar and 7% reducing sugar per dry weight of sugarcane bagasse was obtained. The majority of the soluble carbohydrate seemed to be disaccharides or larger molecules. Solubilization of cellulose was dosage dependent, and the rate was facilitated by alkali. However, the released sugar was further decomposed by the alkali

  7. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Hideshi; Miyawaki, Hitoshi; Sakurai, Mitsugu; Kawakami, Akinori; Matsumoto, Mari; Haga, Kenji; Kojima, Motoki; Okamoto, Kenji [Tottori Univ. (Japan). Dept. of Chemistry and Biotechnology

    2012-06-15

    An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h{sup -1}. (orig.)

  8. In Situ Biodiesel Production from Fast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysate

    OpenAIRE

    Penglin Li; Xiaoling Miao; Rongxiu Li; Jianjiang Zhong

    2011-01-01

    Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7?g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83?g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was p...

  9. Combining treatments to improve the fermentation of sugarcane bagasse hydrolysates by ethanologenic Escherichia coli LY180.

    Science.gov (United States)

    Geddes, Ryan; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2015-08-01

    Inhibitory side products from dilute acid pretreatment is a major challenge for conversion of lignocellulose into ethanol. Six strategies to detoxify sugarcane hydrolysates were investigated alone, and in combinations (vacuum evaporation of volatiles, high pH treatment with ammonia, laccase, bisulfite, microaeration, and inoculum size). High pH was the most beneficial single treatment, increasing the minimum inhibitory concentration (measured by ethanol production) from 15% (control) to 70% hydrolysate. Combining treatments provided incremental improvements, consistent with different modes of action and multiple inhibitory compounds. Screening toxicity using tube cultures proved to be an excellent predictor of relative performance in pH-controlled fermenters. A combination of treatments (vacuum evaporation, laccase, high pH, bisulfite, microaeration) completely eliminated all inhibitory activity present in hydrolysate. With this combination, fermentation of hemicellulose sugars (90% hydrolysate) to ethanol was complete within 48 h, identical to the fermentation of laboratory xylose (50 g/L) in AM1 mineral salts medium (without hydrolysate). PMID:25864026

  10. Improving Stress Tolerance in Industrial Saccharomyces cerevisiae Strains for Ethanol Production from Lignocellulosic Biomass

    OpenAIRE

    Wallace Salinas, Valeria

    2014-01-01

    The present work was aimed at developing industrial S. cerevisiae strains with improved tolerance to two types of stressors encountered during the fermentation of lignocellulosic biomass that affect ethanol yield and productivity, namely hydrolysate-derived inhibitors and high temperature, and at understanding the response of yeast and mechanisms of adaptation to such stressors. In one part of the study, key amino acid substitutions that were responsible for the acquired ability of a mutated ...

  11. Encapsulation-Induced Stress Helps Saccharomyces cerevisiae Resist Convertible Lignocellulose Derived Inhibitors

    OpenAIRE

    Westman, Johan O; Ramesh Babu Manikondu; Carl Johan Franzén; Taherzadeh, Mohammad J.

    2012-01-01

    The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was investigated in anaerobic batch cultivations. It was shown that encapsulation increased the tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. G...

  12. Robust yeast isolates with great potential for industrial fermentation of lignocellulose

    OpenAIRE

    Pereira, Francisco B.; Roman??, Aloia; Ru??z, H??ctor A.; Teixeira, J. A.; Domingues, Luc??lia

    2013-01-01

    Currently, it is widely acknowledged that the production of bio-ethanol from lignocellulosic hydrolysates requires that yeast strains ferment in the presence of the inhibitory compounds produced during the biomass pre-treatment. Since the discovery of the capacity of yeast to in situ detoxification of biomass-derived inhibitors, mostly 2-furfural, 5-hydroxymethylfurfural and acetic acid, significant progress has been made in understanding of yeast tolerance mechanisms avoidi...

  13. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass

    OpenAIRE

    Pereira, Francisco B.; Roman??, Aloia; Ruiz, H??ctor A.; Teixeira, J. A.; Domingues, Luc??lia

    2014-01-01

    The search of robust microorganisms is essential to design sustainable processes of second generation bioethanol. Yeast strains isolated from industrial environments are generally recognised to present an increased stress tolerance but no specific information is available on their tolerance towards inhibitors that come from the pretreatment of lignocellulosic materials. In this work, a strategy for the selection of different yeasts using hydrothermal hydrolysate from Eucalyptus globulus wood,...

  14. Protein Hydrolysates/Peptides in Animal Nutrition

    Science.gov (United States)

    McCalla, Jeff; Waugh, Terry; Lohry, Eric

    The use of protein hydrolysates as an important nutrient for growth and maintenance has been increasing in animal nutrition. Although animal proteins and protein hydrolysates are widely used however, recently vegetable protein hydrolysates are gaining importance. This chapter reviews the use of protein hydrolysates developed by enzyme hydrolysis and by solid state fermentation process in animal nutrition especially for piglets and compares it with the standard products such as plasma and fishmeal.

  15. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification

    Directory of Open Access Journals (Sweden)

    DonnaMBates

    2014-08-01

    Full Text Available Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass, phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH. To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(PH, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.

  16. Organic acids from lignocellulose: Candida lignohabitans as a new microbial cell factory.

    Science.gov (United States)

    Bellasio, Martina; Mattanovich, Diethard; Sauer, Michael; Marx, Hans

    2015-05-01

    Biorefinery applications require microbial cell factories for the conversion of various sugars derived from lignocellulosic material into value-added chemicals. Here, the capabilities of the yeast Candida lignohabitans to utilize a range of such sugars is characterized. Substrates efficiently converted by this yeast include the pentoses xylose and arabinose. Genetic engineering of C. lignohabitans with the isolated endogenous GAP promoter and GAP terminator was successful. GFP expression was used as a proof of functionality for the isolated transcription elements. Expression of lactate dehydrogenase and cis-aconitate decarboxylase resulted in stable and reproducible production of lactic acid and itaconic acid, respectively. The desired organic acids were accumulated converting pure sugars as well as lignocellulosic hydrolysates. C. lignohabitans proved therefore to be a promising reliable microbial host for production of organic acids from lignocellulosic material. PMID:25651876

  17. Lignocellulose-derived inhibitors improve lipid extraction from wet Rhodococcus opacus cells.

    Science.gov (United States)

    Kurosawa, Kazuhiko; Anthony Debono, C; Sinskey, Anthony J

    2015-10-01

    Extracting lipids from oleaginous microbial cells in a cost effective and environmentally compatible manner remains a critical challenge in developing manufacturing paradigms for advanced liquid biofuels. In this study, a new approach using microbial growth inhibitors from lignocellulose-derived feedstocks was used to extract lipids efficiently from wet cell mass of the oleaginous bacterium Rhodococcus opacus MITXM-61. Nine common lignocellulose-derived inhibitors for treatment of cells prior to solvent extraction were used and evaluated for their efficiency of lipid extraction from the cells. When the inhibitors were individually examined, formic acid and furfural showed the highest extraction efficiency of lipids from wet cell mass. Multiple extractions of lipids with methanol from wet cell mass pretreated with combined common inhibitors or hardwood hydrolysate comprising lignocellulose-derived inhibitors resulted in lipid recovery of greater than 85% of total lipids, a 1.7-fold increase of lipid extraction as compared to those in the absence of the inhibitors. PMID:26141279

  18. Utilization of lignocellulosic polysaccharides

    Science.gov (United States)

    Fenske, John James

    Lignocellulosic biomass represents a vast supply of fermentable carbohydrates and functional aromatic compounds. Conversion of lignocellulosics to ethanol and other useful products would be of widespread economical and environmental benefit. Better understanding of the behavior of different lignocellulosic feedstocks in fermentation protocols as well as catalytic activities involved in lignocellulosic depolymerization will further enhance the commercial viability of biomass-to-ethanol conversion processes. The relative toxicity of the combined non-xylose components in prehydrolysates derived from three different lignocellulosic biomass feedstocks (poplar, corn stover and switchgrass, or Panicum virgatum L.) was determined using a Pichia stipits fermentation assay. The relative toxicity of the prehydrolysates, in decreasing order, was poplar-derived prehydrolysates > switchgrass-derived prehydrolysates > corn stover-derived prehydrolysates. Ethanol yields averaged 74%, 83% and 88% of control values for poplar, switchgrass and corn stover prehydrolysates, respectively. Volumetric ethanol productivities (g ethanol lsp{-1} hsp{-1}) averaged 32%, 70% and 102% of control values for poplar, switchgrass and corn stover prehydrolysates, respectively. Ethanol productivities correlated closely with acetate concentrations in the prehydrolysates; however, regression lines correlating acetate concentrations and ethanol productivities were found to be feedstock-dependent. Differences in the relative toxicity of xylose-rich prehydrolysates derived from woody and herbaceous feedstocks are likely due to the relative abundance of a variety of inhibitory compounds, e.g. acetate and aromatic compounds. Fourteen aromatic monomers present in prehydrolysates prepared from corn stover, switchgrass, and poplar were tentatively identified by comparison with published mass spectra. The concentrations of the aromatic monomers totaled 112, 141 and 247 mg(l)sp{-1} for corn stover, switchgrass and poplar prehydrolysates, respectively. The woody and herbaceous feedstocks differed in both amount and type of aromatic monomers. The cellulases of Trichoderma reesei are the most widely studied for use in the depolymerization of lignocellulosics. The Trichoderma cellobiohydrolases CBH1 and CBH2 are traditionally categorized as exo-acting cellulases. A simple individual-based model was created to explore the potential effects of native endo activity on substrate-velocity profiles. The model results indicate that an enzyme with a small amount of endo activity will show an apparent substrate inhibition as substrate levels are increased. Actual hydrolysis studies using affinity chromatography-purified CBH2 preparations from three laboratories indicate that CBH2 has native endo activity, while CBH1 does not.

  19. The chemistry involved in the steam treatment of lignocellulosic materials

    Scientific Electronic Library Online (English)

    Luiz Pereira, Ramos.

    2003-12-01

    Full Text Available Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment m [...] ethods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.

  20. The chemistry involved in the steam treatment of lignocellulosic materials

    Directory of Open Access Journals (Sweden)

    Luiz Pereira Ramos

    2003-12-01

    Full Text Available Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment methods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.

  1. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Tao, L.; Scarlata, C.; Tan, E. C. D.; Ross, J.; Lukas, J.; Sexton, D.

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  2. Rapid determination of furfural in biomass hydrolysate by full evaporation headspace gas chromatography.

    Science.gov (United States)

    Li, Hailong; Chai, Xin-Sheng; Zhan, Huaiyu; Fu, Shiyu

    2010-11-26

    This paper reports a full evaporation (FE) headspace gas chromatographic (HS-GC) method for rapid determination of furfural in the biomass hydrolysate. The data show that a near-complete mass transfer of furfural in the sample from biomass hydrolysate to the vapor phase (headspace) was achieved within 3 min at 105°C when a very small (conditions was negligible. The furfural in the vapor phase was then determined by HS-GC using a flame ionization detector. The results showed that the method has an excellent measurement precision (RSDhydrolysate samples. The method requires no sample pretreatment, so it is simple, rapid and accurate, and suitable for applications in lignocellulosic biomass conversion to fuel ethanol or other high value-added products. PMID:20970806

  3. Sugar cane bagasse as feedstock for second generation ethanol production: Part II: Hemicellulose hydrolysate fermentability

    Scientific Electronic Library Online (English)

    Gabriel J. Vargas, Betancur; Nei, Pereira Jr.

    2010-09-15

    Full Text Available Sugar cane bagasse is produced in Brazil as waste of the sugar and ethanol industries. This lignocellulosic material is a potential source for second-generation ethanol production; however a pretreatment stage is essential, which aims at removing the hemicellulose component by disorganizing the lign [...] ocellulosic complex. In this work sugar cane bagasse was pretreated by diluted acid hydrolysis resulting in xylose-rich hydrolysates, which could be fermented to ethanol by a strain of the yeast Pichia stipitis. Statistical approach was used to investigate the effects of factors associated with the diluted acid hydrolysis process (acid concentration, solid:liquid ratio and time of exposure) on the fermentability of different hydrolysates. The statistical analysis was useful for determining the effects of the individual factors and their interactions on the response variables. An acid concentration of 1.09% (v/v), a solid:liquid ratio of 1:2.8 (g:ml), and an exposure time of 27 min were established and validated as the optimum pretreatment conditions for ethanol production from hemicellulose hydrolysates of sugar cane bagasse. Under these conditions, a hydrolysate with 50 g/l of xylose, 6.04 g/l of acetic acid, 0.55 g/l of hydroxylmethylfurfural and 0.09 g/l of furfural was obtained and its fermentation yielded roughly 20 g/l of ethanol in 40 hrs.

  4. Biogas from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Berglund Odhner, Peter; Schabbauer, Anna [Grontmij AB, Stockholm (Sweden); Sarvari Horvath, Ilona; Mohseni Kabir, Maryam [Hoegskolan i Boraas, Boraas (Sweden)

    2012-01-15

    Grontmij AB has cooperated with the University of Boraas to evaluate the technological and economical possibilities for biogas production from substrates containing lignocellulose, such as forest residues, straw and paper. The state of knowledge regarding biogas production from cellulosic biomass has been summarized. The research in the field has been described, especially focusing on pretreatment methods and their results on increased gas yields. An investigation concerning commercially available pretreatment methods and the cost of these technologies has been performed. An economic evaluation of biogas production from lignocellulosic materials has provided answers to questions regarding the profitability of these processes. Pretreatment with steam explosion was economically evaluated for three feedstocks - wood, straw and paper - and a combination of steam explosion and addition of NaOH for paper. The presented costs pertain to costs for the pretreatment step as it, in this study, was assumed that the pretreatment would be added to an existing plant and the lignocellulosic substrates would be part of a co-digestion process. The results of the investigation indicate that it is difficult to provide a positive net result when comparing the cost of pretreatment versus the gas yield (value) for two of the feedstocks - forest residues and straw. This is mainly due to the high cost of the raw material. For forest residues the steam pretreatment cost exceeded the gas yield by over 50 %, mainly due to the high cost of the raw material. For straw, the production cost was similar to the value of the gas. Paper showed the best economic result. The gas yield (value) for paper exceeded the pretreatment cost by 15 %, which makes it interesting to study paper further.

  5. Comparative Proteomic Analysis of Tolerance and Adaptation of Ethanologenic Saccharomyces cerevisiae to Furfural, a Lignocellulosic Inhibitory Compound? †

    OpenAIRE

    Lin, Feng-Ming; Qiao, Bin; Yuan, Ying-Jin

    2009-01-01

    The molecular mechanism involved in tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to inhibitors (such as furfural, acetic acid, and phenol) represented in lignocellulosic hydrolysate is still unclear. Here, 18O-labeling-aided shotgun comparative proteome analysis was applied to study the global protein expression profiles of S. cerevisiae under conditions of treatment of furfural compared with furfural-free fermentation profiles. Proteins involved in glucose fermentation ...

  6. Ethanol from lignocellulosic biomass

    Scientific Electronic Library Online (English)

    Diana, Abril; Alejandro, Abril.

    2009-08-01

    Full Text Available El etanol es un combustible líquido que debido a la experiencia de producción existente se ha convertido en una importante alternativa para sustituir el uso de gasolina. Es posible mezclarlo en diferentes proporciones con gasolina, los motores no requieren de mayores cambios para su empleo y para su [...] distribución es posible emplear la infraestructura existente para la gasolina. El uso de lignocelulosas como biomasa parece promisoria para la producción de etanol, aun cuando debería aun se analizado cuidadosamente con el propósito holístico que incluya todas la tecnologías actuales y sus posibles implicancias. En este artículo se revisa el conocimiento de las características y fuentes de biomasa de origen vegetal, como también el desarrollo, características y posibilidades de obtener etanol de fuentes lignocelulósicas. Abstract in english Ethanol is the liquid combustible that has become the most promising alternative substitute for gasoline because of the experience gained in its production, the possibility of mixing it with gasoline in different proportions, the possibility of using the existing gasoline distribution infrastructure [...] , and the fact that major changes in engines are not required for its use. Lignocelluloses offer great potential as a biomass source for ethanol production, although their use still requires in-depth analysis with an objective and holistic focus that includes present and future technologic implications. The present article reviews current knowledge about the characteristics and sources of vegetable biomass, as well as the development and possibilities for obtaining ethanol from lignocelluloses sources.

  7. Identification of Small Aliphatic Aldehydes in Pretreated Lignocellulosic Feedstocks and Evaluation of Their Inhibitory Effects on Yeast.

    Science.gov (United States)

    Cavka, Adnan; Stagge, Stefan; Jönsson, Leif J

    2015-11-11

    Six lignocellulosic hydrolysates produced through acid pretreatment were analyzed for the occurrence of formaldehyde, acetaldehyde, and glycolaldehyde. Acetaldehyde was found in all six (0.3-1.6 mM) and formaldehyde in four (?4.4 mM), whereas glycolaldehyde was not detected. To assess the relevance of these findings, fermentations with yeast and formaldehyde or acetaldehyde were performed in the concentration interval 0.5-10 mM. Formaldehyde already inhibited at 1.0 mM, whereas 5.0 mM acetaldehyde was needed to obtain a clear inhibitory effect. After 24 h of fermentation, 1.5 mM formaldehyde reduced the glucose consumption by 85%, the balanced ethanol yield by 92%, and the volumetric productivity by 91%. The results show that formaldehyde and acetaldehyde are prevalent in pretreated lignocellulose and that formaldehyde in some cases could explain a large part of the inhibitory effects on yeast by lignocellulosic hydrolysates, as three of six hydrolysates contained ?1.9 mM formaldehyde, which was shown to be strongly inhibitory. PMID:26528761

  8. Pervaporation behavior and integrated process for concentrating lignocellulosic ethanol through polydimethylsiloxane (PDMS) membrane.

    Science.gov (United States)

    Chen, Jingwen; Zhang, Hongman; Wei, Ping; Zhang, Lin; Huang, He

    2014-02-01

    The effects of by-products from ethanol fermentation and hydrolysates of lignocelluloses on ethanol diffusion through polydimethylsiloxane (PDMS) membranes with/without silicalite-1 were investigated. A pervaporation process was integrated with lignocellulosic fermentation to concentrate bioethanol using bare PDMS membranes. Results showed that yeasts, solid particles, and salts increased ethanol flux and selectivity through the membranes (PDMS with/without silicalite-1), whereas glucose exerted negative effects on the performance. On bare PDMS membrane, the performance was not obviously affected by the existence of aliphatic acids. However, on PDMS-silicalite-1 membrane, a remarkable decrease in ethanol selectivity and a rapid growth of total flux in the presence of aliphatic acids were observed. These phenomena were due to the interaction of acids with silanol (Si-OH) groups to break the dense membrane surface. On the PDMS membranes with/without silicalite-1, degradation products of lignocellulosic hydrolysates such as furfural and hydroxyacetone slightly influenced separation performance. These results revealed that an integrated process can effectively eliminate product inhibition, improve ethanol productivity, and enhance the glucose conversion rate. PMID:23732286

  9. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    Bioethanol (ethanol produced from biomass) as a motor fuel is an attractive renewable fully sustainable energy sources as a means of lowering dependence on fossil fuels and air pollution towards greenhouse gasses, particularly CO2. Bioethanol, unlike gasoline, is an oxygenated fuel, which burns cleaner and thus lowers emissions of CO, NOx and unburned hydrocarbons pollutants, which are constituents in ground level ozone and particulate matter pollution (smog). In addition, bioethanol can replace currently used gasoline octane booster MTBE (methyl tertiary butyl ether), which causes serious environment and public health problems. Increasing demand of bioethanol for transportation sector and higher bioethanol prices than gasoline require utilization of cheap and unlimited raw materials in order to become bioethanol economically competitive with gasoline. Such alternative raw materials are residual lignocellulose (wastes) created from forest industries or from agricultural food crops (wheat straw, corn stover, rice straw). The lignocellulose contains lignin, which binds carbohydrate polymers (cellulose and hemicellulose) forming together a rather resistant structure. In this regards, a pre-treatment step is required in order to separate the lignin from polysaccharides. Once separated, the cellulose and hemicellulose fibres must be hydrolysed to monomeric sugars by enzymatic hydrolysis or dilute acid hydrolysis before being converted into ethanol. However, during the pretreatment and hydrolysis steps, various inhibitors towards microbial fermentation are generated along with the monomeric sugars. The inhibitors can be removed by various detoxification methods but the inclusion of this extra process step increases significantly the ethanol production cost. Compared with glucose, which can be readily fermented to ethanol by yeast strains such as Saccharomyces cerevisiae and bacterial strains of Zymomonas mobilis, xylose is more difficult to ferment because of a lack of industrially suitable microorganism able to rapidly and efficiently produce high concentrations of ethanol from xylose. In order to keep ethanol production cost at a minimum, the major sugars in lignocellulosic biomass (glucose and xylose) must be converted into ethanol due to high raw material cost, typically about 40% of the total ethanol production cost. The need for a microorganism able to utilize both glucose and xylose and to tolerate the inhibitory compounds present in lignocellulosic hydrolysates is therefore apparent. Several thermophilic anaerobic xylan degrading bacteria from our culture collection (EMB group at BioCentrum-DTU) have been screened for a potential ethanol producer from hemicellulose hydrolysates, and out of the screening test, one particular strain (A10) was selected for the best performance. The strain was morphologically and physiologically characterized as Thermoanaerobacter mathranii strain A10. Unlike other thermophilic anaerobic bacteria, the wild-type strain Thermoanaerobacter mathranii A10 was able to tolerate exogenously added ethanol of 5% (v/v) at 70oC in batch fermentation. To verify the potential of thermophilic anaerobe as an alternative ethanol producer from lignocellulose, ethanol tolerance and fermentation performance of lactate dehydrogenase deficient mutant strain Thermoanaerobacter BG1L1 was further studied. The experiments were carried out in a continuous immobilized reactor system (a fluidized bed reactor), which is likely to be the process design configuration for xylose fermentation in a Danish biorefinery concept for production of fuel ethanol. The immobilization of the fermenting organism inside the reactor and a long-term strain adaptation to high ethanol concentrations enhance significantly organism tolerance to ethanol (>8.3% v/v) and improve its fermentation capability when exposed at 5% (v/v) ethanol required in practice. The use of this reactor system enables high xylose conversion, effective glucose/xylose co-fermentation, and ethanol productivity of 1 g/l/h required for an economically viable bioethanol

  10. Simultaneous Cellulase Production, Saccharification and Detoxification Using Dilute Acid Hydrolysate of S. spontaneum with Trichoderma reesei NCIM 992 and Aspergillus niger

    OpenAIRE

    Sateesh, Lanka; Rodhe, Adivikatla Vimala; Naseeruddin, Shaik; Yadav, Kothagauni Srilekha; Prasad, Yenumulagerard; Rao, Linga Venkateswar

    2011-01-01

    Bioethanol production from lignocellulosic materials has several limitations. One aspect is the high production cost of cellulases used for saccharification of substrate and inhibition of fermenting yeast due to inhibitors released in acid hydrolysis. In the present work we have made an attempt to achieve simultaneous cellulases production, saccharification and detoxification using dilute acid hydrolysate of Saccharum spontaneum with and without addition of nutrients, supplemented with acid h...

  11. Hemicellulase production by Aspergillus niger DSM 26641 in hydrothermal palm oil empty fruit bunch hydrolysate and transcriptome analysis.

    Science.gov (United States)

    Ottenheim, Christoph; Verdejo, Carl; Zimmermann, Wolfgang; Wu, Jin Chuan

    2014-12-01

    Palm oil empty fruit bunches (EFB) is an abundant and cheap lignocellulose material in Southeast Asia. Its use as the sole medium for producing lignocellulose-hydrolyzing enzymes would increase its commercial value. A newly isolated Aspergillus niger DSM 26641 was investigated for its capability of producing hemicellulases in EFB hydrolysate obtained by treatment with pressurized hot water (1-20%, w/v) at 120-180°C in a 1 L Parr reactor for 10-60 min. The optimal hydrolysate for the fungal growth and endoxylanase production was obtained when 10% (w/v) of empty fruit bunch was treated at 120°C or 150°C for 10 min, giving an endoxylanase activity of 24.5 mU ml(-1) on RBB-Xylan and a saccharification activity of 5 U ml(-1) on xylan (DNS assay). When the hydrolysates were produced at higher temperatures, longer treatment times or higher biomass contents, only less than 20% of the above maximal endoxylanase activity was detected, possibly due to the higher carbohydrate concentrations in the medium. Transcriptome analysis showed that 3 endoxylanases (expression levels 59-100%, the highest level was set as 100%), 2 ?-xylosidases (4%), 4 side chain-cleaving arabinofuranosidases (1-95%), 1 acetyl xylan esterase (9%) and 2 ferulic acid esterases (0.3-9%) were produced together. PMID:24958131

  12. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses

    Directory of Open Access Journals (Sweden)

    Wang ZJ

    2013-01-01

    Full Text Available Abstract Background Nonspecific (nonproductive binding (adsorption of cellulase by lignin has been identified as a key barrier to reduce cellulase loading for economical sugar and biofuel production from lignocellulosic biomass. Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL is a relatively new process, but demonstrated robust performance for sugar and biofuel production from woody biomass especially softwoods in terms of yields and energy efficiencies. This study demonstrated the role of lignin sulfonation in enhancing enzymatic saccharification of lignocelluloses – lignosulfonate from SPORL can improve enzymatic hydrolysis of lignocelluloses, contrary to the conventional belief that lignin inhibits enzymatic hydrolysis due to nonspecific binding of cellulase. Results The study found that lignosulfonate from SPORL pretreatment and from a commercial source inhibits enzymatic hydrolysis of pure cellulosic substrates at low concentrations due to nonspecific binding of cellulase. Surprisingly, the reduction in enzymatic saccharification efficiency of a lignocellulosic substrate was fully recovered as the concentrations of these two lignosulfonates increased. We hypothesize that lignosulfonate serves as a surfactant to enhance enzymatic hydrolysis at higher concentrations and that this enhancement offsets its inhibitive effect from nonspecific binding of cellulase, when lignosulfonate is applied to lignocellulosic solid substrates. Lignosulfonate can block nonspecific binding of cellulase by bound lignin on the solid substrates, in the same manner as a nonionic surfactant, to significantly enhance enzymatic saccharification. This enhancement is linearly proportional to the amount of lignosulfonate applied which is very important to practical applications. For a SPORL-pretreated lodgepole pine solid, 90% cellulose saccharification was achieved at cellulase loading of 13 FPU/g glucan with the application of its corresponding pretreatment hydrolysate coupled with increasing hydrolysis pH to above 5.5 compared with only 51% for the control run without lignosulfonate at pH 5.0. The pH-induced lignin surface modification at pH 5.5 further reduced nonspecific binding of cellulase by lignosulfonate. Conclusions The results reported in this study suggest significant advantages for SPORL-pretreatment in terms of reducing water usage and enzyme dosage, and simplifying process integration, i.e., it should eliminate washing of SPORL solid fraction for direct simultaneous enzymatic saccharification and combined fermentation of enzymatic and pretreatment hydrolysates (SSCombF. Elevated pH 5.5 or higher, rather than the commonly believed optimal and widely practiced pH 4.8-5.0, should be used in conducting enzymatic saccharification of lignocelluloses.

  13. Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates

    Science.gov (United States)

    Pasha, Chand; Rao, L. Venkateswar

    No other sustainable option for production of transportation fuels can match ethanol made from lignocellulosic biomass with respect to its dramatic environmental, economic, strategic and infrastructure advantages. Substantial progress has been made in advancing biomass ethanol (bioethanol) production technology to the point that it now has commercial potential, and several firms are engaged in the demanding task of introducing first-of-a-kind technology into the marketplace to make bioethanol a reality in existing fuel-blending markets. In order to lower pollution India has a long-term goal to use biofuels (bioethanol and biodiesel). Ethanol may be used either in pure form, or as a blend in petrol in different proportions. Since the cost of raw materials, which can account up to 50 % of the total production cost, is one of the most significant factors affecting the economy of alcohol, nowadays efforts are more concentrated on using cheap and abundant raw materials. Several forms of biomass resources exist (starch or sugar crops, weeds, oil plants, agricultural, forestry and municipal wastes) but of all biomass cellulosic resources represent the most abundant global source. The lignocellulosic materials include agricultural residues, municipal solid wastes (MSW), pulp mill refuse, switchgrass and lawn, garden wastes. Lignocellulosic materials contain two types of polysaccharides, cellulose and hemicellulose, bound together by a third component lignin. The principal elements of the lignocellulosic research include: i) evaluation and characterization of the waste feedstock; ii) pretreatment including initial clean up or dewatering of the feedstock; and iii) development of effective direct conversion bioprocessing to generate ethanol as an end product. Pre-treatment of lignocellulosic materials is a step in which some of the hemicellulose dissolves in water, either as monomeric sugars or as oligomers and polymers. The cellulose cannot be enzymatically hydrolyzed to glucose without a physical and chemical pre-treatment. The pre-treatment processes normally applied on the different substrates are acidic hydrolysis, steam explosion and wet oxidation. A problem for most pretreatment methods is the generation of compounds that are inhibitory towards the fermenting microorganisms, primarily phenols. Degradation products that could have inhibitory action in later fermentation steps are avoided during pre-treatment by wet oxidation. Followed by pre treatment, hydrolysed with enzymes known as cellulases and hemicellulases, which hydrolyse cellulose and hemicellulose respectively. The production of bioethanol requires two steps, fermentation and distillation. Practically all ethanol fermentation is still based on Saccharomyces cerevisiae . The fermentation using thermotolerant yeasts has more advantageous in that they have faster fermentation rates, avoid the cooling costs, and decrease the over all fermentation costs, so that ethanol can be made available at cheaper rates. In addition they can be used for efficient simultaneous saccharification and fermentation of cellulose by cellulases because the temperature optimum of cellulase enzymes (about 40 ° C to 45 ° C) is close to the fermentation temperature of thermotolerant yeasts. Hence selection and improvement of thermotolerant yeasts for bioconversion of lignocellulosic substrates is very useful.

  14. A biorefining process: Sequential, combinational lignocellulose pretreatment procedure for improving biobutanol production from sugarcane bagasse.

    Science.gov (United States)

    Su, Haifeng; Liu, Gang; He, Mingxiong; Tan, Furong

    2015-07-01

    Here, for the first time, we designed a sequential, combinatorial lignocellulose pretreatment procedure (SCLPP) for microbial biofuel fermentation to reduce generation of microbial growth inhibitors and furthermore increase sugar yields. We tested this pretreatment process using sugarcane bagasse as substrate and assessed the effectiveness by analysis of biobutanol production through microbial clostridium beijerinckii NCIMB 8052 conversion. Our results showed that there were no inhibitory effects when using the hydrolysates as fermentation substrate. Under the SSF scheme, we observed the highest concentrations of butanol (6.4g/L) and total ABE (11.9g/L), resulting in a higher ABE productivity, compared with the SHF method. These findings suggest that the SCLPP is a feasible method for improving ABE production, lowering microbial inhibitor generation, and ensuring success in the subsequent fermentation process. Therefore, our work demonstrated developing a tractable integrated process that facilitates to increase biofuel production from agricultural residues rich in lignocellulose is feasible. PMID:25846185

  15. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass.

    Science.gov (United States)

    Pereira, Francisco B; Romaní, Aloia; Ruiz, Héctor A; Teixeira, José A; Domingues, Lucília

    2014-06-01

    The search of robust microorganisms is essential to design sustainable processes of second generation bioethanol. Yeast strains isolated from industrial environments are generally recognised to present an increased stress tolerance but no specific information is available on their tolerance towards inhibitors that come from the pretreatment of lignocellulosic materials. In this work, a strategy for the selection of different yeasts using hydrothermal hydrolysate from Eucalyptus globulus wood, containing different concentrations of inhibitors, was developed. Ten Saccharomyces cerevisiae and four Kluyveromyces marxianus strains isolated from industrial environments and four laboratory background strains were evaluated. Interestingly, a correlation between final ethanol titer and percentage of furfural detoxification was observed. The results presented here highlight industrial distillery environments as a remarkable source of efficient yeast strains for lignocellulosic fermentation processes. Selected strains were able to resourcefully degrade furfural and HMF inhibitors, producing 0.8g ethanol/Lh corresponding to 94% of the theoretical yield. PMID:24704884

  16. Metabolism of Multiple Aromatic Compounds in Corn Stover Hydrolysate by Rhodopseudomonas palustris.

    Science.gov (United States)

    Austin, Samantha; Kontur, Wayne S; Ulbrich, Arne; Oshlag, J Zachary; Zhang, Weiping; Higbee, Alan; Zhang, Yaoping; Coon, Joshua J; Hodge, David B; Donohue, Timothy J; Noguera, Daniel R

    2015-07-21

    Lignocellulosic biomass hydrolysates hold great potential as a feedstock for microbial biofuel production, due to their high concentration of fermentable sugars. Present at lower concentrations are a suite of aromatic compounds that can inhibit fermentation by biofuel-producing microbes. We have developed a microbial-mediated strategy for removing these aromatic compounds, using the purple nonsulfur bacterium Rhodopseudomonas palustris. When grown photoheterotrophically in an anaerobic environment, R. palustris removes most of the aromatics from ammonia fiber expansion (AFEX) treated corn stover hydrolysate (ACSH), while leaving the sugars mostly intact. We show that R. palustris can metabolize a host of aromatic substrates in ACSH that have either been previously described as unable to support growth, such as methoxylated aromatics, and those that have not yet been tested, such as aromatic amides. Removing the aromatics from ACSH with R. palustris, allowed growth of a second microbe that could not grow in the untreated ACSH. By using defined mutants, we show that most of these aromatic compounds are metabolized by the benzoyl-CoA pathway. We also show that loss of enzymes in the benzoyl-CoA pathway prevents total degradation of the aromatics in the hydrolysate, and instead allows for biological transformation of this suite of aromatics into selected aromatic compounds potentially recoverable as an additional bioproduct. PMID:26121369

  17. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christian; Farwick, Alexander; Benisch, Feline; Brat, Dawid; Dietz, Heiko; Subtil, Thorsten; Boles, Eckhard [Frankfurt Univ., Frankfurt am Main (Germany). Inst. of Molecular Biosciences

    2010-07-15

    Bioalcohols produced by microorganisms from renewable materials are promising substitutes for traditional fuels derived from fossil sources. For several years already ethanol is produced in large amounts from feedstocks such as cereals or sugar cane and used as a blend for gasoline or even as a pure biofuel. However, alcohols with longer carbon chains like butanol have even more suitable properties and would better fit with the current fuel distribution infrastructure. Moreover, ethical concerns contradict the use of food and feed products as a biofuel source. Lignocellulosic biomass, especially when considered as a waste material offers an attractive alternative. However, the recalcitrance of these materials and the inability of microorganisms to efficiently ferment lignocellulosic hydrolysates still prevent the production of bioalcohols from these plentiful sources. Obviously, no known organism exist which combines all the properties necessary to be a sustainable bioalcohol producer. Therefore, breeding technologies, genetic engineering and the search for undiscovered species are promising means to provide a microorganism exhibiting high alcohol productivities and yields, converting all lignocellulosic sugars or are even able to use carbon dioxide or monoxide, and thereby being highly resistant to inhibitors and fermentation products, and easy to cultivate in huge bioreactors. In this review, we compare the properties of various microorganisms, bacteria and yeasts, as well as current research efforts to develop a reliable lignocellulosic bioalcohol producing organism. (orig.)

  18. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review

    Directory of Open Access Journals (Sweden)

    Keikhosro Karimi

    2008-09-01

    Full Text Available Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pretreatment is usually not so effective because of high stability of the materials to enzymatic or bacterial attacks. The present work is dedicated to reviewing the methods that have been studied for pretreatment of lignocellulosic wastes for conversion to ethanol or biogas. Effective parameters in pretreatment of lignocelluloses, such as crystallinity, accessible surface area, and protection by lignin and hemicellulose are described first. Then, several pretreatment methods are discussed and their effects on improvement in ethanol and/or biogas production are described. They include milling, irradiation, microwave, steam explosion, ammonia fiber explosion (AFEX, supercritical CO2 and its explosion, alkaline hydrolysis, liquid hot-water pretreatment, organosolv processes, wet oxidation, ozonolysis, dilute- and concentrated-acid hydrolyses, and biological pretreatments.

  19. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2012-12-01

    Full Text Available Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus and Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas sp. were evaluated. Papain hydrolysis showed the highest DH value (89.44%, followed by alcalase hydrolysis (83.35%. Bromelain hydrolysate after one and seven hours of hydrolysis exhibited the highest antibacterial activities against Pseudomonas sp., P. aeruginosa and E. coli at 51.85%, 30.07% and 30.45%, respectively compared to the other hydrolysates. Protein hydrolysate generated by papain after 8 h hydrolysis showed maximum antibacterial activity against S. aureus at 20.19%. The potent hydrolysates were further fractionated using RP-HPLC and antibacterial activity of the collected fractions from each hydrolysate were evaluated, wherein among them only three fractions from the bromelain hydrolysates exhibited inhibitory activities against Pseudomonas sp., P. aeruginosa and E. coli at 24%, 25.5% and 27.1%, respectively and one fraction of papain hydrolysate showed antibacterial activity of 33.1% against S. aureus. The evaluation of the relationship between DH and antibacterial activities of papain and bromelain hydrolysates revealed a meaningful correlation of four and six order functions.

  20. Actinopyga lecanora hydrolysates as natural antibacterial agents.

    Science.gov (United States)

    Ghanbari, Raheleh; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2012-01-01

    Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH) were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas sp.) were evaluated. Papain hydrolysis showed the highest DH value (89.44%), followed by alcalase hydrolysis (83.35%). Bromelain hydrolysate after one and seven hours of hydrolysis exhibited the highest antibacterial activities against Pseudomonas sp., P. aeruginosa and E. coli at 51.85%, 30.07% and 30.45%, respectively compared to the other hydrolysates. Protein hydrolysate generated by papain after 8 h hydrolysis showed maximum antibacterial activity against S. aureus at 20.19%. The potent hydrolysates were further fractionated using RP-HPLC and antibacterial activity of the collected fractions from each hydrolysate were evaluated, wherein among them only three fractions from the bromelain hydrolysates exhibited inhibitory activities against Pseudomonas sp., P. aeruginosa and E. coli at 24%, 25.5% and 27.1%, respectively and one fraction of papain hydrolysate showed antibacterial activity of 33.1% against S. aureus. The evaluation of the relationship between DH and antibacterial activities of papain and bromelain hydrolysates revealed a meaningful correlation of four and six order functions. PMID:23222684

  1. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    de Vrije Truus

    2009-06-01

    Full Text Available Abstract Background The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Results Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75°C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Conclusion Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.

  2. Industrial scale chromatographic separation of valuable compounds from biomass hydrolysates and side streams

    Energy Technology Data Exchange (ETDEWEB)

    Saari, P.

    2011-06-15

    Carbohydrates are composed of a number of various monosaccharides, glucose being the most abundant. Some of the monosaccharides are valuable compounds used in the food and pharmaceutical industries. They can be separated from biomass hydrolysates e.g. by chromatographic methods. In this thesis, chromatographic separation of valuable compounds using ion exchange resins was studied on an industrial scale. Of special interest were rare monosaccharides in biomass hydrolysates. A novel chromatographic separation process was developed for fucose, starting from pre-processed spent sulfite liquor. The core of the process consists of three chromatographic separations with different types of ion exchange resins. Chromatographic separation of galactose was tested with three biomass hydrolysates; lactose, gum arabic and hemicellulose hydrolysates. It was demonstrated that also galactose can be separated from complex carbohydrate mixtures. A recovery process for arabinose from citrus pectin liquid residual and for mannose from wood pulp hydrolysate were also developed and experimentally verified. In addition to monosaccharides, chromatographic separation of glycinebetaine from vinasse was examined with a hydrogen form weak acid cation exchange resin. The separation involves untypical peak formation depending, for example, on the pH and the cation composition. The retention mechanism was found to be hydrogen bonding between glycinebetaine and the resin. In the experimental part, all four resin types - strong acid cation, strong base anion, weak acid cation and weak base anion exchange resins - were used. In addition, adsorption equilibria data of seven monosaccharides and sucrose were measured with the resins in sodium and sulfate forms because such data have been lacking. It was found out that the isotherms of all sugars were linear under industrial conditions. A systematic method for conceptual process design and sequencing of chromatographic separation steps were developed. Heuristics were drawn from the current industrial practices also for the selection of a suitable ion exchange resin for the separation of a sugar from a biomass hydrolysate. (orig.)

  3. Optimization study of ethanolic fermentation from oil palm trunk, rubberwood and mixed hardwood hydrolysates using Saccharomyces cerevisiae.

    Science.gov (United States)

    Chin, K L; H'ng, P S; Wong, L J; Tey, B T; Paridah, M T

    2010-05-01

    Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3. PMID:20056407

  4. SO{sub 2}-ethanol-water (SEW) fractionation of lignocellulosics

    Energy Technology Data Exchange (ETDEWEB)

    Iakovlev, M.

    2011-10-15

    This study deals with SO{sub 2}-ethanol-water (SEW) fractionation as a potential method for a Lignocellulosic Biorefinery to achieve high yield separation of the three important components of biomass; cellulose, hemicelluloses and lignin. Representatives of all principal biomass species were successfully treated by SEW fractionation at similar rates. The kinetics of delignification, polysaccharides removal and cellulose hydrolysis at different temperatures and SO{sub 2} concentrations are described and interpreted from the viewpoint of acid-catalysed degradation of the biomass polymers. The fractionation pattern is compared to that of commercial acid sulfite cooking. The kinetics of delignification, hemicelluloses removal and cellulose hydrolysis during SEW fractionation each follow a two phase behaviour. The delignification is first order in lignin and SO{sub 2}. The observed lignin sulfonation and delignification patterns can be explained using Haegglund's consecutive fast sulfonation-slow hydrolysis scheme. During the initial phase of fractionation, the hemicelluloses removal and cellulose hydrolysis rates are related to the delignification rate, while in the following bulk phase the former two processes proceed independently from the latter. It is proposed that during the initial phase the hemicelluloses are removed together with lignin in the form of lignocarbohydrate complexes, while cellulose is protected by lignin from hydrolytic attack leading to a lower hydrolysis rate. Most hemicellulose side units as well as acetyl groups are cleaved during the first phase, while the glucomannan and xylan backbone polymers are removed at a considerably lower rate in the second (bulk) phase following first order kinetics in the residual polysaccharides. The observed polysaccharides dissolution behaviour can be interpreted in terms of low glucomannan stabilisation by crystallisation on cellulose at the applied conditions. Minimal cellulose dissolution occurs during fractionation, but the cellulose degree of polymerisation decreases by hydrolysis following zero-order kinetics. The products include cellulosic fibres and a spent liquor containing lignin and hydrolysed hemicellulose sugars, the latter present up to 50% in monomeric form. The investigated overall and carbohydrate material balances show no carbohydrate losses as further supported by very low amounts of formed oxidation and dehydration products. The properties of the fibre products are evaluated and their potential applications are discussed. The amount of sulfur bound to lignin is 2-3 times lower than that in acid sulfite cooking, and accounts for less than 1.1% on wood. The rest of SO{sub 2} (95-97%) can be fully recovered by distillation. (orig.)

  5. Biofunctional Properties of Enzymatic Squid Meat Hydrolysate

    OpenAIRE

    Choi, Joon Hyuk; Kim, Kyung-Tae; Kim, Sang Moo

    2015-01-01

    Squid is one of the most important commercial fishes in the world and is mainly utilized or consumed as sliced raw fish or as processed products. The biofunctional activities of enzymatic squid meat hydrolysate were determined to develop value-added products. Enzymatic squid hydrolysate manufactured by Alcalase effectively quenched 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, and hydrogen peroxide radical with IC50 values of 311, 3,410, and 111.5 ?g/mL, respectively. Angiotensin I...

  6. Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation

    OpenAIRE

    Canilha, Larissa; Walter de CARVALHO; Maria das Graças Almeida FELIPE; de Almeida e Silva, João Batista

    2008-01-01

    Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5% activated charcoal for optimized removal of inhibitory compounds.

  7. Efficient production of fermentable sugars from oil palm empty fruit bunch by combined use of acid and whole cell culture-catalyzed hydrolyses.

    Science.gov (United States)

    Li, Qingxin; Ng, Wei Ting; Puah, Sze Min; Bhaskar, Ravindran Vijay; Soh, Loon Siong; Macbeath, Calum; Parakattil, Pius; Green, Phil; Wu, Jin Chuan

    2013-12-12

    Empty fruit bunch (EFB) of oil palm trees was converted to fermentable sugars by the combined use of dilute acids and whole fungal cell culture catalyzed hydrolyses. EFB (5%, w/v) was hydrolyzed in the presence of 0.5% H2 SO4 and 0.2% H3 PO4 at 160°C for 10 min. The solid fraction was separated from the acid hydrolysate by filtration and subjected to enzymatic hydrolysis at 50°C using the whole cell culture of Trichoderma reesei RUT-C30 (2%, w/v), which was prepared by cultivating at 30°C for 7 days to reach its maximal cellulase activity. The combined hydrolyses of EFB gave a total sugar yield of 82.0%. When used as carbon sources for cultivating E. coli in M9 medium at 37°C, the combined EFB hydrolysates were shown to be more favorable or at least as good as pure glucose for cell growth in terms of the higher (1.1 times) optical density of E. coli cells. The byproducts generated during the acid-catalyzed hydrolysis seemed not to obviously affect the cell growth. The combined use of acid and whole cell culture hydrolyses might be a commercially promising method for pretreatment of lignocellulose to get fermentable sugars. This article is protected by copyright. All rights reserved. PMID:24329860

  8. Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy’s sugar process (CLE Sugar

    Directory of Open Access Journals (Sweden)

    Gao Johnway

    2013-01-01

    Full Text Available Abstract Background Woody biomass is one of the most abundant biomass feedstocks, besides agriculture residuals in the United States. The sustainable harvest residuals and thinnings alone are estimated at about 75 million tons/year. These forest residuals and thinnings could produce the equivalent of 5 billion gallons of lignocellulosic ethanol annually. Softwood biomass is the most recalcitrant biomass in pretreatment before an enzymatic hydrolysis. To utilize the most recalcitrant lignocellulosic materials, an efficient, industrially scalable and cost effective pretreatment method is needed. Results Obtaining a high yield of sugar from recalcitrant biomass generally requires a high severity of pretreatment with aggressive chemistry, followed by extensive conditioning, and large doses of enzymes. Catchlight Energy’s Sugar process, CLE Sugar, uses a low intensity, high throughput variation of bisulfite pulping to pretreat recalcitrant biomass, such as softwood forest residuals. By leveraging well-proven bisulfite technology and the rapid progress of enzyme suppliers, CLE Sugar can achieve a high yield of total biomass carbohydrate conversion to monomeric lignocellulosic sugars. For example, 85.8% of biomass carbohydrates are saccharified for un-debarked Loblolly pine chips (softwood, and 94.0% for debarked maple chips (hardwood. Furan compound formation was 1.29% of biomass feedstock for Loblolly pine and 1.10% for maple. At 17% solids hydrolysis of pretreated softwood, an enzyme dose of 0.075 g Sigma enzyme mixture/g dry pretreated (unwashed biomass was needed to achieve 8.1% total sugar titer in the hydrolysate and an overall prehydrolysate liquor plus enzymatic hydrolysis conversion yield of 76.6%. At a much lower enzyme dosage of 0.044 g CTec2 enzyme product/g dry (unwashed pretreated softwood, hydrolysis at 17% solids achieved 9.2% total sugar titer in the hydrolysate with an overall sugar yield of 85.0% in the combined prehydrolysate liquor and enzymatic hydrolysate. CLE Sugar has been demonstrated to be effective on hardwood and herbaceous biomass, making it truly feedstock flexible. Conclusions Different options exist for integrating lignocellulosic sugar into sugar-using operations. A sugar conversion plant may be adjacent to a CLE Sugar plant, and the CLE Sugar can be concentrated from the initial 10% sugar as needed. Concentrated sugars, however, can be shipped to remote sites such as ethanol plants or other sugar users. In such cases, options for shipping a dense form of sugars include (1 pretreated biomass with enzyme addition, (2 lignocellulosic sugar syrup, and (3 lignocellulosic sugar solid. These could provide the advantage of maximizing the use of existing assets.

  9. Separation of Lignin from Corn Stover Hydrolysate with Quantitative Recovery of Ionic Liquid

    Science.gov (United States)

    Underkofler, Kaylee A.; Teixeira, Rodrigo E.; Pietsch, Stephen A.; Knapp, Kurtis G.; Raines, Ronald T.

    2015-01-01

    Abundant lignocellulosic biomass could become a source of sugars and lignin, potential feedstocks for the now emergent bio-renewable economy. The production and conversion of sugars from biomass have been well-studied, but far less is known about the production of lignin that is amenable to valorization. Here we report the isolation of lignin generated from the hydrolysis of biomass dissolved in the ionic liquid 1-butyl-3-methylimidazolium chloride. We show that lignin can be isolated from the hydrolysate slurry by simple filtration or centrifugation, and that the ionic liquid can be recovered quantitatively by a straightforward wash with water. The isolated lignin is not only free from ionic liquid, but also lacks cellulosic residues and is substantially depolymerized, making it a promising feedstock for valorization by conversion into fuels and chemicals. PMID:25866701

  10. Ethanol from lignocellulose - Fermentation inhibitors, detoxification and genetic engineering of Saccharomyces cerevisiae for enhanced resistance

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Simona

    2000-07-01

    Ethanol can be produced from lignocellulose by first hydrolysing the material to sugars, and then fermenting the hydrolysate with the yeast Saccharomyces cerevisiae. Hydrolysis using dilute sulphuric acid has advantages over other methods, however, compounds which inhibit fermentation are generated during this kind of hydrolysis. The inhibitory effect of aliphatic acids, furans, and phenolic compounds was investigated. The generation of inhibitors during hydrolysis was studied using Norway spruce as raw material. It was concluded that the decrease in the fermentability coincided with increasing harshness of the hydrolysis conditions. The decrease in fermentability was not correlated solely to the content of aliphatic acids or furan derivatives. To increase the fermentability, detoxification is often employed. Twelve detoxification methods were compared with respect to the chemical composition of the hydrolysate and the fermentability after treatment. The most efficient detoxification methods were anion-exchange at pH 10.0, overliming and enzymatic detoxification with the phenol-oxidase laccase. Detailed analyses of ion exchange revealed that anion exchange and unspecific hydrophobic interactions greatly contributed to the detoxification effect, while cation exchange did not. The comparison of detoxification methods also showed that phenolic compounds are very important fermentation inhibitors, as their selective removal with laccase had a major positive effect on the fermentability. Selected compounds; aliphatic acids, furans and phenolic compounds, were characterised with respect to their inhibitory effect on ethanolic fermentation by S. cerevisiae. When aliphatic acids or furans were compared, the inhibitory effects were found to be in the same range, but the phenolic compounds displayed widely different inhibitory effects. The possibility of genetically engineering S. cerevisiae to achieve increased inhibitor resistance was explored by heterologous expression of laccase from Trametes versicolor and by homologous overexpression of phenylacrylic acid decarboxylase. Both procedures resulted in S. cerevisiae transformants displaying increased resistance towards lignocellulose-derived aromatic compounds.

  11. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars

    Science.gov (United States)

    Ben'ko, E. M.; Manisova, O. R.; Lunin, V. V.

    2013-07-01

    The efficiency of pre-treatment of aspen wood with ozone for subsequent enzymatic hydrolysis into sugars is determined by the amount of absorbed ozone. The ozone absorption rate depended on the water content in the sample being ozonized and was maximum at a relative humidity of wood of ˜40%. As a result of ozone pre-treatment, the initial rate of the enzymatic hydrolysis of wood under the action of a cellulase complex increased eightfold, and the maximum yield of sugars increased tenfold depending on the ozone dose. The ozonation at ozone doses of more than 3 mol/PPU (phenylpropane structural unit of lignin) led to a decrease in the yield of sugars because of the oxidative destruction of cellulose and hemicellulose. The alkaline ozonation in 2 and 12% NaOH was inefficient because of the accompanying oxidation of carbohydrates and considerably decreased the yield of sugars.

  12. Enzymatic conversion of lignocellulose into fermentable sugars

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Kristensen, Jan Bach; Felby, Claus

    2007-01-01

    The economic dependency on fossil fuels and the resulting effects on climate and environment have put tremendous focus on utilizing fermentable sugars from lignocellulose, the largest known renewable carbohydrate source. The fermentable sugars in lignocellulose are derived from cellulose and hemicelluloses but these are not readily accessible to enzymatic hydrolysis and require a pretreatment, which causes an extensive modification of the lignocellulosic structure. A number of pretreatment techn...

  13. ARE LIGNOCELLULOSIC RESOURCES TOO VALUABLE TO BURN?

    OpenAIRE

    Martin A. Hubbe

    2008-01-01

    Lignocellulosic matter often can be counted as a renewable resource, since it is produced by photosynthesis. But there are limits to how much biomass our society can use in a sustainable manner. People can debate whether or not it makes sense to use a substantial portion of lignocellulosic materials as a source of liquid fuel. This essay gives a qualified affirmative answer to the question in its title. However, combustion of lignocellulosic resources can be considered as wasteful and une...

  14. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  15. Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast.

    Science.gov (United States)

    Stagge, Stefan; Cavka, Adnan; Jönsson, Leif J

    2015-12-01

    Pretreatment of lignocellulosic biomass under acidic conditions gives rise to by-products that inhibit fermenting microorganisms. An analytical procedure for identification of p-benzoquinone (BQ) and 2,6-dimethoxybenzoquinone (DMBQ) in pretreated biomass was developed, and the inhibitory effects of BQ and DMBQ on the yeast Saccharomyces cerevisiae were assessed. The benzoquinones were analyzed using ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine. Pretreatment liquids examined with regard to the presence of BQ and DMBQ originated from six different lignocellulosic feedstocks covering agricultural residues, hardwood, and softwood, and were produced through impregnation with sulfuric acid or sulfur dioxide at varying pretreatment temperature (165-204 °C) and residence time (6-20 min). BQ was detected in all six pretreatment liquids in concentrations ranging up to 6 mg/l, while DMBQ was detected in four pretreatment liquids in concentrations ranging up to 0.5 mg/l. The result indicates that benzoquinones are ubiquitous as by-products of acid pretreatment of lignocellulose, regardless of feedstock and pretreatment conditions. Fermentation experiments with BQ and DMBQ covered the concentration ranges 2 mg/l to 1 g/l and 20 mg/l to 1 g/l, respectively. Even the lowest BQ concentration tested (2 mg/l) was strongly inhibitory to yeast, while 20 mg/l DMBQ gave a slight negative effect on ethanol formation. This work shows that benzoquinones should be regarded as potent and widespread inhibitors in lignocellulosic hydrolysates, and that they warrant attention besides more well-studied inhibitory substances, such as aliphatic carboxylic acids, phenols, and furan aldehydes. PMID:26384342

  16. Simultaneous Cellulase Production, Saccharification and Detoxification Using Dilute Acid Hydrolysate of S. spontaneum with Trichoderma reesei NCIM 992 and Aspergillus niger.

    Science.gov (United States)

    Sateesh, Lanka; Rodhe, Adivikatla Vimala; Naseeruddin, Shaik; Yadav, Kothagauni Srilekha; Prasad, Yenumulagerard; Rao, Linga Venkateswar

    2012-06-01

    Bioethanol production from lignocellulosic materials has several limitations. One aspect is the high production cost of cellulases used for saccharification of substrate and inhibition of fermenting yeast due to inhibitors released in acid hydrolysis. In the present work we have made an attempt to achieve simultaneous cellulases production, saccharification and detoxification using dilute acid hydrolysate of Saccharum spontaneum with and without addition of nutrients, supplemented with acid hydrolyzed biomass prior to inoculation in one set and after 3 days of inoculation in another set. Organisms used were T. reesei NCIM 992, and Aspergillus niger isolated in our laboratory. Cellulase yield obtained was 0.8 IU/ml on fourth day with T. reesei. Sugars were found to increase from fourth to fifth day, when hydrolysate was supplemented with nutrients and acid hydrolyzed biomass followed by inoculation with T. reesei. Phenolics were also found to decrease by 67%. PMID:23729891

  17. Lime pretreatment of lignocellulosic biomass

    Science.gov (United States)

    Chang, Shushien

    Lignocellulose is a valuable alternative energy source. The susceptibility of lignocellulosic biomass to enzymatic hydrolysis is constrained due to its structural features, so pretreatment is essential to enhance enzymatic digestibility. Of the chemicals used as pretreatment agents, it has been reported that alkalis improve biomass digestibility significantly. In comparison with other alkalis such as NaOH and ammonia, lime (calcium hydroxide) has many advantages; it is very inexpensive, is safe, and can be recovered by carbonating wash water. The effects of lime pretreatment were explored on switchgrass and poplar wood, representing herbaceous and woody biomass, respectively. The effects of pretreatment conditions (time, temperature, lime loading, water loading, particle size, and oxygen pressure) have been systematically studies. Lime alone enhances the digestibility of switchgrass significantly; under the recommended conditions, the 3-d total sugar (glucose + xylose) yields of lime-treated switchgrass were 7 times that of untreated sample. When treating poplar wood, lime must be combined with oxygen to achieve high digestibility; oxidative lime pretreatment increased the 3-d total sugar yield of poplar wood to 12 times that of untreated sample. In a fundamental study, to determine why lime pretreatment is effective, the effects of three structural features on enzymatic digestibility were studied: lignin content, acetyl content, and crystallinity index (CrI). Poplar wood was treated with peracetic acid, potassium hydroxide, and ball milling to produce model lignocelluloses with a broad spectrum of lignin contents, acetyl contents, and CrI, respectively. Enzymatic hydrolysis was performed on the model lignocelluloses to determine the digestibility. Correlations between lignin/carbohydrate ratio, acetyl/carbohydrate ratio, CrI and digestibility were developed. The 95% prediction intervals show that the correlations predict the 1-h and 3-d total sugar conversions of a biomass sample within a precision of 5% and 20%, respectively. The digestibility of a variety of lime-treated biomass and ball-milled alpha-cellulose was compared to the correlations determined from the model compounds. The agreement between the measured and predicted values shows that the correlations are satisfactory and the three structural features---lignin content, acetyl content, and CrI---are the major factors that determine enzymatic digestibility.

  18. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just

    2008-01-01

    Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70C. Undetoxified wheat straw hydrolysate was used (3-12% dry matter), corresponding to sugar mixtures of glucose and xylose ranging from 12 to 41 g/l. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/l) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol. The work reported here also demonstrates that the use of FBR configuration might be a viable approach for thermophilic anaerobic ethanol fermentation.

  19. Ionic liquids as a tool for lignocellulosic biomass fractionation

    OpenAIRE

    Lopes, André; João, Karen; Morais, Ana Rita; Bogel-Lukasik, Ewa; Bogel-Lukasik, R.

    2013-01-01

    Lignocellulosic biomass composes a diversity of feedstock raw materials representing an abundant and renewable carbon source. In majority lignocellulose is constituted by carbohydrate macromolecules, namely cellulose and hemicellulose, and by lignin, a polyphenilpropanoid macromolecule. Between these biomacromolecules, there are several covalent and non-covalent interactions defining an intricate, complex and rigid structure of lignocellulose. The deconstruction of the lignocellulosic biomass...

  20. The NILE Project - Advances in the Conversion of Lignocellulosic Materials into Ethanol

    International Nuclear Information System (INIS)

    NILE ('New Improvements for Lignocellulosic Ethanol') was an integrated European project (2005-2010) devoted to the conversion of lignocellulosic raw materials to ethanol. The main objectives were to design novel enzymes suitable for the hydrolysis of cellulose to glucose and new yeast strains able to efficiently converting all the sugars present in lignocellulose into ethanol. The project also included testing these new developments in an integrated pilot plant and evaluating the environmental and socio-economic impacts of implementing lignocellulosic ethanol on a large scale. Two model raw materials - spruce and wheat straw - both preconditioned with similar pretreatments, were used. Several approaches were explored to improve the saccharification of these pretreated raw materials such as searching for new efficient enzymes and enzyme engineering. Various genetic engineering methods were applied to obtain stable xylose- and arabinose-fermenting Saccharomyces cerevisiae strains that tolerate the toxic compounds present in lignocellulosic hydrolysates. The pilot plant was able to treat 2 tons of dry matter per day, and hydrolysis and fermentation could be run successively or simultaneously. A global model integrating the supply chain was used to assess the performance of lignocellulosic ethanol from an economical and environmental perspective. It was found that directed evolution of a specific enzyme of the cellulolytic cocktail produced by the industrial fungus, Trichoderma reesei, and modification of the composition of this cocktail led to improvements of the enzymatic hydrolysis of pretreated raw material. These results, however, were difficult to reproduce at a large scale. A substantial increase in the ethanol conversion yield and in specific ethanol productivity was obtained through a combination of metabolic engineering of yeast strains and fermentation process development. Pilot trials confirmed the good behaviour of the yeast strains in industrial conditions as well as the suitability of lignin residues as fuels. The ethanol cost and the greenhouse gas emissions were highly dependent on the supply chain but the best performing supply chains showed environmental and economic benefits. From a global standpoint, the results showed the necessity for an optimal integration of the process to co-develop all the steps of the process and to test the improvements in a flexible pilot plant, thus allowing the comparison of various configurations and their economic and environmental impacts to be determined. (authors)

  1. Fractionating recalcitrant lignocellulose at modest reaction conditions.

    Science.gov (United States)

    Zhang, Yi-Heng Percival; Ding, Shi-You; Mielenz, Jonathan R; Cui, Jing-Biao; Elander, Richard T; Laser, Mark; Himmel, Michael E; McMillan, James R; Lynd, Lee R

    2007-06-01

    Effectively releasing the locked polysaccharides from recalcitrant lignocellulose to fermentable sugars is among the greatest technical and economic barriers to the realization of lignocellulose biorefineries because leading lignocellulose pre-treatment technologies suffer from low sugar yields, and/or severe reaction conditions, and/or high cellulase use, narrow substrate applicability, and high capital investment, etc. A new lignocellulose pre-treatment featuring modest reaction conditions (50 degrees C and atmospheric pressure) was demonstrated to fractionate lignocellulose to amorphous cellulose, hemicellulose, lignin, and acetic acid by using a non-volatile cellulose solvent (concentrated phosphoric acid), a highly volatile organic solvent (acetone), and water. The highest sugar yields after enzymatic hydrolysis were attributed to no sugar degradation during the fractionation and the highest enzymatic cellulose digestibility ( approximately 97% in 24 h) during the hydrolysis step at the enzyme loading of 15 filter paper units of cellulase and 60 IU of beta-glucosidase per gram of glucan. Isolation of high-value lignocellulose components (lignin, acetic acid, and hemicellulose) would greatly increase potential revenues of a lignocellulose biorefinery. PMID:17318910

  2. Fractionating Recalcitrant Lignocellulose at Modest Reaction Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.-H. Percival [Virginia Polytechnic Institute and State University (Virginia Tech); Ding, Shi-You [National Energy Renewable Laboratory; Mielenz, Jonathan R [ORNL; Cui, Jing-Biao [Dartmouth College; Elander, Richard T. [Dartmouth College; Laser, Mark [Dartmouth College; Himmel, Michael [ORNL; McMillan, James R. [National Energy Renewable Laboratory; Lynd, L. [Dartmouth College

    2007-01-01

    Effectively releasing the locked polysaccharides from recalcitrant lignocellulose to fermentable sugars is among the greatest technical and economic barriers to the realization of lignocellulose biorefineries because leading lignocellulose pre-treatment technologies suffer from low sugar yields, and/or severe reaction conditions, and/or high cellulase use, narrow substrate applicability, and high capital investment, etc. A new lignocellulose pre-treatment featuring modest reaction conditions (50 C and atmospheric pressure) was demonstrated to fractionate lignocellulose to amorphous cellulose, hemicellulose, lignin, and acetic acid by using a non-volatile cellulose solvent (concentrated phosphoric acid), a highly volatile organic solvent (acetone), and water. The highest sugar yields after enzymatic hydrolysis were attributed to no sugar degradation during the fractionation and the highest enzymatic cellulose digestibility ({approx}97% in 24 h) during the hydrolysis step at the enzyme loading of 15 filter paper units of cellulase and 60 IU of beta-glucosidase per gram of glucan. Isolation of high-value lignocellulose components (lignin, acetic acid, and hemicellulose) would greatly increase potential revenues of a lignocellulose biorefinery.

  3. Complex xylo-oligosaccharides identified from hydrothermally treated Eucalyptus wood and brewery's spent grain.

    OpenAIRE

    Kabel, M.A.; Schols, H.A.; Voragen, A.G.J.

    2002-01-01

    Hydrolysates from two hydrothermally treated xylan-rich agrobased materials, Eucalyptus wood and brewery's spent grain were fractionated by anion-exchange chromatography and size-exclusion chromatography. Hereby, several pools were obtained and they were characterised by their sugar composition. Additionally, the oligosaccharides in the pools described were further identified by high-performance anion-exchange chromatography and mass spectrometry. The hydrothermally treated brewery's spent gr...

  4. Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production

    Scientific Electronic Library Online (English)

    J. M., Marton; M. G. A., Felipe; J. B., Almeida e Silva; A., Pessoa Júnior.

    2006-03-01

    Full Text Available Xylitol has sweetening, anticariogenic and clinical properties that have attracted the attention of the food and pharmaceutical industries. The conversion of sugars from lignocellulosic biomass into xylitol by D-xylose-fermenting yeast represents an alternative to the chemical process for producing [...] this polyol. A good source of D-xylose is sugarcane bagasse, which can be hydrolyzed with dilute acid. However, acetic acid, which is toxic to the yeast, also appears in the hydrolysate, inhibiting microbe metabolism. Xylitol production depends on the initial D-xylose concentration, which can be increased by concentrating the hydrolysate by vacuum evaporation. However, with this procedure the amount of acetic acid is also increased, aggravating the problem of cell inhibition. Hydrolysate treatment with powdered activated charcoal is used to remove or decrease the concentration of this inhibitor, improving xylitol productivity as a consequence. Our work was an attempt to improve the fermentation of Candida guilliermondii yeast in sugarcane bagasse hydrolysate by treating the medium with seven types of commercial powdered activated charcoals (Synth, Carbon Delta A, Carbon Delta G, Carbon 117, Carbon 118L, Carbon 147 and Carvorite), each with its own unique physicochemical properties. Various adsorption conditions were established for the variables temperature, contact time, shaking, pH and charcoal concentration. The experiments were based on multivariate statistical concepts, with the application of fractional factorial design techniques to identify the variables that are important in the process. Subsequently, the levels of these variables were quantified by overlaying the level curves, which permitted the establishment of the best adsorption conditions for attaining high levels of xylitol volumetric productivity and D-xylose-to-xylitol conversion. This procedure consisted in increasing the original pH of the hydrolysate to 7.0 with CaO and reducing it to 5.5 with H3PO4. Next, the hydrolysate was treated under adsorption conditions employing CDA powdered activated charcoal (1%) for 30 min at 60ºC, 100 rpm and pH 2.5. The optimized xylitol volumetric productivity (0.50 g/L h) corresponded to a D-xylose-to-xylitol conversion of 0.66 g/g.

  5. Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production

    Directory of Open Access Journals (Sweden)

    J. M. Marton

    2006-03-01

    Full Text Available Xylitol has sweetening, anticariogenic and clinical properties that have attracted the attention of the food and pharmaceutical industries. The conversion of sugars from lignocellulosic biomass into xylitol by D-xylose-fermenting yeast represents an alternative to the chemical process for producing this polyol. A good source of D-xylose is sugarcane bagasse, which can be hydrolyzed with dilute acid. However, acetic acid, which is toxic to the yeast, also appears in the hydrolysate, inhibiting microbe metabolism. Xylitol production depends on the initial D-xylose concentration, which can be increased by concentrating the hydrolysate by vacuum evaporation. However, with this procedure the amount of acetic acid is also increased, aggravating the problem of cell inhibition. Hydrolysate treatment with powdered activated charcoal is used to remove or decrease the concentration of this inhibitor, improving xylitol productivity as a consequence. Our work was an attempt to improve the fermentation of Candida guilliermondii yeast in sugarcane bagasse hydrolysate by treating the medium with seven types of commercial powdered activated charcoals (Synth, Carbon Delta A, Carbon Delta G, Carbon 117, Carbon 118L, Carbon 147 and Carvorite, each with its own unique physicochemical properties. Various adsorption conditions were established for the variables temperature, contact time, shaking, pH and charcoal concentration. The experiments were based on multivariate statistical concepts, with the application of fractional factorial design techniques to identify the variables that are important in the process. Subsequently, the levels of these variables were quantified by overlaying the level curves, which permitted the establishment of the best adsorption conditions for attaining high levels of xylitol volumetric productivity and D-xylose-to-xylitol conversion. This procedure consisted in increasing the original pH of the hydrolysate to 7.0 with CaO and reducing it to 5.5 with H3PO4. Next, the hydrolysate was treated under adsorption conditions employing CDA powdered activated charcoal (1% for 30 min at 60ºC, 100 rpm and pH 2.5. The optimized xylitol volumetric productivity (0.50 g/L h corresponded to a D-xylose-to-xylitol conversion of 0.66 g/g.

  6. Pork fat hydrolysed by Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Sørensen, B. B.; Stahnke, Louise Heller; Zeuthen, Peter

    1993-01-01

    Staphylococcus xylosus is used as a starter culture in the production of fermented sausages. Its ability to hydrolyse pork fat was investigated. Within 15 days of incubation an interaction of bacterial growth, lipase production and lipase activity in a pork fat containing medium caused liberation of fatty acids. The free fatty acids were determined both qualitatively and quantitatively. The effects of incubtion temperature and pH were studied using Response Surface Methodology. Within the area o...

  7. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

    OpenAIRE

    Raheleh Ghanbari; Afshin Ebrahimpour; Azizah Abdul-Hamid; Amin Ismail; Nazamid Saari

    2012-01-01

    Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH) were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram posi...

  8. Hydrogen production from paper sludge hydrolysate

    OpenAIRE

    Kádár, Z.; Vrije, G.J., de; Budde, M.A.W.; Szengyel, Z.; Reczey, K.; Claassen, P A M

    2003-01-01

    The main objective of this study was to develop a system for the production of 'renewable' hydrogen. Paper sludge is a solid industrial waste yielding mainly cellulose, which can be used, after hydrolysis, as a feedstock in anaerobic fermentation by (hyper)thermophilic organisms, such as Thermotoga elfii and Caldicellulosiruptor saccharolyticus. Tests on different medium compositions showed that both bacteria were able to produce hydrogen from paper sludge hydrolysate, but the amount of produ...

  9. Evaluation of oat hull hemicellulosic hydrolysate fermentability employing Pichia stipitis

    Scientific Electronic Library Online (English)

    Luciana Cristina Silveira, Chaud; Débora Danielle Virgínio da, Silva; Rafael Taino de, Mattos; Maria das Graças de Almeida, Felipe.

    2012-10-01

    Full Text Available Oat hull hemicellulosic hydrolysate obtained by diluted acid hydrolysis was employed as fermentation medium for Pichia stipitis cultivation. A comparison between the use of treated hydrolysate with 1% activated charcoal to reduce the toxic compounds generated during the hydrolysis process and untrea [...] ted hydrolysate as a control was conducted. In the cultures using treated hydrolysate the total consumption of glucose, low xylose consumption and ethanol and glycerol formation were observed. The medium formulated with untreated hydrolysate showed morphological cell modifications with consequently cell death, no ethanol formation and formation of glycerol as byproduct of fermentative process, probably as a response to stressful conditions to yeast due to presence of high concentration of toxic compounds. Thus, further studies are suggested in order to determine the best conditions for hydrolysis and detoxification of the hydrolysate to improve the fermentative performance of P. stipitis.

  10. Protein Hydrolysates in Sports and Exercise: A Brief Review

    OpenAIRE

    Manninen, Anssi H.

    2004-01-01

    Protein can be hydrolyzed, producing small chains of amino acids called peptides. Several studies have shown that protein hydrolysates containing mostly di- and tripeptides are absorbed more rapidly than free form amino acids and much more rapidly than intact proteins. In addition, there is recent evidence that protein hydrolysate ingestion has strong insulinotropic effect. Thus, recovery sports drinks containing protein hydrolysates may be of great value.

  11. ARE LIGNOCELLULOSIC RESOURCES TOO VALUABLE TO BURN?

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-05-01

    Full Text Available Lignocellulosic matter often can be counted as a renewable resource, since it is produced by photosynthesis. But there are limits to how much biomass our society can use in a sustainable manner. People can debate whether or not it makes sense to use a substantial portion of lignocellulosic materials as a source of liquid fuel. This essay gives a qualified affirmative answer to the question in its title. However, combustion of lignocellulosic resources can be considered as wasteful and uneconomical, in the long run, if it is inefficient, if it fails to displace the combustion of fossil fuels, or if it displaces a higher-end use, for which there are available customers. In particular, it seems unlikely that combustion of fuels derived from lignocellulosic biomass can, by itself, solve problems that stem from society’s excessive thirst for motor fuels.

  12. Developing symbiotic consortia for lignocellulosic biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zuroff, Trevor R.; Curtis, Wayne R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering

    2012-02-15

    The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose. (orig.)

  13. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.

    Science.gov (United States)

    Kurosawa, Kazuhiko; Plassmeier, Jens; Kalinowski, Jörn; Rückert, Christian; Sinskey, Anthony J

    2015-07-01

    Advanced biofuels from lignocellulosic biomass have been considered as a potential solution for the issues of energy sustainability and environmental protection. Triacylglycerols (TAGs) are potential precursors for the production of lipid-based liquid biofuels. Rhodococcus opacus PD630 can accumulate large amounts of TAGs when grown under physiological conditions of high carbon and low nitrogen. However, R. opacus PD630 does not utilize the sugar L-arabinose present in lignocellulosic hydrolysates. Here, we report the engineering of R. opacus to produce TAGs on L-arabinose. We constructed a plasmid (pASC8057) harboring araB, araD and araA genes derived from a Streptomyces bacterium, and introduced the genes into R. opacus PD630. One of the engineered strains, MITAE-348, was capable of growing on high concentrations (up to 100 g/L) of L-arabinose. MITAE-348 was grown in a defined medium containing 16 g/L L-arabinose or a mixture of 8 g/L L-arabinose and 8 g/L D-glucose. In a stationary phase occurring 3 days post-inoculation, the strain was able to completely utilize the sugar, and yielded 2.0 g/L for L-arabinose and 2.2 g/L for L-arabinose/D-glucose of TAGs, corresponding to 39.7% or 42.0%, respectively, of the cell dry weight. PMID:25936337

  14. Production of Ethanol from Cocoa Pod Hydrolysate

    OpenAIRE

    Othman Abd Samah; Salihan Sias

    2011-01-01

    Cocoa pod (Theobroma cacao L.) hydrolysate was hydrolyzed into glucose using hydrochloric, sulphuric and nitric acids, respectively. The concentration of each acid was set at 0.25 M, 0.50 M, 0.75 M, 1.00 M and 1.25 M. They were treated under two different temperatures and time at 75?C and 90?C for 2 h and 4 h, respectively. The results showed that hydrolysis in 1.00 M of hydrochloric acid at 75?C for 4 h had produced the highest glucose content of 30.7% w/v compared to all others acids treate...

  15. Lignocellulosic Biomass Pretreatment Using AFEX

    Science.gov (United States)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  16. Brewer's spent grain as raw material for lactic acid production by Lactobacillus delbrueckii.

    Science.gov (United States)

    Mussatto, Solange I; Fernandes, Marcela; Dragone, Giuliano; Mancilha, Ismael M; Roberto, Inês C

    2007-12-01

    Chemically pre-treated brewer's spent grain was saccharified with cellulase producing a hydrolysate with approx. 50 g glucose l(-1). This hydrolysate was used as a fermentation medium without any nutrient supplementation by Lactobacillus delbrueckii, which produced L-lactic acid (5.4 g l(-1)) at 0.73 g g(-1) glucose consumed (73% efficiency). An inoculum of 1 g dry cells l(-1) gave the best yield of the process, but the pH decrease affected the microorganism capacity to consume glucose and convert it into lactic acid. PMID:17700998

  17. Lipid Production from Hemicellulose and Holocellulose Hydrolysate of Palm Empty Fruit Bunches by Newly Isolated Oleaginous Yeasts.

    Science.gov (United States)

    Tampitak, Srikanya; Louhasakul, Yasmi; Cheirsilp, Benjamas; Prasertsan, Poonsuk

    2015-07-01

    Palm empty fruit bunches (EFBs) are abundant lignocellulosic wastes from palm oil mills. They are potential sources of sugars which can be converted to microbial lipids by oleaginous yeasts. To produce sugars from EFB, two-step and one-step hydrolysis reactions were performed. In the first step, the use of diluted sulfuric acid (0.5 % w/v) hydrolyzed hemicelluloses and released mainly pentoses, and in the second step of hydrolysis of residual pulp using 2.5 % (w/v), sulfuric acid released more hexoses. The use of 2.5 % (w/v) sulfuric acid in one-step hydrolysis of holocelluloses released the highest amount of sugars (38.3 g/L), but it also produced high concentration of potential inhibitors (>1 g/L). Three oleaginous yeasts, Rhodotorula mucilaginosa, Kluyveromyces marxianus, and Candida tropicalis, were isolated and screened for their ability to convert EFB hydrolysates into lipids. These yeasts grew well and produced lipids from EFB hemicellulose and holocellulose hydrolysate after potential inhibitors were removed. This study shows that EFB can be used for lipid production. PMID:26026262

  18. Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by mono and co-cultures of Pichia stipitis NCIM3498 and thermotolerant Saccharomyces cerevisiae-VS?.

    Science.gov (United States)

    Chandel, Anuj K; Singh, Om V; Narasu, M Lakshmi; Rao, L Venkateswar

    2011-10-01

    The lignocellulosic biomass is a low-cost renewable resource for eco-benign liquid fuel 'ethanol'. To resolve the hydrolysis of mixed sugars in lignocellulosic substrate Saccharum spontaneum, the microbial co-cultures of Pichia stipitis NCIM 3498 and thermotolerant Saccharomyces cerevisiae-VS(3) were analyzed for efficient bioconversion of mixed sugars into ethanol. Among the hydrolysis conditions, the acid hydrolysis released maximum sugars along with furans, phenolics and acetic acid. The acidic hydrolysate was detoxified and fermented by monocultures of P. stipitis NCIM3498 (P.S.) and thermotolerant S. cerevisiae VS(3) (S.C.), and co-culture of P.S. (7.5 mL) and S.C. (2.5 mL). Before the fermentation of hemicellulose acid hydrolysate, both the monocultures (P.S. and S.C.), and varying ratios of P.S. and S.C. microorganisms in co-cultures #1, #2 and #3 were grown on simulated synthetic medium. The ethanol yield from monocultures of P.S. (0.44 ± 0.021 g/g), S.C. (0.22 ± 0.01 g/g) and co-culture #3 (0.49 ± 0.02 g/g) revealed unique characteristics of each mono and co-culture technology. The fermentation of hemicellulose acid hydrolysate with monocultures of P.S., S.C. and co-culture #3 produced 12.08 ± 0.72 g/L, 1.40 ± 0.07 g/L, and 15.0 ± -0.92 g/L ethanol, respectively. PMID:21185411

  19. Laccase Application for Upgrading of Lignocellulose Fibers

    Directory of Open Access Journals (Sweden)

    Maja Vaukner Gabri?

    2015-04-01

    Full Text Available Laccases have the ability to oxidize both phenolic and trough mediators non-phenolic lignin related compounds. When reacting on lignin, they can display both ligninolytic and polymerizing (cross-inking abilities, which makes them very useful for their application in industries based on lignocellulose material. Most of the published papers and applications of laccase and laccase-mediator systems on lignocellulose material relate to the pulp, paper and textile industry. Recent research has been done in terms of laccase assisted biografting of phenols and other compounds on wood surface and use of laccase for adhesion enhancement in fiberboard production. They can be introduced to wood technology as environmentally friendly enzymes. The paper reviews the application of laccases in industries based on lignocellulose material and discusses the future outlook and development in the above mentioned fields.

  20. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media

    Directory of Open Access Journals (Sweden)

    Cristhian Carrasco

    2011-07-01

    Full Text Available Abstract Background As the supply of starch grain and sugar cane, currently the main feedstocks for bioethanol production, become limited, lignocelluloses will be sought as alternative materials for bioethanol production. Production of cellulosic ethanol is still cost-inefficient because of the low final ethanol concentration and the addition of nutrients. We report the use of simultaneous saccharification and cofermentation (SSCF of lignocellulosic residues from commercial furfural production (furfural residue, FR and corn kernels to compare different nutritional media. The final ethanol concentration, yield, number of live yeast cells, and yeast-cell death ratio were investigated to evaluate the effectiveness of integrating cellulosic and starch ethanol. Results Both the ethanol yield and number of live yeast cells increased with increasing corn-kernel concentration, whereas the yeast-cell death ratio decreased in SSCF of FR and corn kernels. An ethanol concentration of 73.1 g/L at 120 h, which corresponded to a 101.1% ethanol yield based on FR cellulose and corn starch, was obtained in SSCF of 7.5% FR and 14.5% corn kernels with mineral-salt medium. SSCF could simultaneously convert cellulose into ethanol from both corn kernels and FR, and SSCF ethanol yield was similar between the organic and mineral-salt media. Conclusions Starch ethanol promotes cellulosic ethanol by providing important nutrients for fermentative organisms, and in turn cellulosic ethanol promotes starch ethanol by providing cellulosic enzymes that convert the cellulosic polysaccharides in starch materials into additional ethanol. It is feasible to produce ethanol in SSCF of FR and corn kernels with mineral-salt medium. It would be cost-efficient to produce ethanol in SSCF of high concentrations of water-insoluble solids of lignocellulosic materials and corn kernels. Compared with prehydrolysis and fed-batch strategy using lignocellulosic materials, addition of starch hydrolysates to cellulosic ethanol production is a more suitable method to improve the final ethanol concentration.

  1. Production of Ethanol from Cocoa Pod Hydrolysate

    Directory of Open Access Journals (Sweden)

    Othman Abd Samah

    2011-07-01

    Full Text Available Cocoa pod (Theobroma cacao L. hydrolysate was hydrolyzed into glucose using hydrochloric, sulphuric and nitric acids, respectively. The concentration of each acid was set at 0.25 M, 0.50 M, 0.75 M, 1.00 M and 1.25 M. They were treated under two different temperatures and time at 75?C and 90?C for 2 h and 4 h, respectively. The results showed that hydrolysis in 1.00 M of hydrochloric acid at 75?C for 4 h had produced the highest glucose content of 30.7% w/v compared to all others acids treated under similar conditions. The pod’s hydolysate was then fermented in batch culture using Saccharomyces cerevisiae for 48 h at 30?C. A maximum ethanol production of 17.3%v/v was achieved after 26 h of fermentation time.

  2. GENETICALLY MODIFIED LIGNOCELLULOSIC BIOMASS FOR IMPROVEMENT OF ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Qijun Wang

    2010-02-01

    Full Text Available Production of ethanol from lignocellulosic feed-stocks is of growing interest worldwide in recent years. However, we are currently still facing significant technical challenges to make it economically feasible on an industrial scale. Genetically modified lignocellulosic biomass has provided a potential alternative to address such challenges. Some studies have shown that genetically modified lignocellulosic biomass can increase its yield, decreasing its enzymatic hydrolysis cost and altering its composition and structure for ethanol production. Moreover, the modified lignocellulosic biomass also makes it possible to simplify the ethanol production procedures from lignocellulosic feed-stocks.

  3. Advances in lignocellulosic biotechnology: A brief review on lignocellulosic biomass and cellulases

    OpenAIRE

    Tanzila Shahzadi; Sajid Mehmood; Muhammad Irshad,; Zahid Anwar,; Amber Afroz; Nadia Zeeshan; Umer Rashid; Kalsoom Sughra

    2014-01-01

    From the last few decades, there has been an increasing research interest in the value of lignocellulosic biomass. Lignoellulosic biomass is an inexpensive, renewable abundant and provides a unique natural resource for large-scale and cost-effective bio-energy collection. In addition, using lignocellulosic materials and other low-cost biomass can significantly reduce the cost of materials used for ethanol production. Therefore, in this background, the rapidly evolving t...

  4. The NILE Project — Advances in the Conversion of Lignocellulosic Materials into Ethanol Le projet NILE et la conversion des matériaux lignocellulosiques en éthanol

    Directory of Open Access Journals (Sweden)

    Monot F.

    2013-08-01

    Full Text Available NILE ("New Improvements for Lignocellulosic Ethanol" was an integrated European project (2005-2010 devoted to the conversion of lignocellulosic raw materials to ethanol. The main objectives were to design novel enzymes suitable for the hydrolysis of cellulose to glucose and new yeast strains able to efficiently converting all the sugars present in lignocellulose into ethanol. The project also included testing these new developments in an integrated pilot plant and evaluating the environmental and socio-economic impacts of implementing lignocellulosic ethanol on a large scale. Two model raw materials – spruce and wheat straw – both preconditioned with similar pretreatments, were used. Several approaches were explored to improve the saccharification of these pretreated raw materials such as searching for new efficient enzymes and enzyme engineering. Various genetic engineering methods were applied to obtain stable xylose- and arabinose-fermenting Saccharomyces cerevisiae strains that tolerate the toxic compounds present in lignocellulosic hydrolysates. The pilot plant was able to treat 2 tons of dry matter per day, and hydrolysis and fermentation could be run successively or simultaneously. A global model integrating the supply chain was used to assess the performance of lignocellulosic ethanol from an economical and environmental perspective. It was found that directed evolution of a specific enzyme of the cellulolytic cocktail produced by the industrial fungus, Trichoderma reesei, and modification of the composition of this cocktail led to improvements of the enzymatic hydrolysis of pretreated raw material. These results, however, were difficult to reproduce at a large scale. A substantial increase in the ethanol conversion yield and in specific ethanol productivity was obtained through a combination of metabolic engineering of yeast strains and fermentation process development. Pilot trials confirmed the good behaviour of the yeast strains in industrial conditions as well as the suitability of lignin residues as fuels. The ethanol cost and the greenhouse gas emissions were highly dependent on the supply chain but the best performing supply chains showed environmental and economic benefits. From a global standpoint, the results showed the necessity for an optimal integration of the process to co-develop all the steps of the process and to test the improvements in a flexible pilot plant, thus allowing the comparison of various configurations and their economic and environmental impacts to be determined. Le projet NILE, acronyme de "New Improvements for Lignocellulosic Ethanol", était un projet européen (2005-2010 consacré à la conversion des matières premières lignocellulosiques en éthanol. Ses principaux objectifs étaient de concevoir de nouvelles enzymes adaptées à l’hydrolyse de la cellulose en glucose et de nouvelles souches de levure capables de convertir efficacement tous les sucres présents dans la lignocellulose en éthanol. Une autre partie du projet consistait à tester ces nouveaux systèmes dans une installation pilote et à évaluer les impacts environnementaux et socio-économiques de la production et utilisation à grande échelle d’éthanol lignocellulosique. Deux matières premières modèles (l’épicéa et la paille de blé prétraitées de façon semblable, ont été étudiées. Différentes approches ont été tentées pour améliorer la saccharification de ces matières premières, par exemple, la recherche de nouvelles enzymes efficaces ou l’ingénierie d’enzymes. Plusieurs stratégies d’ingénierie génétique ont été utilisées pour obtenir des souches stables de Saccharomyces cerevisiae capables de fermenter le xylose et l’arabinose, et de tolérer les composés toxiques présents dans les hydrolysats lignocellulosiques. L’installation pilote pouvait traiter 2 tonnes de matières sèches par jour, et l’hydrolyse et la fermentation pouvaient être menées successivement ou simultanément. Un modèle global intégrant la chaîne d’approvisionn

  5. Effect of lignocellulose-derived inhibitors on the growth and D-lactic acid production of Sporolactobacillus inulinus YBS1-5.

    Science.gov (United States)

    Bai, Zhongzhong; Gao, Zhen; He, Bingfang; Wu, Bin

    2015-10-01

    The impact of lignocellulose-derived inhibitors on the cell growth and D-lactic production of Sporolactobacillus inulinus YBS1-5 was investigated. At high concentrations, both furans and phenolics, such as furfural, HMF, syringaldehyde and vanillin, affected cell growth and D-lactic acid production and syringaldehyde exhibited the highest. Further experiments showed that only vanillin caused cellular membrane damage. Based on the Biolog approach, in vivo studies on intact S. inulinus cells indicated that phenolics had a stronger inhibitory effect than furan derivatives on the metabolic activity of the concerned substrates related with the key enzymes of D-lactic acid fermentation. The direct in vitro inhibitory effect of the model compounds on the four key enzymes displayed similar patterns. Syringaldehyde was the strongest inhibitor. In general, comparison with published results for other microorganisms indicated that strain YBS1-5 was a robust microorganism against inhibitors of lignocellulose hydrolysate. Notably, in concentrated corn stover hydrolysate, S. inulinus YBS1-5 produced 70.7 g/L D-lactic acid, which was 87.7 % of the yield from the control experiment. However, the fermentation time was prolonged 36 h. In order to improve fermentation rate, a detoxification technology or more robust mutant to phenolics especially syringaldehyde should be developed. PMID:26216317

  6. Catalytic fast pyrolysis of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  7. Catalytic fast pyrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality. PMID:24801125

  8. Antioxidant Effect and Water-Holding Capacity of Roselle (Hibiscus sabdariffa L. Seed Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Fatoumata Tounkara

    2013-06-01

    Full Text Available The aim of this study was to investigate the effect of in-vitro pepsin and pancreatin digestion of proteins extracted from Roselle seed on the production of bioactive peptides. Defatted Roselle seed flour was used to extract different protein fractions namely globulin, albumin and glutelin. The proteins were digested using pepsin (1 h followed by pancreatin (1 h in order to produce hydrolysates with good antioxidant activity. The prepared hydrolysates were as effective as antioxidants in model systems, in scavenging of free radicals and acting as reducing agents. This effect was concentration-dependent and was also influenced by the type of protein fraction. The albumin fraction hydrolysates prepared showed the highest antioxidant activity followed by Glutelin and Globulin hydrolysates respectively (Albumin hydrolysates>Glutelin hydrolysates>Globulin hydrolysates. All of the prepared hydrolysates were also found to be effective in enhancing water-holding capacity and cooking yield in a meat model system. Albumin hydrolysates showed the highest improved meat cooking ability followed by Glutelin and Globulin respectively (Albumin hydrolysates>Glutelin hydrolysates>Globulin hydrolysates. The molecular weight distribution analysis of the hydrolysates was determined and most of the peptides were found between 1000 Da and below. The study findings suggest that Roselle seed protein hydrolysates can be applied as functional food ingredients and that their composition determines their functional properties thus their potential application in the food and feed industries.

  9. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria.

    Science.gov (United States)

    ?ater, Maša; Fanedl, Lijana; Malovrh, Špela; Logar, Romana Marinšek

    2015-06-01

    Lignocellulosic substrates are widely available but not easily applied in biogas production due to their poor anaerobic degradation. The effect of bioaugmentation by anaerobic hydrolytic bacteria on biogas production was determined by the biochemical methane potential assay. Microbial biomass from full scale upflow anaerobic sludge blanket reactor treating brewery wastewater was a source of active microorganisms and brewery spent grain a model lignocellulosic substrate. Ruminococcus flavefaciens 007C, Pseudobutyrivibrio xylanivorans Mz5(T), Fibrobacter succinogenes S85 and Clostridium cellulovorans as pure and mixed cultures were used to enhance the lignocellulose degradation and elevate the biogas production. P. xylanivorans Mz5(T) was the most successful in elevating methane production (+17.8%), followed by the coculture of P. xylanivorans Mz5(T) and F. succinogenes S85 (+6.9%) and the coculture of C. cellulovorans and F. succinogenes S85 (+4.9%). Changes in microbial community structure were detected by fingerprinting techniques. PMID:25836034

  10. Pork fat hydrolysed by Staphylococcus xylosus

    DEFF Research Database (Denmark)

    SØrensen, B. B.; Stahnke, Louise Heller

    1993-01-01

    Staphylococcus xylosus is used as a starter culture in the production of fermented sausages. Its ability to hydrolyse pork fat was investigated. Within 15 days of incubation an interaction of bacterial growth, lipase production and lipase activity in a pork fat containing medium caused liberation of fatty acids. The free fatty acids were determined both qualitatively and quantitatively. The effects of incubtion temperature and pH were studied using Response Surface Methodology. Within the area of interest for the producion of fermented sausages, no local maximum or minimum liberation of fatty acids was found. A rise in pH increased the amount of free fatty acids. Below pH 5.0, the amount of liberated fatty acids was insignificant although the viable count was >10+6 cell/ g emulsion. Of the two factors, pH was most influential in affecting the amount of free fatty acids. A rise in temperaure only slightly increased the amount of free fatty acids and hydrolysis took place at all temperatures from 14°C to 27°C. The strain liberates the fatty acids in a nonspecific way, in about the same proportions as those in which they occur in the pork fat.

  11. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ...2010-07-01 2010-07-01 false Yeast Extract Hydrolysate from Saccharomyces...Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from Saccharomyces...for residues of the biochemical pesticide Yeast Extract Hydrolysate from...

  12. Quantification of solubilized hemicellulose from pretreated lignocellulose by acid hydrolysis and high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A.B.; Ploeger, A.; Simonsen, T.; Woidemann, A.; Schmidt, A.S.

    1996-11-01

    An investigation of the acid hydrolysis and HPLC analysis have been carried out in order to optimise the quantification of the solubilized hemicellulose fraction from wheat straw lignocellulose after pretreatment. Different acid hydrolyses have been performed to identify which conditions (concentrations of acid and hydrolysis time) gave the maximal quantification of the solubilized hemicellulose (measured as monosaccharides). Four different sugars were identified: xylose, arabinose, glucose and galactose. Some hydrolyses were carried out on aqueous samples and some using freeze-dried samples. The best overall hydrolysis was obtained by treatment of an aqueous sample with 4 %w/v sulfuric acid for 10 minutes. These conditions were not optimal for the determination of glucose, which was estimated by using a correction factor. A purification step was needed following the acid hydrolysis, and included a sulfate precipitation by barium hydroxide and elimination of remaining ions by mixed-bed ion exchange. The level of barium hydroxide addition significantly reduced the recovery of the sugars. Thus, lower than equivalent amounts of barium hydroxide were added in the purification step. For monosaccharide analysis two different HPLC columns, i.e. Aminex HPX-87P and HPX-87H with different resin ionic forms, lead (Pb{sup 2+}) and hydrogen (H{sup +}), respectively. The lead column (HPX-87P) separated all four sugars in the acid hydrolyzates, but sample purification required the removal of all interfering impurities, which resulted in poor reproducibility and a sugar recovery below 50%. The hydrogen column (HPX-87H) separated only glucose, xylose and arabinose, whereas galactose was not separated from xylose; however, the column was less sensitive towards impurities and gave improved recovery and reproducibility. Therefore, the hydrogen column (HPX-87H) was chosen for routine quantification of the hydrolyzed hemicellulose sugars. (au) 11 tabs., 8 ills., 19 refs.

  13. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents.

    Science.gov (United States)

    Kim, Sun-Ki; Jin, Yong-Su; Choi, In-Geol; Park, Yong-Cheol; Seo, Jin-Ho

    2015-05-01

    Fermentation inhibitors present in lignocellulose hydrolysates are inevitable obstacles for achieving economic production of biofuels and biochemicals by industrial microorganisms. Here we show that spermidine (SPD) functions as a chemical elicitor for enhanced tolerance of Saccharomyces cerevisiae against major fermentation inhibitors. In addition, the feasibility of constructing an engineered S. cerevisiae strain capable of tolerating toxic levels of the major inhibitors without exogenous addition of SPD was explored. Specifically, we altered expression levels of the genes in the SPD biosynthetic pathway. Also, OAZ1 coding for ornithine decarboxylase (ODC) antizyme and TPO1 coding for the polyamine transport protein were disrupted to increase intracellular SPD levels through alleviation of feedback inhibition on ODC and prevention of SPD excretion, respectively. Especially, the strain with combination of OAZ1 and TPO1 double disruption and overexpression of SPE3 not only contained spermidine content of 1.1mg SPD/g cell, which was 171% higher than that of the control strain, but also exhibited 60% and 33% shorter lag-phase period than that of the control strain under the medium containing furan derivatives and acetic acid, respectively. While we observed a positive correlation between intracellular SPD contents and tolerance phenotypes among the engineered strains accumulating different amounts of intracellular SPD, too much SPD accumulation is likely to cause metabolic burden. Therefore, genetic perturbations for intracellular SPD levels should be optimized in terms of metabolic burden and SPD contents to construct inhibitor tolerant yeast strains. We also found that the genes involved in purine biosynthesis and cell wall and chromatin stability were related to the enhanced tolerance phenotypes to furfural. The robust strains constructed in this study can be applied for producing chemicals and advanced biofuels from cellulosic hydrolysates. PMID:25724339

  14. Conversion of Lignocellulosic Material into Fermentable Sugars

    OpenAIRE

    Mohammed, Asem Hassan

    2012-01-01

    Lignocellulosic biomass to biofuel conversion is a promising technology to provide a unique and sustainable resource for environmentally safe organic fuels and chemicals. Most of global energy use projections predict that biomass will be a more important component of primary energy supply in the future, and that woody crops will be the primary source of biomass. Short-rotation willow wood crops (Salix sp.) are considered a promising source of bioenergy, willow wood has several characteristics...

  15. Ionic liquid pretreatment of lignocellulosic biomass

    OpenAIRE

    Brandt, Agnieszka

    2012-01-01

    This thesis is concerned with the thermal treatment of lignocellulosic biomass using ionic liquids for the purpose of comminution via dissolution, for fractionating the biological composite and for obtaining aqueous solutions of carbohydrate monomers from the pulp via enzymatic hydrolysis. A major focus was the relationship between the choice of the anion and the effectiveness of the treatment. The synthesis of a range of 1-butyl-3-methylimidazolium ionic liquids with str...

  16. Laccase Enzymology in Relation to Lignocellulose Processing

    DEFF Research Database (Denmark)

    Sitarz, Anna Katarzyna

    2013-01-01

    Several studies have indicated that cellulase action on cellulose fibers and their conversion to glucose is inhibited by lignin and lignin-derived phenolic substances, which are released during the pretreatment of lignocellulosic biomass. A prerequisite for optimization of the cellulose-to-glucose conversion is to either get rid of the inhibitory substances or to alter them in a way, so they no longer decrease the action of cellulases. The main focus in the present work was the investigation of ...

  17. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  18. Processes for converting lignocellulosics to reduced acid pyrolysis oil

    Science.gov (United States)

    Kocal, Joseph Anthony; Brandvold, Timothy A

    2015-01-06

    Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.

  19. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives

    Directory of Open Access Journals (Sweden)

    Mehdi Dashtban, Heidi Schraft, Wensheng Qin

    2009-01-01

    Full Text Available The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases and ?-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.

  20. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives.

    Science.gov (United States)

    Dashtban, Mehdi; Schraft, Heidi; Qin, Wensheng

    2009-01-01

    The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and beta-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains. PMID:19774110

  1. Can lignocellulosic hydrocarbon liquids rival lignocellulose-derived ethanol as a future transport fuel?

    Directory of Open Access Journals (Sweden)

    Yao Ding

    2012-11-01

    Full Text Available Although transport fuels are currently obtained mainly from petroleum, alternative fuels derived from lignocellulosic biomass (LB have drawn much attention in recent years in light of the limited reserves of crude oil and the associated environmental issues. Lignocellulosic ethanol (LE and lignocellulosic hydrocarbons (LH are two typical representatives of the LB-derived transport fuels. This editorial systematically compares LE and LB from production to their application in transport fuels. It can be demonstrated that LH has many advantages over LE relative to such uses. However, most recent studies on the production of the LB-derived transport fuels have focused on LE production. Hence, it is strongly recommended that more research should be aimed at developing an efficient and economically viable process for industrial LH production.

  2. A novel fermentation strategy for removing the key inhibitor acetic acid and efficiently utilizing the mixed sugars from lignocellulosic hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Eiteman PHD; Elliot Altman Phd

    2009-02-11

    As part of preliminary research efforts, we have completed several experiments which demonstrate 'proof of concept.' These experiments addressed the following three questions: (1) Can a synthetic mixed sugar solution of glucose and xylose be efficiently consumed using the multi-organism approach? (2) Can this approach be used to accumulate a model product? (3) Can this approach be applied to the removal of an inhibitor, acetate, selectively from mixtures of xylose and glucose? To answer the question of whether this multi-organism approach can effectively consume synthetic mixed sugar solutions, we first tested substrate-selective uptake using two strains, one unable to consume glucose and one unable to consume xylose. The xylose-selective strain ALS998 has mutations in the three genes involved in glucose uptake, rendering it unable to consume glucose: ptsG codes for the Enzyme IICB{sup Glc} of the phosphotransferase system (PTS) for carbohydrate transport (Postma et al., 1993), manZ codes for the IID{sup Man} domain of the mannose PTS permease (Huber, 1996), glk codes for glucokinase (Curtis and Epstein 1975) We also constructed strain ALS1008 which has a knockout in the xylA gene encoding for xylose isomerase, rendering ALS1008 unable to consume xylose. Two batch experiments and one continuous bioprocess were completed. In the first experiment, each strain was grown separately in a defined medium of 8 g/L xylose and 15 g/L glucose which represented xylose and glucose concentrations that can be generated by actual biomass. In the second experiment, the two strains were grown together in batch in the same defined, mixed-sugar medium. In a third experiment, we grew the strains continuously in a 'chemostat', except that we shifted the concentrations of glucose and xylose periodically to observe how the system would respond. (For example, we shifted the glucose concentration suddenly from 15 g/L to 30 g/L in the feed).

  3. Production of enzymatic protein hydrolysates from freshwater catfish (Clarias batrachus)

    Science.gov (United States)

    Seniman, Maizatul Sarah Md; Yusop, Salma Mohamad; Babji, Abdul Salam

    2014-09-01

    Fish protein hydrolysate (FPH) was prepared from freshwater catfish (Clarias batrachus) by using Alcalase® 2.4L and Papain. The effect of hydrolysis time (30, 60, 120, 180 min) with enzyme concentration of 1% (v/w substrate); pH = 8.0, 7.0 was studied to determine the degree of hydrolysis (DH), peptide content, proximate composition and amino acid profile. Results showed that the highest DH of Alcalase and Papain FPH were 58.79% and 53.48% after 180 min at 55°C incubation respectively. The peptide content of both FPH increased as hydrolysis time increases. FPH showed higher crude protein content and lower fat, moisture and ash content compared to raw catfish. The major amino acids of both hydrolysates were Glu, Lys and Asp. Content of essential amino acids of Alcalase and Papain hydrolysates were 44.05% and 43.31% respectively.

  4. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin

    OpenAIRE

    Ballesteros, Lina F.; Teixeira, J. A., colab.; Mussatto, Solange I.

    2014-01-01

    Spent coffee grounds (SCG) and coffee silverskin (CS) represent a great pollution hazard if discharged into the environment. Taking this fact into account, the purpose of this study was to evaluate the chemical composition, functional properties, and structural characteristics of these agro-industrial residues in order to identify the characteristics that allow their reutilization in industrial processes. According to the results, SCG and CS are both of lignocellulosic nature. Sugars polymeri...

  5. Enzyme Hydrolysates from Stichopus horrens as a New Source for Angiotensin-Converting Enzyme Inhibitory Peptides

    OpenAIRE

    Bita Forghani; Afshin Ebrahimpour; Jamilah Bakar; Azizah Abdul Hamid; Zaiton Hassan; Nazamid Saari

    2012-01-01

    Stichopus horrens flesh was explored as a potential source for generating peptides with angiotensin-converting enzyme (ACE) inhibitory capacity using 6 proteases, namely alcalase, flavourzyme, trypsin, papain, bromelain, and protamex. Degree of hydrolysis (DH) and peptide profiling (SDS-PAGE) of Stichopus horrens hydrolysates (SHHs) was also assessed. Alcalase hydrolysate showed the highest DH value (39.8%) followed by flavourzyme hydrolysate (32.7%). Overall, alcalase hydrolysate exhibited t...

  6. Factors affecting antioxidant activity of soybean meal and caseine protein hydrolysates

    International Nuclear Information System (INIS)

    Antioxidative activity of protein hydrolysates was dependent on the raw material, condition of hydrolysis and lipid substrate used in model systems. Soybean meal hydrolysate was more active in lard and in linoleic acid emulsion than caseine hydrolysate, whereas caseine was more active in vegetable oils. Antioxidant activity of evaluated protein hydrolysates in all lipid systems, with or without oxidation catalysts, suggests them as natural food additives for lipid stabilization, thus for improvement of its nutritional value and sensory properties

  7. FTIR spectra of whey and casein hydrolysates in relation to their functional properties

    OpenAIRE

    Ven, C., van de; Muresan, S.; Gruppen, H.; Bont, D.B.A. de; Merck, K B; Voragen, A.G.J.

    2002-01-01

    Mid-infrared spectra of whey and casein hydrolysates were recorded using Fourier transform infrared (FTIR) spectroscopy. Multivariate data analysis techniques were used to investigate the capacity of FTIR spectra to classify hydrolysates and to study the ability of the spectra to predict bitterness, solubility, emulsifying, and foaming properties of hydrolysates. Principal component analysis revealed that hydrolysates prepared from different protein sources or with different classes of proteo...

  8. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    DEFF Research Database (Denmark)

    Thygesen, Anders; Poulsen, Finn Willy; Angelidaki, Irini; Min, Booki; Thomsen, Anne Belinda

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation and substrate utilization from the hydrolysate was compared with the ones obtained by defined synthetic substrates. The power density increased from 47 mW m?2 to 148 mW m?2 with the hydrolysate:wastewater ...

  9. Biological activities of lignin hydrolysate-related compounds.

    Science.gov (United States)

    Lee, Siseon; Monnappa, Ajay Kalanjana; Mitchell, Robert J

    2012-05-01

    Lignin hydrolysates contain many different chemical species, including ferulic acid, coumaric acid, vanillic acid, vanillin, syringaldehyde and furfural. From the perspective of biofuels, these compounds are problematic and can cause downstream loss of product if not removed prior to beginning the fermentative process. In contrast, a search for these compounds within the literature turns up many papers where the same compounds have beneficial properties pertaining to human health, including as antioxidants and in cancer prevention, or are involved in bacterial cell-to-cell signaling. Consequently, this article reviews the dual nature of these and other compounds found in lignin hydrolysates, highlighting both their detrimental and beneficial activities. PMID:22617449

  10. Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii

    OpenAIRE

    Sene, L.; P.V Arruda; Oliveira, S.M.M.; Felipe, M.G.A.

    2011-01-01

    A preliminary study on xylitol production by Candida guilliermondii in sorghum straw hemicellulosic hydrolysate was performed. Hydrolysate had high xylose content and inhibitors concentrations did not exceed the commonly found values in other hemicellulosic hydrolysates. The highest xylitol yield (0.44 g/g) and productivity (0.19 g/Lh) were verified after 72 hours.

  11. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Science.gov (United States)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid lead to increasing conversion of hemicellulose to xylose. In contrast, increasing sodium hydroxide concentrations degrade the hemicellulose to unknown derivates. Consequently, almost no sugars from hemicellulose remain for fermentation. The hydrolysis of sulfuric acid pretreated straw results in a maximum glucose concentration of 100 g/kg straw and a xylose concentration of nearly 30 g/kg. Sodium hydroxide pretreated and hydrolyzed straw leads to a maximum glucose concentration of 90 g/kg straw and a xylose concentration of nearly 20 g/kg. In comparison to the two chemical pretreatment methods (sodium hydroxide and sulfuric acid pretreatment), the steam explosion pretreatment (conditions: temperature 190°C, time 20 minutes) results in a higher glucose concentration of about 190 g/kg straw and a xylose concentration of nearly 75 g/kg straw after enzymatic hydrolysis of the dried straw. Because of the small effect the sodium hydroxide pretreatment has on xylose recovery, this method won't be used for separation and conversion of hemicellulose into xylose and arabinose. Although pretreatment with sulfuric acid achieved promising results, further research and economical considerations have to be performed. In conclusion, the steam explosion method is still the state of the art pretreatment method for the production of lignocellulosic biofuels. Alkaline methods destroy most of the xylose part of the sugar fraction and a loss of up to 25 % of the fermentable sugars is not acceptable for a sustainable biofuel production. The acid pretreatment yields high amounts of accessible hemicellulose and cellulose, but the consumption of chemicals for acid pretreatment and neutralization has to be taken into account when considering technical implementation.

  12. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams.

    Science.gov (United States)

    Mathews, Stephanie L; Pawlak, Joel; Grunden, Amy M

    2015-04-01

    Lignocellulose is a term for plant materials that are composed of matrices of cellulose, hemicellulose, and lignin. Lignocellulose is a renewable feedstock for many industries. Lignocellulosic materials are used for the production of paper, fuels, and chemicals. Typically, industry focuses on transforming the polysaccharides present in lignocellulose into products resulting in the incomplete use of this resource. The materials that are not completely used make up the underutilized streams of materials that contain cellulose, hemicellulose, and lignin. These underutilized streams have potential for conversion into valuable products. Treatment of these lignocellulosic streams with bacteria, which specifically degrade lignocellulose through the action of enzymes, offers a low-energy and low-cost method for biodegradation and bioconversion. This review describes lignocellulosic streams and summarizes different aspects of biological treatments including the bacteria isolated from lignocellulose-containing environments and enzymes which may be used for bioconversion. The chemicals produced during bioconversion can be used for a variety of products including adhesives, plastics, resins, food additives, and petrochemical replacements. PMID:25722022

  13. Encapsulation-Induced Stress Helps Saccharomyces cerevisiae Resist Convertible Lignocellulose Derived Inhibitors

    Directory of Open Access Journals (Sweden)

    Johan O. Westman

    2012-09-01

    Full Text Available The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was investigated in anaerobic batch cultivations. It was shown that encapsulation increased the tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. Gene expression analysis showed that the protective effect arising from the encapsulation is evident also on the transcriptome level, as the expression of the stress-related genes YAP1, ATR1 and FLR1 was induced upon encapsulation. The transcript levels were increased due to encapsulation already in the medium without added inhibitors, indicating that the cells sensed low stress level arising from the encapsulation itself. We present a model, where the stress response is induced by nutrient limitation, that this helps the cells to cope with the increased stress added by a toxic medium, and that superficial cells in the capsules degrade convertible inhibitors, alleviating the inhibition for the cells deeper in the capsule.

  14. Removal and upgrading of lignocellulosic fermentation inhibitors by in situ biocatalysis and liquid-liquid extraction.

    Science.gov (United States)

    Tomek, Kyle J; Saldarriaga, Carlos Rafael Castillo; Velasquez, Fernando Peregrino Cordoba; Liu, Tongjun; Hodge, David B; Whitehead, Timothy A

    2015-03-01

    Hydroxycinnamic acids are known to inhibit microbial growth during fermentation of lignocellulosic biomass hydrolysates, and the ability to diminish hydroxycinnamic acid toxicity would allow for more effective biological conversion of biomass to fuels and other value-added products. In this work, we provide a proof-of-concept of an in situ approach to remove these fermentation inhibitors through constituent expression of a phenolic acid decarboxylase combined with liquid-liquid extraction of the vinyl phenol products. As a first step, we confirmed using simulated fermentation conditions in two model organisms, Escherichia coli and Saccharomyces cerevisiae, that the product 4-vinyl guaiacol is more inhibitory to growth than ferulic acid. Partition coefficients of ferulic acid, p-coumaric acid, 4-vinyl guaiacol, and 4-ethyl phenol were measured for long-chain primary alcohols and alkanes, and tetradecane was identified as a co-solvent that can preferentially extract vinyl phenols relative to the acid parent and additionally had no effect on microbial growth rates or ethanol yields. Finally, E. coli expressing an active phenolic acid decarboxylase retained near maximum anaerobic growth rates in the presence of ferulic acid if and only if tetradecane was added to the fermentation broth. This work confirms the feasibility of donating catabolic pathways into fermentative microorganisms in order to ameliorate the effects of hydroxycinnamic acids on growth rates, and suggests a general strategy of detoxification by simultaneous biological conversion and extraction. PMID:25311910

  15. Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries.

    Science.gov (United States)

    Cobucci-Ponzano, Beatrice; Strazzulli, Andrea; Iacono, Roberta; Masturzo, Giuseppe; Giglio, Rosa; Rossi, Mosè; Moracci, Marco

    2015-10-01

    The biotransformation of lignocellulose biomasses into fermentable sugars is a very complex procedure including, as one of the most critical steps, the (hemi) cellulose hydrolysis by specific enzymatic cocktails. We explored here, the potential of stable glycoside hydrolases from thermophilic organisms, so far not used in commercial enzymatic preparations, for the conversion of glucuronoxylan, the major hemicellulose of several energy crops. Searches in the genomes of thermophilic bacteria led to the identification, efficient production, and detailed characterization of novel xylanase and ?-glucuronidase from Alicyclobacillus acidocaldarius (GH10-XA and GH67-GA, respectively) and a ?-glucuronidase from Caldicellulosiruptor saccharolyticus (GH67-GC). Remarkably, GH10-XA, if compared to other thermophilic xylanases from this family, coupled good specificity on beechwood xylan and the best stability at 65 °C (3.5 days). In addition, GH67-GC was the most stable ?-glucuronidases from this family and the first able to hydrolyse both aldouronic acid and aryl-?-glucuronic acid substrates. These enzymes, led to the very efficient hydrolysis of beechwood xylan by using 7- to 9-fold less protein (concentrations thermophilic enzymes. In addition, remarkably, together with a thermophilic ?-xylosidase, they catalyzed the production of xylose from the smart cooking pre-treated biomass of one of the most promising energy crops for second generation biorefineries. We demonstrated that search by the CAZy Data Bank of currently available genomes and detailed enzymatic characterization of recombinant enzymes allow the identification of glycoside hydrolases with novel and interesting properties and applications. PMID:26215346

  16. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Ahring, Birgitte Kiær

    2007-01-01

    Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work, the thermophilic anaerobic bacterial strain Thermoanaerobacter BG1L1 was assessed for its ability to ferment undetoxified PCS hydrolysate in a continuous immobilized reactor system at 70°C. The tested strain showed significant resistance to PCS, and substrate concentrations up to 15% total solids (TS) were fermented yielding ethanol of 0.39–0.42 g/g-sugars consumed. Xylose was nearly completely utilized (89–98%) for PCS up to 10% TS, whereas at 15% TS, xylose conversion was lowered to 67%. The reactor was operated continuously for 135 days, and no contamination was seen without the use of any agent for preventing bacterial infections. This study demonstrated that the use of immobilized thermophilic anaerobic bacteria for continuous ethanol fermentation could be promising in a commercial ethanol process in terms of system stability to process hardiness and reactor contamination. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol.

  17. Candida utilis assimilates oligomeric sugars in rice straw hydrolysate via the Calcium-Capturing-by-Carbonation (CaCCO) process for glutathione- and cell-biomass production.

    Science.gov (United States)

    Koyama, Yoshiyuki; Zhao, Rui; Ike, Masakazu; Tokuyasu, Ken

    2014-11-01

    Rice-straw hydrolysate (RSH) prepared via the CaCCO (Calcium Capturing by Carbonation) process contains not only monosaccharides but also significant amounts of oligosaccharides. In this study, a glutathione-producing yeast, Candida utilis NBRC 0626, was found to assimilate those oligosaccharides. The yields of reduced glutathione (GSH) and dry cell weight (DCW) per consumed sugars in a medium with RSH after 72h incubation were 10.1mg/g-sugars and 0.49g/g-sugars, respectively. The yields were comparative to those in a medium containing a model monosaccharide mix, suggesting that the assimilated oligosaccharides contribute to additional GSH and DCW production. Glycosyl linkage analysis indicated that the yeast could cleave xylose-, galactose-, and arabinose residues as well as glucose residues at the non-reducing ends. After 72h incubation, 99.1% of the total glucose residues and 84.2% of the total xylose residues in RSH were depleted. Thus the yeast could be applied for efficient utilization of lignocellulosic hydrolysates. PMID:25241674

  18. Oconee spent fuel rerack

    International Nuclear Information System (INIS)

    Spent fuel storage problems facing electric utilities with nuclear generation are growing more critical as existing spent fuel storage capacity is utilized. Due to the inaccessibility of spent fuel reprocessing plants, alternative temporary solutions such as transfer of spent nuclear fuel to other storage facilities and increasing the capacity of existing storage facilities through reracking are becoming increasingly prevalent. This paper describes the method and installation of new racks for increasing the fuel storage capacity of unit 3 of Duke Power Company's Oconee Nuclear Station near Seneca, South Carolina

  19. Alternatives for spent fuel

    International Nuclear Information System (INIS)

    During the past year, the National Waste Policy Act (NWPA) of 1982 has been directing the Federal Government's programs in the area of spent fuel and high level wastes. In addition, this legislation has greatly influenced utility spent fuel management planning. Final disposition of spent fuel is provided in the NWPA through geological repositories. The producers of spent fuel are responsible however, for its storage until a repository or federal Monitored Retrievable Storage (MRS) facility is available. There are several alternatives for interim storage of spent fuel prior to final disposition: wet pools, dry casks, dry wells, and dry storage vaults. Spent fuel pool storage is a widely used technology which has demonstrated safe storage of spent fuel for several decades. Pool storage at reactors has been enhanced in the past by the use of high density storage racks. In the future, spent fuel rod consolidation will further increase the capacity of reactor pool storage. Independent spent fuel pool facilities can provide economic storage capacity beyond that provided by the reactor pools. The first design and license application for such a facility meeting current requirements was completed by G/C in mid 1983

  20. Screening and characteristics of a butanol-tolerant strain and butanol production from enzymatic hydrolysate of NaOH-pretreated corn stover.

    Science.gov (United States)

    Gao, Kai; Li, Yun; Tian, Shen; Yang, Xiushan

    2012-10-01

    As a gasoline substitute, butanol has advantages over traditional fuel ethanol in terms of energy density and hydroscopicity. However, solvent production appeared limited by butanol toxicity. The strain of Clostridium acetobutylicum was subjected to mutation by mutagen of N-methyl-N'-nitro-N-nitrosoguanidine for 0.5 h. Screening of mutants was done according to the individual resistance to butanol. A selected butanol-resistant mutant, strain 206, produced 50 % higher solvent concentrations than the wild-type strain when 60 g glucose/l was employed as substrate. The strain was also able to produce solvents of 23.47 g/l in 80 g/l glucose P2 medium after 70 h fermentation, including 5.41 g acetone/l, 15.05 g butanol/l and 3.02 g ethanol/l, resulting in an ABE yield and productivity of 0.32 g/g and 0.34 g/(l h). Subsequently, Acetone-butanol-ethanol (ABE) production from enzymatic hydrolysate of NaOH-pretreated corn stover was investigated in this study. An ABE yield of 0.41 and a productivity of 0.21 g/(l h) was obtained, compared to the yield of 0.33 and the productivity of 0.20 g/(l h) in the control medium containing 52.47 mixed sugars. However, it is important to note that although strain 206 was able to utilize all the glucose rapidly in the hydrolysate, only 32.9 % xylose in the hydrolysate was used after fermentation stopped compared to 91.4 % xylose in the control medium. Strain 206 was shown to be a robust strain for ABE production from lignocellulosic materials and has a great potential for industrial application. PMID:22806737

  1. SOIL FUNGI: POTENTIAL MYCOREMEDIATORS OF LIGNOCELLULOSIC WASTE

    Directory of Open Access Journals (Sweden)

    Y. Avasn Maruthi

    2010-05-01

    Full Text Available The continual expansion of urbanization and industrial activity has led to the accumulation of a large quantity of lignocellulosic residues throughout the world. In particular, large quantities of paper and bagasse are largely produced in Visakhapatnam. In this work we present the study of the degradability of these substrates with fungi. Three cultures of soil fungi were screened for their ability to degrade cellulose. Aspergillus flavus degraded the most, as shown by the highest CO2 release. Further, Aspergillus flavus was tested with the standard fungus Phanerochaete chrysosporium for cellulose degradation, which showed nearly equivalent potential.

  2. Biochemical and radical-scavenging properties of sea cucumber (Stichopus vastus) collagen hydrolysates.

    Science.gov (United States)

    Abedin, Md Zainul; Karim, Alias A; Latiff, Aishah A; Gan, Chee-Yuen; Ghazali, Farid Che; Barzideh, Zoha; Ferdosh, Sahena; Akanda, Md Jahurul Haque; Zzaman, Wahidu; Karim, Md Rezaul; Sarker, Md Zaidul Islam

    2014-01-01

    The molecular mass distribution, amino acid composition and radical-scavenging activity of collagen hydrolysates prepared from collagen isolated from the sea cucumber Stichopus vastus were investigated. ? and ?1 chains of the collagen were successfully hydrolysed by trypsin. The molecular mass distribution of the hydrolysates ranged from 5 to 25 kDa, and they were rich in glycine, alanine, glutamate, proline and hydroxyproline residues. The hydrolysates exhibited excellent radical-scavenging activity. These results indicate that collagen hydrolysates from S. vastus can be used as a functional ingredient in food and nutraceutical products. PMID:24670209

  3. Selection of lactic acid bacteria able to ferment inulin hydrolysates

    Directory of Open Access Journals (Sweden)

    Octavian BASTON

    2012-12-01

    Full Text Available Eight homofermentative lactic acid bacteria isolates were tested for lactic acid production using chicory and Jerusalem artichoke hydrolysate as substrate. The pH, lactic acid yield and productivity were used to select the best homolactic bacteria for lactic acid production. The selected strains produced lactic acid at maximum yield after 24 hours of fermentation and the productivity was greater at 24 hours of fermentation. From all studied strains, Lb1 and Lb2 showed the best results regarding lactic acid yields andproductivity. After 48 hours of chicory and Jerusalem artichhoke hydrolysates fermentation, from all the studied strains, Lb2 produced the highest lactic acid yield (0.97%. Lb2 produced after 48 hours of fermentation the lowest pH value of 3.45±0.01. Lb2 showed greater lactic acid productivity compared to the other studied lactic acid bacteria, the highest values, 0.13 g·L-1·h-1fromJerusalem artichoke hydrolysate and 0.11g·L-1·h-1 from chicory hydrolysate, being produced after 24 hours of fermentation.

  4. Debittering of Protein Hydrolysates by Lactobacillus LBL-4 Aminopeptidase

    Science.gov (United States)

    Tchorbanov, Bozhidar; Marinova, Margarita; Grozeva, Lydia

    2011-01-01

    Yoghurt strain Lactobacillus LBL-4 cultivated for 8–10?h at pH ~6.0 was investigated as a considerable food-grade source of intracellular aminopeptidase. Cell-free extract manifesting >200?AP U/l was obtained from cells harvested from 1?L culture media. Subtilisin-induced hydrolysates of casein, soybean isolate, and Scenedesmus cell protein with degree of hydrolysis 20–22% incubated at 45°C for 10?h by 10 AP?U/g peptides caused an enlarging of DH up to 40–42%, 46–48%, and 38–40% respectively. The DH increased rapidly during the first 4?h, but gel chromatography studies on BioGel P-2 showed significant changes occurred during 4–10?h of enzyme action when the DH increased gradually. After the digestion, the remained AP activity can be recovered by ultrafiltration (yield 40–50%). Scenedesmus protein hydrolysate with DH 20% was inoculated by Lactobacillus LBL-4 cells, and after 72?h cultivation the DH reached 32%. The protein hydrolysates (DH above 40%) obtained from casein and soybean isolate (high Q value) demonstrated a negligible bitterness while Scenedesmus protein hydrolysates (low Q value) after both treatments were free of bitterness. PMID:21876793

  5. Possible application of brewer’s spent grain in biotechnology

    Directory of Open Access Journals (Sweden)

    Pejin Jelena D.

    2013-01-01

    Full Text Available Brewer’s spent grain is the major by-product in beer production. It is produced in large quantities (20 kg per 100 liters of produced beer throughout the year at a low cost or no cost, and due to its high protein and carbohydrates content it can be used as a raw material in biotechnology. Biotechnological processes based on renewable agro-industrial by-products have ecological (zero CO2 emission, eco-friendly by-products and economical (cheap raw materials and reduction of storage costs advantages. The use of brewer’s spent grain is still limited, being basically used as animal feed. Researchers are trying to improve the application of brewer’s spent grain by finding alternative uses apart from the current general use as an animal feed. Its possible applications are in human nutrition, as a raw material in biotechnology, energy production, charcoal production, paper manufacture, as a brick component, and adsorbent. In biotechnology brewer’s spent grain could be used as a substrate for cultivation of microorganisms and enzyme production, additive of yeast carrier in beer fermentation, raw material in production of lactic acid, bioethanol, biogas, phenolic acids, xylitol, and pullulan. Some possible applications for brewer’s spent grain are described in this article including pre-treatment conditions (different procedures for polysaccharides, hemicelluloses, and cellulose hydrolysis, working microorganisms, fermentation parameters and obtained yields. The chemical composition of brewer’s spent grain varies according to barley variety, harvesting time, malting and mashing conditions, and a quality and type of unmalted raw material used in beer production. Brewer’s spent grain is lignocellulosic material rich in protein and fibre, which account for approximately 20 and 70% of its composition, respectively.

  6. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid

    Science.gov (United States)

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1?g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16?g/L of lactic acid (yield of 0.61?g/g), 27% higher than the value (17.49?g/L) obtained in the absence of a nitrogen source.

  7. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid.

    Science.gov (United States)

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1?g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16?g/L of lactic acid (yield of 0.61?g/g), 27% higher than the value (17.49?g/L) obtained in the absence of a nitrogen source. PMID:26640784

  8. Generation and identification of angiotensin converting enzyme (ACE) inhibitory peptides from a brewers' spent grain protein isolate.

    Science.gov (United States)

    Connolly, Alan; O'Keeffe, Martina B; Piggott, Charles O; Nongonierma, Alice B; FitzGerald, Richard J

    2015-06-01

    An alkaline extracted brewers' spent grain protein-enriched isolate (BSG-PI) was hydrolysed using Alcalase, Corolase PP, Flavourzyme and Promod 144MG, yielding Alc hydrolysate (H), CorH, FlavH and ProH, respectively. The degree of hydrolysis (DH) of the protein hydrolysates varied from 4.45% for ProH to 16.4% for CorH. The in vitro ACE inhibitory activity of the BSG-PI increased significantly following 15min incubations with Alcalase, Corolase PP and Flavourzyme. The 5kDa ultrafiltration permeates of FlavH and CorH resulted in lower ACE IC50 values than their respective hydrolysates. The bioactivity of the BSG-PI hydrolysates was retained after simulated gastrointestinal digestion (SGID) while SGID also resulted in the release of ACE inhibitory peptides from the BSG-PI and ProH. UPLC-MS/MS analysis resulted in the identification of 34 peptides. Of 12 synthesised peptides, IVY and ILDL were the most potent, having ACE IC50 values at 80.4±11.9 and 96.4±8.36?M, respectively. PMID:25624207

  9. Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysate in unwashed fish mince.

    Science.gov (United States)

    Nikoo, Mehdi; Benjakul, Soottawat; Xu, Xueming

    2015-08-15

    Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysates prepared using different commercial proteases in unwashed fish mince were investigated. Gelatin hydrolysates prepared using either Alcalase or Flavourzyme, were effective in preventing lipid oxidation as evidenced by the lower thiobarbituric acid-reactive substances formation. Gelatin hydrolysates were able to retard protein oxidation as indicated by the retarded protein carbonyl formation and lower loss in sulfhydryl content. In the presence of gelatin hydrolysates, unwashed mince had higher transition temperature of myosin and higher enthalpy of myosin and actin as determined by differential scanning calorimetry. Based on low field proton nuclear magnetic resonance analysis, gelatin hydrolysates prevented the displacement of water molecules between the different compartments, thus stabilizing the water associated with myofibrils in unwashed mince induced by repeated freeze-thawing. Oligopeptides in gelatin hydrolysates more likely contributed to the cryoprotective effect. Thus, gelatin hydrolysate could act as both antioxidant and cryoprotectant in unwashed fish mince. PMID:25794753

  10. Production of Lupinus angustifolius protein hydrolysates with improved functional properties

    Directory of Open Access Journals (Sweden)

    Millán, Francisco

    2005-06-01

    Full Text Available Protein hydrolysates wer e obtained from lupin flour and from the purified globulin α -conglutin, and their functional properties were studied. Hydrolysis with alcalase for 60 minutes yielded degrees of hydrolysis ranging from 4 % to 11 % for lupin flour, and from 4 % to 13% for α -conglutin. Protein solubility, oil absorption, foam capacity and stability, emulsifying activity, and emulsion stability of hydrolysates with 6% degree of hydrolysis were determined and compared with the properties of the original flour. The protein hydrolysates showed better functional properties than the original proteins. Most importantly, the solubility of the α -conglutin and L. angustifolius flour hydrolysates was increased by 43 % and 52 %, respectively. Thus, lupin seed protein hydrolysates have improved functional properties and could be used in the elaboration of a variety of products such as breads, cakes, and salad dressings.Se obtuvieron hidrolizados proteicos de la harina del altramuz y de la globulina α - conglutina purificada y se estudiaron sus propiedades funcionales. La hidrólisis con alcalasa durante 60 minutos produjo hidrolizados con grados de hidrólisis entre el 4 % y el 11 % para la harina y entre el 4 % y el 13 % para la α - conglutina. Se estudió en un hidrolizado con un 6 % de grado de hidrólisis la solubilidad proteica, absorción de aceite, capacidad y estabilidad espumante y actividad y estabilidad emulsificante. Los hidrolizados proteicos mostraron mejores propiedades funcionales que las proteínas originales. Más aún, la solubilidad de los hidrolizados de α - conglutina y la harina se incrementó en un 43 % y 52 % respectivamente. Así pues, hidrolizados de proteínas de semilla de lupino presentan mejores propiedades funcionales y podrían usarse en la elaboración de productos como pan, dulces, salsas o cremas.

  11. Protein Hydrolysates as Hypoallergenic, Flavors and Palatants for Companion Animals

    Science.gov (United States)

    Nagodawithana, Tilak W.; Nelles, Lynn; Trivedi, Nayan B.

    Early civilizations have relied upon their good sense and experience to develop and improve their food quality. The discovery of soy sauce centuries ago can now be considered one of the earliest protein hydrolysates made by man to improve palatability of foods. Now, it is well known that such savory systems are not just sources for enjoyment but complex semiotic systems that direct the humans to satisfy the body's protein need for their sustenance. Recent developments have resulted in a wide range of cost effective savory flavorings, the best known of which are autolyzed yeast extracts and hydrolyzed vegetable proteins. New technologies have helped researchers to improve the savory characteristics of yeast extracts through the application of Maillard reaction and by generating specific flavor enhancers through the use of enzymes. An interesting parallel exists in the pet food industry, where a similar approach is taken in using animal protein hydrolysates to create palatability enhancers via Maillard reaction scheme. Protein hydrolysates are also utilized extensively as a source of nutrition to the elderly, young children and immuno-compromised patient population. These hydrolysates have an added advantage in having peptides small enough to avoid any chance of an allergenic reaction which sometimes occur with the consumption of larger sized peptides or proteins. Accordingly, protein hydrolysates are required to have an average molecular weight distribution in the range 800-1,500 Da to make them non-allergenic. The technical challenge for scientists involved in food and feed manufacture is to use an appropriate combination of enzymes within the existing economic constraints and other physical factors/limitations, such as heat, pH, and time, to create highly palatable, yet still nutritious and hypoallergenic food formulations.

  12. Enzymology of lignocellulose bioconversion by Streptomyces viridosporus

    International Nuclear Information System (INIS)

    Significant progress has been made in lignin biodegradation research since 1983, when lignin peroxidases were discovered in fungi. A similar breakthrough in bacterial lignin biodegradation research is anticipated. Several laboratories have successfully demonstrated the ability of bacteria to mineralize [14C]-lignin lignocelluloses as well as 14C-labelled synthetic lignins. Attempts are being made to identify the key enzymes involved. In this dissertation, two studies are presented which address the enzymology of lignin biodegradation by Streptomyces viridosporus. The first study compares selected extracellular enzyme of wild-type and genetically manipulated strains with enhanced abilities to produced a water soluble lignin degradation intermediate, designated acid-precipitable polymeric lignin (APPL). UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10 had higher and longer persisting peroxidase, esterase, and endoglucanase activity than did the wild type strain T7A. An extracellular lignocellulose-induced peroxidase with some similarities to fungal ligninases was described for the first time in Streptomyces. The second study describes purification and characterization of an extracellular lignin peroxidase produced by S. viridosporus T7A. This is the first report of a lignin peroxidase in any bacterium

  13. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries.

    Science.gov (United States)

    Zhang, Y-H Percival

    2008-05-01

    Before the industrial revolution, the global economy was largely based on living carbon from plants. Now the economy is mainly dependent on fossil fuels (dead carbon). Biomass is the only sustainable bioresource that can provide sufficient transportation fuels and renewable materials at the same time. Cellulosic ethanol production from less costly and most abundant lignocellulose is confronted with three main obstacles: (1) high processing costs (dollars /gallon of ethanol), (2) huge capital investment (dollars approximately 4-10/gallon of annual ethanol production capacity), and (3) a narrow margin between feedstock and product prices. Both lignocellulose fractionation technology and effective co-utilization of acetic acid, lignin and hemicellulose will be vital to the realization of profitable lignocellulose biorefineries, since co-product revenues would increase the margin up to 6.2-fold, where all purified lignocellulose co-components have higher selling prices (> approximately 1.0/kg) than ethanol ( approximately 0.5/kg of ethanol). Isolation of large amounts of lignocellulose components through lignocellulose fractionation would stimulate R&D in lignin and hemicellulose applications, as well as promote new markets for lignin- and hemicellulose-derivative products. Lignocellulose resource would be sufficient to replace significant fractionations (e.g., 30%) of transportation fuels through liquid biofuels, internal combustion engines in the short term, and would provide 100% transportation fuels by sugar-hydrogen-fuel cell systems in the long term. PMID:18180967

  14. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  15. Spent fuel management strategies

    International Nuclear Information System (INIS)

    Nuclear fuel cycle is divided into two sections; front end and back end of the fuel cycle. Front end of the fuel cycle, which covers all the activities of the fuel cycle before the fuel goes into the reactor has better developed and well-defined technologies. For storage of the spent fuel which are subjects of the back end of the fuel cycle, the waste management policies are not so well defined. There are three approaches that exist today for management of spent fuel. 1. For once through or open fuel cycles direct disposal of spent fuel in a deep geological repository, 2. For closed fuel cycles reprocessing of spent fuel and recycling of the recovered plutonium and uranium in new mixed oxide (MOX) fuels, 3. The spent fuel is placed in long term interim storage pending a decision as to its ultimate reprocessing or disposal. There are so large scale geological repositories for the final disposal of spent fuel in operation. Studies on suitable site selection, design, construction and licensing take about 30-40 years. Reprocessing, on the other hand, produces plutonium and is therefore under close inspection because of the Non Proliferation Treaty. Today more countries are delaying their final decision about the spent fuel management approach and using the long term interim storage approach

  16. Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus.

    Science.gov (United States)

    Li, Ming; Si, Shengli; Hao, Bo; Zha, Yi; Wan, Can; Hong, Shufen; Kang, Yongbo; Jia, Jun; Zhang, Jing; Li, Meng; Zhao, Chunqiao; Tu, Yuanyuan; Zhou, Shiguang; Peng, Liangcai

    2014-10-01

    In this study, various alkali-pretreated lignocellulose enzymatic hydrolyses were evaluated by using three standard pairs of Miscanthus accessions that showed three distinct monolignol (G, S, H) compositions. Mfl26 samples with elevated G-levels exhibited significantly increased hexose yields of up to 1.61-fold compared to paired samples derived from enzymatic hydrolysis, whereas Msa29 samples with high H-levels displayed increased hexose yields of only up to 1.32-fold. In contrast, Mfl30 samples with elevated S-levels showed reduced hexose yields compared to the paired sample of 0.89-0.98 folds at pextraction of lignin-hemicellulose complexes than the S- and H-rich samples upon NaOH pretreatment, resulting in large removal of lignin inhibitors to yeast fermentation. Therefore, this study proposes an optimal approach for minor genetic lignin modification towards cost-effective biomass process in Miscanthus. PMID:25079210

  17. Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes.

    Science.gov (United States)

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2013-02-15

    Winery wastes were composted in the laboratory during five months in order to study the composting process of lignocellulosic wastes. In a first experiment, spent grape marc was composted alone, and in a second one, hydrolyzed grape marc, which is the residue generated after the acid hydrolysis of spent grape marc for biotechnological purposes, was composted together with vinification lees. During the composting of spent grape marc, total organic matter did not change, and as total N increased only slightly (from 1.7% to 1.9%), the reduction in the C/N ratio was very low (from 31 to 28). The mixture of hydrolyzed grape marc and lees showed bigger changes, reaching a C/N ratio around 20 from the third month on. Water-soluble organic matter followed the usual trend during composting, showing a progressive decrease in both experiments. Although the mixture of hydrolyzed grape marc and lees presented the highest initial water-soluble carbon concentrations, the final values for both experiments were similar (8.1 g kg(-1) for the spent grape marc, and 9.1 g kg(-1) for the mixture). The analysis of the humification parameters did not allow an adequate description of the composting process, maybe as a consequence of the inherent problems existing with alkaline extractions. The total humic substances, which usually increase during composting as a consequence of the humification process, followed no trend, and they were even reduced with respect to the initial values. Notwithstanding, the fractionation of organic matter into cellulose, hemicellulose and lignin enabled a better monitoring of the waste decomposition. Cellulose and hemicellulose were degraded mainly during the first three months of composting, and the progressive reduction of the cellulose/lignin ratio proved that the main evolution of these wastes took place during the first three months of composting. PMID:23274588

  18. Biological activities of lignin hydrolysate-related compounds

    Directory of Open Access Journals (Sweden)

    Siseon Lee

    2012-05-01

    Full Text Available Lignin hydrolysates contain many different chemical species,including ferulic acid, coumaric acid, vanillic acid, vanillin,syringaldehyde and furfural. From the perspective of biofuels,these compounds are problematic and can cause downstreamloss of product if not removed prior to beginning the fermentativeprocess. In contrast, a search for these compounds withinthe literature turns up many papers where the same compoundshave beneficial properties pertaining to human health,including as antioxidants and in cancer prevention, or are involvedin bacterial cell-to-cell signaling. Consequently, this articlereviews the dual nature of these and other compoundsfound in lignin hydrolysates, highlighting both their detrimentaland beneficial activities. [BMB Reports 2012; 45(5:265-274

  19. Biodegradable packing materials from hydrolysates of collagen waste proteins.

    Science.gov (United States)

    Langmaier, F; Mokrejs, P; Kolomaznik, K; Mladek, M

    2008-01-01

    Enzymatic hydrolysates of waste collagen proteins (H), from current industrial manufacture (leather, edible meat product casings, etc.) of mean molecular mass 20-30 kDa by a reaction with dialdehyde starch (DAS), produces hydrogels applicable as biodegradable (or even edible) packaging materials for food, cosmetic and pharmaceutical products. Thermo-reversibility of prepared hydrogels is given by concentrations of H and DAS in a reaction mixture. At concentrations of H 25-30% (w/w) and that of DAS 15-20% (related to weight of hydrolysate), thermo-reversible hydrogels arise, which can be processed into packaging materials by a technique similar to that of soft gelatin capsules (SGC). Exceeding the limit of 20% DAS leads to hydrogels that are thermo-reversible only in part, a further increase in DAS concentration then leads to thermo-irreversible gels whose processing into biodegradable packaging materials necessitates employment of other procedures. PMID:17376664

  20. A primer for lignocellulose biochemical conversion to fuel ethanol

    Science.gov (United States)

    This review examines the commercialization of lignocellulose as a feedstock for ethanol production. The review discusses the entire process and individual unit operations in more detail. The unit operations discussed include: plant production, pretreatment, enzymatic hydrolysis, and fermentation....

  1. The spent fuel fate

    International Nuclear Information System (INIS)

    The spent fuel is not a waste. It can be upgrade by a reprocessing which extracts all products able to produce energy. The today situation is presented and economically analyzed and future alternatives are discussed. (A.L.B.)

  2. Spent fuel cask

    International Nuclear Information System (INIS)

    Purpose: In order to ensure safety of a spent fuel cask, a method for strengthening a basket and keeping a interior in the cask at a subcritical state has been described. Constitution: The interior of the hollow cylinder of the cask is partitioned by a lattice-shaped basket accommodating therein a neutron absorption substance. In the thus partitioned chamber there is provided a hollow prismatic bolt, in which spent fuel assemblies are accomodated. The other part of the basket is filled with water, thereby shielding radiation emitted from spent fuel assemblies on one hand and cooling spent fuel assemblies on the other. The filled neutron absorbers are in a powdery or granular state, and diffused rapidly in water when any accident takes place thereby keeping the cask at a subcritical state. (Yoshino, M.)

  3. Spent fuel workshop'2002

    International Nuclear Information System (INIS)

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO2 fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO2 dissolution determined from electrochemical experiments with 238Pu doped UO2 M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO2 studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with ? doped UO2 in Boom clay conditions (K. Lemmens), Studies of the behavior of UO2 / water interfaces under He2+ beam (C. Corbel), Alpha and gamma radiolysis effects on UO2 alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines (M. Kelm), On the potential catalytic behavior of UO2(s): experimental approach and preliminary results on uranium oxide - water interface (J. Devoy), Preliminary results on studies on radiolysis effects on dissolution of UO2 (E. Ekeroth, M. Jonnson); Session 5 - Modeling of the Spent Fuel Dissolution: tUO2 dissolution and the effect of radiolysis (T. Lundstrom), Prediction of the effect of radiolysis (F. King), Experimental determination and chemical modeling of radiolytic processes at the spent fuel / water interface (E. Cera, J. Bruno, T. Eriksen, M. Grive, L. Duro); Session 6 - Influence of the Potential Evolution prior to the Water Access on IRF: Potential occurrence of ? self-irradiation enhanced-diffusion (H.J. Matzke, T. Petit), Are grain boundaries a stable microstructure? (Y. Guerin), Modeling RN instant release fractions from spent nuclear fuel under repository conditions (C.Poinssot, L. Johnson, P. Lovera). (J.S.)

  4. Selection of lactic acid bacteria able to ferment inulin hydrolysates

    OpenAIRE

    Octavian BASTON; Oana Emilia CONSTANTIN

    2012-01-01

    Eight homofermentative lactic acid bacteria isolates were tested for lactic acid production using chicory and Jerusalem artichoke hydrolysate as substrate. The pH, lactic acid yield and productivity were used to select the best homolactic bacteria for lactic acid production. The selected strains produced lactic acid at maximum yield after 24 hours of fermentation and the productivity was greater at 24 hours of fermentation. From all studied strains, Lb1 and Lb2 showed the best results regardi...

  5. In vitro Antioxidant Activities of Trianthema portulacastrum L. Hydrolysates

    OpenAIRE

    Yaqoob, Sadaf; Sultana, Bushra; Mushtaq, Muhammad

    2014-01-01

    Hydrolysates of Trianthema portulacastrum in acidified methanol were evaluated for their total phenolic (TP) constituents and respective antioxidant activities using in vitro assays (i.e., 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, percent inhibition of linoleic acid peroxidation, and ferric reducing power). The observed results indicate that root, shoot, and leaf fractions of T. portulacastrum contain 50.75~98.09 mg gallic acid equivalents/g dry weight of TP. In additi...

  6. Effect of Protein Hydrolysates on Pancreatic Cancer Cells

    DEFF Research Database (Denmark)

    Ossum, Carlo G.; Andersen, Lisa Lystbæk; Nielsen, Henrik Hauch; Hoffmann, Else K.; Jessen, Flemming

    2010-01-01

    Effect of Fish Protein Hydrolysates on Pancreatic Cancer Cells Carlo G. Ossum1, Lisa Lystbæk Andersen2, Henrik Hauch Nielsen2, Else K. Hoffmann1, and Flemming Jessen2 1University of Copenhagen, Department of Biology, Denmark, 2Technical University of Denmark (DTU), National Food Institute, Denmark Corresponding author: Carlo G. Ossum (cgossum@gmail.com) A large number of bioactive peptides have been identified in and isolated from various food sources. Milk seems to be a particularly rich source...

  7. Multiple Levels of Synergistic Collaboration in Termite Lignocellulose Digestion

    OpenAIRE

    Scharf, Michael E; Karl, Zachary J.; Sethi, Amit; Boucias, Drion G.

    2011-01-01

    In addition to evolving eusocial lifestyles, two equally fascinating aspects of termite biology are their mutualistic relationships with gut symbionts and their use of lignocellulose as a primary nutrition source. Termites are also considered excellent model systems for studying the production of bioethanol and renewable bioenergy from 2nd generation (non-food) feedstocks. While the idea that gut symbionts are the sole contributors to termite lignocellulose digestion has remained popular and ...

  8. Processing Lignocellulosic Biomass into Ethanol - Implications of High Solid Loadings

    OpenAIRE

    Palmqvist, Benny

    2014-01-01

    Fuel ethanol from lignocellulosic biomass has the potential to provide a sustainable replacement for traditional oil-based fuels. This dissertation assesses the processing of three different lignocellulosic materials – spruce, wheat straw and giant reed – at industrially relevant solid loadings. The work is divided into two main parts. The first part deals with the degradation of biomass to sugars, focusing on the complex rheological behavior of biomass slurries and the connection to mixing d...

  9. Microbial Activity on the Degradation of Lignocellulosic Polysaccharides

    OpenAIRE

    Zakaria Ahmed; Hasina Banu; M. Motiur Rahman; Firaza Akhter; M. Shamsul Haque

    2001-01-01

    In present world there is an increase in demand for organic waste disposal to minimize pollution and maximize resource recovery. Several workers from various parts of the world have reported successful conversion of waste materials to useful compost. Lignocellulose comprises three different polymer types: lignin, hemicellulose and cellulose. Bioconversion of lignocellulosic material through microbial enzyme to produce fermentable sugars has been given serious consideration and continuous rese...

  10. LIGNOCELLULOSIC BIOMASS: A POTENTIAL FEEDSTOCK TO REPLACE PETROLEUM

    OpenAIRE

    Lucian A. Lucia

    2008-01-01

    Sustainability considerations for product and energy production in a future US economy can be met with lignocellulosic biomass. The age of petroleum as the key resource to meet the US economy requirements is rapidly dwindling, given the limited resources of petroleum, the growing global population, and concurrent detrimental effects on environmental safety. The use of natural and renewable feedstocks such as trees and switchgrass is becoming more attractive; indeed, lignocellulosic biomass i...

  11. Spent fuel management

    International Nuclear Information System (INIS)

    The production of nuclear electricity results in the generation of spent fuel that requires safe, secure and efficient management. Appropriate management of the resulting spent fuel is a key issue for the steady and sustainable growth of nuclear energy. Currently about 10,000 tonnes heavy metal (HM) of spent fuel are unloaded every year from nuclear power reactors worldwide, of which 8,500 t HM need to be stored (after accounting for reprocessed fuel). This is the largest continuous source of civil radioactive material generated, and needs to be managed appropriately. Member States have referred to storage periods of 100 years and even beyond, and as storage quantities and durations extend, new challenges arise in the institutional as well as in the technical area. The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs

  12. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    Science.gov (United States)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-08-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 ?M to 1930 ?M and IC50 on superoxide anion was decreased from 3.91 ?g/mL to 1.29 ?g/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries.

  13. Antioxidant activity of whey protein hydrolysates in milk beverage system.

    Science.gov (United States)

    Mann, Bimlesh; Kumari, Anuradha; Kumar, Rajesh; Sharma, Rajan; Prajapati, Kishore; Mahboob, Shaik; Athira, S

    2015-06-01

    The aim of the present study was to evaluate the antioxidant activity of flavoured milk enriched with antioxidative whey protein hydrolysates (WPHs) by radical scavenging method. Whey protein concentrate (WPC) was hydrolyzed by using three commercial proteases; flavouzyme, alcalase and corolase PP and these WPHs were analyzed for degree of hydrolysis and antioxidant activity. The antioxidant activities of these WPHs were evaluated using ABTS method. Trolox equivalent antioxidant activity of all the hydrolysates i.e. flavourzyme (0.81?±?0.04), alcalase (1.16?±?0.05) and corolase (1.42?±?0.12) was higher than the WPC (0.19?±?0.01). Among these, whey protein hydrolysates prepared using corolase showed maximum antioxidant activity. Total 15 ?-lactoglobulin, 1 ?-lactoalbumin, and 6 ?-casein derived peptide fragments were identified in the WPHs by LC-MS/MS. Due to their size and characteristic amino acid composition, all the identified peptides may contribute for the antioxidant activity. The strawberry and chocolate flavoured milk was supplemented with WPC and WPHs and 2 % addition has shown increase in antioxidant activity upto 42 %. The result suggests that WPH could be used as natural biofunctional ingredients in enhancing antioxidant properties of food products. PMID:26028704

  14. The Use of Protein Hydrolysates for Weed Control

    Science.gov (United States)

    Christians, Nick; Liu, Dianna; Unruh, Jay Bryan

    Corn gluten meal, the protein fraction of corn (Zea mays L.) grain, is commercially used as a natural weed control agent and nitrogen source in horticultural crops and in the turf and ornamental markets. Corn gluten hydrolysate, a water soluble form of gluten meal, has also been proposed for the same purpose, although it could be sprayed on the soil rather than applied in the granular form. Five depeptides, glutaminyl-glutamine (Gln-Gln), glycinyl-alanine (Gly-Ala), alanyl-­glutamine (Ala-Glu), alanyl-asparagine (Ala-Asp), and alaninyl-alanine (Ala-Ala) and a pentapeptide leucine-serine-proline-alanine-glutamine (Leu-Ser-Pro-Ala-Gln) were identified as the active components of the hydrolysate. Microscopic analysis revealed that Ala-Ala acted on some metabolic process rather than directly on the mitotic apparatus. Similar to the chloracetamides and sulfonyl-urea hebicides, Ala-Ala inhibits cell division rather than disrupting of cell division processes. Cellular ultrastructure changes caused by exposure to Ala-Ala implicate Ala-Ala as having membrane-disrupting characteristics similar to several synthetic herbicides. The potential use of the hydrolysate and the peptides as weed controls is discussed.

  15. Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose

    Energy Technology Data Exchange (ETDEWEB)

    Rahikainen, J.

    2013-11-01

    Today, the production of transportation fuels and chemicals is heavily dependent on fossil carbon sources, such as oil and natural gas. Their limited availability and the environmental concerns arising from their use have driven the search for renewable alternatives. Lignocellulosic plant biomass is the most abundant, but currently underutilised, renewable carbon-rich resource for fuel and chemical production. Enzymatic degradation of structural polysaccharides in lignocellulose produces soluble carbohydrates that serve as ideal precursors for the production of a vast amount of different chemical compounds. The difficulty in full exploitation of lignocellulose for fuel and chemical production lies in the complex and recalcitrant structure of the raw material. Lignocellulose is mainly composed of structural polysaccharides, cellulose and hemicellulose, but also of lignin, which is an aromatic polymer. Enzymatic degradation of cellulose and hemicellulose is restricted by several substrate- and enzyme-related factors, among which lignin is considered as one of the most problematic issues. Lignin restricts the action of hydrolytic enzymes and enzyme binding onto lignin has been identified as a major inhibitory mechanism preventing efficient hydrolysis of lignocellulosic feedstocks. In this thesis, the interactions between cellulase enzymes and lignin-rich compounds were studied in detail and the findings reported in this work have the potential to help in controlling the harmful cellulase-lignin interactions, and thus improve the biochemical processing route from lignocellulose to fuels and chemicals.

  16. Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe.

    Science.gov (United States)

    Intarasirisawat, Rossawan; Benjakul, Soottawat; Visessanguan, Wonnop; Wu, Jianping

    2012-12-15

    Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe, hydrolysed by Alcalase 2.4 L (RPH) with different degrees of hydrolysis (DH) at various concentrations were examined. As DH increased, the reduction of DPPH, ABTS radicals scavenging activities and reducing power were noticeable (pemulsion ability index (EAI) and foam stability (FS) of hydrolysates were observed at low DH (5%) (pfood additives possessing both antioxidant activity and functional properties. PMID:22980906

  17. Ultrasonic-Assisted Enzymolysis to Improve the Antioxidant Activities of Peanut (Arachin conarachin L.) Antioxidant Hydrolysate

    OpenAIRE

    Qingli Yang; Chushu Zhang; Shaofang Liu; Jie Bi; Jie Sun; Lina Yu

    2012-01-01

    The objective of this work is to provide a theoretical basis for preparing peanut antioxidant hydrolysate in order to improve its antioxidant activities. Therefore, response surface methodology (RSM) based on the Box-Behnken design was used to optimize ultrasonic-assisted enzymolysis for the purpose of preparing peanut antioxidant hydrolysate. Results indicated that the DPPH free radical scavenging activity of peanut hydrolysate could reach 90.06% under the following optimum conditions: ultra...

  18. Effect of moisture on pretreatment efficiency for anaerobic digestion of lignocellulosic substrates.

    Science.gov (United States)

    Peces, M; Astals, S; Mata-Alvarez, J

    2015-12-01

    The present study evaluates the effect of moisture in low-temperature and ultrasound pretreatment on lignocellulosic substrates anaerobic biodegradability, where brewer's spent grain was used as model substrate. Besides moisture content, low-temperature pretreatment was also evaluated in terms of temperature (60-80°C) and exposure time (12-72h). Likewise, ultrasonication was also evaluated in terms of specific energy (1000-50,000kJkgTS(-1)). In addition, the effect of substrate particle size reduction by milling pretreatment was also considered. The results clearly demonstrated that substrate moisture (total solid concentration) is a significant parameter for pretreatment performance, although it has been rarely considered in pretreatment optimisation. Specifically, moisture optimisation increased the methane yield of brewer's spent grain by 6% for low-temperature pretreatment (60°C), and by 14% for ultrasound pretreatment (1000kJkgTS(-1)) towards the control (without pretreatment). In both pretreatments, the experimental optimum total solid concentration was 100gTSkg(-1). Thus, lowering substrate moisture, a strategy suggested attaining energetic pretreatment feasibility, needs to be analysed as another pretreatment variable since it might have limited correlation. Finally, a preliminary energetic balance of the pretreatments under study showed that the extra methane production could not cover the energetic pretreatment expenses. PMID:26316102

  19. Laccase Enzymology in Relation to Lignocellulose Processing

    DEFF Research Database (Denmark)

    Sitarz, Anna Katarzyna

    2013-01-01

    Several studies have indicated that cellulase action on cellulose fibers and their conversion to glucose is inhibited by lignin and lignin-derived phenolic substances, which are released during the pretreatment of lignocellulosic biomass. A prerequisite for optimization of the cellulose-to-glucose conversion is to either get rid of the inhibitory substances or to alter them in a way, so they no longer decrease the action of cellulases. The main focus in the present work was the investigation of the influence of the enzymes that are being expressed from the white-rot fungi when lignin was present in the cultivation broth, on the cellulase catalyzed hydrolysis of pretreated biomass, and to understand the mechanism of their action on phenolic substances. In this thesis, 44 fungi from the genus Alternaria, Fusarium, Memnoniella, Stemphylium, Ulocladium, Ganoderma, Trametes, and Polyporus were evaluated for their ability to grow on lignocellulosic material, such as sugarcane bagasse – a competitive substrate forgrain bioethanol. From this investigation, four white-rot fungi (Ganoderma lucidum, Trametes versicolor, Polyporus brumalis, and Polyporus ciliatus), were selected for the growth on lignin (lignin alkaline) and investigated for production of enzymes under such conditions (Paper I). G. lucidum was found to produce high amounts of laccase which corresponded to its exceptional growth on lignocellulosic substrate and lignin. This observation led to a hypothesis that this particular laccase might act in a synergistic way with cellulase preparations and yield in higher cellulose-to-glucose catalyzed hydrolysis. To test this hypothesis the laccase-rich crude extract from G. lucidum was added to the cellulase catalyzed hydrolysis of cellulose from the pretreated sugarcane bagasse (Paper I). A positive outcome of this reaction, a 17% increase in the total glucose yields during cellulase catalyzed hydrolysis of cellulose, led to amplification of laccase gene and its expression in Pichia pastoris (Paper II). This approach was directed into obtaining a monocomponent laccase enzyme and to prove that the higher yields of cellulose-to-glucose conversion are partly due to the presence of laccase, and are not caused by the other proteins, present in the laccase-rich crude protein extract. The addition of the laccase from G. lucidum, expressed in P. pastoris resulted in a total increase in the glucose yields by 20 and 33% depending on the cellulase cocktail preparation. This discovery is significant considering the fact that the cellulase cocktail preparations, namely Cellic®CTec1 and Cellic®CTec2, are improved in respect to phenolic-derived, and end-substrate inhibitors. Additionally, the molecular dynamics simulations (MD) of the obtained amino acid sequence of the laccase from G. lucidum highlighted a potential mechanism of laccase detoxification of the cellulase-pretreated-biomass-derived inhibitors (Paper II). The mechanism of laccase reaction on the phenolic substrates was further evaluated by the literature study of the reactions that take place in the catalytic pocket of this oxidoreductases and the structural alteration that can lead to a more robust, or completely inactive, laccase (Review paper).

  20. Disposal of spent fuel

    International Nuclear Information System (INIS)

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed between the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom

  1. Sustainable Process Design of Lignocellulose based Biofuel

    DEFF Research Database (Denmark)

    Mangnimit, Saranya; Malakul, Pomthong

    Worldwide energy demand has increased steadily as the world population has grown and more countries have become industrialized. The major energy sources of the world still depend on fossil fuels, which are also the main sources for carbon dioxide emission. As the fossil fuels always pass through a combustion processing step, carbondioxide and other important greenhouse gases are released. This is considered non-renewable and non-sustainable energy and may be one of the major causes of global warming and therefore, climate change concerns coupled with high oil prices. This isdriving efforts to increase the production and use of alternative and sustainable energy sources as rapidly as possible. Biofuel is a type of alternative energy that can be produced from many sources including sugar substances (such as sugarcane juice and molasses), starchy materials (such as corn and cassava), and lignocellulosic materials such as agricultural residual, straw and wood chips, the residual from wood industry. However, thosesugar and starchy materials can be used not only to make biofuels but they are also food sources. Thus, lignocellulosic materials are interesting feed-stocls as they are inexpensive, abundantly available, and are also non-food crops. In this respect, Cassava rhizome has several characteristics that make it a potential feedstock for fuel ethanol production. It has high content of cellulose and hemicelluloses . The objective of this paper is to present a study focused on the sustainable process design of bioethanol production from cassava rhizome using various computer aided tools through a systematic and effiicient work-flow, The study includes process simulation, sustainability analysis, economic evaluation and life cycle assessment (LCA) according to a well-defined workflow that guarantees the deermination of sustainable process options, if they exist. . The paper will highlight an improved alternative process design compared to a base case (published) design in terms of production cost, waste, energy usage and environmental impacts, criteria that are asociated with sustainable process design. The final process design includes 39 unit operations, has a capacity of 150,000 L/day and produces dry ethanol (approximately 13.0% of cassava rhizome is converted to ethanol)

  2. Bacterial hydrolysis and methane fermentation of lignocellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Tong, X.

    1992-01-01

    In order for methane fermentation of lignocellulosic materials to be an effective method for providing both a renewable energy source and a means to reduce the volume of municipal solids wastes, a better understanding of the fermentation process is required, because this process has been generally observed to be a slow and incomplete one. This dissertation focused on understanding of the rate-limiting mechanisms of methane fermentation, including the influence of the type of lignocellulosic materials, bacterial culture characteristics, bacterial concentration, pH, and temperature. Lignocellulosic materials selected for this study were: corn stover, wheat straw, napier grass, wood grass, newspaper, and white fir. Four methanogenic cultures grown on monosaccharides, purified holocellulose, wheat straw, and mixed municipal sludge, respectively, were developed at 35[degrees]C and neutral pH. Each of the four bacterial cultures developed a glucose and cellobiose consumption potential higher than the methanogenic potential, which in turn was higher than the lignocellulosic hydrolysis potential. Further examination of lignocellulosic hydrolysis revealed that it is the step in which bacteria and enzymes can have access to holocellulosic polymers that limits the hydrolysis rate. Microscopic examination revealed that hydrolysis appears to have occurred only at the points of physical contact between the hydrolytic bacteria and the particle surface. Both fermentation rate and extent were greatly influenced by the lignocellulosic material used and by pH and temperature, but they were much less affected by the bacterial culture employed. Lignocellulosic hydrolysis reached a maximum rate at relatively low bacterial concentrations. Both hydrolysis and fermentation processes can be adequately modeled by a first-order rate equation. Linear correlations between lignin content and biodegradability or methane conversion rate were very poor.

  3. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2011-11-01

    Full Text Available Abstract Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. Results During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe2+ ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe2+ ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe2+ ion pretreatment, in which delamination and fibrillation of the cell wall were observed. Conclusions By using this multimodal approach, we have revealed that (1 acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2 this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  4. Advanced anaerobic bioconversion of lignocellulosic waste for the melissa life support system

    Science.gov (United States)

    Lissens, G.; Verstraete, W.; Albrecht, T.; Brunner, G.; Creuly, C.; Dussap, G.; Kube, J.; Maerkl, H.; Lasseur, C.

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of the MELiSSA loop (Micro-Ecological Life Support System Alternative). The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g-1 VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T ˜ 310-350C, p ˜ 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis offers interesting features for (nearly) the MELiSSA system. The described additional technologies show that complete and hygienic carbon and energy recovery from human waste within MELiSSA is technically feasible, provided that the extra energy needed for the thermal treatment is guaranteed.

  5. Spent Fuel in Chile

    International Nuclear Information System (INIS)

    The government has made a complete and serious study of many different aspects and possible road maps for nuclear electric power with strong emphasis on safety and energy independence. In the study, the chapter of SFM has not been a relevant issue at this early stage due to the fact that it has been left for later implementation stage. This paper deals with the options Chile might consider in managing its Spent Fuel taking into account foreign experience and factors related to safety, economics, public acceptance and possible novel approaches in spent fuel treatment. The country’s distinctiveness and past experience in this area taking into account that Chile has two research reactors which will have an influence in the design of the Spent Fuel option. (author)

  6. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  7. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes

    Science.gov (United States)

    Second generation feedstock, especially nonfood lignocellulosic biomass, has been seen as a potential source for biofuel production. Cost intensive pretreatment operations, including physical, chemical, biological, and slow enzymatic hydrolysis, make the overall process of lignocellulosic conversio...

  8. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the development of advanced nuclear fuel cycles is also given. As a conclusion, spent fuel reprocessing options have evolved significantly since the start of nuclear energy application. There is a large body of industrial experience in fuel cycle technologies complemented by research and development programs in several countries

  9. Hyperthermophilic endoglucanase for in planta lignocellulose conversion

    Science.gov (United States)

    2012-01-01

    Background The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. Results Here we show that a cellulase gene (sso1354) isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade ?-cellulose or even complex cell wall preparations under those pretreatment conditions. Conclusion The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications. PMID:22928996

  10. Hyperthermophilic endoglucanase for in planta lignocellulose conversion

    Directory of Open Access Journals (Sweden)

    Klose Holger

    2012-08-01

    Full Text Available Abstract Background The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. Results Here we show that a cellulase gene (sso1354 isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade ?-cellulose or even complex cell wall preparations under those pretreatment conditions. Conclusion The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications.

  11. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    Science.gov (United States)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol from straw. We also evaluated the production of world's most important grains (wheat, corn, rice, sugar cain) and we calculated the worldwide production of the relevant lignocellulosic residues. On the basis of our labs scale experiments on bioethanol production, the possible lignocellulosic bioethanol production word wide was determined.

  12. Thermoset-cross-linked lignocellulose: a moldable plant biomass.

    Science.gov (United States)

    Karumuri, Sriharsha; Hiziroglu, Salim; Kalkan, A Kaan

    2015-04-01

    The present work demonstrates a high biomass content (i.e., up to 90% by weight) and moldable material by controlled covalent cross-linking of lignocellulosic particles by a thermoset through epoxide-hydroxyl reactions. As an example for lignocellulosic biomass, Eastern redcedar was employed. Using scanning fluorescence microscopy and vibrational spectroscopy, macroscopic to molecular scale interactions of the thermoset with the lignocellulose have been revealed. Impregnation of the polymer resin into the biomass cellular network by capillary action as well as applied pressure results in a self-organizing structure in the form of thermoset microrods in a matrix of lignocellulose. We also infer permeation of the thermoset into the cell walls from the reaction of epoxides with the hydroxyls of the lignin. Compression tests reveal, at 30% thermoset content, thermoset-cross-linked lignocellulose has superior mechanical properties over a commercial wood plastic composite while comparable stiffness and strength to bulk epoxy and wood, respectively. The failure mechanism is understood to be crack propagation along the particle-thermoset interface and/or interparticle thermoset network. PMID:25734539

  13. Advancing lignocellulose bioconversion through direct assessment of enzyme action on insoluble substrates

    DEFF Research Database (Denmark)

    Goacher, Robyn E.; Selig, Michael J.; Master, Emma R.

    2014-01-01

    Microbial utilization of lignocellulose from plant cell walls is integral to carbon cycling on Earth. Correspondingly, secreted enzymes that initiate lignocellulose depolymerization serve a crucial step in the bioconversion of lignocellulosic biomass to fuels and chemicals. Genome and metagenome sequencing efforts that span the past decade reveal the diversity of enzymes that have evolved to transform lignocellulose from wood, herbaceous plants and grasses. Nevertheless, there are relatively few...

  14. Use of Ram Horn Hydrolysate as Peptone for Bacterial Growth

    OpenAIRE

    KURBANO?LU, Esabi Ba?aran; ALGUR, Ömer Faruk

    2002-01-01

    Peptone from ram horn was compared with a casein and other peptones for bacterial growth. First, horns were ground and 35 g of horn flour was hydrolyzed chemically (acid hydrolysis). As a result of this process, 30 g of the 35 g horn flour (85.7%) could be hydrolyzed. Hydrolyzed material was completed to 400 ml with deionized water, and this resulting solution was termed ram horn hydrolysate (RHH). The contents of protein, nitrogen, ash, some minerals, total sugars, total lipids and amino aci...

  15. Debittering of Protein Hydrolysates by Lactobacillus LBL-4 Aminopeptidase

    OpenAIRE

    Tchorbanov, Bozhidar; MARINOVA, Margarita; Grozeva, Lydia

    2011-01-01

    Yoghurt strain Lactobacillus LBL-4 cultivated for 8–10?h at pH ~6.0 was investigated as a considerable food-grade source of intracellular aminopeptidase. Cell-free extract manifesting >200?AP U/l was obtained from cells harvested from 1?L culture media. Subtilisin-induced hydrolysates of casein, soybean isolate, and Scenedesmus cell protein with degree of hydrolysis 20–22% incubated at 45°C for 10?h by 10 AP?U/g peptides caused an enlarging of DH up to 40–42%, 46–48%, and 38–40% respectively....

  16. Comparison of two posthydrolysis processes of Brewery's spent grain autohydrolysis liquor to produce a pentose-containing culture medium.

    Science.gov (United States)

    Duarte, Luís C; Carvalheiro, Florbela; Lopes, Sónia; Marques, Susana; Parajó, Juan Carlos; Gírio, Francisco M

    2004-01-01

    A readily fermentable pentose-containing hydrolysate was obtained from Brewery's spent grain by a two-step process consisting of an auto-hydrolysis (converting the hemicelluloses into oligosaccharides) followed by an enzymatic or sulfuric acid-catalyzed posthydrolysis (converting the oligosaccharides into monosaccharides). Enzymatic hydrolyses were performed with several commercial enzymes with xylanolytic and cellulolytic activities. Acid-catalyzed hydrolyses were carried out at 121 degrees C under various sulfuric acid concentrations and reaction times, and the effects of treatments were interpreted by means of a corrected combined severity factor (CS*), which varied in the range of 0.80-2.01. Under the tested conditions, chemical hydrolysis allowed higher pentose yields than enzymatic hydrolysis. Optimized conditions (defined by CS* = 1.10) allowed both complete monosaccharide recovery and low content of inhibitors. Liquors subjected to posthydrolysis under optimal conditions were easily fermented by Debaryomyces hansenii CCMI 941 in semiaerobic shake-flask experiments, leading to xylitol and arabitol as major fermentation products. The bioconversion process was improved by hydrolysate concentration and supplementation of fermentation media with casamino acids. PMID:15054252

  17. FISH MEALS, FISH COMPONENTS, AND FISH PROTEIN HYDROLYSATES AS POTENTIAL INGREDIENTS IN PET FOODS.

    Science.gov (United States)

    An experiment to determine the chemical composition and protein quality of thirteen fish substrates (pollock by-products, fish protein hydrolysates, and fish meals) was conducted, as was an experiment to determine palatability of two of these substrates, salmon protein hydrolysate and salmon meal wi...

  18. [Hepatoprotective properties of balm Herbamarin and hydrolysates from marine invertebrates in toxic hepatitis and ethanol intoxication].

    Science.gov (United States)

    Burtseva, T I; Semenova, N V; Popov, A M; Li, I A; Veselova, O B; Kozlovskaia, E P

    2005-01-01

    Protective properties of a syrup balm "Herbamarin" and food hydrolysates of scallop, octopus and crab were investigated using experimental toxic hepatitis and ethanol intoxication. Preventive administration of the balm and hydrolysates to animals subjected to an intoxications by 40% alcohol and CCl4 normalized clinical-diagnostic parameters of liver and blood plasma of experimental animals. PMID:15945353

  19. Study on Hydrolysis Conditions of Flavourzyme in Soybean Polypeptide Alcalase Hydrolysate and Soybean Polypeptide Refining Process

    Directory of Open Access Journals (Sweden)

    Yongsheng Ma

    2014-10-01

    Full Text Available Soybean protein Alcalase hydrolysate was further hydrolyzed by adopting Flavourzyme as hydrolytic enzyme. The optimal hydrolysis conditions of Flavourzyme was that pH was 7.0 at temperature 50°C and E/S(ratio of enzyme and substrate was 20LAPU/g. Bitterness value was reduced to 2 after Flavourzyme hydrolysis reaction in optimal hydrolysis conditions. The change of molecular weight distribution range from Alcalase hydrolysate to Flavourzyme hydrolysate was not obvious. DH (Degree of hydrolysis of soybean protein hydrolysate was increased to 24.2% which was improved 3.5% than Alcalase hydrolysate. Protein recovery proportion was increased to 73.2% which was improved 0.8% than Alcalase hydrolysate. Soybean polypeptide Flavourzyme hydrolysate was decolorized with activated carbon which optimal dosage was 1.2% solution amount (w/w. Anion/cation exchange process was used in the desalination processing of soybean polypeptide. Ratio of anion resin and cation resin was 2:3(V/V. The volume of hydrolysate processed was 5 times as the volume of anion resin. Ash content of soybean peptide solution reduced to 2.11% (dry basis, salinity decreased by 86% after desalination processing.

  20. Production of Defatted Palm Kernel Cake Protein Hydrolysate as a Valuable Source of Natural Antioxidants

    Science.gov (United States)

    Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Anwar, Farooq; Saari, Nazamid

    2012-01-01

    The aim of this study was to produce a valuable protein hydrolysate from palm kernel cake (PKC) for the development of natural antioxidants. Extracted PKC protein was hydrolyzed using different proteases (alcalase, chymotrypsin, papain, pepsin, trypsin, flavourzyme, and bromelain). Subsequently, antioxidant activity and degree of hydrolysis (DH) of each hydrolysate were evaluated using DPPH• radical scavenging activity and O-phthaldialdehyde spectrophotometric assay, respectively. The results revealed a strong correlation between DH and radical scavenging activity of the hydrolysates, where among these, protein hydrolysates produced by papain after 38 h hydrolysis exhibited the highest DH (91 ± 0.1%) and DPPH• radical scavenging activity (73.5 ± 0.25%) compared to the other hydrolysates. In addition, fractionation of the most effective (potent) hydrolysate by reverse phase high performance liquid chromatography indicated a direct association between hydrophobicity and radical scavenging activity of the hydrolysates. Isoelectric focusing tests also revealed that protein hydrolysates with basic and neutral isoelectric point (pI) have the highest radical scavenging activity, although few fractions in the acidic range also exhibited good antioxidant potential. PMID:22942692

  1. Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment.

    Science.gov (United States)

    Girgih, Abraham T; Chao, Dongfang; Lin, Lin; He, Rong; Jung, Stephanie; Aluko, Rotimi E

    2015-12-01

    Isolated pea protein (IPP) dispersions (1%, w/v) were pretreated with high pressure (HP) of 200, 400, or 600 MPa for 5 min at 24 °C or high temperature (HT) for 30 min at 100 °C prior to hydrolysis with 1% (w/w) Alcalase. HP pretreatment of IPP at 400 and 600 MPa levels led to significantly (P40%) oxygen radical absorption capacity (ORAC) of hydrolysates. 2,2-Diphenyl-1-picrylhydrazyl, superoxide radical and hydroxyl radical scavenging activities of pea protein hydrolysates were also significantly (P<0.05) improved (25%, 20%, and 40%, respectively) by HP pretreatment of IPP. Protein hydrolysates from HT IPP showed no ORAC, superoxide or hydroxyl scavenging activity but had significantly (P<0.05) improved (80%) ferric reducing antioxidant power. The protein hydrolysates had weaker antioxidant properties than glutathione but overall, the HP pretreatment was superior to HT pretreatment in facilitating enzymatic release of antioxidant peptides from IPP. PMID:26041225

  2. Reprocessing of spent plasma

    International Nuclear Information System (INIS)

    This invention relates to a process for removing helium and other impurities from a mixture containing deuterium and tritium, a deuterium/tritium mixture when purified in accordance with such a process and, more particularly, to a process for the reprocessing of spent plasma removed from a thermofusion reactor. (U.K.)

  3. Spent fuel storage. Facts booklet

    International Nuclear Information System (INIS)

    In October 1977, the Department of Energy (DOE) announced a spent nuclear fuel policy where the Government would, under certain conditions, take title to and store spent nuclear fuel from commercial power reactors. The policy is intended to provide spent fuel storage until final disposition is available. DOE has programs for providing safe, long-term disposal of nuclear waste. The spent fuel storage program is one element of waste management and compliments the disposal program. The costs for spent fuel services are to be fully recovered by the Government from the utilities. This will allow the utilities to confidently consider the costs for disposition of spent fuel in their rate structure. The United States would also store limited amounts of foreign spent fuel to meet nonproliferation objectives. This booklet summarizes information on many aspects of spent fuel storage

  4. Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L.-derived proteinase.

    Science.gov (United States)

    Di Pierro, Giovanna; O'Keeffe, Martina B; Poyarkov, Alexey; Lomolino, Giovanna; FitzGerald, Richard J

    2014-08-01

    A Ficus carica L. latex proteinase preparation was investigated for its ability to produce antioxidant hydrolysates/peptides from bovine casein (CN). The Oxygen Radical Absorbance Capacity (ORAC) values for NaCN and ?-CN hydrolysates ranged from 0.06 to 0.18, and from 0.51 to 1.19?mol Trolox equivalents/mg freeze-dried sample, respectively. Gel permeation HPLC showed that the ?-CN hydrolysate with a degree of hydrolysis of 21% had 65% of peptide material with a molecular mass <500Da. The RP-UPLC profiles also indicated that ?-CN was substantially hydrolysed during the early stages of hydrolysis. Analysis of the 4h ?-CN hydrolysate by LC-ESI-MS/MS allowed identification of 8 peptide sequences with potential antioxidant properties. PMID:24629973

  5. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Januši?

    2008-06-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol.Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical(ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  6. LIGNOCELLULOSIC BIOMASS: A POTENTIAL FEEDSTOCK TO REPLACE PETROLEUM

    Directory of Open Access Journals (Sweden)

    Lucian A. Lucia

    2008-11-01

    Full Text Available Sustainability considerations for product and energy production in a future US economy can be met with lignocellulosic biomass. The age of petroleum as the key resource to meet the US economy requirements is rapidly dwindling, given the limited resources of petroleum, the growing global population, and concurrent detrimental effects on environmental safety. The use of natural and renewable feedstocks such as trees and switchgrass is becoming more attractive; indeed, lignocellulosic biomass is becoming a logical alternative to petroleum in light of looming oil shortages, increases in oil prices, and environmental sustainability considerations. This editorial aims at providing a broad overview of the consider-ations for replacing the US petroleum economy with one based on lignocellulosic biomass.

  7. Qualitative and quantitative analysis of lignocellulosic biomass using infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adapa, P.K.; Tabil, L.G. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Agricultural and Bioresource Engineering; Karunakaran, C. [Saskatchewan Univ., Saskatoon, SK (Canada). Canadian Light Source; Schoenau, G.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Mechanical Engineering

    2009-07-01

    Agricultural biomass or lignocellulosic residues such as barley, canola, oat and wheat straw have the potential to be used as feedstock for the biofuel industry. Low bulk density straw has to be processed and densified after harvest in order to facilitate efficient handling and transportation, and realize any potential economic benefits. Preliminary predictive models were developed to calculate the quantity of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat straw) by using Fourier transform infrared spectroscopy (FT-IR). It was important to estimate critical parameters through analytical specification of lignocellulosic biomass and consequently the development and validation of a procedure for the qualitative and quantitative analysis of cellulose-hemicellulose-lignin composition. The paper discussed the materials and methods, including sample material preparation; reference material preparation; measured data; FT-IR equipment; and quantitative analysis. 54 refs., 5 tabs., 10 figs.

  8. Pretreatments employed in lignocellulosic materials for bioethanol production: an overview

    Directory of Open Access Journals (Sweden)

    Danay Carrillo-Nieves

    2014-01-01

    Full Text Available Lignocellulosic materials are raw materials with high cellulose content and they constitute the most abun- dant sources of biomass on planet. They are attractive for their low cost and high availability in diverse climates and places for the bioethanol production, however, the main impediment for its use is the appro- priate selection from the technological and economic point of view of the stages of pretreatments and hydrolysis, that allow the breaking down of the lignocellulosic matrix to obtain the necessary substrates in the processes of fermentation. Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol, which have been divided in three groups for its study in: physi- cal-chemical, hydrothermal and biological. The aim of this paper is to analyze the potential of several pre- treatment methods for bioethanol production from lignocellulosic materials.

  9. Rheology of Lignocellulose Suspensions and Impact of Hydrolysis: A Review.

    Science.gov (United States)

    Nguyen, Tien Cuong; Anne-Archard, Dominique; Fillaudeau, Luc

    2015-01-01

    White biotechnologies have several challenges to overcome in order to become a viable industrial process. Achieving highly concentrated lignocellulose materials and releasing fermentable substrates, with controlled kinetics in order to regulate micro-organism activity, present major technical and scientific bottlenecks. The degradation of the main polymeric fractions of lignocellulose into simpler molecules is a prerequisite for an integrated utilisation of this resource in a biorefinery concept. The characterisation methods and the observations developed for rheology, morphology, etc., that are reviewed here are strongly dependent on the fibrous nature of lignocellulose, are thus similar or constitute a good approach to filamentous culture broths. This review focuses on scientific works related to the study of the rheological behaviour of lignocellulose suspensions and their evolution during biocatalysis. In order to produce the targeted molecules (synthon), the lignocellulose substrates are converted by enzymatic degradation and are then metabolised by micro-organisms. The dynamics of the mechanisms is limited by coupled phenomena between flow, heat and mass transfers in regard to diffusion (within solid and liquid phases), convection (mixing, transfer coefficients, homogeneity) and specific inhibitors (concentration gradients). As lignocellulose suspensions consist of long entangled fibres for the matrix of industrial interest, they exhibit diverse and complex properties linked to this fibrous character (rheological, morphological, thermal, mechanical and biochemical parameters). Among the main variables to be studied, the rheological behaviour of such suspensions appears to be determinant for process efficiency. It is this behaviour that will determine the equipment to be used and the strategies applied (substrate and biocatalysis feed, mixing, etc.). This review provides an overview of (i) the rheological behaviour of fibrous materials in suspension, (ii) the methods and experimental conditions for their measurements, (iii) the main models used and (iv) their evolution during biocatalytic reactions with a focus on enzymatic hydrolysis. PMID:25786712

  10. Antioxidative, DPP-IV and ACE inhibiting peptides from fish protein hydrolysed with intestinal proteases

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Stagsted, Jan

    Proteins from fish tissue could be a promising source of peptides with a nutritional and pharmaceutical value, e.g. as treatment of type 2 diabetes with dipeptidyl peptidase IV (DPP-IV) inhibiting peptides, and could be used in health and functional foods and thereby increasing the value of secondary marine products. The approach in this study is to hydrolyse skin and belly flap tissue from Salmon with the use of mammalian digestive proteases from pancreas and intestinal mucosa and test hydrolysates for antioxidative capacity, intestinal DPP-IV and angiotensin converting enzyme (ACE) inhibiting properties. 10kDa dialysis bags containing 10ml water were added to homogenized fish tissues, which were subsequently hydrolysed for 24 hours at 37?C and pH 8 with intestinal mucosa extract and/or pancreatin solution from pig. Dialysis bags were then removed and content were analyzed for free amino groups, antioxidative capacity by ABTS (2,2-azinobis(3-ethylbenzothiazoline-6-sulfonicacid)), DPP-IV and ACE inhibiting activity. Degree of hydrolysis (DH) of hydrolysates was approximately 13% and 10% for belly flap and skin respectively. No clear difference was observed in DH between pancreatin and pancreatin + mucosa hydrolysates. No DH was obtained for tissues hydrolysed with only intestinal mucosa extract. Preliminary results showed antioxidant activity and intestinal DPP-IV and ACE inhibiting activity in 10 kDa fraction from both belly flap and skin hydrolysates but with a higher antioxidative capacity in belly flap hydrolysates. No difference between hydrolysates with pancreatin and pancreatin+mucosa was observed. Hydrolysates will be further fractionated by gelfiltration. Fractions will be analyzed for the three bioactivities and also presented.

  11. Structural and Antihypertensive Properties of Enzymatic Hemp Seed Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Sunday A. Malomo

    2015-09-01

    Full Text Available The aim of this work was to produce antihypertensive protein hydrolysates through different forms of enzymatic hydrolysis (2% pepsin, 4% pepsin, 1% alcalase, 2% alcalase, 2% papain, and 2% pepsin + pancreatin of hemp seed proteins (HSP. The hemp seed protein hydrolysates (HPHs were tested for in vitro inhibitions of renin and angiotensin-converting enzyme (ACE, two of the enzymes that regulate human blood pressure. The HPHs were then administered orally (200 mg/kg body weight to spontaneously hypertensive rats and systolic blood pressure (SBP-lowering effects measured over a 24 h period. Size exclusion chromatography mainly showed a 300–9560 Da peptide size range for the HPHs, while amino acid composition data had the 2% pepsin HPH with the highest cysteine content. Fluorescence spectroscopy revealed higher fluorescence intensities for the peptides when compared to the unhydrolyzed hemp seed protein. Overall, the 1% alcalase HPH was the most effective (p < 0.05 SBP-reducing agent (?32.5 ± 0.7 mmHg after 4 h, while the pepsin HPHs produced longer-lasting effects (?23.0 ± 1.4 mmHg after 24 h. We conclude that an optimized combination of the fast-acting HPH (1% alcalase with the longer-lasting HPHs (2% and 4% pepsin could provide daily effective SBP reductions.

  12. Microbial Activity on the Degradation of Lignocellulosic Polysaccharides

    Directory of Open Access Journals (Sweden)

    Zakaria Ahmed

    2001-01-01

    Full Text Available In present world there is an increase in demand for organic waste disposal to minimize pollution and maximize resource recovery. Several workers from various parts of the world have reported successful conversion of waste materials to useful compost. Lignocellulose comprises three different polymer types: lignin, hemicellulose and cellulose. Bioconversion of lignocellulosic material through microbial enzyme to produce fermentable sugars has been given serious consideration and continuous research and development activities has been carried out in laboratories around the world. This article highlights the significant research findings and reviews the state of the art in this very important area of biotechnology.

  13. Integration of Lignocellulosic Biomass into Renewable Energy Generation Concepts

    Directory of Open Access Journals (Sweden)

    KUSCH Sigrid

    2009-08-01

    Full Text Available In all European countries various lignocellulosic biomasses such as agricultural residues (straw, strawcontaining dung or fractions from municipal solid waste are available in large amounts, but currently hardly any of thispotential is being used for energy generation. This paper reviews the different options for including lignocellulosicbiomass into renewable energy generation schemes. Not all wastes are suitable to be treated by principally availabletechniques such as anaerobic digestion, ethanol production or thermal valorisation. The present paper gives an overviewof utilisation options for lignocellulosic biomass to either produce biofuels or to integrate such biomass into anaerobicdigestion. Biorefinery concepts are discussed as well.

  14. Total reuse of brewer’s spent grain in chemical and biotechnological processes for the production of added-value compounds

    OpenAIRE

    Mussatto, Solange I.; Dragone, Giuliano; Teixeira, J. A., colab.; Roberto, Inês Conceição

    2008-01-01

    Brewer’s spent grain was fractionated by means of three different procedures: dilute acid hydrolysis, for the hemicellulose recovery; alkaline hydrolysis, for the lignin solubilization, and enzymatic hydrolysis, for the cellulose conversion into glucose. The best hydrolysis conditions were optimized to each case. The cellulosic and hemicellulosic hydrolysates produced under these conditions were used as fermentation medium for the production of lactic acid and xylitol, respectively. The effic...

  15. Spent fuel shipping casks

    International Nuclear Information System (INIS)

    The reply includes a list specifying the spent fuel tasks that have been licensed for shipment in the FRG by the Federal Radiation Protection Office. This list of permits forms part of the 'Directory of National Competent Authorities' Approval Certificates For Package Design and Shipment of Radioactive Material, 1990 Edition', IAEA-TECDOC-552, Vienna 1990. Applications for approval of some further casks are under review. In accordance with the IAEA recommendations for the safe transport of radioactive substances, which have been fully and authentically incorporated into the German regulations for the carriage of dangerous goods, spent fuel casks licensed for shipments have to be of the type B(U). Proof of safety of type B casks under accident conditions is given by design testing within the framework of the approval and licensing procedure subject to the traffic safety regulations. (orig./HSCH)

  16. Time well spent

    DEFF Research Database (Denmark)

    Fallesen, Peter

    2013-01-01

    Individuals who spent time in foster care as children fare on average worse than non-placed peers in early adult life. Recent research on the effect of foster care placement on early adult life outcomes provides mixed evidence. Some studies suggest negative effects of foster care placement on early adult outcomes, others find null effects. This study shows that differences in the average duration of foster care stays explain parts of these discordant findings and then test how foster care durati...

  17. Scintillator spent fuel monitor

    International Nuclear Information System (INIS)

    A monitor for rapidly measuring the gross gamma-ray flux immediately above spent fuel assemblies in underwater storage racks has been developed. It consists of a plastic scintillator, photomultiplier, collimator, and a small battery-powered electronics package. The crosstalk from an isolated fuel assembly to an adjacent void is only about 2%. The mean difference between the measured gamma-ray flux and the flux estimated from the declared burnup and cooling time with a simple formula is 22%

  18. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  19. Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes

    International Nuclear Information System (INIS)

    The relative contributions of procaryotes and eucaryotes to the degradation of the lignin and polysaccharide components of lignocellulosic detritus in two marine and two freshwater wetland ecosystems were determined. Two independent methods - physical separation of bacteria from fungi and other eucaryotes by size fractionation, and antibiotic treatments - were used to estimate procaryotic and eucaryotic contributions to the degradation of [14C-lignin]lignocelluloses and [13C-polysaccharide]lignocelluloses in samples of water and decaying plant material from each environment. Both methods yielded similar results; bacteria were the predominant degraders of lignocellulose in each of the aquatic ecosystems. These results indicate a basic difference between the microbial degradation of lignocellulosic material in terrestrial and aquatic environments. Fungi have long been considered the predominant degraders of lignocellulose in terrestrial systems; our results indicate that in aquatic systems bacteria are the predominant degraders of lignocellulose

  20. Spent fuel dissolution mechanisms

    International Nuclear Information System (INIS)

    This study is a literature survey on the dissolution mechanisms of spent fuel under disposal conditions. First, the effects of radiolysis products on the oxidative dissolution mechanisms and rates of UO2 are discussed. These effects have mainly been investigated by using electrochemical methods. Then the release mechanisms of soluble radionuclides and the dissolution of the UO2 matrix including the actinides, are treated. Experimental methods have been developed for measuring the grain-boundary inventories of radionuclides. The behaviour of cesium, strontium and technetium in leaching tests shows different trends. Comparison of spent fuel leaching data strongly suggests that the release of 90Sr into the leachant can be used as a measure of the oxidation/dissolution of the fuel matrix. Approaches to the modelling UO2, dissolution are briefly discussed in the next chapter. Lastly, the use of natural material, uraninite, in the evaluation of the long-term performance of spent fuel is discussed. (orig.). (81 ref., 37 figs., 8 tabs.)

  1. Uses of mechanically separated chicken meat for production from protein hydrolysates different proteolytic enzymes

    Directory of Open Access Journals (Sweden)

    Mari Silvia Rodrigues de Oliveira

    2014-02-01

    Full Text Available The use of hydrolyzed protein, derived from animal and vegetable sources, in specific formulations, is an area of growing interest. The aim of this study was to develop different powder hydrolysates with high protein value, from the enzymatic hydrolysis of mechanically deboned meat (MDM, a byproduct of the poultry industry, which can be a low-cost source for the production of these hydrolysates. The raw material used was frozen poultry mechanically deboned meat (MDM purchased from an abattoir in southern Brazil, before use it was thawed under refrigeration and homogenized in a processor by 2 minutes. Three commercial enzymes were used, Papain, Protamex® and Flavourzyme®. The hydrolysis occurred in a thermostatized bath with temperature, time and pH controlled. Proximal composition of the raw material and lyophilized hydrolysates, control analysis such as hydrolysis degree of hydrolysis, protein, total solids, ash and amino acid characterization of the hydrolysates were performed. The results were evaluated by analysis of variance and Tukey’s averages test. The hydrolyzed obtained from the papain enzyme showed the best behavior, followed by Protamex and Flavourzyme. The hydrolysates from papain enzyme had higher protein content, soluble solids and lower ash content compared to other hydrolysates. The amino acid composition showed that the hydrolyzate from papain has a closer composition to what is recommended by the control organs. It was concluded that the protein hydrolysates obtained from mechanically deboned chicken had high protein content characterizing them as a promising raw material in the formulation of special diets.

  2. Antioxidant activities of red tilapia (Oreochromis niloticus) protein hydrolysates as influenced by thermolysin and alcalase

    Science.gov (United States)

    Daud, Nur'Aliah; Babji, Abdul Salam; Yusop, Salma Mohamad

    2013-11-01

    The hydrolysis process was performed on fish meat from Red Tilapia (Oreochromis niloticus) by enzymes thermolysin and alcalase under optimum conditions. The hydrolysis was performed from 0 - 4 hours at 37°C. Hydrolysates after 2 hours incubation with thermolysin and alcalase had degree of hydrolysis of 76.29 % and 63.49 %, respectively. The freeze dried protein hydrolysate was tested for peptide content and characterized with respect to amino acid composition. The result of increased peptide content in Red Tilapia (O. Niloticus) hydrolysates obtained was directly proportional to the increase activities of different proteolytic enzymes. The result of amino acid composition showed that the sample used contained abundant Gly, Ala, Asp, Glu, Lys and Leu in residues or peptide sequences. Both enzymatic hydrolysates were tested for anti-oxidant activity with DPPH and ABTS assay. Alcalase yielded higher anti-oxidative activity than Thermolysin hydrolysates after 1 hour incubation, but both enzymes hydrolysates showed a significant decrease of anti-oxidant activity after 2 hours of incubation. Hydrolysates from Red Tilapia may contribute as a health promoting ingredient in functional foods to reduce oxidation stress caused by accumulated free radicals.

  3. Factors causing compositional changes in soy protein hydrolysates and effects on cell culture functionality.

    Science.gov (United States)

    Gupta, Abhishek J; Gruppen, Harry; Maes, Dominick; Boots, Jan-Willem; Wierenga, Peter A

    2013-11-13

    Soy protein hydrolysates significantly enhance cell growth and recombinant protein production in cell cultures. The extent of this enhancement in cell growth and IgG production is known to vary from batch to batch. This can be due to differences in the abundance of different classes of compounds (e.g., peptide content), the quality of these compounds (e.g., glycated peptides), or the presence of specific compounds (e.g., furosine). These quantitative and qualitative differences between batches of hydrolysates result from variation in the seed composition and seed/meal processing. Although a considerable amount of literature is available that describes these factors, this knowledge has not been combined in an overview yet. The aim of this review is to identify the most dominant factors that affect hydrolysate composition and functionality. Although there is a limited influence of variation in the seed composition, the overview shows that the qualitative changes in hydrolysate composition result in the formation of minor compounds (e.g., Maillard reaction products). In pure systems, these compounds have a profound effect on the cell culture functionality. This suggests that the presence of these compounds in soy protein hydrolysates may affect hydrolysate functionality as well. This influence on the functionality can be of direct or indirect nature. For instance, some minor compounds (e.g., Maillard reaction products) are cytotoxic, whereas other compounds (e.g., phytates) suppress protein hydrolysis during hydrolysate production, resulting in altered peptide composition, and, thus, affect the functionality. PMID:24117369

  4. Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability

    Directory of Open Access Journals (Sweden)

    Anoop Singh

    2015-11-01

    Full Text Available Among the various renewable energy sources, biohydrogen is gaining a lot of traction as it has very high efficiency of conversion to usable power with less pollutant generation. The various technologies available for the production of biohydrogen from lignocellulosic biomass such as direct biophotolysis, indirect biophotolysis, photo, and dark fermentations have some drawbacks (e.g., low yield and slower production rate, etc., which limits their practical application. Among these, metabolic engineering is presently the most promising for the production of biohydrogen as it overcomes most of the limitations in other technologies. Microbial electrolysis is another recent technology that is progressing very rapidly. However, it is the dark fermentation approach, followed by photo fermentation, which seem closer to commercialization. Biohydrogen production from lignocellulosic biomass is particularly suitable for relatively small and decentralized systems and it can be considered as an important sustainable and renewable energy source. The comprehensive life cycle assessment (LCA of biohydrogen production from lignocellulosic biomass and its comparison with other biofuels can be a tool for policy decisions. In this paper, we discuss the various possible approaches for producing biohydrogen from lignocellulosic biomass which is an globally available abundant resource. The main technological challenges are discussed in detail, followed by potential solutions.

  5. Lignocellulose Biomass: Constitutive Polymers. Biological Processes of Lignin Degradation

    International Nuclear Information System (INIS)

    The structure of the lignocellulosic materials and the chemical composition of their main constitutive polymers, cellulose, hemicelluloses and lignin are described. The most promising transformation processes according to the type of biomass considered: hardwood, softwood an herbaceous and the perspectives of biotechnological processes for bio pulping, bio bleaching and effluents decolorisation in the paper pulp industry are also discussed. (Author) 7 refs

  6. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process.

    Science.gov (United States)

    Lee, H V; Hamid, S B A; Zain, S K

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  7. The quality of silage of corn grain and spent P. ostreatus mushroom substrate

    Directory of Open Access Journals (Sweden)

    Adamovi? Milan J.

    2007-01-01

    Full Text Available The chemical composition, fermentation quality, mycological and mycotoxicological analyses of silage mixture, made of ground corn grain and spent P. ostreatus mushroom substrate, were investigated in this paper. Dry matter content in high moisture ground corn, at the time of ensiling was 70%, and in the spent substrate (on the Salt Cedar wood shaving basis was 52.7%. Corn grain to spent substrate ratio in trials was: 100:0% (I, 90:10% (II, 80:20% (III and 70:30% (IV respectively. Content of the lignocellulose fractions in silage was slightly increased, and protein content was slightly decreased with the increase of spent substrate content. Contents of the VFA (volatile fatty acids in silage, pH value, and NH3-N content were for the silage of very good quality. In the spent substrate 9 mold species were found, from which the most frequent were genus Penicillium, Paecilomyces variotii, and Trichoderma harzianum. In ground corn grain silage (I presence of the yeasts was dominant (90.000/g. In combined trials (II-IV only Penicillium (P. brevicompactum and P. echinulatum mold species were found. Presence of molds and yeasts in investigated trials was within tolerated values for ensiled feedstuffs. Mycotoxin presence in silage was not determined.

  8. System and method for conditioning a hardwood pulp liquid hydrolysate

    Energy Technology Data Exchange (ETDEWEB)

    Waite, Darrell; Arnold, Richard; St. Pierre, James; Pendse, Hemant P.; Ceckler, William H.

    2015-06-30

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hydrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  9. Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe "Anaerocellum thermophilum" DSM 6725.

    Science.gov (United States)

    Yang, Sung-Jae; Kataeva, Irina; Hamilton-Brehm, Scott D; Engle, Nancy L; Tschaplinski, Timothy J; Doeppke, Crissa; Davis, Mark; Westpheling, Janet; Adams, Michael W W

    2009-07-01

    Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that "Anaerocellum thermophilum" DSM 6725, an anaerobic bacterium that grows optimally at 75 degrees C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75 degrees C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70 degrees C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms. PMID:19465524

  10. Efficient Degradation of Lignocellulosic Plant Biomass, without Pretreatment, by the Thermophilic Anaerobe “Anaerocellum thermophilum” DSM 6725?

    Science.gov (United States)

    Yang, Sung-Jae; Kataeva, Irina; Hamilton-Brehm, Scott D.; Engle, Nancy L.; Tschaplinski, Timothy J.; Doeppke, Crissa; Davis, Mark; Westpheling, Janet; Adams, Michael W. W.

    2009-01-01

    Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that “Anaerocellum thermophilum” DSM 6725, an anaerobic bacterium that grows optimally at 75°C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75°C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70°C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms. PMID:19465524

  11. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Gill Ryan T

    2009-10-01

    Full Text Available Abstract The sustainable production of biofuels will require the efficient utilization of lignocellulosic biomass. A key barrier involves the creation of growth-inhibitory compounds by chemical pretreatment steps, which ultimately reduce the efficiency of fermentative microbial biocatalysts. The primary toxins include organic acids, furan derivatives, and phenolic compounds. Weak acids enter the cell and dissociate, resulting in a drop in intracellular pH as well as various anion-specific effects on metabolism. Furan derivatives, dehydration products of hexose and pentose sugars, have been shown to hinder fermentative enzyme function. Phenolic compounds, formed from lignin, can disrupt membranes and are hypothesized to interfere with the function of intracellular hydrophobic targets. This review covers mechanisms of toxicity and tolerance for these compounds with a specific focus on the important industrial organism Escherichia coli. Recent efforts to engineer E. coli for improved tolerance to these toxins are also discussed.

  12. Decolorization of hair dye by lignocellulosic waste materials from contaminated waters

    Directory of Open Access Journals (Sweden)

    AbelEnriqueNavarro

    2014-07-01

    Full Text Available Basic yellow 57 (BY57 was chosen as a model hair dye due to its prevalence in cosmetics wastewaters. This study proposes the use of lignocellulosic materials like spent tea leaves of peppermint (PM, chai tea (CT and chamomile (CM as raw adsorbents for the removal of BY57 from contaminated solutions. Batch adsorption experiments were carried out at room temperature to achieve the maximum adsorption capacity. Results indicate that the highest removal is achieved at pH 6 – 8, with a minimum adsorbent mass of 75 mg and in the absence of salinity, crowding agents and heavy metals. Adsorption equilibria were modeled according to the Langmuir and Freundlich isotherm theories and reported the following trend: PM>CT>CM, reaching qmax values of 105, 80, and 38 mg of dye per gram of adsorbent, respectively. Desorption experiments showed that diluted solution of HCl is able to desorb the up to 80% of the dye and recover the adsorbent to be used in consecutive cycles. Finally, the adsorbents were characterized by Scanning electron microscopy, indicating that the adsorbents have a porous and heterogeneous surface, showing pockets and protrusions that are potential adsorption sites for the dye.

  13. The effect of Pleurotus ostreatus arabinofuranosidase and its evolved variant in lignocellulosic biomasses conversion.

    Science.gov (United States)

    Marcolongo, Loredana; Ionata, Elena; La Cara, Francesco; Amore, Antonella; Giacobbe, Simona; Pepe, Olimpia; Faraco, Vincenza

    2014-11-01

    The fungal arabinofuranosidase from Pleurotus ostreatus PoAbf recombinantly expressed in Pichia pastoris rPoAbf and its evolved variant rPoAbf F435Y/Y446F were tested for their effectiveness to enhance the enzymatic saccharification of three lignocellulosic biomasses, namely Arundo donax, corn cobs and brewer's spent grains (BSG), after chemical or chemical-physical pretreatment. All the raw materials were subjected to an alkaline pretreatment by soaking in aqueous ammonia solution whilst the biomass from A. donax was also pretreated by steam explosion. The capability of the wild-type and mutant rPoAbf to increase the fermentable sugars recovery was assessed by using these enzymes in combination with different (hemi)cellulolytic activities. These enzymatic mixtures were either entirely of commercial origin or contained the cellulase from Streptomyces sp. G12 CelStrep recombinantly expressed in Escherichia coli in substitution to the commercial counterparts. The addition of the arabinofuranosidases from P. ostreatus improved the hydrolytic efficiency of the commercial enzymatic cocktails on all the pretreated biomasses. The best results were obtained using the rPoAbf evolved variant and are represented by increases of the xylose recovery up to 56.4%. These data clearly highlight the important role of the accessory hemicellulolytic activities to optimize the xylan bioconversion yields. PMID:25046861

  14. Application of Complex Fluids in Lignocellulose Processing

    Science.gov (United States)

    Carrillo Lugo, Carlos A.

    Complex fluids such as emulsions, microemulsions and foams, have been used for different applications due to the multiplicity of properties they possess. In the present work, such fluids are introduced as effective media for processing lignocellulosic biomass. A demonstration of the generic benefits of complex fluids is presented to enhance biomass impregnation, to facilitate pretreatment for fiber deconstruction and to make compatible cellulose fibrils with hydrophobic polymers during composite manufacture. An improved impregnation of woody biomass was accomplished by application of water-continuous microemulsions. Microemulsions with high water content, > 85%, were formulated and wood samples were impregnated by wicking and capillary flooding at atmospheric pressure and temperature. Formulations were designed to effectively impregnate different wood species during shorter times and to a larger extent compared to the single components of the microemulsions (water, oil or surfactant solutions). The viscosity of the microemulsions and their interactions with cell wall constituents in fibers were critical to define the extent of impregnation and solubilization. The relation between composition and formulation variables and the extent of microemulsion penetration in different woody substrates was studied. Formulation variables such as salinity content of the aqueous phase and type of surfactant were elucidated. Likewise, composition variables such as the water-to-oil ratio and surfactant concentration were investigated. These variables affected the characteristics of the microemulsion and determined their effectiveness in wood treatment. Also, the interactions between the surfactant and the substrate had an important contribution in defining microemulsion penetration in the capillary structure of wood. Microemulsions as an alternative pretreatment for the manufacture of cellulose nanofibrils (CNFs) was also studied. Microemulsions were applied to pretreat lignin-free and lignin-containing fibers obtained from various processes. Incorporation of active agents in the microemulsion facilitated fiber pretreatment before deconstruction via grinding and microfluidization. The energy consumed during the manufacture of cellulose nanofibrils was reduced by up to 55 and 32% in the case of lignin-containing and lignin-free fibers. Moreover, such pre-treatment did not affect negatively the mechanical properties of films prepared with the produced CNF. CNF was also used to enhance the stability of normal and multiple emulsions of the water-in-oil-in-water (W/O/W) type and to prevent their creaming. This was achieved by the marked increase in viscosity of the aqueous phase in the presence CNF. Finally, water-continuous emulsions were used to prepare nanocomposite fibers containing polystyrene and CNF. The morphology of composite fibers obtained after electrospinning of emulsions incorporating polystyrene and CNF was affected by parameters such the concentration of surfactant additives present in the microemulsion and the conductivity of the aqueous phase. Overall, emulsions and microemulsions are presented as a convenient platform to improve the compatibility between polymers of different hydrophilicity, to facilitate their processing and integration in composites.

  15. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    The numbers of current nuclear electric generation together with spent fuel arising are updated and their future predictions are made. Spent fuel discharged from LWRs is now stored at reactor sites, waiting for being reprocessed in the future. Meanwhile, it is pointed out that the interim spent fuel storage facility should be constructed and commissioned by around 2010, to accommodate superfluous spent fuel from nuclear power stations. Recovered plutonium is currently scheduled to be used in LWRs as MOX fuel and ultimately to be burned in FBRs in accordance with the Long-Term Programme for Research, Development and Utilization of Nuclear Energy. (author)

  16. Spent Fuel Management in Bulgaria

    International Nuclear Information System (INIS)

    The report presents the legislative framework in the Republic of Bulgaria for spent fuel (SF) management; storage facilities for spent fuel (at reactor spent fuel storage/reactor pond, away from reactor spent fuel storage facility (SFSF) and the dry storage facility), as well as the SF transportation back to Russia. The policy of the Republic of Bulgaria regarding the management of SF and radioactive wastes (RAW) has been based on the moral principle of avoiding to impose undue burdens on future generations. (author)

  17. Spent fuel interim storage

    International Nuclear Information System (INIS)

    The official inauguration of the spent fuel interim storage took place on Monday July 28, 2003 at Cernavoda NNP. The inaugural event was attended by local and central public authority representatives, a Canadian Government delegation as well as newsmen from local and central mass media and numerous specialists from Cernavoda NPP compound. Mr Andrei Grigorescu, State Secretary with the Economy and Commerce Ministry, underlined in his talk the importance of this objective for the continuous development of nuclear power in Romania as well as for Romania's complying with the EU practice in this field. Also the excellent collaboration between the Canadian contractor AECL and the Romanian partners Nuclear Montaj, CITON, UTI, General Concret in the accomplishment of this unit at the planned terms and costs. On behalf of Canadian delegation, spoke Minister Don Boudria. He underlined the importance which the Canadian Government affords to the cooperation with Romania aiming at specific objectives in the field of nuclear power such as the Cernavoda NPP Unit 2 and spent fuel interim storage. After traditional cutting of the inaugural ribbon by the two Ministers the festivities continued on the Cernavoda NPP Compound with undersigning the documents regarding the project completion and a press conference

  18. Characterization of Peptides Found in Unprocessed and Extruded Amaranth (Amaranthus hypochondriacus) Pepsin/Pancreatin Hydrolysates

    OpenAIRE

    Montoya-Rodríguez, Alvaro; Milán-Carrillo, Jorge; Reyes-Moreno, Cuauhtémoc; González de Mejía, Elvira

    2015-01-01

    The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH) and extruded amaranth hydrolysates (EAH) and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min ...

  19. Systematic Investigation of Antioxidant Activity of Egg White Protein Hydrolysates Obtained by Pepsin

    OpenAIRE

    Shuguo Sun; Meihu Ma; Qinlu Lin; Tao Yang; Huihui Niu

    2013-01-01

    Antioxidative activity of protein hydrolysates from egg white hydrolyzed by Pepsin with different Degrees of Hydrolysis (DHs) was investigated. As the DH increased from 6.47 to 18.22%, the antioxidative activity of Egg White Protein Hydrolysates (EWPHs) first increased and then decreased, except for the reducing power of EWPHs. The EWPHs with DH 16.93% showed higher DPPH radical scavenging activity (96.07±3.84%), hydroxyl radical scavenging activity (36.82±1.46%), superoxide anion scavenging ...

  20. Characterization and Potential Use of Cuttlefish Skin Gelatin Hydrolysates Prepared by Different Microbial Proteases

    OpenAIRE

    Mourad Jridi; Imen Lassoued; Rim Nasri; Mohamed Ali Ayadi; Moncef Nasri; Nabil Souissi

    2014-01-01

    Composition, functional properties, and in vitro antioxidant activities of gelatin hydrolysates prepared from cuttlefish skin were investigated. Cuttlefish skin gelatin hydrolysates (CSGHs) were obtained by treatment with crude enzyme preparations from Bacillus licheniformis NH1, Bacillus mojavensis A21, Bacillus subtilis A26, and commercial alcalase. All CSGHs had high protein contents, 74.3–78.3%, and showed excellent solubility (over 90%). CSGH obtained by alcalase demonstrated high antiox...

  1. Antioxidant Effect and Water-Holding Capacity of Roselle (Hibiscus sabdariffa L.) Seed Protein Hydrolysates

    OpenAIRE

    Fatoumata Tounkara; Bernard Sodio; Tidjani Amza; Guo-Wei Le; Yong-Hui Shi

    2013-01-01

    The aim of this study was to investigate the effect of in-vitro pepsin and pancreatin digestion of proteins extracted from Roselle seed on the production of bioactive peptides. Defatted Roselle seed flour was used to extract different protein fractions namely globulin, albumin and glutelin. The proteins were digested using pepsin (1 h) followed by pancreatin (1 h) in order to produce hydrolysates with good antioxidant activity. The prepared hydrolysates were as effective as antioxidants in mo...

  2. Separation of FFA from Partially Hydrogenated Soybean Oil Hydrolysate by Means of Membrane Processing

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng; Xu, Xuebing

    2011-01-01

    Different types of commercial porous and non-porous polymeric membranes have been investigated for their capabilities to separate free fatty acids (FFA) from hydrolysate of partially hydrogenated soybean oil. A regenerated cellulose (RC, PLAC) membrane exhibited the most prominent difference in rejection between FFA and glycerides and the highest flux (27 kg h?1 m?2) in hydrolysate ethanol solution. The results also showed that, besides the pore size of membrane, the membrane flux depended large...

  3. Comparison of the aggregation behavior of soy and bovine whey protein hydrolysates

    OpenAIRE

    Kuipers, B.J.H.; Alting, A. C.; Gruppen, H.

    2007-01-01

    Abstract Soy-derived proteins (soy protein isolate, glycinin, and ß-conglycinin) and bovine whey-derived proteins (whey protein isolate, ¿-lactalbumin, ß-lactoglobulin) were hydrolyzed using subtilisin Carlsberg, chymotrypsin, trypsin, bromelain, and papain. The (in)solubility of the hydrolysates obtained was studied as a function of pH. At neutral pH, all soy-derived protein hydrolysates, particularly those from glycinin, obtained by hydrolysis with subtilisin Carlsberg, chymotrypsin, bromel...

  4. Industrial scale chromatographic separation of valuable compounds from biomass hydrolysates and side streams

    OpenAIRE

    Saari, Pia

    2011-01-01

    Carbohydrates are composed of a number of various monosaccharides, glucose being the most abundant. Some of the monosaccharides are valuable compounds used in the food and pharmaceutical industries. They can be separated from biomass hydrolysates e.g. by chromatographic methods. In this thesis, chromatographic separation of valuable compounds using ion exchange resins was studied on an industrial scale. Of special interest were rare monosaccharides in biomass hydrolysates. A novel chroma...

  5. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.

    Science.gov (United States)

    Oosthuyse, T; Carstens, M; Millen, A M E

    2015-07-01

    The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15?g/h whey or casein hydrolysate with 63?g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2?h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2?h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33?g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19?g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only. PMID:25941925

  6. HYDROLYSIS OF WHEAT STRAW HEMICELLULOSE AND DETOXIFICATION OF THE HYDROLYSATE FOR XYLITOL PRODUCTION

    OpenAIRE

    Junping Zhuang; Ying Liu; Zhen Wu; Yong Sun; Lu Lin

    2009-01-01

    Xylitol can be obtained from wheat straw hemicellulose containing a high content of xylan. This study describes a new system of hydrolysis, utilizing a mixed solution of formic acid and hydrochloric acid in which xylan can be hydrolyzed effectively. The hydrolysate contains a high content of formic acid, which markedly inhibits the fermentation. One of the most efficient methods for removing inhibiting compounds is treatment of the hydrolysate with ion-exchange resins. Formate can be removed ...

  7. Optimization of the Preparation of Fish Protein Anti-Obesity Hydrolysates Using Response Surface Methodology

    OpenAIRE

    Jinju Wang; Chen Peng; Yanping Wang; Liyuan Liu

    2013-01-01

    The enzymatic condition for producing the anti-obesity hydrolysates from fish water-soluble protein was optimized with the aid of response surface methodology, which also derived a statistical model for experimental validation. Compared with neutral protease, papain and protamex, the porcine pancreas lipase inhibitory rate of hydrolysates from fish water-soluble protein was higher with alkaline protease. Results showed that the model terms were significant, the terms of lack of fit were not s...

  8. Antioxidant properties of carp (Cyprinus carpio L.) protein ex vivo and in vitro hydrolysates.

    Science.gov (United States)

    Borawska, Justyna; Darewicz, Ma?gorzata; Vegarud, Gerd E; Minkiewicz, Piotr

    2016-03-01

    The presence of specific peptides with antioxidant properties released during carp protein ex vivo and in vitro hydrolysis by human/porcine digestive enzymes, respectively, was examined. Based on the results of the in silico data analysis, antioxidant peptides were selected for subsequent identification in the digests/hydrolysates. Carp proteins were more resistant to hydrolysis by porcine enzymes than by human digestive juices. The sarcoplasmic proteins were hydrolyzed faster than the myofibrillar ones by both human/porcine enzymes. The in vitro myofibrillar protein hydrolysate showed the highest ABTS(+) scavenging activity (?232.3 TEAC, ?M Trolox/g), whereas the ex vivo hydrolysate of sarcoplasmic proteins showed the highest DPPH scavenging activity (?88?M/g) and reducing power. Five antioxidant peptides were identified in carp protein ex vivo and in vitro hydrolysates: FIKK, HL, IY, PW, VY. The peptide HL from myofibrillar proteins was identified only in the ex vivo hydrolysate, whereas the peptide PW from sarcoplasmic proteins was identified only in the in vitro hydrolysate. PMID:26471617

  9. Preventive effect of feeding high-risk infants a casein hydrolysate formula or an ultrafiltrated whey hydrolysate formula. A prospective, randomized, comparative clinical study

    DEFF Research Database (Denmark)

    Halken, S; Høst, A; Hansen, L G; Osterballe, O

    1993-01-01

    In a prospective study of a 1-year birth cohort of 158 high-risk infants the effect of feeding breastmilk, a casein hydrolysate (Nutramigen) or a new ultrafiltrated whey hydrolysate (Profylac) on the development of cow milk protein allergy/intolerance (CMPA/CMPI) was assessed and compared. All the infants had biparental or severe single atopic predisposition, the latter combined with cord blood IgE > or = 0.5 kU/L. At birth all infants were randomized to Nutramigen or Profylac, which was used wh...

  10. Spent fuel management overview: a global perspective

    International Nuclear Information System (INIS)

    The paper defines the main spent fuel management strategies and options, highlights the challenges for spent fuel storage and gives an overview of the regional balances of spent fuel storage capacity and spent fuel arising. The relevant IAEA activities in the area of spent fuel management are summarised. (author)

  11. Thermophysical Properties of Lignocellulose: A Cell-scale Study down to 41K

    CERN Document Server

    Cheng, Zhe; Zhang, Lei; Wang, Xinwei

    2014-01-01

    Thermal energy transport is of great importance in lignocellulose pyrolysis for bio-fuels. The thermophysical properties of lignocellulose significantly affect the overall properties of bio-composites and the related thermal transport. In this work, cell-scale lignocellulose (mono-layer plant cells) is prepared to characterize their thermal properties from room temperature down to 41 K. The thermal conductivities of cell-scale lignocellulose along different directions show a little anisotropy due to the cell structure anisotropy. It is found that with temperature going down, the volumetric specific heat of the lignocellulose shows a slower decreasing trend against temperature than that of microcrystalline cellulose, and its value is always higher than that of microcrystalline cellulose. The thermal conductivity of lignocellulose decreases with temperature from 243 K to 317 K due to increasing phonon-phonon scatterings. From 41 K to 243 K, the thermal conductivity rises with temperature and its change mainly d...

  12. Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review.

    Science.gov (United States)

    Barakat, Abdellatif; de Vries, Hugo; Rouau, Xavier

    2013-04-01

    The use of lignocellulosic biomass is promising for biofuels and materials and new technologies for the conversion need to be developed. However, the inherent properties of native lignocellulosic materials make them resistant to enzymatic and chemical degradation. Lignocellulosic biomass requires being pretreated to change the physical and chemical properties of lignocellulosic matrix in order to increase cell wall polymers accessibility and bioavailability. Mechanical size reduction may be chemical free intensive operation thanks to decreasing particles size and cellulose crystallinity, and increasing accessible surface area. Changes in these parameters improve the digestibility and the bioconversion of lignocellulosic biomass. However, mechanical size reduction requires cost-effective approaches from an energy input point of view. Therefore, the energy consumption in relation to physicochemical properties of lignocellulosic biomass was discussed. Even more, chemical treatments combined with physicochemical size reduction approaches are proposed to reduce energy consumption in this review. PMID:23499177

  13. Flow-through biological conversion of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Christopher D.; Liu, Chaogang; Bardsley, John

    2014-07-01

    The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

  14. Canonical correlations between chemical and energetic characteristics of lignocellulosic wastes

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2012-09-01

    Full Text Available Canonical correlation analysis is a statistical multivariate procedure that allows analyzing linear correlation that may exist between two groups or sets of variables (X and Y. This paper aimed to provide canonical correlation analysis between a group comprised of lignin and total extractives contents and higher heating value (HHV with a group of elemental components (carbon, hydrogen, nitrogen and sulfur for lignocellulosic wastes. The following wastes were used: eucalyptus shavings; pine shavings; red cedar shavings; sugar cane bagasse; residual bamboo cellulose pulp; coffee husk and parchment; maize harvesting wastes; and rice husk. Only the first canonical function was significant, but it presented a low canonical R². High carbon, hydrogen and sulfur contents and low nitrogen contents seem to be related to high total extractives contents of the lignocellulosic wastes. The preliminary results found in this paper indicate that the canonical correlations were not efficient to explain the correlations between the chemical elemental components and lignin contents and higher heating values.

  15. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass.

    Science.gov (United States)

    Hu, Shengjun; Luo, Xiaolan; Li, Yebo

    2014-01-01

    Polyurethanes (PUs), produced from the condensation polymerizations between polyols and isocyanates, are one of the most versatile polymer families. Currently, both polyols and isocyanates are largely petroleum derived. Recently, there have been extensive research interests in developing bio-based polyols and PUs from renewable resources. As the world's most abundant renewable biomass, lignocellulosic biomass is rich in hydroxyl groups and has potential as a feedstock to produce bio-based polyols and PUs. Lignocellulosic biomass can be converted to liquid polyols for PU applications through acid- or base-catalyzed atmospheric liquefaction processes using polyhydric alcohols as liquefaction solvents. Biomass liquefaction-derived polyols can be used to prepare various PU products, such as foams, films and adhesives. The properties of biomass liquefaction-derived polyols and PUs depend on various factors, such as feedstock characteristics, liquefaction conditions, and PU formulations. PMID:24357542

  16. Deconstruction of Lignocellulose into Soluble Sugars by Native and Designer Cellulosomes

    OpenAIRE

    Moraïs, Sarah; Morag, Ely; Barak, Yoav; Goldman, Dan; Hadar, Yitzhak; Lamed, Raphael; Shoham, Yuval; Wilson, David B.; Edward A. Bayer

    2012-01-01

    Lignocellulosic biomass, the most abundant polymer on Earth, is typically composed of three major constituents: cellulose, hemicellulose, and lignin. The crystallinity of cellulose, hydrophobicity of lignin, and encapsulation of cellulose by the lignin-hemicellulose matrix are three major factors that contribute to the observed recalcitrance of lignocellulose. By means of designer cellulosome technology, we can overcome the recalcitrant properties of lignocellulosic substrates and thus increa...

  17. Effect of steam explosion pre-treatment on enzymatic saccharification of lignocellulosic material

    OpenAIRE

    Meyer, Laurence; Jacquet, Nicolas; Vanderghem, Caroline; Blecker, Christophe; Paquot, Michel

    2011-01-01

    Taking into account the sharp rise in prices and the depletion of resources of petroleum, an alternative to fossil resources is needed. A probable alternative is the use of lignocellulosic raw material to produce biofuels. The “first generation” biofuels are highly controversial because of the use of food plant material. The aim of the “second generation” biofuels is to take lignocellulosic non-food plant material as raw material. Lignocellulosic biomass has a very complex structure made o...

  18. VALORIZATION AND BIODECOLORIZATION OF DYE ADSORBED ON LIGNOCELLULOSICS USING WHITE ROT FUNGI

    OpenAIRE

    Nesrin Ozmen,; Ozfer Yesilada

    2012-01-01

    Biosorption of dyes by lignocelluloses may be an effective method for removing dyes from textile effluents. However, the resulting dye-adsorbed lignocellulosic materials may constitute another pollution problem. An integrated method can solve this problem. Here, various lignocelluloses were tested for their Astrazon Black and Astrazon Blue dyes removal activities. The dye adsorbed after 30 min contact time was 90% (45 mg/L), 70% (35 mg/L), and 98% (49 mg/L) for wheat bran, pine cone, and cott...

  19. Anaerobic Biodegradation of the Lignin and Polysaccharide Components of Lignocellulose and Synthetic Lignin by Sediment Microflora †

    OpenAIRE

    Benner, Ronald; Maccubbin, A. E.; Hodson, Robert E.

    1984-01-01

    Specifically radiolabeled [14C-lignin]lignocelluloses and [14C-polysaccharide]lignocelluloses were prepared from a variety of marine and freshwater wetland plants including a grass, a sedge, a rush, and a hardwood. These [14C]lignocellulose preparations and synthetic [14C]lignin were incubated anaerobically with anoxic sediments collected from a salt marsh, a freshwater marsh, and a mangrove swamp. During long-term incubations lasting up to 300 days, the lignin and polysaccharide components o...

  20. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    In Japan 52 commercial nuclear power units are now operated, and the total power generation capacity is about 45 GWe. The cumulative amount of spent fuel arising is about 13,500 tU as of March 1997. Spent fuel is reprocessed, and recovered nuclear materials are to be recycled in LWRs and FBRs. In February 1997 short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, backend measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away from reactor sites, considering the increasing amount of spent fuel arising. Research and development on spent fuel storage has been carried out, particularly on dry storage technology. Fundamental studies are also conducted to implement the burnup credit into the criticality safety design of storage and transportation casks. Rokkasho reprocessing plant is being constructed towards its commencement in 2003, and Pu utilization in LWRs will be started in 1999. Research and development of future recycling technology are also continued for the establishment of nuclear fuel cycle based on FBRs and LWRs. (author)

  1. Hybrid processing of spent fuel

    International Nuclear Information System (INIS)

    An advanced hybrid head-end for the processing of spent fuel is being studied. This scheme includes a pyrochemical head-end followed by aqueous or fluoride volatility separations. The combined process supports the recycle of a significant fraction of the spent fuel and may provide significant simplifications, improvements, and reduced costs compared with existing reprocessing technologies. (author)

  2. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review

    OpenAIRE

    Brodeur, Gary; Yau, Elizabeth; Badal, Kimberly; Collier, John, 1708-1786; Ramachandran, K. B.; Ramakrishnan, Subramanian

    2011-01-01

    Overcoming the recalcitrance (resistance of plant cell walls to deconstruction) of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have sh...

  3. Lignocellulosic biomass utilization toward biorefinery : technologies, products and perspectives

    OpenAIRE

    Mussatto, Solange I.

    2014-01-01

    Lignocellulosic biomass wastes (LBW) are generated and accumulated in large amounts around the world every year. The disposal of large amounts of such wastes in the nature may cause environmental problems, affecting the quality of the soil, lakes and rivers. In order to avoid these problems, efforts have been directed to use LBW in a biorefinery to maximize the reutilization of these wastes with minimal or none production of residual matter. Through biorefiner...

  4. Membrane separations in ionic liquid assisted processing of lignocellulosic biomass

    OpenAIRE

    Abels, Christian

    2013-01-01

    2nd generation biofuels currently hold a significant market share. With increasing impact of biofuel its production routes have to be optimized in terms of CO2 emissions, competition with the food chain and utilization of the whole plant. The cluster of excellence "Tailor-made Fuels from Biomass" investigates processing of lignocellulosic biomass to next generation biofuels. Complete utilization of the raw material is achieved by initial separation of its constituents cellulose, hemicellulose...

  5. Lignocellulosic Ethanol Production Potential and Regional Transportation Fuel Demand

    OpenAIRE

    Daianova, Lilia

    2011-01-01

    Road traffic dominates in domestic Swedish transportation and is highly dependent on fossil fuels, petrol and diesel. Currently, the use of renewable fuels in transportation accounts for less than 6% of the total energy use in transport. The demand for bioethanol to fuel transportation is growing and cannot be met through current domestic production alone. Lignocellulosic ethanol derived from agricultural crop residues may be a feasible alternative source of ethanol for securing a consistent ...

  6. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process on a demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the exte...

  7. SO2 -ethanol-water (SEW) fractionation of lignocellulose

    OpenAIRE

    Iakovlev, Mikhail

    2011-01-01

    This study deals with SO2-ethanol-water (SEW) fractionation as a potential method for a Lignocellulosic Biorefinery to achieve high yield separation of the three important components of biomass; cellulose, hemicelluloses and lignin. Representatives of all principal biomass species were successfully treated by SEW fractionation at similar rates. The kinetics of delignification, polysaccharides removal and cellulose hydrolysis at different temperatures and SO2 concentrations are described and i...

  8. Covalent Immobilization of ?-Glucosidase on Magnetic Particles for Lignocellulose Hydrolysis

    DEFF Research Database (Denmark)

    Alftrén, Johan; Hobley, Timothy John

    2013-01-01

    ?-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, ?-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-?-D-glucopyranoside (104.7 and 82.2 U/g pa...

  9. EVALUATION OF DIFFERENT APPROACHES FOR THE DRYING OF LIGNOCELLULOSE RESIDUES

    OpenAIRE

    Carolina Tenorio,; Roger Moya

    2012-01-01

    The main objective of this study was to evaluate three methodological approaches for the drying (air drying, solar drying, and hot-air drying) of three lignocelluloses residues in Costa Rica, namely the empty fruit bunches of oil palm (EFB), pineapple plant leaves (PL) with different treatments on this leaf, and sawdust from Gmelina arborea (GAD). The initial moisture content (MCi), the drying times, and the variation of moisture content (MC) with time were determined. A mathematical model of...

  10. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.

    Science.gov (United States)

    van Kuijk, S J A; Sonnenberg, A S M; Baars, J J P; Hendriks, W H; Cone, J W

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass, however, limits the effective utilization of cellulose and hemicellulose. Currently, most often chemical and/or physical treatments are used to degrade lignin. White rot fungi are selective lignin degraders and can be a potential alternative to current methods which involve potentially toxic chemicals and expensive equipment. This review provides an overview of research conducted to date on fungal pretreatment of lignocellulosic biomass for ruminant feeds. White rot fungi colonize lignocellulosic biomass, and during colonization produce enzymes, radicals and other small compounds to breakdown lignin. The mechanisms on how these fungi degrade lignin are not fully understood, but fungal strain, the origin of lignocellulose and culture conditions have a major effect on the process. Ceriporiopsis subvermispora and Pleurotus eryngii are the most effective fungi to improve the nutritional value of biomass for ruminant nutrition. However, conclusions on the effectiveness of fungal delignification are difficult to draw due to a lack of standardized culture conditions and information on fungal strains used. Methods of analysis between studies are not uniform for both chemical analysis and in vitro degradation measurements. In vivo studies are limited in number and mostly describing digestibility after mushroom production, when the fungus has degraded cellulose to derive energy for fruit body development. Optimization of fungal pretreatment is required to shorten the process of delignification and make it more selective for lignin. In this respect, future research should focus on optimization of culture conditions and gene expression to obtain a better understanding of the mechanisms involved and allow the development of superior fungal strains to degrade lignin in biomass. PMID:25447421

  11. Ensiling as pretreatment of grass for lignocellulosic biomass conversion

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten

    2014-01-01

    Development of sound technologies of biomass conversion will be increasingly important for many years to come as planetary bounderies drive the development towards a biobased society. Pretreatment of lignocellulosic biomass is, in this regard, an essential technology. Current pretreatment methods, based on severe physio-chemical processes, are effective, however, they are also costly and energy demanding. An alternative biological pretreatment method, based on the well-known biomass preservation...

  12. Lignocellulose degradation mechanisms across the Tree of Life.

    Science.gov (United States)

    Cragg, Simon M; Beckham, Gregg T; Bruce, Neil C; Bugg, Timothy Dh; Distel, Daniel L; Dupree, Paul; Etxabe, Amaia Green; Goodell, Barry S; Jellison, Jody; McGeehan, John E; McQueen-Mason, Simon J; Schnorr, Kirk; Walton, Paul H; Watts, Joy Em; Zimmer, Martin

    2015-12-01

    Organisms use diverse mechanisms involving multiple complementary enzymes, particularly glycoside hydrolases (GHs), to deconstruct lignocellulose. Lytic polysaccharide monooxygenases (LPMOs) produced by bacteria and fungi facilitate deconstruction as does the Fenton chemistry of brown-rot fungi. Lignin depolymerisation is achieved by white-rot fungi and certain bacteria, using peroxidases and laccases. Meta-omics is now revealing the complexity of prokaryotic degradative activity in lignocellulose-rich environments. Protists from termite guts and some oomycetes produce multiple lignocellulolytic enzymes. Lignocellulose-consuming animals secrete some GHs, but most harbour a diverse enzyme-secreting gut microflora in a mutualism that is particularly complex in termites. Shipworms however, house GH-secreting and LPMO-secreting bacteria separate from the site of digestion and the isopod Limnoria relies on endogenous enzymes alone. The omics revolution is identifying many novel enzymes and paradigms for biomass deconstruction, but more emphasis on function is required, particularly for enzyme cocktails, in which LPMOs may play an important role. PMID:26583519

  13. Management of Spent Fuel in Germany

    International Nuclear Information System (INIS)

    This presentation gives an overview on the inventory of radioactive waste and spent fuel in Germany, the state of commissioning of the on-site storages for spent fuel and the balance of reprocessing of spent fuel. (author)

  14. Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii

    OpenAIRE

    Solange Inês Mussatto; Inês Conceição Roberto

    2005-01-01

    Xylitol was produced by Candida guilliermondii from charcoal-treated and untreated rice straw hemicellulosic hydrolysate with or without nutrients (ammonium sulphate, calcium chloride, rice bran extract). Both, xylitol yield and volumetric productivity decreased significantly when the nutrients were added to treated and untreated hydrolysates. In the treated hydrolysate, the efficiency of xylose conversion to xylitol was 79% when the nutrients were omitted. The results demonstrated that rice ...

  15. Characterization of the Immunogenicity and Allergenicity of Two Cow's Milk Hydrolysates – A Study in Brown Norway Rats

    DEFF Research Database (Denmark)

    Bøgh, Katrine Lindholm; Barkholt, Vibeke; Madsen, Charlotte Bernhard

    2015-01-01

    Hypoallergenic infant formulas based on hydrolysed milk proteins are used in the diet for cow's milk allergic infants. For a preclinical evaluation of the immunogenicity and allergenicity of new protein ingredients for such hypoallergenic infant formulas as well as for the investigation of which characteristics of hydrolysates that contribute to allergenicity, in vivo models are valuable tools. In this study, we examine the immunogenicity and allergenicity of two hydrolysates in a Brown Norway (...

  16. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

    Science.gov (United States)

    Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2012-08-01

    Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedstocks, including Miscanthus, poplar, their mixture, bagasse, wheat straw, and rice straw. Although non-pretreated biomass samples exhibited a large variation in enzymatic digestibility, the COSLIF-pretreated biomass samples exhibited similar high enzymatic glucan digestibilities and fast hydrolysis rates. Glucan digestibilities of most pretreated feedstocks were ?93% at five filter paper units per gram of glucan. The overall glucose and xylose yields for the Miscanthus:poplar mixture at a weight ratio of 1:2 were 93% and 85%, respectively. These results suggested that COSLIF could be regarded as a feedstock-independent pretreatment suitable for processing diverse feedstocks by adjusting pretreatment residence time only. PMID:22613899

  17. ACID- AND BASE-CATALIZED HYDROLYSES OF CORN STALK

    Directory of Open Access Journals (Sweden)

    Cristina Sánchez

    2011-04-01

    Full Text Available Nowadays agricultural wastes represent an alternative source of renewable raw materials. Different processes can be applied to these alternative materials to separate their components and obtain chemical products with high added value, such as bioethanol, organic acids, monomers, and biopolymers. The main objective of this work is to study the extraction of hemicelluloses from corn stalks using different reagents [H2SO4, HNO3, HCL, CH3COOH, CF3COOH, Ca(OH2, NaOH]. The raw material was characterized and fractionated with autoclave hydrolysis processes (121 ºC, 1:20 solid/liquid ratio, 60 min, pH = 4 or 8. Monomeric sugars concentration, TDS, MO, MI, density, and final pH of the hydrolysate were determined. Hemicelluloses were precipitated and analyzed by different techniques (FTIR, TGA and GPC. The highest yield of hemicelluloses extraction was achieved by sulphuric acid (0.98 g/L total sugar content and the less effective reagent was Ca(OH2 (0.52 g/L total sugar content.

  18. Adapting wood hydrolysate barriers to high humidity conditions.

    Science.gov (United States)

    Yaich, Anas Ibn; Edlund, Ulrica; Albertsson, Ann-Christine

    2014-01-16

    The incorporation of layered silicates in bio-based barrier films resulted in lower water vapor permeability, and significantly lowered oxygen permeability at a relative humidity (RH) as high as 80%, with reduced moisture sensitivity of the wood hydrolysate (WH) based films. The applicability of WH based films was accordingly extended over a wider relative humidity condition range. Crude aqueous process liquor, the WH, was extracted from hardwood and utilized as a feed-stock for films without any upgrading pretreatment, yet producing superior oxygen barrier performance compared to partially upgraded WH and highly purified hemicelluloses. Films composed of crude WH and either one of two types of naturally occurring layered silicates, montmorillonite (MMT) or talc, as mineral additives, were evaluated with respect to oxygen and water vapor permeability, morphological, tensile and dynamic thermo-mechanical properties. Films with an oxygen permeability as low as 1.5 (cm(3)?m)/(m(2)daykPa) at 80% RH was achieved. PMID:24188847

  19. Enzymatic hydrolysis of ovomucoid and the functional properties of its hydrolysates.

    Science.gov (United States)

    Abeyrathne, E D N S; Lee, H Y; Jo, C; Suh, J W; Ahn, D U

    2015-09-01

    Ovomucoid is well known as a "trypsin inhibitor" and is considered to be the main food allergen in egg. However, the negative functions of ovomucoid can be eliminated if the protein is cut into small peptides. The objectives of this study were to hydrolyze ovomucoid using various enzyme combinations, and compare the functional properties of the hydrolysates. Purified ovomucoid was dissolved in distilled water (20 mg/mL) and treated with 1% of pepsin, ?-chymotrypsin, papain, and alcalase, singly or in combinations. Sodium sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) results of the hydrolysates indicated that pepsin (OMP), alcalase (OMAl), alcalase+trypsin (OMAlTr), and alcalase+papain (OMAlPa) treatments best hydrolyzed the ovomucoid, and the 4 treatments were selected to determine their functional characteristics. Among the 4 enzyme treatments, hydrolysate from OMAlTr showed the highest iron-chelating and antioxidant activities, while OMP showed higher ACE-inhibitory activity, but lower Fe-chelating activity than the other treatments. However, no difference in the copper-chelating activity among the treatments was found. MS/MS analysis identified numerous peptides from the hydrolysates of OMAlPa and OMAlTr, and majority of the peptides produced were OMP), however, hydrolyzed ovomucoid almost completely and produced only amino acid monomers, di- and tri-peptides. The ACE-inhibitory, antioxidant and iron-chelating activities of the enzyme hydrolysates were not consistent with the number and size of peptides in the hydrolysates, but we do not have information about the quantity of each peptide present in the hydrolysates at this point. PMID:26195809

  20. Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition.

    Science.gov (United States)

    Schaafsma, G

    2009-10-01

    This paper evaluates the safety for humans with regard to consumption of protein hydrolysates and fractions thereof, including bioactive peptides. The available literature on the safety of protein, protein hydrolysates, fractions thereof and free amino acids on relevant food legislation is reviewed and evaluated. A new concept for the safety assessment of protein hydrolysates and fractions thereof is developed. Benchmarks for the evaluation are safety of total protein intake, safety of free amino acid intake, documented history of safe use, outcome of questionnaires in efficacy studies and safety studies. Similar to the intake of intact proteins with a history of safe use, the intake of hydrolysates made from them, does not raise concern about safety, provided the applied proteolytic enzymes are food grade and thus of suitable quality. The safety of hydrolysates and of fractions thereof, including the so-called bioactive peptides, should always be assessed by the company before market introduction (company safety assessment). Only when a novel protein source is used or a novel production process is applied, which results in significant changes in nutritional value, metabolic effect or increased level of undesirable substances, that products might fall under novel food regulations. This means that company safety assessment should be reviewed and approved by external independent experts (external safety evaluation) and the novel protein hydrolysate (fraction) is authorized by competent authorities before market introduction. It is argued that good judgement on the safety of hydrolysates and the fractions thereof can be obtained by comparing the anticipated intake of amino acids by these products with those levels to be reasonably expected to be ingested under normal conditions of consumption of a balanced and varied diet. The paper shows a decision tree that can be used for safety assessment. PMID:19623200

  1. Advanced anaerobic bioconversion of lignocellulosic waste for bioregenerative life support following thermal water treatment and biodegradation by Fibrobacter succinogenes.

    Science.gov (United States)

    Lissens, Geert; Verstraete, Willy; Albrecht, Tobias; Brunner, Gerd; Creuly, Catherine; Seon, Jerome; Dussap, Gilles; Lasseur, Christophe

    2004-06-01

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a life support project. The treatment comprised a series of processes, i.e., a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g(-1) VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T approximately 310-350 degrees C, p approximately 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis at near-critical conditions offers interesting features for (nearly) complete and hygienic carbon and energy recovery from human waste in a bioregenerative life support context. PMID:15228075

  2. Advanced spent fuel storage pools

    International Nuclear Information System (INIS)

    Full text: Spent fuel from Power Reactors is currently stored either in at-reactor pools or in independent spent fuel storage installations (ISFSI) using wet or dry storage technology. During the past 15 years, storage capacity of at reactor pools was increased using high density spent fuel storage technology. To achieve maximum capacity, storage racks were replaced in many of the power reactors in operation at least once, some of them went through even various reracking cycles. Independent spent fuel storage installations were established either at the site of power reactors of away from them. They use either storage pools or dry technology, the latter in form of metal casks and concrete silos or vaults. Storage of spent fuel from power reactors must be safe for the public and must protect the environment from its radioactive content. For this purpose, adequate regulation was developed and is available to be applied. However, advances in fuel and core design as well the need for extended storage periods require frequent re-assessment of the available spent fuel storage technology. Improved fuel utilization leads to elevated burn-up resulting in higher heat generation of the spent fuel in the longer term. Also spent MOX fuel generates considerable more heat than spent uranium fuel unloaded from the power reactors 15 years ago. As most of the mechanisms which could endanger fuel integrity are temperature dependent, effective heat removal is one of the challenges spent fuel storage systems have to face. In order to make most efficient use out of high density storage equipment, designer want to take credit from the actual burn-up of the spent fuel. Existing methodology to analyze burn-up credited spent fuel storage racks for criticality safety is being further developed to be applied in the design of dual-purpose casks or multi-purpose-canisters. For poisoned high density storage equipment, long term stability of the material as well as efficient neutron absorption is required. Degrading absorbers which contaminate the coolant of fuel pools and primary circuits and fuel assemblies getting stuck in swollen storage cells are well known problems which already caused considerable headaches to many operators and still continue to do so. Although limited in boron content, borated stainless steel has extensively proved as sufficiently effective and extremely stable neutron poison material. Over and above the basic requirements for maximum safety for operators and the public, logistic in fuel reception is an important aspect to be addressed with the design of independent spent fuel storage facilities. The aspect to keep the operators exposure to radiation as low as reasonably achievable requires expeditious reception of spent fuel and its transfer to the dedicated storage location. Independent wet storage facilities are known for many years to comply best with most of the expectations as described above. However, the assumption to need active cooling systems and to generate secondary waste had caused vendors and users to look favorably at dry storage systems. Despite the remarkable development achieved in dry storage technology, most of the spent fuel generated up to now is stored in fuel pools, either at the reactors or in independent installations. One of the latest achievements in wet storage technology is used in Framatome-ANP's wet storage facility design as currently being performed for the new spent fuel pool building to be constructed at the Goesgen Nuclear Power Station in Switzerland. The advanced design of this independent spent fuel storage facility provides a passive cooling system which reliably removes the heat generated by the spent fuel by natural circulation through air cooled heat exchangers. This progressive design makes extensive use of well balanced safety technology with largely passive safety features developed for Framatome-ANP's Boiling Water Reactor SWR1000. Clearly designed to enable the enforcement of strict foreign material exclusion strategies and state of the art pool water purification equipment red

  3. Spent fuel treatment in Japan

    International Nuclear Information System (INIS)

    In Japan, 52 nuclear power reactors are operating with a total power generation capacity of 45 GWe. The cumulative amount of spent fuel arising, as of March 1998, is about 14,700 W. Spent fuel is reprocessed and recovered nuclear materials are to be recycled in LWRs and FBRs. Pu utilization in LWRs will commence in 1999. In January 1997, short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of the reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, back-end measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away-from-reactor sites, considering the increasing amount of spent fuel arising. Valuable experience was been accumulated at the Tokai Reprocessing Plant (TRP), from the start of hot operation in 1977 up to now. The role of the TRP will be changed from an operation-oriented to a more R and D oriented facility, when PNC is reorganized into the new organization JNC. The Rokkasho reprocessing plant is under construction and is expected to commence operation in 2003. R and D of future recycling technologies is also continued for the establishment of a nuclear fuel cycle based on FBRs and LWRs. (author)

  4. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  5. Disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste.

  6. Assessment of spent fuel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F. [and others

    1997-02-01

    The paper presents the methodology, the findings, and the conclusions of a study that was done by the Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) on loss of spent fuel pool cooling. The study involved an examination of spent fuel pool designs, operating experience, operating practices, and procedures. AEOD`s work was augmented in the area of statistics and probabilistic risk assessment by experts from the Idaho Nuclear Engineering Laboratory. Operating experience was integrated into a probabilistic risk assessment to gain insight on the risks from spent fuel pools.

  7. WWER spent fuel storage

    International Nuclear Information System (INIS)

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs

  8. Towards an Understanding of How Protein Hydrolysates Stimulate More Efficient Biosynthesis in Cultured Cells

    Science.gov (United States)

    Siemensma, André; Babcock, James; Wilcox, Chris; Huttinga, Hans

    In the light of the growing demand for high quality plant-derived hydrolysates (i.e., HyPep™ and UltraPep™ series), Sheffield Bio-Science has developed a new hydrolysate platform that addresses the need for animal-free cell culture medium supplements while also minimizing variability concerns. The platform is based upon a novel approach to enzymatic digestion and more refined processing. At the heart of the platform is a rationally designed animal component-free (ACF) enzyme cocktail that includes both proteases and non-proteolytic enzymes (hydrolases) whose activities can also liberate primary components of the polymerized non-protein portion of the raw material. This enzyme system is added during a highly optimized process step that targets specific enzyme-substrate reactions to expand the range of beneficial nutritional factors made available to cells in culture. Such factors are fundamental to improving the bio-performance of the culture system, as they provide not merely growth-promoting peptides and amino acids, but also key carbohydrates, lipids, minerals, and vitamins that improve both rate and quality of protein expression, and serve to improve culture life due to osmo-protectant and anti-apoptotic properties. Also of significant note is that, compared to typical hydrolysates, the production process is greatly reduced and requires fewer steps, intrinsically yielding a better-controlled and therefore more reproducible product. Finally, the more sophisticated approach to enzymatic digestion renders hydrolysates more amenable to sterile filtration, allowing hydrolysate end users to experience streamlined media preparation and bioreactor supplementation activities. Current and future development activities will evolve from a better understanding of the complex interactions within a handful of key biochemical pathways that impact the growth and productivity of industrially relevant organisms. Presented in this chapter are some examples of the efforts that have been made so far to elucidate the mechanisms for the often dramatic benefits that hydrolysates can impart on cell culture processes. Given the variety of roles that hydrolysates likely play in each cell type, close collaboration between protein hydrolysate manufacturers and biopharmaceutical developers will continue to be critical to expanding the industry's knowledge and retaining hydrolysates as a tool for enhancing media formulations.

  9. Whey Protein Concentrate Hydrolysate Prevents Bone Loss in Ovariectomized Rats.

    Science.gov (United States)

    Kim, Jonggun; Kim, Hyung Kwan; Kim, Saehun; Imm, Ji-Young; Whang, Kwang-Youn

    2015-12-01

    Milk is known as a safe food and contains easily absorbable minerals and proteins, including whey protein, which has demonstrated antiosteoporotic effects on ovariectomized rats. This study evaluated the antiosteoporotic effect of whey protein concentrate hydrolysate (WPCH) digested with fungal protease and whey protein concentrate (WPC). Two experiments were conducted to determine (1) efficacy of WPCH and WPC and (2) dose-dependent impact of WPCH in ovariectomized rats (10 weeks old). In Experiment I, ovariectomized rats (n=45) were allotted into three dietary treatments of 10?g/kg diet of WPC, 10?g/kg diet of WPCH, and a control diet. In Experiment II, ovariectomized rats (n=60) were fed four different diets (0, 10, 20, and 40?g/kg of WPCH). In both experiments, sham-operated rats (n=15) were also fed a control diet containing the same amount of amino acids and minerals as dietary treatments. After 6 weeks, dietary WPCH prevented loss of bone, physical properties, mineral density, and mineral content, and improved breaking strength of femurs, with similar effect to WPC. The bone resorption enzyme activity (tartrate resistance acid phosphatase) in tibia epiphysis decreased in response to WPCH supplementation, while bone formation enzyme activity (alkaline phosphatase) was unaffected by ovariectomy and dietary treatment. Bone properties and strength increased as the dietary WPCH level increased (10 and 20?g/kg), but there was no difference between the 20 and 40?g/kg treatment. WPCH and WPC supplementation ameliorated bone loss induced by ovariectomy in rats. PMID:26367331

  10. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    The current status of the Canadian spent fuel storage is presented. This includes wet and dry interim storage. Extension of wet interim storage facilities is nor planned, as dry technologies have found wide acceptance. The Canadian nuclear program is sustained by commercial Ontario Hydro CANDU type reactors, since 1971, representing 13600 MW(e) of installed capacity, able to produce 9200 spent fuel bundles (1800 tU) every year, and Hydro Quebec and New Brunswick CANDU reactors each producing 685 MW(e) and about 100 tU of spent fuel annually. The implementation of various interim (wt and dry) storage technologies resulted in simple, dense and low cost systems. Economical factors determined that the open cycle option be adopted for the CANDU type reactors rather that recycling the spent fuel. Research and development activities for immobilization and final disposal of nuclear waste are being undertaken in the Canadian Nuclear Fuel Waste Management Program

  11. Iraq spent fuel removal program

    International Nuclear Information System (INIS)

    The paper describes the preparation and operations associated with the removal of the 208 spent fuel assemblies from Iraq, with emphasis on the technical challenges that were overcome during this removal process. (author)

  12. Intermodal transportation of spent fuel

    International Nuclear Information System (INIS)

    Concepts for transportation of spent fuel in rail casks from nuclear power plant sites with no rail service are under consideration by the US Department of Energy in the Commercial Spent Fuel Management program at the Pacific Northwest Laboratory. This report identifies and evaluates three alternative systems for intermodal transfer of spent fuel: heavy-haul truck to rail, barge to rail, and barge to heavy-haul truck. This report concludes that, with some modifications and provisions for new equipment, existing rail and marine systems can provide a transportation base for the intermodal transfer of spent fuel to federal interim storage facilities. Some needed land transportation support and loading and unloading equipment does not currently exist. There are insufficient shipping casks available at this time, but the industrial capability to meet projected needs appears adequate

  13. Active Interrogation for Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dougan, Arden [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  14. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review

    OpenAIRE

    Krystian Miazek; Claire Remacle; Aurore Richel; Dorothee Goffin

    2014-01-01

    Microalgae contain valuable compounds that can be harnessed for industrial applications. Lignocellulose biomass is a plant material containing in abundance organic substances such as carbohydrates, phenolics, organic acids and other secondary compounds. As growth of microalgae on organic substances was confirmed during heterotrophic and mixotrophic cultivation, lignocellulose derived compounds can become a feedstock to cultivate microalgae and produce target compounds. In this review, differe...

  15. Phylogenetic and functional analysis of microbial, biogas-producing communities during the hydrolysis of lignocellulosic biomass

    OpenAIRE

    Hanreich, Angelika

    2013-01-01

    Substrate, die für die Gewinnung von Bio-Kraftstoffen zweiter Generation eingesetzt werden, enthalten einen hohen Anteil an Lignocellulose. Unter anaeroben Bedingungen verläuft der Abbau der Lignocellulose langsam und unvollständig. Die genaue Bestimmung der Zusammensetzung der am Abbau beteiligten, mikrobiellen Gemeinschaften sowie die Charakterisierung ihrer aktiven Stoffwechselwege sind notwendig, um die Biogasproduktion aus lignocellulosehältigen Substraten gezielt optimieren zu können. ...

  16. IAEA spent fuel storage glossary

    International Nuclear Information System (INIS)

    The aim of this glossary is to provide a basis for improved international understanding of terms used in the important area of spent fuel storage technology. The glossary is the product of an IAEA Consultant Group with valuable input from a substantial list of reviewers. The glossary emphasizes fuel storage relevant to power reactors, but is also widely applicable to research reactors. The intention is to define terms from current technologies. Terms are limited to those directly related to spent fuel storage

  17. Transportation of spent MTR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Raisonnier, D.

    1997-08-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs.

  18. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  19. HFIR spent fuel management alternatives

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere

  20. Spent Fuel Management in Slovakia

    International Nuclear Information System (INIS)

    The paper describes the SFM system in the Slovak Republic. In 2008, the Slovak Government accepted in its Decision Nr. 328/2008 “The proposal on the strategy of the back-end of the nuclear power engineering”. The state supervision on nuclear safety of SFM is performed by the Nuclear Regulatory Authority of the Slovak Republik (UJD). The legislative framework in the Slovak Republic is based on acts and regulations. In Slovakia there are four nuclear power units in operation. The spent fuel is stored in at-reactor spent fuel storage pools and cooled by water with presence of the boric acid. After certain cooling time, the spent fuel is removed to the Interim Spent Fuel Storage Facility (ISFSF). For the spent fuel transport transportation container C-30 is used. UJD steers various research tasks under the Research & Development program (R&D). Several years ago we started process of burnup credit (BUC) implementation in Slovakia for VVER-440 reactors. Another R&D project is focused on determination of the relation between the spent fuel residual heat generation and surface temperature of the transport container C-30. By the end of 2009 first two modules — visual inspection and gamma spectroscopy — of inspection stand SVYP-440 at ISFSF were put into operation. (author)

  1. HFIR spent fuel management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-10-15

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

  2. HFIR spent fuel management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-10-15

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems` Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

  3. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  4. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids.

    Science.gov (United States)

    Obruca, Stanislav; Benesova, Pavla; Kucera, Dan; Petrik, Sinisa; Marova, Ivana

    2015-12-25

    Coffee is one of the world's most popular beverages and has been growing steadily in commercial importance. Nowadays, coffee is the second largest traded commodity in the world, after petroleum. Hence, coffee industry is responsible for the generation of large amounts of waste, especially spent coffee grounds (SCG). Various attempts to valorize this waste stream of coffee industry were made. This article summarizes our research and publications aiming at the conversion of SCG into valuable products - polyhydroxyalkanoates (PHAs) and carotenoids. At first, oil extracted from SCG (approx. 15 wt% oil in SCG) can be efficiently (YP/S=0.82 g/g) converted into PHA employing Cupriavidus necator H16. Further, the solid residues after oil extraction can be hydrolyzed (by the combination of chemical and enzymatic hydrolysis) yielding fermentable sugars, which can be further used as a substrate for the production of PHAs employing Bacillus megaterium (YP/S=0.04 g/g) or Burkholderia cepacia (YP/S=0.24 g/g). Alternatively, SCG hydrolysate can be used as a substrate for biotechnological production of carotenoids by carotenogenic yeast Sporobolomyces roseus. Solid residues after either oil extraction or hydrolysis can be used as fuel in industrial boilers to generate heat and energy. Therefore, entire biomass of SCG can be used for sustainable production of PHAs and/or carotenoids employing bio-refinery approach. PMID:25721970

  5. Enzymatic hydrolysis of ovomucin and the functional and structural characteristics of peptides in the hydrolysates.

    Science.gov (United States)

    Abeyrathne, E D N S; Lee, H Y; Jo, C; Suh, J W; Ahn, D U

    2016-02-01

    Ovomucin was hydrolyzed using enzymes or by heating under alkaline conditions (pH 12.0), and the functional, structural and compositional characteristics of the peptides in the hydrolysates were determined. Among the treatments, heating at 100°C for 15min under alkaline conditions (OM) produced peptides with the highest iron-binding and antioxidant capacities. Ovomucin hydrolyzed with papain (OMPa) or alcalase (OMAl) produced peptides with high ACE-inhibitory activity. The mass spectrometry analysis indicated that most of the peptides from OMPa were 2kDa. OMAl hydrolyzed ovomucin almost completely and no peptides within 700-5000Da were found in the hydrolasate. The results indicated that the number and size of peptides were closely related to the functionality of the hydrolysates. Considering the time, cost and activities of the hydrolysates, OM was the best treatment for hydrolyzing ovomucin to produce functional peptides. PMID:26304326

  6. HYDROLYSIS OF WHEAT STRAW HEMICELLULOSE AND DETOXIFICATION OF THE HYDROLYSATE FOR XYLITOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Junping Zhuang

    2009-05-01

    Full Text Available Xylitol can be obtained from wheat straw hemicellulose containing a high content of xylan. This study describes a new system of hydrolysis, utilizing a mixed solution of formic acid and hydrochloric acid in which xylan can be hydrolyzed effectively. The hydrolysate contains a high content of formic acid, which markedly inhibits the fermentation. One of the most efficient methods for removing inhibiting compounds is treatment of the hydrolysate with ion-exchange resins. Formate can be removed by a factor of 77.78%, and furfural, acetic acid, phenolic compounds can be removed by 90.36%, 96.29%, and 77.44%, respectively after the hydrolysate has been treated with excess Ca(OH2 and D311 ion-exchange resin. The xylose from the hydrolysis process can be fermented by Candida tropicalis strain (AS2.1776 to produce xylitol with a yield of 41.88 % (xylitol/xylose.

  7. In vitro bioactive properties of intact and enzymatically hydrolysed whey protein: targeting the enteroinsular axis.

    Science.gov (United States)

    Power-Grant, O; Bruen, C; Brennan, L; Giblin, L; Jakeman, P; FitzGerald, R J

    2015-03-01

    Enzymatically hydrolysed milk proteins have a variety of biofunctional effects some of which may be beneficial in the management of type 2 diabetes mellitus. The purpose of this study was to evaluate the effect of commercially available intact and hydrolysed whey protein ingredients (DH 32, DH 45) on markers of the enteroinsular axis (glucagon like peptide-1 secretion, dipeptidyl peptidase IV inhibition, insulin secretion and antioxidant activity) before and after simulated gastrointestinal digestion (SGID). A whey protein hydrolysate, DH32, significantly enhanced (P antioxidant activity compared to intact whey, as measured by the oxygen radical absorbance capacity assay (ORAC). This antioxidant activity was maintained (DH 32, P > 0.05) or enhanced (DH 45, P < 0.05) following SGID. Intact whey stimulated GLP-1 secretion from enteroendocrine cells compared to vehicle control (P < 0.05). This data confirm that whey proteins and peptides can act through multiple targets within the enteroinsular axis and as such may have glucoregulatory potential. PMID:25666373

  8. Systematic Investigation of Antioxidant Activity of Egg White Protein Hydrolysates Obtained by Pepsin

    Directory of Open Access Journals (Sweden)

    Shuguo Sun

    2013-01-01

    Full Text Available Antioxidative activity of protein hydrolysates from egg white hydrolyzed by Pepsin with different Degrees of Hydrolysis (DHs was investigated. As the DH increased from 6.47 to 18.22%, the antioxidative activity of Egg White Protein Hydrolysates (EWPHs first increased and then decreased, except for the reducing power of EWPHs. The EWPHs with DH 16.93% showed higher DPPH radical scavenging activity (96.07±3.84%, hydroxyl radical scavenging activity (36.82±1.46%, superoxide anion scavenging activity (67.72±2.51% and inhibitory activity of tea oil autoxidation (62.68±2.32% compared to other EWPHs. At DH 18.22%, the EWPHs exhibited the strongest reducing power (0.34±0.014. The results revealed that antioxidative activity of protein hydrolysates from egg white was determined by the DH. According to the experimental results, the EWPHs have potential for use as a natural antioxidant for food preservation.

  9. Effect of whey and casein protein hydrolysates on rheological, textural and sensory properties of cookies.

    Science.gov (United States)

    Gani, Adil; Broadway, A A; Ahmad, Mudasir; Ashwar, Bilal Ahmad; Wani, Ali Abas; Wani, Sajad Mohd; Masoodi, F A; Khatkar, Bupinder Singh

    2015-09-01

    Milk proteins were hydrolyzed by papain and their effect on the rheological, textural and sensory properties of cookies were investigated. Water absorption (%) decreased significantly as the amount of milk protein concentrates and hydrolysates increased up to a level of 15 % in the wheat flour. Dough extensibility decreased with inrease in parental proteins and their hydrolysates in wheat flour, significantly. Similarly, the pasting properties also varied significantly in direct proportion to the quantity added in the wheat flour. The colour difference (?E) of cookies supplemented with milk protein concentrates and hydrolysates were significantly higher than cookies prepared from control. Physical and sensory characteristics of cookies at 5 % level of supplementation were found to be acceptable. Also the scores assigned by the judges for texture and colour were in good agreement with the measurements derived from the physical tests. PMID:26344985

  10. Results of starter diet development for sturgeon larvae by use of spart protein hydrolysate and probiotic

    Directory of Open Access Journals (Sweden)

    Alamdari Hojatollah

    2013-09-01

    Full Text Available The purpose of these studies is to develop and biologically test a sturgeon larvae starter diet which includes fish disrupted protein component and probiotic “Bifitrilak” (Bifidobacterium spp. and Lactobacillus spp.. Six pilot batches of larvae feed are produced. Larvae of Russian sturgeon (Acipenser güldenstädtii have been grown for 24 days until they reached the young fish sdevlop-ment stage. While using the probiotic “Bifitrilak” in the structure of sturgeon larvae starter diet with or without adding sprat hydrolysate, there has not been fixed its strong positive effect on the larvae mass growth during the process of transition to active feeding. Besides, there has been ob-served the increase of fish survival rate while using the probiotic without hydrolysate additive. In the following experiments it is recommended to use the technology of micro-encapsulation for wa-ter-soluble hydrolysate.

  11. Comparative environmental performance of lignocellulosic ethanol from different feedstocks

    International Nuclear Information System (INIS)

    A renewable biofuel economy is projected as a pathway to decrease dependence on fossil fuels as well as to reduce greenhouse gases (GHG) emissions. Ethanol produced on large-scale from lignocellulosic raw materials is considered the most potential next generation automotive fuel. In this paper, a Life Cycle Assessment model was developed to evaluate the environmental implications of the production of ethanol from five lignocellulosic materials: alfalfa stems, poplar, Ethiopian mustard, flax shives and hemp hurds and its use in passenger cars. Two ethanol-based fuel applications, E10 (a mixture of 10% ethanol and 90% gasoline by volume) and E85 (85% ethanol and 15% gasoline by volume) were assessed and the results were compared to those of conventional gasoline (CG) in an equivalent car. The environmental performance was assessed in terms of fossil fuels requirements, global warming, photochemical oxidant formation, acidification and eutrophication by means of the Life Cycle Assessment (LCA) methodology in order to identify the best environmental friendly lignocellulosic source. The results show that, compared to CG, life cycle greenhouse gases emissions are lower for etanol blends, specifically up to 145% lower for E85-fueled car derived from Ethiopian mustard. This crop is also the best option in terms of eutrophying emissions regardless the ratio of ethanol in the blend. In the remaining impact categories, other feedstocks are considered beneficial, that is, poplar in the case of photochemical oxidants formation and flax shives for acidification. Concerning fossil fuels requirements, decreases up to 10% and 63% for E10 and E85 derived from hemp hurds and Ethiopian mustard, respectively, were obtained. According to the results, the study clearly demonstrates the importance of using low intensive energy and high biomass yield crops. LCA procedure helps to identify the key areas in the ethanol production life cycle where the researchers and technicians need to work to improve the environmental performance. Technological development could help in lowering both the environmental impact and the prices of the ethanol fuels. (author)

  12. Antioxidant and Functional Properties of Collagen Hydrolysates from Spanish Mackerel Skin as Influenced by Average Molecular Weight

    Directory of Open Access Journals (Sweden)

    Chang-Feng Chi

    2014-07-01

    Full Text Available In the current study, the relationships between functional properties and average molecular weight (AMW of collagen hydrolysates from Spanish mackerel (Scomberomorous niphonius skin were researched. Seven hydrolysate fractions (5.04 ? AMW ? 47.82 kDa from collagen of Spanish mackerel skin were obtained through the processes of acid extraction, proteolysis, and fractionation using gel filtration chromatography. The physicochemical properties of the collagen hydrolysate fractions were studied by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE, gel filtration chromatography, scanning electron microscope (SEM and Fourier transform infrared spectroscopy (FTIR. The results indicated that there was an inverse relationship between the antioxidant activities and the logarithm of the AMW of the hydrolysate fractions in the tested AMW range. However, the reduction of AMW significantly enhanced the solubility of the hydrolysate fractions, and a similar AMW decrease of the hydrolysate fractions negatively affected the emulsifying and foaming capacities. This presented as a positive correlation between the logarithm of AMW and emulsion stability index, emulsifying activity index, foam stability, and foam capacity. Therefore, these collagen hydrolysates with excellent antioxidant activities or good functionalities as emulsifiers could be obtained by controlling the effect of the digestion process on the AMW of the resultant hydrolysates.

  13. SO{sub 2}-Ethanol-Water fractionation of lignocellulose and pilot scale production of Isopropanol-Butanol-Ethanol solvent mixture with an advanced column technology - SEWIBE

    Energy Technology Data Exchange (ETDEWEB)

    Heiningen, A. van (Aalto Univ., Espoo (Finland), Dept. of Forest Products Technology), e-mail: adriaan.vanheiningen@aalto.fi; Granstroem, T. (Aalto Univ., Espoo (Finland), Dept.of Biotechnology and Chemical Technology), e-mail: tom.granstrom@aalto.fi

    2011-11-15

    The overall objective is to demonstrate at the pilot scale level the production of biofuels from lignocellulose biomass using the omnivorous SO{sub 2}-ethanol-water (SEW) fractionation process and an advanced column fermentation technology. A monomeric hemicellulose sugar solution will be produced by conditioning the spent fractionation liquor and a glucose solution by subsequent hydrolysis of the liberated cellulosic fibers. The combined monomeric sugars streams containing hexoses and pentoses will be fermented to a mixture of isopropanol, n-butanol and ethanol (IBE solvents) using genetically modified Clostridium bacteria. The recovery yields of the cooking chemicals, i.e. ethanol and unreacted SO{sub 2} from the spent fractionation liquor by evaporation and steam stripping will be established. Soluble and precipitated lignin fractions of the spent liquor combined with the organic residue remaining after solvent-solvent extraction of the IBE solvents will be studied experimentally with the objective to establish their potential as commercial products and biofuels, and the total sulphur recovery yield of these biomass fractions. (orig.)

  14. SO{sub 2}-ethanol-water fractionation of lignocellulose and pilot scale production of isopropanol-butanol-ethanol solvent mixture with advanced column technology - SEWIBE

    Energy Technology Data Exchange (ETDEWEB)

    Granstrom, T. [Aalto University, Espoo (Finland)], email: tom.granstrom@aalto.fi

    2012-07-01

    To demonstrate at the pilot scale level the production of biofuels from lignocellulosic biomass using the omnivorous SO{sub 2}- ethanol-water (SEW) fractionation process and advanced column fermentation technology. A monomeric hemicellulose sugar solution will be produced by conditioning the spent fractionation liquor and a glucose solution by subsequent hydrolysis of the liberated cellulosic fibers. The combined monomeric sugars streams containing hexoses and pentoses will be fermented to a mixture of isopropanol, n-butanol and ethanol (IBE solvents) using genetically modified Clostridia bacteria. The recovery yields of the cooking chemicals, i.e. ethanol and unreacted SO{sub 2} from the spent fractionation liquor by evaporation and steam stripping will be established. Soluble and precipitated lignin fractions of the spent liquor combined with the organic residue remaining after solvent-solvent extraction of the IBE solvents will be studied experimentally with the objective to establish processability into commercial products and biofuels, and the total sulphur recovery yield of these biomass fractions.

  15. Percutaneous removal of pulmonary artery emboli with hydrolyser catheter in pigs

    International Nuclear Information System (INIS)

    To evaluate the efficacy and safety of the Hydrolyser catheter for per,cutaneous treatment of massive pulmonary embolism in pigs. Twelve pigs, each weighing between 55 kg and 89 kg, were used. Radio-opaque 9 cm x 0.8 cm and 4.5 cm x 0.8 cm clots, produced by mixing pig blood with iodinated contrast agent in vacutainers, were injected via the jugular vein until central pulmonary embolism (main and proximal lobar arteries) was obtained with significant systemic and pulmonary hemodynamic modifications. From a femoral approach, the 7-French Hydrolyser thrombectomy catheter was run over a 0.025-inch (0.64-mm) guide wire to remove the pulmonary emboli. Hemodynamic, gasometric and angiographic monitoring was performed before and after treatment. The procedure's safety and completeness of emboli removal was assessed by cardiopulmonary autopsy. Three of the 12 pigs died during embolization. Thrombectomy was therefore performed in 9, and central emboli could be obtained in 7 of the 9. The Hydrolyser could be manipulated only in central pulmonary arteries and could aspirate only central emboli in 5 of the 7 pigs that had them. Despite minimal angiographic improvement seen in these 5, there was no significant hemodynamic and gasometric improvement after treatment. The procedure induced an increase in free hemoglobin blood levels. Autopsies revealed an average of 2 endothelial injuries per pig (mainly adherent endocardial thrombi) in both nontreated (n = 3) and Hydrolyser-treated (n = 9) groups. The Hydrolyser thrombectomy catheter can be promptly positioned and easily steered in central pulmonary arteries. It can be used to partially remove central emboli, but not peripheral pulmonary emboli. Most of the injuries observed may not have been strictly related to Hydrolyser use. The pig might not be a suitable animal model for treatment of massive pulmonary embolism. (author)

  16. Sensory analysis of hydrolysed meat preparations / Análise sensorial de preparações com hidrolisados de carne

    Scientific Electronic Library Online (English)

    Maria Elisabeth Machado Pinto E, Silva; Maria Carolina von, Atzingen.

    2010-06-01

    Full Text Available A utilização de hidrolisados de carne em dietas melhora seu conteúdo protéico, de vitaminas e minerais. O objetivo do presente trabalho foi avaliar a aceitação de hidrolisados de carne. Quatro preparações foram desenvolvidas com três tipos de hidrolisados em condições similares às domésticas. . A ac [...] eitação foi avaliada com uso de escala hedônica de 9 pontos. Os testes foram realizados em três sessões (de acordo com o tipo de hidrolisado) e, incluiu-se na ficha de avaliação informações de idade. A análise estatística foi realizada por ANOVA e teste de Tukey. As preparações mais aceitas foram os bolinhos com hidrolisados de peru e frango. Os hidrolisados podem ser utilizados em diversas preparações, sendo necessário o conhecimento da faixa etária a qual se destinam, suas características sensoriais e físico-químicas, para garantir o sabor e a aparência do produto final. Abstract in english The use of hydrolysed meat in diets contributes to the improvement of protein, vitamin and mineral supply. This work aims at checking the acceptance pattern in meat hydrolysates. Four preparations have been developed with three types of hydrolysates in domestic-like conditions. Acceptance was verifi [...] ed by means of sensory analysis using the nine-point hedonic scale. Sensory tests have been carried out in three sessions (according to the kind of hydrolysates). In the evaluation file, information on age groups has been included. The statistical analysis has been made by ANOVA and Tukey test. The best accepted preparation have been the turkey and chicken hydrolysed balls. Hydrolysates can be used in many different kinds of preparations, but it is necessary to know both the age group it will be used to and its sensory and chemical-physical features to ensure the taste and the original appearance of the final product.

  17. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  18. What does time spent on searching indicate?

    DEFF Research Database (Denmark)

    Borlund, Pia; Dreier, Sabine; Byström, Katriina

    2012-01-01

    In this paper, we report a comparative study on what users’ time spent on searching for information is an indication of. Time spent is commonly interpreted as an implicit measure of interest, but might indeed describe other circumstances of the information retrieval (IR) interaction. This phenomenon of time spent is interesting from an IR evaluation point of view with reference to how time spent is to be interpreted. A comparison of time spent between a semi-lab interactive IR (IIR) study using ...

  19. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Since the nation's policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  20. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059.

    Science.gov (United States)

    Bia?kowska, Aneta M; Gromek, Ewa; Krysiak, Joanna; Sikora, Barbara; Kalinowska, Halina; J?drzejczak-Krzepkowska, Marzena; Kubik, Celina; Lang, Siegmund; Schütt, Fokko; Turkiewicz, Marianna

    2015-12-01

    2,3-Butanediol (2,3-BD) synthesis by a nonpathogenic bacterium Bacillus licheniformis NCIMB 8059 from enzymatic hydrolysate of depectinized apple pomace and its blend with glucose was studied. In shake flasks, the maximum diol concentration in fed-batch fermentations was 113 g/L (in 163 h, from the hydrolysate, feedings with glucose) while in batch processes it was around 27 g/L (in 32 h, from the hydrolysate and glucose blend). Fed-batch fermentations in the 0.75 and 30 L fermenters yielded 87.71 g/L 2,3-BD in 160 h, and 72.39 g/L 2,3-BD in 94 h, respectively (from the hydrolysate and glucose blend, feedings with glucose). The hydrolysate of apple pomace, which was for the first time used for microbial 2,3-BD production is not only a source of sugars but also essential minerals. PMID:26445877

  1. Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations.

    Science.gov (United States)

    Bah, Clara S F; Bekhit, Alaa El-Din A; Carne, Alan; McConnell, Michelle A

    2015-06-01

    Plasma separated from deer, sheep and pig blood, obtained from abattoirs, was hydrolysed using protease preparations from plant (papain and bromelain) and fungal (FP400 and FPII) sources. Antioxidant and antimicrobial activities of the peptide hydrolysates obtained after 1, 2, 4 and 24h of hydrolysis, were investigated. The release of trichloroacetic acid-soluble peptides over the hydrolysis period was monitored using the o-phthaldialdehyde (OPA) assay, while the hydrolysis profiles were visualised using SDS-PAGE. The major plasma proteins in the animal plasmas were identified using MALDI-TOF-TOF MS. Hydrolysates of plasma generated with fungal proteases exhibited higher DPPH radical-scavenging, oxygen radical-scavenging capacity (ORAC) and ferric reducing antioxidant power (FRAP) than those generated with plant proteases for all three animal plasmas. No antimicrobial activity was detected in the hydrolysates. The results indicated that proteolytic hydrolysis of animal blood plasmas, using fungal protease preparations in particular, produces hydrolysates with high antioxidant properties. PMID:25624206

  2. Influence of the concentration of locust bean gum on the gelling ability of whey peptic hydrolysates

    OpenAIRE

    Rocha, Cristina M. R.; Hilliou, L.; Teixeira, J. A., colab.; Gon??alves, M. P.

    2008-01-01

    The gelling ability of whey proteins can be changed by limited hydrolysis and by the presence of other components such as polysaccharides; depending on the environmental conditions it can either be improved or impaired. In this work the effect of LBG on the heat-set gelation of aqueous whey protein hydrolysates (10 % w/w) from pepsin was assessed at pH 7.0 by small deformation rheology. Whey protein concentrate (WPC) and hydrolysates with a degree of hydrolysis (DH) of 1.5, ...

  3. Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in sugarcane bagasse hydrolysate

    OpenAIRE

    Débora Danielle Virgínio da Silva; Ismael Maciel de Mancilha; Silvio Silvério da Silva; Maria das Graças Almeida Felipe

    2007-01-01

    The effect of glucose on xylose-to-xylitol bioconversion by Candida guilliermondii was examined by adding it to sugarcane bagasse hydrolysate medium to obtain different glucose:xylose ratios (1:25, 1:12, 1:5 and 1:2.5). Under experimental conditions, increasing glucose:xylose ratio improved the assimilation of the xylose present in the hydrolysate by yeast, resulting in biomass increase, and in the formation of xylitol and glycerol/ethanol by-products. Maximum values of xylitol yield (0.59 g ...

  4. Factors affecting cellulose and hemicellulose hydrolysis of alkali treated brewers spent grain by Fusarium oxysporum enzyme extract.

    Science.gov (United States)

    Xiros, Charilaos; Katapodis, Petros; Christakopoulos, Paul

    2011-01-01

    The enzymatic degradation of polysaccharides to monosaccharides is an essential step in bioconversion processes of lignocellulosic materials. Alkali treated brewers spent grain was used as a model substrate for the study of cellulose and hemicellulose hydrolysis by Fusarium oxysporum enzyme extract. The results obtained showed that cellulose and hemicellulose conversions are not affected by the same factors, implementing different strategies for a successful bioconversion. Satisfactory cellulose conversion could be achieved by increasing the enzyme dosage in order to overcome the end-product inhibition, while the complexity of hemicellulose structure imposes the presence of specific enzyme activities in the enzyme mixture used. All the factors investigated were combined in a mathematical model describing and predicting alkali treated brewers spent grain conversion by F. oxysporum enzyme extract. PMID:20971636

  5. Characterization of the Immunogenicity and Allergenicity of Two Cow's Milk Hydrolysates – A Study in Brown Norway Rats

    DEFF Research Database (Denmark)

    BØgh, Katrine Lindholm; Barkholt, Vibeke

    2015-01-01

    Hypoallergenic infant formulas based on hydrolysed milk proteins are used in the diet for cow's milk allergic infants. For a preclinical evaluation of the immunogenicity and allergenicity of new protein ingredients for such hypoallergenic infant formulas as well as for the investigation of which characteristics of hydrolysates that contribute to allergenicity, in vivo models are valuable tools. In this study, we examine the immunogenicity and allergenicity of two hydrolysates in a Brown Norway (BN) rat model, using i.p. dosing, which allows for the use of small quantities. Intact BLG, hydrolysed BLG and a hydrolysed whey product suitable for use in extensively hydrolysed formulas were thoroughly characterized for protein chemical features and administered to BN rats by i.p. immunization with or without adjuvant. Sera were analysed for specific IgG and IgE for evaluation of sensitizing capacity, immunogenicity and antibody?binding capacity. For evaluation of eliciting capacity a skin test was performed. The study showed that the hydrolysates had no residual allergenicity, lacking the capacity to sensitize and elicit reactions in the BN rats. Dosing with or without adjuvant induced a large difference in immunogenicity. Only antibodies from rats sensitized to intact BLG with adjuvant were able to bind the hydrolysates, and the whey?based hydrolysate only showed immunogenicity when dosed with adjuvant. This study showed that hydrolysates can be evaluated by an i.p. animal model, but that the choice of in vitro tests used for evaluation of antibody responses may greatly influence the result as well as may the use of adjuvant.

  6. Characterization of the Immunogenicity and Allergenicity of Two Cow's Milk Hydrolysates--A Study in Brown Norway Rats.

    Science.gov (United States)

    Bøgh, K L; Barkholt, V; Madsen, C B

    2015-05-01

    Hypoallergenic infant formulas based on hydrolysed milk proteins are used in the diet for cow's milk allergic infants. For a preclinical evaluation of the immunogenicity and allergenicity of new protein ingredients for such hypoallergenic infant formulas as well as for the investigation of which characteristics of hydrolysates that contribute to allergenicity, in vivo models are valuable tools. In this study, we examine the immunogenicity and allergenicity of two hydrolysates in a Brown Norway (BN) rat model, using i.p. dosing, which allows for the use of small quantities. Intact BLG, hydrolysed BLG and a hydrolysed whey product suitable for use in extensively hydrolysed formulas were thoroughly characterized for protein chemical features and administered to BN rats by i.p. immunization with or without adjuvant. Sera were analysed for specific IgG and IgE for evaluation of sensitizing capacity, immunogenicity and antibody-binding capacity. For evaluation of eliciting capacity a skin test was performed. The study showed that the hydrolysates had no residual allergenicity, lacking the capacity to sensitize and elicit reactions in the BN rats. Dosing with or without adjuvant induced a large difference in immunogenicity. Only antibodies from rats sensitized to intact BLG with adjuvant were able to bind the hydrolysates, and the whey-based hydrolysate only showed immunogenicity when dosed with adjuvant. This study showed that hydrolysates can be evaluated by an i.p. animal model, but that the choice of in vitro tests used for evaluation of antibody responses may greatly influence the result as well as may the use of adjuvant. PMID:25619117

  7. Screening of ligninolytic fungi for biological pretreatment of lignocellulosic biomass.

    Science.gov (United States)

    Xu, Chunyan; Singh, Deepak; Dorgan, Kathleen M; Zhang, Xiaoyu; Chen, Shulin

    2015-10-01

    To identify white rot fungi with high potential in biological pretreatment of lignocellulosic biomass, preliminary screening was carried out on plates by testing different strains for their ability to oxidize guaiacol and decolorize the dyes azure B and Poly R-478. Of the 86 strains screened, 16 were selected for secondary screening for their ligninolytic ability; however, low manganese peroxidase activity and no lignin peroxidase activity were detected. Strain BBEL0970 proved to be the most efficient in laccase production and was subsequently identified as Trametes versicolor by analysis of the ribosomal DNA internal transcribed spacer gene sequence. In combining laccase production with biological pretreatment, the replacement of glucose with barley straw significantly improved the laccase activity by up to 10.3 U/mL, which provided evidence toward potential utilization of barley straw in laccase production by BBEL0970. Simultaneously, comparison by thermogravimetric analysis of the untreated and pretreated barley straw in liquid fermentation of laccase also demonstrated the high potential of BBEL0970 in biological pretreatment of lignocellulosic biomass. This work sheds light on further exploration on the integrated process of low-cost laccase production and efficient biological pretreatment of barley straw by T. versicolor BBEL0970. PMID:26286682

  8. Lignocellulose pretreatment severity – relating pH to biomatrix opening

    DEFF Research Database (Denmark)

    Pedersen, Mads; Meyer, Anne S.

    2010-01-01

    In cellulose-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic feedstock is a critical prerequisite for increasing the amenability of the cellulose to enzymatic attack. Currently published pretreatment strategies span over a wide range of reaction conditions involving different pH values, temperatures, types of catalysts, and holding times. The consequences of the pretreatment on lignocellulosic biomass are described with special emphasis on the chemical alterations of the biomass during pretreatment, especially highlighting the significance of the pretreatment pH. We present a new illustration of the pretreatment effects encompassing the differential responses to the pH and temperature. A detailed evaluation of the use of severity factor calculations for pretreatment comparisons signifies that the multiple effects of different pretreatment factors on the subsequent monosaccharide yields after enzymatic hydrolysis cannot be reliably compared by a one-dimensional severity factor, evenwithin the same type of pretreatment strategy. However, a quantitative comparison of published data for wheat straw pretreatment illustrates that there is some correlation between the hydrolysis yields (glucose, xylose) and the pretreatment pH, but no correlation with the pretreatment temperature (90–200 °C). A better recognition and understanding of the factors affecting biomatrix opening, and use of more standardized evaluation protocols, will allow for the identification of new pretreatment strategies that improve biomass utilization and permit rational enzymatic hydrolysis of the cellulose.

  9. Energy and Environmental Performance of Bioethanol from Different Lignocelluloses

    Directory of Open Access Journals (Sweden)

    Gjalt Huppes

    2010-01-01

    Full Text Available Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. The use of lignocellulosic biomass together with cellulosic processing technology provides opportunities to produce fuel ethanol with less competition with food and nature. Many studies on energy analysis and life cycle assessment of second-generation bioethanol have been conducted. However, due to the different methodology used and different system boundary definition, it is difficult to compare their results. To permit a direct comparison of fuel ethanol from different lignocelluloses in terms of energy use and environmental impact, seven studies conducted in our group were summarized in this paper, where the same technologies were used to convert biomass to ethanol, the same system boundaries were defined, and the same allocation procedures were followed. A complete set of environmental impacts ranging from global warming potential to toxicity aspects is used. The results provide an overview on the energy efficiency and environmental performance of using fuel ethanol derived from different feedstocks in comparison with gasoline.

  10. A method for rapid determination of sugars in lignocellulose prehydrolyzate

    Directory of Open Access Journals (Sweden)

    Congcong Chi

    2013-02-01

    Full Text Available A simple and rapid dual-wavelength spectroscopic method is used for simultaneous determination of pentoses and hexoses in the prehydrolyzate from lignocellulosic biomass. The method is based on the following reaction mechanism: in the solution of hydrochloric acid, phloroglucinol gives color reaction with sugars or their degradation products, showing maximum absorbance at 553 nm and 410 nm. Based on dual-wavelength spectrophotometric measurement, the pentoses and hexoses can separately be quantified. It was found that the derivatives from these two different sugars have an isosbestic point at 425 nm. According to the validation results, high accuracy and reasonable recovery rate is shown with the present method (pentoses recovery 97.1 to 100.0%, hexoses recovery 97.2 to 102.0%. Additionally, the interferences from substances including lignin, furfural, 5-hydroxymethyl furfural (HMF, glucuronic acid, and galacturonic acid are insignificant. All of the above results illustrate the suitability of this method for analyzing sugars in the lignocelluloses prehydrolyzate, especially hardwoods or herbaceous plants, based on forest-related biorefinery research.

  11. Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates.

    Science.gov (United States)

    Wei, Zhen; Zeng, Guangming; Huang, Fang; Kosa, Matyas; Sun, Qining; Meng, Xianzhi; Huang, Danlian; Ragauskas, Arthur J

    2015-09-01

    Metabolic synthesis of single cell oils (SCOs) for biodiesel application by heterotrophic oleaginous microorganisms is being hampered by the high cost of culture media. This study investigated the possibility of using loblolly pine and sweetgum autohydrolysates as economic feedstocks for microbial lipid production by oleaginous Rhodococcus opacus (R. opacus) PD630 and DSM 1069. Results revealed that when the substrates were detoxified by the removal of inhibitors (such as HMF-hydroxymethyl-furfural), the two strains exhibited viable growth patterns after a short adaptation/lag phase. R. opacus PD630 accumulated as much as 28.6 % of its cell dry weight (CDW) in lipids while growing on detoxified sweetgum autohydrolysate (DSAH) that translates to 0.25 g/l lipid yield. The accumulation of SCOs reached the level of oleagenicity in DSM 1069 cells (28.3 % of CDW) as well, while being cultured on detoxified pine autohydrolysate (DPAH), with the maximum lipid yield of 0.31 g/l. The composition of the obtained microbial oils varied depending on the substrates provided. These results indicate that lignocellulosic autohydrolysates can be used as low-cost fermentation substrates for microbial lipid production by wild-type R. opacus species. Consequently, the variety of applications for aqueous liquors from lignocellulosic pretreatment has been expanded, allowing for the further optimization of the integrated biorefinery. PMID:26142385

  12. The potential of lignocellulosic ethanol production in the Mediterranean Basin

    Energy Technology Data Exchange (ETDEWEB)

    Faraco, Vincenza [Department of Organic Chemistry and Biochemistry, University of Naples ' ' Federico II' ' , Naples (Italy); School of Biotechnological Sciences, University of Naples ' ' Federico II' ' , Naples (Italy); Hadar, Yitzhak [Department of Microbiology and Plant Pathology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot (Israel)

    2011-01-15

    This review provides an overview of the potential of bioethanol fuel production from lignocellulosic residues in the Mediterranean Basin. Residues from cereal crops, olive trees, and tomato and grape processing are abundant lignocellulosic wastes in France, Italy, Spain, Turkey and Egypt, where their use as raw materials for ethanol production could give rise to a potential production capacity of 13 Mtoe of ethanol. Due to the lack of sufficient amounts of agricultural residues in all of the other Mediterranean countries, use of the cellulosic content of municipal solid waste (MSW) as feedstock for ethanol fuel production is also proposed. A maximum potential production capacity of 30 Mtoe of ethanol could be achieved from 50% of the 180 million tons of waste currently produced annually in the Mediterranean Basin, the management of which has become a subject of serious concern. However, to make large-scale ethanol production from agricultural residues and MSW a medium-term feasible goal in the Mediterranean Basin, huge efforts are needed to achieve the required progress in cellulose ethanol technologies and to overcome several foreseeable constraints. (author)

  13. Development of a Commerical Enzyme System for Lignocellulosic Biomass Saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Manoj Kumar, PhD

    2011-02-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  14. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2015-05-01

    Hydrothermal pretreatment using liquid hot water, steam explosion, or dilute acids enhances the enzymatic digestibility of cellulose by altering the chemical and/or physical structures of lignocellulosic biomass. However, compounds that inhibit both enzymes and microbial activity, including lignin-derived phenolics, soluble sugars, furan aldehydes, and weak acids, are also generated during pretreatment. Insoluble lignin, which predominantly remains within the pretreated solids, also acts as a significant inhibitor of cellulases during hydrolysis of cellulose. Exposed lignin, which is modified to be more recalcitrant to enzymes during pretreatment, adsorbs cellulase nonproductively and reduces the availability of active cellulase for hydrolysis of cellulose. Similarly, lignin-derived phenolics inhibit or deactivate cellulase and ?-glucosidase via irreversible binding or precipitation. Meanwhile, the performance of fermenting microorganisms is negatively affected by phenolics, sugar degradation products, and weak acids. This review describes the current knowledge regarding the contributions of inhibitors present in whole pretreatment slurries to the enzymatic hydrolysis of cellulose and fermentation. Furthermore, we discuss various biological strategies to mitigate the effects of these inhibitors on enzymatic and microbial activity to improve the lignocellulose-to-biofuel process robustness. While the inhibitory effect of lignin on enzymes can be relieved through the use of lignin blockers and by genetically engineering the structure of lignin or of cellulase itself, soluble inhibitors, including phenolics, furan aldehydes, and weak acids, can be detoxified by microorganisms or laccase. PMID:25904131

  15. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Japan has scarce energy resources and depends on foreign resources for 84% of its energy needs. Therefore, Japan has made efforts to utilize nuclear power as a key energy source since mid-1950's. Today, the nuclear energy produced from 49 nuclear power plants is responsible for about 31% of Japan's total electricity supply. The cumulative amount of spent fuel generated as of March 1995 was about 11,600 Mg U. Japan's policy of spent fuel management is to reprocess spent nuclear fuel and recycle recovered plutonium and uranium as nuclear fuel. The Tokai reprocessing plant continues stable operation keeping the annual treatment capacity or around 90 Mg U. A commercial reprocessing plant is under construction at Rokkasho, northern part of Japan. Although FBR is the principal reactor to use plutonium, LWR will be a major power source for some time and recycling of the fuel in LWRs will be prompted. (author). 3 figs

  16. Utility spent fuel storage experience

    International Nuclear Information System (INIS)

    Past experience with storage of spent fuel elements in pools are reviewed. Data are presented which demonstrate that stainless and Zircaloy-clad spent light water reactor fuel elements have been stored for periods of 12 to 18 years, respectively, without damage due to storage in pools. Techniques for storing elements damaged in the reactor or in transfer to storage are also described. Routine surveillance and exploratory fuel examinations during storage are recommended. It is recommended that past experiences would justify expansion of fuel storage facilities and extension of storage time for commercial water reactor fuel

  17. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  18. Protein Hydrolysates from Beta-Conglycinin Enriched Soybean Genotypes Inhibit Lipid Accumulation and Inflammation in Vitro

    Science.gov (United States)

    Obesity is a worldwide health concern and a well recognized predictor of premature mortality associated with a state of chronic inflammation. The objective was to evaluate the effect of soy protein hydrolysates (SPH) produced from different soybean genotypes by alcalase (SAH) or simulated gastroint...

  19. Characterization of Peptides Found in Unprocessed and Extruded Amaranth (Amaranthus hypochondriacus Pepsin/Pancreatin Hydrolysates

    Directory of Open Access Journals (Sweden)

    Alvaro Montoya-Rodríguez

    2015-04-01

    Full Text Available The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH and extruded amaranth hydrolysates (EAH and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da, 120 min (802 Da and 180 min (567 Da in UAH. EAH showed high intensity at 10 min (2034 Da and 120 min (984, 1295 and 1545 Da. Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases.

  20. Preparation and characterisation of protein hydrolysates from Indian defatted rice bran meal.

    Science.gov (United States)

    Bandyopadhyay, Kakali; Misra, Gautam; Ghosh, Santinath

    2008-01-01

    Rice bran meal is a very good source of protein along with other micronutrients. Rice bran meal has been utilized to produce protein isolates and respective protein hydrolysates for potential application in various food products. De-oiled rice bran meal, available from Indian rice bran oil extraction plants, was initially screened by passing through an 80-mesh sieve (yield about 70%). A fraction (yield-30%) rich in fibre and silica was initially discarded from the meal. The protein content of the through fraction increased from 20.8% to 24.1% whereas silica content reduced from 3.1% to 0.4%. Rice bran protein isolate (RPI) was prepared by alkaline extraction followed by acidic precipitation at isoelectric point. This protein isolate was hydrolysed by papain at pH 8.0 and at 37 degrees C for 10, 20, 30, 45 and 60 minutes. The peptides produced by partial hydrolysis had been evaluated by determining protein solubility, emulsion activity index (EAI), emulsion stability index (ESI), foam capacity and foam stability (FS). All protein hydrolysates showed better functional properties than the original protein isolate. These improved functional properties of rice bran protein hydrolysates would make it useful for various application especially in food, pharmaceutical and related industries. PMID:18075222

  1. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    Science.gov (United States)

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  2. Protein Hydrolysates from Non-bovine and Plant Sources Replaces Tryptone in Microbiological Media

    Science.gov (United States)

    Ranganathan, Yamini; Patel, Shifa; Pasupuleti, Vijai K.; Meganathan, R.

    Tryptone (pancreatic digest of casein) is a common ingredient in laboratory and fermentation media for growing wild-type and genetically modified microorganisms. Many of the commercially manufactured products such as human growth hormone, antibiotics, insulin, etc. are produced by recombinant strains grown on materials derived from bovine sources. With the emergence of Bovine Spongiform Encephalopathy (BSE) and the consequent increase in Food and Drug Administration (FDA) regulations, elimination of materials of bovine origin from fermentation media is of paramount importance. To achieve this objective, a number of protein hydrolysates derived from non-bovine animal and plant sources were evaluated. Tryptone in Luria-Bertani (LB) broth was replaced with an equal quantity of alternate protein hydrolysates. Four of the six hydrolysates (one animal and three from plants) were found to efficiently replace the tryptone present in LB-medium as measured by growth rate and growth yield of a recombinant Escherichia coli strain. In addition, we have determined plasmid stability, inducibility and activity of the plasmid encoded ?-galactosidase in the recombinant strain grown in the presence of various protein hydrolysates.

  3. Characterization of peptides found in unprocessed and extruded amaranth (Amaranthus hypochondriacus) pepsin/pancreatin hydrolysates.

    Science.gov (United States)

    Montoya-Rodríguez, Alvaro; Milán-Carrillo, Jorge; Reyes-Moreno, Cuauhtémoc; González de Mejía, Elvira

    2015-01-01

    The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH) and extruded amaranth hydrolysates (EAH) and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM) (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da) of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da), 120 min (802 Da) and 180 min (567 Da) in UAH. EAH showed high intensity at 10 min (2034 Da) and 120 min (984, 1295 and 1545 Da). Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases. PMID:25894223

  4. Identification of novel antibacterial peptides isolated from a commercially available casein hydrolysate by autofocusing technique.

    Science.gov (United States)

    Elbarbary, Hend A; Abdou, Adham M; Nakamura, Yasushi; Park, Eun Young; Mohamed, Hamdi A; Sato, Kenji

    2012-01-01

    Autofocusing, as a simple and safe technique, was used to fractionate casein hydrolysate based on the amphoteric nature of its peptides. The antibacterial activity of casein hydrolysate and its autofocusing fractions (A1-10) was examined against Escherichia coli and Bacillus subtilis. The basic fraction A9 exhibited the highest activity with minimum inhibitory concentration (MIC) of 150 ?g/mL, whereas casein hydrolysate showed MIC values ranging from 2000 to 8000 ?g/mL. The antibacterial peptides in A9 were purified by using a series of size exclusion and reversed phase chromatographies. Three peptides exhibited the most potent antibacterial activity with MIC values ranging from 12.5 to 100 ?g/mL. These peptides were generated from ?(s2)-casein, ?(s1)-casein, and ?-casein and identified as K165 KISQRYQKFALPQYLKTVYQHQK188, I6KHQGLPQEV15, and T136EAVESTVATL146, respectively. Therefore, the results revealed that casein hydrolysate had potent antibacterial peptides that could be isolated by autofocusing technique. PMID:22539466

  5. Influence of peptides-phenolics interaction on the antioxidant profile of protein hydrolysates from Brassica napus.

    Science.gov (United States)

    Hernández-Jabalera, Anaid; Cortés-Giraldo, Isabel; Dávila-Ortíz, Gloria; Vioque, Javier; Alaiz, Manuel; Girón-Calle, Julio; Megías, Cristina; Jiménez-Martínez, Cristian

    2015-07-01

    The role of the peptides-phenolic compounds (PC) interaction on the antioxidant capacity profile (ACP) of protein hydrolysates from rapeseed (Brassica napus) was studied in 36 hydrolysates obtained from a PC-rich and PC-reduced protein substrate. The latent profile analysis (LPA), with data of seven in vitro methods and one assay for cellular antioxidant activity (CAA), allowed identifying five distinctive groups of hydrolysates, each one with distinctive ACP. The interaction of peptides with naturally present PC diminished in vitro antioxidant activity in comparison with their PC-reduced counterparts. However, CAA increased when peptides-PC interaction occurred. The profile with the highest average CAA (62.41 ± 1.48%), shown by hydrolysates obtained by using alcalase, shared typical values of Cu(2+)-catalysed ?-carotene oxidation (62.41 ± 0.43%), ?-carotene bleaching inhibition (91.75 ± 0.22%) and Cu(2+)-chelating activity (74.53 ± 0.58%). The possibilities for a sample to exhibit ACP with higher CAA increased with each unit of positively charged amino acids, according to multinomial logistic regression analysis. PMID:25704722

  6. Preparation of Antioxidant Enzymatic Hydrolysates from Honeybee-Collected Pollen Using Plant Enzymes

    Science.gov (United States)

    Marinova, Margarita D.; Tchorbanov, Bozhidar P.

    2010-01-01

    Enzymatic hydrolysates of honeybee-collected pollen were prepared using food-grade proteinase and aminopeptidases entirely of plant origin. Bromelain from pineapple stem was applied (8?mAU/g substrate) in the first hydrolysis stage. Aminopeptidase (0.05?U/g substrate) and proline iminopeptidase (0.03?U/g substrate) from cabbage leaves (Brassica oleracea var. capitata), and aminopeptidase (0.2?U/g substrate) from chick-pea cotyledons (Cicer arietinum L.) were involved in the additional hydrolysis of the peptide mixtures. The degree of hydrolysis (DH), total phenolic contents, and protein contents of these hydrolysates were as follows: DH (about 20–28%), total phenolics (15.3–27.2??g/mg sample powder), and proteins (162.7–242.8??g/mg sample powder), respectively. The hydrolysates possessed high antiradical scavenging activity determined with DPPH (42–46% inhibition). The prepared hydrolysates of bee-collected flower pollen may be regarded as effective natural and functional dietary food supplements due to their remarkable content of polyphenol substances and significant radical-scavenging capacity with special regard to their nutritional-physiological implications. PMID:21318132

  7. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro

    Science.gov (United States)

    Strategies are sought to reduce intestinal colonization of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry, chestnut tannin extracts, and conden...

  8. WPC Hydrolysates Obtained by the Action of a Pancreatin: Preparation, Analysis and Phenylalanine Removal

    Directory of Open Access Journals (Sweden)

    Larissa L. Amorin

    2011-01-01

    Full Text Available The aim of this work was to use a pancreatin to obtain Whey Protein Concentrate (WPC hydrolysates with high degree of hydrolysis, appropriate peptide profiles from the nutritional point of view as well as with reduced Phenylalanine (Phe content. Six hydrolysates were prepared by varying the enzyme: Substrate ratio and the substrate concentration. The degree of hydrolysis was calculated by the ratio between a-amino and total nitrogen. The analysis of peptide profile involved the fractionation of hydrolysates by high performance size-exclusion liquid chromatography and the rapid correct fraction area method was used to quantify the chromatographic fraction components. The activated carbon was used to remove Phe and the efficiency of this procedure was evaluated by measuring the amount of this amino acid by second derivative spectrophotometry. The results showed that the degree of hydrolysis changed from 15 to 30%. An appropriate peptide profile was obtained with high free amino acid (55.43% and low large peptide (15.75% contents as well as an amount of di and tripeptides greater than 6%. Also, Phe removal changed from 59.1 to 81.3%. The economical advantage of using the smallest enzyme: Substrate ratio (1:100 was associated to the achievement of the best peptide profile. Thus, the use of a pancreatin in the hydrolytic conditions tested in the current study produced WPC hydrolysates with high degree of hydrolysis, suitable peptide profile and reduced Phe content.

  9. Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola.

    Science.gov (United States)

    Lachhab, Nihed; Sanzani, Simona M; Adrian, Marielle; Chiltz, Annick; Balacey, Suzanne; Boselli, Maurizio; Ippolito, Antonio; Poinssot, Benoit

    2014-01-01

    Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy) and casein (cas) to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to the control, respectively. Since both hydrolysates might trigger the plant immunity, we investigated their ability to elicit grapevine defense responses. On grapevine cell suspensions, a different free cytosolic calcium signature was recorded for each hydrolysate, whereas a similar transient phosphorylation of two MAP kinases of 45 and 49 kDa was observed. These signaling events were followed by transcriptome reprogramming, including the up-regulation of defense genes encoding pathogenesis-related (PR) proteins and the stilbene synthase enzyme responsible for the biosynthesis of resveratrol, the main grapevine phytoalexin. Liquid chromatography analyses confirmed the production of resveratrol and its dimer metabolites, ?- and ?-viniferins. Overall, soy effects were more pronounced as compared to the cas ones. Both hydrolysates proved to act as elicitors to enhance grapevine immunity against pathogen attack. PMID:25566290

  10. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion.

    Science.gov (United States)

    Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat

    2016-02-01

    This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (P<0.05). The hydrolysates obtained with Izyme AL® and visceral alkaline-proteases showed the highest and lowest radical scavenging capacity, while prepared with commercial trypsin was the most effective in reducing ferric ions and showed the best metal chelating properties. The hydrolysate obtained with Izyme AL® showed the lowest iron reducing ability, but provided the highest average molecular weight (? 7 kDa), followed by commercial trypsin (2.2 kDa) and visceral alkaline-proteases (1.75 kDa). After in vitro gastrointestinal digestion, the hydrolysates showed significant higher radical scavenging, reducing ferric ions and chelating activities. Gelatin hydrolysates, from fish skin, could serve as a potential source of functional food ingredients for health promotion. PMID:26304317

  11. Efficient degradation of lignocellulosic plant biomass without pretreatment by the 9 thermophilic anaerobe, Anaerocellum thermophilum DSM 6725

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sung-Jae [University of Georgia, Athens, GA; Kataeva, Irina [University of Georgia, Athens, GA; Hamilton-Brehm, Scott [ORNL; Engle, Nancy L [ORNL; Tschaplinski, Timothy J [ORNL; Doeppke, Crissa [National Renewable Energy Laboratory (NREL); Davis, Dr. Mark F. [National Renewable Energy Laboratory (NREL); Westpheling, Janet [University of Georgia, Athens, GA; Adams, Michael W. W. [University of Georgia, Athens, GA

    2009-01-01

    Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that 'Anaerocellum thermophilum' DSM 6725, an anaerobic bacterium that grows optimally at 75 C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75 C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70 C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms.

  12. Amino acid composition and functional properties of giant red sea cucumber ( Parastichopus californicus) collagen hydrolysates

    Science.gov (United States)

    Liu, Zunying; Su, Yicheng; Zeng, Mingyong

    2011-03-01

    Giant red sea cucumber ( Parastichopus californicus) is an under-utilized species due to its high tendency to autolysis. The aim of this study was to evaluate the functional properties of collagen hydrolysates from this species. The degree of hydrolysis (DH), amino acid composition, SDS-PAGE, emulsion activity index (EAI), emulsion stability index (ESI), foam expansion (FE), and foam stability (FS) of hydrolysates were investigated. The effects of pH on the EAI, ESI FE and FS of hydrolysates were also investigated. The results indicated that the ? and ? 1 chains of the collagen were effectively hydrolyzed by trypsin at 50°c with an Enzyme/Substrate (E/S) ration of 1:20 (w:w). The DH of collagen was up to 17.3% after 3 h hydrolysis with trypsin. The hydrolysates had a molecular weight distribution of 1.1-17 kDa, and were abundant in glycine (Gly), proline (Pro), glutamic acid (Glu), alanine (Ala) and hydroxyproline (Hyp) residues. The hydrolysates were fractionated into three fractions ( 10 kDa), and the fraction of 3-10 kDa exhibited a higher EAI value than the fraction of > 10 kDa ( P 10 kDa had higher FE and FS values than other fractions ( P4.0. Under pH 7.0 and pH 10.0, the 3-10 kDa fraction showed higher EAI value and the fraction of > 10 kDa showed higher FE value, respectively. They are hoped to be utilized as functional ingredients in food and nutraceutical industries.

  13. Protein hydrolysates from the alga Chlorella vulgaris 87/1 with potentialities in immuno nutrition

    International Nuclear Information System (INIS)

    Chlorella vulgaris (Chlorophyta, Chlorophyceae) has received a particular attention in the programmes of microalgae utilisation in biotechnology. Enzymatic hydrolysis of cell proteins represents a very promising method to increase protein digestibility and thus, for obtaining hydrolysates with improved nutritional and functional properties. However, this technology has been little approached and the biological evaluation of hydrolysates has had a strictly nutritional nature. The design of hydrolysis conditions that combined for the first time, the use of C.vulgaris 87/1 treated with ethanol and pancreatin at pH values of 7.5-8.0, led to a product with a degree of hydrolysis of 20-22% and yields of 50-55%, characterised by a high digestibility (97.2%) and nitrogen solubility over a wide pH range (2.0-10.0). Hydrolysis curves were fitted to an exponential model, common to many food proteins. The bulk of the product dry matter consists of soluble peptides and free amino acids (47.7%) with three main peptides of molecular masses between 2 and 5 kDa. The oral administration of Chlorella hydrolysate (500 mg/kg) to undernourished Balb/c mice provided benefits in terms of liver protein metabolism and the induction of anabolic processes in gut mucosa. The hydrolysate also enhanced the immunological recovery, as judged by the stimulation of haemopoiesis, monocyte macrophage system activation, as well as humoral and cell mediated immune functions, like T-dependent antibody response and the reconstitution of delayed-type hypersensitivity (DTH) response. These results represent the first findings in the world concerning the immunomodulating effects of a microalgae protein hydrolysate. (author)

  14. Protein hydrolysates from the alga Chlorella vulgaris 87/1 with potentialities in immunonutrition

    Scientific Electronic Library Online (English)

    Humberto J, Morris; Olimpia V, Carrillo; Ángel, Almarales; Rosa C, Bermúdez; María E, Alonso; Leonardo, Borges; María M, Quintana; Roberto, Fontaine; Gabriel, Llauradó; Martha, Hernández.

    2009-06-01

    Full Text Available Chlorella vulgaris (Chlorophyta, Chlorophyceae) has received a particular attention in the programmes of microalgae utilisation in biotechnology. Enzymatic hydrolysis of cell proteins represents a very promising method to increase protein digestibility and thus, for obtaining hydrolysates with impro [...] ved nutritional and functional properties. However, this technology has been little approached and the biological evaluation of hydrolysates has had a strictly nutritional nature. The design of hydrolysis conditions that combined for the first time, the use of C.vulgaris 87/1 treated with ethanol and pancreatin at pH values of 7.5-8.0, led to a product with a degree of hydrolysis of 20-22% and yields of 50-55%, characterised by a high digestibility (97.2%) and nitrogen solubility over a wide pH range (2.0- 10.0). Hydrolysis curves were fitted to an exponential model, common to many food proteins. The bulk of the product dry matter consists of soluble peptides and free amino acids (47.7%) with three main peptides of molecular masses between 2 and 5 kDa. The oral administration of Chlorella hydrolysate (500 mg/kg) to undernourished Balb/c mice provided benefits in terms of liver protein metabolism and the induction of anabolic processes in gut mucosa. The hydrolysate also enhanced the immunological recovery, as judged by the stimulation of haemopoiesis, monocyte-macrophage system activation, as well as humoral and cell mediated immune functions, like T-dependent antibody response and the reconstitution of delayed-type hypersensitivity (DTH) response. These results represent the first findings in the world concerning the immunomodulating effects of a microalgae protein hydrolysate.

  15. The effect of soy hydrolysates on changes in cholesterol content and its oxidation products in fine - ground model sausages

    Directory of Open Access Journals (Sweden)

    Agnieszka Bilska

    2009-09-01

    Full Text Available Background. Meat products belong to products particularly at risk of fat oxidation processes. One of the methods to prevent disadvantageous oxidative changes of lipids in food is the application of antioxidants. Material and methods. The experimental material consisted of fine – ground model sausages. Produced processed meats differed in terms of the presence and amount of acid and enzymatic soy hydrolysates (0.3% and 0.7%. The reference sample comprised processed meat product with no hydrolysate added. Model processed meat products were stored at 4°C for 29 days. The analyses included changes in peroxide value, changes in cholesterol and its oxidation products. Results. It was found that changes of peroxide value, 7?-OHC, 7?-OHC, ?-epoxy-C, ?-epoxy-C, 20?-OHC, 25-OHC and total oxisterols were statistically significantly affected, apart from storage time, also by the type and level of applied hydrolysates. The addition of enzymatic and acid hydrolysates to batter of experimental sausages effectively inhibited the process of fat oxidation. Conclusions. In samples with enzymatic hydrolysate an approx. 20% loss of initial cholesterol content was recorded. In contrast, in the other samples this loss amounted to approx. 10%. The process of cholesterol metabolism in tested processed meat products was affected by their storage time and the type of added hydrolysate. It was observed that the highest dynamics of cholesterol metabolism occurred in a sample with no hydrolysate added. The level of total oxisterols in the sample with no addition of hydrolysate was over two times higher than in samples with an addition of hydrolysate.

  16. Transport of FBR spent fuels

    International Nuclear Information System (INIS)

    The transport of FBR spent fuels sets a thermal problem. The tests carried out by the C.E.A. allow to know with a good precision the temperatures reached during the transport. Graphs make possible to find satisfying solutions which allow not to rise above the technological limits of fixed temperatures

  17. Spent fuel management in China

    International Nuclear Information System (INIS)

    Full text: China has made good progress in the development of nuclear power. Qinshan NPP-I has been operated more than 10 years and Daya Bay NPP has been operated near 10 years. This year three new units in China have been put in operation. Other five units will be connected in grid before 2005. Spent fuel from NPPs in China is in wet-storage on site. Since the capacity of storage facility in Daya Bay NPP is near fully occupied, transportation of spent fuel from Daya Bay to reprocessing plant is planned to be conducted soon. This article presents briefly the status and trends of spent fuel management in China, the activities carried out and problems faced with. Research programmes established at the China Institute of Atomic Energy, such as the application of burnup credit technology for storage and transport of spent fuel, and R and D on high burnup fuel and MOX fuel, are also introduced in this paper. (author)

  18. Characterization of Animal By-Product Hydrolysates to Be Used as Healthy and Bioactive Ingredients in Food

    DEFF Research Database (Denmark)

    Damgaard, Trine Desiree

    2014-01-01

    The world meat production and consumption has increased rapidly over the last couple of decades, due to population and income growth. In contrast to the meat, the consumption of animal by-products has been declining, leaving large amounts of by-products underutilized. As many by-products are highly nutritious as well as being good sources of protein, they represent interesting substrates for the generation of bioactive hydrolysates and peptides. Different porcine and bovine by-products were hydrolysed with a mixture consisting of Alcalase®and Protamex, and tested in relation to antioxidant capacity and their “meat factor” effect, i.e. their ability to enhance in vitro iron availability. Hydrolysates of different animal by-products displayed antioxidant capacities as observed by several assays intended to test different antioxidant mechanisms. The radical scavenging capacity of the hydrolysates was found to correlate with the content of Trp, Tyr, Met and Arg whereas the ability to inhibit the oxidation of lineoleic acid correlated with the content of Glu and His. The iron chelating capacity of hydrolysates of some bovine tissues displayed the strongest iron chelation capacity prior to hydrolysis, and which was found to decrease significantly throughout time of hydrolysis. In contrast, hydrolysates of other bovine tissues displayed an initial increase in iron chelation capacity, but then reached a time point from where on the capacities decreased. The iron chelation capacities of some of these tissues showed strong negative correlations with increasing proportions of low molecular peptides in the hydrolysates. Hydrolysates of bovine tissues were tested for their “meat factor” effect. Hydrolysed liver and hanger steak –tissues were capable of enhancing the in vitro iron availability as observed by their ability to reduce and chelate ferric iron. An udder hydrolysate also exhibited chelating capacity, but no reducing capacity was observed. Furthermore, the hydrolysed hanger steak displayed a concentration-dependent effect on its ability to reduce and chelate ferric iron, as both were observed to increase with a higher dose. These results are interesting in regard to optimizing the value of animal by-products by converting such tissues into bioactive hydrolysates for potential use as natural ingredients in functional foods.

  19. Ranking of lignocellulosic biomass pellets through multicriteria modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, A.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2009-07-01

    A study was conducted in which pellets from different lignocellulosic biomass sources were ranked using a multicriteria assessment model. Five different pellet alternatives were compared based on 10 criteria. The pair-wise comparison was done in order to develop preference indices for various alternatives. The methodology used in this study was the Preference Ranking Organization Method for Enrichment and Evaluation (PROMETHEE). The biomass included wood pellets, straw pellets, switchgrass pellets, alfalfa pellets and poultry pellets. The study considered both quantitative and qualitative criteria such as energy consumption to produce the pellets, production cost, bulk density, NOx emissions, SOx emissions, deposit formation, net calorific value, moisture content, maturity of technology, and quality of material. A sensitivity analysis was performed by changing weights of criteria and threshold values of the criteria. Different scenarios were developed for ranking cost and environmental impacts. According to preliminary results, the wood pellet is the best energy source, followed by switchgrass pellets, straw pellets, alfalfa pellets and poultry pellets.

  20. Functionalized Polymers from Lignocellulosic Biomass: State of the Art

    Directory of Open Access Journals (Sweden)

    Wilfred Vermerris

    2013-05-01

    Full Text Available Since the realization that global sustainability depends on renewable sources of materials and energy, there has been an ever-increasing need to develop bio-based polymers that are able to replace petroleum-based polymers. Research in this field has shown strong potential in generating high-performance functionalized polymers from plant biomass. With the anticipated large-scale production of lignocellulosic biomass, lignin, cellulose and hemicellulosic polysaccharides will be abundantly available renewable feedstocks for biopolymers and biocomposites with physico-chemical properties that match or exceed those of petroleum-based compounds. This review examines the state of the art regarding advances and challenges in synthesis and applications of specialty polymers and composites derived from cellulose, hemicellulose and lignin, ending with a brief assessment of genetic modification as a route to tailor crop plants for specific applications.

  1. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.

    Science.gov (United States)

    Brinchi, L; Cotana, F; Fortunati, E; Kenny, J M

    2013-04-15

    The use of renewables materials for industrial applications is becoming impellent due to the increasing demand of alternatives to scarce and unrenewable petroleum supplies. In this regard, nanocrystalline cellulose, NCC, derived from cellulose, the most abundant biopolymer, is one of the most promising materials. NCC has unique features, interesting for the development of new materials: the abundance of the source cellulose, its renewability and environmentally benign nature, its mechanical properties and its nano-scaled dimensions open a wide range of possible properties to be discovered. One of the most promising uses of NCC is in polymer matrix nanocomposites, because it can provide a significant reinforcement. This review provides an overview on this emerging nanomaterial, focusing on extraction procedures, especially from lignocellulosic biomass, and on technological developments and applications of NCC-based materials. Challenges and future opportunities of NCC-based materials will be are discussed as well as obstacles remaining for their large use. PMID:23544524

  2. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    2012-01-01

    Pretreatment and enzymatic hydrolysis are two of the processes involved in the production of cellulosic ethanol. Several pretreatment methods were proposed, however new pretreatment strategies to increase enzymetic hydrolysis efficiency are still under investigation. For enzymatic hydrolysis, the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore, several kinetic models were proposed previously. In view of the connetions between pretreatment and enzymatic hydrolysis. The hypotheses and objective of this PhD study consists of three parts: (1) Pretreatment of barley straw by 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac), which was done during 2009. Ionic liquid had been reported to be able to dissolve lignocellulose. However, as our knowledge, in all published researches, the concentration of lignocellulose in ionic liquid were low (5~10%). Besides, pretreatment time were long (from 1 hr to 1 day). Based on the hypothesis that the amount of ionic liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time, concentration of barley straw substrate) and sugar recoveries obtained following enzymatic hydrolysis. Elevated pretreatmenttemperature and longer pretreatment time favoured hydrolysis. However intensive pretreatment at high temperature also causes degradation of cellulose. In addition, [EMIM]Ac pretreated lignocellulose was found to stabilize and protect the enzymes at elevated temperatures. Therefore lower levels of enzymes were required to obtain similar hydrolytic efficiencies. Optimal pretreatment condition was found with the aid of models based on multiple linear regression. Consider the balanced against economic considerations, barley straw can be pretreated under 150°C for 50 min with dry matter of 20% (w/w). Glucose yield can be up to 70% after enzymatic hydrolysis. (2) Immobilization of ß-glucosidase (BG), which was done during 2010. One of the major bottlenecks in production of ethanol from lignocellulose is the required high cellulase enzyme dosages that increase the processing costs. One method to decrease the enzyme dosage is to re-use BG, which hydrolyze the soluble substrate cellobiose. Based on the hypothesis that immobilized BG can be re-used, how many times the enzyme could be recycled and how coupling with glutaraldehyde affected enzyme recovery after immobilization were investigated. Glutaraldehyde cross-linkedBG aggregates were entrapped in 3.75% calcium alginate. Glutaraldehyde inactivate enzyme activity but also reduce the leakage of enzyme from calcium alginate. Findings showed that more than 60% of enzymatic activity could be maintained under optimized immobilization condition. In order to evaluate stability, the immobilized enzymes were reused for the hydrolysis of Avicel. No significant loss of activity was observed up to 20th round. Similar glucose yields were obtained following enzymatic hydrolysis of hot water pretreated barley straw by immobilized and free BG. Finally, this is the first time that BG aggregates in a calcium alginate were visualized by confocallaser scanning microscope. The images prove that more BG aggregates were entrapped in the matrix when the enzyme was cross-linked by glutaraldehyde. (3) Validation and modification of a semimechanistic model, which was done during 2010 ~ 2012. A number of cellulosic hydrolysis kinetic models were proposed. Among the models, a simple and usful mathamatical model proposed by Kadam et al. (2004) has potential for supporting process design. However, like the other models, it was not validated intensivly, especially under high glucose concentration background and hi

  3. Improved efficiency of butanol production by absorbed lignocellulose fermentation.

    Science.gov (United States)

    He, Qin; Chen, Hongzhang

    2013-03-01

    Alkali-treated steam-exploded corn stover (SECSAT) was used as solid substrate for acetone-butanol-ethanol (ABE) production by absorbed lignocellulose fermentation (ALF) using Clostridium acetobutylicum ATCC 824. The ABE concentration in ALF culture had increased by 47% compared with that in submerged culture. More surprisingly, the acetone production was promoted and ethanol production was lower in the presence of SECSAT than that in its absence. ALF was also successfully in cofermentation of glucose and xylose, although decreased fermentability with an increase in the proportion of xylose. An invariable chemical composition and dry weight of SECSAT was found in ALF. Partial simultaneous saccharification and fermentation of SECSAT using a certain amount of cellulase could not only enhance the ABE concentration by 71%, but also significantly increase the area proportion of fiber cells in SECSAT from 53% to 90%, which would be an excellent paper making material. PMID:23085417

  4. Activation of lignocellulosic biomass by ionic liquid for biorefinery fractionation.

    Science.gov (United States)

    Labbé, Nicole; Kline, Lindsey M; Moens, Luc; Kim, Keonhee; Kim, Pyoung Chung; Hayes, Douglas G

    2012-01-01

    Fractionation of lignocellulosic biomass is an attractive solution to develop an economically viable biorefinery by providing a saccharide fraction to produce fuels and a lignin stream that can be converted into high value products such as carbon fibers. In this study, the analysis of ionic liquid-activated biomass demonstrates that in addition of decreasing crystallinity, the selected ILs (1-butyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate) deacetylate Yellow poplar under mild conditions (dissolution at 60-80 °C), and lower the degradation temperature of each biomass polymeric component, thereby reducing the recalcitrance of biomass. Among the three tested ILs, 1-ethyl-3-methylimidazolium acetate performed the best, providing a strong linear relationship between the level of deacetylation and the rate of enzymatic saccharification for Yellow poplar. PMID:22079688

  5. Ultrasound-assisted fractionation of the lignocellulosic material.

    Science.gov (United States)

    García, Araceli; Alriols, María González; Llano-Ponte, Rodrigo; Labidi, Jalel

    2011-05-01

    In the present work the effectiveness of different lignocellulosic biomass fractionation processes based on ultrasounds technology was evaluated. Organosolv (acetic acid 60% v/v), alkaline (sodium hydroxide 7.5% w/w) and autohydrolysis treatments were applied at low temperature and the fractionation effectiveness was measured at different sonication conditions of the raw material. The obtained solid fractions were characterized using TAPPI standard methods, and the liquid fractions main components were quantified with the purpose of studying the effect that the treatment conditions had on the obtained by-products quality. Therefore, obtained lignin samples were characterized by ATR-IR spectroscopy and their thermal behaviour by TGA technique. The results showed that ultrasounds application improved the yield and selectivity of the studied processes and that the obtained lignin did not suffer significant modifications in its physicochemical properties. PMID:21377359

  6. Reactors for High Solid Loading Pretreatment of Lignocellulosic Biomass.

    Science.gov (United States)

    Zhang, Jian; Hou, Weiliang; Bao, Jie

    2016-01-01

    : The review summarized the types, the geometry, and the design principle of pretreatment reactors at high solid loading of lignocellulose material. Among the reactors used, the explosion reactors and the helical stirring reactors are to be considered as the practical form for high solids loading pretreatment operation; the comminution reactors and the extruder reactors are difficult to be used as an independent unit, but possible to be used in the combined form with other types of reactors. The principles of the pretreatment reactor design at high solid loading were discussed and several basic principles for the design were proposed. This review provided useful information for choosing the reactor types and designing the geometry of pretreatment operation at the high solids loading. PMID:25757450

  7. Compatibility between cellulose and hydrophobic polymer provided by microfibrillated lignocellulose.

    Science.gov (United States)

    Gindl-Altmutter, Wolfgang; Obersriebnig, Michael; Veigel, Stefan; Liebner, Falk

    2015-01-01

    Microfibrillated lignocellulose (MFLC) was produced from wood subjected to partial lignin extraction using an ethanol/water mixture. After homogenization, the average fibril diameter of MFLC was in the same range as conventional microfibrillated cellulose (MFC). Although MFLC exhibited higher wettability with water compared to MFC, AFM adhesion force measurements revealed high variability in surface polarity of MFLC compared to MFC. Specifically, domains of higher polarity than in MFC but also domains of lower polarity than in MFC were observed in MFLC. This tendency towards amphiphilic behavior of MFLC was used to provide enhanced compatibility with polycaprolactone and polystyrene matrices. With both polymers, a significantly more homogeneous distribution of fibrils was achieved using MFLC compared to MFC. In line with better dispersion of the fibrils, significantly more efficient mechanical reinforcement of polymers was obtained using MFLC compared to MFC. PMID:25348210

  8. Fuel lignocellulosic briquettes, die design and products study

    Energy Technology Data Exchange (ETDEWEB)

    Granada, E.; Miguez, J.L.; Moran, J. [Vigo Univ. (Spain). E.T.S. Ingenieros Industriales y Minas; Lopez Gonzalez, L.M. [Universidad de La Rioja (Spain). Departamento de Ingenieria Mecanica

    2002-12-01

    Briquetting of biomass can be done through various techniques. The present work describes the process of designing a taper die and its optimisation for use in a hydraulic machine. The application of an experimental design technique, and the later statistical analysis of the results is presented, applied to a laboratory hydraulic press densification process of lignocellulosic biomass. The most appropriate experiment type is determined for a first set of experiments; calculating, among other things: minimum number of tests to carry out to obtain binding conclusions, most influential factors, and search paths to improve fuel quality. Another experiment type is determined for a second set of experiments, taking account of the most influential factors (pressure, temperature and moisture content), and also the number of tests to carry out considering the improvement of density and friability. Finally, an approximation study of the best product allows conclusions to be reached on product behaviour beyond the experimental design range factors. (Author)

  9. Radicalization of lignocellulosic fibers, related structural and morphological changes.

    Science.gov (United States)

    Canevali, Carmen; Orlandi, Marco; Zoia, Luca; Scotti, Roberto; Tolppa, Eeva-Liisa; Sipila, Jussi; Agnoli, Francesca; Morazzoni, Franca

    2005-01-01

    The radicalization of unbleached lignocellulosic fibers obtained from thermomechanical (TMP) and chemothermomechanical (CTMP) pulps was performed in heterogeneous phase by reaction with dioxygen in the presence of N,N'-ethylenebis(salicylideneiminato)cobalt(II), [Co(salen)], as catalyst. Phenoxy cobalt radicals immobilized in fibers were observed by electron paramagnetic resonance (EPR) spectroscopy; their amount depends on the fiber swelling induced by reaction medium. The absolute concentration of such radicals in fibers, about 10(16) spin/g, reaches values 10 times higher than that of phenoxy radicals formed in similar oxidative reactions catalyzed by laccase. The generation of phenoxy cobalt radicals in fibers was related to structural changes of lignin units, detected by mono- and bidimensional nuclear magnetic resonance ((13)C NMR and 2D-HSQC) investigations, and to morphological modifications in fibers observed by scanning electron microscopy (SEM). PMID:15877382

  10. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  11. Biodiesel from lignocellulosic biomass--prospects and challenges.

    Science.gov (United States)

    Yousuf, Abu

    2012-11-01

    Biodiesel can be a potential alternative to petroleum diesel, but its high production cost has impeded its commercialization in most parts of the world. One of the main drivers for the generation and use of biodiesel is energy security, because this fuel can be produced from locally available resources, thereby reducing the dependence on imported oil. Many countries are now trying to produce biodiesel from plant or vegetable oils. However, the consumption of large amounts of vegetable oils for biodiesel production could result in a shortage in edible oils and cause food prices to soar. Alternatively, the use of animal fat, used frying oils, and waste oils from restaurants as feedstock could be a good strategy to reduce the cost. However, these limited resources might not meet the increasing demand for clean, renewable fuels. Therefore, recent research has been focused the use of residual materials as renewable feedstock in order to lower the cost of producing biodiesel. Microbial oils or single cell oils (SCOs), produced by oleaginous microorganisms have been studied as promising alternatives to vegetable or seed oils. Various types of agro-industrial residues have been suggested as prospective nutritional sources for microbial cultures. Since the most abundant residue from agricultural crops is lignocellulosic biomass (LCB), this byproduct has been given top-priority consideration as a source of biomass for producing biodiesel. But the biological transformation of lignocellulosic materials is complicated due to their crystalline structure. So, pretreatment is required before they can be converted into fermentable sugar. This article compares and scrutinizes the extent to which various microbes can accumulate high levels of lipids as functions of the starting materials and the fermentation conditions. Also, the obstacles associated with the use of LCB are described, along with a potentially viable approach for overcoming the obstacles that currently preclude the commercial production of biodiesel from agricultural biomass. PMID:22475852

  12. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Directory of Open Access Journals (Sweden)

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  13. Lignocellulosic ethanol: Technology design and its impact on process efficiency.

    Science.gov (United States)

    Paulova, Leona; Patakova, Petra; Branska, Barbora; Rychtera, Mojmir; Melzoch, Karel

    2015-11-01

    This review provides current information on the production of ethanol from lignocellulosic biomass, with the main focus on relationships between process design and efficiency, expressed as ethanol concentration, yield and productivity. In spite of unquestionable advantages of lignocellulosic biomass as a feedstock for ethanol production (availability, price, non-competitiveness with food, waste material), many technological bottlenecks hinder its wide industrial application and competitiveness with 1st generation ethanol production. Among the main technological challenges are the recalcitrant structure of the material, and thus the need for extensive pretreatment (usually physico-chemical followed by enzymatic hydrolysis) to yield fermentable sugars, and a relatively low concentration of monosaccharides in the medium that hinder the achievement of ethanol concentrations comparable with those obtained using 1st generation feedstocks (e.g. corn or molasses). The presence of both pentose and hexose sugars in the fermentation broth, the price of cellulolytic enzymes, and the presence of toxic compounds that can inhibit cellulolytic enzymes and microbial producers of ethanol are major issues. In this review, different process configurations of the main technological steps (enzymatic hydrolysis, fermentation of hexose/and or pentose sugars) are discussed and their efficiencies are compared. The main features, benefits and drawbacks of simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with delayed inoculation (dSSF), consolidated bioprocesses (CBP) combining production of cellulolytic enzymes, hydrolysis of biomass and fermentation into one step, together with an approach combining utilization of both pentose and hexose sugars are discussed and compared with separate hydrolysis and fermentation (SHF) processes. The impact of individual technological steps on final process efficiency is emphasized and the potential for use of immobilized biocatalysts is considered. PMID:25485865

  14. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects.

    Science.gov (United States)

    Jönsson, Leif J; Martín, Carlos

    2016-01-01

    Biochemical conversion of lignocellulosic feedstocks to advanced biofuels and other commodities through a sugar-platform process involves a pretreatment step enhancing the susceptibility of the cellulose to enzymatic hydrolysis. A side effect of pretreatment is formation of lignocellulose-derived by-products that inhibit microbial and enzymatic biocatalysts. This review provides an overview of the formation of inhibitory by-products from lignocellulosic feedstocks as a consequence of using different pretreatment methods and feedstocks as well as an overview of different strategies used to alleviate problems with inhibitors. As technologies for biorefining of lignocellulose become mature and are transferred from laboratory environments to industrial contexts, the importance of management of inhibition problems is envisaged to increase as issues that become increasingly relevant will include the possibility to use recalcitrant feedstocks, obtaining high product yields and high productivity, minimizing the charges of enzymes and microorganisms, and using high solids loadings to obtain high product titers. PMID:26482946

  15. Enzyme Characterization of Cellulase and Hemicellulases Component Enzymes and Saccharification of Ionic Liquid Pretreated Lignocellulosic Biomass

    Science.gov (United States)

    Lignocellulosic biomass is comprised of cellulose and hemicellulose, sources of polysaccharides, and lignin, a macromolecule with extensive aromaticity. Terrestrial biomass can provide a renewable carbon based feedstock for fuel and chemical production. However, recalcitrance of biomass to deconstru...

  16. Lignocellulose degradation by Pleurotus ostreatus in the presence of heavy metals.

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Gabriel, Ji?í

    Oslo, 2002. s. 324. [International Mycological Congress /7./. 11.08.2002-17.08.2002, Oslo] R&D Projects: GA ?R GP204/02/P100 Keywords : lignocellulose * degradation Subject RIV: EE - Microbiology, Virology

  17. Effects of temperature on microbial utilization of lignocellulosic detritus in a thermally impacted stream.

    Science.gov (United States)

    Benner, R; McArthur, J V

    1988-11-01

    The effects of temperature on rates of mineralization of [(14)C]lignocellulose were investigated in water and sediment from a thermally impacted stream and from a nearby unimpacted swamp at the Savannah River Plant, South Carolina. The temperature optimum for lignocellulose mineralization remained near 35°C at the unimpacted site throughout the sampling period from November 1986 to May 1987. The temperature optimum for lignocellulose mineralization in the thermally impacted stream was near 45°C when thermal effluents from a nuclear reactor were released to the stream, and was near 35°C when the reactor was not operating. Microbial populations capable of rapidly degrading lignocellulose at higher temperatures (45-55°C) developed between 9 and 27 days under conditions of thermal stress, indicating that under favorable conditions thermophilic microorganisms became dominant components of the microbiota. Removal of thermal stress for periods of 75 days or less resulted in a collapse of the thermophilic degrading population. PMID:24201717

  18. Spent fuel data system at Ignalia NPP

    International Nuclear Information System (INIS)

    An integrated database for on-line tracking of spent fuel has been implemented at Ignalina Nuclear Power Plant. This paper gives an introduction to the spent fuel database system which provides important assistance to the management of spent fuel at the Ignalina NPP. (author)

  19. Relationship between Calorific Value and Elementary Composition of Torrefied Lignocellulosic Biomass

    OpenAIRE

    S. Yusup; D. Subbarao; Tsutsui, T; W. Omar; Uemura, Y

    2010-01-01

    In this study, the relationship between calorific value and elementary composition of torrefied oil palm wastes (empty fruit bunches, mesocarp fiber and kernel shell) and other lignocellulosic biomass is discussed. Several correlations for calorific value vs. elementary composition for biomass were examined for their applicability to torrefied lignocellulosic biomass. One of the correlations was selected as the most appropriate for the purpose, based on average absolute error between observed...

  20. Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation

    OpenAIRE

    Landaeta, R.; Aroca, G.; Acevedo, F.; Teixeira, J. A.; Mussatto, Solange I.

    2013-01-01

    The ethanol production from lignocellulosic feedstocks is considered a promising strategy to increase global production of biofuels without impacting food supplies. However, some compounds released during the hydrolysis of lignocellulosic materials are toxic for the microbial metabolism, causing low ethanol yield and productivity during the fermentation. As an attempt to overcome this problem, the present study evaluated the adaptation of a flocculent strain of Saccharomyces cerevisiae (NRRL ...

  1. The effect of aqueous ammonia soaking pretreatment on methane generation uing different lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Jonuzaj, Suela; Gavala, Hariklia N.; Skiadas, Ioannis; Lyberatos, Gerasimos

    2014-01-01

    Lignocellulosic biomass including agricultural and forestry residues, perennial crops, softwoods and hardwoods, can be used as feedstock for methane production. Although being abundant and almost zero cost feedstocks, the main obstacles of their use are the low efficiencies and yields attained, due to the recalcitrant nature of their lignocellulosic content. However, with the application of a pretreatment process, depolymerization of cellulose and hemicellulose and breaking the lignin seal can b...

  2. Upgrading of lignocellulosic biorefinery to value-added chemicals: Sustainability and economics of bioethanol-derivatives

    DEFF Research Database (Denmark)

    Cheali, Peam; Posada, John A.; Gernaey, Krist; Sin, Gürkan

    2015-01-01

    In this study, several strategies to upgrade lignocellulosic biorefineries for production of value-added chemicals are systematically generated and evaluated with respect to economic and sustainability objectives. A superstructure-based process synthesis approach under uncertainty integrated with a sustainability assessment method is used as evaluation tool. First, an existing superstructure representing the lignocellulosic biorefinery design network is extended to include the options for cataly...

  3. Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids

    OpenAIRE

    Silva, Sara P. Magalhães da; Lopes, André; Roseiro, Luísa; Bogel-Lukasik, R.

    2013-01-01

    An efficient lignocellulosic biomass pre-treatment is a crucial step for the valorization of these kind of raw materials. Lignocellulosic biomass is a potentially valuable resource for transformation into biofuels and bio-based products. The use of ionic liquids as media for the biomass pre-treatment is an alternative method that follows the green chemistry concept. This work proposes a new methodology for wheat straw pre-treatment with the ionic liquid (IL) 1-ethyl-3-methylimidazoliu...

  4. Immobilization of cellulases on magnetic particles to enable enzyme recycling during hydrolysis of lignocellulose

    DEFF Research Database (Denmark)

    Alftrén, Johan

    2014-01-01

    There is an urgent need to replace petroleum-based fuels and chemicals with more environmentally sustainable options since oil contributes to a net production of greenhouse gases and is a limited resource. Lignocellulosic biomass is currently one of the most extensively studied feedstocks for biochemicals and biofuels production because of the great abundance of the feedstock and the fact that it is a waste material and does not directly compete with food production. Lignocellulose consists of c...

  5. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    2014-01-01

    Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat an...

  6. Termite Digestomes as a Potential Source of Symbiotic Microbiota for Lignocelluloses Degradation: A Review

    OpenAIRE

    L.J. Wong; P.S. H`ng; Wong, S Y; Lee, S.H.; W.C. Lum; E.W. Chai; W.Z. Wong; K.L. Chin

    2014-01-01

    Termites thrive in great abundance in terrestrial ecosystems and the symbiotic gut microbiota play important roles in digestion of lignocelluloses and nitrogen metabolism. Termites are excellent models of biocatalysts as they inhabit dense microbes in their guts that produce digestive enzymes to decompose lignocelluloses and convert it to end products such as sugars, hydrogen, and acetate. Different of digestive system between lower and higher termites which ...

  7. Swedish spent fuel storage programme

    International Nuclear Information System (INIS)

    About 50% of the electricity in Sweden is generated by means of nuclear power from 12 LWRs located at four sites, with a total capacity of 10,300 MW. After a referendum on the nuclear issue in 1980, the Swedish Parliament decided that all reactors shall be phased out by the year 2010 at the latest. By then about 7800 t U will have been used and will have to be taken care of as spent nuclear fuel. After unloading from the reactor core and a cooling period at the reactors, the spent fuel is transported to the Central Interim Storage Facility for Spent Nuclear Fuel, CLAB, where the fuel will remain for 30-40 years. According to a decision taken at the beginning of the 1980s, the spent fuel shall be taken care of in Sweden and will be finally disposed of at a depth of about 500 m in a repository in the bedrock. Planning for the interim storage facility started in the mid-1970s. The decision was taken that the storage should be wet. Construction was planned to begin in 1980, after the referendum had been held and the necessary permits had been obtained. The first spent fuel was received in 1985 and after nine years of successful operation, 2000 t U are in storage. The operating costs have been successfully reduced by around 30% as a result of the experience gained and optimized operating procedures. The release of activity from the fuel has been much lower than originally anticipated. The storage capacity has been increased from the original 3000 t U to 5000 t U by the introduction in 1992 of new boron steel storage canisters which permit denser packing of the assemblies in the existing pools. The planning for the next step in the back end of the fuel cycle has been initiated in that a design project has started with the aim of building and encapsulation plant adjacent to CLAB. The encapsulation of spent fuel is planned to commence around the year 2007, followed by placement of the first disposal canisters in the deep repository in the bedrock in the year 2008. (author). 8 figs

  8. Caracterização de hidrolisados enzimáticos de pescado / Characterization of enzymatic fish hydrolysates

    Scientific Electronic Library Online (English)

    R.A.M., Neves; N.V.M. de, Mira; U.M. Lanfer, Marquez.

    2004-03-01

    Full Text Available Hidrolisados enzimáticos são utilizados no tratamento clínico de pacientes com dificuldade em digerir e absorver proteínas, sendo preferidos em relação às misturas de aminoácidos livres. Neste trabalho foram caracterizados quimicamente seis hidrolisados de minced de pescado, obtidos pelo emprego de [...] diferentes sistemas enzimáticos, quanto à extensão da hidrólise, distribuição de peso molecular dos peptídios, composição química e perfil de aminoácidos. A hidrólise resultou na solubilização de 63,4 a 94,2% das proteínas, sendo esta diretamente proporcional ao grau de hidrólise e dependente do sistema enzimático e das variáveis do processo (relação enzima/substrato e atividade enzimática). A composição dos hidrolisados atendeu à recomendação de ingestão dietética para aminoácidos essenciais, tanto para crianças como para adultos. A relação entre a concentração de aminoácidos ramificados e aromáticos (Relação de Fischer) resultou em valores superiores a 3,5 indicando que os hidrolisados obtidos podem ser úteis para a manutenção dietética de pacientes com doenças hepáticas crônicas. Os hidrolisados forneceram peptídios com pesos moleculares bem definidos, destacando-se o obtido com pepsina e protease de Streptomyces griseus, que apresentou 57% de peptídios menores do que 3 kDa, adequado para o uso em formulações hipoalergênicas. Abstract in english Enzymatic hydrolysates have been used in the clinical treatment of patients with protein digestion and absorption impairment and have been preferred to mixtures of free amino acids. In this present work, six protein hydrolysates of minced fish, obtained by distinct enzymatic systems were characteriz [...] ed regarding the extent of hydrolysis, distribution of molecular size of peptides, chemical composition and amino acids profiles. The hydrolysis resulted in solubilization of 63,4% to 94,2% of proteins according to the enzymes used and process variables (enzyme substrate ratio and enzyme activity) and was proportional to the degree of hydrolysis. The composition of all the hydrolysates attends the dietary reference intakes for essential amino acids established for adults and infant nutrition. The ratio between the concentration of branched chain and aromatic amino acids (Fischer Ratio) was higher than 3,5 indicating that the hydrolysates obtained could be useful for dietetic management of patients with chronic liver diseases. The hydrolysates were composed of peptides with fairly defined molecular weights, highlighting the hydrolysate obtained by pepsin and Streptomyces griseus protease which showed a high percentage (57%) of peptides smaller than 3kDa suitable for use in hypoallergenic formulas.

  9. Caracterização de hidrolisados enzimáticos de pescado Characterization of enzymatic fish hydrolysates

    Directory of Open Access Journals (Sweden)

    R.A.M. Neves

    2004-03-01

    Full Text Available Hidrolisados enzimáticos são utilizados no tratamento clínico de pacientes com dificuldade em digerir e absorver proteínas, sendo preferidos em relação às misturas de aminoácidos livres. Neste trabalho foram caracterizados quimicamente seis hidrolisados de minced de pescado, obtidos pelo emprego de diferentes sistemas enzimáticos, quanto à extensão da hidrólise, distribuição de peso molecular dos peptídios, composição química e perfil de aminoácidos. A hidrólise resultou na solubilização de 63,4 a 94,2% das proteínas, sendo esta diretamente proporcional ao grau de hidrólise e dependente do sistema enzimático e das variáveis do processo (relação enzima/substrato e atividade enzimática. A composição dos hidrolisados atendeu à recomendação de ingestão dietética para aminoácidos essenciais, tanto para crianças como para adultos. A relação entre a concentração de aminoácidos ramificados e aromáticos (Relação de Fischer resultou em valores superiores a 3,5 indicando que os hidrolisados obtidos podem ser úteis para a manutenção dietética de pacientes com doenças hepáticas crônicas. Os hidrolisados forneceram peptídios com pesos moleculares bem definidos, destacando-se o obtido com pepsina e protease de Streptomyces griseus, que apresentou 57% de peptídios menores do que 3 kDa, adequado para o uso em formulações hipoalergênicas.Enzymatic hydrolysates have been used in the clinical treatment of patients with protein digestion and absorption impairment and have been preferred to mixtures of free amino acids. In this present work, six protein hydrolysates of minced fish, obtained by distinct enzymatic systems were characterized regarding the extent of hydrolysis, distribution of molecular size of peptides, chemical composition and amino acids profiles. The hydrolysis resulted in solubilization of 63,4% to 94,2% of proteins according to the enzymes used and process variables (enzyme substrate ratio and enzyme activity and was proportional to the degree of hydrolysis. The composition of all the hydrolysates attends the dietary reference intakes for essential amino acids established for adults and infant nutrition. The ratio between the concentration of branched chain and aromatic amino acids (Fischer Ratio was higher than 3,5 indicating that the hydrolysates obtained could be useful for dietetic management of patients with chronic liver diseases. The hydrolysates were composed of peptides with fairly defined molecular weights, highlighting the hydrolysate obtained by pepsin and Streptomyces griseus protease which showed a high percentage (57% of peptides smaller than 3kDa suitable for use in hypoallergenic formulas.

  10. Spent fuel corrosion and dissolution

    International Nuclear Information System (INIS)

    This paper presents the current status of the Swedish programme for the study of the corrosion of spent fuel in bicarbonate groundwaters. Results from the on-going experimental programme are presented and compared with the data base accumulated over the past ten years. Release of uranium and the other actinides was solubility-controlled under the semi-static type of experiments performed. The limiting solubility for uranium under oxic conditions was consistent with the hypothesis that the redox potential of the system is assumed to correspond to the U3O7/U3O8 transition. The measured release fractions for 137Cs, 90Sr and 99Tc are discussed and used to exemplify the probable dissolution and corrosion processes involved. A substantial part of the Swedish programme is directed to the characterization of spent fuel before and after corrosion tests. Recent results are presented on the identification of possible corrosion sites. (26 refs.) (au)

  11. Metabolomics analysis of soy hydrolysates for the identification of productivity markers of mammalian cells for manufacturing therapeutic proteins.

    Science.gov (United States)

    Richardson, Jason; Shah, Bhavana; Bondarenko, Pavel V; Bhebe, Prince; Zhang, Zhongqi; Nicklaus, Michele; Kombe, Maua C

    2015-01-01

    Soy hydrolysates are widely used as a nutrient supplement in mammalian cell culture for the production of recombinant proteins. The batch-to-batch variability of a soy hydrolysate often leads to productivity differences. This report describes our metabolomics platform, which includes a battery of LC-MS/MS modes of operation, and advanced data analysis software for automated data processing. The platform was successfully used for screening productivity markers in soy hydrolysates during the production of two therapeutic antibodies in two Chinese hamster ovary cell lines. A total of 123 soy hydrolysate batches were analyzed, from which 62 batches were used in the production runs of cell line #1 and 12 batches were used in the production runs of cell line #2. For cell line #1, out of 19 amino acids, 106 other metabolites and 4,131 peptides identified in the soy hydrolysate batches being used, several nucleosides and short hydrophobic peptides showed negative correlation with antibody titer, while ornithine, citrulline and several amino acids and organic acids correlated positively with titer. For cell line #2, only ornithine and citrulline showed strong positive correlation. When ornithine was spiked into the culture media, both cell lines demonstrated accelerated cell growth, indicating ornithine as a root cause of the performance difference. It is proposed that better soy hydrolysate performance resulted from better bacterial fermentation during the hydrolysate production. A few selected markers were used to predict the performance of other soy hydrolysate batches for cell line #1. The predicted titers agreed with the experimental values with good accuracy. PMID:25583076

  12. COMPARATIVE STUDY ON ANGIOTENSIN CONVERTING ENZYME INHIBITORY ACTIVITY OF HYDROLYSATE OF MEAT PROTEIN OF INDONESIAN LOCAL LIVESTOCKS

    OpenAIRE

    Jamhari; L.M. Yusiati; E. Suryanto; M. N. Cahyanto; Y. Erwanto; Muguruma, M.

    2013-01-01

    The experiment was conducted to investigate the angiotensin converting enzyme (ACE) inhibitory activity of hydrolysate in meat protein of Bali cattle, Kacang goat, native chicken, and local duck. The meats of Bali cattle, Kacang goat, native chicken, and local duck were used in this study. The meats were ground using food processor added with aquadest to obtain meat extract. The meat extracts were then hydrolyzed using protease enzymes to obtain hydrolysate of meat protein. Protein concentrat...

  13. Antioxidative activity of protein hydrolysate produced by alcalase hydrolysis from shrimp waste (Penaeus monodon and Penaeus indicus)

    OpenAIRE

    Dey, Satya Sadhan; Dora, Krushna Chandra

    2011-01-01

    Protein hydrolysates prepared by hydrolysis of shrimp waste (Penaeus monodon and Penaeus indicus) for 90 min. using Alcalase enzyme following pH-stat method. Antioxidative activities of SWPH were assessed determining FRAP, ABTS and DPPH radical scavenging activities, which increased linearly with increasing concentration of protein hydrolysate upto 5 mg/ml maintaining good correlation. SWPH showed high stability over wide ranges of pH (2–11) and temperature (up to 100 °C for 150 min), in whic...

  14. Preparation, Characterization, and Microbial Degradation of Specifically Radiolabeled [14C]Lignocelluloses from Marine and Freshwater Macrophytes †

    OpenAIRE

    Benner, Ronald; Maccubbin, A. E.; Hodson, Robert E.

    1984-01-01

    Specifically radiolabeled [14C-lignin]lignocelluloses were prepared from the aquatic macrophytes Spartina alterniflora, Juncus roemerianus, Rhizophora mangle, and Carex walteriana by using [14C]phenylalanine, [14C]tyrosine, and [14C]cinnamic acid as precursors. Specifically radiolabeled [14C-polysaccharide]lignocelluloses were prepared by using [14C]glucose as precursor. The rates of microbial degradation varied among [14C-lignin]lignocelluloses labeled with different lignin precursors within...

  15. Spent fuel integrity during transportation

    International Nuclear Information System (INIS)

    The conditions of recent shipments of light water reactor spent fuel were surveyed. The radioactivity level of cask coolant was examined in an attempt to find the effects of transportation on LWR fuel assemblies. Discussion included potential cladding integrity loss mechanisms, canning requirements, changes of radioactivity levels, and comparison of transportation in wet or dry media. Although integrity loss or degradation has not been identified, radioactivity levels usually increase during transportation, especially for leaking assemblies

  16. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (?50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  17. Spent fuel receipt scenarios study

    Energy Technology Data Exchange (ETDEWEB)

    Ballou, L.B.; Montan, D.N.; Revelli, M.A.

    1990-09-01

    This study reports on the results of an assignment from the DOE Office of Civilian Radioactive Waste Management to evaluate of the effects of different scenarios for receipt of spent fuel on the potential performance of the waste packages in the proposed Yucca Mountain high-level waste repository. The initial evaluations were performed and an interim letter report was prepared during the fall of 1988. Subsequently, the scope of work was expanded and additional analyses were conducted in 1989. This report combines the results of the two phases of the activity. This study is a part of a broader effort to investigate the options available to the DOE and the nuclear utilities for selection of spent fuel for acceptance into the Federal Waste Management System for disposal. Each major element of the system has evaluated the effects of various options on its own operations, with the objective of providing the basis for performing system-wide trade-offs and determining an optimum acceptance scenario. Therefore, this study considers different scenarios for receipt of spent fuel by the repository only from the narrow perspective of their effect on the very-near-field temperatures in the repository following permanent closure. This report is organized into three main sections. The balance of this section is devoted to a statement of the study objective, a summary of the assumptions. The second section of the report contains a discussion of the major elements of the study. The third section summarizes the results of the study and draws some conclusions from them. The appendices include copies of the waste acceptance schedule and the existing and projected spent fuel inventory that were used in the study. 10 refs., 27 figs.

  18. Trends in shipping spent fuel

    International Nuclear Information System (INIS)

    In spite of recent developments in transport technology there is still room for improvement in spent fuel transport systems, both to allay public anxiety and to cope with the rapid increase in fuel movements expected at the turn of the century. The increase in transport demand and the current transport scenario are discussed. A description is given of current cask designs and the evolution of cask design. (U.K.)

  19. Spent fuel receipt scenarios study

    International Nuclear Information System (INIS)

    This study reports on the results of an assignment from the DOE Office of Civilian Radioactive Waste Management to evaluate of the effects of different scenarios for receipt of spent fuel on the potential performance of the waste packages in the proposed Yucca Mountain high-level waste repository. The initial evaluations were performed and an interim letter report was prepared during the fall of 1988. Subsequently, the scope of work was expanded and additional analyses were conducted in 1989. This report combines the results of the two phases of the activity. This study is a part of a broader effort to investigate the options available to the DOE and the nuclear utilities for selection of spent fuel for acceptance into the Federal Waste Management System for disposal. Each major element of the system has evaluated the effects of various options on its own operations, with the objective of providing the basis for performing system-wide trade-offs and determining an optimum acceptance scenario. Therefore, this study considers different scenarios for receipt of spent fuel by the repository only from the narrow perspective of their effect on the very-near-field temperatures in the repository following permanent closure. This report is organized into three main sections. The balance of this section is devoted to a statement of the study objective, a summary of the assumptions. The second section of the report contains a discussion of the major elements of the study. The third section summarizes the results of the study and draws some conclusions from them. The appendices include copies of the waste acceptance schedule and the existing and projected spent fuel inventory that were used in the study. 10 refs., 27 figs

  20. Spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    The development of the nuclear energy sector in Bulgaria is characterized by two major stages. The first stage consisted of providing a scientific basis for the programme for development of the nuclear energy sector in the country and was completed with the construction of an experimental water-water reactor. At present, spent nuclear fuel from this reactor is placed in a water filled storage facility and will be transported back to Russia. The second stage consisted of the construction of the 6 NPP units at the Kozloduy site. The spent nuclear fuel from the six units is stored in at reactor pools and in an additional on-site storage facility which is nearly full. In order to engage the government of the country with the on-site storage problems, the new management of the National Electric Company elaborated a policy on nuclear fuel cycle and radioactive waste management. The underlying policy is de facto the selection of the 'deferred decision' option for its spent fuel management. (author)

  1. Spent Fuel Working Group Report

    International Nuclear Information System (INIS)

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary's initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group's Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities

  2. Spent nuclear fuel storage vessel

    International Nuclear Information System (INIS)

    Containing tubes for containing spent nuclear fuels are arranged vertically in a chamber. Heat releasing fins are disposed horizontal to the outer circumference of the containing tubes for rectifying cooling air and promoting cooling of the containing tubes. Louvers and evaporation sides of heat pipes are disposed at a predetermined distance in the chamber. Cooling air flows from an air introduction port to the inside of the chamber and takes heat from the containing tubes incorporated with heat generating spent nuclear fuels, rising its temperature and flows off to an air exhaustion exit. The direction for the rectification plate of the louver is downward from a horizontal position while facing to the air exhaustion port. Since the evaporation sides of the heat pipes are disposed in the inside of the chamber and the condensation side of the heat pipes is disposed to the outside of the chamber, the thermal energy can be recovered from the containing tubes incorporated with spent nuclear fuels and utilized. (I.N.)

  3. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  4. Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities.

    Science.gov (United States)

    Fontoura, Roberta; Daroit, Daniel J; Correa, Ana P F; Meira, Stela M M; Mosquera, Mauricio; Brandelli, Adriano

    2014-09-25

    The antioxidant and antihypertensive activities of feather hydrolysates obtained with the bacterium Chryseobacterium sp. kr6 were investigated. Keratin hydrolysates were produced with different concentrations of thermally denatured feathers (10-75 g l(-1)) and initial pH values (6.0-9.0). Soluble proteins accumulated in high amounts in media with 50 and 75 g l(-1) of feathers, reaching values of 18.5 and 22 mg ml(-1), respectively, after 48 hours of cultivation. In media with 50 g l(-1) of feathers, initial pH had minimal effect after 48 hours. Maximal protease production was observed after 24 hours of cultivation, and feather concentration and initial pH values showed no significant effect on enzyme yields at this time. Feather hydrolysates displayed in vitro antioxidant properties, and optimal antioxidant activities were observed in cultures with 50 g l(-1) feathers, at initial pH 8.0, after 48 hours growth at 30°C. Also, feather hydrolysates were demonstrated to inhibit the angiotesin I-converting enzyme by 65% and dipeptidyl peptidase-IV by 44%. The bioconversion of an abundant agroindustrial waste such as chicken feathers can be utilized as a strategy to obtain hydrolysates with antioxidant and antihypertensive activities. Feather hydrolysates might be employed as supplements in animal feed, and also as a potential source of bioactive molecules for feed, food and drug development. PMID:25038398

  5. Enzymatic solubilization of proteins in brewer's spent grain.

    Science.gov (United States)

    Treimo, Janneke; Aspmo, Stein Ivar; Eijsink, Vincent G H; Horn, Svein J

    2008-07-01

    Brewer's spent grain (BSG) is an abundant, protein-rich coproduct from the beer industry. There is a growing interest in increasing and diversifying the exploitation of BSG and related coproducts for economic and environmental reasons. In this paper, we report on a study of the solubilization of proteinaceous material from BSG using several commercial peptidase preparations. Our data show that Alcalase is the most effective peptidase for solubilization of BSG proteins, with an ability to release up to 77% of total protein. The peptides produced by Alcalase had lower average molecular weight than peptides produced by the less effective enzymes. Processes that combined peptidase treatment with carbohydrate-degrading enzyme preparations such as Depol740 increased the solubilization of dry matter (from 30 to 43% under optimal conditions). However, such additional treatment had little effect on the solubilization of protein. The choice of enzyme dosage depends on the desired hydrolysis time and was assessed through several experiments. Protein solubilization was consistently better at pH 8.0 as compared to pH 6.8. Maximum protein solubilization at pH 8.0 within 4 h required the use of 10-20 microL Alcalase per g of dry matter. However, a considerable degree of solubilization (64%) and hydrolysates with high protein content could be obtained using doses down to only 1.2 microL. Amino acid composition analyses showed that Alcalase treatment solubilizes proline and glutamine (constituents of barley hordein) slightly more efficiently than the other amino acids in BSG. PMID:18553975

  6. Replacement of mechanically deboned chicken meat with its protein hydrolysate in mortadella-type sausages

    Scientific Electronic Library Online (English)

    Carlos Pasqualin, Cavalheiro; Fernanda Luisa, Lüdtke; Flávia Santi, Stefanello; Ernesto Hashime, Kubota; Nelcindo Nascimento, Terra; Leadir Lucy Martins, Fries.

    2014-09-01

    Full Text Available Mortadella-type sausage manufactured using mechanically deboned chicken meat were reformulated replacing MDCM with increasing amounts of MDCM protein hydrolysates (10%, 20%, and 30%), and their physicochemical, microbiological, and sensorial characteristics were evaluated for 60 days of storage at 4 [...] °C. The higher substitutions resulted in sausages more susceptible to lipid oxidation with higher TBARS values during storage; however, these values were lower than the organoleptic perception threshold. The sausages were darker and less red, with lower lightness (L*) and redness (a*) values than those of the control treatment. They had soft texture, which was evidenced by both the instrumental and sensory analysis. Therefore, the formulation containing 10% of MDCM protein hydrolysates proved to be the most suitable for mortadella-type sausage elaboration.

  7. Replacement of mechanically deboned chicken meat with its protein hydrolysate in mortadella-type sausages

    Directory of Open Access Journals (Sweden)

    Carlos Pasqualin Cavalheiro

    2014-09-01

    Full Text Available Mortadella-type sausage manufactured using mechanically deboned chicken meat were reformulated replacing MDCM with increasing amounts of MDCM protein hydrolysates (10%, 20%, and 30%, and their physicochemical, microbiological, and sensorial characteristics were evaluated for 60 days of storage at 4 °C. The higher substitutions resulted in sausages more susceptible to lipid oxidation with higher TBARS values during storage; however, these values were lower than the organoleptic perception threshold. The sausages were darker and less red, with lower lightness (L* and redness (a* values than those of the control treatment. They had soft texture, which was evidenced by both the instrumental and sensory analysis. Therefore, the formulation containing 10% of MDCM protein hydrolysates proved to be the most suitable for mortadella-type sausage elaboration.

  8. Utilization of cattle manure for torula yeast production from straw hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Moo-Young, M.; Chahal, D.S.; Vlach, D.

    1980-01-01

    Good growth of Torula (Candida utilis) was obtained from mixtures of anaerobically fermented cattle manure liquor and barley straw acid hydrolysate. Relatively good growth of this yeast was also obtained from mixtures of acid-or alkali-pretreatment cattle manure and barley straw acid hydrolysate. However, a significant amount of reducing sugars (30-40%) was usually left unutilized, indicating the need for a better strain of C. utilis capable of utilizing such sugars as galactose and arabinose which are released (in addition to glucose and xylose) from the hemicellulose during the acid hydrolysis of barley straw. These experiments demonstrate the practicability of using these nutrient sources, obtainable from abundant waste materials, to produce useful single cell protein (SCP) products. In particular, an integrated two stage anaerobic-aerobic fermentation process for the co-production of methane fuel gas and SCP offers an economically attractive option.

  9. Biocatalytic conversion of poultry processing leftovers: Optimization of hydrolytic conditions and peptide hydrolysate characterization.

    Science.gov (United States)

    Nikolaev, I V; Sforza, S; Lambertini, F; Ismailova, D Yu; Khotchenkov, V P; Volik, V G; Dossena, A; Popov, V O; Koroleva, O V

    2016-04-15

    Peptide hydrolysate (PH) was produced by deep controllable bioconversion of poultry processing leftovers (broiler necks), by means of a multienzyme composition, containing four commercially available enzyme preparations (Alcalase, Neutrase, Flavourzyme, Protamex). The design of multienzyme composition (MEC) was applied to yield a hydrolysate with adjusted properties, including minimized antigenicity and bitterness. The protein recovery was optimized using Box-Behnken response surface design. The individual and interactive effects of hydrolysis conditions (time, hydromodule and MEC dosage) were studied. The experimental data were analyzed by ANOVA method and a well-predictive, second order polynomial model was developed using multiple regression analysis. Optimal hydrolysis conditions were found to be: hydrolysis time 3h, hydromodule 2.25l/kg and dosage of MEC 0.25%. The corresponding predicted value for protein recovery was 75.34%, 2 times higher compared to traditional long-term heating hydrolysis. The PH obtained is a low allergenic product with high antioxidant capacity. PMID:26616995

  10. Utilisation Of Spirulinasp. And Chlorellapyrenoidosa Biomass For The Productionof Enzymatic Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Cristiane R. Lisboa

    2014-05-01

    Full Text Available This aim of this study was to assess the hydrolysis reaction of the biomass of Chlorella pyrenoidosaandSpirulinasp. LEB 18,using commercial proteases that act in different pH ranges, to obtain protein hydrolysates with promising application in food or food supplement, improving functional and nutritional food properties. Threecentral composite study designs were carried out for each microalga (Chlorella and Spirulina. The 2 3 type central composite design was utilized with three replications at the central point, varying the enzyme concentration (5 to 10 U.mL-1 , the concentrationof substrate (5 to 10 % and reaction time (60 to 240 min, for a total of 11 experiments per planning. The highestdegrees of hydrolysis (52.9% and 55.31% forSpirulinaand Chlorella,respectively, were obtained with 4 h of reaction. The results show that it is possible to obtain enzymatic protein hydrolysates with different DH from microalgae biomass.

  11. Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds.

    Science.gov (United States)

    Rocha, Maria Valderez Ponte; de Matos, Leonardo José Brandão Lima; Lima, Larissa Pinto de; Figueiredo, Pablo Marciano da Silva; Lucena, Izabelly Larissa; Fernandes, Fabiano André Narciso; Gonçalves, Luciana Rocha Barros

    2014-09-01

    This study evaluates the production of biodiesel and ethanol from spent coffee grounds (SCG). The extraction of oil from SCG, biodiesel production and ethanol production processes were studied. The liquid-to-solid ratio and temperature were evaluated in the ultrasound-assisted extraction of the oil from SCG. The highest yield (12%) was obtained using 4 mL g(-1) liquid-to-solid ratio at 60°C for 45 min. The process to produce biodiesel showed a yield of 97% into fatty acid methyl esters (FAME). The highest glucose yield (192 mg g SCG(-1)) was obtained by hydrolysis with 0.4 mol L(-1) sulfuric acid at 121°C for 15 min. The hydrolysate was used as fermentation medium for ethanol production by Saccharomyces cerevisiae obtaining 19.0 g L(-1) at 10h of process of ethanol with a yield of ethanol and productivity of 0.50 g g(-1) and 1.90 g L(-1)h(-1), respectively. Spent coffee grounds were considered a potential feedstock for biodiesel and ethanol production. PMID:24997378

  12. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis

    DEFF Research Database (Denmark)

    Garde, Arvid; Jonsson, Gunnar Eigil; Schmidt, A. S.; Ahring, B. K.

    2002-01-01

    Lactic acid production by Lactobacillus brevis and Lactobacillus pentosus on a hemicellulose hydrolysate (HH) of wet-oxidized wheat straw was evaluated. The potential of 11-12 g/l fermentable sugars was released from the HH through either enzymatic or acidic pretreatment. Fermentation of added xylose in untreated HH after wet-oxidation, showed no inhibition on the lactic acid production by either Lb. pentosus or Lb. brevis. Lb. pentosus produced lactate corresponding to 88% of the theoretical ma...

  13. Evaluation of wheat gluten hydrolysates as taste-active compounds with antioxidant activity

    OpenAIRE

    Koo, Seung Hyun; Bae, In Young; Lee, Suyong; Lee, Dae-Hee; Hur, Byung-Serk; Lee, Hyeon Gyu

    2011-01-01

    Wheat gluten was subjected to enzymatic hydrolysis with various proteases (Alcalase, Flavourzyme, Protamex) and the taste-enhancing properties and antioxidant activities of the resulting wheat gluten hydrolysates (WGHs) were characterized. The contents of the hydrophobic amino acid of the WGHs were highly correlated with the degree of hydrolysis by Flavourzyme and Protamex, except Alcalase. The taste profiles of the Alcalase-treated WGHs showed decreased bitterness while umami and overall acc...

  14. Production of protein hydrolysates from fish byproduct prepared by enzymatic hydrolysis

    OpenAIRE

    Murna Muzaifa; Novi Safriani; Fahrizal Zakaria

    2012-01-01

    The objective of this research was to study the production of fish protein hydrolysate (FPH) from fish by-product prepared by enzymatichydrolysis. Fish by-product were prepared using Alcalase and Flavourzyme enzyme and properties of FPH were analyzed. The resultsshowed that FPH prepared using Alcalase enzyme had greater amount of protein (82.66%) than FPH prepared using Flavourzyme enzyme(73.51%). Solubility, emulsifying and foaming properties of FPH prepared using Alcalase were also better t...

  15. Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology

    OpenAIRE

    Dey, Satya S.; Dora, Krushna Chandra

    2011-01-01

    Protein hydrolysates were produced from shrimp waste mainly comprising head and shell of Penaeus monodon by enzymatic hydrolysis for 90 min using four microbial proteases (Alcalase, Neutrase, Protamex, Flavourzyme) where PR(%) and DH (%) of respective enzymes were compared to select best of the lot. Alcalase, which showed the best result, was used to optimize hydrolysis conditions for shrimp waste hydrolysis by response surface methodology using a central composite design. A model equation wa...

  16. Fermentation and recovery of glutamic acid from palm waste hydrolysate by Ion-exchange resin column.

    Science.gov (United States)

    Das, K; Anis, M; Azemi, B M; Ismail, N

    1995-12-01

    Glutamic acid produced from palm waste hydrolysate by fermentation with Brevibacterium lactofermentum ATCC 13869 is produced with a remarkably high yield compared with that produced from pure glucose as a carbon source. The produce yield is 70 g/L with glucose, wherease, when palm waste hydrolysate is the fermentation medium in the same bioreactor under same conditions, it is 88 g/L. The higher yield may be attributed to the fact that this organism has the ability to convert sugars other than only glucose present in the hydrolysate. Bioreactor conditions most conducive for maximum production are pH 7.5, temperature of 30 degrees rmentation period of 48 h, inoculum size 6%, substrate concentration of 10 g per 100 mL, yeast extract 0.5 g per 100 mL as a suitable N source, and biotin at a concentration of 10 pg/L. Palm waste hydrolysate used in this study was prepared by enzymic saccharification of treated palm press fiber under conditions that yielded a maximum of 30 g/L total reducing sugars. Glutamic acid from fermentation broth was recovered by using a chromatographic column (5cm x 60 cm) packed with a strong ion-exchange resin. The filtered broth containing glutamic acid and other inorganic ions was fed to the fully charged column. The broth was continuously recycled at a flow rate of 50 mL/min (retention time of 55 min) until glutamic acid was fully adsorbed on the column leaving other ions in the effluent. Recovery was done by eluting with urea and sodium hydroxide for total displacement of glutamic acid from the resin. The eluent containing 88 g/L of glutamic acid was concentrated by evaporation to obtain solid crystals of the product. (c) 1995 John Wiley & Sons, Inc. PMID:18623521

  17. Safety of a new, ultrafiltrated whey hydrolysate formula in children with cow milk allergy

    DEFF Research Database (Denmark)

    Halken, S; Høst, A; Hansen, L G; Osterballe, O

    1993-01-01

    The purpose of this study was to determine whether a new ultrafiltrated whey hydrolysate infant formula, Profylac, could be administered safely to children with cow milk protein allergy/intolerance. Profylac has a stated molecular weight of < 8 kD and at least 30,000 times reduced antigenicity which is controlled by a combination of ELISA-techniques and immunochemical methods. The study comprised 66 children with cow milk protein allergy/intolerance diagnosed by controlled elimination/challenge ...

  18. Comparison of an elemental with a hydrolysed whey formula in intolerance to cows' milk.

    OpenAIRE

    McLeish, C M; Macdonald, A; Booth, I. W.

    1995-01-01

    In a double blind study, 40 infants with cows' milk intolerance of various causes were randomised to receive a nutritionally complete formula in which nitrogen was supplied either as whey hydrolysate or amino acids. The median age of infants was 10 weeks (range 36 weeks' gestation to 108 weeks' postnatal age). After a median follow up period of 25 weeks there was no significant difference in dietary intake between the formulas. Twenty four weeks after entry, weight and weight for length impro...

  19. Fractionation of fish protein hydrolysates by ultrafiltration and nanofiltration: impact on peptidic populations

    OpenAIRE

    Bourseau, Patrick; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-derouiniot, Maryse; Masse, Anthony; Guerard, Fabienne; Chabeaud, Aurélie; Fouchereau-peron, Martine; Le Gal, Yves; Ravallec-ple, Rosenn; Berge, Jean-Pascal; Picot, Laurent; Piot, Jean -marie; Batista, Ireneu; Thorkelsson, Gudjon

    2009-01-01

    The production by enzymatic treatment of fish protein hydrolysates (FPH) is a promising route to add value to fisheries proteinic co-products (fish frames, heads etc.). Indeed, FPH possess good nutritional properties and biological activities for food and feed uses. Pressure-driven membrane separations such as ultrafiltration (UF) and nanofiltration (NF) can be used after the hydrolysis to, increase the specific activities of the FPH. This paper discusses the impact of a two-step UF/NF proces...

  20. Sensory and aromatic characteristics of tongue sole by-products hydrolysates (Cynoglossus senegalensis)

    OpenAIRE

    Sylla, K. S. B.; Berge, Jean-Pascal; Prost, Carole; Musabyemariya, B.; Seydi, Mg

    2009-01-01

    Tongue sole by-products coming from fish-filleting plant were hydrolyzed by Protamex® protease. To identify the future application of hydrolysates, a sensory analysis was carried out.The sensory profile was performed with a jury of 14 specialized judges.11 profiles were found by this panel of tasting. In addition, the aromatic characterization revealed that 57 molecules are responsible for these odours described in sensory analysis.The description of these aromatic compounds opens potentia...

  1. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, S K; Vendelbo, M H; Matzon, A; Hindhede, J; Bejder, A; Ringgaard, Steffen; Vissing, K

    2013-01-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate?+?carbohydrate group (WHD) or a carbohydrate group (PLA). Subjects completed 12?weeks maximal knee extensor training with one leg using eccentric contractions and the other using concentric contractions. Before and after training cross-sectio...

  2. Effects of food enriched with egg yolk hydrolysate (bone peptide) on bone metabolism in orchidectomized dogs

    OpenAIRE

    KOBAYASHI, Toyokazu; Koie, Hiroshi; WATANABE, Arisa; INO, Arisa; Watabe, Kazuya; KIM, Mujo; KANAYAMA, Kiichi; OTSUJI, Kazuya

    2015-01-01

    We examined the effects of chicken egg hydrolysate (also known as “bone peptide” or BP) on bone metabolism in 5- to 8-month-old orchidectomized dogs. The bone formation marker serum bone alkaline phosphatase (BAP) and the bone resorption marker urine deoxypyridinoline (DPD) were used as indicators to measure changes in bone metabolism. The following results were observed that Serum BAP was higher in dogs fed BP-enriched food throughout the clinical investigation. Serum BAP was ...

  3. Effect of cooking temperatures on protein hydrolysates and sensory quality in crucian carp (Carassius auratus) soup

    OpenAIRE

    Zhang, Jinjie; Yao, Yanjia; Ye, Xingqian; Fang, Zhongxiang; CHEN, JIANCHU; WU, DAN; Liu, Donghong; Hu, Yaqin

    2011-01-01

    Cooking methods have a significant impact on flavour compounds in fish soup. The effects of cooking temperatures (55, 65, 75, 85, 95, and 100 °C) on sensory properties and protein hydrolysates were studied in crucian carp (Carassius auratus) soup. The results showed that the soup prepared at 85 °C had the best sensory quality in color, flavour, amour, and soup pattern. Cooking temperature had significant influence on the hydrolysis of proteins in the soup showed by SDS-PAGE result. The conten...

  4. Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola

    OpenAIRE

    Lachhab, Nihed; Sanzani, Simona M.; Adrian, Marielle; Chiltz, Annick; Balacey, Suzanne; Boselli, Maurizio; Ippolito, Antonio; Poinssot, Benoit

    2014-01-01

    Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy) and casein (cas) to trigger ...

  5. Detoxification of biomass hydrolysates with nucleophilic amino acids enhances alcoholic fermentation.

    Science.gov (United States)

    Xie, Rui; Tu, Maobing; Carvin, Jamarius; Wu, Yonnie

    2015-06-01

    Carbonyl compounds generated in biomass pretreatment hinder the biochemical conversion of biomass hydrolysates to biofuels. A novel approach of detoxifying hydrolysates with amino acids for ethanol production was developed. Among the 20 amino acids assessed for their detoxification efficiency and nucleophilicity, cysteine was the most effective one. It increased both ethanol productivity and final yield of biomass hydrolysates from 0.18 (untreated) to 1.77 g/L/h and from 0.02 to 0.42 g/g, respectively. Detoxification efficiency was followed by histidine and it increased the final yield to 0.42 g/g, then by lysine, tryptophan and asparagine. It was observed all five effective amino acids contained reactive side-chain functional groups, which played important roles in the amino acid detoxification reaction. The study further showed cysteine and glycine detoxifications were temperature and pH dependent. The mechanistic study using mass spectrometry revealed thiazolidine carboxylic acid, a Schiff base, was formed by condensation of aldehyde and cysteine. PMID:25812813

  6. Identification of Escherichia coli biomarkers responsive to various lignin-hydrolysate compounds.

    Science.gov (United States)

    Lee, Siseon; Nam, Dougu; Jung, Joon Young; Oh, Min-Kyu; Sang, Byoung-In; Mitchell, Robert J

    2012-06-01

    Aberrations in the growth and transcriptome of Escherichia coli str. BL21(DE3) were determined when exposed to varying concentrations of ferulic acid (0.25-1 g/L), an aromatic carboxylic acid identified within lignin-cellulose hydrolysate samples. The expression of several individual genes (aaeA, aaeB, inaA and marA) was significantly induced, i.e., more than 4-fold, and thus these genes and the heat shock response gene htpG were selected as biomarkers to monitor E. coli's responses to five additional hydrolysate-related compounds, including vanillic acid, coumaric acid, 4-hydroxybenzoic acid, ferulaldehyde and furfural. While all of the biomarkers showed dose-dependent responses to most of the compounds, expression of aaeA and aaeB showed the greatest induction (5-30-fold) for all compounds tested except furfural. Lastly, the marA, inaA and htpG genes all showed higher expression levels when the culture was exposed to spruce hydrolysate samples, demonstrating the potential use of these genes as biomarkers. PMID:22445268

  7. Separation of FFA from Partially Hydrogenated Soybean Oil Hydrolysate by Means of Membrane Processing

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng

    2011-01-01

    Different types of commercial porous and non-porous polymeric membranes have been investigated for their capabilities to separate free fatty acids (FFA) from hydrolysate of partially hydrogenated soybean oil. A regenerated cellulose (RC, PLAC) membrane exhibited the most prominent difference in rejection between FFA and glycerides and the highest flux (27 kg h?1 m?2) in hydrolysate ethanol solution. The results also showed that, besides the pore size of membrane, the membrane flux depended largely on the property matching between membrane and solvent, as observed (40 kg h?1 m?2) flux was achieved with methanol but no flux detected with hexane for PLAC. The polyvinyl alcohol (PVA, NTR-729 HF) and Polyamide (PA, NTR-759HR) membranes gave the second and third highest flux (10.1 and 5.7 kg h?1 m?2, respectively), where solute rejections for NTR-759HR were 95.9% for triacylglycerols (TG), 83.3% for diacylglycerols (DG); 87.7% for monoacylglycerols (MG) and 22.9% for FFA, respectively. A discontinuous membrane filtration using an RC membrane with ethanol changed the composition of hydrolysate from 32.2:34.2:7.9:25.7 TG/DG/MG/FFA to 47.8:36.0:10.2:6.0. The results from this work proved that FFA can be efficiently separated from a hydrolysis mixture of oil using an RC membrane in methanol and ethanol.

  8. Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864.

    Science.gov (United States)

    Ding, Ji-Cai; Xu, Guo-Chao; Han, Rui-Zhi; Ni, Ye

    2016-01-01

    In this study, corn stover (CS) hydrolysates, pretreated by fresh and recycled ionic liquid (IL) [Bmim][Cl], were utilized in butanol fermentation by Clostridium saccharobutylicum DSM 13864. An efficient CS pretreatment procedure using [Bmim][Cl] was developed, giving a glucose concentration of 18.7gL(-1) using ten times recycled [Bmim][Cl], representing about 77% of that produced with fresh IL (24.2gL(-1)). Fermentation of hydrolysate I (pretreated by fresh IL) resulted in 7.4gL(-1) butanol with a yield of 0.21ggtotal-sugar(-1) and a productivity of 0.11gL(-1)h(-1), while 7.9gL(-1) butanol was achieved in fermentation using hydrolysate II (pretreated by ten times reused IL) with similar levels of acetone and ethanol, as well as yield and productivity. This study provides evidence for the efficient utilization of IL in CS pretreatment for biobutanol fermentation. PMID:26318847

  9. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes.

    Science.gov (United States)

    He, Rong; Girgih, Abraham T; Rozoy, Elodie; Bazinet, Laurent; Ju, Xing-Rong; Aluko, Rotimi E

    2016-04-15

    Rapeseed protein isolate was subjected to alcalase digestion to obtain a protein hydrolysate that was separated into peptide fractions using electrodialysis with ultrafiltration membrane (EDUF) technology. The EDUF process (6h duration) led to isolation of three peptide fractions: anionic (recovered in KCl-1 compartment), cationic (recovered in KCl-2 compartment), and those that remained in the feed compartment, which was labeled final rapeseed protein hydrolysate (FRPH). As expected the KCl-1 peptides were enriched in negatively-charged (43.57%) while KCl-2 contained high contents of positively-charged (28.35%) amino acids. All the samples inhibited angiotensin converting enzyme (ACE) and renin activities in dose-dependent manner with original rapeseed protein hydrolysate having the least ACE-inhibitory IC50 value of 0.0932±0.0037mg/mL while FRPH and KCl-2 had least renin-inhibitory IC50 values of 0.47±0.05 and 0.55±0.06mg/mL, respectively. Six hours after oral administration (100mg/kg body weight) to spontaneously hypertensive rats, the FRPH produced the maximum systolic blood pressure reduction of -51mmHg. PMID:26617047

  10. Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology.

    Science.gov (United States)

    Dey, Satya S; Dora, Krushna Chandra

    2014-01-01

    Protein hydrolysates were produced from shrimp waste mainly comprising head and shell of Penaeus monodon by enzymatic hydrolysis for 90 min using four microbial proteases (Alcalase, Neutrase, Protamex, Flavourzyme) where PR(%) and DH (%) of respective enzymes were compared to select best of the lot. Alcalase, which showed the best result, was used to optimize hydrolysis conditions for shrimp waste hydrolysis by response surface methodology using a central composite design. A model equation was proposed to determine effects of temperature, pH, enzyme/substrate ratio and time on DH where optimum values found to be 59.37 °C, 8.25, 1.84% and 84.42 min. for maximum degree of hydrolysis 33.13% respectively. The model showed a good fit in experimental data because 92.13% of the variability within the range of values studied could be explained by it. The protein hydrolysate obtained contained high protein content (72.3%) and amino acid (529.93 mg/gm) of which essential amino acid and flavour amino acid were was 54.67-55.93% and 39.27-38.32% respectively. Protein efficiency ratio (PER) (2.99) and chemical score (1.05) of hydrolysate was suitable enough to recommend as a functional food additive. PMID:24426043

  11. Determination of optimal regimes in obtaining kilka protein hydrolysates for sturgeon starter diets

    Directory of Open Access Journals (Sweden)

    Alamdari Hojatollah

    2013-04-01

    Full Text Available The aim of this study was to determine the optimal regimes of obtaining hydrolysates of minced fish (Clupeonella sp., kilka with a predictable output of water-soluble protein and non-protein nitrogen compounds in them. The technological process has been studied by two types of raw material: whole fish and fish without head and entrails. Studying the process of obtaining kilka hydrolysates for sturgeon starter diets showed that the most rational way of hydrolysis in this case is enzymatic-acid method by pre-grinding of raw materials in meat-mincer with a die diameter 4.5 mm. The following optimal process parameters have been identified: temperature – 55 °C, the duration of hydrolysis – 3 days at duty of water – 1 : 3; a dose of formic acid – 3 % and a dose of sodium chloride – 0.25 %. Comparison of the experimental results showed that hydrolysates reception from intact kilka is much more efficient than that of gutted kilka. Optimal regimes, both in the first and in the second case, practically do not differ.

  12. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli

    OpenAIRE

    Gill Ryan T; Sandoval Nicholas R; Mills Tirzah Y

    2009-01-01

    Abstract The sustainable production of biofuels will require the efficient utilization of lignocellulosic biomass. A key barrier involves the creation of growth-inhibitory compounds by chemical pretreatment steps, which ultimately reduce the efficiency of fermentative microbial biocatalysts. The primary toxins include organic acids, furan derivatives, and phenolic compounds. Weak acids enter the cell and dissociate, resulting in a drop in intracellular pH as well as various anion-specific eff...

  13. Optimization of Brewery's spent grain dilute-acid hydrolysis for the production of pentose-rich culture media.

    Science.gov (United States)

    Carvalheiro, Florbela; Duarte, Luís C; Medeiros, Raquel; Gírio, Francisco M

    2004-01-01

    Dilute-acid hydrolysis of brewery's spent grain to obtain a pentose-rich fermentable hydrolysate was investigated. The influence of operational conditions on polysaccharide hydrolysis was assessed by the combined severity parameter (CS) in the range of 1.39-3.06. When the CS increased, the pentose sugars concentration increased to a maximum at a CS of 1.94, whereas the maximum glucose concentration was obtained for a CS of 2.65. The concentrations of furfural, hydroxymethylfurfural (HMF), as well as formic and levulinic acids and total phenolic compounds increased with severity. Optimum hydrolysis conditions were found at a CS of 1.94 with >95% of feedstock pentose sugars recovered in the monomeric form, together with a low content of furfural, HMF, acetic and formic acids, and total phenolic compounds. This hydrolysate containing glucose, xylose, and arabinose (ratio 10:67:32) was further supplemented with inorganic salts and vitamins and readily fermented by the yeast Debaryomyces hansenii CCMI 941 without any previous detoxification stage. The yeast was able to consume all sugars, furfural, HMF, and acetic acid with high biomass yield, 0.68 C-mol/C-mol, and productivity, 0.92 g/(L.h). Detoxification with activated charcoal resulted in a similar biomass yield and a slight increase in the volumetric productivity (11%). PMID:15054253

  14. Using Populus as a lignocellulosic feedstock for bioethanol.

    Science.gov (United States)

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome. PMID:25676392

  15. Pinch analysis for bioethanol production process from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Bioethanol produced from carbon neutral and renewable biomass resources is an attractive process for the mitigation of greenhouse gases from vehicle exhaust. This study investigated energy utilization during bioethanol production from lignocellulose while avoiding competition with food production from corn and considering the potential mitigation of greenhouse gases. Process design and simulations were performed for bioethanol production using concentrated sulfuric acid. Mass and heat balances were obtained by process simulations, and the heat recovery ratio was determined by pinch analysis. An energy saving of 38% was achieved. However, energy supply and demand were not effectively utilized in the temperature range from 95 to 100 oC. Therefore, a heat pump was used to improve the temperature range of efficient energy supply and demand. Results showed that the energy required for the process could be supplied by heat released during the process. Additionally, the power required was supplied by surplus power generated during the process. Thus, pinch analysis was used to improve the energy efficiency of the process. - Highlights: ? Effective energy utilization of bioethanol production was studied by using pinch analysis. ? It was found that energy was not effectively utilized in the temperature range from 95 to 100 oC. ? Use of a heat pump was considered to improve the ineffective utilization. ? Then, remarkable energy savings could be achieved by it. ? Pinch analysis effectively improved the energy efficiency of the bioethanol production.

  16. CAN LIGNOCELLULOSE BIOSYNTHESIS BE THE KEY TO ITS ECONOMICAL DECONSTRUCTION?

    Directory of Open Access Journals (Sweden)

    Lucian A. Lucia

    2010-05-01

    Full Text Available It is ironic to think that the venerable pulp and paper industry is now considering ways to degrade cellulose. This notion can be understood as a way that the industry can face a protracted downturn in profitability and ever-mounting socio-economic pressures to enhance the efficiency of biofuels production. Many approaches have been recently taken to deconstruct cellulosic biomass, but this Editorial explores one key that may start to explain the increasing momentum in the biofuels community – biotechnology. Two approaches appear to be possible as scientists search for an effective way to unzip cellulose to its key constituents through the use of biotechnology. On the one hand, there are efforts to re-engineer the chemical composition of the tree, rendering it more digestible by enzymes and decreasing the need for mechanical or chemical pretreatment. On the other hand, what we are learning about lignocellulose biosynthesis can be of potential help in designing more efficient systems to essentially reverse that process.

  17. Rhodamine B removal with activated carbons obtained from lignocellulosic waste.

    Science.gov (United States)

    da Silva Lacerda, Viviane; López-Sotelo, Juan B; Correa-Guimarães, Adriana; Hernández-Navarro, Salvador; Sánchez-Báscones, Mercedes; Navas-Gracia, Luis M; Martín-Ramos, Pablo; Martín-Gil, Jesús

    2015-05-15

    By-products from the wax production process from carnauba palm (leaves), from the extraction of oil from macauba seeds (endocarp) and from pine nut production (shell) have been assessed for activated carbon production, using H3PO4 or CaCl2 for their chemical activation. The resulting activated charcoals have been thoroughly characterized by elemental and thermal analysis, X-ray diffraction, infrared spectroscopy, electron scanning microscopy and N2 adsorption behavior. Subsequently, their adsorption capacity for the removal of rhodamine B (RhB) from aqueous solutions has been evaluated by studying different parameters: contact time, pH, adsorbent dose, initial dye concentration and solution temperature. The adsorption of RhB followed Freundlich's model in all cases. Kinetic studies indicate that the pseudo-second order model can be used for describing the dynamics of the adsorption process. Thermodynamic parameters have also been evaluated, indicating its endothermic and spontaneous nature. Finally, a preliminary analysis of the impact of cellulose content in the carbon precursor materials has been conducted, by using a mixture of native cellulose with one of the lignocellulosic materials. PMID:25770964

  18. Switchable ionic liquids as delignification solvents for lignocellulosic materials.

    Science.gov (United States)

    Anugwom, Ikenna; Eta, Valerie; Virtanen, Pasi; Mäki-Arvela, Päivi; Hedenström, Mattias; Hummel, Michael; Sixta, Herbert; Mikkola, Jyri-Pekka

    2014-04-01

    The transformation of lignocellulosic materials into potentially valuable resources is compromised by their complicated structure. Consequently, new economical and feasible conversion/fractionation techniques that render value-added products are intensely investigated. Herein an unorthodox and feasible fractionation method of birch chips (B. pendula) using a switchable ionic liquid (SIL) derived from an alkanol amine (monoethanol amine, MEA) and an organic super base (1,8-diazabicyclo-[5.4.0]-undec-7-ene, DBU) with two different trigger acid gases (CO2 and SO2 ) is studied. After SIL treatment, the dissolved fractions were selectively separated by a step-wise method using an antisolvent to induce precipitation. The SIL was recycled after concentration and evaporation of anti-solvent. The composition of undissolved wood after MEA-SO2 -SIL treatment resulted in 80 wt % cellulose, 10 wt % hemicelluloses, and 3 wt % lignin, whereas MEA-CO2 -SIL treatment resulted in 66 wt % cellulose, 12 wt % hemicelluloses and 11 wt % lignin. Thus, the MEA-SO2 -SIL proved more efficient than the MEA-CO2 -SIL, and a better solvent for lignin removal. All fractions were analyzed by gas chromatography (GC), Fourier transform infrared spectroscopy (FT-IR), (13) C nuclear magnetic resonance spectroscopy (NMR) and Gel permeation chromatography (GPC). PMID:24616172

  19. Hybrid process for the conversion of lignocellulosic materials.

    Science.gov (United States)

    Lee, K C; Bulls, M; Holmes, J; Barrier, J W

    1997-04-01

    Because of the recalcitrant nature of lignocellulosic materials, it is important to pretreat the biomass in order to obtain a suitable material for the bioconversion. In this study, two different types of pretreatments were performed. The first experiment used a 2-gal Parr reactor operated at 140, 150, 160, and 170 degrees C with sulfuric acid concentrations varying from 0.5 to 2%. A second pretreatment was performed with a two-stage low-temperature process. The first-stage pretreatment was performed at 100 or 120 degrees C with sulfuric acid concentrations of 0.5, 2, and 5% followed by a second-stage pretreatment at 120 degrees C with 2% acid concentration. The best residues for enzymatic hydrolysis and simultaneous saccharification and fermentations (SSF) came from the higher temperature pretreatment with the Parr reactor. However, a large portion of the xylose fraction was degraded to furfural and glucose was degraded to HMF. On the contrary, the two-stage low temperature pretreatment resulted in a very low percentage of xylose degradation, and no glucose degradation. The residues from this two-stage pretreatment performed satisfactorily toward the production of ethanol by SSFs. This study discusses the results obtained from these experiments. PMID:9204515

  20. Hybrid process for the conversion of lignocellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.C.P.; Bulls, M.; Holmes, J.; Barrier, J.W. [Tennessee Valley Authority, Muscle Shoals, AL (United States)

    1997-04-01

    Because of the recalcitrant nature of lignocellulosic materials, it is important to pretreat the biomass in order to obtain a suitable material for the bioconversion. In this study, two different types of pretreatments were performed. The first experiment used a 2-gal Parr reactor operated at 140, 150, 160, and 170{degrees}C with sulfuric acid concentrations varying from 0.5 to 2%. A second pretreatment was performed with a two-stage low-temperature process. The first-stage pretreatment was performed at 100 or 120{degrees}C with sulfuric acid concentrations of 0.5, 2, and 5% followed by a second-stage pretreatment at 120{degrees}C with 2% acid concentration. The best residues for enzymatic hydrolysis and simultaneous saccharification and fermentations (SSF) came from the higher temperature pretreatment with the Parr reactor. However, a large portion of the xylose fraction was degraded to furfural and glucose was degraded to HMF. On the contrary, the two-stage low temperature pretreatment resulted in a very low percentage of xylose degradation, and no glucose degradation. The residues from this two-stage pretreatment performed satisfactorily toward the production of ethanol by SSFs. This study discusses the results obtained from these experiments. 14 refs., 15 figs., 6 tabs.

  1. CONVERSION OF LIGNOCELLULOSIC MATERIAL TO CHEMICALS AND FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson

    2001-06-30

    A direct conversion of cellulosic wastes, including resin-bonded furniture and building waste, to levulinate esters is being investigated with the view to producing fuels, solvents, and chemical intermediates as well as other useful by-products in an inexpensive process. The acid-catalyzed reaction of cellulosic materials with ethanol or methanol at 200 C gives good yields of levulinate and formate esters, as well as useful by-products, such as a solid residue (charcoal) and a resinous lignin residue. An initial plant design showed reasonable rates of return for production of purified ethyl levulinate and by-products. In this project, investigations have been performed to identify and develop reactions that utilize esters of levulinic acid produced during the acid-catalyzed ethanolysis reaction. We wish to develop uses for levulinate esters that allow their marketing at prices comparable to inexpensive polymer intermediates. These prices will allow a sufficient rate of return to justify building plants for utilizing the waste lignocellulosics. If need is demonstrated for purified levulinate, the initial plant design work may be adequate, at least until further pilot-scale work on the process is performed.

  2. Fermentation of lignocellulosic feedstocks: product markets and values

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.; Karpuk, M.

    1986-01-01

    Ethanol is the primary product of biomass hydrolysis and fermentation processes. The quantity and quality of coproducts depend on the feedstock and on the process steps employed. When the feedstock is lignocellulosic - wood or herbaceous energy crops, such as napier grass or kenaf - substantial quantities of lignin and five-carbon sugars and derivatives are produced, and the sale of these and other coproducts has a potentially large impact on the economics of fuel alcohol production. For each product, potential markets and materials competing for these markets (or competing routes to the same product) are identified. The value of ethanol as a chemical, octane enhancer, and fuel is estimated. Coproduct credits are calculated, and the potential benefits resulting from coproduct recovery are estimated. The quantity of each material that could be produced by fermentation is compared with the size of potential markets. Where coproducts of substantial fuel ethanol manufacture could saturate their markets, the question of whether early sales could serve as a wedge to ethanol market penetration is addressed. 20 refs., 7 figs., 3 tabs.

  3. Environmental impacts of a lignocellulose feedstock biorefinery system: An assessment

    International Nuclear Information System (INIS)

    Biomass is a sustainable alternative to fossil energy carriers which are used to produce fuels, electricity, chemicals, and other goods. At the moment, the main biobased products are obtained by the conversion of biomass to basic products like starch, oil, and cellulose. In addition, some single chemicals and fuels are produced. Presently, concepts of biorefineries which will produce a multitude of biomass-derived products are discussed. Biorefineries are supposed to contribute to a more sustainable resource supply and to a reduction in greenhouse gas emissions. However, biobased products and fuels may also be associated with environmental disadvantages due to, e.g. land use or eutrophication of water. We performed a Life Cycle Assessment of a lignocellulose feedstock biorefinery system and compared it to conventional product alternatives. The biorefinery was found to have the greatest environmental impacts in the three categories: fossil fuel use, respiratory effects, and carcinogenics. The environmental impacts predominantly result from the provision of hydrochloric acid and to a smaller extent also from the provision of process heat. As the final configuration of the biorefinery cannot be determined yet, various variants of the biorefinery system were analysed. The optimum variant (acid and heat recoveries) yields better results than the fossil alternatives, with the total environmental impacts being approx. 41% lower than those of the fossil counterparts. For most biorefinery variants analysed, the environmental performance in some impact categories is better than that of the fossil counterparts while disadvantages can be seen in other categories.

  4. Detoxification of rice straw and olive tree pruning hemicellulosic hydrolysates employing Saccharomyces cerevisiae and its effect on the ethanol production by Pichia stipitis.

    Science.gov (United States)

    Fonseca, Bruno Guedes; Puentes, Juan Gabriel; Mateo, Soledad; Sánchez, Sebastian; Moya, Alberto J; Roberto, Inês Conceição

    2013-10-01

    The aim of this work was to study the ability of Saccharomyces cerevisiae (baker's yeast) to metabolize a variety of aromatic compounds found in rice straw (RSHH) and olive tree pruning (OTHH) hemicellulosic hydrolysates, obtained by acid hydrolysis at different sugar and toxic compound concentrations. Initially, the hydrolysates were inoculated with S. cerevisiae (10 g L(-1)) and incubated at 30 °C under agitation at 200 rpm for 6 h. The results showed that this yeast was able to utilize phenolic and furan compounds in both hemicellulose hydrolysates. Next, the treated hydrolysates were inoculated with Pichia stipitis NRRL Y-7124 to evaluate the effect of biotransformation of aromatic compounds on ethanol production, and better fermentation results were obtained in this case compared to untreated ones. The untreated hemicellulose hydrolysates were not able to be fermented when they were incubated with Pichia stipitis. However, in RSHH treated hydrolysates, ethanol (Y(P/S)) and biomass (Y(X/S)) yields and volumetric ethanol productivity (Q(P)) were 0.17 g g(-1), 0.15 g g(-1) and 0.09 g L(-1) h(-1), respectively. The OTHH-treated hydrolysates showed less favorable results compared to RSHH, but the fermentation process was favored with regard to untreated hydrolysate. These results showed that the fermentation by P. stipitis in untreated hydrolysates was strongly inhibited by toxic compounds present in the media and that treatment with S. cerevisiae promoted a significant reduction in their toxicities. PMID:23992561

  5. Spent fuel canister docking station

    International Nuclear Information System (INIS)

    The working report for the spent fuel canister docking station presents a design for the operation and structure of the docking equipment located in the fuel handling cell for the spent fuel in the encapsulation plant. The report contains a description of the basic requirements for the docking station equipment and their implementation, the operation of the equipment, maintenance and a cost estimate. In the designing of the equipment all the problems related with the operation have been solved at the level of principle, nevertheless, detailed designing and the selection of final components have not yet been carried out. In case of defects and failures, solutions have been considered for postulated problems, and furthermore, the entire equipment was gone through by the means of systematic risk analysis (PFMEA). During the docking station designing we came across with needs to influence the structure of the actual disposal canister for spent nuclear fuel, too. Proposed changes for the structure of the steel lid fastening screw were included in the report. The report also contains a description of installation with the fuel handling cell structures. The purpose of the docking station for the fuel handling cell is to position and to seal the disposal canister for spent nuclear fuel into a penetration located on the cell floor and to provide suitable means for executing the loading of the disposal canister and the changing of atmosphere. The designed docking station consists of a docking ring, a covering hatch, a protective cone and an atmosphere-changing cap as well as the vacuum technology pertaining to the changing of atmosphere and the inert gas system. As far as the solutions are concerned, we have arrived at rather simple structures and most of the actuators of the system are situated outside of the actual fuel handling cell. When necessary, the equipment can also be used for the dismantling of a faulty disposal canister, cut from its upper end by machining. The overall cost estimate for the manufacture of the equipment, value added tax not included, totalled 669 000 EUR, of which 189 000 EUR constituted designing costs and 73 000 EUR installation costs. (orig.)

  6. Spent fuel management in France

    International Nuclear Information System (INIS)

    Spent fuel management in France is characterized by the reprocessing option; reprocessing being one of the major nuclear fuel industries developed to keep pace with the upgrowth of the national nuclear power program based initially on light water reactors and, subsequently, on fast breeder reactors. During the last years many communications have been made in international conferences and many publications have been issued, most of them are indicated in the 33 references. The importance of reprocessing from the energy conservation standpoint, the advantage of reprocessing from the waste management and safety standpoints and the economic aspects are presented

  7. The solidification of spent resin

    International Nuclear Information System (INIS)

    A quasi-steady apparatus was applied to measure the thermal conductivity of solids ranging in size for 0.3 to 200 L, and temperature distributions in the solids were recorded during the curing, and theoretical equation for conduction in a cylindrical form with uniform energy generation was established to define the thermal state of reaction. The heat of reaction calculated from the theoretical equation with experimental values for the maximum temperature and thermal conductivity agrees very well with the data reported. The relationships among heat of reaction and amount of curing agent, retardant, loading of spent resin, and water were established

  8. What does time spent on searching indicate?

    DEFF Research Database (Denmark)

    Borlund, Pia; Jensen, Sabine Dreier Elgaard

    2012-01-01

    In this paper, we report a comparative study on what users’ time spent on searching for information is an indication of. Time spent is commonly interpreted as an implicit measure of interest, but might indeed describe other circumstances of the information retrieval (IR) interaction. This phenomenon of time spent is interesting from an IR evaluation point of view with reference to how time spent is to be interpreted. A comparison of time spent between a semi-lab interactive IR (IIR) study using simulated work task situations and a naturalistic IIR study is presented. The findings of this comparison are further related to a study on information searching and seeking in the real work environment that provides a resonance board for the reported IIR studies. The main conclusion is that time spent searching depends not only on interest, but also on circumstances such as prior knowledge and external requirements.

  9. The Comparative Life Cycle Assessment of Power Generation from Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Xinhua Shen

    2015-09-01

    Full Text Available In order to solve the energy crisis and reduce emissions of greenhouse gases (GHG, renewable energy resources are exploited for power generation. Because lignocellulosic biomass resources are abundant and renewable, various technologies are applied to using lignocellulosic biomass to derive biofuel and electricity. This paper focuses on power generation from lignocellulosic biomass and comparison of the effects of different feedstocks, transportation, and power generation technologies evaluated through life cycle assessment (LCA. The inputs and boundaries of LCA vary with different feedstocks, such as forestry wood, agricultural residues, and fast-growing grass. For agricultural residues and fast-growing grass, the transportation cost from field to power plant is more critical. Three technologies for power generation are analyzed both with and without pelletization of lignocellulosic biomass. The GHG emissions also vary with different feedstocks and depend on burning technologies at different plant scales. The daily criteria pollutant emissions of power generation from different lignocellulosic biomass were evaluated with a life cycle assessment model of GREET.net 2014. It is concluded that bio-power generation is critical with the urgency of greenhouse effects.

  10. VALORIZATION AND BIODECOLORIZATION OF DYE ADSORBED ON LIGNOCELLULOSICS USING WHITE ROT FUNGI

    Directory of Open Access Journals (Sweden)

    Nesrin Ozmen,

    2012-02-01

    Full Text Available Biosorption of dyes by lignocelluloses may be an effective method for removing dyes from textile effluents. However, the resulting dye-adsorbed lignocellulosic materials may constitute another pollution problem. An integrated method can solve this problem. Here, various lignocelluloses were tested for their Astrazon Black and Astrazon Blue dyes removal activities. The dye adsorbed after 30 min contact time was 90% (45 mg/L, 70% (35 mg/L, and 98% (49 mg/L for wheat bran, pine cone, and cotton stalk, respectively. These dye-adsorbed lignocellulosic wastes then were used as solid substrates to produce laccase enzyme with Funalia trogii and Trametes versicolor under solid state fermentation (SSF. Among the lignocellulosic substrates, the dye-adsorbed wheat bran served as the best solid substrate for laccase production under SSF. Therefore, it was also tested as a solid source for laccase production under submerged fermentation. During solid state fermentation, these two fungi were able to highly decolorize these dyes. While F. trogii decolorized 80% of Astrazon Black dye adsorbed onto wheat bran, T. versicolor decolorized 86%. On the other hand, the decolorization values for Astrazon Blue dye were 69% and 84%, respectively.

  11. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.

    Science.gov (United States)

    Moreno, Antonio D; Ibarra, David; Alvira, Pablo; Tomás-Pejó, Elia; Ballesteros, Mercedes

    2015-01-01

    Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry. PMID:24506661

  12. Spent fuel shipping cask accident evaluation

    International Nuclear Information System (INIS)

    Mathematical models have been developed to simulate the dynamic behavior, following a hypothetical accident and fire, of typical casks designed for the rail shipment of spent fuel from nuclear reactors, and to determine the extent of radioactive releases under postulated conditions. The casks modeled were the IF-300, designed by the General Electric Company for the shipment of spent LWR fuel, and a cask designed by the Aerojet Manufacturing Company for the shipment of spent LMFBR fuel

  13. Transportation accident scenarios for commercial spent fuel

    International Nuclear Information System (INIS)

    A spectrum of high severity, low probability, transportation accident scenarios involving commercial spent fuel is presented together with mechanisms, pathways and quantities of material that might be released from spent fuel to the environment. These scenarios are based on conclusions from a workshop, conducted in May 1980 to discuss transportation accident scenarios, in which a group of experts reviewed and critiqued available literature relating to spent fuel behavior and cask response in accidents

  14. Characterization of spent Ni-MH batteries

    OpenAIRE

    Cabral, Marta; Nogueira, C. A.; Margarido, F.

    2011-01-01

    Spent Ni-MH batteries are not considered too dangerous for the environment, but they have a considerable economical value due to the chemical composition of electrodes which are highly concentrated in metals. The present work aimed at the physical and chemical characterisation of spent cylindrical and thin prismatic Ni-MH batteries, contributing for a better definition of the recycling process of these spent products. The electrode materials correspond to more than 50% of the batteries weight...

  15. Spent fuels transportation coming from Australia

    International Nuclear Information System (INIS)

    Maritime transportation of spent fuels from Australia to France fits into the contract between COGEMA and ANSTO, signed in 1999. This document proposes nine information cards in this domain: HIFAR a key tool of the nuclear, scientific and technological australian program; a presentation of the ANSTO Australian Nuclear Science and Technology Organization; the HIFAR spent fuel management problem; the COGEMA expertise in favor of the research reactor spent fuel; the spent fuel reprocessing at La Hague; the transports management; the transport safety (2 cards); the regulatory framework of the transports. (A.L.B.)

  16. Behavior of spent fuel under unsaturated conditions

    International Nuclear Information System (INIS)

    To evaluate the performance of spent fuel in the potential repository at Yucca Mountain, Nevada, spent fuel fragments are being exposed to small and intermittent amounts of simulated groundwater under unsaturated conditions. Both the leachate and the visual appearance of the spent fuel have been characterized for 581 days of testing. The amount of Am and Cm measured in the leachates was one to two orders of magnitude greater than that released from spent fuel under saturated conditions. The cause of this difference has not been firmly identified but may be attributable to the presence of large amounts of actinide-containing colloids in the leachate of the unsaturated tests

  17. Spent fuel storage monitoring method

    International Nuclear Information System (INIS)

    The present invention concerns storage for spent fuels and provides a monitoring method whether radioactive materials generated from spent fuels are leaked to the inside of the fuel containing tubes or not. Namely, one end of a sampling tube A is connected to each of a plurality of fuel containing tubes while the other end thereof is connected to a sampling tube B. The tube B is connected to a gas exhaustion pump by way of a radiation detector. Two valves, namely, a valve-1 and a valve-2 are disposed to each of the tubes A such that the capacity therebetween is equal. The valve-1 on the side of the containing tube is closed relative to each of a plurality of containing tubes, and gas is exhausted by a gas exhaustion pump. Subsequently, the valve-2 is closed and the valve-1 is opened, and a sampling gas is sampled from each of the containing tubes to each of the portions between the valve-1 and the valve-2. Each of the valve-1 and the valve-2 is opened successively, and the gases are recovered to detect them in a radiation detector. The amount of the sampling gas from each of the containing tubes is equal, the gases from the fuel containing tubes are not mixed and the gases in a plurality of fuel containing tubes can be detected rapidly. (I.S.)

  18. Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments

    International Nuclear Information System (INIS)

    Specifically radiolabeled [14C-lignin]lignocellulose and [14C-polysaccharide]lignocellulose from the salt-marsh cordgrass Spartina alterniflora were incubated with an intact salt-marsh sediment microbial assemblage, with a mixed (size-fractionated) bacterial assemblage, and with each of three marine fungi, Buergenerula spartinae, Phaeosphaeria typharum, and Leptosphaeria obiones, isolated from decaying S. alterniflora. The bacterial assemblage alone mineralized the lignin and polysaccharide components of S. alterniflora lignocellulose at approximately the same rate as did intact salt-marsh sediment inocula. The polysaccharide component was mineralized twice as fast as the lignin component; after 23 days of incubation, ca. 10% of the lignin component and 20% of the polysaccharide component of S. alterniflora lignocellulose were mineralized. Relative to the total sediment and bacterial inocula, the three species of fungi mediated only very slow mineralization of the lignin and polysaccharide components of S. alterniflora lignocellulose. Experiments with uniformly 14C-labeled S. alterniflora material indicated that the three fungi and the bacterial assemblage were capable of degrading the non-lignocellulosic fraction of S. alterniflora material, but only the bacterial assemblage significantly degraded the lignocellulosic fraction. Our results suggest that bacteria are the predominant degraders of lignocellulosic detritus in salt-march sediments

  19. Effect of pH on the solubilization of brewers' spent grain by microbial carbohydrases and proteases.

    Science.gov (United States)

    Faulds, Craig B; Robertson, James A; Waldron, Keith W

    2008-08-27

    The potential for enzymatic solubilization of brewers' spent grain by carbohydrases and proteases was examined over a broad pH range (pH 3.2-11.2). Enzymes from Trichoderma (Depol 686) were most efficient at a lower pH, while enzymes from the Humicola preparation (Depol 740) were the best performer over the whole range. Profiling of key glycoside hydrolase, esterase and protease activities across the pH range demonstrated that solubilization of spent grain by the Trichoderma enzymes corresponded to the range of maximum activities. This was not the case with the Humicola enzymes, where maximum solubilization of the substrate occurred at pH 9.1, at which pH the determined activities were low. Protease activity in Depol 740 was associated with a high solubilization, but inhibition of proteolytic activity resulted in only a 5% decrease in spent grain solubilization. These results suggest that while enzymes can be used to exploit agro-industrials byproduct, the use of high pH increases the extent of hydrolysis and an unidentified factor produced by Humicola improves the enzyme-catalyzed solubilization of lignocellulosic material. PMID:18680377

  20. Two-step process for conversion of lignocellulose into methane

    Energy Technology Data Exchange (ETDEWEB)

    Richards, S.R.; Spendler, F.H.

    1989-07-15

    On-field burning of straw becoming prohibited throughout the EEC. Straw can represent a large potential source of energy for the production of biogas (methane) by anaerobic digestion but the lignocellolosic nature of the straw means that digestion is slow and yields may be poor. This study aims to examine the potential for a biological pretreatment using white-rot fungi to enhance the digestibility of barley straw, and to optimise the subsequent anaerobic digestion of partially delignified material. Among a wide range of white-rot fungi tested, PLEUROTUS OSTREATUS strains selectively delignify barly straw and produced a cellulose-rich straw. This cellulose-rich straw more than doubled the yield of reducing sugars during a cellulase digestion, and increased the methane yield by 22% more compared with untreated straw. However, when the dry matter lossed in the pretreatment are included in the estimations, there is no net increase in methane yield compared to untreated straw. As expected the methane yield increased with retention times when straw is digested in continously-fed digesters. Loading rates higher than 1.25 g straw/l digester/day resulted in a rapid drop in pH and inhibition of methanogenesis. Straw pretreated with PLEUROTUS OSTREATUS strains and digested in continously-fed reactors gave the similar results as batch-fed digestion. During anaerobic digestion hemicellulose was hydrolysed to the same extent over the range of retention times studied (10 to 47.5 days) whereas cellulose hydrolysis increased with increasing retention time. Chemical pretreatment of straw was found to be a more efficient method than biological pretreatment. Sodium hydroxide, mild acid and alkaline perioxide pretreatment increased the biogas yield between 15 and 160%. (AB).

  1. Spent fuel receipt and lag storage facility for the spent fuel handling and packaging program

    International Nuclear Information System (INIS)

    Savannah River Laboratory (SRL) is participating in the Spent Fuel Handling and Packaging Program for retrievable, near-surface storage of spent light water reactor (LWR) fuel. One of SRL's responsibilities is to provide a technical description of the wet fuel receipt and lag storage part of the Spent Fuel Handling and Packaging (SFHP) facility. This document is the required technical description

  2. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review

    International Nuclear Information System (INIS)

    Bioethanol is by far the most widely used biofuel for transportation worldwide. Production of bioethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Bioethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. The price of the raw materials is highly volatile, which can highly affect the production costs of the bioethanol. One major problem with bioethanol production is the availability of raw materials for the production. Lignocellulosic biomass is the most promising feedstock considering its great availability and low cost, but the large-scale commercial production of fuel bioethanol from lignocellulosic materials has still not been implemented.

  3. COLLOIDAL STABILITY AND AGGREGATION OF LIGNOCELLULOSIC MATERIALS IN AQUEOUS SUSPENSION: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-11-01

    Full Text Available Aqueous dispersions of lignocellulosic materials are used in such fields as papermaking, pharmaceuticals, and preparation of cellulose-based composites. The present review article considers published literature dealing with the ability of cellulosic particle dispersions (fiber, fines, nanorods, etc. to either remain well dispersed or to agglomerate in response to changes in the composition of the supporting electrolyte solution. In many respects, the colloidal stability and coagulation of lignocellulosics can be understood in terms of well-known concepts, including effects due to osmotic pressure arising from overlapping electrostatic double layers at the charged surfaces. Details of the morphology and surface properties of lignocellulosic materials give rise to a variety of colloidal behaviors that make them unique. Adjustments in aqueous conditions, including the pH, salt ions (type and valence, polymers (charged or uncharged, and surfactants can be used to control the dispersion stability of cellulose, lignin, or wood-extractive materials to serve a variety of applications.

  4. Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges.

    Science.gov (United States)

    Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2015-02-01

    The utilisation of non-feed lignocellulosic biomass as a source of renewable bio-energy and synthesis of fine chemical products is necessary for the sustainable development. The methods for the dissolution of lignocellulosic biomass in conventional solvents are complex and tedious due to the complex chemical ultra-structure of biomass. In view of this, recent developments for the use of ionic liquid solvent (IL) has received great attention, as ILs can solubilise such complex biomass and thus provides industrial scale-up potential. In this review, we have discussed the state-of-art for the dissolution of lignocellulosic material in representative ILs. Furthermore, various process parameters and their influence for biomass dissolution were reviewed. In addition to this, overview of challenges and opportunities related to this interesting area is presented. PMID:25451772

  5. LIGNOCELLULOSIC FEEDSTOCK BIOREFINERY—THE FUTURE OF CHEMICAL AND ENERGY INDUSTRY

    Directory of Open Access Journals (Sweden)

    Shengdong Zhu

    2009-05-01

    Full Text Available The sustainable development of the chemical and energy industry is an indispensable component of our sustainable society. However, the traditional chemical and energy industry depends heavily on such non-renewable fossil resources as oil, coal, and natural gas. Its feedstock shortage and the resultant environmental and climatic problems pose a great threat for any type of sustainable development. Lignocellulosic materials are the most abundant renewable resources in the world and their efficient utilization provides a practical route to address these challenges. The lignocellulosic feedstock bio-refinery is an effective model for the comprehensive utilization of lignocellulosic materials, and it will play vital role in the future development of chemical and energy industry.

  6. Precipitation of Trichoderma reesei commercial cellulase preparations under standard enzymatic hydrolysis conditions for lignocelluloses.

    Science.gov (United States)

    Chylenski, Piotr; Felby, Claus; Østergaard Haven, Mai; Gama, Miguel; Selig, Michael J

    2012-08-01

    Comparative studies between commercial Trichoderma reesei cellulase preparations show that, depending on the preparation and loading, total protein precipitation can be as high as 30 % under standard hydrolysis conditions used for lignocellulosic materials. ATR-IR and SDS-PAGE data verify precipitates are protein-based and contain key cell wall hydrolyzing enzymes. Precipitation increased considerably with incubation temperature; roughly 50-150 % increase from 40 to 50 °C and 800 % greater at 60 °C. All of the reported protein losses translated into significant, and often drastic, losses in activity on related 4-nitrophenyl substrates. In addition, supplementation with the non-ionic surfactant PEG 6,000 decreased precipitation up to 80 % in 24 h precipitation levels. Protein precipitation is potentially substantial during enzymatic hydrolysis of lignocelluloses and should be accounted for during lignocellulose conversion process design, particularly when enzyme recycling is considered. PMID:22476551

  7. Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass.

    Science.gov (United States)

    Li, Ming-Fei; Yang, Sheng; Sun, Run-Cang

    2016-01-01

    Organosolv fractionation is a promising process to separate lignocellulosic biomass for the preparation of multiply products including biofuels, chemicals, and materials. This review presents the state of art of different processes applying alcohols and organic acids to treat lignocellulosic biomass for the production of ethanol, lignin, xylose, etc. The major organosolv technologies using ethanol, formic acid, and acetic acid, are intensively introduced and discussed in depth. In addition, the structural modifications of the major components of lignocelluloses, the technical processes, and the applications of the products were also summarized. The object of the review is to provide recent information in the field of organosolv process for the integrated biorefinery. The perspectives of the challenge and opportunity related to this topic are also presented. PMID:26476870

  8. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.

    Science.gov (United States)

    Zhang, Ke; Pei, Zhijian; Wang, Donghai

    2016-01-01

    Lignocellulosic biomass represents the largest potential volume and lowest cost for biofuel and biochemical production. Pretreatment is an essential component of biomass conversion process, affecting a majority of downstream processes, including enzymatic hydrolysis, fermentation, and final product separation. Organic solvent pretreatment is recognized as an emerging way ahead because of its inherent advantages, such as the ability to fractionate lignocellulosic biomass into cellulose, lignin, and hemicellulose components with high purity, as well as easy solvent recovery and solvent reuse. Objectives of this review were to update and extend previous works on pretreatment of lignocellulosic biomass for biofuels and biochemicals using organic solvents, especially on ethanol, methanol, ethylene glycol, glycerol, acetic acid, and formic acid. Perspectives and recommendations were given to fully describe implementation of proper organic solvent pretreatment for future research. PMID:26343573

  9. Preventive effect of feeding high-risk infants a casein hydrolysate formula or an ultrafiltrated whey hydrolysate formula. A prospective, randomized, comparative clinical study

    DEFF Research Database (Denmark)

    Halken, S; HØst, A

    1993-01-01

    In a prospective study of a 1-year birth cohort of 158 high-risk infants the effect of feeding breastmilk, a casein hydrolysate (Nutramigen) or a new ultrafiltrated whey hydrolysate (Profylac) on the development of cow milk protein allergy/intolerance (CMPA/CMPI) was assessed and compared. All the infants had biparental or severe single atopic predisposition, the latter combined with cord blood IgE > or = 0.5 kU/L. At birth all infants were randomized to Nutramigen or Profylac, which was used when breastfeeding was insufficient or not possible during the first 6 months of life. During the same period this regimen was combined with avoidance of solid foods and cow milk protein. All mothers had unrestricted diets and were encouraged to do breastfeeding only. Moreover, avoidance of daily exposure to tobacco smoking, furred pets and dust-collecting materials in the bedroom was advised. The infants were followed prospectively from birth to 18 months of age. All possible atopic symptoms were registered and controlled elimination/challenge studies were performed when symptoms suggested CMPA/CMPI. A total of 154 (97%) were followed up and 141 followed the diet strictly. Eighty-eight (62%) of the infants were breastfed for at least 6 months, 20 (14%) were breastfed exclusively, 59 and 62 had varying amounts of Nutramigen or Profylac respectively. CMPA/CMPI was diagnosed in 1/20, 1/59 and 3/62 in the breastfed, the Nutramigen and Profylac groups respectively, but 1 of the latter also had Nutramigen. None of the infants showed reactions against Nutramigen or Profylac. In 4 infants symptoms were provoked by breastmilk when the mother ingested cow milk and in 1 only by cow milk.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Production of butanol (a biofuel) from agricultural residues: Part II - Use of corn stover and switchgrass hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Dien, Bruce; Iten, Loren; Bowman, Michael J.; Cotta, Michael A. [United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research, 1815 N. University Street, Peoria, IL 61604 (United States); Hughes, Stephen; Liu, Siqing [USDA-ARS-NCAUR, Renewable Product Technology, 1815 N. University Street, Peoria, IL 61604 (United States); Sarath, Gautam [USDA-ARS, Grain, Forage, and Bioenergy Research Unit, University of Nebraska, 314 Biochemistry Hall, East Campus, Lincoln, NE 68583 (United States)

    2010-04-15

    Acetone butanol ethanol (ABE) was produced from hydrolysed corn stover and switchgrass using Clostridium beijerinckii P260. A control experiment using glucose resulted in the production of 21.06 g L{sup -1} total ABE. In this experiment an ABE yield and productivity of 0.41 and 0.31 g L{sup -1} h{sup -1} was achieved, respectively. Fermentation of untreated corn stover hydrolysate (CSH) exhibited no growth and no ABE production; however, upon dilution with water (two fold) and wheat straw hydrolysate (WSH, ratio 1:1), 16.00 and 18.04 g L{sup -1} ABE was produced, respectively. These experiments resulted in ABE productivity of 0.17-0.21 g L{sup -1} h{sup -1}. Inhibitors present in CSH were removed by treating the hydrolysate with Ca(OH){sub 2} (overliming). The culture was able to produce 26.27 g L{sup -1} ABE after inhibitor removal. Untreated switchgrass hydrolysate (SGH) was poorly fermented and the culture did not produce more than 1.48 g L{sup -1} ABE which was improved to 14.61 g L{sup -1}. It is suggested that biomass pretreatment methods that do not generate inhibitors be investigated. Alternately, cultures resistant to inhibitors and able to produce butanol at high concentrations may be another approach to improve the current process. (author)

  11. Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy.

    Science.gov (United States)

    Liu, Yating; Wang, Yanping; Liu, Hongjuan; Zhang, Jian'an

    2015-03-01

    In recent years, energy crisis and environmental issues such as greenhouse effect, global warming, etc. has roused peoples' concern. Biodiesel, as renewable energy, has attracted much attention to deal with such problems. This work studied the lipid production by Rhodotorula glutinis with undetoxified corncob hydrolysate. The results indicated that R. glutinis had high tolerance to the inhibitors in corncob hydrolysate and it could utilize undetoxified corncob hydrolysate directly for lipid production. The cell grew well with undetoxified hydrolysate in the batch culture of 5L fermentor with the optimized C/N ratio of 75, lipid titer and lipid content reached 5.5g/L and 36.4%, respectively. High cell density culture with two-stage nitrogen feeding strategy was studied to enhance the lipid production, biomass, lipid concentration and lipid content of 70.8, 33.5g/L and 47.2% were obtained. The results indicated the potential application for lipid production by R. glutinis with corncob hydrolysate directly. PMID:25585258

  12. Oral Administration of Gelatin Hydrolysate Reduces Clinical Signs of Canine Osteoarthritis in a Double-Blind, Placebo-Controlled Trial

    Directory of Open Access Journals (Sweden)

    A. C. Beynen

    2010-01-01

    Full Text Available Problem statement: There are indications that the intake of gelatin hydrolysate has a beneficial impact on the clinical signs of osteoarthritis in dogs. Data from a controlled trial were required to substantiate these indications. Approach: A double-blind, placebo-controlled trial with privately owned dogs was carried out to assess the efficacy of a preparation of gelatin hydrolysate in the treatment of osteoarthritis. With the use of a questionnaire, the clinical signs were evaluated by the owners. For a period of 8 weeks, the test dogs daily received 10 g of gelatin hydrolysate; as a placebo, soya protein isolate was used. The supplements were mixed with the diet; all dogs were fed on the same dry food. There were 15 dogs per treatment group. Results: The administration of gelatin hydrolysate significantly improved activity (vitality and significantly reduced stiffness and lameness. Conclusion: Gelatin hydrolysate is commonly used as a component of human foods and is generally considered as safe. It is suggested that a dose of about 2.5% in a dry food would be beneficial for dogs with osteoarthritis.

  13. Quantitative mass spectrometric analysis of dipeptides in protein hydrolysate by a TNBS derivatization-aided standard addition method.

    Science.gov (United States)

    Hanh, Vu Thi; Kobayashi, Yutaro; Maebuchi, Motohiro; Nakamori, Toshihiro; Tanaka, Mitsuru; Matsui, Toshiro

    2016-01-01

    The aim of this study was to establish, through a standard addition method, a convenient quantification assay for dipeptides (GY, YG, SY, YS, and IY) in soybean hydrolysate using 2,4,6-trinitrobenzene sulfonate (TNBS) derivatization-aided LC-TOF-MS. Soybean hydrolysate samples (25.0 mg mL(-1)) spiked with target standards were subjected to TNBS derivatization. Under the optimal LC-MS conditions, five target dipeptides derivatized with TNBS were successfully detected. Examination of the standard addition curves, with a correlation coefficient of r(2) > 0.979, provided a reliable quantification of the target dipeptides, GY, YG, SY, YS, and IY, in soybean hydrolysate to be 424 ± 20, 184 ± 9, 2188 ± 199, 327 ± 16, and 2211 ± 133 ?g g(-1) of hydrolysate, respectively. The proposed LC-MS assay is a reliable and convenient assay method, with no interference from matrix effects in hydrolysate, and with no requirement for the use of an isotope labeled internal standard. PMID:26212980

  14. High performance maleated lignocellulose epicarp fibers for copper ion removal

    Scientific Electronic Library Online (English)

    A. P., Vieira; S. A. A., Santana; C. W. B., Bezerra; H. A. S., Silva; K. C. A., Santos; J. C. P., Melo; E. C., Silva Filho; C., Airoldi.

    2014-03-01

    Full Text Available Natural lignocellulosic fiber epicarp extracted from the babassu coconut (Orbignya speciosa) was chemically modified through reaction with molten maleic anhydride without solvent, with incorporation of 189.34 mg g-1 of carboxylic acid groups into the biopolymer structure. The success of this reactio [...] n was also confirmed by the presence of carboxylic acid bands at 1741 and 1164 cm-1 in the infrared spectrum. Identically, the same group is observed through 13C NMR CP/MAS in the solid state, via high field signals in the 167 pm region. Both the precursor and the immobilized maleated biopolymers presented nearly the same thermal stability and similar crystallinity to cellulose. However, the pendant carboxylic groups have the ability to remove copper with maximum sorption through a batchwise process at pH 6.0, as expected from the point of zero charge, determined to be 6.45. The sorption kinetic data were fitted to pseudo-first order, pseudo-second order, Elovich-chemisorption and intra-particle diffusion models and the equilibrium data were fitted to the Langmuir, the Freundlich and Tenkim isotherm models. Taking into account a statistical error function and determination coefficients, the data were fit to the pseudo-first and pseudo-second order kinetic and Langmuir isotherm models, with a maximum sorption capacity of copper ions of 55.09 mg g-1. This value suggests the application of this biopolymer with incorporated carboxylate groups as a favorable agent for copper removal from appropriate systems.

  15. Relationship between Calorific Value and Elementary Composition of Torrefied Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    S. Yusup

    2010-01-01

    Full Text Available In this study, the relationship between calorific value and elementary composition of torrefied oil palm wastes (empty fruit bunches, mesocarp fiber and kernel shell and other lignocellulosic biomass is discussed. Several correlations for calorific value vs. elementary composition for biomass were examined for their applicability to torrefied lignocellulosic biomass. One of the correlations was selected as the most appropriate for the purpose, based on average absolute error between observed and estimated calorific values. In addition, the triangle plot of carbon, hydrogen and oxygen contents in untreated and pyrolyzed biomass is proposed as an appropriate tool for discussing biomass decomposition behavior.

  16. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  17. Spent Nuclear Fuel (SNF) Project Execution Plan

    International Nuclear Information System (INIS)

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities

  18. Swelling of spent fuel storage tubes

    International Nuclear Information System (INIS)

    Unexpected swelling phenomena have been reported in the storage racks of the spent fuel pool at several nuclear power plants. Experimental and analytical studies have been carried out in order to identify the governing mechanism and to analyze the interaction of the storage tube and the spent fuel element housed in the tube. (author). 2 refs., 7 figs

  19. Research reactor spent fuel in Ukraine

    International Nuclear Information System (INIS)

    This paper describes the research reactors in Ukraine, their spent fuel facilities and spent fuel management problems. Nuclear sciences, technology and industry are highly developed in Ukraine. There are 5 NPPs in the country with 14 operating reactors which have total power capacity of 12,800 MW

  20. CANDU spent fuel dry storage interim technique

    International Nuclear Information System (INIS)

    CANDU heavy water reactor is developed by Atomic Energy of Canada (AECL) it has 40 years of design life. During operation, the reactor can discharge a lot of spent fuels by using natural uranium. The spent fuel interim storage should be considered because the spent fuel bay storage capacity is limited with 6 years inventory. Spent fuel wet interim storage technique was adopted by AECL before 1970s, but it is diseconomy and produced extra radiation waste. So based on CANDU smaller fuel bundle dimension, lighter weight, lower burn-up and no-critical risk, AECL developed spent fuel dry interim storage technique which was applied in many CANDU reactors. Spent fuel dry interim storage facility should be designed base on critical accident prevention, decay heat removal, radiation protection and fissionable material containment. According to this introduction, analysis spent fuel dry interim storage facility and equipment design feature, it can be concluded that spent fuel dry interim storage could be met with the design requirement. (author)